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ABSTRACT

Towards More Power Efficient IP Lookup Engines. (December 2005)

Seraj Ahmad, Bachelor of Technology, Indian Institute of Technology, Guwahati,

India

Chair of Advisory Committee: Dr. Rabi N. Mahapatra

The IP lookup in internet routers requires implementation of the longest prefix

match algorithm. The software or hardware implementations of routing trie based

approaches require several memory accesses in order to perform a single memory

lookup, which limits the throughput considerably. On the other hand, IP lookup

throughput requirements have been continuously increasing. This has led to ternary

content addressable memory(TCAM) based IP lookup engines which can perform

a single lookup every cycle. TCAM lookup engines are very power hungry due to

the large number of entries which need to be simultaneously searched. This has

led to two disparate streams of research into power reduction techniques. The first

research stream focuses on the routing table compaction using logic minimization

techniques. The second stream focuses on routing table partitioning. This work

proposes to bridge the gap by employing strategies to combine these two leading state

of the art schemes. The existing partitioning algorithms are generally employed on

a binary routing trie precluding their application to a compacted routing table. The

proposed scheme employs a ternary routing trie to facilitate the representation of the

minimized routing table in combination with the ternary trie partitioning algorithm.

The combined scheme offers up to 50% reduction in silicon area while maintaining

the power economy of the partitioning scheme.
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CHAPTER I

INTRODUCTION

The Internet is a packet switched network consisting of a number of routers and hosts

interconnected together by communication links. Hosts reside at the boundary of the

network and host-to-host communication takes place via a number of routers using

Internet Protocol (IP). The communication between two nodes is converted into a

series of packets known as IP datagrams. Every datagram carries a 32-bit destination

address to facilitate independent routing. The packet is forwarded to a node corre-

sponding to the best-known path to the destination, which is called nexthop. The

next hop is determined by an IP lookup operation performed on a routing table. IP

lookup operation searches the most specific network hosting the specified destination

in a list of variable length network identifiers known as IP prefixes. IP prefixes can be

represented using a ternary string P = Pl xx · · · x︸ ︷︷ ︸
32−l times

where P denotes a 32-bit prefix, x

represent don’t care symbol and l the prefix length. Pl represents the l most signifi-

cants bits of the prefix. Only Pl is compared against the specified destination address

to decide a match. Since the routing table contains several overlapping prefixes, the

destination address can match multiple IP prefixes. The IP lookup operation searches

the routing table to find the longest prefix matching the destination.

The longest match semantics requires pattern matching as well length deter-

mination, which makes a practical implementation of IP lookup operation harder,

especially in high-end routers. The difficulty is attributed to super-linear growth of

the size of the routing table as well as increasing gap between silicon and optic fiber

speed, with the latter growing at an exponential rate [1].

The journal model is IEEE Transactions on Automatic Control.
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The most obvious way to represent a routing table is to construct a binary

retrieval tree known as Binary Routing Trie. The binary routing trie stores all the

prefixes of length n at the nth level. The IP lookup starts at the root node and

proceeds left(right) for a 0(1) in the destination IP address starting from the most

significant bit. The binary routing trie is not a very efficient representation as it

can have long paths containing single leaf nodes. A technique of path compression

in binary trie was suggested in [2] and adopted for performing IP lookup in [3].

Another similar technique proposed in [4], focuses on level compression instead of path

compression. A number of other techniques focus on combination of level compression

and path compression along with strategies to improve the lookup performance such

as controlled prefix expansion [5].

A survey of software and hardware based methods for IP lookup can be found

in [1] and [6]. The lookup algorithms designed for conventional memory to solve the

longest prefix match problem require several memory accesses to retrieve the nexthop.

This can quickly become a bottleneck for high-speed backbone routers operating

at gigabit speed, and with large routing tables containing up to a million entries.

Therefore hardware based solutions are needed to support such high performance

lookup operation. A technique proposed in [1] use custom hardware to expand all

the prefixes into 32 bit entries. The expanded entries are then used as memory

location to store the nexthop corresponding to that prefix. This transforms the IP

lookup operation into a single memory access. However this approach may not be

scalable for IPv6 addresses. Francis et. al. investigate techniques for O(1) IP lookup

using binary content addressable memory (BCAM) and ternary content addressable

memories(TCAM) [7]. BCAMs allow storage of 0 and 1 in each memory cell and

can perform only fixed length match. Hence multiple BCAMs are required to search

variable length prefixes in a single cycle. This can lead to significant under utilization
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of the available memory. TCAMs are similar to BCAMs but allow storage of 0, 1,

and x states. The state x is treated as don’t care and ignored during a matching

operation. Thus TCAMs allow the storage of variable length prefixes in a single

unit giving storage economy. Also TCAMs offer easier management and update of

the routing tables. Despite its advantages, TCAM based lookup solutions remained

unpopular due to its high cost, low capacity and poor performance. However, recent

advances in manufacturing and interconnection technology allows fabrication of high

capacity, high performance and low cost TCAM units matching the requirement of

today’s backbone routers. For example, the latest available TCAM in the market

operates at 100 million searches per second and offer capacities up to 16MB [8].

TCAM based fast lookup seems promising but it is not without its disadvantages.

TCAMs consume a lot of power in normal operating conditions which is proportional

to number of TCAM entries enabled for searching. A typical high-end TCAM mem-

ory today may consume up to 15 Watts. Also, please note that the IP lookup engines

may require several TCAMs in order to support future growth of the routing table.

Research efforts to reduce TCAM power consumption can be divided into two cate-

gories. The first approach attempts to reduce power consumption by partitioning the

entire TCAM memory into a set of TCAM pages and then finding a suitable hashing

algorithm to map each entry into a set of target pages [9], [10] and [11]. During

searching only target pages are enabled. This reduces power consumption by a ratio

of p
n
, where p and n are average number of target pages and total pages respectively.

The second approach reduces the power consumption by compacting routing table

entries using logic minimization techniques as discussed in [12] and [13], [14]. IP

prefixes contain the symbol x only at the end while in minimized IP prefixes it can

occur at any position. Since TCAM allows storage of x at any bit position, routing

semantics can be guaranteed even with minimized routing table. Here, the reduction
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in power consumption is dependent on the compaction ratio achieved by the logic

minimization technique applied. Experimental results show that logic minimization

can reduce power consumption by up to 60% [12], [14]. The logic minimization based

power reduction can be applied to existing TCAMs while partitioning based archi-

tecture requires hardware modification to TCAM architecture to support paging.

The performance of a partitioning scheme is proposed to be evaluated based

on three different metric. The first metric is the worst-case size of the partition

which is directly responsible for the worst-case power consumed by the lookup engine.

The second metric is the number of partitions needed to accommodate the routing

table and may contribute to the worst-case power. These two metrics are generally

considered by the partitioning scheme mentioned earlier. We introduce a third metric,

the amount of silicon area required to implement the routing table. This metric is

important in order to support large routing tables expected in future backbone routers

in storage efficient manner. All the three metrics must be simultaneously evaluated

in order to assess the performance of a partitioning scheme.

This work proposes a hybrid power reduction approach which takes advantage of

routing table compaction as well as routing table partitioning scheme to achieve high

performance and economy. The proposed approach which relies on partitioning of a

compacted routing table attempts to maximize the third metric while maintaining the

first two metrics. The experimental results obtained on a six different routing table

traces suggest that proposed scheme reduces the silicon area required to implement

the partitioned routing table by up to 60%. The results also suggest the reduction of

number of routing table partitions as compared to partitioning approach presented

in [9]

The rest of the paper is organized as follows. Chapter II discusses existing ap-

proaches on routing table compaction. Chapter III discusses related work on routing
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table partitioning. Chapter IV discusses the IP lookup engine architecture based on

TCAMs. Chapter V discusses a ternary routing trie with a brief introduction to 0-1

or binary trie. Chapter VI present the approach and algorithm on partitioning of the

minimized routing table in detail. The experimental setup and results are presented

in Chapter VII. The paper concludes in Chapter VIII, with highlights on important

results and future research direction. The raw experimental data is included in the

Appendix.
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CHAPTER II

EXISTING WORK ON ROUTING TABLE COMPACTION

Logic Minimization techniques traditionally found its use in logic synthesis to reduce

the number of logic gates required for a given circuit. The routing table compaction

using logic minimization techniques was first proposed in [12]. The routing table

compaction methodology described in [12] utilized Espresso-II to perform logic mini-

mization. However, Espresso-II has been designed to handle logic synthesis problems

and requires large computing and memory resources making the routing table com-

paction a little impractical in actual router implementation. For example Espresso-II

logic minimization algorithm described in [15] takes about 109 seconds to minimize a

routing table containing 11091 entries and supports 2 worst case updates per seconds

on a 400 MHz ARM platform. Further, it requires 500 kilobytes data memory and

100 kilobytes of instruction memory.

The following subsection define the logic minimization problem and presents a

brief survey of existing approaches for general purpose logic minimization as well as

specific approaches for handing routing table compaction.

A. Logic Minimization Problem

A boolean function F(x1, x2, . . . , xn) can be specified by an on-set F (x1, x2, . . . , xn)

and a dc-set D(x1, x2, . . . , xn). The on-set contains all the input combinations where

the function F assumes a value of logic 1. The dc-set or don’t care set contains

all the input combinations for which the value of F is unspecified. Two level logic

minimization involves finding a minimum covering set G for the specified function F.

The set G contains the sum-of-products(SOPs) representation of the input variables.
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B. Logic Minimization Approaches

The first exact solution to logic minimization problem was given by Quine [16], [17]

and McClusky [18]. The procedure first generates all the primes(SOPs which are not

contained in another SOP). This is followed by finding a set containing the minimum

set of primes which covers all the points in on-set F .

Studies have suggested that Quine-McClusky procedure and its variant are inef-

ficient as they generate a huge number of primes(sometimes more than ten millions)

in the first stage. Therefore many newer logic minimizers try to generate only those

primes which are part of some minimal cover of F thereby pruning out a large num-

ber of primes. Since logic minimization problem is NP-Complete, these algorithm

still requires a considerable amount of time to find an exact solution. A number of

heuristics algorithm has been proposed which find a near optimal solution within an

acceptable time-budget. The most notable of these are SPAM [19], PRESTO [20],

MINI [21] and Espresso-II. Several other variants exists for these algorithm offering

better performance, however Espresso-II is by far the most popular two-level logic

minimizer.

C. Routing Table Compaction Approaches

To deal with resource-constrained applications, Espresso-II provides a fast options

which uses a single-expand stage during the refinement of initial minimal cover. One

study has suggested a distance-one merge (d1-merge) heuristics to achieve acceptable

level of compaction for on-chip applications in considerably lesser time [22]. The

complexity of single-expand stage is O(N2) while the complexity of d1-merge stage is

O(N log N). Both of these heuristics achieve good speedup but they do not minimize

the memory requirement.
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Another logic minimizer ROCM studied in [13] also uses a single expand stage

and effectively minimizes the required memory. Although the execution performance

of ROCM is not better than Espresso-II, it offers good performance for incremental

minimization needed by most on-chip logic minimization applications. ROCM takes

120 seconds to minimize the routing table containing 11091 entries but offers about

30 worst case updates per seconds. Still contrast this with over 100,000 routing table

entries and peak rates of over 2000 worst-case updates per seconds required in current

backbone routers.

[14] introduces a novel approximate minimization technique of the complexity

O(N) based on a trie data structure called m-Trie (minimization trie). m-Trie is a

ternary trie (3-ary tree) with several minimization constraint. Every product term

describes a path in the m-Trie. The constraint on m-Trie cause the path being

inserted to get merged with other paths already present in the m-Trie. Thus logic

minimization is performed as a series of path insertion. The insertion procedure also

embeds several other information such as path count and a merge map in order to

allow efficient path deletion. Thus m-Trie provides fast minimization and efficient

incremental updates using localized minimization technique. It has a very small code

footprint of about 20 KB and can operate with a data memory budget as small as

16KB. Experimental results show that it can attain up to 25,000 updates per second.
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CHAPTER III

EXISTING WORK ON TCAM PARTITIONING

The routing table partitioning schemes were initially proposed to distribute the load

of IP lookup operations to several independent processors. Later, complex schemes

based on trie partitioning [10], [9], [23], bit selection [9] and multi-level fixed-stride

hashing [11] were proposed to reduce the power consumption in TCAM based IP

lookup engines. The following subsection describe the various existing partitioning

strategies for routing tables.

A. Bit Selection

1. Hashing

The routing table is partitioned according to a specially selected set of bits on the

routing prefixes. The length of the routing prefixes are assumed to be from 8 to 24 bits.

Thus a total of 16 bits are available for hashing. The number of available hash function

utilizing k hashing bits is therefore nCk. The quality of partitioning for any hash

function is dependent on the size of largest partition which corresponds to worst case

power consumed. [9] proposes three heuristics to select the best hash function which

keeps the power consumption below a specified power budget. The first heuristics

involves selection of first k bits from 16 available bits starting from rightmost bit. In

most practical cases, the scheme provides a satisfactory hash function. The second

scheme involves a heuristics which selects the k bits, starting one at a time and

minimizing the worst case partition size at each step. The partitioning strategy

is similar to Binate Select heuristics extensively used in unate recursive pardigm

based logic minimization algorithms [15]. The third techniques involves brute force
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enumeration of all the possible hash function until the given power budget is satisfied.

The scheme requires a k bit multiplexor to support the partitioning scheme.

Although the hardware overhead is quite small but the design suffers from significant

TCAM capacity under-utilization due to uneven sized partitions produced by the

hash function.

B. Trie Based Partitioning

The following subsections present the partitioning algorithms based on a trie data

structure.

1. Subtree Split

The subtree split is proposed in [9] and uses 1-bit trie to achieve the routing table

partitioning. The 1-bit trie also known as 0-1 trie or routing trie contains paths

corresponding to each prefix in the routing table. The routing lookup scans the input

IP address from left to right and traverses left edge for an ’0’ and right edge for a ’1’

until it reaches a leaf node. Each node in the trie maintains a count of the prefixes

stored in the subtrie rooted at that node. The subtree split algorithm performs a

post-order traversal of the trie, as soon as it encounters a node with a count value

atleast d b
2
e and parent count greater than b, the entire subtrie rooted at that node is

carved out and the count value of all the ancestors are decremented by the count of

the carved subtrie. The prefix corresponding to root of the carved subtrie is added

to the index TCAM. The entry in index TCAM points to the TCAM bucket which

stores all the prefixes in the carved subtrie. Please note that the root of the carved

subtrie may not be a prefix itself and can therefore lead to erroneous longest prefix

match. In order to avoid erroneous matching behavior, the covering prefix of the root
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of carved subtrie is also stored in the TCAM bucket. This modification preserves the

longest prefix match semantics.

The subtree split algorithm generates the TCAM bucket sizes in the range [d b
2
e, b]

excluding the last bucket. The last bucket size can be anything in the range [1, b].

The total number of buckets created by the algorithm is bounded by the interval

[dN
b
e, d2N

b
e]. The size of index TCAM is equal to total number of TCAM buckets

generated by the algorithm. The maximum number of entries searched in the parti-

tions generated by subtree split algorithm is K + d2N
K
e + 1, where K is the number

of buckets available in the TCAM.

2. PostOrder Split

The postorder split algorithm is similar to subtree split algorithms as described in the

previous subsection, except it tries to fill the bucket completely in order increase the

TCAM bucket capacity utilization. The algorithms performs a post-order traversal

in order to carve subtrie groups which collectively have a prefix count equal to the

chosen bucket size b. The first step in the algorithm is carving out a node with a count

value of less than or equal to b. Suppose the count of the caved subtrie is b1(< b),

another subtrie is searched starting from the first node in post-order traversal which

is not in the carved subtrie. This time procedure tries to carve out a subtrie with

a count less than or equal to b − b1. The procedure continues until all the TCAM

bucket is full. An entry in the index TCAM is added for every subtrie carved out by

the procedure. The index TCAM entries corresponding to the subtries in the same

collection, point to the same bucket. Thus a bucket in post-order split can contribute

several entries in the index TCAM. In addition, a covering prefix is also added in

the TCAM bucket for every carved subtrie. This is accounted for during the bucket

filling so that buckets do not overflow.
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The postorder split algorithm generates equal sized bucket except for the last

bucket which has a size less than or equal to b. Thus the total number of buckets

created by the algorithm is dN
b
e. If the maximum prefix length encountered is W , the

algorithm generates W + 1 index TCAM entries for each bucket in the worst-case.

The maximum number of entries searched in the partitions generated by postorder

split algorithm is (W + 1)K + dN
K
e+ W , where K is the number of buckets available

in the TCAM.
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CHAPTER IV

ARCHITECTURE OF TCAM BASED IP LOOKUP ENGINES

The commercial off-the-shelf TCAM memories can be used as an IP lookup engine,

however they are not power or storage efficient for the reasons described in Section

I. Therefore a number of different power reduction technique have been proposed in

literature, spawning a host of IP lookup engine architectures. All these architecture

seems to share a common theme such as use of an intermediate stage of index TCAM,

range comparator or simply a multiplexor to support partitioning. The second level

TCAM is segmented to support smaller sized partition in order to reduce the overall

power consumption. Some IP lookup engines employ an on-chip logic minimizer to

perform routing table compaction. We describe the IP lookup engine architecture

in this section needed to support the proposed partitioning scheme. The following

section describe the anatomy of a TCAM cell and TCAM memory module in detail.

This is followed by a description of different TCAM lookup architectures to support

bit selection and trie based partitioning scheme.

A. TCAM Cell

A NOR based TCAM cell is shown in Figure 1. It uses two SRAM based storage

cell to store states 0, 1 and x based on the encoding scheme given in Table I. Each

TCAM cell is provided with four transistor switches to assist comparison.

These transistor switches prevent matchline from getting shorted to ground when

a match occurs. For example a state 0 in TCAM cell will turn off the transistor T3.

A search for 0 applied on search lines sl0 and sl1 will turn off transistor T1 blocking

match line from getting shorted to ground. However a search for 1 will turn on the

transistor T1 creating a path to ground through transistor T4. On the other hand
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Table I: Encoding of Ternary Symbols in TCAM

d1 d0 T

0 0 x

0 1 0

1 0 1

1 1 xsr

a state x in TCAM will turn off both T3 and T4 blocking all path to ground thus

matching all search keys applied to TCAM cell giving a don’t care match semantics

needed to encode the absence of a literal.

B. TCAM Memory Architecture

A simplified TCAM architecture is shown in Figure 2. Here an array of TCAM cells

are arranged to form a TCAM word. In order to perform word comparison, all cells

belonging to a single word share a common match-line.

Since data being searched can match multiple words in TCAM due to variable

length matching, all the matchlines are connected to a priority encoder. The priority

encoder selects the word at the lowest address among all the matched words.

To initiate a search in TCAM, the matchline is pre-charged to a high level. The

data to be searched is stored in search register and asserted. TCAM words which do

not match the search data cause the matchline to be discharged, which is detected

with the aid of a sense amplifier. Since the search data is fed to large number of cells,

TCAM uses searchline drivers to handle the capacitive sink load contributed by each

cell.
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Figure 2: TCAM Memory Architecture for Lookup

C. IP Lookup Engine Architecture for Bit Selection

The low power TCAM based IP lookup engine employs a number of smaller TCAM

segments known as buckets. The buckets holds the routing table prefixes sharing a

common k bits hash signature. The buckets can be selectively enabled based on the

hash signature extracted from incoming destination IP address.

The bit-selection logic extracts a set of k bits out of 32-bit destination IP address

in a way that minimizes the worst-case partition size. Since the choice of k bits

are highly dependent on the routing table snapshot, the architecture requires use

of programmable multiplexors to extract the signature and selectively enable the

corresponding buckets. The architecture is shown in Figure 3.
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Figure 3: IP Lookup Architecture to Support Bit-Selection Based Partitioning

D. IP Lookup Engine Architecture for Trie Based Partitioning

The trie-based partitioning algorithms also employ the TCAM buckets in order to

break the overall routing table into smaller chunks. However the architecture employs

another intermediate TCAM known as indexTCAM . The trie-based partitioning al-

gorithms carve a portion of the routing trie, which can be stored in TCAM buckets.

The buckets are indexed by the prefix corresponding to root of subtrie carved as

a bucket.The indexing prefixes are of variable length and can be stored in the in-

dexTCAM. The incoming destination IP address is first matched with entries in the

indexTCAM which enables the corresponding bucket in the second level TCAM. The

incoming IP address is again searched in the active bucket in the second level yielding

the desired match. The whole operation can be pipelined to yield one lookup opera-
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tion per cycle. The architecture is shown in Figure 4.
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Figure 4: IP Lookup Architecture to Support Trie Based Partitioning
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CHAPTER V

ROUTING TRIE FOR PARTITIONING

Most of the partitioning algorithms employ a routing trie which can be treated as

a two dimensional map of the routing prefixes. The partitioning scheme presented

in [9], [24] utilizes a binary routing trie. The partitioning scheme presented in [10]

uses PATRICIA [2] based routing trie. The intermediate trie nodes act as clustering

points for the prefixes stored in the descendent nodes. Thus the partitioning algorithm

needs to mark the nodes in routing trie which will lead to good partitioning. The

following sections present an overview of routing tries and extensions necessary to

support partitioning algorithms. The chapter concludes with a discussion on a few

useful properties of routing trie to perform efficient partitioning.

A. Binary Routing Trie

The binary routing trie can be defined in terms of a binary retrieval tree known

as binary trie. Each non-leaf node v in the binary trie can have up to two children

labeled v0 and v1. The edges connecting the node its children v0 and v1 can be labeled

as 0 and 1 respectively to represent its direction. The subtrie routed at a node v is

denoted as T (v).

The basic unit of insertion and deletion in the binary trie is a path. A path

containing all the edges between node vi and vj is denoted as Pvi∼vj
and can be

uniquely mapped to a string s(Pvi∼vj
) in {0, 1}∗ also known as route. The route is

formed by concatenating directions of all the edges between nodes vi and vj. Therefore

a path can be specified as P (u, s), where u is the starting node and s specifies the

route traversed by the path. If the starting node is root, the path can be simply

represented as s omitting the root node.
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A binary routing trie can be formed by treating the prefixes P` from the specified

routing table as paths in the binary trie with root as starting node and route s =

P`. The end node of the path corresponding to prefixes are marked to indicate the

presence of a prefix. The binary routing trie for a sample routing table given in Table

II is shown in Figure 5. As we can see, all the prefixes of length n are stored at nth

level in the binary trie. The covering prefix of a node v in the binary routing trie is

the lowest ancestor of pv such that s(Proot∼pv) is a prefix in the routing table or in

other words pv is marked in binary routing trie.

IP lookup procedure scans the input destination IP address starting at the most

significant bit and traverses the binary trie in order to find the longest matching prefix.

The traversal proceeds towards the child v0(v1) for an input 0(1) in the destination

IP address until it has found the deepest node containing a prefix.

B. Ternay Routing Trie

Ternary trie are similar to binary trie except that they allow the possibility of a

third child. Thus, each non-leaf node in the ternary trie can have up to three childer

labeled v0, v1 and vx. The set of children of a node v is denoted by Σ(v). The edges

connecting the node to its children are labeled as 0, 1 and x to specify its direction.

The parent of a node v is denoted by π(v).

The direction 0 and 1 are treated disjoint direction as in binary trie however

the direction x is defined as a union of both the directions 0 and 1. Thus, the route

s(Pu∼v) between the nodes u and v can be treated as a string in {0, 1, x}∗. This

important extension allows ternary trie to represent minimized routing table.

The ternary routing trie can be formed by treating the prefixes P
′
` in minimized

routing table as paths in ternary trie with starting node as root and route s = P
′
` .
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Table II: Sample Routing Table

No Prefixes No Prefixes

1 0—– 7 10—-

2 0000– 8 100—

3 0010– 9 1001–

4 010— 10 1110–

5 0111– 11 10101-

6 100011

Please note that P
′
` may contain intermediate don’t cares (x symbols) as a result of

routing table compaction. Therefore P
′
` can not be represented in the binary routing

trie. The ternary trie for a sample minimized routing table given in Table III is shown

in Figure 6.

We propose a partitioning scheme for minimized routing table based on the

ternary trie. Authors in [14] presents a variation of ternary trie to perform routing

table compaction by introducing additional constraint during prefix insertion. These

constraint acts as minimization constraint and keeps the routing table minimized at

all time. Thus ternary trie may be advantageous for a hybrid approach employing

routing table compaction as well as partitioning.

C. Routing Trie Extension to Perform Partitioning

The trie-based partitioning algorithms analyzes the two dimensional trie map of the

routing table to cluster the routing entries present in the subtrie according to a

given power constraint. In order to be able to perform the clustering, the trie-based
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partitioning algorithm requires each node v in the trie to maintain a count of prefixes

present in the subtrie rooted at v. Since each routing prefix is visualized as a path in

the trie, the count will be referred as a path count and denoted by |v|.

Table III: Sample Minimized Routing Table

No Prefixes No Prefixes

1 0110- 11 00100

2 1-01- 12 101-0

3 1000- 13 111-1

4 1011- 14 1010-

5 0-110 15 10000

6 1100- 16 11-01

7 110– 17 11110

8 101– 18 01-00

9 01111 19 1-101

10 11–1 20 11001

D. Path Count Properties

The path count for n-ary trie can be recursively defined as :

|v| =





1 if v is leaf node

1 + |v0|+ |v1|+ · · · |vn| if v is a prefix

|v0|+ |v1|+ · · · |vn| otherwise.

The following useful properties of the path count are utilized by trie-based par-

titioning algorithm in order to generate efficient partitions.
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Property 1: |v| > 0

Proof: This property is trivially true as leaf nodes have the least path count and are

initialized to 1.

Property 2: |v| >= |vi|
Proof: The equality holds if all the other nodes except ith children are absent. The

inequality holds if more than one children are present.

Property 3: |v| > B ⇒ ∃i, |vi| ∈ [dB
n
e, B]

Proof: This property can be proved by pigeon-hole principle. In an n-ary trie, the

path count of a node v has to be distributed to at most n children. This is equiva-

lent to |v| pigeons and n holes, hence each whole must contain at-least d |v|
n
e pigeons.

Therefore there is at least a child of node v which has a path count more than d |v|
n
e.

Also the path count of a child node can not exceed that of its parent which proves

the property.
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CHAPTER VI

PARTITIONING OF MINIMIZED ROUTING TABLE

The partition of minimized routing table can be performed by suitably modifying the

trie based partitioning algorithms described earlier. In this chapter, we first present

the bucket carving procedure which is common to the proposed partitioning algo-

rithm. This is followed by a description and analysis of proposed modified algorithm.

A. Bucket Carving and UnTraversal

The actual bucket carving at an intermediate node v in the routing trie involves two

main steps. The first step involves un-traversal of all the paths corresponding to

prefixes stored in the subtrie T (v) rooted at v. The second step involves outputting

all the prefixes stored in T (v) into the specified bucket.

The algorithm for un-traversal is shown in Algorithm 1. The algorithm starts

with the specified node v and ascend by backtracing π(v) successively until it encoun-

ters the root node. Since the path count of starting node v is also the count of prefixes

stored in T (v), it decrements the path count of all the nodes encountered from v to

root (including) by |v|. This ensures that the routing trie remains in consistent state

after bucket carving.

The algorithm for bucket carving is shown in Algorithm 2 and requires a BucketId

and start node v. The algorithm visits all the nodes u ∈ T (v) in the post-order man-

ner to find all the nodes containing prefixes. These prefixes are stored in the bucket

specified by the given BucketId. This behavior is shown in lines 2-3 in Algorithm 2.

The index TCAM entry corresponding to covering prefix ρ(v) of the node v is made

to point to the specified bucket as shown in line 4. The algorithm then deletes the

subtrie T (v) rooted at v and suggest the partitioning algorithm to continue at parent
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of node v. The bucket carving consumes at least |v| nodes in the routing trie.

UnTraverse(v)

1 ∆ = |v|
2 while(v 6= ∅)
3 |v| = |v| −∆

4 v = π(v)

5 endwhile

end

Algorithm 1: Traverses the routing trie from node v up to the root

B. Ternary SubTrie Partitioning

The ternary subtrie split algorithm is adapted from [9] to operate on ternary trie.

The algorithm splits the entire minimized routing table into a number of partitions

subjected to an upper bound B on the size of the partition. The ternary subtrie split

algorithm guarantees that size of generated partitions will be at least dB
3
e. This may

sound a little inferior as compared to a lower bound dB
2
e of the approach described

in [9]. However we will demonstrate in the result section that benefits obtained from

partitioning the minimized routing table greatly offset the drawback of this slightly

inferior lower bound.

The pseudo code for subtrie splitting is shown in Algorithm 3. The algorithm

requires the maximum bucket size B and a ternary routing trie T as input parameter.

The algorithm recursively visits its children starting from the root node r(T ) until it

encounters a node v whose path count is greater than B. This behavior is shown in
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CarveBucket(v, BucketId)

1 if(|v| > 0)

2 ∀u ∈ T (v)

3 OutputPrefix(u,BucketId)

4 indexTCAM [ρ(v)] ← BucketId

5 endif

6 p = π(v)

7 delete T (v)

8 ←↩ return p

end

Algorithm 2: The algorithm to carve subtrie rooted at node v

lines 4-6 in Algorithm 3. The function AdvanceToUnvisitedChild creates a post-order

traversal effect with the children being visited in the order vx, v0, and v1 respectively.

Once a node v = u with |u| ≤ B has been found, it further checks if the path

count of the node satisfies the lower bound dB
3
e on the bucket size. If the bounds are

satisfied a bucket is carved out at the node u. Otherwise, algorithm expects to find

a bucket satisfying the lower bound rooted at the siblings of u. Thus algorithm stops

recursively visiting the trie at node u and proceeds towards its first siblings. This

is achieved by setting the node u into visited state and back-tracing to its parent

v = π(u), when AdvanceToUnvisitedChild cuases the algorithm to visit siblings of u.

After carving one or more bucket at the subtrie rooted at its first sibling, the algorithm

backtracks to v = π(u). However at this time, due bucket carving v = |π(u)| > B

may no longer be valid. In such case, the traversal of second sibling of u is avoided as

we can always carve out a equal at π(u) or even larger bucket further up in the routing
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SubTrieSplit(T , B)

1 BucketId = 0, v = root(T )

2 while(v 6= ∅)
3 Carving = TRUE

4 if(|v| > B)

5 v = AdvanceToUnvisitedChild(v)

6 Carving = FALSE

7 elseif((π(v) = ∅)︸ ︷︷ ︸
1

∨ (|π(v)| ≤ B)︸ ︷︷ ︸
2

∨ (|v| < dB
3
e)

︸ ︷︷ ︸
3

)

8 if(π(v) 6= ∅)
9 v ← visited

10 v = π(v)

11 Carving = FALSE

12 endif

13 endif

14 if(Carving = TRUE)

15 UnTraverse(v)

16 v = CarveBucket(v, BucketId++)

17 endif

18 endwhile

end

Algorithm 3: The partitioning algorithm based on ternary subtrie splitting
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trie. This behavior is implemented in the lines 7-13 of the algorithm. The bucket

carving is done in the lines 14-17 if Carving flag is set to TRUE. The algorithm

continues until all the nodes in routing trie have been consumed.

C. Ternary PostOrder Partitioning

The ternary post-order split algorithm is similarly adapted from [9] to operate on

ternary trie. Although, the number of indexTCAM entries generated in subtree split

algorithm is less, the bucket utilization is very poor and can be just 33.3% in the

worst-case. The modified post-order split algorithm can generate equal sized buckets

except for the last bucket. The algorithm is described in the following subsections.

1. CarveOneBucket Algorithm

The heart of modified post-order split algorithm is another algorithm called CarveOne-

Bucket. The post-order split relies upon this algorithm to carve equal sized buckets.

The pseudo code for CarveOneBucket is provided in Algorithm 4. The algorithm

requires a start node v, the remaining bucket capacity parameter β and BucketId

input parameters.

The algorithm checks if |v| ≤ β and |v| > β are simultaneously satisfied, which

means the node v is a right candidate for carving out a bucket. If this condition is

satisfied, the algorithm carves a bucket at node v and update the remaining bucket

capacity β to β − |v|. This is performed in lines 11-15 in Algorithm 4.

Another condition for carving a bucket is when a leaf node v has a count greater

than β. This condition is never encountered in binary routing trie partitioning how-

ever it can occur very easily in ternary routing trie. In such cases, the algorithm carves

a bucket at node v and update β to 0. This is achieved in lines 3-6 in Algorithm 4.
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CarveOneBucket(v, β, BucketId)

1 if(|v| > β)

2 v = AdvanceToUnvisitedChild(v)

3 if(Σ(v) 6= ∅)
4 UnTraverse(v)

5 v = CarveBucket(v, BucketId)

6 β = 0

7 endif

8 elseif((|v| < β)︸ ︷︷ ︸
1

∧ (π(v) 6= ∅)︸ ︷︷ ︸
2

∧ (|π(v)| ≤ β)︸ ︷︷ ︸
3

)

9 v ← visited

10 v = π(v)

11 else

12 β = β − |v|
13 UnTraverse(v)

14 v = CarveBucket(v, BucketId)

15 endif

16 ←↩ return v

end

Algorithm 4: The algorithm used by post-order split to carve exactly one subtrie from

node v
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If the previous two conditions are not satisfied, the algorithm suggest traversing

the children of node v as given in line 2. However if any one of the children of node

v is already visited, the path count |v| may become ≤ β. In such cases, traversal

to one of the unvisited children might not be advantageous and the traversal should

proceed to π(v), the parent of v, in order to carve a larger bucket under the specified

constraint. This is achieved in lines 8-10 in Algorithm 4. The algorithm returns after

successfully carving a bucket.

PostOrderSplit(T , B)

1 β = B, v = root(T )

2 BucketId = 0

3 while(v 6= ∅)
4 while((v 6= ∅) ∧ (β 6= 0))

5 v = CarveOneBucket(v, β)

6 endwhile

7 β = B

8 BucketId++

9 endwhile

end

Algorithm 5: The partitioning algorithm based on ternary postorder splitting

2. Ternary PostOrderSplit Algorithm

The modified algorithm for post-order splitting is shown in Algorithm 5. The al-

gorithm requires a bucket size B and a ternary routing trie T as input parame-

ter. In order to carve exact sized buckets, the algorithm relies upon the algo-
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rithm CarveOneBucket. The post-order split algorithm makes repeated calls to

CarveOneBucket with remaining bucket capacity until the current bucket is full or

all the nodes in the routing trie have been consumed. This is shown in lines 4-6 in

Algorithm 5. The procedure is repeated until all the d |r(T )|
B
e buckets are full as given

by lines 3, 7-9 in Algorithm 5.
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CHAPTER VII

EXPERIMENTAL RESULTS

In this section we present the performance of proposed partition scheme for the mini-

mized routing table. To establish the suitability of the proposed scheme, we evaluated

its performance on standard routing table traces as used in [12], [13], [14], [11]. The

number of routing table entry in the traces considered ranges from 13000-125000, in

order to establish consistency of the approach for smaller as well as larger routing

table. All the results were obtained on a linux platform containing Intel Pentium

Processor running at 600 MHz. The raw experimental data for various routing table

can found in Appendix A. However, the main results have been summarized and

presented in Figures7-13. The results for partitioning approach described in [9] are

marked with keyword CoolCAM.

The index TCAM size comparison for SubTreeSplit algorithm is shown in Figure

7 for various routing tables. We can infer from the figure, that the index TCAM size

for the proposed approach is consistently smaller than the CoolCAM approach. This

behavior runs counter-intuitive due to fact that modified SubTreeSplit uses a worst-

case lower bound of dB
3
e, instead of dB

2
e used in CoolCAM. However, the benefit of

compaction outweighs the disadvantage of a smaller bound as evident in the results.

The index TCAM size comparison for PostOrderSplit algorithm is shown in

Figure 8. The index TCAM for PostOrderSplit also follows the same trend exhibited

by SubtreeSplit algorithm except that the difference in sizes between proposed

approach and CoolCAM approach is larger across all bucket sizes. Thus, we can state

that the compaction is more beneficial to PostOrderSplit algorithm as compared to

SubtreeSplit.

In order to calculate the power consumption, we considered the size of the bucket
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as well as size of the index TCAM. Since in a pipelined operation, the index TCAM

and any one of the bucket is active at all the time, the total power includes the power

consumed by the index TCAM as well as TCAM bucket. The power overhead for

architectural enhancement such as path between first level (index) and second level

(bucket) TCAM is omitted for comparison and assumed to remain fixed for both the

methods. In order to calculate the area, we similarly considered the area required for

the TCAM buckets as well as index TCAM. The total silicon area includes the area

dedicated to index TCAM and all the second level buckets. We excluded the area of

the inactive buckets in the second level TCAM for the purpose of comparison. The

unit power and area figures were obtained from [25], which discusses a ternary cam

design using 0.13 µm logic process. The design consumes 0.5W/MBit and requires an

area of 13mm2/MBit. These figures are reported for an operational TCAM module

and averaged over the entire design employing several other auxiliary components

such as sense amplifier, priority encoder etc.

The power profile of SubTreeSplit algorithm is shown in Figure 9 for various

routing tables. As we can infer from these figures, total power consumed increases

dramatically as we go towards very fine-grained(128 and smaller) partitions or very

coarse-grained(2048 and higher) partitions. The growth in size of index TCAM causes

the power increase towards fine-grained partitions. However, towards coarse-grained

partition, the size of bucket dominates over the size of index TCAM (containing

less than 100 entries) and explains the growth in power at this end. Moreover, the

power consumption for proposed methodology is below the CoolCAMs approach for

smaller sized partitions while it coincides for large sized partitions. The difference

in power consumption between proposed approach and CoolCAMs approach grows

towards smaller sized partitions. For a given bucket size, the power difference is

larger for large routing tables as compared to small routing tables. Thus we expect
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the power difference to widen further for fairly large routing table in future backbone

routers, and proposed methodology can offer tremendous benefits in terms of power.

The power profile of PostOrderSplit algorithm is shown in Figure 10 and follows

the same trend as in the case of SubTreeSplit algorithm. The only difference is that

the power difference metric here is larger due to larger index TCAM as compared to

SubTreeSplit algorithm. This behavior is consistent across all routing table traces.

The silicon area profile of SubTreeSplit and PostOrderSplit algorithms are

shown in Figure 11 and Figure 12 respectively. Figure 11 shows that total silicon

area required for SubTreeSplit algorithm follows a zig-zag pattern. This occurs

due to internal fragmentation resulting from a large number of incompletely-filled

buckets. The fragmentation is more prominent towards coarse-grained partitions

which makes incompletely-filled buckets more probable. This trend is not observed

for PostOrderSplit algorithm as all the buckets are fully utilized. Further we expect

the area to continuously decrease for increasing bucket-size, with occasional anomaly

towards large sized partition which cause a large incompletely-filled bucket. This is

evident from Figure 12.

The total silicon area required for SubTreeSplit algorithm for the proposed

approach is less than the corresponding CoolCAM approach. The similar trend is

also observed for PostOrderSplit algorithm. These figures demonstrate that the

proposed approach offers about 40-60% silicon area savings across all the routing

tables. The behavior is consistent across both SubTreeSplit and PostOrderSplit

partitioning algorithms.

A case study for att routing table for SubTreeSplit algorithm is presented in

Figure 13. The figure combines the area and power profile of the proposed approach

and CoolCAM approach on the same graph. The figure shows that the power profile

for the proposed approach fares similar or better than the CoolCAM approach. Also,



37

where the power profile for these two approaches coincide, we can derive benefits

from silicon area savings which is consistently less for the proposed approach. Thus

the partitioning of minimized routing table results in better TCAM utilization while

saving the precious silicon area.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

The requirement for power reduction in TCAM based IP lookup engines has led to

two disparate streams of research. The first streams involves routing table minimiza-

tion while the second stream focuses on routing table partitioning. We proposed a

hybrid approach to unify these two schemes to achieve power economy and reduce

overall silicon area. We presented a modification of sub-trie split and post-order split

algorithm which can operate on ternary trie. We found that the hybrid approach

can reduce the overall silicon area by up to 60% and reduce the power by up to an

additional 50% for fine-grained partitions.

As a future work, we would like to study the effect of the partitioning on larger

routing table traces containing over a million entries. Also, we would like to investi-

gate the possible strategies for extending the algorithms for IPv6 routing tables. We

also intend to study and investigate other partitioning scheme which may result in

more power-efficiency and throughput.
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APPENDIX A

EXPERIMENTAL RESULTS DATA

The main results have been summarized in Tables IV - IX for each of the routing

table. The first column list the various bucket sizes considered for partitioning. The

next two columns list the indexTCAM sizes for SubTrieSplit algorithm for original

algorithm mentioned in [9] and the modified algorithm. The columns are correspond-

ingly marked Orig and Mod to reflect the original and modified trie partitioning

algorithm. The next two columns similarly gives the power bound for original and

modified algorithms based on SubTrie splitting. The same dataset is collected and

reported for PostOrderSplit algorithm in the next four columns. However instead of

reporting silicon area overhead in the last column, we report the number of buckets

in order to aid comparison. Please note that all the buckets will be fully utilized in

PostOrderSplit, hence the number of bucket gives a direct means of comparing the

silicon overhead in this case.
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Table IV: Comparison of Performance for paix Routing Table

SubTrieSplit PostOrderSplit

Bucket PowerBound SiliconArea PowerBound TotalBuckets

Size Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

8 2372 1509 18976 12072 4463 2836 1740 1108

16 1223 791 19568 12656 2782 1751 870 554

32 614 389 19648 12448 1674 1010 435 277

64 311 200 19904 12800 982 602 218 139

128 156 128 19968 13184 576 349 109 70

256 256 256 20480 13056 314 256 55 35

512 512 512 20480 14336 512 512 28 18

1024 1024 1024 19456 12288 1024 1024 14 9

2048 2048 2048 20480 14336 2048 2048 7 5

4096 4096 4096 24576 16384 4096 4096 4 3

8192 8192 8192 16384 16384 8192 8192 2 2

16384 16384 16384 16384 16384 16384 16384 1 1
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Table V: Comparison of Performance for aads Routing Table

SubTrieSplit PostOrderSplit

Bucket PowerBound SiliconArea PowerBound TotalBuckets

Size Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

8 5686 3128 45488 25024 10714 5861 4218 2305

16 2978 1621 47648 25936 6571 3561 2109 1153

32 1480 810 47360 25920 4008 2070 1055 577

64 756 412 48384 26368 2341 1173 528 289

128 379 205 48512 26240 1340 657 264 145

256 256 256 50432 26112 709 351 132 73

512 512 512 47104 26112 512 512 66 37

1024 1024 1024 47104 28672 1024 1024 33 19

2048 2048 2048 49152 26624 2048 2048 17 10

4096 4096 4096 40960 28672 4096 4096 9 5

8192 8192 8192 49152 32768 8192 8192 5 3

16384 16384 16384 65536 32768 16384 16384 3 2
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Table VI: Comparison of Performance for pacbell Routing Table

SubTrieSplit PostOrderSplit

Bucket PowerBound SiliconArea PowerBound TotalBuckets

Size Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

8 3723 1905 29784 15240 7068 3584 2771 1403

16 1957 998 31312 15968 4397 2187 1386 702

32 968 490 30976 15680 2634 1272 693 351

64 495 248 31680 15872 1560 715 347 176

128 250 128 32000 16000 884 419 174 88

256 256 256 31488 15872 496 256 87 44

512 512 512 31744 16384 512 512 44 22

1024 1024 1024 30720 16384 1024 1024 22 11

2048 2048 2048 30720 16384 2048 2048 11 6

4096 4096 4096 32768 16384 4096 4096 6 3

8192 8192 8192 32768 16384 8192 8192 3 2

16384 16384 16384 32768 16384 16384 16384 2 1
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Table VII: Comparison of Performance for maewest Routing Table

SubTrieSplit PostOrderSplit

Bucket PowerBound SiliconArea PowerBound TotalBuckets

Size Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

8 4999 2771 39992 22168 9501 5113 3699 2039

16 2625 1434 42000 22944 5878 3153 1850 1020

32 1304 717 41728 22944 3543 1868 925 510

64 660 355 42240 22720 2076 1088 463 255

128 331 183 42368 23424 1149 585 232 128

256 256 256 43520 23040 642 337 116 64

512 512 512 43520 23040 512 512 58 32

1024 1024 1024 41984 24576 1024 1024 29 16

2048 2048 2048 47104 22528 2048 2048 15 8

4096 4096 4096 40960 28672 4096 4096 8 4

8192 8192 8192 49152 24576 8192 8192 4 2

16384 16384 16384 32768 16384 16384 16384 2 1
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Table VIII: Comparison of Performance for att Routing Table

SubTrieSplit PostOrderSplit

Bucket PowerBound SiliconArea PowerBound TotalBuckets

Size Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

8 18829 9299 150632 74392 34911 17032 14052 6847

16 9897 4795 158352 76720 21465 10407 7026 3424

32 4939 2388 158048 76416 12789 6108 3513 1712

64 2503 1211 160192 77504 7390 3499 1757 856

128 1254 613 160512 78464 4202 2001 879 428

256 628 307 160768 78592 2358 1077 440 214

512 512 512 161792 77824 1282 578 220 107

1024 1024 1024 165888 81920 1024 1024 110 54

2048 2048 2048 157696 77824 2048 2048 55 27

4096 4096 4096 159744 81920 4096 4096 28 14

8192 8192 8192 163840 73728 8192 8192 14 7

16384 16384 16384 147456 81920 16384 16384 7 4



55

Table IX: Comparison of Performance for bbn Routing Table

SubTrieSplit PostOrderSplit

Bucket PowerBound SiliconArea PowerBound TotalBuckets

Size Orig. Mod. Orig. Mod. Orig. Mod. Orig. Mod.

8 20832 11751 166656 94008 38356 21446 15568 8665

16 10921 6165 174736 98640 23497 13190 7784 4333

32 5453 3031 174496 96992 13884 7780 3892 2167

64 2767 1559 177088 99776 8068 4522 1946 1084

128 1379 768 176512 98304 4612 2533 973 542

256 700 378 179200 96768 2572 1413 487 271

512 512 512 177664 99840 1427 767 244 136

1024 1024 1024 181248 101376 1024 1024 122 68

2048 2048 2048 180224 96256 2048 2048 61 34

4096 4096 4096 180224 90112 4096 4096 31 17

8192 8192 8192 188416 90112 8192 8192 16 9

16384 16384 16384 163840 114688 16384 16384 8 5
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