
BEAUTY WAVES: AN ARTISTIC REPRESENTATION OF

OCEAN WAVES USING BEZIER CURVES

A Thesis

by

JAY ALLEN FAULKNER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2006

Major Subject: Visualization Sciences

BEAUTY WAVES: AN ARTISTIC REPRESENTATION OF

OCEAN WAVES USING BEZIER CURVES

A Thesis

by

JAY ALLEN FAULKNER

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Ergun Akleman
Committee Members, Karen Hillier

John Keyser
Head of Department, Mark Clayton

December 2006

Major Subject: Visualization Sciences

iii

ABSTRACT

Beauty Waves: An Artistic Representation of

Ocean Waves Using Bezier Curves. (December 2006)

Jay Allen Faulkner, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Ergun Akleman

In this thesis, we present a method for computing an artistic representation of

ocean waves using Bezier curves. Wave forms are loosely based on procedural wave

models and are designed to emulate those found in both art and nature. The wave

forms are generated using a slice method which is user defined by structured input,

thus providing the artist with full control over crest shape and placement. Wave

propagation is obtained by interpolating between defined crest shapes and positions.

We also present a method for computing a stylized representation of breaking crests

in shallow water.

Artists may use our model to create many interesting wave forms, including basic

sinusoidal waves and waves with breaking crests that have a rotation that is cyclical

in time. The major drawbacks to our solution are that data entry can be tedious and

it can be difficult to produce waves that animate with a natural appearance.

iv

To Emily

v

ACKNOWLEDGMENTS

I would like to thank my committee chair Dr. Ergun Akleman for his guidance

and patience, Prof. Karen Hillier for her critiques and for forcing me to use the right

half of my brain, and Dr. John Keyser for his input and for being on my committee.

I would also like to thank Cindy Hong, Margaret Lomas, the Stenner family, and my

parents for their support.

Finally, I would like to thank God the Father, God the Son, and God the Holy

Spirit without whose grace this work would not have been completed. Thanks also

to Saint Mary, Saint Rita, Saint Bernadette, Saint Cecilia, Saint Romanus, and my

Guardian Angel for their prayers and intercessions.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Motivation . 1

B. Ocean Waves in Nature . 1

C. Ocean Waves in Art . 2

II PREVIOUS WORK . 5

A. The Quest for Photorealism 5

B. Physically Based Methods 5

C. Procedural Methods . 6

III METHODOLOGY . 10

A. Wave Models and Characteristics 10

1. Gerstner Wave Model 10

2. Beauty Wave Model 12

B. X-Waves and Beauty Waves 12

C. Crest Design and Control 14

1. Breaking Waves . 15

2. Crest Windup . 15

3. Crest Unwind . 17

a. θc > 180◦ . 18

b. 0◦ ≤ θc ≤ 180◦ . 21

D. Breaking Beauty Waves . 23

IV IMPLEMENTATION AND RESULTS 27

A. Initialization and Structured Input 27

1. Beauty Wave Control 27

2. X-Wave Definition and Modulation 28

B. Rendering . 29

C. Results . 29

vii

CHAPTER Page

V CONCLUSION AND FUTURE WORK 33

REFERENCES . 35

APPENDIX A . 37

APPENDIX B . 39

VITA . 43

viii

LIST OF FIGURES

FIGURE Page

1 Breaking ocean waves in nature. 2

2 ”The Great Wave at Kanagawa,” Japanese woodblock print by

Katsushika Hokusai [7]. 3

3 Ocean waves in Japanese woodblock prints [6]. 3

4 Ocean waves in Chinese ink painting [9]. 4

5 Breaking waves in modern illustration. 4

6 Wave forms computed by Fournier and Reeves using the Gerstner

wave model [4]. 8

7 Transition to breaking crests computed using the method by Fournier

and Reeves [4]. 8

8 Wave characteristics. 11

9 Using Bezier curves to generate (A) one wavelength of a basic

surface wave, and (B) modulated wave forms. 13

10 Bezier curve regions defining the wave shape between two crests. . . 15

11 (A) 90◦ and (B) 180◦ circular arcs computed using Bezier curves. . . 16

12 Effect of spiral factor, FS, on crest windup region (θc = 360◦). 17

13 Effect of radius factor, FR, on crest windup region (θc = 270◦). 18

14 Effect of thickness factor, FT , on crest unwind region (θc = 360◦). . . 19

15 Effect of cusp tangent angle, θt, on crest unwind region when θc > 180◦. 20

16 Effect of crest core radius, FCR, on crest unwind region when

θc > 180◦ (θt = 180◦). 20

ix

FIGURE Page

17 Transition of waveform with increasing cusp tangent angle, θt,

when θc = 0◦. 22

18 Effect of crest core radius, FCR, on crest unwind region when

θc = 0◦ (θt = 180◦). 24

19 Breaking beauty wave at the crest rotation angle, θR, of 180◦. 25

20 Formation of a breaking beauty wave. 26

21 Basic wave forms computed using beauty wave method using only

one specified pose with (A) and without (B) added crest separation. . 30

22 Beauty waves using pose data shown in Appendix B. 30

23 More beauty waves. 31

24 Breaking beauty waves at two time samples. 31

1

CHAPTER I

INTRODUCTION

A. Motivation

The goal of this work is to provide a method for generating and animating stylized,

two-dimensional wave forms with characteristics similar to waves found in nature and

in art, particularly Asian land and seascapes. Artists will have direct control over a

wide variety of crest shapes owing to our solution which does not rely on physically

based equations of mass and momentum as do most ocean wave simulations.

Although not implemented, resulting wave forms could be spanned for construc-

tion and rendering of a three-dimensional ocean surface or used as a baseline from

which to render ink strokes such as those found in Chinese ink painting or Japanese

Sumi-e.

B. Ocean Waves in Nature

Ocean waves in nature exhibit a limitless variety of shapes due to the freedom of

motion of fluids. One of the most interesting of these shapes is the breaking wave as

shown in Figure 1.

As waves move from deep to shallow water, the wave begins to drag along the

seafloor, thus slowing the velocity at the bottom of the wave as compared to the

top. Eventually, gravity forces the faster moving wave crest to break and fall in

front of the wave giving the profile view a rotational appearance. Larger wavelengths

and velocities produce more dramatic results such as the tube wave (see Figure 1).

The journal model is IEEE Transactions on Visualization and Computer

Graphics.

2

Fig. 1. Breaking ocean waves in nature.

Although our method can produce a common sinusoidal waveform, it is the shape

and rotational motion of the breaking wave that are our primary focus.

C. Ocean Waves in Art

The representation of ocean waves in art was our greatest motivation for this work,

particularly waves in Asian art. Probably the most famous example is ”The Great

Wave at Kanagawa,” a woodblock print by the Japanese artist Katsushika Hokusai

(see Figure 2). Several more examples of waves in Japanese woodblock prints are

shown in Figure 3, while Figures 4 and 5 show two examples in Chinese ink painting

and modern illustration, respectfully.

Note how the waves can be represented as a series of one or more lines with

variation in form to give the appearance of a flowing surface. We take this same

approach because it allows for a better view of the details generated by our wave

model.

3

Fig. 2. ”The Great Wave at Kanagawa,” Japanese woodblock print by Katsushika

Hokusai [7].

Fig. 3. Ocean waves in Japanese woodblock prints [6].

4

Fig. 4. Ocean waves in Chinese ink painting [9].

Fig. 5. Breaking waves in modern illustration.

5

CHAPTER II

PREVIOUS WORK

A. The Quest for Photorealism

The major focus in fluid visualization for computer graphics has been in achieving

photorealistic behavior and appearance, including advances in computational effi-

ciency and stability. When computing power was limited, solutions were computed

using linear, procedural equations which were not photorealistic, but were stable,

additive, and computationally inexpensive. Two procedural methods were used in

particular. One produced periodic surface point displacements over time. A second

used linear approximations to the non-linear, 3-D Navier-Stokes (N-S) equations for

incompressible fluid flow. As computer technology advanced, physically-based ap-

proaches to the aforementioned non-linear equations became the norm. Because our

work is derived from the older, procedural methods for fluid visualization, we will

discuss them after the more recent work using physically based methods.

B. Physically Based Methods

To simulate the physical behavior of any general fluid, including ocean waves, one

must solve the non-linear, inviscid, and incompressible Navier-Stokes equations. The

equations of conservation of mass and momentum are

u0 + (u · ∇u) + (∇p/ρ)− f = 0 (2.1)

∇ · u = 0 (2.2)

where u is the velocity vector (u,v,w), ∇ is the gradient operator, p is the pressure,

ρ is the density, and f is any external force such as gravity.

6

Early work using the non-linear, 3-D N-S equations involved iterative solutions

using a regular grid of fluid cells with marker particles to track fluid flow [3]. Fos-

ter and Fedkiw [2] later introduced a hybrid approach for computing complex fluid

interaction using massless marker particles to track an implicit surface. Enright et

al. then improved on this method and included a 3-D simulation of a breaking wave

in shallow water [1]. Although lacking in small scale features and computationally

expensive, their solution produced a high level of realism.

Other work on breaking ocean waves was done by Mihalef et al. [11]. Their ap-

proach involved computing a full 3-D N-S solution on multiple 2-D slices of a breaking

wave and then combining the slices to form a 3-D wave form. The initial conditions

for their 2-D crest shapes could be defined by an animator from a pre-computed

library, thereby eliminating the computations for wave propagation to the point of

breaking and achieving greater control over wave shape than Enright et al. Work on

interactive frame rates also came into focus when Mller et al. used a particle based

approach with an interpolation method called smoothed particle hydrodynamics to

simulate fluids [12]. Using particles allowed them to neglect mass conservation and

the convection terms of the N-S equations which greatly simplified their computa-

tions and increased their frame rate. More recently, Irving et al. [8] used fluid cells

to simulate large bodies of water by coupling a 3-D N-S solution for the air-water

boundary while using a simpler 2-D height field approach for the remaining volume.

C. Procedural Methods

Using the full Navier-Stokes equations for fluid and ocean wave simulation, coupled

with advanced rendering solutions, provides a very realistic appearance. These meth-

ods are also generally expensive in regards to computational time and effort, but

7

the trade-off is acceptable for their intended use in the gaming and motion picture

industries. Our solution does not require such complexity and realism and is actually

derived from earlier research on ocean wave simulation. Initially, ocean waves were

computed using procedural methods which have the advantage of being linear. Two

of the most common methods involved height fields or the Gerstner wave model.

Height fields are restricted to one vertical z position per (x,y) surface point, so

they can only be used to compute waves without breaking crests. Peachey [13] used

such a method to compute waves with refraction combined with a particle system for

generation of foam and spray. Kass and Miller [10] also used a height field, but with

a linear approximation of the N-S equations. The work of Fournier and Reeves [4]

paralleled that of Peachey, but without height fields. They used the Gerstner wave

model which describes a circular motion for the displacement of a particle around its

rest position. A more detailed description of this model will be given later, but by

controlling various parameters, the model allowed Fournier and Reeves to control the

”sharpness” of crest peaks as shown in Figure 6. The procedural model fails at the

point when the crest peaks begin to form loops. Fournier and Reeves were also able

to generate the appearance of breaking crests by controlling the rate of circular rota-

tion of surface points, as shown in Figure 7, and by flattening the circular orbits into

ellipses in shallow water. Although somewhat convincing in appearance, the range of

available crest shapes was extremely limited.

Ts’o and Barsky [15] later used the Gerstner wave model combined with wave-

tracing to compute refracting waves, but approximated the appearance of crests using

the tension property of beta-splines. Hinsinger et al. [5] computed deep water surface

waves at interactive frame rates. They computed surface points on an adaptive mesh

defined by a projection from the camera position which was then transformed into

screen space. This allowed them to filter waves that would not be visible and to focus

8

Fig. 6. Wave forms computed by Fournier and Reeves using the Gerstner wave model

[4].

Fig. 7. Transition to breaking crests computed using the method by Fournier and

Reeves [4].

9

sampling on any area of the computed surface for enhanced image quality in that

region.

Procedural methods do not generate physically correct wave forms, but they do

achieve the appearance of waves with simple and efficient computations. Our method

is derived from the Gerstner wave model, but we dispense with the procedural com-

putations. Our wave forms are generated based solely on appearance, given the fact

that a particle tracing a circle over time produces the appearance of a gravity wave.

10

CHAPTER III

METHODOLOGY

In this work we develop a method for generating an artistic representation of ocean

waves using cubic Bezier curves. Bezier curves are defined by four control points.

The endpoints always lie on the curve, and the intermediate points control the rate

of interpolation along the curve and define the tangents at the endpoints. Bezier

curves were chosen because of their ease of control and because their convex hull

properties can limit undesirable intersections [14]. We use cubic Bezier curves because

we only need to approximate the general shape of wave forms. We are concerned with

appearance only, and not with computing precise curves.

A. Wave Models and Characteristics

The basic features of a surface wave are crests and troughs. Wave crests represent the

portion of the wave above the surface at rest, and troughs, the portion below. The

crest and trough peaks are located at the highest and lowest vertical positions of the

wave, respectfully. Figure 8 shows some of the basic characteristics of a wave. The

wavelength, λ, is the distance between crests/troughs, the amplitude, a, is the height

of the wave relative to the surface at rest, and the crest speed, c, is the distance of

crest travel per unit time.

1. Gerstner Wave Model

As previously stated, our wave model is derived from the Gerstner model used by

Fournier and Reeves [4]. The Gerstner model assumes uniform (no mass transport),

incompressible (constant density), and irrotational flow which allows linear super-

position of any number of wave trains at any point on a defined surface. The 2-D

11

Fig. 8. Wave characteristics.

equations of motion for such a point are

x = x0 + a× sin(κx0 − ωt) (3.1)

y = y0 + a× cos(κx0 − ωt) (3.2)

where (x0, y0) is the position at rest, and t is the current time. The variable κ

represents the number of cycles per unit time and is related to the wavelength by

κ = 2π/λ. The variable ω is the angular frequency and is related to the period, T, by

ω = 2π/T , and to κ by κ = ωc. The term in parenthesis represents the wave phase,

φ (φ = κx0 − ωt).

Equations 3.1 and 3.2 describe a circular rotation which displaces a point at rest

based on given values of initial position, amplitude, and phase. The product ς = κa

provides a measure of the sharpness of crest peaks (see Figure 6), where ς = 0 gives

the surface at rest and ς = 1 gives a sharp vertical peak. Only at low values of ς does

the circular motion give a wave form comparable to that of a sinusoid.

12

Wave forms computed using procedural models such as the Gerstner model only

produce a limited range of shapes. Those computed from physically based equations

are limited by physics and computational complexity. We wanted to create a model

which would offer an artist more control and variety over crest shape with less com-

putational effort. Bezier curves give us direct control, while circles and rotation allow

us to create a wide variety of crest shapes and wave forms. We do make a trade-off for

the added control, and that is in the increased effort required for wave form definition.

2. Beauty Wave Model

Figure 9·A shows how two Bezier curves can be used to generate one wavelength of a

basic surface wave. The endpoints of both curves are located at crest and trough peaks

which are defined by circles of a given radius, r. We call these circles wave circles or,

more specifically, crest or trough circles. The radius represents the wave amplitude,

and crest/trough circle separation represents the wavelength. Bezier tangent points

are located at a given distance from the endpoints in a direction parallel to the surface

at rest. A continuous, uniform wave can be generated by keeping equally spaced wave

circles at a constant radius while using Bezier curves with constant tangent length

and direction. Modulating these values can provide a wide variety of wave forms as

shown in Figure 9·B, although larger variations begin to lose the appearance of ocean

waves.

B. X-Waves and Beauty Waves

Our model provides flexibility in crest shape generation by allowing crest circles (not

trough circles) to be controlled independently of each other. That is, each crest circle

is considered to be an object with it’s own set of descriptors called a pose. A 2-D

13

(A)

(B)

Fig. 9. Using Bezier curves to generate (A) one wavelength of a basic surface wave,

and (B) modulated wave forms.

14

waveform called an x-wave is created by defining poses for one or more crests along

the x-axis, and beauty waves consist of one or more x-waves positioned along the z-

axis. Because rotation is a trivial matter, we restrict our computations to be aligned

with the world space axes.

Trough circles are given a radius equal to the crest circle they follow and are

centered between the inside edge of the surrounding two crest circles along the axis

between crest circle centers. To prevent wavelengths from collapsing, adjacent crest

circles must be separated by the diameter of the trough circle between them. Crest

and trough circles may therefore touch, but not intersect. The right most wavelength

in Figure 9·B shows this constraint.

C. Crest Design and Control

We define one wavelength of any given x-wave to be composed of three regions or sets

of Bezier curves between two crest circles. The first and second regions of curves are

discussed in the following sections and are called windup and unwind, respectfully.

There is one exception when the windup region does not exist, and that is also

discussed later. The third region is actually only one Bezier curve called the incline

curve, and it runs from the bottom of a trough circle to the top of the following

crest circle (see curve P3-P6 in Figure 9·A). However, depending on the pose of the

leading crest of any particular wavelength, the beginning point of the incline curve

may shift between the bottom of the trough circle to the bottom of the leading

crest circle. Tangent lengths for the incline curve are computed relative to both the

distance between endpoints and the ratio of the trough and following crest circle radii.

Figure 10 shows the regions specified for each set of curves.

15

Fig. 10. Bezier curve regions defining the wave shape between two crests.

1. Breaking Waves

The wave form shown in Figure 10 has the shape of a breaking wave. To achieve

this shape, the Bezier curve tangents defining the standard waveform in Figure 9·A

must break such that the tangents forming the crest fail to lie on the same axis. The

breaking point defines the separation between the windup and unwind regions of the

crest and is called the crest cusp. We allow the outgoing cusp tangent, θt, to vary in

direction by up to 180◦ from the axis of the incoming cusp tangent (see Figure 10).

Coupling this feature with a circular curl of the crest allows us to achieve the basic

shape of a breaking wave and more.

2. Crest Windup

The windup region of a crest defines the outer line of a wave from the top of a crest

circle to the cusp and is specified by the crest curl angle, θc (see Figure 10). When

θc = 0 the windup region does not exist, leaving the unwind and incline regions

16

to form the wave between crest circles. As θc is increased, the end points of the

Bezier curves defining the windup region are computed to be on 90◦ circular arcs, or

quads. With one exception to be discussed in the next section, windup curves and

quad curves are the same. Quad curves are computed using cubic Bezier curves with

tangents having a length of 0.55 times the quad radius and being aligned with the

axes of the circle as shown in Figure 11·A. The tangent multiplier 0.55 was chosen

because it generates a cubic Bezier curve that approximates a circular arc. It is not

necessary for the quad curves to be actual circles, as we are only using them to trace

a path for the windup region of our wave forms.

(A) (B)

Fig. 11. (A) 90◦ and (B) 180◦ circular arcs computed using Bezier curves.

Because it will be of interest later, Figure 11·B shows how 180◦ circular arcs can be

approximated in a similar manner using a radius multiplier of 1.35 for the Bezier

tangent lengths.

The 90◦ quad radii diminish from the crest circle radius by a rate defined by a

fractional parameter called the spiral factor, FS. If FS = 1, the Bezier curve endpoints

17

will always lie on the approximated crest circle. Otherwise, they will lie on the spiral

of quad curves of diminishing radius. The minimum value of the spiral factor is

clamped internally and will increase as necessary to accommodate the specified crest

curl angle. Figure 12 shows the effect of FS on the windup region.

(A) FS = 0.0 (B) FS = 0.5 (C) FS = 1.0

Fig. 12. Effect of spiral factor, FS, on crest windup region (θc = 360◦).

Another fractional parameter affecting the windup region is the radius factor,

FR. FR controls the radius of the first quad representing the windup region, where

FR = 1 gives a radius equal to the crest circle radius. As FR decreases, it effectively

moves the crest circle center toward the top which decreases the spiral radius of the

crest. Again, we have clamped the minimum value internally to avoid computing

curves that would be so small as to be unseen. Figure 13 shows the effect of FR on

the windup region.

3. Crest Unwind

The unwind region for any wavelength of our wave model is the region which allows for

the most variation in crest shape. It also requires more computational effort because

of the need to interpolate between various solutions. We will first discuss the unwind

region when θc > 180◦, and then the region when 0◦ ≤ θc ≤ 180◦.

18

(A) FR = 0.0 (B) FR = 0.5 (C) FR = 1.0

Fig. 13. Effect of radius factor, FR, on crest windup region (θc = 270◦).

a. θc > 180◦

When θc > 180◦ and the cusp tangent angle, θt, is at its maximum angle of 180◦ as

in Figure 13, the unwind curve forms a loop from the cusp to the beginning of the

incline curve. In this case, baseline Bezier curves are computed in a similar manner

as those for the windup region. The crest is unwound from the cusp to a position

near or at the top of the crest circle by computing 90◦ quads of increasing radius.

The top position of the unwind region, PuwTop, determines the rate of increase for

quad radii and is defined by a fractional parameter called the thickness factor, FT .

When FT = 0, the unwind curve is equal to the windup curve along that region.

The maximum thickness at FT = 1 is determined by the cusp position, Pcusp, when

θc = 360◦. This allows the crest to curl without self-intersecting. Figure 14 shows

the effect of increasing FT on the unwind region. Figure 14·B also shows the 90◦

quads of increasing radius used to compute the baseline Bezier curves. It also shows

the two parts of the unwind curve from Pcusp to PuwTop, and from PuwTop to the

beginning of the incline curve, Pmin. Again, the Bezier curves we compute are only

computed to give the appearance of 90◦ circular arcs.

The final portion of the unwind curve (PuwTop to Pmin) is computed using an

19

(A) FT = 0.0 (B) FT = 0.5 (C) FT = 1.0

Fig. 14. Effect of thickness factor, FT , on crest unwind region (θc = 360◦).

approximated, 180◦ Bezier curve similar to the one shown in Figure 11·B. The tangent

lengths are modified depending on the skew of the endpoints from the vertical axis

of the crest circle. Finally, as the cusp tangent angle θt decreases to 0, the 90◦ quad

curves are diminished one in turn from the cusp. This collapses the crest core which

we define as the portion of the unwind curve from the cusp to the point, Pcore, 360◦

from the cusp when θt = 360◦ (in Figure 14·B, the crest core would run from Pcusp

to PuwTop/Pcore). When θt = 0◦, only a 180◦ Bezier curve remains to bridge the

gap between Pcusp and Pcore. Figure 15 shows the crest core and the effect on the

unwind region by decreasing θt when θc > 180◦.

Finally, the radius of the crest core can be modified by a fractional parameter

called the core radius factor, FCR. FCR will have the greatest effect when the full

crest core exists at θt = 360◦ and no effect when θt = 0◦. Figure 16 shows the effect

on the crest core by increasing FCR when θc > 180◦.

20

(A) θt = 180◦ (B) θt = 90◦ (C) θt = 0◦

Fig. 15. Effect of cusp tangent angle, θt, on crest unwind region when θc > 180◦.

(A) FCR = 0.0 (B) FCR = 0.5 (C) FCR = 1.0

Fig. 16. Effect of crest core radius, FCR, on crest unwind region when θc > 180◦

(θt = 180◦).

21

b. 0◦ ≤ θc ≤ 180◦

When 0◦ ≤ θc ≤ 180◦, the transition from a standard, sinusoidal wave form into a

breaking crest must be taken into account. For illustrative purposes, we will look at

the case when θc = 0◦. In this case only the unwind and incline regions exist between

crest circles, and the cusp is located at the top of the crest circle. If θt also equals

zero, a sinusoidal wave form is generated. As the beginning tangent of the unwind

curve (the cusp tangent) rotates with θt, the trough point, Pmin, moves from the

bottom of the trough circle to the bottom of the leading crest circle. We use this

line of movement to represent the lower limit of our wave forms in order to maintain

a uniform appearance. We do this by keeping the Bezier curve tangents at Pmin

aligned with the line of movement and by ensuring that the Bezier point defining the

cusp tangent of the unwind curve never lies below the line of Pmin.

Figure 17 shows the movement of Pmin and the transition of our waveform with

increasing cusp tangent angle, θt, for the case when θc = 0◦. The Bezier curve for the

incline region retains its basic shape with the movement of Pmin, but the tangents are

lengthened to account for the larger span between endpoints. The tangent direction at

the cusp of the unwind curve is computed based on θt as usual. The tangent lengths

for the unwind Bezier curve are computed by interpolation between those lengths

when the tangents are both parallel with the line of travel of Pmin as in Figures 17·A

and 17·C, and the lengths when they are perpendicular as in Figure 17·B. The

perpendicular lengths are based on the intersection point between tangents. The case

when θc = 0◦ was chosen for simplicity, but the same method applies as θc increases

to 180◦.

The same parameters controlling the unwind curve when θc > 180◦ still apply

for the case when 0◦ ≤ θc ≤ 180◦, however their effect may be negligible depending

22

(A) θt = 0◦

(B) θt = 90◦

(C) θt = 180◦

Fig. 17. Transition of waveform with increasing cusp tangent angle, θt, when θc = 0◦.

23

on the current values of θc and θt. For example, the thickness factor, FT , and spiral

factor, FS, have no meaning when θc = 0◦ because no crest spiral or windup curve

exists. Because the crest core is somewhat ambiguous when θc < 180◦, the effect of

crest core radius, FCR, on the crest unwind region is shown in Figure 18 when θc = 0◦.

Note that Pmin shifts for this case.

D. Breaking Beauty Waves

We wanted to extend our method of wave form computation to capture the appearance

of the cyclical rotation of breaking crests similar to that of tube waves (see Figure 1).

We do this by including another crest pose parameter called the crest rotation angle,

θR. This parameter is currently just a switch where any value greater than zero

will turn on the breaking crest feature for a particular pose. We wanted to keep

the naming of the parameter generic for future updates. The crest rotation angle,

currently forced to 180◦ for any given value, defines the crest curl angle (θc) when the

crest cusp is desired to come into contact with the unwind curve. This will close the

crest, and the unwind curve will form a loop or an air pocket similar to the profile

of a crashing tube wave. Because gravity acts in the negative z direction, the logical

place for our initial point of contact is at the lowest point of our wave form, Pmin.

Setting θR to 180◦ sets the point of contact to Pmin and, with a lower value of FS,

works well for achieving the appearance of natural waves as shown in Figure 19.

We get the cusp to contact the lower portion of the wave form by stretching the

windup and unwind curves as θc goes from 0◦ to θR (180◦). At this point we remove

the series of unwind Bezier curves forming the air bubble from the curves forming

the X-Wave proper. We then continue curling the crest until the cusp reaches the

top position of the crest circle at θc = 360◦. We shrink the Bezier curves forming the

24

(A) FCR = 1.0

(B) FCR = 0.5

(C) FCR = 0.0

Fig. 18. Effect of crest core radius, FCR, on crest unwind region when θc = 0◦

(θt = 180◦).

25

Fig. 19. Breaking beauty wave at the crest rotation angle, θR, of 180◦.

air bubble and rotate them toward the top of the crest until they diminish to a point

at a curl angle near or at 360◦. The collapsing air bubble makes it appear as if it

were being filled with water from the wave, thereby causing the formation of a water

”drop” near the cusp of the crest. When the curl angle reaches 360◦, we separate the

water drop from the main Bezier curves of the X-Wave as we did for the bubble. In a

similar fashion, the water drop diminishes to a point and rotates toward the bottom

of the wave form as the curl angle approaches 180◦. By having a water drop form as

our air bubble collapses and vice versa, we give the illusion of conservation of mass

and the cyclical rotation of a breaking wave. Figure 20 shows the formation of a

breaking beauty wave. During the transition into and out of breaking waves, we vary

the opacity of the bubble/drop Bezier curves from or to 0 depending on the starting

value of θc. We require that there be at least two adjacent crests to be switched on

with θR for breaking to be operational. We also simplify the transition into and out

of breaking waves by requiring all breaking crests in any particular series and the

non-breaking crests surrounding them to all use a crest curl angle of either θc = 0◦ or

26

θc = 180◦. These values are chosen because they are the angles where the main series

of X-Wave Bezier curves for breaking crests match those for non-breaking crests.

(A) θc = 0◦ (B) θc = 90◦ (C) θc = 180◦

(D) θc = 270◦ (E) θc = 360◦ (F) θc = 90◦ (breaking)

Fig. 20. Formation of a breaking beauty wave.

27

CHAPTER IV

IMPLEMENTATION AND RESULTS

In this chapter, we discuss beauty wave initialization and program input structure.

We will also show simple renderings of various beauty waves computed using our

method of wave form generation.

A. Initialization and Structured Input

1. Beauty Wave Control

Our software is written in C++, with one class being devoted to the task of reading

and verifying user input from pre-defined data files. The same class also handles the

function calls necessary for computation, display, and data output, if any, of beauty

waves. At least two input files are required for beauty wave control. The first is the

control input file which contains the values necessary for program initialization. The

parameters and formatting rules for this file are given in Appendix A. Most of the

parameters are self explanatory; others will be discussed below.

The second input file type gives a description of the beauty wave state at a

particular time as a formatted list of X-Waves and poses. If there are multiple state

files and the time step is greater than zero, the input data will be interpolated based

on a transition time between files given the current time. Interpolation between files

allows for the animation of beauty waves. The parameters and formatting rules for

beauty wave state input files are given in Appendix B.

28

2. X-Wave Definition and Modulation

Beauty wave state, or pose, input files are lists of pose data separated by X-Wave de-

limiters. The first pose of each X-Wave must specify all nine possible pose parameter

values and only one pose is required for program operation. If the number of crests

per X-Wave, exceeds the number given in an input file for any particular X-Wave, the

same pose data will propagate along the wave for each remaining crest. The center

positions of copied crests are computed as a shift of four times the radius of the pre-

vious pose (the minimum allowed separation between crest circles of constant radius)

plus the end separation parameter provided in the control input file. Poses beyond

the first for any X-Wave do not need to have all 9 parameters specified. Only those

values an animator desires to change from the previous pose need to be included,

although it is usually best to at least provide crest position data. If the radius of any

crest approaches zero, we also fade the curl and cusp tangent angles to zero to flatten

out the wavelength.

If the number of X-Waves to draw exceeds the number defined in beauty wave

state files, the X-Waves will repeat along the z axis until the specified number of wave

forms have been drawn. The lateral separation distance between wrapped X-Waves

is specified in the control input file. If an animator wishes to allow wrapping of X-

Waves, care should be taken when specifying the pose data for the beginning and

ending X-Waves in order to avoid sudden changes in data at wrap positions. It also

looks better to keep X-Waves evenly spaced along the z axis and to specify beginning

and ending X-Wave poses with similar radii and x positions.

X-Waves are computed as a series of Bezier curves (including a separate series

of four Bezier curves for each breaking crest), where curves are computed per wave-

length based on interpolation of crest pose data between integer time values. So, if

29

the time step is greater than zero, crests will move from one to the next as global

time transitions from one integer value to the next. As mentioned, pose data is also

interpolated between state input files (if more than one exists). Thus, we give artists

complete control over nearly all wave design parameters, allowing them to generate a

limitless variety of beauty waves and to animate them over time. The main drawback

to this approach is the tedium involved in specifying parameters, which currently

must be modified by hand.

B. Rendering

X-Waves are rendered using basic point and line segment primitives in openGL and

displayed using GLUT. Users have the option of rendering either lines, points, or

both for wave forms and/or Bezier curve hulls. Rendering options, including wave

form opacity and color for lines and points, are specified in the input control file. Our

display is rather primitive, as our primary focus was wave form generation. Improved

rendering methods and 3-D surface generation are left for future work.

C. Results

Figures 21 through 24 are screen shots showing a variety of wave forms computed

using our method. The state in Figure 21 has input where only one crest pose is

specified for only one X-Wave. The same pose is used to represent four crests on five

X-Waves with (21·A) and without (21·B) crest separation applied. Figure 22 uses the

pose data shown in Appendix B, where the first X-Wave is a copy of the last (since the

first X-Wave in Appendix B gives value ranges). Figure 23 shows a random sample of

crest forms, and Figure 24 shows an example of beauty waves with breaking crests.

Animated beauty waves show that in can be difficult to choose crest parameters that

30

(A)

(B)

Fig. 21. Basic wave forms computed using beauty wave method using only one speci-

fied pose with (A) and without (B) added crest separation.

Fig. 22. Beauty waves using pose data shown in Appendix B.

31

Fig. 23. More beauty waves.

(A)

(B)

Fig. 24. Breaking beauty waves at two time samples.

32

produce smoothly flowing waves. It is necessary to take a trial by error approach in

selecting proper values to give a desired output. As one would expect, parameters

that vary uniformly along an X-Wave and between crests of adjacent X-Waves pro-

duce better results. Because we only interpolate between adjacent crest poses, it is

also best to position crest poses of any particular X-Wave so that they are nearly

evenly spaced along the x axis.

33

CHAPTER V

CONCLUSION AND FUTURE WORK

The main goal of this work is to provide a method of generating and animating wave

forms to represent those found in both nature and in art, and to provide users with

direct control over wave definition.

We derived our method from the Gerstner wave model which shows that a point

tracing a circular path over time produces the general shape of a wave. We use cir-

cles at crest and trough locations coupled with Bezier curves to define wavelengths

along the x axis. A series of wavelengths defines an X-Wave, and a series of X-Waves

along the z axis defines beauty waves, or a representation of a 3-D fluid surface using

2-D slices. Crest shapes are governed by poses given as eight, user specified control

parameters plus a position. Crest poses are interpolated based on the current time

and the current integer time interval. Crest pose data is contained in one or more

state input files which are interpolated over time (if more than one file) based on a

specified file transition time. Main program initialization and control parameters are

specified in a separate control input file.

Our method can produce a basic wave form and breaking crests with a rotation

that is cyclical in time. Breaking crest shapes are created by computing a circular

spiral of diminishing radius based on a given crest radius. Control is also given over

crest core shape. Our model can be used to create many interesting wave forms, how-

ever, data entry can be tedious and it can be difficult to produce waves that animate

as smoothly as one might desire.

Future work can include designing a method for automating user input while

still allowing direct control over crest shape. A user interface could also be devel-

oped to aid in data entry and for direct manipulation of pose data during runtime.

34

X-Waves could be spanned to create a three-dimensional surface which could then be

displayed using advanced rendering techniques, or ink strokes could be rendered on

top of X-Waves to produce animated ink paintings similar to those found in Asian

art. Future work can also include computation of breaking crests at larger angles of

crest rotation, or in resolving the problems encountered when transitioning into and

out of rotating crest forms. Although not implemented, our method can be capable

of using recursion to produce wave forms on top of wave forms. This could be used

to produce a sawtooth effect or the hook shaped forms found in Hokusai’s painting

“The Great Wave at Kanagawa” (Figure 2).

35

REFERENCES

[1] D. Enright, S. Marschner, and R. Fedkiw, “Animation and Rendering of Complex

Water Surfaces,” ACM Trans. Graphics, vol. 21, no. 3, pp. 736–744, July 2002.

[2] N. Foster and R. Fedkiw, “Practical Animation of Liquids,” Computer Graphics

(SIGGRAPH ’01 Proc.), E. Flume, ed., pp. 23–30, Aug. 2001.

[3] N. Foster and D. Metaxas, “Realistic Animation of Liquids,” Graphics Models

and Image Processing, vol. 58, no. 5, pp. 471–483, June 1996.

[4] A. Fournier and W.T. Reeves, “A Simple Model of Ocean Waves,” Computer

Graphics (SIGGRAPH ’86 Proc.), D.C. Evans and R.J. Athay, eds., vol. 20, no.

4, pp. 75–84, Aug. 1986.

[5] D. Hinsinger, F. Neyret, and M.-P. Cani, “Interactive Animation of Ocean

Waves,” Proc. ACM SIGGRAPH/Eurographics Symposium on Computer Ani-

mation ’02, pp. 161–166, July 2002.

[6] A. Hiroshige, “Famous Views of the 60-odd Provinces (prints 15, 35, & 55),” Edo

Period (1615-1868), c.a. 1853-56, Polychrome Woodblock Print, Ink and Color on

Paper, Accessed October 7, 2006 from http://www.hiroshige.org.uk/index.html.

[7] K. Hokusai, “The Great Wave at Kanagawa (from a series of Thirty-

Six Views from Mount Fuji),” Edo Period (1615-1868), c.a. 1830-32, Ei-

judo, Japan, Polychrome Woodblock Print, Ink and Color on Paper,

H. O. Havemeyer Collection (JP1847), Accessed October 7, 2006 from

http://www.metmuseum.org/Works of Art.

36

[8] G. Irving, E. Guendelman, Frank Losasso, and R. Fedkiw, “Efficient Simulation

of Large Bodies of Water by Coupling Two and Three Dimensional Techniques,”

ACM Trans. Graphics, vol. 25, no. 3, pp. 805–811, July 2006.

[9] S. Jia, Lessons in Chinese Landscape Painting, Wan Li Book Co. LTD, 1987.

[10] M. Kass and G. Miller, “Rapid, Stable Fluid Dynamics for Computer Graphics,”

Computer Graphics (SIGGRAPH ’90 Proc.), F. Baskett, ed., vol. 24, no. 4,

pp. 49–57, Sept. 1990.

[11] V. Mihalef, D. Metaxas, and M. Sussman, “Animation and Control of Break-

ing Waves,” Proc. ACM SIGGRAPH/Eurographics Symposium on Computer

Animation ’04, pp. 315–324, Aug. 2004.

[12] M. Müller, D. Charypar, and M. Gross, “Particle-Based Fluid Simulation for

Interactive Applications,” Proc. ACM SIGGRAPH/Eurographics Symposium on

Computer Animation ’03, pp. 154–159, July 2003.

[13] D.R. Peachey, “Modeling Waves and Surf,” Computer Graphics (SIGGRAPH

’86 Proc.), D.C. Evans and R.J. Athay, eds., vol. 20, no. 4, pp. 65–74, Aug. 1986.

[14] D.F. Rogers and J.A. Adams, Mathematical Elements of Computer Graphics,

second ed., WCB/McGraw-Hill, 1990.

[15] P. Ts’o and B. Barsky, “Modeling and Rendering Waves: Wave-Tracing Us-

ing Beta-Splines and Reflective and Refractive Texture Mapping,” ACM Trans.

Graphics, vol. 6, no. 3, pp. 191–214, July 1987.

37

APPENDIX A

BEAUTY WAVE CONTROL INPUT PARAMETERS

Following is the list of parameters contained in the control input file JBWinput.txt

for beauty wave initialization. The order and number of parameters must be the same

as listed below. C/C++ style comments //...// and /*...*/ may follow parameters

as long as there is space between the parameter and comment. Parameters are listed

here as a range of values such as 0->1 or as either of two values such as 0/1, where 1

is on and 0 is off. Parameter types are either integer, floating point, or string, and are

listed here for reference only. They should not be included in the input file. Only one

value should be provided for each parameter range, # (any number), or string. File

names will be appended with a ”.####.txt” extension at runtime, with output files

beginning at 0 and the pose input file beginning at the specified beautyWave state

input file number. All parameters must have a value provided even if they are not

being used, such as output file names. There must also be a pound sign (#) on its

own line at the end of the file. Note that improper file format will force the program

to terminate.

(integer) 0/1 // Flag, write Bezier curve point output files

(integer) 0/1 // Flag, write wave pt output files (if # of wave pts >0)

(integer) 0/1 // Flag, pause time (stop computing)

(integer) 0->3 // Flag, xWave draw type

// 0: draw nothing; 1: draw lines only (default)

// 2: draw lines and points; 3: draw points only

(integer) 0->3 // Flag, Bezier curve draw type

38

// 0: draw nothing (default); 1: draw lines only

// 2: draw lines and points; 3: draw points only

(integer) >=1 // Number of xWaves to draw

(integer) >=0 // Number of wave points to compute per xWave

(integer) >=1 // Number of crests (poses) per xWave

(integer) >=1 // Number of beautyWave state input files

(integer) >=0 // Starting beautyWave state input file number (no preceding 0’s)

(float) 0->1 // Time step per compute cycle

(float) >0 // Transition time between pose input files

(float) >=0 // Added separation between crest poses

(float) >0 // Lateral separation between repeated beautyWaves, if any

(float) >0.3 // Minimum radius before transitioning pose to 0

(float) 0->1 // Line opacity for wave points

(float) 0->1 // Point opacity for wave points

(float) 0->1 // Line opacity for breaker air/drop

(float) 0->1 0->1 0->1 // Line color for wave points

(float) 0->1 0->1 0->1 // Point color for wave points

(float) 0->1 0->1 0->1 // Line color for breaker air/drop

(float) # # # // Camera position

(float) # # # // Camera look-at point

(string) poseInputFileName // Pose input filename (no # or extension)

(string) bezierOutFileName // Bezier output file name (no # or extension)

(string) wavePtOutFileName // Wave point output file name (no # or extension)

// End of file flag

39

APPENDIX B

BEAUTY WAVE STATE INPUT PARAMETERS

Following is the list of input parameters contained in a beauty wave state input file,

along with examples for formatting pose and X-Wave data. The pose parameters must

be listed in order from 1 to 9 for the parameters specified, and the list number must

precede the actual value on the same line with whitespace separating the two. Only

the first pose of any particular X-Wave needs to have all nine parameters provided. If

more than one pose is being computed, any parameter not specified for poses beyond

the first will be copied from the previous pose. Copied position data will shift poses in

the x-direction by a distance of four times the radius plus an end separation provided

in the control input data. although only one pose need be included for any one X-

Wave, it is a good idea to at least provide the position data. All z positions are

verified to be identical to the first pose for any X-Wave. At least one X-Wave (with

one or more poses) must be defined for any file.

C/C++ style comments //...// and /*...*/ may follow parameters as long as

there is space between the parameter and comment. Parameters are listed here as a

range of values such as 0->1 or as either of two values such as 0/180, where 180 is

on and 0 is off. Parameter types are either integer or floating point and are listed

here for reference only. They should not be included in the input file. Only one

value should be provided for each parameter (plus the preceding list number). X-

Wave definitions must begin with a ’%’ delimiter and poses must be separated by

a ’@’ delimiter. There must also be a pound sign (#) on its own line at the end

of the file, and the number of X-Waves defined in the file must equal or exceed the

number provided at the top of the file. The state input file names need to have a

40

format of ”filename.000#.txt”, where the desired starting number is specified in the

control input without the preceding zeros. Note that improper file format will force

the program to terminate.

4 (integer) >=1 // Number of xWaves defined

% // X-Wave delimiter

1 (float) 0->1 // Crest radius fraction, FR

2 (float) 0->1 // Crest thickness fraction, FT

3 (float) 0->1 // Crest core radius fraction, FCR

4 (float) 0->1 // Crest spiral fraction, FS

5 (float) >=0 // Cusp tangent angle, θt (input in degrees)

6 (float) >=0 // Crest curl angle, θc (input in degrees)

7 (float) 0/180 // Crest rotation angle, θR (input in degrees)

8 (float) 0-># // Crest circle radius

9 (float) # # # // Crest circle center

% // X-Wave delimiter

1 0.7 // Crest radius fraction, FR

2 0.3 // Crest thickness fraction, FT

3 0.5 // Crest core radius fraction, FCR

4 0.6 // Crest spiral fraction, FS

5 180 // Cusp tangent angle, θt (input in degrees)

41

6 135.3 // Crest curl angle, θc (input in degrees)

7 0 // Crest rotation angle, θR (input in degrees)

8 1.7 // Crest circle radius

9 -0.3 0.3 5.5 // Crest circle center

@ // Pose delimiter

6 182 // Crest curl angle, θc (input in degrees)

9 8 -0.2 1.5 // Crest circle center

@ // Pose delimiter

5 140 // Cusp tangent angle, θt (input in degrees)

6 271 // Crest curl angle, θc (input in degrees)

9 16.3 0 8 // Crest circle center

% // X-Wave delimiter

1 0.5 // Crest radius fraction, FR

2 0.4 // Crest thickness fraction, FT

3 0.8 // Crest core radius fraction, FCR

4 0.6 // Crest spiral fraction, FS

5 170 // Cusp tangent angle, θt (input in degrees)

6 175 // Crest curl angle, θc (input in degrees)

7 0 // Crest rotation angle, θR (input in degrees)

8 1.6 // Crest circle radius

9 0 0.2 11 // Crest circle center

@ // Pose delimiter

5 150 // Cusp tangent angle, θt (input in degrees)

42

6 182 // Crest curl angle, θc (input in degrees)

9 7 -0.2 11 // Crest circle center

@ // Pose delimiter

5 130 // Cusp tangent angle, θt (input in degrees)

9 14 -0.2 11 // Crest circle center

% // X-Wave delimiter

1 0.9 // Crest radius fraction, FR

2 0.5 // Crest thickness fraction, FT

3 1.0 // Crest core radius fraction, FCR

4 0.8 // Crest spiral fraction, FS

5 160.4 // Cusp tangent angle, θt (input in degrees)

6 89.1 // Crest curl angle, θc (input in degrees)

7 0 // Crest rotation angle, θR (input in degrees)

8 1.45 // Crest circle radius

9 0 0 16.5 // Crest circle center

// End of file flag

43

VITA

Jay Allen Faulkner

Texas A&M University

Visualization Laboratory

Department of Architecture

Langford Center, C418

College Station, TX 77843-3137

jaf@viz.tamu.edu

Education

M.S. in Visualization Sciences Texas A&M University, December 2006

B.S. in Aerospace Engineering Texas A&M University, December 1995

Employment

Software Developer, MultiGen-Paradigm Inc.,

October 2006 - Present

Technical Director Intern, Pixar Animation Studios,

January 2001 - August 2001

Test Director, Lockheed-Martin,

January 1996 - July 1999

