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ABSTRACT 
 

Underground Distribution Cable Incipient Fault Diagnosis System. (December 2005) 

Mir Rasoul Jaafari Mousavi, B.S., Isfahan University of Technology; 

M.S., Sharif University of Technology 

Chair of Advisory Committee: Dr. Karen L. Butler-Purry 

 
This dissertation presents a methodology for an efficient, non-destructive, and online 

incipient fault diagnosis system (IFDS) to detect underground cable incipient faults before they 

become catastrophic. The system provides vital information to help the operator with the 

decision-making process regarding the condition assessment of the underground cable. It 

incorporates advanced digital signal processing and pattern recognition methods to classify 

recorded data into designated classes. Additionally, the IFDS utilizes novel detection 

methodologies to detect when the cable is near failure. 

The classification functionality is achieved through employing an ensemble of rule-based 

and supervised classifiers. The Support Vector Machines, designed and used as a supervised 

classifier, was found to perform superior. In addition to the normalized energy features 

computed from wavelet packet analysis, two new features, namely Horizontal Severity Index, 

and Vertical Severity Index are defined and used in the classification problem.  

The detection functionality of the IFDS is achieved through incorporating a temporal 

severity measure and a detection method. The novel severity measure is based on the temporal 

analysis of arrival times of incipient abnormalities, which gives rise to a numeric index called the 

Global Severity Index (GSI). This index portrays the progressive degradation path of 

underground cable as catastrophic failure time approaches. The detection approach utilizes the 

numerical modeling capabilities of SOM as well as statistical change detection techniques. The 

natural logarithm of the chronologically ordered minimum modeling errors, computed from 

exposing feature vectors to a trained SOM, is used as the detection index. Three modified change 

detection algorithms, namely Cumulative Sum, Exponentially Weighted Moving Averages, and 

Generalized Likelihood Ratio, are introduced and applied to this application. These algorithms 

determine the change point or near failure time of cable from the instantaneous values of the 

detection index.  

Performance studies using field recorded data were conducted at three warning levels to 

assess the capability of the IFDS in predicting the faults that actually occurred in the monitored 
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underground cable. The IFDS presents a high classification rate and satisfactory detection 

capability at each warning level. Specifically, it demonstrates that at least one detection 

technique successfully provides an early warning that a fault is imminent.  
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CHAPTER I  

INTRODUCTION 

1.1 PREFACE 

The power industry has been developing into a challenging and competitive environment 

due to the ongoing restructuring and deregulation. This structural change has required the 

electric utilities to reduce operating costs and optimize usage and maintenance of electrical 

assets without scarifying the quality and reliability of the power delivered to the customers. 

Underground distribution systems are valuable assets of electric utilities, which supply power to 

the end customers at low voltages. Many of the system components, particularly underground 

cables, fail over time in part due to the deterioration of the insulating materials used in their 

structure. Studies reveal that cable failure rates in power systems continue to worsen as the cable 

ages [1].  

In the past, scheduled inspections and regular maintenances were performed to assess the 

condition of the system and reduce the failure rates. However, the need for improvement has 

made it necessary to shift from scheduled maintenance to condition-based maintenance. This 

shift requires developing new tools and methods to prioritize and perform predictive fault 

diagnosis and condition assessment of underground distribution systems including power cables. 

In addition to degrading system reliability, cable failures cost substantial amounts of money for 

the utilities as replacing or repairing a cable is a very costly process. Early detection of cable 

faults would undoubtedly be a great benefit to the utilities enabling them to avoid catastrophic 

failures, unscheduled outages, and thus loss of revenues. 

Manufactured with extensive use of insulation material, underground cables constitute the 

heart of any distribution system [1][2]. Insulation materials used in the structure of underground 

cable are subject to aging due to the contribution of many stress factors such as heat, moisture, 

and a number of electrical and mechanical stresses. 
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Underground cables are susceptible to deterioration due to the aggregate stress factors that 

adversely affect the electrical properties of the insulating materials. As such, aging and 

degradation of the insulating material is the most common phenomenon leading to cable failures. 

When the insulation undergoes stress factors, a gradual deterioration is initiated in part by voids 

developed in the insulation. These voids develop into channels in a tree fashion and propagate 

through the insulation. The gradual deterioration initiates faults called incipient faults that are 

precursors of a breakdown. Due to persistent aging factors, incipient faults progress and cause 

the cable insulation to either continue undergoing further degradation or breakdown swiftly. In 

either case, a catastrophic failure is inevitable. Diagnosis and detection of progressive incipient 

faults before developing into catastrophic failures avoid unscheduled outages and substantial loss 

of revenues for the electric utilities. This has motivated this research work with the goal of 

developing an efficient, online, and nondestructive incipient fault diagnosis system henceforth 

referred to as the IFDS. A destructive method may further degrade the cable insulation that has 

not already failed and an offline method operates while a section of the cable is de-energized. 

Thus, a nondestructive and online method is preferred over a diagnosis technique that is active 

and offline. 

Currently, accurate permanent fault detection techniques and relatively accurate fault 

location methods are available for overhead distribution systems. However, fault detection and 

location technology for underground distribution systems is still developing. In particular, 

incipient fault detection technology is a relatively immature technology in need of further 

developments. Novel techniques need to be developed to look at specific incipient-induced 

activities over time, extract informative features from the measurements, and perform effective 

data classification and fault detection. This dissertation presents a methodology for such a 

detection system which incorporates advanced digital signal processing and pattern recognition 

methods and tailored change detection algorithms.  

This work is a continuation of a research project for online fault diagnosis of underground 

cables that has been an ongoing project for Power System Automation Laboratory (PSAL) at 

Texas A&M University, College Station, since 1998. The history of the research work can be 

divided into two main eras. The focus of the first phase was to develop a study plan for incipient 

behavior and its characterization in single-phase underground cables [3]. This stage was 

completed in two parts. The first part of the research involved controlled testing of various aged 

cables, both field-aged and artificially-induced. These experiments were aptly named controlled 
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experiments (CE). The second part of the research involved short-term monitoring of various 

single-phase distribution cables in commercial as well as residential areas. During these 

experiments the cable was monitored for a short period ranging from a few minutes to a few 

hours; these were named short-term monitoring experiments (ST). The research study conducted 

during the first phase was focused on identifying various frequency components in the incipient 

activities recorded during both the controlled tests and short-term monitoring of online cables. 

The second phase of the research focused on the development of a long-term monitoring system 

and preliminary study of incipient behavior in time domain as well as in time-scale domain 

[4][5]. In this dissertation, a methodology was presented for an efficient, non-destructive, and 

online incipient fault diagnosis system (IFDS) that is able to detect underground cable incipient 

faults before they become catastrophic. The system provides vital information to assist the 

operator with the decision-making process regarding the condition assessment of the 

underground cable. The classification functionality of the IFDS provides class labels for input 

data and the detection functionality determines the near failure time at three warning levels. 

The major contributions in this dissertation are in five areas. First, a study was completed to 

characterize underground cable incipient faults through the analysis of various data recorded 

during the project. This characterization was the basis for the formulation of the problem and 

development of appropriate methodologies to overcome the specific challenges involved in the 

diagnosis of incipient faults in distribution systems. One of the major challenges was due to the 

small magnitude of the variations in the distribution level signals which required new and 

sensitive signal processing techniques.  

Secondly, an efficient data classification methodology was developed using the concept of 

ensemble learning where a combination of a rule-based and supervised classifiers were used to 

realize the classification functionality of the IFDS. The supervised classifiers investigated in this 

work include Support Vector Machines (SVM), Self Organizing Maps (SOM), K Nearest 

Neighbors (KNN), and Discriminant functions (DIS). Through a number of studies, it was found 

that the SVM performs superior and as a result, it is integrated in the IFDS to operate as the 

supervised classifier. In addition to the normalized energy features computed from the wavelet 

analysis, two new features in time domain were introduced that were applied to the high 

frequency current signals. These two features were termed Horizontal Severity Index (HSI), and 

Vertical Severity Index (VSI).  
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Thirdly, a novel incipient fault detection method based on the temporal analysis of arrival 

times of incipient abnormalities was developed and called the Global Severity Index (GSI). This 

qualitative measure provides the severity path of ongoing incipient faults over time and is based 

on the Laplace Test Statistic. Additionally, a quantitative approach based on the numerical 

modeling of data with SOM was developed. This method uses the natural logarithm of the 

minimum modeling errors in chronological order as the detection index.  

Fourthly, three modified change detection algorithms were tailored to the incipient fault 

detection problem to predict the near failure time of cables using the quantitative detection index 

values. The three algorithms include Cumulative Sum (CUSUM), Exponentially Weighted 

Moving Averages (EWMA), and Generalized Likelihood Ratio (GLR).  

Lastly, the incipient fault diagnosis system was integrated with the previously defined 

functionalities and tested with the field recorded data from a utility monitoring site. The tests 

included performance studies to assess the capability of the IFDS in predicting the incipient 

faults that actually occurred in underground cable during the monitoring period of three years.  

1.2 ORGANIZATION 

This dissertation consists of seven chapters. Chapter I provides introduction and 

organization of the dissertation. Chapter II is partially devoted to the literature review of the 

underground cable failure mechanisms, fault detection techniques, and commercially available 

products. Furthermore, the problem of online incipient fault classification and detection is 

formulated in this chapter. Overview of the field recorded data used for the research is provided 

in Chapter III. Also, preprocessing tasks including resampling, DC removal, and denoising 

operations are discussed in Chapter III. Incipient fault classification methods involving rule-

based and supervised classifiers are presented in Chapter IV and the performance analysis results 

are discussed. Chapter V is devoted to the discussion of incipient fault detection method. In 

Chapter VI, an overview of the IFDS is given and the detection results are presented using field 

data. Finally, Chapter VII will present conclusions and future work. 
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 CHAPTER II  

LITERATURE REVIEW AND PROBLEM FORMULATION 

2.1 INTRODUCTION 

Study of cable failures and development of accurate fault detection and location methods 

have been interesting yet challenging research topics in the past and present. Fault detection 

entails determination of the presence of a fault, while fault location includes the determination of 

the physical location of the fault. Accurate permanent fault detection techniques and relatively 

accurate fault location methods have been developed for overhead distribution systems. 

However, fault detection and location technology for underground distribution systems is still in 

developing stages. In particular, incipient faults which constitute a subcategory of cable faults 

have been the focus of recent investigations. These faults encompass the insulation aging process 

from inception to completion before leading to a catastrophic failure. From a macroscopic 

perspective, incipient faults refer to the abnormalities associated with any type of deterioration 

phenomena manifested in the cable electrical signals. The detection of these faults which occur 

due to the presence of a failing component is a relatively immature technology in need of further 

developments. Historically, the development of incipient fault detection and location systems as 

an ongoing area of research dates back to the early 1990s. This chapter reviews and evaluates the 

existing incipient fault detection and location techniques for underground cables and paves the 

road to formulate the incipient fault detection problem as applied in this research work. A review 

of cable structure and the failure mechanisms are prerequisites for the subsequent discussions 

that follow.  

2.2 ANATOMY OF UNDERGROUND DISTRIBUTION CABLES 

The core component of any underground system is the cable that supplies power from the 

source to the load. The longevity and reliability along with desired safety and aesthetics issues of 

underground cables have made underground distribution systems an unprecedented substitute for 

overhead distribution lines. Underground cables have been designed for various applications and 

voltage levels and extensive improvements in design process have been achieved. Today 
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pressurized cables are available up to 765 KV and even 1100 KV through the gradual 

advancements in materials and manufacturing processes [7]. For primary distribution systems, 

cables are typically designed with the following major components, conductor, conductor shield, 

insulation, insulation shield, concentric neutral, and jacket. These components are illustrated in 

Fig. 2.1.  

 
 
 

 

 

Fig. 2.1: Anatomy of a typical single phase underground cable 

 
 
 

The conductor can be either aluminum or copper in solid or stranded form. The selection of 

a conductor type depends on ampacity, voltage, physical properties, flexibility, shape, and 

economics [2], however it is recommended to use solid or stranded-filled conductors for 

reliability [1]. Conductor shields and insulation shields synergistically provide a uniform 

cylindrical surface next to the cable insulation to establish the most uniform possible distribution 

of electrical stress. Research performed on cable failures has shown that existence and 

development of voids or protrusions near the conductor shield-insulation interface played an 

important role in the failure process [1]. This region experiences extremely high electrical 

stresses and these irregularities help boost a non-uniform electrical field, stressing the cable 

insulation and eventually causing it to fail. The extruded conductor shield is a layer of semi-

conducting material, used to prevent excessive electrical stress in voids between the conductor 

A: Conductor B: Conductor Shield C: Insulation 

D: Insulation Shield E: Concentric Neutral F: Jacket 
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and the insulation [8]. Insulation can be of a variety of materials such as EPR1, XLPE2, paper, 

and TRPE3 compounds, whose thickness is a function of cable voltage rating such that the higher 

the voltage rating, the thicker the insulation. The extruded insulation shield also consists of a 

semi-conductive layer similar to the conductor shield. The function of the insulation shield is to 

confine the electric field within the cable, symmetrically distribute electrical stress, reduce the 

hazard of shock, limit radio interference, and protect cable induced potential when connected to 

overhead lines [8]. The shield may be a metallic tape or a non-metallic tape, drain wires, or 

concentric neutral wires. The outer shield is normally connected to ground.  

Concentric neutral conductors serve as the metallic component of the insulation shield and 

as a conductor for the neutral return current [2]. Due to some mechanical and electrical 

considerations, concentric neutral conductors are built from copper even if the central cable 

conductor is aluminum.  

The cable jacket is the outermost layer of the cable. The purpose of the jacket is to provide 

mechanical, thermal, chemical, and environmental protection. It can be made of polyethylene, 

polyvinyl chloride, nylon, as well as other plastics. Certain cables use a sheath or armor instead 

of a jacket, which provide a much better protection to the cable than a jacket [2]. 

The first widely accepted concentric neutral cables were unjacketed. The bare concentric 

neutral (BCN) cables were directly buried exposing the concentric neutral conductors to the 

surrounding soil and consequently provided very effective ground. This design was desired from 

a personnel safety point of view in case of a dig-in. Due to the presence of a low resistance path 

through neutral conductors, adequate fault current could be conducted to operate protective 

devices. The low resistance between the neutral and earth would also reduce the touch potential 

at the dig-in site, significantly [1]. 

Despite the numerous advantages of BCN cables, major durability problems hindered their 

wide installment in underground systems. Soon engineers found that cable moisture and/or 

concentric neutral corrosion played a major role in increasing the failure rate of unjacketed 

underground cables. Due to the lack of a protective jacket, BNC cables were subject to 

corrosion. Once corroded, the only neutral current path was through ground rods which were a 

totally unsatisfactory condition from the safety and reliability stand point. Therefore, jacketed 

concentric cables (JCN) achieved wide acceptance with a special attention to system grounding. 
                                                 
1 Ethylene Propylene Rubber 
2 Cross-linked Polyethylene 
3 Tree-Retardant Polyethylene 
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It is worth mentioning that while U.S utilities installed BCN cables, European and Japanese 

utilities installed only jacketed cables and as a result these utilities have experienced much 

higher reliability than in the United States. Today, the U.S utilities mainly use jacketed cables 

[1]. 

2.3 AGING MECHANISMS IN UNDERGROUND CABLES 

Deterioration of insulation is an inevitable phenomenon in underground cables leading to 

insulation failures. The aging is caused by single or synergistic action of several aging factors 

that include thermal, electrical, mechanical and environmental [9][10]. Persisting aging factors 

eventually fail the cable insulation through a number of mechanisms summarized in Table 2-1. 

Activation of aging mechanisms either change the bulk properties of the insulating materials 

referred to as intrinsic aging or cause degradation known as extrinsic aging. The degradation is 

the result of the presence of contaminants, defects, voids, and protrusions in the insulation 

material and their interaction with different aging mechanisms [10][11]. 

Under normal conditions, electrical stresses are the predominant aging factors that may fail 

cables through partial discharge and treeing mechanisms aggravated by the presence of water. In 

organic extruded dielectric and in particular in cross-linked polyethylene (XLPE) cables, the 

majority of cable failures are related to the treeing activity. Treeing refers to any kind of 

damages in the insulation medium in which the deterioration path resembles the form of a tree. 

This pre-breakdown phenomenon takes place in the form of either electrical trees or water tress 

under DC, AC and impulse voltages [12]. The primary cause of treeing in dry dielectrics is 

partial discharges under high electric stresses and moisture at lower electric stresses. On the 

other hand, not all degradation phenomena are associated with electrical stresses. Cable might 

fail –under abnormal conditions- through thermally aged insulation breakdown [13]. Moisture 

increases dielectric losses so localized heat generation is produced and thermally degrades the 

paper insulation. The following sections will briefly discuss electrical aging mechanisms i.e. 

partial discharges, electrical trees, and water trees as the most commonly sought failure 

phenomena. 
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Table 2-1: 
Summary of aging mechanisms in cables [10] 

Aging Factor Aging Mechanisms 

High temperature 
Temperature cycling 

Chemical reaction 
Thermal expansion 
Diffusion 
Insulation melting 
Anneal locked-in mechanical stresses 

Thermal 

Low temperature Cracking 
Thermal contraction 

Voltage, AC, DC, Impulse 

Partial discharges 
Electrical trees 
Water trees 
Charge injection 
Intrinsic breakdown 
Dielectric losses and capacitance 

Electrical 

Current Overheating 

Mechanical 
Cyclic bending, vibration, fatigue, 

tensile, compressive, shear stresses 

Yielding of materials 
Cracking 
Rupture 

Water, humidity 
Contamination 
Liquids, gases 

Electrical tracking 
Water treeing 
Corrosion 
Dielectric losses and capacitance 

Environmental 

Radiation Chemical reaction rate increase 

 
 
 

2.3.1 Partial Discharges 

A partial discharge (PD) is a localized gas discharge in a gas-filled void or on a dielectric 

surface of a solid or liquid insulation system without bridging the system electrodes [14]. PD can 

result from the discharge in cavities developed inside the insulation, voids between the 

semiconductor and dielectric, tracking discharge along an interface, or discharge from electrical 

or water tree growth4 [15]. When the electric field intensity within a cavity or a crack reaches a 

threshold value, the gas contained in the defect ionizes, producing free electrons, which by 

multiple collisions initiate an avalanche. If the size of the void in the direction of the electric 

field is large enough, the avalanche may eventually initiate a breakdown, or discharge, across the 

void [16].  

                                                 
4 As the discharge does not bridge the entire insulation, it is called partial discharge. 
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To initiate a PD, the cavity size must reach the critical limit for development of a discharge. 

For XLPE insulation, this critical size is 0.03mm for a spherical cavity filled with air at 

atmospheric pressure [17]. PD inception voltage is a function of cavity size, cavity location, 

cavity shape, insulation thickness and type, and conductor size. The larger the cavity size, the 

lower the inception voltage. PDs develop into electrical trees when self-sustaining PDs occur at 

the system operating voltage. Prolong PD activity deteriorates the wall of the cavities physically 

and chemically [17] that may in turn lead to the initiation of treeing. In [14], Paoletti and 

Golubev discuss the detailed theory of partial discharge and how it manifests itself in cables. 

2.3.2 Electrical Trees 

The presence of high and divergent electric stresses is the primary contributing factor to 

initiate and propagate electrical trees (ET) [12]. An ET may consist of many discharge paths 

including tree trunk and branches originating from the tree trunk. The tree structure in 

microscopic dimensions is highly visible in solid dielectrics and may appear in different forms. 

Fig. 2.2 shows typical patterns of electrical trees in polyethylene (PE). 

 
 
 

 

Fig. 2.2: Typical patterns of electrical trees [12] 

 
 
 

ETs can also be initiated due to prolonged PD activities, protrusions at the semicon-

dielectric interface, contamination or from a water tree conversion. The required electric field to 

initiate ET is 150KV/mm [17]. Once initiated, ET will normally propagate through the insulation 
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as a series of sporadic bursts, and when the branches of the tree bridge the length of the 

dielectric, a breakdown happens. Thus, ET concludes the degradation process of the insulation 

by leading to its failure. 

2.3.3 Water Trees 

Water trees are caused in the presence of moisture by the ionic contaminants especially at 

the semiconductor-insulation interface of cable. Unlike electrical trees, water trees typically 

commence at lower electric stress values and propagate more slowly through the insulation [12]. 

Water trees do not cause detectable partial discharges before converting to the electrical trees. 

Under normal operating conditions, the conversion process is caused by prolonged PD activity in 

cavities that are created in the water tree channel [13]. Large water trees can convert at normal 

operating voltages and small water trees convert due to lightning impulses. In some instances, 

external chemical may get trapped in the cable components and this may initiate localized PD 

called electrochemical treeing. Water trees fail the cable when they convert to electrical trees. 

Once a water tree is converted to an electrical tree, the time to failure is normally short because 

the initiated electrical tree propagates rapidly through the aged insulation [13]. Fig. 2.3 shows a 

pictorial presentation of water trees initiated in an insulating material. 

 
 
 

 

Fig. 2.3: Water tree in insulation [12] 
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2.4 UNDERGROUND CABLE FAULT DETECTION AND LOCATION METHODS 

To date, various research studies have been conducted to develop methods for fault 

identification and detection in underground systems [14]-[45] and some commercial detection 

systems are also available for diagnostic testing [46]-[49]. The present methods, although 

conceptually different, can be categorized in terms of the mutually exclusive active/passive and 

offline/online terms. The term active describes detection schemes that require an external electric 

source to energize the system and generate the diagnosis signals. The opposite holds true for 

passive methods in which there is no external injection to the cable system. Active methods are 

often destructive which implies that they may further degrade cable insulation that has not 

already failed. Thus, the portion of the system involved in the fault must be replaced before 

restoring power. Offline methods consist of detection techniques that operate while a section of 

the cable is de-energized. Offline methods can require local outages and potential system 

contingencies. If a method is not an offline method, it is considered an online method in which 

there is no service interruption during the application of the method. Passive and online methods 

are preferred over active and offline diagnosis techniques because they are not destructive and 

can be applied without service interruption. 

Existing methods target two main categories of insulation categories. While some of the 

methods are used to provide an overall assessment of the insulation, there are other methods that 

perform an incremental condition assessment of the underground cable. Diagnosis methods 

involving dissipation factor, harmonic analysis, DC leakage current, and return voltage 

measurements are some examples belonging to the first group and various methods based on 

partial discharge measurements constitute examples of the latter group of existing methods [18]. 

From a field application point of view, the existing methods can be categorized into the 

following classes [34]: i) Methods based on the partial discharges, ii) Methods based on the time 

and frequency domain reflectometry, iii) Methods utilizing the dielectric ohmic and polarization 

losses, and iv) Methods based on the acoustic and pressure wave techniques. The following 

sections discuss these methods with particular attention to the advantages and disadvantages of 

each method. 
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2.4.1 Techniques Based on Detection of Partial Discharges 

In a cable system, various factors can contribute to the partial discharge, such as voids, 

shield protrusions, contaminants, advanced stages of water trees, electrical tree growth, etc. 

Partial discharge is a precursor to premature degradation of dielectric materials in a power cable 

[33] that reveals itself in a number of ways. Charge displacement in the void, high frequency 

radiation emitted by excited particles, ultrasonic sound, heat from particle impact and chemical 

reactions are some of the phenomena that can accompany a partial discharge [15]. The produced 

high frequency electromagnetic signals travel along the cable and cover a broad frequency range. 

In solid insulation, this frequency range typically varies from a few hundred kHz to a few 

hundred MHz [35] depending on the location of the PD with respect to the testing point5. The 

partial discharge detection method is based on the measurement of these pulses by high 

frequency inductive or capacitive sensors. The general PD testing method proceeds in three steps 

as shown schematically in Fig. 2.4. 

 
 
 

 

Fig. 2.4: PD testing process 

 
 
 

In the first step, PD signals are measured by special sensors such as capacitive couplers, 

inductive couplers, or antennas. Since the original PD pulses do not possess sufficient 

magnitude, an amplification procedure is usually followed to enhance the resolution of the 

measured pulses. Any treatment for possible noise interference also takes place in this step. 

Finally, the amplified signals are analyzed in time or frequency domain to detect the PD 

locations.  

PD measurements can be performed either offline or online [15]. Offline methods require 

that the cable be disconnected from the system and elevated voltages be applied to generate the 

diagnosis signals. De-energized cable system during the offline testing conveys no PD signal to 

                                                 
5 From a Fourier analysis stand point, a pulse of ‘zero’ width should have a very wide spectrum. 

Amplification Signal Detection PD Sensing 
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be picked up by the sensors; thus, to activate the PD sites again during testing, an elevated 

voltage is required to re-initiate the PD. Applying this voltage does not necessarily initiate a 

discharge because in addition to sufficient excitation voltage, a free electron is required to 

initiate a discharge. Thus, a minimum test time in minutes is needed for each stress level to 

become effective.  

The utilized sensor in offline methods involves a high frequency capacitive coupling 

connected at one end of the cable parallel to the conductor. These capacitors act as a filter, block 

the 60 HZ component and allow the very high frequency pulses associated with PD to be 

measured. As an important point, these capacitors must be free of PD since they are directly 

connected to the high voltage side and undergo the same test voltage [15]. The discharge signals 

are measured across external impedance which is in series with the capacitor. A resonant circuit 

is sometimes used to amplify the discharge pulses in time domain for a better detection 

capability. The PD detection circuit used in most detectors is shows in Fig. 2.5 . Due to the need 

for a return path through the cable shield, this method can not be applied to unshielded cables. 

 
 
 

 

Fig. 2.5: PD detection setup 

 
 
 

Online measurements are conducted without power interruption and while the cable is in 

service. There is no need for the heavy and expensive test voltage supply and the coupling 

capacitors are often replaced with inductive couplers, current transducers, placed around cable. 

For these reasons and some others discussed later, online PD measurement has gained much 

Coupler 

To PD recorder 
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favor over the conventional offline methods. The following is a discussion of various available 

methods that make use of PD measurements.  

 
2.4.1.1 Partial Discharge Detection and Location Using Correlation Technique 

This method makes use of PD measurements from both ends of the cable to detect and 

locate PD sites [41]. The system setup is shown in Fig. 2.6. The time lag τ between the two PD 

signals is determined by maximizing the cross-correlation function. This function R12 (τ) is given 

in [34]. 
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where, v1(t) and v2(t) are the instantaneous values of the PD signals measured at the two ends of 

the cable at time t. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.6: Circuit setup for PD detection and location using correlation technique [34] 

 
 
 

This cross correlation function allows the determination of the time lag τ in a noisy 

environment since the PD signal is unlikely to correlate with noise signals from other 

independent sources, however the traveling signals suffers from distortions as the result of the 

attenuation and dispersion when they travel towards the two ends of the cable. Thus, the PD 

signals detected at both the ends of the cable may be quite dissimilar. For this reason, the 
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correlation function is used in conjunction with threshold logic. The advantage of this technique 

is that it can be performed online and there is no need for any high voltage test sources. 

Nevertheless, it requires that PD signals be measured at each end of the cable which may not be 

possible in the field [34].  

 

2.4.1.2 Partial Discharge Detection and Location Using Reflectometry Technique 

The reflectometry-based technique uses the arrival time of the original PD signal and its 

reflection from the open end of the cable to detect the PD site while the service is interrupted 

(offline). Fig. 2.7 shows the system setup [34][42][43]. The location of PD is determined by 

(2-2). 
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where, 2tx is the time lag between the arrival of the original PD pulse traveling directly from the 

PD site, and that of the other PD pulse reflected from the open end of the cable [34]. The time 

lag 2tL is the time lag measured between the arrival of the direct PD pulse and its reflection from 

the open end as illustrated in Fig. 2.8.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.7: PD detection using reflectometry techniques [34] 
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Fig. 2.8: PD signal detection time [34] 

 
 
 

As it is implied, this method requires only one PD detection circuit at one end of the cable 

and the other end of the cable is left open during the measurements. Although various methods 

are available for PD extraction and reconstruction, this method has a major disadvantage in its 

application in the field, as the service in the cable must be interrupted to conduct the test. 

 

2.4.1.3 Partial Discharge Detection and Location Using Modulated X-Rays 

In this method, which is not widely known, the detection and location of PD are 

accomplished using modulated X-rays directed through established PD sites in a dielectric 

medium [34][44]. These X-rays reduce the discharge level, but increase the number of discharge 

pulses per cycle. Hence, if a cable with PD is scanned with chopped X-rays, partial discharges 

can be expected in X-ray chopping frequency. By tuning the detection circuit at the X-ray 

modulation frequency, the signal-to-noise ratio is improved and as a result a higher sensitivity is 

achieved. Although this method can potentially be used in the field, a number of safety issues 

concerning the radiations applied in the field hinder widespread and safe utilization of this 

technique, and thus it seems to be impractical. 

 

2.4.1.4 Challenges Involved in PD-based Techniques 

PD signals are normally subject to fast transients and non-periodic components which only 

appear in the high frequency spectrum. During PD activity, the location of discharge remains the 

same but the magnitude and number of the pulses can vary considerably with time, voltage, 

temperature, load and humidity, making the detection a difficult task [18]. Moreover, attenuation 
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along the cable length, particularly at the higher frequencies and background noise in the field 

can compound the methodology.  

From application viewpoint, PD detection is often hampered by the huge volume of data 

due to the high sampling frequency [24] and the problem of noise interference worsens the data 

usage. On the other hand, not all the degradation phenomena are associated with PD. Cable 

might fail through thermally aged insulation breakdown [13]. Moisture increases dielectric losses 

so localized heat generation is produced and thermally degrades the paper insulation. Under such 

circumstances, PD may only be initiated at advance stages of such degradation. Existing online 

detection methods cover some of the shortcomings associated with the offline techniques, but in 

contrast to offline PD diagnosis, the sensitivity of online PD detection and the results 

interpretation are strongly influenced by the local external disturbances and operation conditions 

of the cable section [25] and expertise of the data interpreter. Additionally, PD measurement 

might not indicate the time to failure. If electrical trees develop first, the time to failure is 

normally short because the initiated electrical tree propagates swiftly through the aged insulation 

[13]. 

In order for a PD to progress and cause a failure, self-sustained discharges must be present 

at the system operating voltage i.e. the discharge extinction voltage should not exceed the line 

voltage [13]. Presence of self-sustained discharges is in turn a function of defect type. If the PD 

inception and extinction voltage are both less than the system voltage, there is a good chance of 

self-sustained discharges. Another type of defects might have an inception voltage greater than 

the system voltage but their extinction voltage is less than the line voltage. For these defects, 

discharges can initiate due to an abnormal system condition or disturbances. Once initiated, these 

discharges are self-sustained and visible to detection methods. Lastly, some defects have the 

inception and extinction voltage greater than the line voltage. Partial discharges due to these 

defects can only be ignited by transient over-voltages and once the over stress condition is 

removed, the partial discharge disappears, consequently.  

The type of PD that exists in the cable is another limiting factor. The detectability of partial 

discharges in cavities highly depends upon the size of the cavity. Roughly speaking, as the size 

of the cavity increases, the magnitude of the PD increases and as a result, the detection becomes 

easier. Both offline and online methods can detect these discharges but there is a minimum size 

for a detectable cavity. This limit also depends on the cable length. Using online methods, the 

cavity size can be as small as 0.1 mm if the cable length being tested is less than 200 meters [15]. 
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Any cavities smaller than 0.5mm for shorter cables and 0.7 mm for longer cables are not visible 

to offline methods whereas they might fail the cable and thus there might not be enough time for 

early fault detection [15]. Partial discharges forming electrical trees are detectable and can be 

picked up by both online and offline methods. Recall that electrical trees constitute the final 

phase of the degradation process. As the tree length increases, the PD magnitude increases and 

makes it easier to be sensed by the couplers. If the PD possesses sufficient magnitude, the 

sensitivity of the detection method need not be high. Tracking discharges due to cable splices are 

also visible to both methods. PD magnitude increases as the track length extends. Finally, partial 

discharges that occur between the cable neutral and semiconductor are often severe enough to be 

detected by both the offline and online methods [15]. 

2.4.2 Techniques Based on Time-Domain Reflectometry 

The premise utilized in Time-Domain Reflectometry (TDR) techniques is that the 

degradation of the insulation translates into the variations of the cable surge impedance defined 

by the per-unit inductance and capacitance of the cable. Because of this impedance variation at 

the deteriorated spots of the cable, a square wave signal injected to the cable will be partially 

reflected from the location of degradation. This reflected signal and the signal reflected at the 

open end of the cable are used to calculate the time lag and in turn, to determine the location of 

the incipient fault [45][34]. A similar reflectometry approach assumes that an incipient fault site 

behaves as a region of dielectric nonlinearity. Therefore, when two signals of different 

frequencies are fed into the cable under test, new signals having frequencies equal to the sum 

and the difference of the original signals are generated at the fault site. The propagated and 

reflected (from the open end of the cable) signals of these new signals can be used to determine 

the location of the fault site.  

The drawbacks associated with method stems from the inherent characteristic of the power 

cable to attenuate high frequency components. The high frequency components are the only 

signals reflected from the incipient fault site, but they are highly attenuated and distorted while 

traveling in the cable. Thus, conventional TDR techniques will not be effective in detection of 

incipient faults in long cables. Furthermore, TDR techniques require heavy and expensive high 

voltage test equipment and can be applied when the cable is not in service i.e. they are offline 

methods [45]. 
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2.4.3 Techniques Based on Measurement of Dielectric Losses 

Dielectric losses including ohmic and non-ohmic losses are important measures of 

insulation quality. For a perfect insulation these losses are negligible; but as the cable ages and 

trees extend throughout the insulation medium, the associated dielectric losses increase over 

time. The increase in ohmic losses gives rise to the increase in the DC component of the ac 

charging current, whereas the increase in non-ohmic (polarization) losses results in the increase 

in the dielectric dissipation factor i.e. tanδ. This is the premise used in the methods that are based 

on dielectric losses. 

These methods measure the DC component of the ac charging current and the dielectric 

dissipation factor to assess the degree of deterioration in the cable insulating material [36][37]. It 

is been argued that measurement of the DC component in the ac charging current combined with 

the tanδ readings, provide an accurate way to detect incipient fault sites in the cable. 

Unlike most of the other techniques discussed so far, this technique is able to indicate the 

existence of water trees while the cable is in service and doesn’t require heavy expensive test 

equipments. Additionally, it can be used for long cables. Nonetheless, it possesses a number of 

drawbacks. The detection of incipient faults using this technique becomes possible only after a 

large number of trees have developed but even then, the DC current involved are in nano-

amperes and thus it prove to noise interference [34]. Further, this method can not provide a clue 

as to the location of the fault. 

2.4.4 Techniques Based on Acoustic and Pressure Wave  

As mentioned earlier, PD is not a silent phenomenon and usually accompanied by charge 

displacement, radiation, ultrasonic sound, heat, and chemical reactions. Acoustic methods detect 

the sound energy emanating from the PD sites. Also, the acousto-optical techniques can be used 

for detection purposes in which the light intensity in a fiber optic waveguide is modulated by the 

sound waves generated by the partial discharges. As implied, the main power of these techniques 

lies in the detectability of the acoustic waves and thus the water trees are not detectable unless 

the degeneration is bad enough to emanate sound. Furthermore, the need for implementing a 

large number of waveguides makes this method very expensive for long lengths of cable.  

The pressure wave techniques are based on the detection of dielectric space charges at an 

incipient fault site. For this technique, a short rise-time pressure wave is fed into the cable using 
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any one of the several techniques [38][39]. The pressure wave travels along the dielectric with 

the speed of sound and encounters dielectric space charges at the incipient fault sites. As the 

result of this encounter, the space charge is displaced and the dielectric permittivity is altered 

because of the variation of the local concentration of charges thus generating a potential between 

the cable conductors [39]. Monitoring this transient potential field along the cable provides the 

means to approximate the space charge distributions along the cable and thereby locate the 

incipient fault sites. This technique although seems potentially promising and appealing to 

researchers, has not been tested in the field and needs further investigations. It requires pressure 

wave generators and needs monitoring the transient potential filed all along the cable at short 

intervals.  

2.5 COMMERCIALLY AVAILABLE PRODUCTS 

Traditionally, the HIPOT6 test at elevated DC voltage, very low frequency, and power 

frequency has been applied to power cables to diagnose the damaged regions. This is a 

destructive test that may identify incipient failures, but may not completely reveal whether a 

cable will function properly during high ambient temperatures or under high load currents. In 

recent years, a number of non-destructive commercial products have been developed to evaluate 

and assess the insulation condition of the cable system in both offline and online fashion. This 

section will provide a review of the techniques utilized in these products. A general assessment 

of these techniques is also provided. 

2.5.1 DTE Energy Technologies 

DTE Energy has developed a passive condition assessment technique called Cable|Wise 

that makes use of the RF emissions from cables, splices, and terminations to provide an 

assessment of the remaining life of the cable and its accessories [46]. The emissions are recorded 

for 15 minutes while the cable system is in service. The recorded data is analyzed by an expert to 

identify the equipment that emits the RF signal and estimate the probability of failure or 

remaining life of each component. Fig. 2.9 shows the typical experimental setup for Cable|Wise 

data acquisition. The principles of the PD measurements were discussed in section 2.4.1 and the 

discussion of PD challenges in section 2.4.1.4 applies to the approach developed by DTE. 

                                                 
6 High Potential Withstand (HIPOT) 



 

 

22

 

 

Fig. 2.9: Experimental setup used by DTE energy technologies for data acquisition [46] 

 
 
 

This technique depends on detecting low energy, high frequency (300 MHz) emissions 

while the cable is in service under normal operating conditions. The detection of these emissions 

is not a simple task as they are well within the energy levels of background noise and other 

electromagnetic signals. Cable|Wise utilizes a combination of custom built high frequency 

sensors, amplifiers, and noise rejection methods to accomplish the detection task [46]. A report 

given to the user provides the probability of failure of each cable section, cable accessory, 

transformer, and switchgear connected to the circuit. Refs. [13][15][17][20][21][22][35] provide 

some detail information about the solution methodologies, however the interpretation of the 

results is conducted by an expert in the lab and there is no automatic, on-site decision making 

system. This product does not take the past behavior of the cable into account and is not a 

condition monitoring system.  

2.5.2 IMCORP 

Imcorp, a company developed by the work of Mashikian and his colleagues 

[16][31][32][33], operates under an exclusive license from the University of Connecticut. It 

provides an array of cable diagnostic services for medium and high voltage shielded power 

cables. The latest technology developed in Imcorp allows tests to be carried out on the cable 

systems to locate defects and assess the overall condition of the system. The testing methodology 

is based on the pulse reflectometry and time-of-arrival of partial discharges, discussed in 2.4.1.2, 
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that proceeds in four steps, namely topology identification, sensitivity calibration, HV diagnostic 

test, and data analysis [47].  

The first stage involves a low-voltage TDR mapping to locate cable joints and neutral 

discontinuities, and to determine the cable length. This test uses a low-voltage pulse generator to 

inject pulses of magnitude between four to eight volts and width of 20 to 650 nanoseconds. The 

original pulse and its reflected version is recorded and digitally processed to locate joints and 

large cable anomalies. The sensitivity calibration is performed to calibrate the diagnostic system 

and to determine the smallest pulse, capable of making a round trip on the cable. In the third 

stage, a continuous 60 Hz voltage signal is applied to the cable for a few seconds and the 

relevant PD data is measured and recorded. After removing noise components, the processed 

data is further analyzed to prepare a summarized report on the location of joints, and defects and 

the type of defects throughout the cable length [47]. Although, this method uses a 60 Hz signal, 

it can be destructive. Furthermore, it is not operated as an online condition monitoring system 

that is able to detect an imminent fault.  

2.5.3 PowerTech 

PowerTech offers a number of services for condition assessment, laboratory evaluation and 

failure analysis of cables that may be performed in the laboratory, on cable samples, or on-site, 

using one or more electrical tests, but none of these include an online monitoring system. Lab 

assessment is made to determine whether cables of similar type and age should remain in service 

and it may include dissection, water tree counts, and various small-sample chemical tests. The 

cable is checked for voids, protrusions, contaminants, water trees or other damage. Such off-site 

and offline laboratory tests can provide the knowledge of cable condition and cause of failure, 

but only tell the story on the sample examined and thus, on-site condition assessment is needed 

to evaluate the insulation of the cables still in the ground. On-site condition assessment is carried 

out on de-energized cable systems using a number of tests, including partial discharge, 

dissipation factor, voltage recovery and leakage current measurement. However, no single test 

provides an accurate account of insulation condition [48].  

The technology used for XLPE cables at PowerTech is a low voltage DC test method called 

Leakage current (I) pico Ampere test (LIpATEST). During this offline test, a negative, step-DC 

voltage is applied to a cable and the resulting leakage current is measured with a sensitive, 

highly filtered, DC pico-ammeter for one minute at each voltage step. The voltage level used in 
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this test is less than half that of the recommended levels for aged cables using traditional DC 

hipot testing. Cables with large and extensive water trees show significant departures in the 

linearity of leakage current vs. test voltage as shown in Fig. 2.10 [48].  

 
 
 

 

Fig. 2.10: Variation of DC leakage current versus applied voltage in the LIpATEST 

 
 
 

2.5.4 EA Technology 

EA Technology –a company based in UK- has developed condition assessment instruments 

that are handheld portable detectors [49]. They can locate underground cable faults or partial 

discharge activity from within high voltage insulation material. PDM03 is a partial discharge 

monitoring device that is non-intrusive and designed to monitor discharges over a period of time 

and indicate variations caused by changes in the operating environment, such as voltage surges, 

temperature and humidity. The data gathered is stored onto disk, which can then be analyzed to 

indicate levels of discharge and severity over a period of up to two months. This product, as it 

appears, is not an online condition monitoring system and tests need to be repeated at least every 

two months.  
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PDL1 is another device that locates partial discharge activity from within high voltage 

insulation material by measuring transient earth voltage signals (TEV) generated by small 

discharges. The magnitude of the TEV signal is measured using the instrument in single probe 

mode. Using the instrument in two-probe mode indicates the source of the discharge in relation 

to the probes [49].  

2.6 OVERALL ASSESSMENT OF ONLINE AND OFFLINE CABLE FAULT 

DETECTION METHODS 

In this section, an overall assessment of underground cable fault detection methods 

including both online and offline techniques is presented. As shown, there are a number of 

different techniques for failure detection in underground cables; nevertheless, partial discharge 

measurement constitutes the core component of most commonly used methods. As a result, this 

assessment often targets techniques based on partial discharges. Whether performed online or 

offline, the underground cable fault diagnosis methods are subject to a number of drawbacks and 

technical boundaries due to the following factors.  

The high frequency attenuation in solid cables is one of the main constraints in the 

application of RF emitted signals. The frequency-dependant attenuation characteristic of the 

cable is such that the attenuation factor is directly proportional to the signal’s squared frequency 

i.e. the higher the frequency, the greater the degree of attenuation. Additionally, the presence of 

sheath and its conductivity increases the attenuation [21]. As the result, the high frequency 

pulses attenuate and shift to lower frequencies as they travel along the cable [22]. This imposes a 

limit on the PD pulse measurements as to the length of the cable that can be tested. Generally, 

the sensitivity of the measurement decreases significantly as the length of the cable increases. 

Online methods can have an advantage over offline techniques in this respect since online 

measurements can be done at several short distance intervals provided that the cable is physically 

accessible. 

Some detection techniques involve measurements of high frequency pulses that possess 

small energy. Noise components also convey the same characteristics and as a result noise 

interference is an inevitable problem in such measurements. Noise contamination reduces the 

sensitivity of the detection method especially in a very noisy environment such as highly 

populated areas. Testing the cables at shorter intervals might alleviate noise interference; 

however it may not always be possible to do so. Another approach is to measure the signals 



 

 

26

within a frequency range where little interference is expected. The downside is that pulses such 

as partial discharge signals may contain frequencies that overlap the noise frequencies. If so, 

these frequencies will remain undetected unless other measurements are made possible at 

different locations. After all, noise interference is one of the main challenges in field 

measurements that needs to be overcome in a subtle way. 

When offline testing is conducted on a feeder with branched circuits, multiple reflections 

from these circuits make it very difficult to distinguish relevant reflections and therefore the 

detection becomes unfeasible. This is also a challenge encountered in traditional reflectometry 

methods. Physical disconnection of multiple circuits can potentially alleviate the detection 

complexity if it is economically justified. Unlike offline methods, online detection methods can 

overcome this problem by testing each branch separately and independently from each other 

[15]. 

It is possible that multiple discharges can occur simultaneously at different cavities 

distributed along the cable. Similar to the multiple circuits case, in the offline testing, multiple 

reflections superimpose and appear as an average value [15]. As a result, the location accuracy is 

decreased or lost. For a cable with a few discharge locations, the TDR method provides 

satisfactory results; however as the number of discharge sites increases, the level of accuracy in 

TDR approach is dramatically lowered. 

Cable characteristics such as attenuation and propagation speed differ from one type of 

cable to another type. Thus, methods based on TDR seem to be difficult to generalize easily as 

they rely on varying cable characteristics. For example, the propagation speed is not a constant 

value and it changes from one cable to another. Pertaining to the cable structure, some offline 

detection techniques might require a return current through the cable shield, which might not be 

available for some types of cables. Therefore, these methods are not applicable to unshielded 

cables or shielded cables with shield discontinuities. On the contrary, online methods can 

overcome this problem if the cable section can be tested independently and if return current is 

not required. 

Although some of the challenges involved in condition assessment of cable were addressed 

in existing techniques, the demand for an online, non-destructive, and efficient condition 

monitoring system has not yet been met. None of the techniques discussed in this section feature 

such a system. In particular, there is no method that looks at the trend and specific behavior of 

incipient faults over time and incorporates the past behavior of cable in the decision making 
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process. Also, the interpretation and analysis of the results is made by an expert who must be 

available. There is no automatic, computer based pattern classifier that makes the decisions 

online and without the need for a continued human service. Realizing the need for the 

development of an online, nondestructive, and efficient diagnosis system, this dissertation 

presents a methodology for such incipient fault diagnosis system (IFDS) to detect underground 

cable incipient faults before they become catastrophic. The system provides vital information to 

help the operator with the decision-making process regarding the condition assessment of the 

underground cable. It incorporates advanced digital signal processing and pattern recognition 

methods and utilizes novel detection methodologies to classify recorded data into designated 

classes and detect when the cable is near failure 

2.7 PROBLEM FORMULATION 

2.7.1 Introduction 

Underground cable diagnostic testing and condition assessment has been an emerging 

technology. To address the shortcomings associated with the existing techniques, novel methods 

need to be developed. The focus of the work reported in this dissertation is to develop an 

efficient, online, and passive system that uses measured voltage and current values over a period 

of time to diagnosis cable incipient faults. Previous efforts made in this project have led to the 

development of a monitoring system to collect data from an underground distribution system 

[3][4]. Further, a preliminary data analysis was conducted to characterize underground cable 

incipient behavior and evaluate some of the ideas that could be used in the design process [5][6]. 

In continuation of the previous work, this research work presents a methodology for the 

diagnosis system that utilizes advanced signal analysis and statistical pattern recognition 

methods and modified change detection techniques. The following sections formulate the 

important aspects of the system commencing with a formal definition of incipient faults. 

2.7.2 Definition of Incipient Faults 

Underground cable incipient faults are the primary causes of catastrophic failures in the 

distribution systems. These faults develop in the extruded cables from gradual deterioration of 

the solid insulation due to the persisting stress factors. The initial incipient activity is caused by 

the electrical stresses applied to the voids or protrusions near the conductor shield insulation 
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interference. This region undergoes an extremely high electrical stresses and such irregularities 

serve as stress amplifiers when they produce a non-uniform electrical field. Once initiated, the 

gradual damage propagates locally through the insulation in the form of a tree and the incipient 

process develops. The aging in the insulation can progress due to the contribution of electrical 

stresses in the form of partial discharges i.e. electrical trees or from the presence of moisture in 

the form of water trees. Electrical trees are swift whereas the propagation time of the water trees 

is expressed in years [34]. Water trees fail the cable when they convert to electrical trees as a 

result of heat generation or under other stress factors. Once this happens, the time to failure is 

normally short because the initiated electrical tree propagates rapidly through the already 

weakened dielectric. The only window for detection is during the conversion process [13]. 

Electrochemical trees are also likely to develop which are believed to be due to the presence of 

chemicals in the region [1]. Regardless of the type of aging mechanism, the term incipient fault 

encompasses the insulation treeing process from inception to completion before leading to a 

catastrophic failure. From a macroscopic perspective, incipient faults refer to the abnormalities 

associated with any type of deterioration phenomena manifested in the cable electrical signals.  

2.7.3 Characterization of Incipient Faults 

The very important step to detect underground cable incipient faults is to characterize the 

behavior of the cable undergoing incipient faults. As shown in Fig. 2.11, this characterization 

can be typically realized by the analysis of a large database of incipient faults, which could be 

obtained through computer simulations or field experiments. Generating simulation data is less 

expensive, time consuming, and labor demanding than that of the field data; however, accurate 

models need to be available for system components as well as incipient faults to establish an 

analytical model of the distribution system that can be used to obtain data through computer 

simulations.  

As discussed, incipient faults develop and progress through various stages which are not 

easy to model. They convey a random, complex, and nonlinear behavior such that the 

deterministic models developed for short circuit studies lack sufficient accuracy. The modeling 

task becomes more difficult and challenging when one realizes that it involves other power 

equipment such as distribution transformers, overhead lines, and switch gears besides the 

underground cable. To date, there is no complete model for underground cable system to use in 
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the computer simulations of incipient faults. As such, the computer modeling of incipient faults 

is not practical and an alternative solution needs to be adopted.  

 
 
 

 

Fig. 2.11: Approaches to characterize underground cable incipient behavior 

 
 
 

Collecting data through monitoring sites is the most appropriate way of gathering 

information about the behavior of cables being exposed to incipient faults at various degrees. As 

said earlier, many stress factors contribute to the development and progress of incipient faults. 

The way these factors interact and affect the insulation structure influences the behavior of the 

resulting incipient fault and therefore one can not assume a perfect realization is achieved if 

either one of the stress factors is ignored or weighted less than others. In an actual monitoring 

site, every factor that can somehow affect the cable response is considered including those which 

are not even known to be influential in the aging process. Thus, creating a database of incipient 

faults from field recorded data assures that accurate information is collected to characterize cable 

incipient behavior.  

In this research work, three sets of field data were collected: data from controlled 

experiments conducted at the Texas A&M Downed Conductor Testing Facility on field aged and 

intentionally damaged cables (CE Data Set); short-term on-line monitoring conducted at various 

service sites of TXU utility (ST Data Set), and long-term, on-line monitoring conducted at one 

site of the utility (LT Data Set). The controlled experiments were conducted at the Downed 

Conductor Testing Facility at Texas A&M University Riverside campus over several 

noncontiguous months [3]. The purpose of the CE Data set was to study the incipient fault 

characteristics on typical cable samples that were either field aged or intentionally damaged. 

This study would reveal specific signatures of faults without the interference of other system 

Underground Cable Incipient Fault Characterization

Field Data CollectionComputer Simulations 
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phenomena. The short-term monitoring of underground cables was conducted at various 

commercial and residential TXU sites over several noncontiguous months. The purpose of this 

data collection was to generate data that might allow the observation of general characteristics 

over several sites. The LT Data set includes data collected over a long period of time and the 

purpose was to observe trends of characteristics [5][6]. Also, the data were used to study the 

behavior of the underground system before and after faults that occurred in the cable lateral.  

2.7.4 Typical Characteristics of Incipient Faults  

Deterioration of insulating materials typically conveys itself as sporadic arcing, which is 

believed to increase in severity as the equipment nears failure. Most often, the insulating material 

undergoes a gradual aging process before a catastrophic fault occurs. During this period, the 

electrical properties of the insulation alter adversely and incipient behavior commences. 

Incipient behavior is portrayed as a spike or series of spikes (burst) in measured current 

waveforms of a distribution system. This is a direct result of an ongoing aging and deterioration 

process in the insulation medium used in cables and other power equipment. The abnormalities 

introduced by incipient behavior are indicators of system health. As the system ages, this 

atypical behavior tends to exhibit itself conspicuously. Persisting incipient abnormalities can 

eventually lead to catastrophic failure and system unscheduled outages. Hence, they are 

precursors to an imminent fault. This was observed during field experiments conducted on a 

distribution transformer [50]. Fig. 2.12 shows advanced stage of incipient behavior that preceded 

failure of the transformer. 

Incipient faults unlike short circuit faults typically do not draw sufficient currents from the 

line to trigger the protective devices, therefore there is no protection mechanism implemented in 

the distribution system to detect them. When the cable undergoes an incipient activity, the level 

of variations in the monitored signals is far below the sensitivity of most conventional fault 

diagnosis devices.  

Incipient faults may convey intermittent, asymmetric and sporadic spikes, which are 

random in magnitude and could involve sporadic bursts as well. Unlike, short circuit faults that 

have a deterministic behavior, incipient faults exhibit complex, nonlinear and dynamic 

characteristics and may not last for a definite period. They may persist in the system from as 

little as several days to several years. The nature of these faults does not allow for predicting a 
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linear or deterministic behavior since there are many factors that influence the aging process in a 

nonlinear fashion.  
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Fig. 2.12: Primary current of a distribution transformer during advanced incipient 
behavior preceding its failure 

 
 
 

The abnormalities associated with incipient faults usually manifest themselves in the high 

frequency spectrum and possess small values, thus noise interference is a potential problem that 

needs to be handled appropriately. An example of incipient-like behavior conveyed in the high 

frequency current signal is shown in Fig. 2.13. This signal resulted from filtering of all aspects of 

the signal except 2-7.5 KHz. The dominant 60 Hz component was removed so that the low 

energy high frequency components can become visible. Spikes represent a very fast transient at 

the inception time of the abnormality. 

In addition to the challenges associated merely with the incipient faults, there are other 

characteristics resulting from the interference of distribution system events with the cable 

incipient behavior. Comparing with transmission power systems, normal events in typical 

distribution systems occur more frequently and exhibit more dynamic behavior. Load changes 

and various switching operations take place very often and many diverse load characteristics can 

be recognized in such systems. The resulting challenge is that the behavior of some 

abnormalities in distribution systems due to normal switching operations might resemble the 
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behavior attributed to incipient behavior. For example, the level of variations in the current 

signal due to a load change in such a system is sometimes low. Thus, a load change could mimic 

an incipient abnormality if insufficient features and characteristics are considered. 
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Fig. 2.13: High frequency current signal during an incipient behavior 

 
 
 

Recall that incipient faults are also known to introduce small variations in the signals at 

least at the early stage of their development. The consequences of these common characteristics 

are two fold. Firstly, normal events and incipient faults can not be distinguished by the 

magnitude change in time domain only. Secondly, new and specific requirements are imposed on 

the diagnosis methods in that they must be sensitive and selective. Thus, the diagnosis system 

must look at the specific activities over time and monitor the system on its gradual path from 

healthy to sick and analyze the measurements to recognize and detect such faults. 

2.7.5 Recognition of Incipient and Non-incipient Patterns in Data 

The data obtained through various experiments contain vital information about the system 

behavior that needs to be extracted using an efficient pattern recognition methodology. This task 

becomes challenging when one realizes that not all the collected data contain information about 

the incipient behavior of the cable. It is perceivable that a portion of the collected data contains 
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normal system behavior or non-incipient events. The non-incipient data can successfully be 

recognized by incorporating a priori knowledge about the characteristics of such events. 

Moreover, the gradual nature of incipient faults requires that a large amount of data be collected 

to provide a sufficient timeframe to monitor and track the changes. Thus, the pattern recognition 

method is not as straightforward as it appears and must overcome the curse of the large database 

and irrelevant data samples. Following the forgoing discussion, a complex yet efficient pattern 

recognition system was developed to perform efficient data processing and pattern classification. 

The various aspects of the developed pattern analysis system is illustrated in Fig. 2.14 and 

discussed hereafter. 

 
 
 

 

Fig. 2.14: Pattern recognition aspects of the IFDS 

 
 
 
 
2.7.5.1 Preprocessing of Field Recorded Data 

When collecting field data, the requirements of the data acquisition system are met but not 

those of the processing tasks necessarily. The nature of the data most often requires 

preprocessing schemes to be implemented before advancing to the analysis phase. Preprocessing 

includes various data manipulation operations that prepare the raw data for the subsequent 

analyses without scarifying the accuracy and information content of the signals. The significance 

of the preprocessing steps could be as important as improving the efficiency or as vital as 

Recognizing Data Patterns 

Preprocessing Feature Extraction Classification 

Feature 
Determination 

Dimensionality 
Reduction 

Rule-based 
Classification 

Supervised 
Classification 



 

 

34

avoiding wrong assignments. As shown in Fig. 2.15, the preprocessing tasks resulting from three 

inevitable facts associated with field recorded data include resampling, DC removal, and 

denoising.  

 
 
 

 

Fig. 2.15: Preprocessing tasks implemented for the field recorded data 

 
 
 

During the recording of data in the field, due to some practical reasons, the actual sampling 

rate might be higher than what is actually needed for a particular signal. Thus, resampling the 

digital signal becomes a necessary preprocessing step to eliminate inevitable redundancies and 

achieve an effective sampling rate. This task is usually accomplished by down-sampling of the 

signal.  

Another preprocessing task stems from the fact that the presence of DC components on the 

recorded signals to be called measurement DC offset is an inevitable feature of real world 

applications. This measurement DC offset needs to be estimated and suppressed before 

advancing to any data analysis operation. The DC removal procedure can be applied in real time. 

As an alternative, off-line DC processing can be adopted through which the spurious DC values 

are estimated and eliminated from the digital signal. 

Finally, the curse of noise contamination requires another preprocessing task i.e. denoising. 

The physical signals being recorded or transmitted in the field are often contaminated with noise 

from the environment or surrounding electrical equipment. As such, one of the problems that 

primarily arises in the analysis of the data is the noisy content of the signals and its removal 

without sacrificing signal features. Noisy data adversely influences the signal processing results 

and as a result, denoising is a necessary step in the field data preprocessing. This task aims to 

remove the noise and keep the important signal features as mush as possible [51]. A wavelet-
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based denoising procedure was adopted to efficiently remove the noise components. This 

method uses the wavelet decomposition theory to concentrate the signal energy to a small 

number of large coefficients. The coefficients, which fall into a rejection band, are dropped, and 

those that are not located within the band are reserved or shrunk.  

 

2.7.5.2 Feature Extraction 

The goal of feature extraction in general is to obtain a set of sufficient and necessary 

features that discriminate classes with a high degree of accuracy. This important procedure is a 

key step for the success of any classifier. The feature extraction process involves two steps: 

feature determination and dimensionality reduction. First, a number of raw features are obtained. 

Second, the raw features are projected onto a lower dimensional space by various means such as 

multivariate statistical techniques in order to reduce the dimensionality while preserving a good 

classification rate [52][53].  

In this work, three sets of features in time domain, frequency domain, and wavelet domain 

were investigated. The time domain features included statistical information, RMS, and spike 

features. Statistical features include maximum, minimum, range, and mean, variance, skewness, 

and kurtosis of the signal. RMS features encompass the number of step changes and percentage 

change calculated using RMS signal. Spike features on the other hand entail maximum spike 

magnitude, spike frequency, duration and inception angle. Fourier features are the calculated 

harmonics of the signal using Fourier analysis. Wavelet features encompass level-dependent 

energy and histogram features of the detail decompositions. It has been shown that wavelet 

analysis performs very well when working with essentially non-stationary power signals 

[54][55][56]. Since, the incipient fault high frequency data are non-stationary and transient in 

nature, utilizing powerful analysis techniques such as wavelets would be of a great benefit. 

Every feature represents a portion of a signal’s characteristics and the combination of all features 

would model the desired signal exclusively. In the feature determination phase, the presence of 

potential redundancies is not a subject matter at this point. 

The objective of dimensionality reduction is to keep the dimensionality of the pattern 

recognition problem (i.e. the number of features) as small as possible while preserving good 

classification accuracy. Dimensionality reduction can be accomplished by means of feature 

selection or feature extraction as shown in Fig. 2.16. The term feature selection refers to 
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Dimensionality Reduction 
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techniques that select the best subset of the input features set. Methods that create new features 

based on transformations and combinations of the original feature set are called feature 

extraction methods. The choice between feature selection and extraction depends on the 

application domain. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.16: Dimensionality reduction approaches 

 
 
 

As shown in Fig. 2.16, two feature extraction methods were investigated in this work. They 

are namely Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA). The 

objective of PCA is to perform dimensionality reduction while preserving as much as the 

randomness (variance) in the high-dimensional space as possible [52][57]. PCA performs a 

coordinate rotation that aligns the transformed axes with the directions of maximum variance. 

The main limitation of PCA is that as an unsupervised method, it does not consider class 

separability information. There is no guarantee that the direction of maximum variance will 

contain good features for discrimination. 

The objective of LDA is to perform dimensionality reduction while preserving as much of 

the class discriminatory information as possible [52][58]. In LDA, interclass separation is 

measured by Fisher criterion. The solution proposed by Fisher is to maximize the function that 

represents the difference between the means of the classes (between-class scatter) normalized by 

a measure of the within-class scatter. LDA will fail when the discriminatory information is not in 

the mean of the data but rather in the variance. 



 

 

37

Feature extraction methods based on LDA and PCA perform some type of mathematical 

transformation on the feature vector and therefore the resulting features no longer preserve their 

physical units and consequently extracting meaningful rules from the classifier results becomes 

cumbersome. In such situations, the feature subset selection (FSS) methods are employed. 

Feature subset selection requires a search strategy to select candidate subsets and an objective 

function to evaluate these candidates. There are a large number of search strategies among which 

Sequential Forward Selection (SFS) is chosen for further analysis [52].  

 
2.7.5.3 Classification of Patterns 

Generally speaking, in the field of pattern analysis, a pattern consists of a pair of given 

variables ( )ωχ ,  where χ  is a vector of observations namely feature vector and ω  is the 

concept behind the observation i.e. the label. Classification involves pattern assignments as to 

which class a particular sample belongs. Once a feature selection or extraction procedure finds a 

proper representation, a classifier can then be designed using a number of possible approaches. 

The question whether one classifier is better than another classifier can barely be answered in 

practice unless we try to answer the question “Does this classifier solve our problem or not?”. 

The trivial method for the analysis of incipient data patterns would consider a single 

classifier expected to learn a number of complex decision-making functions and respond to an 

unknown input appropriately. Considering the dimension of the problem, sophistication involved 

in the data structure of incipient faults, and expected accuracy, the success of this method is 

questionable. Instead, one can break down the entire feature space into separate regions and 

design individual experts which are responsible for responding to a portion of the input space.  

The idea of using multiple experts is referred to as ensemble learning in pattern analysis 

where instead of one expert to make the decision, an ensemble of experts are employed each of 

which is responsible for responding to a specific pattern and the outcome is the combination of 

the individual responses [59]. This technique is useful in a number of ways to improve the 

accuracy and efficiency of the overall method. The compromise is that one must be able to build 

components that are more accurate than chance and, more importantly, that are independent from 

each other. This is achievable when one can effectively utilize a priori knowledge to filter out the 

observed events that exhibit known behavior. Understanding the distribution system specific 
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characteristics and the many known normal and abnormal events associated with the types of 

distribution loads are essential in this design process.  

As mentioned, in a typical distribution system, it is expected that switching events occur 

frequently. This implies that when the underground cable is monitored for a period of time, there 

are many events that are not associated with incipient faults. Unlike fields such as power quality, 

in the realm of incipient faults diagnosis, these events are not of much interest. To recognize the 

patterns of non-incipient data, one might consider trivial approaches such as visual inspection 

and manual filtering of the recorded data but when encountering a tremendous number of data 

records, this solution is a tedious, inefficient, potentially inaccurate, and very time-consuming 

process. As such, it is imperative that new, automatic, and efficient methods be developed to 

recognize the non-incipient power system events and avoid an unnecessary increase in the 

complexity of the final diagnosis system.  

As shown in Fig. 2.14, the non-incipient patterns are recognized by utilizing a particular 

first-order classifier known as the rule-based classifier created from machine learning methods. 

Rule-based classifiers are attractive solutions when classes of data can be characterized by 

general relationships among entities [53]. These classifiers can be deduced automatically from 

the data and expressed as a set of crisp or fuzzy if-then logical statements. The specific kind of 

rules implemented for non-incipient data are called “1-rules” that classify an input capture based 

upon a single feature i.e. they are 1-level decision trees [60]. The biggest advantage of rule-based 

classifiers is that the reasons for their decisions are readily verified. In other words, the results 

generated by these classifiers are comprehensible and the interpretation of the results is 

straightforward [61]. Crisp logical rules are the core components of the rule-based classifier, 

however, establishment of these rules for the data recorded from a distribution system require 

prior knowledge about the system events and their characteristics. Despite the relative simplicity, 

the rule-based classifiers have been shown to perform well on most commonly used datasets 

[60]. In this work, a rule-based classifier was designed to classify DC classes and various other 

load related disturbances conveyed by the shape of the RMS current signal. Further discussion 

about this classifier will be provided in Chapter IV. 

Rule-based classifiers are optimal choices when the number of rules is small and the 

accuracy of the classification is adequately high. The if-then expressed information used by the 

rule-based classifier can be extracted for the non-incipient data but the patterns manifested in the 

incipient data are not expressible by linear, single level, and crisp relationships. In fact, as 



 

 

39

described earlier, the complexity involved in these patterns is the actual challenge of the 

classification task. Furthermore, rule-based classifiers using crisp rules identify one class as the 

result and thus can only provide a black-and-white picture, whereas incipient data vary according 

to some gradation defined by the severity. Therefore, a set of other complex classifiers known as 

supervised classifiers were utilized for the purpose of recognizing the patterns in the incipient 

data.  

Classification in the supervised mode involves a two-step process: prototype selection and 

classifier design. In prototype selection, a subset of given data is selected to train the classifier. 

Once the prototype data becomes available, the classifier can be trained according to its specific 

training procedure to recognize the complex relationships among the data and provide a colored 

picture as opposed to the black-and-white picture developed by the typical rule-based classifiers. 

The supervised classifiers deployed in the system are Support Vector Machines (SVM), Self-

Organizing Map (SOM), K-Nearest Neighbors (KNN), and Discriminant classifiers. These 

classifiers and their results will be further discussed in Chapter IV . 

2.7.6 Detection of Incipient Faults 

Degradation and development of incipient faults are gradual in nature and do not occur 

suddenly. The incipient activity might persist in the cable for a few days, months, or even years 

before it actually develops into a cable fault characterized by a short circuit fault. Realistically, 

the incipient activity of the underground cable may experience a gradual incremental increase 

over the course of cable operation before a catastrophic failure takes place. The mission of the 

IFDS is to monitor the condition of the system as long as the monitored parameters are below a 

specified normal threshold. Once the threshold is passed, the system must detect this situation 

before catastrophic failure occurs so that corrective and preventive actions can be taken so that 

an outage does not occur. Therefore, the incipient fault detection problem translates into a 

change detection problem where the goal is to keep the process somewhere below a threshold or 

“in-control”. Unlike single change point detection methods, in this problem there is no target 

value for the change parameter and the monitoring continues as long as the underground cable 

condition is believed to be in green-zone and a catastrophic failure is not imminent.  

As presented in Fig. 2.17, the developed detection method makes use of a numerical 

modeling approach supplemented by a severity measure. The severity measure is based on the 

temporal analysis of arrival times of incipient abnormalities through a new index called the 
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Global Severity Index (GSI). This qualitative measure provides the severity path of ongoing 

incipient faults over time and is computed from the Laplace Test Statistic [62]. The second 

approach is based on the numerical modeling of data with SOM. As a quantitative detection 

approach, it uses the natural logarithm of the minimum modeling errors in chronological order as 

the detection index. To solve the change detection problem, three algorithms are investigated 

which include Cumulative Sum (CUSUM), Exponentially Weighted Moving Averages 

(EWMA), and Generalized Likelihood Ratio (GLR). The detection methods and algorithms will 

be presented in Chapter V and the detection results will be provided in Chapter VI. 

 
 
 

 

Fig. 2.17: Units of the incipient fault detection method 

 
 
 

2.8 THE OPERATIONAL ASPECTS OF THE IFDS 

The operational aspects of the system are presented in Fig. 2.18. Characterization, 

preprocessing, feature extraction, classification, detection, and postprocessing are major 

attributes of the system. Characterization provides vital information about the behavior and 

nature of the incipient faults. Section 2.7.3 elaborated on this. Preprocessing encompasses a set 

of operations that prepares the raw data for subsequent processing tasks. DC removal, 

resampling, and denoising are the preprocessing tasks that were considered. Chapter III provides 

more information on this. Feature extraction is an important step prior to the classification 

through which a number of time domain and wavelet domain features are extracted to feed to the 

classifiers. This crucial step is discussed in Section 4.3. Classification is an important 
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functionality of the system that is accomplished by the combination of rule-based and supervised 

classifiers. Chapter IV discusses this aspect of the system in detail. As an important functionality 

of the system, the detection is accomplished through a numerical modeling approach. Chapter V 

elaborates on this important aspect of the system. Finally, postprocessing is used to interpret the 

results and provide user-friendly outputs. The system outputs are discussed in Chapter VI.  
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Fig. 2.18: Constituting concepts of the IFDS 

 
 
 

2.9 SUMMARY 

In this chapter, a literature review on the underground cable incipient fault detection and 

location methods were provided and each method was concisely discussed and assessed. Also, a 

number of commercially-available products were introduced and reviewed. The results of this 

review showed that each fault detection method targets a particular phenomenon preceding cable 

failure to identify the existing fault. The advantages and disadvantages associated with existing 

methods were reviewed and the need for the development of a passive, online, and cost effective 

condition monitoring system for underground cables was justified through discussion of the 
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incipient fault characteristics and gradual deterioration of the cable insulation. The diagnosis 

requires a system that is efficient; works online i.e. no power interruption is necessary, and 

features a passive method i.e. no external signal injection is required. 

In the formulation of the problem, various aspects of the IFDS were introduced and 

discussed. Field data were used to study and characterize incipient faults. Dealing with 

distribution level underground system incipient faults intrinsically imposes challenges due to the 

unique characteristics associated with such systems and faults. These characteristics limit the use 

of the methods that have already been used in other applications. Accordingly, novel methods 

were developed to meet the specific needs of the various data analysis tasks. The proposed 

system considers the forgoing features and overcomes the complexity involved by utilizing a 

priori knowledge, advanced signal processing, pattern analysis and change detection techniques.  

In the next chapter, the data acquisition setup as well as the monitored signals will be 

introduced and then the required preprocessing tasks will be presented. 
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 CHAPTER III  

FIELD RECORDED INCIPIENT DATA AND PREPROCESSING  

METHODS 

3.1 INTRODUCTION 

This chapter reviews the long term monitoring system and discusses the recorded data from 

an underground distribution lateral. Using the monitoring system, three basic electrical signals, 

namely voltage, phase current, and neutral current are observed. The current signals are further 

filtered to generate four outputs, with different magnitude resolution and frequency spectrum. 

The voltage signal along with the filtered phase current signals are collectively called data in this 

work. Understanding the format and structure of the recorded signals comprising the data is 

necessary to establish the required preprocessing tasks performed in the first stage of any pattern 

analysis problem involving real world data. An overview of recorded data and a complete 

discussion of the preprocessing tasks implemented in the IFDS constitute the focus of this 

chapter. The three preprocessing tasks include resampling, DC removal and denoising. The later 

i.e. noise removal is the most critical preprocessing action that requires a greater attention as it 

directly affects the overall performance of the IFDS. 

3.2 MONITORING SYSTEM AND RECORDED DATA 

An underground distribution cable laterally installed in a residential area was chosen to 

collect on-line data [4]. This site was selected as the most appropriate location to capture 

possible incipient abnormalities. Fig. 3.1 shows the data collection site, including the distribution 

transformer and the underground cable. The underground distribution cable lateral is fed from a 

standard 7200 V distribution feeder and supplies power to the 7200V/120V/240V, 100 KVA, 60 

Hz distribution transformers.  

Data collection was performed using an on-line monitoring system installed at the site. The 

monitoring system, whose block diagram is shown in Fig. 3.2, comprises three basic 

components: signal transducers, analog signal conditioning unit, and a computer-based data 
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acquisition system. The signal transducers transform the voltage signals to levels acceptable by 

the signal-conditioning unit. They also transform the current signals into equivalent voltage 

signals of acceptable range. The transformed signals are then fed into the analog signal-

conditioning unit whose functions are to act as an isolation unit, and to filter the signals into 

various frequency ranges. Signals from the analog signal-conditioning unit are finally fed to the 

digital data-acquisition system embedded in the computer.  

 

 

 

 

Fig. 3.1: Monitoring site including transformer and cable 

 
 
 

Using the monitoring system, three basic electrical signals, namely voltage, phase current , 

and neutral current are observed. The system records the signals for one-second duration every 

15 minutes. Moreover, various statistical and frequency parameters of these signals, namely 
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average, maximum, minimum, standard deviation, and magnitude of the harmonics are 

calculated and recorded.  

In the signal-conditioning unit, the phase and neutral current signals generate four outputs, 

as shown in Table 3-1, to increase the magnitude resolution during data-acquisition. The notch in 

three of the output signals is to remove the dominant fundamental frequency (60Hz), thereby 

improving the magnitude resolution in the given frequency range. Note that although the neutral 

and notch low frequency signals are recorded at the site, the IFDS primarily relies on the voltage, 

phase current, and notch high frequency current signals to perform its operation. 
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Fig. 3.2 : Block diagram of the monitoring system 

 
 
 

Table 3-1: 
Categories of current signals 

Category Frequency Range of Output 
Signals 

Sampling Rate 
(samples/second) 

Low Frequency Signal 0 - 780 Hz 1920 

Notch Low Frequency Signal  0 -780 Hz, Notch at 60 Hz 15360 

Notch High Frequency Signal 

Scale 1 and 10 
2 - 7.5 KHz, Notch at 60 Hz 15360 
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3.3 DATA PREPROCESSING 

3.3.1 Introduction 

When collecting field data, the requirements of the data acquisition system are met but not 

those of the processing tasks necessarily. The nature of the data most often requires 

preprocessing schemes to be implemented before advancing to the analysis phase. Preprocessing 

includes various data manipulation operations that prepare the data for the subsequent analyses 

without scarifying the accuracy and information content of the signals. The significance of the 

preprocessing steps could be as important as improving the efficiency or as vital as avoiding 

wrong assignments. The preprocessing tasks included in the IFDS are resampling, DC removal, 

and denoising. 

3.3.2 Resampling 

Often resampling is one of the preprocessing tasks. For practical reasons, the sampling rate 

might sometimes be higher than what is required by the Nyquist criterion. If a signal is already 

limited to lower frequencies by low pass anti-aliasing filters, naturally there might be 

redundancy in the signal that should be removed. Thus, the signal must be decimated by an 

appropriate factor to yield an effective sampling rate. 

The specific motivation for the use of preprocessing for long term data is to reduce 

redundancy. As discussed earlier, the sampling rate for the notch low frequency signals was set 

at 15360 Hz for practical reasons. This sampling rate gave a frequency range of 0 – 7680 Hz. 

Nevertheless, these signals were limited to 0 – 780 Hz by a low pass anti-aliasing filter in the 

analog signal-conditioning unit. Thus, to reduce redundancy, these signals were decimated by a 

factor of eight yielding an effective sampling rate of 1920 samples/sec. Table 3-2 shows the 

modified data format of the signals that are recorded in the experiment site.  
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Table 3-2: 
Modified data format for long-term monitoring experiments 

Signal Name Frequency Range Sampling Rate 
(Samples/Sec) 

Voltage Signal 0 – 780 Hz 1920 

Low Frequency Current Signal 0 – 780 Hz 1920 

Notch Low Frequency Current Signal 0 – 780 Hz 1920 

Notch High Frequency Current Signal(x1&x10) 2 – 7.5 KHz 15360 

 
 
 

3.3.3 DC Removal 

Another important preprocessing operation encountered in real world data acquisition 

applications aims to remove the measurement DC components. Power system analysis is 

generally concerned with sinusoidal voltage and current waveforms and their variations in time 

or frequency domain. These waveforms can be either generated through computer models or 

actually recorded in the field. Many times, the analysis results using the recorded or simulated 

data are similar. However, there is a very important distinction between field and simulated data. 

Field recorded signals are natural realizations of system behavior whereas simulated data are 

artificial signals that are produced by a computer program under simplifying assumptions. A 

simulated pure sinusoidal signal by definition is symmetric and possesses no DC components; 

but, a recorded sinusoidal waveform from a power system is not expected to have zero mean 

over its period. In other words, the presence of DC components on the recorded signals referred 

to as measurement DC offset is an inevitable fact of real world applications. Accordingly, the 

measurement DC offset needs to be estimated and suppressed before advancing to any data 

analysis operation. The DC removal procedure can be applied in real time. As an alternative, the 

off-line DC processing can be adopted through which the spurious DC values are estimated and 

eliminated from the digital signal.  

The measurement DC offset is usually unidirectional and possesses small values. Thus, an 

estimate based on a long signal observation window should provide satisfactory results. For each 

signal, a single estimated value is calculated and subtracted from each signal sample. 

Mathematically, this amounts to subtraction of a straight line from the waveform. Fig. 3.3 shows 

an example in which graph (a) shows the mean values of a current signal calculated in each cycle 
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before preprocessing and plot (b) is the mean values of the same signal after removing the 

measurement DC offset. As implied, the original signal is not symmetric and contains negative 

DC offset over one second length of the recording window. After preprocessing, it is 

approximately symmetric and the remaining DC values in each cycle are negligible. 

It should be noted that although the DC components are often the intrinsic elements of 

recorded signals, various power system events might also induce non-symmetric, DC-offset 

components. Therefore, there should be a distinction between the measurement DC values and 

event-induced DC elements in the recorded signal. This discrimination can be realized by 

utilizing the characteristics that are associated with the two classes. Section 4.2.3 will discuss 

this issue in more detail.  
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Fig. 3.3 : DC preprocessing of current signal 
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3.4 DENOISING 

3.4.1 Introduction 

An important preprocessing operation includes denoising the field data. In various power 

system applications, it is common to collect data such as voltage and current measurements. The 

sampling frequencies of these signals usually vary from a few KHz to hundreds of MHz 

depending on the application and type of analysis. As many power system events are generally 

transient phenomena diminishing in a few cycles, the data are sampled at relatively high rates to 

capture the useful information and meet the Nyquist criterion. At the same time, the physical 

signals being recorded or transmitted at such frequencies are often contaminated with noise from 

the environment or surrounding electrical equipment. As such, one of the problems that 

primarily arises in the analysis of the data is the noisy content of the signals and its removal 

without sacrificing signal features. Noisy data adversely influences signal processing results and 

as a result, denoising is a necessary step in the field data preprocessing. This task aims to remove 

the noise and keep the important signal features as mush as possible [51]. 

In this particular application, the denoising operation is not necessary for all signals. The 

voltage and low frequency current signal along with the notch low frequency signal were already 

filtered by analog low pass filters in the signal-conditioning unit at the cut-off frequency of 780 

Hz. As the noise signal is characterized by its high frequency content, the denoising action is not 

required for these signals. On the other hand, the high frequency signals covering a frequency 

range of 2 to 7.5 KHz may contain noise components. Thus, denoising was performed on the 

notch high frequency signals. 

3.4.2 Denoising Approaches 

Noise removal can technically be performed by hardware or software approaches [19]. 

Hardware approaches use new sensors and differential circuits to discriminate noise, whereas the 

software denoising approaches provide an alternative solution by taking advantage of advanced 

signal processing techniques. A noisy signal is recognized by the high frequency components 

that possess low energy values compared with the signal total energy. This characteristic is the 

key element employed in the widely used denoising algorithms.  

The denoising process can technically be viewed as performing a linear or non-linear 

filtering of the input signal. One of the conventional denoising methods is the Wiener filter and 
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its variants. These methods rely on the statistical characteristics of the input signal and produce a 

minimum mean square error output [63][64]. The original Wiener filter is usually used for 

stationary signals; however, there are other versions that consider non-stationary signals by 

segmenting them into short-time essentially stationary blocks similar to what is performed in the 

Short Time Fourier Transform. However, these methods also simultaneously remove high 

frequency components of the signal while denoising. In this work, a software denoising approach 

based on the signal wavelet decomposition is adopted. Before discussing this method, a concise 

introduction to wavelet signal representation is beneficial. 

3.4.3 Wavelet Signal Analysis 

A wavelet is a transient waveform that has a zero average value and decays quickly to zero. 

Due to its transient nature, the analysis of transient signals with a wavelet is naturally more 

descriptive than that of periodic functions such as sine and cosine bases. Wavelet transform is a 

relatively new signal processing method but its mathematical foundation was established in the 

nineteenth century by Joseph Fourier [65]. The concept of wavelets in its present form was first 

proposed by Jean Morlet and his team in France and the main algorithm was developed by 

Stephane Mallat in 1998 [66]. Wavelet transform can be performed on continuous and discrete 

functions respectively referred to as the continuous waveform transform (CWT) and discrete 

wavelet transform (DWT). The two transforms are discussed next. 

 

3.4.3.1 Continuous Wavelet Transform 

Wavelet analysis consists of decomposing a signal into shifted and scaled versions of the 

original wavelet often called the Mother Wavelet and denoted by )(tψ . Mathematically, the 

wavelet transform of a continuous function )(tf  is defined by (3-1) where the continuous 

variables a  and b are the scale and shift factor, respectively [65]. 

∫
∞+

∞−

−
= dt

a
bttf

a
baCWT )()(1),( ψ       (3-1) 

 

As implied, the continuous wavelet transform of the function )(tf  is the sum over all time 

of the function multiplied by scaled, translated versions of the wavelet function. The results 

),( baCWT are called the wavelet coefficients. From an intuitive point of view, the wavelet 



 

 

51

coefficients represent the similarity of the input function to the scaled and translated version of 

the original wavelet. Thus, the input signal in time domain is transformed into a two-dimensional 

wavelet space of scale and translation (time). For every given scale a  and translation b , there is 

a corresponding wavelet transform coefficient ),( baCWT . The set of all wavelet coefficients 

constitute the wavelet representation of the input function )(tf  with respect to the original 

wavelet )(tψ .  

CWT uses a variable size windowing technique to capture the low and high frequency 

information over the time-scale region. This is realized by the wavelet function (.)ψ  in which 

the scale factor determines the window size. Scaling a wavelet simply implies stretching it. The 

wavelet scales and frequency are interrelated. The higher the scale a , the more stretched the 

wavelet function and thus the lower the captured frequency. On the contrary, the lower the scale 

a , the more compressed the wavelet and thus the higher the captured frequency [65].  

In addition to the mother wavelet, the wavelet transform usually involves an additional 

function. A complement of the coefficients corresponding to ψ  is needed to recover the original 

signal. The complementary coefficients are obtained by another function called the scaling 

function φ , which is very similar to the mother function. The scaling function can be interpreted 

as the impulse response of a low-pass filter and is not defined for all wavelets [66].  

 

3.4.3.2 Discrete Wavelet Transform 

The continuous wavelet coefficients can theoretically be calculated on any desired scale and 

shift values resulting in tremendous amount of data. The more efficient and just as accurate 

approach is however to apply dyadic scales and translations, which are based on powers of two. 

The Discrete Wavelet Transform (DWT) provides such an analysis [66]. The implementation 

algorithm first developed by Mallat in 1998 is called two-channel subband coder in the signal 

processing literature. This algorithm involves filtering and down sampling steps as depicted in 

Fig. 3.4. Down sampling is performed by keeping only one point out of every two points in each 

of the two emerging signals. 
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Fig. 3.4: Discrete wavelet analysis at the basic level 

 
 
 

As shown, the input signal is passed through two complementary high pass and low pass 

filters and decomposed into two emerging signals unique in frequency content. These signals are 

called approximations and details where approximations contain the low frequency components 

of the signal and details encompass the high frequency elements at every scale. The resulting 

decomposition produces twice as many signal samples as the original signal. Therefore, down 

sampling follows the filtering operation to remove the redundancy without losing useful 

information. The decomposition procedure is repeated at each subsequent scale using the 

approximation signal from the previous scale. This results in the wavelet decomposition tree 

depicted in Fig. 3.5.  

Sometimes, it is desired to recover the original signal without loss of information. Of 

course, there is no point decomposing a signal and immediately reconstructing it. When 

reconstructing is performed, usually the wavelet coefficients are modified before performing the 

reconstruction step. The reconstruction is in fact the synthesis stage, which is defined by the 

Inverse Discrete Wavelet Transform (IDWT). It involves up-sampling and filtering steps as 

shown in Fig. 3.6. Up-sampling a signal simply means extending the signal by inserting zeros 

between the samples. This figure illustrates the decomposition and reconstruction processes 

utilizing low and high pass filters called quadrature mirror filters [65][67].The choice of these 

filters not only determines whether perfect reconstruction is possible, it also determines the 

shape of the wavelet to perform the analysis. The high pass filter determines the wavelet 

function, which produces the details and the low pass quadrature filter determines the scaling 

function, which associated with the approximations of the wavelet decomposition. 
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Fig. 3.5: Multi-level wavelet decomposition tree 
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Fig. 3.6: Wavelet decomposition and reconstruction processes 

 
 
 

3.4.4 Wavelet-based Denoising 

Wavelet-based denoising is a nonlinear technique that was originally developed by Donoho 

et al. in 1994 [68]. This method uses the wavelet decomposition theory to concentrate the signal 

energy to a small number of large coefficients. The coefficients, which fall into a rejection band, 

are dropped, and those that are not located within the band are reserved or shrunk. As said, the 

wavelet transform involves functions that are well localized in both time and frequency domains 
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allowing the unique features of the signal to be easily identified during the transformation. 

Grossman showed that for white noise, the variance and amplitude of the details decrease 

regularly as the level increases whereas the amplitude and variance of the transformed target 

signal are irrelevant to the level change [69]. Furthermore, the signal is usually decomposed into 

a few large coefficients whereas the noise component gives rise to small coefficients only. This 

is the property of the wavelet transformation that helps suppress the noise part of the signal. 

Another property of the wavelet analysis is the linearity property. It implies that the wavelet 

coefficients of the linear combination of two signals are equal to the linear combination of their 

wavelet coefficients [65]. The same holds true for the corresponding approximation and detail 

components. 

The general wavelet-based denoising method proceeds in three steps: decomposing the 

noisy signal, thresholding the wavelet coefficients, and reconstructing the signal [65] as shown 

in Fig. 3.7. In the first step, the signal is transformed into the wavelet domain and represented by 

its coefficients at different scales. This stage requires that three elements be chosen. They are 

namely, the type of mother wavelet, the order of the mother wavelet, and the level of the 

decompositions. Once these parameters are set, the wavelet decomposition can be performed. 

The second step is crucial in efficient noise cancellation. The key questions are i) how to 

perform the thresholding and ii) how to find the appropriate threshold value for each scale given 

the noise model. The reconstruction is defined by the Inverse Discrete Wavelet Transform which 

involves up-sampling and filtering steps as shown already in Fig. 3.6. At the completion of this 

stage, the denoised signal is represented in time domain. 

The success of the noise cancellation can be assessed using a number of measures. One of 

the measures involves the signal-to-noise ratio (SNR) defined by (3-2). The goal of the denoising 

is to improve the SNR. It should be noted that in fact this measure is not a real SNR value as the 

numerator is not the noise free signal. In practice, the real noise signal is not known. Another 

measure evaluates the mean squared error (MSE) between the input signal and denoised signal 

and minimizes it. In this case, the denoising action is guided by a reasonable minimum MSE as 

defined in (3-3). 
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Fig. 3.7: Wavelet-base denoising procedure 

 
 
 
3.4.4.1 Decomposition 

Consider denoising the typical notch high frequency current signal shown in Fig. 3.8 along 

with its estimated frequency spectrum. From the time domain waveform, dominant asymmetric 

spikes with positive peak of 236mA and negative peak of 190mA are seen around 0.61 seconds. 

The estimated spectrum reveals frequency components spread over the entire pass band, among 

which the 2.25 and 5 kHz components are dominant. 

As discussed, during the decomposition stage, the signal is transformed into the wavelet 

domain and represented by its coefficients at different scales. This stage requires that three 

elements be chosen. They are namely, the type of mother wavelet, the order of the mother 

wavelet, and the level of the decompositions. From previous studies, it was found that Db4 

wavelet at level five provided satisfactory performance [51]. The resulting coefficients are 

shown in Fig. 3.9. The spikes in each of the details one through three show the contribution of 

that frequency band to the spike in the original waveform. Details four and five comprise much 

smaller energy and apparently do not contribute to the spike. Another observation is that the 

noise level is different in each detail, which implies that each detail should be thresholded with a 

different threshold value. 

 

Wavelet-based denoising 
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b) Order of mother wavelet 
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Fig. 3.8: Phase notch high frequency signal and corresponding frequency spectrum before 
denoising 
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Fig. 3.9: Phase notch high frequency signal in db4 wavelet domain before denoising 
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3.4.4.2 Thresholding 

As a crucial stage in efficient noise cancellation, this step involves adopting appropriate 

thresholding method and threshold selection rule with respect to the estimated noise structure. 

The important aspects of the thresholding stage are discussed below. 

 

3.4.4.2.1 Thresholding Methods 

The thresholding methods are technically grouped into the following categories: hard 

thresholding, soft thresholding, and semi-soft thresholding [65]. The hard thresholding simply 

sets all the signal elements whose absolute values are lower than the threshold to zero and retains 

the others unchanged. In the soft thresholding, however, in addition to setting to zero the 

elements whose absolute values are lower than the threshold, the other nonzero elements are 

shrunk towards zero. Semi-soft thresholding employs two threshold values (T1 < T2) to provide 

a compromised solution between the hard and soft thresholding. The coefficients whose values 

are greater than T2 are kept unchanged, those less than T1 are set to zero, and those between T1 

and T2 are shrunk by a weighted average of T1 and T2 denoted by w [64][70]. These methods 

are mathematically expressed in (3-4),  (3-5), and (3-6), respectively. )(ssign  returns 

the sign of the signal and  denotes the absolute value. 
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Fig. 3.10 describes graphically the thresholding methods when applied to a pure sinusoidal 

waveform. As seen, the hard thresholding method results in discontinuities at 5.0± while the 

soft thresholding procedure is smooth, avoids fictitious oscillations, and produces visually 

appealing results. On the other hand, the hard thresholding approach achieves a smaller mean 
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square error (MSE) [71]. The semi-soft thresholding method provides more flexibility at the 

expense of the need for establishing two thresholds and a weight vector. In short, there is an 

equivalent bias-variance trade-off between noise reduction and smoothing of the signal and thus 

the selection of each of these methods depends on the denoising objective. 
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Fig. 3.10: Hard and soft thresholding of a sine signal with a threshold value of 0.5 

 
 
 
3.4.4.2.2 Noise Models and Threshold Selection Rules  

Generally, electrical signals are exposed to noise interference from many different sources. 

Radio and TV station broadcasts, mobile telecommunications, corona in high voltage equipment, 

arcing faults and discharges in adjacent circuits are among the common noise sources. Noise 

introduced by some of these sources has a well-known structure and frequency range, but in 

general, the noise structure must be estimated for the selection of the thresholds in the denoising 

process.  

Let s  be an observation (corrupt) signal, e  be a pure noise signal, and f be the noise-free 

signal. The general noise model assumes that the observation signal is equal to the noise-free 

signal superimposed by the noise [65]. This mathematically implies that  
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Nnnenfns ,...,1)()()( =+= σ       (3-7) 
 

where N  denotes the length of the signals and σ  represents the noise level. The model in its 

general form does not impose any constraints on the noise signal and it could theoretically model 

any function. In practice, however, the noise signal is considered a random variable, 

independently distributed as a Gaussian function. Depending upon the assumption made about 

the noise structure, the general noise model can be used to describe the denoising formulation. 

The four noise models listed in Table 3-3 are discussed next. 

 
 
 

Table 3-3: 
Noise types 

Type No.  Description 

I White noise with unit noise level 
II Unscaled white noise 

III Non-white noise 
IV Non-white noise with non-stationary variance 

 
 
 

The type I noise model is the simplest one, which assumes that the noise can be modeled by 

a zero mean, constant variance 2σ Gaussian white noise. If this is the case, a fixed threshold 

based on the signal length or statistical properties of the wavelet coefficients can be applied to 

the signal decompositions at each level. In practice, at least small deviations from this 

assumption are tolerable by the thresholding methods [72]. The type II noise model assumes the 

basic model with unscaled noise. The noise level is estimated using the first detail coefficients. 

The type III noise model takes the non-white noise into account for which a level-dependant 

estimation of the noise level is required to rescale the thresholds. In other words, in this case σ  

is substituted by levelσ . Unlike the first three models in which the noise variance is assumed to 

remain constant, in the type IV noise model, it can vary with time. If this noise model holds true, 

it requires level-by-level time-dependant thresholds to be appropriately applied to the wavelet 

coefficients. 
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In practice, the noise structure is difficult to estimate due to its dynamic and stochastic 

nature. However, when the noise signal is observed for a relatively long window size, the law of 

large sample sizes can be applied. Fig. 3.11 depicts a pure noise signal waveform along with its 

corresponding frequency spectrum. This signal was recorded during a feeder outage in the 

monitored system. Since there was no current flowing through the phase conductor, the 

measured values were merely perceived as the pure noise signal during the de-energization 

period. As the signal spectrum shows, there is a colored noise with dominant high frequency 

components concentrated around 5 kHz. In addition, small low frequency components including 

60 Hz are seen from the non-ideal notch filter. Concerning the noise origin, it is noted that the 

AM/FM radio and TV stations could not have contributed to the noise signal since the notch high 

frequency signals were filtered by the band pass filter with a high cutoff frequency of 7.5 kHz. 

These sources typically introduce noise at frequencies ranging from a few hundred kHz to a few 

hundred MHz. 
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Fig. 3.11: Noise realization and corresponding signal spectrum 
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The noise structure can also be viewed in the time-scale domain. The wavelet 

decompositions of the signal in Fig. 3.11 before denoising are shown in Fig. 3.12, where fourth 

order Daubechies wavelet (Db4) at level five was used. For each level, there is one 

approximation and one detail signal; 1a  through 5a  represent the signal approximations and 

1d  through 5d  denote the signal details, respectively. As seen, the noise signal possesses 

different energies at each level; thus, it requires that a level dependant threshold be applied for 

perfect suppression. Furthermore, the noise details at each level are deemed covariance 

stationary. Accordingly, this observation suggested that the basic model with the non-white noise 

structure would be an appropriate model for the denoising operation. The proper denoising 

approach can be achieved by evaluating the performance of the denoising operation using an 

exhaustive approach. 
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Fig. 3.12: Noise wavelet decompositions using Db4 at level 5 
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Given the noise model, the selection of an appropriate threshold value can be accomplished 

using a number of rules. Some of the proposed methods include fixed threshold selection rule, 

Stein’s unbiased risk estimate selection rule and mixture rule [72][65]. According to the fixed 

threshold selection rule used in this dissertation, for a signal of length N , a universal threshold 

proportional to Nlog  is selected. The threshold is calculated by (3-8) where σ is the noise 

standard deviation that needs to be estimated. 

 
NThreshold log2σ=         (3-8) 

 

The standard method to calculate the noise standard deviation involves computing the 

median absolute deviation (MAD) of the coefficients on the finest scale. The detail coefficients 

cD1 mostly contain noise energy and any small signal coefficients do not affect the median. 

Thus, it provides a robust estimate of σ . Once MAD is found, the standard deviation can be 

estimated by (3-9) [73]. 

6745.0
AMD

=σ          (3-9) 

 

The importance of the robust estimation of σ  addresses two issues. One is to avoid signal 

edge effects producing pure artifacts when computations are performed on the edges. The second 

is to exclude level one details of )(nf  that are usually concentrated in a few coefficients 

provided that the function is sufficiently regular [65]. In case of Gaussian white noise, applying 

this rule along with soft thresholding method yields a noise free signal, sometimes at the expense 

of shrinkage of the signal features. On the other hand, hard thresholding retains the features 

better, but results in a wigglier denoised signal [72]. 

An exhaustive search strategy for best denoising parameters showed that the Haar or 

Bior1.1 wavelets at level 1 with the hard thresholding method and non-white noise model results 

in the minimum MSE. However, this was not acceptable since this measure tends to 

underestimate the noise energy. Thus, a trade-off was made to maintain low MSE and remove all 

noise components at the same time. The result was that Db4 wavelet at level 5 with level 

dependant fixed thresholds and hard thresholding method, using non-white noise model 

performed superior [51]. 

The thresholding results on a pure noise signal are shown in Fig. 3.13 where scaled, level 

dependant fixed thresholds were applied to the detail decompositions. As for the thresholding 
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method, the hard thresholding rule was used. Through the examination of the detail 

compositions, it is seen that the denoised signal is effectively noise-suppressed and possesses no 

significant high frequency components. The same thresholding methodology was applied on the 

noisy signal shown earlier in Fig. 3.8. The wavelet decompositions of this signal are shown in 

Fig. 3.14, which demonstrates an important advantage of the denoising operation. Similar to Fig. 

3.9, spikes are explicitly present in d1 through d3 that shows their contribution to the spike in the 

original signal. Moreover, detail four is also a contributor, which is effectively revealed by the 

denoising action. Additionally, detail five that had very small noise energy is set to zero which is 

preferred from the computation point of view. When extracting signal features from these 

details, the denoised signal would require no further processing in detail five. Accordingly, the 

denoising of the signal would effectively eliminate a number of unnecessary arithmetic 

operations. 
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Fig. 3.13: Wavelet decompositions for noise signal after denoising 



 

 

64

-0.1941

0

0.2293

S
ig

na
l

-0.1941

0

0.2293

S
ig

na
l

-0.1123

0

0.1188
a1

-0.1906

0

0.1915

d1

-0.0696

0

0.0695

a2

-0.0634

0

0.075

d2

-9.7121

0

7.8464
x 10-3

a3

-0.0748

0

0.0624

d3

-2.4959

0

2.9352
x 10-3

a4

-10.7005

0
7.3646

x 10-3

d4
0 0.2 0.4 0.6 0.8 1

-2.4959

0

2.9352
x 10-3

a5

Time (Sec)
0 0.2 0.4 0.6 0.8 1

-1.158

0

1.5782
x 10-4

d5
Time (Sec)

 

Fig. 3.14: Denoised phase notch high frequency signal in db4 wavelet domain 

 
 
 
3.4.4.3 Reconstruction 

Once the thresholding stage is completed, the thresholded coefficients are used in the 

synthesis process to reconstruct the signal in time domain. For the pure noise signal shown in 

Fig. 3.11, the reconstructed denoised signal is shown in Fig. 3.15. The effectiveness of the 

denoising operation can be verified in the frequency domain by examining the denoised signal 

frequency spectrum shown in the same figure. Similar result for the noisy signal is depicted in 

Fig. 3.16. It can be observed that most of the noise components that, by definition, possessed a 

small magnitude and high frequencies are removed. Meanwhile, the important features of the 

signal are preserved for feature extraction and classification purposes. Through the denoising 

operation, many low magnitude signal samples are set to zero, which in turn reduces the 

computation complexity on the later analysis procedures.  
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Fig. 3.15: Denoised noise signal and corresponding frequency spectrum 
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Fig. 3.16: Denoised phase notch high frequency signal and corresponding frequency 
spectrum  
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Finally, it is emphasized that in the denoising of incipient abnormalities characterized by 

spikes in the notch high frequency signal, the choice of the thresholding method is crucial. The 

spike magnitude and its energy are among important features that should be preserved during 

denoising operations. In the soft thresholding approach, in addition to setting to zero the 

elements whose absolute values are lower than the threshold, the other nonzero elements 

including spike magnitudes are shrunk towards zero. However, in the hard thresholding method 

all the signal elements whose absolute values are higher than the threshold remain unchanged. 

Accordingly, the hard thresholding approach was used to preserve important spike features. The 

soft and hard thresholding performance can be compared using Fig. 3.17. This plot illustrates the 

resulting denoised signal when the soft and hard thresholding methods were applied, 

respectively. As can be observed, the spike magnitude that is a discriminating feature among 

recordings was shrunk during the soft thresholding. 
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Fig. 3.17 : Comparison between hard and soft thresholding results in denoising  
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3.5 SUMMARY 

In this chapter, the long-term monitoring system used to collect data from an underground 

distribution lateral was introduced. Also the type and structure of the collected data used in this 

research work for various design, testing, and characterization purposes were discussed. 

Emphasizing the necessity of preprocessing tasks, three important preprocessing operations 

namely, resampling, DC removal and denoising were introduced and the related procedures for 

each task were discussed. Resampling is performed to eliminate the potential redundancy in the 

signals by decimating or in general resampling the signals at appropriate factor to yield an 

effective sampling rate. The removal of redundant signal samples help reduce the computational 

complexity and thus improve the processing speed. DC removal aims at suppressing 

measurement DC offset introduced inevitably in field recorded data. It was found that an 

estimate based on a long signal observation window provided satisfactory results. As an 

important preprocessing step, the denoising operation was introduced and implemented. The 

common noise models were discussed and an estimate model was proposed. It was found that 

Db4 wavelet at level 5, with the level dependant fixed threshold selection rule, and the non-white 

noise model along with the hard thresholding method performed superior. Denoising results 

were illustrated by a typical notch high frequency signal. It is concluded that not only does the 

denoising increase the signal to noise ratio but it also reduce computation complexity, overall 

processing time, and enhance the performance of successive signal analysis steps by removing 

unwanted noise components. Once the preprocessing operations are performed, the data become 

ready for the classification and detection phases.  

The next chapter presents the classification method and discusses the various aspects 

associated with this important functionality of the IFDS. 
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 CHAPTER IV  

INCIPIENT FAULT CLASSIFICATION METHODS AND RESULTS 

4.1 INTRODUCTION 

A pattern consists of a pair of given variables ( )ωχ ,  where χ  is the feature vector and ω  

is the concept behind the observation i.e. the label. Given a set of patterns for a set of 

observations, the goal of classification is to perform pattern assignments as to which label is the 

most relevant for a particular observation abstracted by its feature vector. Labels either symbolic 

or numeric describe the entity of an observation and just like names given to objects convey high 

level information about the observation. Assigning an observation to a category and determining 

the label is accomplished by the designed classifier. The type of the classifier used in a particular 

application is greatly problem-dependant and the right classifier or set of classifiers need to be 

selected from a pool of available classifiers.  

Designing a classifier quite often incorporates information from training observations. 

Using training samples or observations in the design process of a classifier is called learning. 

Depend upon the learning method, three broad approaches can be adopted which include 

supervised, unsupervised, and reinforcement learning. Supervised learning is applied when a 

library of labeled data is already available to expose to the classifier. Such pattern analysis 

problems are called supervised in that both the feature vector and the correct answer are 

provided to the classifier. On the contrary, the unsupervised learning concerns pattern 

recognition problems in which the feature vector is the only given information and the goal of 

these methods is to cluster the data and find a model that can best explain the structure of the 

data and reveal natural groupings of the input patterns. This type of learning is called 

unsupervised since there is no teacher to provide the right answer. The data modeling principle 

through the unsupervised learning method constitutes the backbone of the developed detection 

scheme.  

The third learning method is the type of learning with a critic [53]. It involves the process of 

training a classifier through presenting an input, computing a tentative label, and using the 

known target label to improve the classifier by providing feedback. Unlike the supervised 
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learning method, the target label is indirectly used to reinforce the learning and establish right or 

wrong assessments on the output of the classifier. In this research work, both supervised and 

unsupervised learning methods have been employed in the IFDS. 

Classification process in supervised mode involves a two-step process, which includes 

prototype selection and classifier design. In prototype selection, a subset of given data is selected 

to train the classifier. Once a feature selection or extraction procedure finds a proper 

representation, a classifier can then be designed using a number of possible approaches. The 

question whether any classifier is better than the other can barely be answered in practice unless 

we try to answer the question “Does this classifier solve the problem or not?” 

There are two types of classification operations in the IFDS. The first classifier belongs to 

the family of rule-based classifiers in which the prior knowledge about the behavior of patterns 

is expressed in the form of if-then statements. The classifier evaluates the rules and assigns 

patterns to categories described by the relevant rules. The second set of classifiers used in the 

IFDS is responsible for more complex relationships among the data that can not be expressed 

with rules only. Regardless of the type of the classifier, there are two distinct steps to design a 

classification scheme in terms of pattern analysis formulation: feature extraction and model 

selection / classifier design.  

In the IFDS, the rule-based classifier recognizes the patterns of DC classes, various 

switching type events including load changes, normal, and potential incipient abnormality 

categories. The patterns classified to be incipient abnormalities are further fed to a set of 

supervised classifiers and categorized into three classes based upon severity degrees. SVM, 

SOM, KNN, and DIS are supervised classifiers that operate in parallel on the incipient 

abnormality patterns. However, only the SVM decisions are used in the detection phase. 

4.2 RULE-BASED CLASSIFICATION 

Rule-based classifiers are attractive solutions when classes of data can be characterized by 

general relationships among entities and there is no need for training samples [53]. The utilized 

rules, integral to expert systems in artificial intelligence, can be deduced automatically from the 

data and expressed in a broader sense as a set of crisp or fuzzy if-then logical statements. The 

biggest advantages of rule-based classifiers are that the reasons for their decisions are readily 

verified and the comprehension and interpretation of the results generated by these classifiers are 



 

 

70

straightforward. Despite the relative simplicity, the rule-based classifiers have been shown to 

perform well on most commonly used datasets [60].  

Although logical rules are the core components of the rule-based classifiers, the 

establishment of these rules for the distribution system data requires prior knowledge about the 

system events, disturbances and their characteristics. Therefore, in the next sections first a 

general overview of power system events is given and then the rule-based classifier developed 

for this application is presented. Specific rules are defined to categorize DC and normal classes, 

a number of switching related events, and classes of potential incipient abnormalities manifested 

as spikes in the high frequency signal. 

4.2.1 Events, Variations and Disturbances 

Events in power systems are referred to the excursions of the recorded voltage or current 

signals that lie outside the predetermined monitoring equipment thresholds. The term event is 

typically used to describe significant and sudden deviations of voltage or current from its natural 

or normal waveform [74]. The terms event and variation might sometimes be used 

interchangeably. Although both terms describe a deviation in a waveform from its nominal 

value, events typically convey a significant and abrupt change from normal limits and variation 

describes small deviations [75]. The classification of events or variations can be performed in 

terms of their underlying causes or in terms of disturbances [76]. When the cause of an event or 

variation in a signal is not known, the observed behavior is preferably called a disturbance. In 

this application, incipient fault-based events and variations are not classified in terms of their 

causes but there are other events in the system that can be classified according to their source of 

origination. Specifically, the rules developed for classification purposes involve DC distortion 

events, various load and switching type events and disturbances, potential incipient 

abnormalities, and normal classes. 

Broadly speaking, events in power systems can be categorized by their causes. They can be 

introduced by loads, faults, or outside factors. Load induced events can be related to either 

switching actions or normal operations of nonlinear devices and power electronics. For instance, 

switching an induction motor might cause a voltage dip and a transient in the current that is a 

switching event, but harmonic distortion of current waveforms due to the normal function of a 

typical adjustable speed drive is a non-switching load induced event. While load-induced events 

are considered expected phenomena and non-destructive, the abnormalities due to faults and 
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external factors are damaging in nature and aggressively treated by the appropriate protection 

mechanisms to prevent extensive damages to susceptible power equipment.  

One of the common types of events is associated with the steady state deviations from an 

ideal sinusoidal waveform due to the presence of frequency components other than the 

fundamental component (60 Hz). This type of long-term deviation is referred to as waveform 

distortion and can best be characterized by performing a spectrum analysis on the recorded 

event. Waveform distortion can be a result of the contribution of DC signal, harmonics, 

interharmonics, noise, or high frequency components of power electronic loads. Each of these 

factors shapes the distorted signal differently yet the common characteristic is that the distortion 

is visible in the steady state spectral content of the signal. In Fig. 4.1, distortions introduced in 

the voltage and current signals are shown. Circles and arrows pinpoint some instances where the 

distortions are seen conspicuously.  
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Fig. 4.1: Distortions in voltage and current signals 

 
 
 

Another distortion event is depicted in Fig. 4.2 where the low frequency phase current 

signal is distorted with excessive DC components. The mean signal calculated over one cycle 
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shows the variation of the DC elements that are increasing over time. Ref. [77] summarizes 

power system events using the electromagnetic compatibility approach in which the events are 

categorized in terms of the frequency components, the duration of the phenomena and the typical 

magnitude. 
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Fig. 4.2: DC distortion in phase current 

 
 
 

4.2.2 Overall Flowchart of the Rule-based Classifier 

The flowchart of the rule-based classifier is depicted in Fig. 4.3. As an unsupervised, 

automatic, rule-based classifier, it takes the input signals in and classifies them into a number of 

designated classes. The classification routine is a series of sequential operations consisting of a 

number of data processing modules and decision-making blocks. The input signals are 

consecutively passed through the processing modules, reshaped, modified, and prepared for the 

decision-making blocks. At every decision node, the classifier utilizes its embedded expertise to 

classify the capture.  
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The analyzers comprise three main modules: the DC/trend analyzer, the RMS shape 

analyzer, and the spike analyzer. In the DC/trend module, classes of data whose DC values or 

trends are excessively beyond the thresholds are classified as DC class data. This module 

incorporates a trend analysis routine that takes the low frequency current signal and classifies it 

into the DC class by comparing the ratio of the signal energy before and after detrending. For 

non-DC class signal, this ratio is very close to one, but for others it deviates from one.  
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Fig. 4.3: Flowchart of the rule-based classification procedure 
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The RMS shape analyzer is an extensive processing module, responsible for classification 

of a great number of captured data. It utilizes an embedded RMS template-matching algorithm to 

find the best matching template from a given library of templates. Among the identified shapes, 

four templates capture the data, most likely conveying incipient abnormalities. These patterns are 

classified into incipient classes and further analyzed through supervised classification. The RMS 

shape analysis uses the voltage and low frequency current signals to classify the patterns in terms 

of the shape of the RMS signal calculated over one power cycle for one-second capture.  

The spike analysis module operates on the high frequency current signal to capture the 

incipient abnormalities that are characterized by the spikes and not identified through previous 

modules. This module uses a detection algorithm based on the theory of outliers to identify the 

spikes in the entire recording.  

This classifier was implemented as a computer code in MATLAB Release 14. Customized 

functions were composed for various functionalities of the classifier including DC/trend analysis, 

RMS shape analysis, and spike analysis. These analyses are further discussed next. 

4.2.3 Recognition of DC Classes 

DC offset is the 0Hz component of signal spectrum that manifests itself in the steady state 

conditions in the low frequency current signal. Temporary DC components due to faults either 

disappear in a few cycles as the transient goes away, or are interrupted in a few milliseconds as 

the protection system clears the fault. However, other factors superimpose a steady state DC 

offset on the power signals. The well-known factors include geomagnetic disturbance and half-

wave rectification [77]. DC components in an ac power system are not welcomed and should be 

avoided if possible. While the presence of DC offset is rarely evitable, it can potentially elevate 

the electrical stress level on the insulation, saturate transformers operating near their knee point, 

and cause other detrimental effects.  

As shown in section 3.3.3, the measurement DC component is removed from the original 

input signals through the preprocessing step by estimating its level over the entire recording. It is 

observed that in case of a non-DC offset signal, the processed signal contained almost no 

significant DC components. However, when the original input signal is a true DC offset, trends 

and low frequency components are still present in the output signal even after the preprocessing 

task is performed. This characteristic of DC offset signal is used as a guide in the detrending 

procedure. In this analysis, linear trends and mean values are computed for a preprocessed input 
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signal. This computation involves the least squares fit of a straight line or composite line for 

piecewise linear trends to the data. By subtracting the resulting function from the data, the output 

signal called detrended signal ( ds ) is obtained. If there are trends and DC offset, the energy of 

the detrended signal defined in (4-1) differs noticeably from that of the input data. However, for 

a non-DC offset signal, there are no appreciable trends so that the energy of the data before and 

after the detrending procedure is approximately preserved. Based on the preceding observations, 

the classification rule is defined by (4-2). 
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where s  and ds  denote the input signal and detrended signal, respectively. 
2

2
 denotes the 

squared 2-norm of the signal which is an equivalent term used for the energy. The threshold 

value ( dcT ) is 0.9999. 

The trend analysis is demonstrated in Fig. 4.4 where the input DC offset current is 

detrended using the least squares fit of composite lines in each cycle. The detrended signal is 

shown in (b) and the corresponding trend signal is depicted in (c), respectively. As seen, 

significant amount of trends and DC components are removed in each cycle and the detrended 

signal appears trend-free and covariance-stationary. The norm ratio for this particular case is 

0.9831. 
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Fig. 4.4: Input signal and corresponding detrended and trend signal 

 
 
 

4.2.4 Recognition of Switching Disturbances and Events 

The method used to classify switching disturbances and various events is based on the RMS 

signal shape analysis of the voltage and phase current signals. In disturbance classification, we 

are mainly concerned with classification of the recorded measurements in terms of the identified 

disturbances and not in terms of the underlying events. Some observed power system events are 

neither known nor well characterized. On the other hand, there are disturbances that cannot be 

associated with unique events.  

 

4.2.4.1 RMS Shape Analysis Method 

In this method, an exact match is searched for in the library of ten already-defined 

templates. If the match is found, the corresponding signal is classified into the class represented 
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by that template. If not, the signal is passed through the successive classification modules. The 

RMS shape analysis for a given input signal involves five steps as follows: 

• Calculate RMS signal over non-overlapping, fixed windows  

• Smooth and normalize RMS signal to improve the shape resolution if necessary 

• Detect change points within the snapshot (60 cycles) 

• Find the matching template 

• Classify the signal with respect to the matched template 

 

4.2.4.1.1 Calculation of RMS Values 

For a digital signal s of length N , the RMS values is calculated by (4-3) where )(is denotes 

the thi sample of the signal. Typically, the RMS values can be calculated over a window of two 

cycles, one cycle or half a cycle resulting in a series of numbers termed as the RMS signal. As in 

many signal processing applications, the selection of the window size is a time/frequency 

resolution trade-off in which the shorter the window size, the better the ability to track the fast 

changes. The RMS signal obtained using the one-cycle window does not significantly differ 

from the calculated RMS value using a one-cycle window in Short Time Fourier Transform 

(STFT) analysis. Technically, the difference is zero for an ideal sinusoidal waveform with no 

harmonics [74]. In this analysis, one-cycle non-overlapping windows were chosen. 

2
1

1

2)(



















=
∑
=

N

is
RMS

N

i         (4-3) 

 
4.2.4.1.2 Template Matching 

As mentioned, the classifier looks for an exact match in the library of ten already-defined 

templates to accomplish its task. These templates are depicted in Fig. 4.5. It is assumed that each 

snapshot is taken when a disturbance takes place. If there is more than one disturbance within a 

recording, a segmentation procedure is required so that each represents a single disturbance. It is 

important to point out that the real RMS signal calculated over one cycle deforms from these 

ideal cases. Nevertheless, the essence of the signal shape may resemble one of the ideal 

prototypes.  
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Fig. 4.5: Prototypes of ideal RMS shapes 
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As mentioned earlier, ten individual templates are considered in the RMS shape analysis. 

Out of the ten templates, types III through VI are flagged as potential incipient abnormality 

patterns and the corresponding signals are used in the supervised classification stage. The other 

templates namely I, II, and VII through X represent load changes and/or non-incipient patterns. 

Therefore, no further classification is performed on patterns matching these templates. If no 

match is found, the input signal is passed through the subsequent spike analysis module for a 

check on the presence of spikes. From the field recorded data, a few examples of RMS signals 

matching prototypes I, VII, and II are presented in Fig. 4.6. 

 
 
 

 

 

 

Fig. 4.6: Examples of RMS signals recognized by the rule-based classifier 
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The features that provide the necessary and sufficient information to recognize the 

prototype shapes include: Number of change points (NCP), Most Frequent Number of 

Horizontal Crossing Points (MFNHCP), Direction of Change (DC), Disturbance Duration (DD), 

and Ratio of the average RMS values before and after the disturbance (RAV). These features are 

listed in Table 4-1, and the corresponding values are assigned for each type of the prototypes.  

The change point, expressed in units of cycles, is defined as the minimum of the two 

successive cycle indices, where a meaningful change is observed. The meaningful change occurs 

when a non-zero difference between two successive RMS values is obtained. Practically, it is 

indicated whenever the difference between two successive RMS values becomes greater than the 

specified threshold percentage change. For a normalized RMS signal, the plausible choice for the 

threshold is 0.5. For example, in prototype I, a meaningful change takes place between the fifth 

and the sixth cycle; thus, by definition, the change point is five. In case III, however, there are 

two change points, which include the 3rd and 7th cycles, respectively.  

 
 
 

Table 4-1: 
Characteristics of ideal prototypes 

Type No. NCP MFNHCP DC DD RAV 
I 1 1 I < 1 cycle > 1 
II 1 1 D < 1 cycle < 1 
III 2 2 ID > 1 cycle 1 
IV 2 2 DI > 1 cycle 1 
V 2 2 ID 1 cycle 1 
VI 2 2 DI 1 cycle 1 
VII 2 2 ∨ 1 ID > 1 cycle >1 
IIX 2 2 ∨ 1 DI > 1 cycle <1 
IX 2 2 ∨ 1 ID 1 cycle >1 
X 2 2 ∨ 1 DI 1 cycle <1 

 
 
 

The most frequent number of the horizontal crossing points is the most informative feature 

that can be obtained using the histogram analysis of the number of horizontal crossing points. 

This feature for prototype III, for example, equals two, and for prototype II, it amounts to one. 

The direction of change is determined by comparing the two RMS values at the change point. 

The increasing or decreasing directions are coded by I and D, respectively, in the table. When 

there is more than one change point, a combined code shown in column four of the table is used.  
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4.2.5 Recognition of Spikes 

In the context of the present work, spikes correspond to the signal values that occur over a 

very short duration and are associated with large gradient values. Usually, these components are 

observed in the notch high frequency current signal. From a statistical point of view, a spike is 

defined to be a data point whose first difference is an outlier value. An outlier is a data point, 

which deems to be inconsistent with the remaining data in a signal [78]. Outliers are determined 

statistically from the signal. The presence of spikes in the notch high frequency signal is a 

symptom of swift changes in the signal components. Previous studies suggest that incipient 

abnormalities manifested in the notch high frequency signal can be characterized by the spikes 

[4][5]. Some load switching actions can also introduce spikes in these signals at the time of 

switching. Fig. 4.7 shows an example in which spikes with different duration and magnitude are 

infested in the high frequency signal. The time domain characteristics associated with each spike 

are demonstrated on the same figure. Spikes are characterized by the duration, magnitude, and 

peak value of the elements comprising them. For detection purposes, the positive and negative 

elements are treated equally. The energy of a spike is determined by the magnitude of its 

elements as defined in (4-4), where ix  denotes the thi element of a N -element spike.  

∑
=

=
N

i
is xE

1

2          (4-4) 

 

The analysis of spikes manifested in time series has been an interesting problem for many 

engineering disciplines such as biomedical and electrical engineering. Spike detection in 

electroencephalograms (EEG) plays an important rule in the diagnosis of epilepsy [79]. Many 

researchers in this field have discussed the problem from different points of view specific to that 

application [80][81][82][83]. In the realm of signal processing, the detection of spikes is 

important because such algorithms generally produce biased outputs in the presence of spikes 

[78][84]. In analyzing underground power system incipient failures, the detection and 

characterization of incipient abnormalities based on the spikes are the motivations to perform 

spike analysis. 

Usually a spike detection algorithm involves two steps namely, spike improvement and 

detection. In the spike improvement stage, which is highly recommended for spikes of small 

magnitudes, the visibility and detectability of a spike within a signal is augmented such that it 
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becomes more detectable and inconsistent with the remaining data. In the detection step, the 

spike features are used to identify it. Broadly speaking, the spike detection algorithms can be 

divided into three main categories in terms of the strategy utilized in the first step as follows.  

• Time domain parametric methods 

• Transform domain parametric techniques 

• Non-parametric methods 
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(a) Macroscopic view of spikes 
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(b) Microscopic view of a spike 

Fig. 4.7: Illustration of spikes and related terminologies 
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Time domain parametric methods enhance the distinct characteristics of spike samples 

using a time-domain approach. Gradient [85], matched filter [86], high pass filter and median 

filtering [87] based algorithms are examples that fall into this category. In the transform domain 

parametric approaches, the signal is first transformed into other domains, and then the detection 

algorithm is applied on the transformed signal, which mainly contains the high frequency 

components of the original signal. The Wavelet and discrete cosine transforms (DCT) [88] are 

suitable applications for such purposes. Finally, non-parametric techniques view the spike 

detection problem as a linear predictive modeling of the data in which the prediction residuals 

are used as indications of spike locations. When a linear model such as autoregressive or moving 

average is fit to the data, the prediction residuals typically possess large values at the spike 

locations. A comparison study on the above spike detection techniques indicate that the methods 

based on the high-pass filter, wavelets, and DCT outperform the other techniques for small 

spikes in data [84]. 

 
4.2.5.1 Spike Detection Method 

The spike detection algorithm deployed in the IFDS involves two steps: spike improvement 

and detection. In the spike improvement stage, the visibility and detectability of a spike within 

the signal is enhanced so that it becomes detectable and inconsistent with the remaining data. 

This stage is critical for spikes of small magnitudes. In the detection step, the spike features are 

used to identify it. The detection algorithm uses a parametric method to enhance the distinct 

characteristics of spike samples in the time domain. Fig. 4.8 presents the overall flowchart of the 

spike detection algorithm. The spike-no-spike decision criterion is a multi-term binary statement 

defined based on the skewness, kurtosis, and crest factor measures of the high frequency signal. 

The skewness of a distribution is a measure of asymmetry around the mean. For any 

symmetrically distributed data, the skewness is zero; otherwise, it is a non-zero value. If the 

distribution of data has a longer tail out to the right of the mean, the skewness becomes positive; 

if the distribution has a longer tail to the left of the mean, the skewness takes negative numbers 

[73]. Presence of spikes in the signal distorts the symmetry of data points; thus, large deviation 

of skewness from zero is an indication of potential spikes. The skewness of a distribution is 

measured by (4-5). s  is a sample from the distribution or the high frequency signal in this 



 

 

84

application. E ,µ , and σ  denote the expected value, mean, and standard deviation of the signal, 

respectively. 

3

3)(
σ

µ−
=

sEskewness        (4-5) 
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Fig. 4.8: Flowchart of spike detection algorithm 

 
 
 

The kurtosis of a distribution is a measure of presence of outliers. A high value of kurtosis 

implies a sharply humped or peaked distribution, and vice versa. Flat-topped distributions 

maintain a lower kurtosis value. For normally distributed data, the kurtosis is 3, but it takes large 

values if the sample contains inconsistent data, i.e., spikes. Thus, if the calculated kurtosis for the 

signal differs significantly from 3, the signal is highly likely to contain spikes. The mathematical 

expression for kurtosis is given in (4-6). 
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4

4)(
σ

µ−
=

sEkurtosis         (4-6) 

 
It should be noted that kurtosis is not necessarily a measure of peakedness. As pointed out 

in [73][89], a flat-topped distribution might have infinite kurtosis, and a sharp-peaked 

distribution may possess a low value of kurtosis. Thus, this measure alone is not sufficient to be 

used in the process of making a spike-no-spike decision.  

The crest factor of sequence is another measure used to indicate potential presence of 

spikes. This measure is mathematically defined in (4-7), where maxs and rmss  denote the 

maximum and RMS values of the signal, respectively. When the crest factor is significantly 

greater than an empirical threshold, the likelihood of spikes is higher. 

rmss
s

factorcrest max=         (4-7) 

 
Generally speaking, the selection of thresholds employed in the detection algorithm is a 

compromise between probability of failure and false indication. Failure is realized when there is 

a spike in the signal, which is not being detected by the algorithm. False indication happens 

when there is no spike in the signal by visual examination, but the spike-no-spike decision leads 

to the yes-there-is outcome. The solution to this type of problem is provided by introducing a 

cost function. Intuitively, the cost of a spiky signal being flagged as a spike-free signal is 

significantly higher than that of falsely indicating a spike-infested signal. Formally stated, the 

thresholds are set to be inclined more to the false positive decision region than the other. Hence, 

the flag is raised indicating potential spikes, but there may not be spikes in the signal as 

examined by an expert. 

In this section, the rules used by the rule-based classifier were presented and discussed. An 

important task that was implicitly accomplished in the rule-based classifier is the computation of 

feature values. As noticed, rules were defined by the variables or features and hence the 

evaluation of each rule required that the corresponding feature values be known. Having said 

that, the set of informative features for the supervised classifiers is determined through the 

feature extraction process, discussed next. 
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4.3 FEATURE EXTRACTION FOR SUPERVISED CLASSIFICATION 

The goal of feature extraction is to obtain a set of sufficient and necessary features that 

discriminate classes with a high degree of accuracy. This important procedure is a key step for 

the success of any classifier. The feature extraction process involves two steps: feature 

determination and dimensionality reduction.  

First, a number of raw features are determined. Second, the raw features are projected onto 

a lower dimensional space by means of multivariate statistical techniques in order to reduce the 

dimensionality while preserving a good classification rate [52][53]. Raw features of interest can 

be categorized into two main groups which include time-domain and time-scale or rather wavelet 

domain features. While in most applications only one type of features is used, classification of 

incipient abnormality data requires features from time domain as well as wavelet domain.  

To mitigate the redundancy and eliminate potential correlations among wavelet features 

which are inherent characteristics of this type of features, three dimensionality reduction 

techniques were employed. These techniques include Principal Component Analysis, Linear 

Discriminant Analysis, and feature subset selection techniques. 

4.3.1 Feature Determination 

Representing a signal with its features is essentially a way of encoding the signal into a 

number of numeric or symbolic values whose combination models signal characteristics in an 

effective way. For example, a time series composed of a sinusoidal 60 HZ waveform can be 

encoded by just two features, namely amplitude and initial phase angle. Similarly, the goal of 

feature determination for an incipient fault signal is to find a number of few features that can 

model the signal exclusively. Although there might be a linear or nonlinear relationship among 

the raw features - as is the case for features from the wavelet domain- this step is not concerned 

with such dependencies or correlations but to include all relevant features. The next step i.e. 

dimensionality reduction determines a subset of a few informative features from the set of initial 

features. 
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4.3.1.1 Features from Wavelet Packet Analysis 

The first class of features utilized in the IFDS includes normalized energy features from 

wavelet packet decompositions of the notch high frequency current signal. It has been shown 

that wavelet analysis performs very well when working with essentially non-stationary power 

signals [54][55][56]. Since, the incipient fault high frequency data are non-stationary and 

transient in nature, utilizing powerful analysis techniques such as wavelets would be more 

descriptive than traditional Fourier analysis methods. To extend the capabilities of the wavelet 

transform, the wavelet packet analysis were used.  

The wavelet packet analysis is an extension to DWT, which provides a richer range of 

possibilities for the analysis of the signal. In every level of DWT, the signal is split into a detail 

and approximation and in the subsequent scales, the approximation is further decomposed into 

another approximation and detail signal. For an n level decomposition, there are 1+n  possible 

ways to encode the signal. However, in wavelet packet decompositions, the details as well as 

approximations are split yielding more than 
122
−n

 different ways to decompose the signal [65]. 

The result is the wavelet packet decomposition tree shown in shown in Fig. 4.9. 

From previous studies, it was determined that Db4 wavelets provide sufficient frequency 

resolution and satisfactory decomposition results for the notch high frequency signal. Fig. 4.10 

and Fig. 4.11 show an example signal along with its 16 decompositions at the fourth level. The 

packet numbers are printed along the Y axis on each plot. 

The wavelet packet analysis was conducted on a sample length of one-second at a time. To 

get a better frequency range in the 4th level, a symmetrization technique was used to achieve 

dyadic sample length of 16384. Considering this modification, the frequency range for each of 

the 4th level details is depicted in Table 4-2. From this table, it can be observed that the harmonic 

content of the fundamental frequency is associated with a single and unique detail and the 

frequency range of each level 4 details neatly covers a frequency band of 0.5 KHz, facilitating 

the interpretation of extracted features in terms of the covered frequency range. 
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Fig. 4.9: Wavelet packet binary tree 

 
 
 

 

Fig. 4.10: Wavelet packet decompositions of a notch high frequency signal (1) 
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Fig. 4.11: Wavelet packet decompositions of a notch high frequency signal (2) 

 
 
 
 

Table 4-2: 
Frequency ranges for the level 4 decompositions 

Packet No. Frequency Range 
KHz (approx.) 

1 0 – 0.5 
2 0.5 – 1 
3 1 – 1.5 
4 1.5 – 2 
5 2 – 2.5 
6 2.5 – 3 
7 3 – 3.5 
8 3.5 – 4.0 
9 4.0 – 4.5 

10 4.5 – 5 
11 5 – 5.5 
12 5.5 – 6 
13 6 – 6.5 
14 6.5 – 7 
15 7 – 7.5 
16 7.5 – 8 
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There are a number ways to extract features from wavelet transform among which the 

average energy and standard deviation features are widely used in various applications 

[90][91][92]. The energy features consists of 16 values computed from the signal 

decompositions at the 4th level. (4-8) provides an expression for the normalized energy of the 
thi packet for a signal of length N.  

s

P
iP

i E
E

F =          (4-8) 

where ∑
=

=
N

i
is xE

1

2 is the total energy of the signal and P
iE is the energy of the thi packet. The 

energy of a signal of length N is determined by the magnitude of its elements ix ‘s. Using the 

above formula, the corresponding features were computed and plotted in Fig. 4.12. The input 

signals are decomposed using ‘Db4’ wavelets at level 4 that result in 16 coefficients [52]. 

Features are defined to be the percentage energy of each coefficient with respect to the energy of 

the original signal. As seen, the 7th packet of the signal possesses the largest portion of the signal 

energy – about 18%- which corresponds to the 3-3.5 KHz frequency range. Notice that the sum 

of all energy values equals 100%.  

 
 
 
 

 

Fig. 4.12: Normalized energy features 
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4.3.1.2 Features from Time Domain Spike Analysis: VSI and HSI 

In addition to the wavelet energy features, two new features from the time domain spike 

analysis were defined and computed for incipient data. The new features are termed Vertical 

Severity Index (VSI) and Horizontal Severity Index (HSI) and computed for the notch high 

frequency signal. VSI and HSI measure the severity of spikes in the signal from two dimensions. 

VSI takes into account the Y dimension i.e. the magnitude of each individual spike and HSI 

addresses the severity along the X axis by considering the time between successive spikes in the 

signal. 

The Vertical Severity Index of a signal is defined as the normalized energy of spikes with 

respect to the total energy of the signal. This is mathematically expressed in (4-9) where n  is the 

number of spikes detected in the signal, 
isE  denotes the energy of the thi spike, and sE is the 

energy of the signal including spike components.  

s

n

i
s

E

E
VSI

i∑
== 1          (4-9) 

 

The definition of the energy of a spike is given in (4-4). It can be seen that 10 <≤VSI . In 

other words, if no spikes are present, the vertical severity index is zero. The maximum value of 

VSI, on the other hand, is always less than one. According to this definition, the contribution of 

the spike energy to the total energy of the signal is the measure of severity with respect to the 

spike magnitudes. The name “vertical” implies the fact that the spike magnitudes are taken into 

account in determining this type of severity measure. One can see that the higher the magnitude 

of the spikes, the higher the VSI and the higher the perceived severity. As mentioned, VSI 

features are computed from the notch high frequency signal. 

Another time domain feature used in the supervised classifiers is called Horizontal Severity 

Index (HSI). This index takes into account the times at which spikes take place in the one-second 

high frequency signal. HSI measures the frequency of occurrence of spikes and their local arrival 

times within the signal. Intuitively, as the number of spikes increases, the interarrival times 

decreases which in turn implies a frequent arcing activity within the signal. HSI quantifies the 

severity of local arcing activities using a mathematical expression defined in (4-10).  
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In this formula, nttt ,...,, 21 denotes the local arrival times of n spikes detected in the high 

frequency signal. Notice that all it s and the respective HSI are non-negative real numbers. The 

theoretical boundary for HSI is the range of [0, 214.66]; however, the empirical upper bound is 

observed to stay below 45.0.  

A typical behavior of this index using simulated local arrival times is depicted in Fig. 4.13. 

Three fundamental scenarios were considered which include decreasing, constant, and increasing 

rate of local arrival times. Each column corresponds to one scenario and the HSI under each 

scenario is shown inside parentheses on top of the first row of each column. Each graph in the 

first row shows the assumed arrival times under each scenario. The corresponding interarrival 

times i.e. the times between successive arrival times are plotted in the second row and finally the 

last row graphs represent the partial HSI values calculated under each scenario at each arrival 

time. The final HSI value amounts to the last partial HSI value.  

As seen, if the spikes happen to be concentrated toward the end of the interval (column 

three), the severity index is higher than the case in which they are distributed at the beginning of 

the interval (column two) or uniformly across the interval (column one). Fig. 4.14 shows an 

example signal for which the HSI amounts to 15.83.  
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Fig. 4.13: Response of the horizontal severity index under decreasing, constant, and 
increasing rate of local arrival times 
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Fig. 4.14: HSI corresponding to a field recorded notch high frequency signal 
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4.3.2 Dimensionality Reduction 

The objective of dimensionality reduction is to keep the dimensionality of the pattern 

recognition problem (i.e. the number of features) as small as possible while preserving good 

classification accuracy. Dimensionality reduction can be accomplished by means of feature 

selection or feature extraction. The term feature selection refers to techniques that select the best 

subset of the input features set. Methods that create new features based on transformations and 

combinations of the original feature set are called feature extraction methods. The choice 

between feature selection and extraction depends on the application domain [52]. Feature 

extraction can be accomplished using a number of methods. The utilized techniques are Principal 

Component Analysis (PCA) and Linear Discriminante Analysis (LDA), which are based on the 

transformation of the original feature matrix.  

 

4.3.2.1 Transformation Techniques 

Principal Component Analysis or PCA is a linear unsupervised feature extraction method 

[57]. The linear transformation is defined by the eigenvectors of the covariance matrix, which 

leads to vectors that are uncorrelated regardless of the form of the distribution. If the distribution 

happens to be Gaussian, then the transformed vectors will be statistically independent. The 

objective of PCA is to perform dimensionality reduction while preserving as much as the 

randomness (variance) in the high-dimensional space as possible. PCA performs a coordinate 

rotation that aligns the transformed axes with the directions of maximum variance. The main 

limitation, however, is that as an unsupervised method, it does not consider class separability 

information. There is no guarantee that the direction of maximum variance will contain good 

features for discrimination. This is graphically illustrated in Fig. 4.15. There are two classes of 

data represented by ones and twos in the original two-dimensional space along x and y axes. 

PCA finds new features along X and Y axes. If the data points are projected onto the new X 

axis, the data can be represented with a reduced number of features i.e. only one feature and 

successful classification is achievable; however, projection onto the direction of the maximum 

variance i.e. Y axis results in losing the discriminatory information and hence poor classification 

accuracy.  
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Fig. 4.15: Illustration of PCA [59] 

 
 
 

Linear Discriminante Analysis (LDA) is another linear feature extraction method, but 

unlike PCA it is supervised [57][58]. The objective of LDA is to perform dimensionality 

reduction while preserving as much of the class discriminatory information as possible. In LDA, 

interclass separation is measured by Fisher criterion, which finds the eigenvalues of the between-

class scatter matrix to the within-class scatter matrix. The within-class scatter matrix is defined 

by: 

∑
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x  denotes the data, c  is the number of classes and iµ  is the mean vector of class iw .The 

between-class scatter is defined by (4-13 ) where iN  is the number of patterns of class i , and µ  

is the mean of the entire distribution. Fig. 4.16 demonstrates the within-class and between-class 

scatters defined for a three-class problem. 
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Fig. 4.16: LDA within-class and between-class scatter representation [59] 

 
 
 

The solution proposed by Fisher is to maximize the function that represents the difference 

between the means of the classes (between-class scatter) normalized by a measure of the within-

class scatter. The projections with maximum class-separability are the eigenvectors 

corresponding to the largest eigenvalues of Bw SS 1− . This method produces as many projections as 

the number of classes minus one. If the classification error estimates establish that more features 

are needed, some other methods must be employed to provide additional features. LDA will fail 

when the discriminatory information is not in the mean of the data but rather in the variance. 

 

4.3.2.2 Selection Techniques 

Feature subset selection was accomplished using Sequential Forward Selection search 

strategy with wrappers objective functions. Unlike feature extraction techniques where the final 

set of features is a linear or non-linear combination of initial features, feature subset selection 

approaches aim at selecting a number of raw features without performing any transformations. In 

general the need for feature selection arises when the raw features are expensive to obtain and 

not numeric. Also, in some applications it may be important to extract meaningful rules from the 

classifier results. In such situations, feature extraction methods do not work. Hence, feature 

subset selection (FSS) methods must be employed. Feature subset selection requires a search 

strategy to select candidate subsets and an objective function to evaluate these candidates. There 
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are a large number of search strategies among which Sequential Forward Selection (SFS) was 

chosen. 

Objective functions are divided into two groups, filters and wrappers. Filters evaluate 

feature subsets by their information content; typically interclass distance, statistical dependence 

or information-theoretic measures. Wrappers are essentially pattern classifiers, which evaluate 

feature subsets by their predictive accuracy by statistical resampling or cross- validation. Filters 

are fast to be executed and their results exhibit more generality. However, they tend to select the 

full feature set as the optimal solution. On the other hand, wrappers generally achieve better 

classification rates than filters and have the mechanism to avoid overfitting. The main 

disadvantage is slow execution. In this application the classification accuracy outweighs the 

speed; thus, wrappers were used to evaluate the selected set of features. Fig. 4.17 illustrates the 

feature subset selection procedure using wrapper objective function. 
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Fig. 4.17: Feature subset selection procedure using wrappers 
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4.3.3 Formation of Feature Vector 

Through dimensionality reduction methods applied on the original feature matrix, it was 

found that the feature subset selection approach using the sequential forward search strategy 

performed superior. Accordingly, 14 informative features were determined and feature vector 

was formed for the classification purposes. The features included the first eight features at level 

4, last four features at level 3 of the wavelet packet decomposition tree, and two time-domain 

features termed as VSI and HSI. The feature vector used as the input vector for all the supervised 

classifiers is shown in Fig. 4.18. In this figure, nE denotes the normalized energy and the 

following number represents the feature number. 

 
 
 

nE1 nE2 nE3 nE4 nE4 nE6 nE7 nE8 nE9 nE10 nE11 nE12 HSI VSI

Features from wavelet-packet analysis 
Time 

domain 
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Fig. 4.18: Feature vector used in supervised classification 

 
 
 

4.4 SUPERVISED CLASSIFICATION METHODS 

The if-then expressed information used by the rule-based classifier can be extracted for non-

incipient data but the patterns manifested in the incipient data are not expressible by linear, 

single level, and crisp relationships used in rule-based classifier. In fact, the complexity involved 

in these patterns is the actual challenge of the classification task. Furthermore, rule-based 

classifiers using crisp rules identify one class as the result and thus can only provide a black-and-

white picture, whereas incipient data vary according to some gradation defined by the severity. 

Therefore, a set of other classifiers known as supervised classifiers were designed for the 

purpose of recognizing the complex patterns in the incipient data.  

Classification using any of the supervised classifiers involves a model selection step which 

should be specifically defined for this application. The incipient abnormalities are classified into 
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one of three classes in terms of their local severity degrees. The severity degrees are expressed in 

terms of three fuzzy words, namely low, medium, and high. These classes are designated L, M, 

and H, as depicted in Fig. 4.19. Examples of incipient abnormalities representing each class are 

presented in Fig. 4.20, Fig. 4.21, and Fig. 4.22. The function of the supervised classifiers is to 

make decisions as to the degree of severity of an incipient abnormality conveyed by its feature 

vector. Classifiers used in the system include Support Vector Machines (SVM), Self-Organizing 

Map (SOM), K Nearest Neighbors (KNN), and Discriminant classifiers.  

 
 
 

 

Fig. 4.19: Classification of incipient abnormalities in terms of severity degrees 
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Fig. 4.20: Notch high frequency signal classified into high severity degree class 
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Fig. 4.21: Notch high frequency signal classified into medium severity degree class 
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Fig. 4.22: Notch high frequency signal classified into low severity degree class 

 
 
 

4.4.1 Support Vector Machines 

Pattern recognition based on Support Vector Machines (SVM) is a relatively new technique 

that makes use of the statistical learning theory [93][94][95]. Given a set of training examples, 

the goal is to induce a function from these examples that acts as a classifier with good 

generalization property. Without loss of generality, consider the binary classification problem 

with linearly separable classes presented in [59]. Intuitively, one can imagine many linear 
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classifiers to separate the data, but only one function is optimal in separating the data points and 

maintaining best generalizing capabilities. The optimal hyperplane is the only classifier that will 

generalize well by maximizing the distance between it and the closest data point of each class. 

Other hyperplanes, although can separate the training data, will be unlikely to work well on the 

data outside of the training set.  

In Fig. 4.23, a simple scatter plot of two features is given to illustrate SVM terminologies 

including the maximum margin, support vectors and separating hyperplanes. The largest margin 

is the minimum distance of an observation to the decision surface i.e. the oblique green line on 

the plot. The training samples that define the largest margin are known as the support vectors 

and the separating hyperplane is the one that is farthest from all training samples. The support 

vectors are the only points that contribute to defining the optimal hyperplane and thus the 

complete dataset is shrunk to include only those samples once they become known at the end of 

the training phase.  

 
 
 

 

Fig. 4.23: Illustration of SVM for a binary pattern recognition problem [59] 
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As one can speculate, the procedure to construct the optimal hyperplane from the training 

data gives rise to an optimization problem. Given a training set of patterns that consist of feature 

vectors and numerical labels, SVMs resolve the generalized optimization problem [96] defined 

in (4-14). 
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where W denotes the weight vector of the separating hyperplanes, b  is their bias term, 0>C  is 

the penalty parameter of the error term, ξ  is a slack variable to relax the constraints of the 

canonical hyperplane equation for non-separable case, N  is the number of observations in the 

training set, and iy  is the label designated for the thi  observation. The penalty parameter is a 

trade-off between misclassification and complexity of the solution. Large values give rise to a 

better classification rate but increase the complexity of the solution as well [59]. 

Using the classical Lagrangian optimization techniques and Kuhn-Tucker theorem, the 

optimization problem boils down to the following dual problem in  (4-15) [96]. 
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iα s are the Lagrange multipliers which are zero for all the training examples except for the 

support vectors. For the linearly separable problem, the upper bound of C  is removed for iα  

constraint. Notice that in the dual problem, the slack variables and their associated Lagrange 

multipliers are disappeared and the goal is to maximize )(αDL  with respect to the Lagrange 

multipliers and not W  and b . In addition, the training data appear only as dot products. 
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SVMs have shown superior generalization capabilities and yield appealing results. The 

power of SVMs originates from the principle in Cover’s theorem on the separability of patterns. 

According to this principle, “A complex pattern-classification problem cast in a high-

dimensional space nonlinearly is more likely to be linearly separable than in a low-dimensional 

space” [59]. Incorporating this principal, pattern classification based on SVMs proceeds in two 

stages. First, the feature vector is non-linearly mapped onto a high-dimensional space using a 

specific function φ  called the kernel function. Then, an optimal separating hyperplane is 

constructed that separates the classes of data with maximum margin in the high-dimensional 

space. At the first glance, this contradicts with the feature extraction objectives that seek to 

minimize the dimensionality of the problem. The astonishing trick though is that the mapping is 

only implicit. The reason lies in the observation that the training data always appear as dot 

products i.e. ji XX .  in the SVM solution. Thus, in the high-dimensional space the mapping 

function operations would always appear as )().( ji XX φφ . Accordingly, one only needs to 

define a function K  such that )().(),( jiji XXXXK φϕ≡  and use only that function in the 

training algorithm without explicitly performing the required mapping. Such a function is called 

the kernel function in SVM terminology and it must satisfy the Mercer’s condition to be 

considered as a kernel [93][97]. Three basic kernel functions have been investigated, namely 

linear, polynomial, and radial basis function kernels. 

• Linear: j
T

iji XXXXK =),(  

• Polynomial: 0,)(),( >+= γγ d
j

T
iji rXXXXK  

• Radial Basis Function (RBF): 0),exp(),(
2

>−−= γγ jiji XXXXK  

,, rγ and d  are the kernel parameters that are typically determined through cross-validation. In 

this work, a non-linear polynomial kernel function was utilized whose parameters are as follows: 

2=γ , 3=r , and 6=d . The SVM was implemented in MATLAB using functions from the 

LIBSVM toolbox [98]. The SVM classifier uses the feature vector presented in section 4.3.3. 

The dual Lagrangian problem for the non-linear SVM can be expressed as a general 

quadratic programming problem (QP) defined in (4-16).  
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where ),( jijiij XXKyyH = . Notice that H  is a quadratic matrix of 2N  elements, which 

consequently limits the size of the training examples. A number of alternative approaches have 

been proposed to cope with the curse of complexity and reduce the computational burden of 

SVM solution. Chunking, decomposition, and sequential minimal optimization methods are just 

a few examples [59].  

Besides excellent generalization capabilities, other advantages make SVMs appealing 

classifiers. Since the SVM solution is a QP problem, there is no local minima problem. The final 

results are robust and repeatable since there is no random initialization phase. Support vectors 

are the only information needed to define the decision surfaces, thus the SVM solution is sparse. 

In addition, complexity and dimensionality of SVM solution are independently controllable. 

From implementation point of view, there are relatively few model parameters to select as 

opposed to that of other classification techniques [59]. 

4.4.2 Self-Organizing Maps 

The Self Organizing Map (SOM) is a novel, widely used artificial neural network model 

introduced by Kohonen in 1981 [99]. SOM is generally used for data visualization and 

abstraction achieved by converting the complex and nonlinear statistical relationships between 

high dimensional data into a low dimensional grid of neurons called output map. It is also 

recently used for a number of power applications involving power transformers, tap-changers , 

and paper-insulated cables [100][101][102][103][104].  

SOM in basic terms maps the high dimensional data in the input space into a low 

dimensional display of an output space while preserving the most important topological and 

metric relationships of the primary data points. In this sense, it is a non-linear vector projection 

and quantization method. Vector projection algorithms map the high dimensional data into low-

dimensional coordinates preserving the shape of the original data cloud as much as possible. 

They are typically used for dimensionality reduction. Principal component analysis, curvilinear 
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component analysis [105] and Sammon’s mapping projection [106] algorithms are some 

examples. 

SOM can also be thought of a data classifier that helps find the natural groupings amongst 

inputs through a nonparametric, recursive regression process. These aspects can be utilized in a 

number of ways in complex tasks such as data clustering, numerical modeling, classification, 

computer-aided learning, estimation, machine perception, control, and communication. There are 

several variants to the basic SOM, which aim to either improve the quantization capabilities of 

SOM or make it a better classifier.  

The inputs to SOM are highly complex multidimensional numerical features usually 

arranged in a data matrix. Each row of the matrix is an observation or data sample and each 

column corresponds to a feature. It is important that every sample have the same set of features. 

The output usually consist of a set of nodes (neurons) arranged on a two-dimensional grid called 

the map.  

As an example, a 1120×  map is depicted in Fig. 4.24. There are more than 220 hexagons, 

the number of neurons, on this plot because the distances between adjacent neurons are also 

shown by hexagons. The normalized distances among the neighboring neurons are shown using 

a color map and the vertical bar on the right hand side of the map represents the numeric value 

corresponding to each color. Higher dimension grids are possible but their visualization is much 

more problematic. The number of neurons on the map is determined during the training process.  

SOM neurons have in fact two positions; one in the input space and another in the output 

space. In the input space, each neuron is associated with a prototype vector7 whose dimension is 

the same as the input vectors. In the output space, the neurons positions are specified by the map. 

The neurons are connected to the adjacent neurons by a function called the neighborhood 

function that dictates the map topology.  

In this dissertation, SOM was used for two main purposes; Supervised SOM [99] –a variant 

of SOM- was used for classification purposes while unsupervised SOM was utilized for 

numerical modeling of the incipient data and development of a detection index. Application of 

SOM for the classification problem is introduced and discussed in this chapter while chapter V 

presents the data modeling principle and the resulting detection index. 

 
 

                                                 
7 Prototype vector may also be called weight vector, reference vector, codebook, or model. 
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Fig. 4.24: SOM output map 

 
 
 
4.4.2.1  SOM Design and Training Procedure 

The design stages of a SOM usually involve the selection of the map lattice, map shape, 

number of neurons, and neighborhood function. On a commonly used two-dimensional map, the 

neurons can be arranged on a rectangular or hexagonal lattice, but the latter preferably provides 

smoother and more eye-appealing map. Thus, the map lattice was selected as hexagonal. There 

are three different map shapes namely, sheet, cylinder, and toroid. In this work, the sheet shape 

map was used as recommended in [107]. The map grid sidelights was automatically determined 

by the ratio between eigenvalues of the training data. 

The general practice in selecting the number of neurons is to choose as many as possible. 

This improves the resulting map granularity and results in a more flexible map. Nevertheless, it 

impacts the computation complexity of the training phase of a SOM application. Hence, an 

appropriate selection should be considered to meet the present trade-off. We used the 

recommended number of neurons is N×5  , where N  is the number of training samples [107].  

The neighborhood function describes the distance relationships between neighboring 

neurons. It is a decreasing function of the distance between every two neurons on the map grid. 

The choice of the function and the number of neurons are the determinants of SOM accuracy and 
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generalization capabilities. The neighborhood function utilized for the SOM design was a 

Gaussian function. 

The learning process of unsupervised SOM requires no a-priori knowledge. It is based on a 

dissimilarity measure between the input data and map units measured in terms of distance, 

typically Euclidian distance. The greatest similarity is achieved when a neuron is a minimum 

distance from the input sample. Such a neuron is termed the best matching unit (BMU). 

Accordingly, in each learning step, one sample from the input data set is randomly chosen and 

the BMU is searched. Once it is found, the prototype vectors of the BMU and its topological 

neighbors are moved closer to the input vector in the input space as graphically shown in Fig. 

4.25. The training procedure is performed in two stages. First, the SOM is approximately tuned 

to the input data, and then through fine-tuning in the second stage, the final map topology is 

achieved. The training parameters are relatively large in the first stage but they possess small 

values right from the beginning in the second stage [107].  

The unsupervised version of SOM does not utilize the class information; however with 

some modifications, the network can take the class into account. This is achieved by augmenting 

the original feature vector where the class information is treated as an extra feature. This 

classifier in either mode was implemented in MATLAB with the help of a great SOM toolbox 

generously provided by a group of researchers in Finland [107]. The original feature vector used 

by this classifier was discussed in section 4.3.3. 

 
 
 

 

Fig. 4.25: SOM training phase 
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4.4.3 K-Nearest Neighbors 

In KNN classifiers, graphically shown in Fig. 4.26, the K closest examples in the training 

data set are found, and the majority class is determined and assigned to the unlabeled example 

[108]. In the case shown, the unknown input is assigned to class 1. The term “closest” implies 

utilization of a metric to measure closeness. Most often, this metric is a dissimilarity measure of 

Euclidean type distance. In addition to the need for a metric, KNN classifiers require an integer 

K and a set of labeled examples, i.e., training data. In this dissertation, 8=K , which was 

determined through cross-validation. The 8NN classifier uses the feature vector presented in 

section 4.3.3 and was implemented in MATLAB using a built-in function called knn . 

KNN classifiers are easy to implement and nearly optimal in the large sample limit, They 

yield highly adaptive behavior using the local information. However, they are computationally 

intensive and highly susceptible to the curse of dimensionality. Furthermore, KNN classifiers 

impose large storage requirements since the entire training data set must be employed for 

classification of every new pattern. 
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Fig. 4.26: KNN classification with K= 8 
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4.4.4 Discriminant Functions 

The discriminant classifier can be viewed as a network of functions called discriminant 

functions )(Xgi that operate on each input vector X to determine its category. A discriminant 

classifier selects the category corresponding to the largest discriminant [53]. Fig. 4.27 shows the 

network structure of a discriminant classifier. With c discriminant functions, the feature space is 

divided into c decision regions, and every function responses to a specific region. The linear 

discriminant function used in this classifier fits a multivariate normal density for each group, 

with a pooled estimate of covariance. The linear DIS classifier uses the feature vector presented 

in section 4.3.3. This classifier was implemented in MATLAB as a function. 
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Fig. 4.27: Discriminant classification structure 
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4.5 PERFORMANCE ANALYSIS OF CLASSIFICATION FUNCTIONALITY OF 

THE IFDS 

In this section, the performance of the classification functionality of the IFDS is studied. 

The objective of this analysis is to assess operational aspects of the classifiers in terms of the 

classification rate. The performance of the classifiers is also evaluated using the false positive 

(FP) and false negative (FN) measures. The false positive exists when the classifier identifies a 

pattern incorrectly where no such pattern exists in reality. Detection algorithms of all kinds have 

the tendency to create such false alarms. The false negative occurs when the classifier fails to 

reveal a pattern that actually exists in the data. Specifically, if the IFDS labels a non-incipient 

data as an incipient abnormality, this decision is deemed a false positive decision. On the other 

hand, if the IFDS fails to indicate an incipient abnormality and makes a no-incipient decision, it 

is considered a false negative result. Evidently, false positive decisions are more tolerable than 

the false negative results. Thus, the overall goal of the classification is to make the classification 

rate as high as possible and if there are false decisions, false positive decisions are more 

welcomed than false negative ones.  

In addition to the classification accuracy measures, an analysis was conducted to determine 

the class composition of measurements before and after actual faults that occurred in the 

underground cable. This study uses the labeled outputs of the system to provide some insights 

into the emerging patterns of the data preceding and following a failure. 

4.5.1 Classification Rate  

The overall classification rate of the IFDS is determined by the performance of the 

individual classifiers, including the rule-based and supervised ones. The performance of a 

classifier can be measured in terms of its classification rate (CR) defined by (4-17). Most of the 

time, the objective is to minimize the error rate by maximizing the classification rate. 

 

sassignmenttotalofnumber
sassignmentcorrectofnumberRC =       (4-17) 

 

For the ensemble of classifiers operating in series in the system, when a classifier performs 

well, the overall classification rate is high. On the contrary, a less accurate classifier has a 
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negative impact on the performance of the entire system. In addition to the performance of 

individual classifiers, the composition of the input data is also a determining factor of the 

classification rate. If a classifier performs poorly, its adverse influence on the system 

classification rate is exacerbated when it needs to make a decision on the majority class. 

Specifically speaking, the supervised classifiers of the system respond to the majority class of 

the inputs. Thus, their classification rate has a major impact on the overall classification rate and 

must be improved as much as possible.  

The classification rate of the system can be evaluated using the training and test data. The 

system should perform well on the training data because it has seen the patterns comprising the 

input space. However, caution must be taken to avoid the over-fitting problem in which the 

system memorizes the patterns rather than learning them. An over-fitted classifier presents 

superior classification accuracy on the training data but possesses poor generalization 

capabilities and does not perform well on the data that it has not seen before. Using the test data, 

the system should respond adequately well to meet the prescribed classification rate.  

To analyze the classification rate of the supervised classifiers and that of the IFDS, studies 

were conducted using field recorded data. Specifically, one study was conducted using 3001 

measurements captured from June 16, 2002 until July 17, 2002. For supervised classifiers, 2163 

captures were incipient abnormalities at various degrees of severity. The function of classifiers 

was to classify data in terms of the severity degrees. In all studies, the training and test set were 

formed using a 75/25 blend. The results are as follows. 

 

4.5.1.1 Classification Rate of the Supervised Classifiers 

Each classifier was trained using the training data and relevant training algorithm. When 

trained, the classifiers were tested individually against two sets of data to evaluate their 

performance. The results are presented in Fig. 4.28 where the classification rates of the 

individual supervised classifiers are reported. In this study, there were 1622 samples in the 

training set and 541 samples in the test set randomly selected from the incipient data. As can be 

seen, for this set of data, the SVM classifier outperforms the other classifiers, achieving an 

average rate of 98.52% on the test data. The other classifiers perform fairly well on the test data. 

It should be mentioned that this result was observed to be true in all studies performed with 

different random samples from the data. 
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Fig. 4.28: Classification rate of supervised classifiers on the training and test data 

 
 
 
4.5.1.2 Classification Performance of the IFDS 

To assess the overall classification rate, both incipient and non-incipient data totaling 3001 

measurements were used. The incipient data were composed of all kinds of incipient 

abnormalities at different degrees, and non-incipient data were comprehensive and composed of 

all classes. The classification problem was defined as a 4-class classification problem where the 

IFDS was supposed to make decisions as to the label of the data. The four classes included the 

three incipient classes and one cumulative class for the non-incipient data. The idea was to see 

how well the measurements were classified by the combined classifiers including the rule-based 

(RB) and supervised classifiers. The measurements were ordered chronologically as they were 

measured and fed to the IFDS. A few separate runs were conducted employing a different 

classifier in the supervised classification stage. Once the classification task ended, the overall 

classification rate was computed by counting the number of correct assignments taking the 

average of all the resultant numbers for classification rate. The overall classification rates using 

different classifiers are presented in Fig. 4.29. As seen, an overall classification rate of 97.17% 

was achieved with RB-SVM classifier, and that of RB-KNN, RB-DIS, and RB-SOM were 

similar, varying around 94% on the average.  

 



 

 

113

97.17

93.84

95.43

94.57

90.00

92.00

94.00

96.00

98.00

100.00

RB|SVM RB|KNN RB|DIS RB|SOM

IFDS

C
la

ss
ifi

ca
tio

n 
R

at
e 

(%
)

 

Fig. 4.29: Overall classification rates 

 
 
 

The performance of the classifiers was also assessed using the false positive and false 

negative measures. A false negative classification occurred when an incipient abnormality 

measurement was incorrectly labeled as non-incipient or it was assigned to a lower severity 

incipient class. On the other hand, a false positive resulted when a non-incipient capture was 

assigned to the class of incipient abnormalities. The resulting measures using each classifier 

combination in the system are shown in Fig. 4.30. The presented numbers are the FP and FN 

measures obtained on the 1380 test data. It can be concluded that while all classifier 

combinations are fairly skewed toward the false positive region, the RB-DIS classifier provided 

the most wrong assignments that are mostly false positive. From this point of view, the RB-DIS 

classifier combination appears to be the least appealing choice to be used in the system. 
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Fig. 4.30: False positive and false negative measures 

 
 
 

4.5.2 Illustration of Classification Results through Class Compositions 

Determining the class composition of measurements is another quantitative performance 

analysis approach that was conducted to observe the classification results before and after actual 

faults in the underground cable. An example of such analysis is provided in Fig. 4.31. This plot 

presents the percentage of the data assigned to various classes before and after a cable fault that 

took place on 12/24/02. From this graph, the following observations can be made.  

High-class incipient abnormalities compose 45.8% of the data before the fault, but this 

proportion significantly decreases to 3.4% after the fault, indicating that a point of transition has 

passed. Medium-class incipient abnormalities make up 20.3% of the data before the fault and 

34.3% after the fault, respectively. This may be an indication that the incipient abnormalities 

have lessened in severity, but they have not completely disappeared after the fault time has 

passed. The composition of low-class incipient abnormalities has sharply risen from 1.8% before 

the fault to 34.3% afterwards. This confirms that the incipient abnormalities have been reduced 

in severity after the failure. The aggregate class of non-incipient data shows a slight decrease in 

its composition percentage, dropping 7.5 points to 24.7%.  
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Fig. 4.31: Class composition of measurements for case I 

 
 
 

Another similar study was accomplished for another cable failure on 06/11/03. The class 

composition of the measurements preceding the failure is given in Fig. 4.32. As can be seen, the 

three classes of incipient abnormalities make up 46.1%, 23.1%, and 1.3% of the data, 

respectively, and 29.5% of the data are labeled non-incipient. As expected, the high-class 

incipient abnormalities compose the majority class before the fault time. In terms of the actual 

numbers, a good deal of similarity is observed in comparing the pre-fault compositions of the 

data in the two cases as conveyed by Fig. 4.31 and Fig. 4.32. 
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Fig. 4.32: Class composition of measurements for case II 
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4.6 VISUALIZATION OF CLASSIFICATION LABELS 

The purpose of this study is to visually illustrate the behavior of the class labels and the 

trend before and after two faults recorded at the monitoring site. For a fault on 12/24, the 

classification labels before and after a fault are presented in Fig. 4.33. The data included captures 

two days before and three days after the fault time. Four types of labels are shown which include 

three incipient classes: low, medium, and high intensity incipient data, and another aggregate 

class for non-incipient data. As can be seen, the high intensity incipient data is the most frequent 

class observed before the fault time and the least frequent class afterwards. The opposite is true 

for low intensity incipient data. Since these classes are mutually exclusive, every capture can be 

assigned to only one class, and the decreasing rate of occurrence for the high intensity incipient 

data naturally results in an increasing rate of occurrence for the other classes. This is seen for the 

medium intensity incipient data where the frequency of occurrence shows an increase after the 

fault time. The presence of reduced intensity incipient abnormalities might be an indication of 

persisting system deterioration that will eventually lead to another failure. In fact, six months 

later another fault occurred in a different section of the cable lateral.  

Similar behavior can be observed for a later fault on 06/11 that took place approximately six 

months after the first fault. The corresponding plot for this fault is shown in Fig. 4.34. The post-

fault data were not available due to a monitoring system failure. The trend of arrival frequency 

conforms to the pattern observed in Fig. 4.33. As the fault time approaches, the high intensity 

incipient abnormalities tend to occur more frequently than before and dominate the other classes. 

In both scenarios, the increasing rate of occurrence of high intensity incipient abnormalities was 

consistent and may be used to indicate the progressive deterioration of the system toward an 

imminent fault. It should be noted that the observed behavior can not be simply generalized from 

these two observations. As pointed out in Chapter II, there are many different failure 

mechanisms in cables, which may or may not present the same pattern. Nonetheless, what 

remains valid is that the classifiers will capture a pattern if it exists. 
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Fig. 4.33: Class labels before and after fault on 12/24 
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Fig. 4.34: Class labels before fault on 06/11 
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4.7 SUMMARY 

In this chapter, the classification functionality of the IFDS using rule-based and supervised 

classifiers was presented in detail. The rule-based classifier designed for various switching type 

events and DC classes was introduced and its operational aspects were discussed. Also, spike 

analysis and detection algorithms were developed and discussed. The supervised classifiers 

included SVM, SOM, KNN, and DIS classifiers, which were designed and configured for 

classification of complex incipient abnormality data. Based upon the defined severity degree 

measures, three classes of low, medium, and high severity classes were emerged and the 

classifiers were trained to solve the classification problem. Evaluation of the performance of 

individual and combined classifiers showed satisfactory classification accuracy. In comparing 

various classifier combinations used in the IFDS, the RB-SVM combination was found to 

perform superior over other classifiers. Therefore, in the detection phase, the IFDS uses the class 

labels that are determined by the SVM classifier. The results from the other classifiers are used 

for evaluation and performance studies. 

The next chapter brings up the other important functionality of the IFDS which is the 

detection of near failure. The relevant methods and developed detection approaches constitute 

the major subject matter of the next chapter. 
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 CHAPTER V  

INCIPIENT FAULT DETECTION METHOD 

5.1 INTRODUCTION 

This chapter discusses the detection functionality of the incipient fault diagnosis system 

(IFDS). First, a temporal severity measure is introduced. This measure provides a descriptive 

trajectory of incipient behavior as the severity degree exacerbates over time. The expectation is 

that the severity of an imminent incipient fault shall increase monotonically, as the fault draws 

near. The severity measure is based on a new severity index called the Global Severity Index 

(GSI) computed from the classification results. GSI serves as supplemental information for 

detection purpose. 

Although GSI provides insights into the trajectory of the deterioration process, it is not 

designed to give quantitative information such as the near failure detection. This important 

functionality of the IFDS is accomplished by a quantitative detection approach which is based on 

the numerical modeling of measurements using a SOM. First, a numerical model of the present 

incipient state of the underground cable is established. Then, the SOM model is used to 

determine and compute gradual deviations of the incipient behavior from its present status. If 

there is an ongoing incipient activity in the cable, the accuracy of the model is expected to 

worsen over time and the resulting modeling errors are utilized to compute the detection index. 

The detection index values are computed from the modeling errors by taking the natural 

logarithm of the minimum modeling errors. Once the detection index is established, 

determination of the alarm time(s) translates into a change detection problem where the goal is to 

detect when the detection index instantaneous values cross a specified threshold. The threshold 

crossing represents the system deviation from its initial state captured by the SOM model. 

Three detection algorithms namely, Cumulative Sum (CUSUM), Exponentially Weighted 

Moving Averages (EWMA), and Generalized Likelihood Ratio (GLR) are discussed and 

designed to solve the change detection problem. These algorithms were selected so as to conduct 

a performance analysis and compare the results from each algorithm. 
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5.2 TEMPORAL SEVERITY MEASURE 

Through the classification functionality, the IFDS is able to automatically recognize input 

patterns and classify them into designated classes. Once classified, each measurement is assigned 

a prescribed label that describes its class and information content. An analysis of interest is to 

use present classification labels in conjunction with the past information to draw meaningful 

conclusions about the frequency/trend of occurrence of particular class of measurements, 

namely, the class of incipient abnormalities. By defining a new index called the Global Severity 

Index (GSI), a temporal severity measure was developed. This section provides details about this 

measure and its application. 

5.2.1 Global Severity Index 

The supervised classifiers label the incipient abnormality data in terms of their severity 

degrees where the input capture is classified based upon its local content, regardless of the 

history of previous captures. In other words, it is a static classification approach. However, the 

real scenario in which incipient faults evolve and lead to a catastrophic failure may involve 

historical information as well. When evaluating the severity of an incipient abnormality, it is 

important to take into account the past behavior of the system and consider the severity changes 

over time. This temporal severity analysis is accomplished by a measure referred to as the 

Global Severity Index (GSI). The two-stage severity analysis involving GSI is shown in Fig. 5.1. 

The GSI is defined for every capture that is an incipient abnormality. It provides information as 

to how the current incipient abnormality is related to the past behavior of the cable. 

It is worth mentioning that in temporal analysis, the incipient information is viewed as 

survival data in which the time of a particular event is of a concern [109]. Survival data 

encountered in reliability and applied statistics refer to the time of an event. In the context of this 

work, an event is defined as the arrival of an incipient abnormality. Thus, the analysis includes 

monitoring the system for a definite period and recording the time at which an incipient 

abnormality takes place. During the observation interval, events i.e. incipient abnormalities may 

or may not occur. If they occur, the attributed arrival times are recorded and the events are 

considered uncensored. If the events do not occur, they are considered censored and the 

associated arrival times are discarded. 
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Fig. 5.1: Stages of temporal severity measure 

 
 
 

5.2.2 Computation of GSI 

The Laplace Test Statistic (LTS) plays an important role in the computation of GSI. This 

test uses a set of points that are chronologically ordered based upon the arrival times of events of 

interest [62]. Let mTTT ,...,, 21  be a sequence of m  arrival times in their chronological order. The 

times between arrival times are called interarrival times and are denoted by the sequence 

of 121 ,...,, −mXXX . The Laplace Test Statistic (LTS) for the set of m  incipient events is 

defined by (5-1) assuming that the observation stops at the last thm  recorded incipient event. 
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Having all the arrival times for incipient events available ( 01 =T ), the GSI is the LTS 

calculated for each event using a fixed-size sliding window as given in (5-2). In this formula, 

W denotes the window number and m is the size of the window. Fig. 5.2 symbolically shows the 

method of assessing global severity of incipient abnormalities using a sliding fixed window size 

of seven events. The span of calculation m  is a parameter that defines how much past 
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information accounts for current incipient incidence. Intuitively, GSI is not defined for the 

events that lie in the first window because there is not enough information to calculate it.  

 

.constmW
LTSGSI

=
=         (5-2) 

 
 
 
 
 
 

 

 

Fig. 5.2: Illustration of GSI computation using a sliding window of size 7 

 
 
 

5.2.3 Behavior and Significance of GSI 

Three scenarios under which the incipient behavior might progress are considered. Incipient 

abnormalities may arrive at a constant, increasing, or decreasing rate. Equivalently, the 

interarrival times may remain constant, decrease, or increase over time. In order to understand 

the usefulness of this measure in assessing the global severity of an incipient event, it is 

informative to examine the behavior of the test statistics under the preceding scenarios using 

simulated arrival times. This is graphically illustrated in Fig. 5.3. In this figure, there are nine 

plots in three columns. Each column corresponds to each scenario printed on top of the plots in 

the first row. This row shows the assumed arrival times under each scenario and the three graphs 

in the middle row depict the corresponding interarrival times. Using 15 simulated arrival times 

for each scenario, the LTS was computed using a growing window and the resulting values were 

plotted for each case on separate graph in the third row. The GSI corresponding to each scenario 

is the final value of LTS.  

Window10 

Window 2 

Window 1 

   

   Arrival time of an incipient abnormality 
Time 
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Under a constant rate of occurrence or equivalently constant interarrival times, the mean 

arrival times are approximately 
2
mT , and the numerator in the Laplace test becomes a small 

number close to zero. Hence, as shown in the figure, the Laplace test asymptotically approaches 

zero as time continues. If the arrival times convey an increasing trend toward the end of the 

interval, the mean grows and becomes larger than the half interval time. Accordingly, the test 

statistics increases toward large positive numbers, indicating decreasing interarrival times. 

Finally, if the rate of occurrence is decreasing, the test statistics possess negative values, 

implying that the interarrival times are becoming larger and larger. Accordingly, when applied to 

the incipient abnormality data, the temporal severity can be measured with respect to the past 

observations as a numeric value. This measure quantifies the behavior of successive incipient 

events during the observation interval. 

As discussed earlier in the IFDS, the incipient data are partitioned into three classes in terms 

of their severity degrees. A GSI value is computed for each class, but the GSI computed for the 

high-severity class data naturally carries a considerable significance over the other two classes. 

The GSI values are calculated for each measurement and chronologically ordered as a time 

series. Thus, the global severity index is a function of time and an aggregate measure of severity 

of an incipient abnormality with respect to its present local and past severity degree. The 

significance of this global index is that it can signify the deterioration trajectory of the 

underground system empirically observed to be a monotonic process. When GSI presents an 

increasing trend, it naturally implies that a fault could be imminent. On the other hand, a 

decreasing trend could be an indication of system improvement over time because the severity of 

the incipient abnormalities deceases. The applicability and usefulness of this temporal severity 

measure in depicting the progressive severity trend of incipient abnormalities will be illustrated 

in chapter V using field recorded data from the monitoring site. 
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Fig. 5.3: Response of global severity index under decreasing, constant, and increasing rate 
of arrival times 

 
 
 

5.3 SOM-BASED INCIPIENT FAULT DETECTION METHOD 

The SOM based incipient fault detection method provides a quantitative measure to 

statistically predict near failure for the cable being monitored. This method is based on the 

numerical modeling of the cable’s present state and uses the modeling error to determine the 

degradation path over time. The minimum modeling errors (MME) constitute the fundamental 

component of the detection index (DI). This index is defined to be the natural logarithm of the 

minimum modeling errors. The natural logarithm modification is necessary as it facilitates the 

subsequent statistical formulation of the change detection problem.  
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To numerically model the data, a SOM representing the present status of the cable is 

designed and the resulting prototype vectors are used to serve as the codebook. When a new 

pattern becomes available, it is exposed to the SOM model and the minimum modeling error is 

computed. Ideally, if the error is within the tolerance boundary, the new pattern is deemed 

similar to the model and labeled as an “ally”. Once the error limit is crossed, the corresponding 

input vector is flagged and a structural change point is detected. Thus, when chronologically 

ordered, the minimum modeling errors serve as the fundamental unit of the detection index. It 

should be noted that the presence of outliers in data can also give rise to substantial spurious 

errors and thus it is imperative that potential outliers be removed from the input patterns before 

training the SOM and exposing the new patterns to the SOM model. The formal definition of the 

detection index and its characteristics are discussed next. 

5.3.1 Detection Index (DI) 

As mentioned, the detection index is in fact the natural logarithm of the minimum modeling 

errors. When new input vectors are exposed to a trained SOM, the minimum modeling errors can 

be used to quantitatively describe the modeling accuracy. Naturally, smaller errors indicate a 

higher modeling accuracy and that is highly desired in clustering applications. On the contrary, 

the prototype vectors and the incoming input patterns are highly dissimilar when large modeling 

errors emerge. Further, the higher the computed modeling error, the greater the dissimilarity. 

Substantial modeling errors indicate that the prototype vectors are no longer good representatives 

of the input patterns and thus a change in the structure of the data has occurred. This is the 

principle used in the incipient fault detection method based on SOM numerical modeling. Kang 

and Birtwhistle applied this principle in condition assessment of power transformer on-load tap 

changers [101][102][103]. 

As discussed in section 4.4.2, SOM maps high dimensional data in the input space into a 

low dimensional display of an output space while preserving the most important topological and 

metric relationships of the primary data points. The inputs to SOM are multidimensional 

numerical data arranged in a data matrix. Each row of the matrix is one observation or input 

vector and each column is a variable or feature. The output usually consists of a set of nodes 

(neurons) arranged on a two-dimensional grid called the map.  

SOM neurons have in fact two positions. In the input space, each neuron is associated with 

a prototype vector whose dimension is the same as the input vectors. In the output space, the 
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neurons positions are specified by the map. In a trained SOM, each input vector is represented by 

its Best Matching Unit (BMU) on the map. The representation error or quantization error 

between data vectors and their BMUs is a measure of data mapping accuracy. During training 

procedure, the objective is to minimize the average quantization error. Once a SOM is trained 

and fine-tuned, the map units represent the input vectors with minimum quantization error. The 

resulting prototype vectors associated with BMUs represent the numerical models of the input 

vectors. Using these numerical models, the response of the SOM to a new input can be described 

by computing the minimum quantization error or minimum modeling error.  

The minimum modeling error is based on the proximity measure between the input vector 

F and its BMU as defined by (5-3). In this formula, the weight vector W  is the same size as 

F and associated with the BMU. The distance metric is the Euclidean norm that provides a 

measure of dissimilarity between two D-dimensional vectors W  and F  and happens to be the 

most commonly used proximity measure. This metric is expressed in (5-4). Once MME is 

computed, the detection index is established by taking the natural logarithm of the MME as 

given in (5-5). DI values must be in chronological order. The dimension D  is determined by the 

number of features used in the modeling, which is 16=D . The features are the sixteen 

normalized energy values computed from the wavelet packet analysis at the fourth level. These 

features are defined and computed in section 4.3.1.1. 
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5.3.2 Statistical Characteristics of the MME and DI 

Although the ideal behavior of the modeling errors discussed in the beginning of this 

section makes the change detection problem less challenging, it is not the case in practice. 

Typical behavior of the MME during the training phase of a SOM is depicted in Fig. 5.4. This 

figure is obtained by using classified field data and treated as an example in the rest of this 

section. As seen, the average modeling error is minimized but not the variance of the errors 

(bias-variance tradeoff). The chronologically ordered modeling errors average around 5.48, 
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however the resulting variance is large. In fact, there is an inherent statistical variability in the 

modeling errors in the training phase even after removing potential outliers.  

The resulting challenges are twofold; on one hand, the existing statistical variability makes 

it difficult to determine a simple global threshold for the change detection problem and on the 

other hand, the sole application of modeling errors for detection purposes is noise and outlier 

prone, and thus highly sensitive. Controlled sensitivity is a desired feature of the IFDS, but 

uncontrolled and unexpected sensitivity give rise to a high probability of false alarm and thereby 

indifferent response of maintenance crew.  

To overcome the challenges involved, the detection index was developed and the 

corresponding change detection problem was solved using statistical methods. In order to 

implement the change detection method, the probability distribution of the minimum modeling 

errors and the detection index are needed, which are presented next. In order to specifically 

discuss the results, the MME values shown in Fig. 5.4 are used as a benchmark. Therefore, the 

values determined hereafter are associated with these data. 
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Fig. 5.4: Typical behavior of the modeling errors during the training phase 

 
 
 

The probability distribution function of the minimum modeling errors (MME) was 

investigated through a number of statistical studies. The results showed that the probability 

distribution function approximately follows a log-normal distribution. In other words, the 
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logarithm of MME is approximately a normal distribution. This result makes sense because the 

log-normal distribution is applicable when the quantity of interest is positive since the logarithm 

of a negative number is not defined. The log-normal distribution typically results whenever the 

random variable is the product of a large number of independent, identically-distributed 

variables. The normal and lognormal distributions are closely related. If x  is distributed 

lognormal with parameters µ  and σ , then xln  is normally distributed with the same 

parameters [110]. Since the DI is the logarithm of MME, this implies that DI is normally 

distributed. The log-normal probability density function for a random variable x  with 

parameters µ  and σ  is defined in (5-6).  
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The probability distribution of the MME and DI can be demonstrated using a number of 

plots as shown in Fig. 5.5. These plots were obtained from the data used in Fig. 5.4. The upper 

left histogram shows the distribution of the MME that approximate a log-normal distribution. 

The next graph (upper right) is the histogram of the logarithm of MME, i.e. DI. This graph 

shows that the data are reasonably symmetric, there do not appear to be significant outliers in the 

tails, and that it is reasonable to assume that the data are from a normal distribution. 

The normal probability plot shown in the lower left can be used to verify that the DI values 

come from a normal distribution. The plot has three graphical elements. The plus signs show the 

empirical probability versus the data value for each point in the sample. The solid line connects 

the 25th and 75th percentiles of the data and represents a robust linear fit. The dashed line 

extends the solid line to the ends of the sample. The normality assumption holds since all the 

data points fall near the line. If the data were non-normal, the plus signs would follow a curve 

instead of the line. Notice that the y-axis values are probabilities ranging from zero to one.  

The parameters of the normal distribution associated with DI can be estimated from the 

data. The empirical cumulative distribution function (CDF) for the DI along with its estimated 

CDF is given in the lower right graph. The empirical CDF, )(XF  is defined as the proportion of 

error values less than or equal to x . This plot is useful for examining the distribution of the error 

values. The overlaid theoretical CDF on the same plot compares the empirical distribution of the 

sample to the theoretical distribution. Alternatively, one can utilize other normality tests to verify 
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the probability distribution [111]. By estimating the distribution parameters, it was determined 

that ),( σµNDI ≈  where 59.1=µ  and 564.0=σ . The equation for DI  is given in (5-5). 

Knowing the DI values and the distribution parameters, it is time to formulate the change 

detection problem and establish the alarm values through a statistical approach. The formulation 

of the change detection problem follows and the latter is discussed later in section 5.3.7. 
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Fig. 5.5: Probability distribution of the MME and DI 

 
 
 

5.3.3 Formulation of the Detection Problem 

As discussed in the characterization of incipient faults, the nature of degradation 

phenomena is normally gradual and random. This nature of incipient faults causes the detection 

index values to gradually shift upwards and go through a monotonic process. When there is an 
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active degradation process in the underground cable, the new patterns exposed to the SOM 

model show less similarity to the prototype vectors. As the degradation process moves into 

different stages and deviates from its present status incrementally, the dissimilarity increases 

translating into a monotonic upward drift in the mean values. The non-decreasing mean path of 

the detection index captures the trend of changes in the states of cable. 

Formally speaking, assume that the mean values ( ni µµµµ ,...,,...,, 21 ) of the detection 

index undergo a non-decreasing process where ni µµµµ ≤≤≤≤≤ ......21 . Estimation of the 

mean path from DI values amounts to finding the least square fit for the restricted regression 

problem defined in (5-7). 
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where n  is the number of subgroups of the DI values and im is the number of DI values in 

subgroup i . This estimation problem can be solved using a numerical procedure in restricted 

regression called the Pool-Adjacent-Violators Algorithm (PAVA) [112]. This algorithm provides 

the maximum likelihood estimate (MLE) of the mean path under monotonicity restrictions. 

Fig. 5.6 illustrates this procedure using the field data. Fig. 5.6 (a) shows the DI values in 

chronological order along with the MLE of the detection index. The SOM model used for this 

study was established through the data used in Fig. 5.5. The non-decreasing MLE of the mean 

path was computed using the PAVA. For clarity, Fig. 5.6 (b) depicts the same estimated mean 

path on a separate graph. As can be seen, the mean path is a monotonic and non-decreasing 

process undergoing gradual drifts.  

Using the detection index values, the incipient fault detection problem is translated into a 

change detection problem. The detection index i.e. the natural logarithm of the modeling errors 

defined in (5-5) is viewed as a sequence of independent random numbers ,..., 21 XX  with 

),( σµ ii NX ≈  in which the means ...321 ≤≤≤ µµµ are monotonic and nondecreasing. The 

objective is to detect when the mean of the DI crosses a specified threshold δ . This important 

step is accomplished through modified versions of three change detection algorithms, namely 
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CUSUM, EWMA, and GLR. Before discussing each method, a general overview of the 

statistical change detection terminologies and methods seem necessary. 

 
 
 

1 1283 2565 3847 5129 6411 7693 8975 10257 11539 12821
-0.58

0.64 

1.87 

3.10 

4.32 

Measurment Number in chronological order (Index)

M
ag

ni
tu

de

1 1283 2565 3847 5129 6411 7693 8975 10257 11539 12821
0.87

1.27

1.68

2.08

2.49

Measurment Number in chronological order (Index)

M
ag

ni
tu

de

Estimated Mean Path

Detection Index
Estimated Mean Path

(a)

(b)
 

Fig. 5.6: Detection index and corresponding estimated mean path 

 
 
 

5.3.4 Statistical Change Detection 

Change detection problems are encountered in many applications such as quality control, 

signal segmentation, fault detection, and monitoring. Unlike the time series analysis in which the 

characteristics of the monitored data are either constant or slowly time-varying, the change 

detection methods model the data with parameters that are subject to change at unknown time 

instants. The basic idea of interest in change detection problems is, therefore, to detect whether 

there is a change in the characteristics of the data and estimate the change time.  
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The complexity of a change detection problem varies by the number of parameters and the 

need for estimation of the change time. In some applications, the model parameter is 

multidimensional and the change time needs to be estimated. These types of problems utilize 

various modeling methodologies such as state space models or multidimensional statistical 

models to overcome the complexities involved. On the other hand, in a number of applications, 

the changing parameter is a scalar and the change time need not be estimated. The parametric 

statistical tools are instrumental in such problems that are mostly encountered in industrial 

applications [113]. 

In addition to the dimension of the parameter, the nature of the change is of great 

importance. Two main problems concern additive and nonadditive changes. Additive changes 

assume that the change is in the mean value of the sequence of observations, whereas 

nonadditive changes occur in the variance, correlations, spectral characteristics, and dynamics of 

the signal. The complexity of change detection problem escalates if the nature of changes is of 

nonadditive type. The underlying concept in change detection methods based on mathematical 

statistics is to view the samples of measurements as a realization of a random process. The 

change detection can be technically performed in an online or offline fashion, however, this 

work is primarily concerned with online detection methods since the principle goal is to 

anticipate the fault. Historically, the online change detection was applied to the area of quality 

control, where control charts were introduced in 1931 and then cumulative sums charts in 1954 

[113].  

5.3.5 Online Change Detection Terminologies 

The online change detection problem applied to this work treats the detection index values 

as a sequence of independent random variables with a probability density function that has one 

scalar parameter denoted by θ . Let nkky ≤≤1)( be such a sequence with conditional 

density ),...,( 11 yyyp kk −θ . At the unknown change time 0t , the conditional density parameter 

θ  migrates from its constant value of 0θ to a different value of 1θ  and the objective is to detect 

the change occurrence at at  with minimum delay 0tta −  where at  is the alarm time at which the 

change is detected [113].  
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Ordinarily, the estimation of parameters 0θ , 1θ , and knowledge of the actual change time 

0t  are not required. In some cases, one or all of these parameters are known and in that case such 

prior information simplifies the detection algorithm, relatively. The situation where none of the 

parameters are known is the most interesting from a practical point of view, but also the most 

complex one from the design and implementation point of view. It is implicitly assumed that 

only one change at a time is considered and multiple change times are sufficiently away from 

each other so that the assumption is held. The detection is accomplished by a stopping rule 

generally defined in (5-8) where sup represents the extrema with respect to a real value, δ  is the 

threshold, and 1)( ≥nng  is a family of functions of n  coordinates [113]. 

 
{ }δ≥= ),...,(:sup 1 nna yygnt        (5-8) 

 

A common change detection problem encountered in industrial plants is known as the 

online quality control. The measurements are assumed to follow a normal distribution with 0µ  

and 0σ parameters under normal operating conditions. During faulty conditions, two basic types 

of changes can take place: a change in the mean or a change in the variance. Fig. 5.7 shows a 

change in the mean value of normally distributed measurements. Fig. 5.8 shows another case 

where there is a change in the variance at constant mean. Evidently, the incipient fault detection 

problem is of type I, namely a change in the mean. The problem is to develop a decision rule that 

detects these changes and issues an alarm signal notifying the operator of the faulty conditions. 

The decision rules are provided through the change detection algorithms. 
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Fig. 5.7: Increase in the mean at constant variance 
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Fig. 5.8: Increase in the variance at constant mean 

 
 
 

The change detection algorithms make use of an important property of the log-likelihood 

ratio defined in (5-9). The key property of the log-likelihood ratio is that a change in the 

parameter translates into a change in the sign of the mean value of the log-likelihood ratio [113]. 

Formally speaking, if 
0θ

Ε and 
1θ

Ε denote the expectations of the random variables under the two 

distributions 
0θ

p and 
1θ

p , respectively; then (5-10) holds true. 

)(
)(

)(
0

1

yp
yp

Lnys
θ

θ=         (5-9) 
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>Ε<Ε sands θθ        (5-10) 
 

The performance of change detection algorithms can be evaluated using a number of indices 

such as the probability of false alarm and the mean delay of detection. Assume that 0t  is the 

actual change time and that a detection algorithm indicates the crossing at a stopping point at  

such that }:sup{ δ≥= na gnt , where ng denotes the response of the detection algorithm. 

Depending upon the relative values of the two times, three possible scenarios are possible. 

• If 0tta < , then the detection algorithm has made a false decision and }{ 0ttP a <  

represents the probability of false alarm. 

• If 0tta > , then the detection algorithm has detected the change with a delay equal to 

0tta − . Thus, the expected delay is represented by )|( 00 ttttE aa >− . 
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• If 0tta = , then the detection is accomplished just on time, and hence the probability of 

false alarm and expected delay are both zero.  

Intuitively, a change detection algorithm with a small probability of error and minimum 

detection delay is desired. The best solution is the quickest detection of the change with as few 

false alarms as possible but minimizing the delay increases the false alarm rate. Frequent false 

alarms are inconvenient due to the costs associated with stopping the service and pinpointing the 

origin of fault. Also, from a psychological point of view, frequent false alarms make the operator 

less sensitive about the true alarms over time. Therefore, the optimal solution is usually a 

tradeoff between fast detection and few false alarms considering the costs associated with the 

two objectives. Another desired characteristic of change detection algorithms is the robustness in 

the presence of noise conditions and modeling errors. The detection algorithms that are robust 

and easy to tune on a new signal are practically preferred.  

5.3.6 Change Detection Algorithms 

The algorithms applied to the change detection problem include the cumulative sum 

(CUSUM), exponentially weighted moving average (EWMA), and generalized likelihood ratio 

(GLR) [113][114][115]. The original versions of these algorithms are designed to indicate a 

change in the mean when it jumps from one level to another level during which it crosses the 

threshold. The change detection problem in this work does have a different nature as follows. 

As discussed earlier, degradation and development of incipient faults are gradual in nature 

and do not occur suddenly. The incipient activity might persist in the cable for a few days, 

months, or even years before it actually develops into a short circuit fault. Realistically, the 

monitored degradation parameter may experience a gradual incremental increase over the course 

of incipient activity before a catastrophic failure initiates. The parameter may jump to one level, 

stay constant for a while, and jump to another level, and so on. The challenges involved is that 

the original change detection algorithms that are designed to detect a single jump from one level 

to another need to be modified so that the process continues its monotonic trend until a 

prescribed threshold is crossed.  

The mission of the IFDS is then to monitor the condition of the system as long as the 

monitored parameter is below a specified threshold. Once the threshold is passed, the system 

must detect this violation in time so that corrective and preventive actions can take place. In the 
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following sections, the detection algorithms investigated in this work are introduced and tailored 

to solve the detection problem using the instantaneous values of the DI. 

 

5.3.6.1 Cumulative Sum Algorithm 

The Cumulative Sum (CUSUM) algorithm was first proposed by Page in 1954 for quality 

control applications when the parameter θ  experiences a single jump from one level to another 

[113]. The decision function kg  is the difference between the current value of the cumulative 

sum of the log-likelihood ratio kS  and its current minimum km  [113]. Mathematically, 

hmSg kkk ≥−=  where h  is a specified alarm value and 
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The stopping time given in  (5-12) is reached when the decision function kS  exceeds the 

alarm value h  or equivalently the cumulative sum crosses an adaptive threshold of hmk + . 

Although h  is a constant, the sum of hmk +  varies at every step. km  is updated online and 

thereby the information manifested in the past observations is preserved. 

 

}:min{ hmSkt kka +≥=         (5-12) 
 

Relevant to the change detection problem, assume that a Gaussian sample of size N is given 

and the mean of the underlying Gaussian distribution µ  changes from 0µ  to 1µ  at 0t  while the 

variance 2σ  stays constant. The probability density and the log-likelihood functions are 

respectively given by (5-13) and (5-14). 
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The cumulative sum function typically shows a decreasing trend before change and an 

increasing one after change. In one of the classic well-known quality control algorithms called 

Shewhart Control Charts [113], samples of fixed size N  is taken and a decision is made to 

choose one of the two potential hypotheses about the parameter using the cumulative sum 

function. The null hypothesis 0H  holds when there is no change and the alternative hypothesis 

1H  prevails when the parameter changes.  

11
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H          (5-16) 

 
The process is called “in-control” as long as the decision is made in favor of 0H . Once the 

decision rule indicates that 1H holds true, the monitoring stops and a change point is detected. 

The optimal decision rule using the alarm value h  is expressed in (5-17). 
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The original CUSUM algorithm designed for a single jump is not directly applicable to the 

incipient fault detection problem and needs to be revisited and modified. The goal is to keep the 

process somewhere below a threshold or “in-control”. In this problem, there is no target value 

for the change parameter. This algorithm in more general situations is applied by using the 

following recursion form [114]. 

 

),0( 1 rXWMaxW nnn −+= −        (5-18) 
 

where nW is the CUSUM computed at sample n , nX is the thn observation, and r  is a user-

defined reference value. In the incipient fault change detection problem, the natural selection of 

r amounts to δ , the starting point 00 =W , and nX is the thn  instantaneous value of the DI.  

The response of the CUSUM applied to the detection index values computed from data used 

in Fig. 5.6 is depicted in Fig. 5.9. As seen, unlike the original CUSUM algorithm, the modified 
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function remains around zero as long as the mean of the detection index is below the threshold 

and starts growing once the threshold is passed. An alarm signal is issued as soon as the CUSUM 

response crosses a pre-specified alarm value which is 19.77 in this case. 
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Fig. 5.9: CUSUM response 

 
 
 
5.3.6.2 Exponentially Weighted Moving Average Algorithm 

The Exponentially Weighted Moving Average (EWMA) algorithm uses a finite set of 

weights to emphasize differently on past and present observations. A variant of this statistic 

formulated for the incipient fault change detection problem in recursive form is given in (5-19) 

[114]. 

 
})1(,{ 1 nnn XEMaxE λλβ +−= −        (5-19) 

where β  is a reflecting barrier for the change in one direction and λ  is the smoothing 

parameter lying between 0 and 1. The higher the smoothing parameter, the greater emphasis is 

placed on the recent observations. An alarm is raised at time }:{ hEnMint na ≥=  for some 

specified h . There are three parameters to specify in the EWMA algorithm, namely ,,βλ and 

0E . Unlike CUSUM, there is no unique choice for these parameters by statistical theory, but the 

findings are as follows.  
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The values of λ  in the range of 001.0005.0 ±  was found to perform well. The choice of 

β  is determined more subjectively using two standard deviations below the threshold led to 

good performance. The natural choice for the starting point 0E  in the original quality control 

applications is the specified target value. As in the incipient fault change detection problem, 

there is no notion of a single target value, 0E was intuitively set equal to β . With these settings, 

the response of the EWMA to the sequence shown in Fig. 5.11 is depicted in Fig. 5.10 in which 

λ = 0.0052 and β  is two standard deviations below the threshold of 2.1. Unlike the other two 

change detection algorithms, in EWMA the response is a smoothed version of the detection 

index values. As soon as the smoothed sequence passes the threshold, a change point is detected.  
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Fig. 5.10: EWMA response 

 
 
 
5.3.6.3 Generalized Likelihood Ratio Test 

The generalized likelihood ratio test is a general method used extensively in detection 

problems. For the incipient fault change detection problem, the null hypotheses is 

{ }δµµµ ≤≤≤≤= nH ...210  and the alternative is { }δµµµµ ≥≤≤≤= nnH ,...211 . 

Therefore, using the GLR algorithm, hypothesis testing is performed at every step and the 
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detection is completed once the decision is made in favor of the alternative [114]. The log-

likelihood ratio statistics is given in (5-20). 
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This optimization problem gives rise to two least-square regressions under monotonicity 

restrictions, a problem known as isotonic regression [112]. The restricted regression Z  

corresponds to hypothesis 0H  and can increase up to δ . The unrestricted regression Y  

corresponds to the AHH ∪0  hypothesis. These two regressions provide the maximum 

likelihood estimates under the two hypotheses.  

The solution to find the unrestricted regression Y  is provided by the pool-adjacent-violators 

algorithm (PAVA) [112]. Having computed Y  at every step, the computation of Z  is trivial as 

),min( δii YZ = . The GLR test corresponding to the normally distributed DI values is provided 

by evaluating nM  which is defined in 

 

(5-21) [114]. 
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where }:min{ δ>= iYiJ . Once nM  crosses the alarm value h , the process stops and the 

violation is detected at }:min{ hMnt na ≥= . The two regressions and the response of the 

GLR algorithm corresponding to the detection index values in Fig. 5.6 are shown in Fig. 5.11 . 

The threshold for this experiment was set at 2.1. As seen, once the threshold is passed the 

difference between the two regressions grow and indicate that a change has taken place. 
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(a) two isotonic regressions 
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(b) GLR response 

Fig. 5.11: GLR regressions and response 

 
 
 

5.3.7 Determining Alarm Values through a Probabilistic Approach 

The change detection problem requires that an alarm value ( h ) be specified given an 

assumed probability of false alarm. This can be carried out using the following probabilistic 

approach. If the probability of false alarm is assumed as 5%, then it follows that 

05.0}max{}{
110

0

=≥=<
−≤≤

hgPttP ktka . In this formula, kg  represents the output of each 

detection algorithm. For CUSUM algorithm, kg = kW . By knowing the distribution of ktk
g

11 0

max
−≤≤
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the alarm value h  may be estimated by finding the 95th percentile of that distribution. If the 

mean behavior is known, one can produce a large number m  of mean paths through computer 

simulations and the corresponding detection index values, and calculate 

},...,,max{ 121 0−
= tj gggZ  for mj ,....,1= . The alarm value is the order statistic )95.0( mZ , i.e. 

)95.0( mZh =  [114]. 

In order to generate a large number of simulated detection index values, the probability of a 

jump and the distribution of jump heights and residuals are needed. Assuming a geometric 

distribution for the times between jumps, the probability of a jump can be calculated by (5-22). 

 

periods  timeofnumber  Total
meansPAVA  in the jumps ofnumber  Total)Pr( =Jump     (5-22) 

 
The geometric distribution defined by (5-23) is a discrete distribution defined for 

nonnegative integers [110]. It is useful for modeling the runs of consecutive successes - a jump 

in this application - in repeated independent trials of a system.  
nn pqppxpdf =−= )1()(         (5-23) 

where 1,10 −=<< pqp . 

A good approximation for the jump heights is an exponential distribution. The exponential 

distribution is the only memoryless random distribution, and is defined in (5-24) where µ  is the 

mean parameter of the distribution. For the example detection index values depicted in Fig. 5.6, 

the parameter was determined to be 0.062. The corresponding jump values are shown in Fig. 

5.12(a). The empirical and theoretical CDF curves are given in Fig. 5.12(b). The dotted lines 

specify the upper and lower confidence bounds which contain the CDF curves indicating the 

acceptable goodness of the fit. 

µ

µ

x

expdf
−

=
1)(          (5-24) 

 
 
 



 

 

143

0 3 6 9 12 15 18 21 24 26
0     

0.05 

0.11 

0.17

0.22
Jumps

M
ag

ni
tu

de

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

E(0.062)

Index

(a)

Data

(b)  

Fig. 5.12: Jumps and the distribution of jumps 

 
 
 

Residuals are defined as iii Xr
∧

−= µ , where iX  is the detection index value at time i and 

i

∧

µ  is the corresponding estimated PAVA mean at time i . For the example detection index 

values, the statistical analysis results of the residuals are presented in Fig. 5.13. The normality 

property of the residuals can be confirmed by the histogram, probability plot, and the q-q- plot. 

A normal distribution fit results in a zero mean and a standard deviation of 0.545. Thus, the 

detection index values are modeled as ),(
∧

≈ σµ ii NX  in which the means ( iµ ) are unknown 

but non-decreasing and 
∧

σ  was estimated from the residuals. Using this model, the simulated 

mean paths and corresponding detection index values were computed. Fig. 5.14 shows the actual 

PAVA path along with 10 simulated mean paths. By examination, it is seen that the adopted 

model simulates the original PAVA paths well.  
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Fig. 5.13: Distribution of residuals 
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Fig. 5.14: Estimated mean path and 10 simulated mean paths from the model 
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5.4 SUMMARY 

In this chapter, the foundation and principles of the detection functionality of the IFDS were 

discussed. The temporal severity measure referred to as the GSI was introduced and discussed. 

The detection method using SOM minimum modeling errors were presented and pertaining 

operational aspects of this method were discussed. Using the detection index values, the change 

detection problem was formulated. Three detection algorithms namely, Cumulative Sum 

(CUSUM), Exponentially Weighted Moving Averages (EWMA), and Generalized Likelihood 

Ratio (GLR) were discussed and specifically designed to solve the change detection problem.  

In the next chapter, after introduction of the IFDS, its performance in detecting near failure 

time will be presented and discussed using data recorded from the monitoring site. 
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 CHAPTER VI 

INCIPIENT FAULT DIAGNOSIS SYSTEM AND 

PERFORMANCE ANALYSIS 

6.1 INTRODUCTION 

In this chapter, the Incipient Fault Diagnosis System (IFDS) is reviewed and its operational 

components are discussed. Using field recorded data, the detection functionality of the IFDS is 

tested and its performance is evaluated. The detection results also include the GSI application on 

the field data.  

6.2 OVERVIEW OF THE IFDS 

The developed incipient fault diagnosis system is a multi-module system implemented 

using MATLAB release 14. In addition to the embedded MATLAB toolboxes including the 

statistical toolbox, a SOM toolbox generously provided by a group of researchers in Finland 

[107] was utilized in the implementation of the IFDS. Additionally, the LIBSVM toolbox 

developed by Chang and Lin was used [98].  

The overall flowchart of the IFDS and its main modules are presented in Fig. 6.1. The IFDS 

uses voltage and current measurements – collectively called data - as the input information, and 

utilizes advanced signal processing and pattern analysis techniques to classify data into various 

categories. In the detection phase, the classified incipient abnormality data are used to compute 

detection index values and through modified change detection algorithms, the threshold crossing 

at the specified threshold is indicated. 

The data is first fed to the preprocessing module. As discussed in Chapter III, the 

preprocessing operations include DC removal, resampling, and denoising. The preprocessed data 

are then passed through the rule-based classifier. In this module as discussed in section 4.2, a set 

of time-domain features is computed and used by the rule-based classifier. The rule-based 

classifier utilizes its embedded knowledge to evaluate each rule and assign its input to one of the 

predetermined classes. At this stage, categories of data belonging to DC classes, various 
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switching type events, normal classes, and potential incipient abnormalities are distinguished. If 

the classification at this stage does not indicate the presence of an incipient abnormality, the 

capture is directly passed to the post-processing module. Otherwise, the feature extraction 

module operates on the data, and another set of features in time and wavelet domain is extracted. 

The horizontal and vertical severity index values and normalized energy features are the 

products of this module. Details about this module can be found in section 4.3. In the following 

classification module, the features are used to classify the event into one of the three classes in 

terms of the severity degrees, namely low, medium, and high degrees. These classes and the 

utilized classifiers were discussed in section 4.4.  
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Fig. 6.1: Overall flowchart of the IFDS 
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In the detection phase, as presented in section 5.2, the class of incipient abnormally is used 

to compute the GSI values corresponding to each severity degree. The GSI graphs are used in the 

detection module as a complementary piece of information that indicates the trend of incipient 

severity in the cable at three severity level. More specifically, the graphs show the operator 

whether the severity degree increases over time, remains constant, or decreases. Further, the data 

classified to be potential incipient abnormality are fed to the detection method. At this stage, the 

detection index values are computed and the detection algorithms are utilized to solve the change 

detection problem. The algorithms include CUSUM, EWMA, and GLR. Further information 

about the detection method can be found in section 5.3. 

After all computations in the detection module are complete or the rule-based classifier does 

not classify the event as an incipient abnormality, the post-processing operations are initiated. 

The results are combined and interpreted in the post-processing module and the system outputs 

its results to the user. For each capture, the important outputs include the date and time of the 

capture, the classification label from each classifier, the global severity index for each severity 

degree, the current value of the detection index, and lastly, whether or not a threshold crossing 

has occurred. A graphical representation of the IFDS output is shown in Fig. 6.2.  

Notice that the GSI value shown corresponds to the high severity class and the threshold-

crossing output corresponds to the CUSUM algorithm. Essentially, there are three threshold-

crossing outputs for each algorithm and three GSI values for each severity degree. The IFDS 

output includes a number of other operational quantities that provide supplemental information. 

The IFDS operation is sequentially repeated for each capture and can be continued as long as the 

detection module indicates that the cable is operating in its green zone. As soon as a threshold 

crossing takes places, an alarm is issued to warn the operator about the change.  
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Fig. 6.2: Graphical representation of the IFDS output 

 
 
 

The ideal operation cycle of the IFDS in three warning levels is shown in Fig. 6.3. Initially, 

the system needs to be calibrated. This includes training classifiers, setting alarm values and 

thresholds, and establishing the numerical SOM model. Then the system is ready to put into 

operation and make decisions once a capture becomes available. While in operation, the system 

uses the detection index to prompt the user upon violating the detection zones defined by the 

threshold values. As soon as a threshold is crossed, the IFDS indicates the violation at the alarm 

times defined by the corresponding alarm values at levels I, II, and III. Once alarm level III is 

hit, the near failure point is reached and corrective actions should be taken to prevent the 

imminent catastrophic failure. When the required corrective tasks are completed, the IFDS needs 

to be recalibrated before it resumes its operation for a new monitoring cycle. Availability of 

three levels of detection points helps to prioritize the maintenance tasks as the least benefit. 

Nonetheless, it requires that enough information i.e. a number of fault cases be available to 

properly set the threshold values for each level. 
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Fig. 6.3: Ideal IFDS operation cycle 

 
 
 

6.3 DETECTION RESULTS USING FIELD DATA 

In this section, the performance of the IFDS is evaluated for the faults that actually 

happened during the long-term monitoring. There have been several cable failures in the 

monitored lateral among which seven scenarios are discussed in this dissertation. These 

scenarios include fault cases for which the pre-fault data were available. The system was run in 

sequential mode to make decisions and output its detection results at three warning levels. For all 

fault cases, the detection results from three detection algorithms were determined and it was 

observed that at least one method was able to produce the desired alarm signal. The results are 

thoroughly presented for two scenarios namely faults on 12/24 and 06/11; for all other faults, a 

summary of the detection results is given and a discussion follows. The two fault cases are 

referred to as scenario I and scenario II, henceforth. 
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6.3.1 Introduction of Case Studies  

The performance analysis of the IFDS is accomplished using field data recorded from the 

residential cable lateral shown in Fig. 6.4. Section 3.2 describes the cable lateral and provides 

details about the monitoring system and recorded signals. The data recorded over three years 

were divided into seven sets where each set concluded to a cable failure, either on the monitored 

lateral or on the adjacent lateral. Each set defines a case study. Table 6-1 gives information about 

the faults and number of measurements for each case. As indicated, two out of seven faults 

included in the table happened in the adjacent laterals under normal weather condition. 

Fig. 6.5, Fig. 6.6, Fig. 6.7, and Fig. 6.8 show plots of phase current signal on the fault day 

for cases I through VII, respectively. The values shown in the plots were obtained by averaging 

the phase current measurements over a 15-minute window. As it can be seen, when the fault was 

on the monitored lateral, the phase current goes down to zero and stays around zero for the 

duration of the fault. For faults on the adjacent laterals, cases V and VI, however, the phase 

current signal undergoes a change but not a radical one. 

To prepare and calibrate the IFDS, the supervised classifiers were trained using 4000 data 

patterns. The SOM models were established for each case according to the principles described 

in section 5.3 using 25% of the available incipient data samples. Notice that the models need to 

be updated every time there is a change in the cable lateral or a fault occurs. Furthermore, the 

GSI computation for each case requires measurements at fixed intervals and no gaps should exist 

in the data. 

For each case, adaptive thresholds were determined consistently as follows. The minimum 

threshold or the warning level 1 threshold was established through the UMP test [116] at a 

significance level of 1% and found to perform well. The threshold for the third warning level or 

the maximum threshold was computed by establishing a significance level of 4% in rejecting the 

null hypothesis i.e. the hypothesis that assumes the data come from the SOM model distribution. 

Finally, the second warning level threshold was simply computed by taking the average of the 

minimum and maximum threshold values 
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Fig. 6.4: Monitored underground cable lateral 

 
 
 

Table 6-1: 
IFDS case studies 

Case Fault Date Duration 
(min) Weather Location Number of  

Measurements 
I 2002-12-24 68 Adverse ML 18278 
II 2003-06-11 79 Adverse ML 16109 
III 2004-02-04 68 Normal ML 9162 
IV 2004-07-09 65 Normal ML 2632 

V* 2004-09-26 78 Normal AL 7492 

VI* 2004-10-05 79 Normal AL 762 
VII 2004-10-12 375 Normal ML 571 

ML: Monitored lateral 
AL: Adjacent laterals 
* : fault on the adjacent laterals 
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(a) case I (b) case II 

Fig. 6.5: Average phase current in fault cases I and II 

 
 
 

 
(a) case III (b) case IV 

Fig. 6.6: Average phase current in fault cases III and IV 

 
 
 

 
(a) case V (b) case VI 

Fig. 6.7: Average phase current in fault case V and VI 
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Fig. 6.8: Average phase current in fault case VII 

 
 
 

6.3.2 Application of the GSI as a Temporal Severity Measure 

To illustrate the application of the GSI in depicting the trend of incipient faults, the IFDS 

was used to classify data captured before and after faults in the system. Using the classified high-

level incipient abnormalities along with their global severity indices in chronological order, the 

following illustrations were completed. The results for scenario I and II are presented as follows. 

Note that the post-fault data for scenario II were not available due to damage to the monitoring 

system, and thus only the plots of pre-fault interval are presented. 

 

6.3.2.1 Scenario I 

The first case pertains to a fault, which occurred on December 24 in the monitored cable 

lateral. The resulting GSI and its PAVA mean path for high severity degree over a 27.73-day 

interval before and after the fault are presented in Fig. 6.9 and Fig. 6.10, respectively. This index 

uses a span of 50 samples. As can be seen, there is a non-decreasing trend toward the fault time 

and a non-increasing one afterwards. This behavior of the GSI indicates that the high severity of 

captured incipient abnormalities escalates as the underground system approaches the failure 

time. After the failure, however, the severity of high severity incipient abnormalities lessens 

sharply in terms of the frequency and intensity.  
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Fig. 6.9: Global severity index values in chronological order for scenario I 
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Fig. 6.10: Mean path of the global severity index in scenario I 

 
 
 

In order to explain the behavior of the GSI during the observation interval, arrival times, 

interarrival times, and cumulative plots shown in Fig. 6.11 are used. The fault time is indicated 

by a colored dotted line terminated by squares at both ends. From the arrival times plot, it is seen 

that 499 incidences of high-class incipient abnormalities have been captured over a 27.73-day 

interval. The sharp increase of the arrival times a few days after the fault time is unique and 

interesting. It corresponds to the post-fault portion of the GSI plot where a decreasing trend is 

observable.  
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Fig. 6.11: Arrival times and the associated plots for scenario I 

 
 
 

A better picture of the frequency of high incipient abnormalities can be observed through 

the plot of interarrival times. Although the dominant value of 11.64 days masks the other data 

points on the original plot, the behavior of interarrival times is apparent from the zoomed plot. 

As the fault time approaches, the spikes that represent the time between successive incipient 

abnormalities decease in magnitude. This behavior of the interarrival times corresponds to the 

increasing trend of the GSI. When the time between arrival times decreases in magnitude, the 

incipient abnormalities happen more frequently, and the time length of the observation window 

shrinks. The GSI conveys this characteristic as a trend that monotonically increases.  

The lower subplot shown in Fig. 6.11 depicts the cumulative number of incipient 

abnormalities versus cumulative operating time expressed in days. When interarrival times tend 

to become larger, the system is said to be improving. Conversely, if the interarrival times 

become smaller, the system is deteriorating over time [62]. In other words, the cumulative plot of 

the number of events versus cumulative operating time concaves up when the system is 
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degrading and vice versa; hence, this graphical technique corresponds to the trajectory of GSI, as 

it tends to slope upward before the failure and bend down immediately after. 

 
6.3.2.2 Scenario II 

This case is related to another fault that occurred on June 11th of the following year. 

Following the same procedure as in the previous case, the resulting GSI and its PAVA mean 

path are depicted in Fig. 6.12 and Fig. 6.13, respectively. Similar to scenario I, the trajectory of 

GSI presents a non-decreasing trend toward the fault time.  
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Fig. 6.12: Global severity index values in chronological order for scenario II 
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Fig. 6.13: Mean path of the global severity index in scenario II 
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The corresponding arrival times, interarrival times, and cumulative plots are shown in Fig. 

6.14. The fault time is indicated by the colored dotted line at the end of the observation period. 

From the plot of the arrival times, it is seen that 459 incidences of high-class incipient 

abnormalities have been captured over a 11.90-day pre-fault interval. The rate of increase, i.e., 

the slope of the arrival times, is not constant and occasionally becomes steep. From the plot of 

interarrival times, it is seen that as the fault time draws near, the incipient data tends to happen 

more frequently, and the time between successive abnormalities shrinks. This behavior of the 

interarrival times corresponds to the increasing trend of the GSI. The cumulative number of 

incipient abnormalities versus cumulative operating time conveys a similar message as in 

scenario 1. When it concaves up, the underground system undergoes deterioration due to severe 

incipient abnormalities, and when it concaves down, the system is improving. As implied from 

the figure, the sequence of degrading/improving is not consistent and does not necessarily follow 

a special pattern. This observation is in harmony with the characteristics of incipient faults 

believed to be random in nature. 
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Fig. 6.14: Arrival times and the associated plots for scenario II 
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6.3.3 Detection Results Using SOM Based Detection Index 

In this section, the detection results using the SOM-based detection index is given. The 

results for two scenarios are provided in detail, but for all other fault cases, a summary of the 

detection results from the three algorithms is provided.  

 

6.3.3.1 Scenario I 

The resulting detection index values for this scenario are graphed in Fig. 6.15 along with the 

plot of the mean path as a dotted line. The mean path was obtained using the PAVA algorithm. 

From this graph, it is seen that the mean value of the detection index is a non-decreasing 

monotonic process stepping up at some irregular times before the fault time. Using the 

methodology described in chapter V, the alarm value was set at 19.77 and the threshold was 2.1. 

As shown in Fig. 6.16, all three detection algorithms indicated the change point approximately 

around the same time. DP on this graph stands for detection point. Since this is the actual data 

and not a simulation, the real change point is not known. Notice that the IFDS detected the 

crossing point before the actual fault time. For the specified threshold value at warning level 2, 

the time-to-failure (TTF) was about 110.71, 110.66, and 106.74 days using CUSUM, EWMA, 

and GLR algorithms, respectively. It is noted that the general response of the detection 

algorithms were presented in Chapter V, Fig. 5.9, Fig. 5.11, Fig. 5.10, respectively. 
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Fig. 6.15: Detection index and MLE of the mean path  
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Fig. 6.16: Detection results of three algorithms 

 
 
 
6.3.3.2 Scenario II 

The resulting detection index values for this scenario are depicted in Fig. 6.17. From this 

graph, it is seen that the mean value of the detection index stays around the same value for a few 

weeks in between but rises monotonically preceding the fault time. The message conveyed by 

this behavior of the detection index may be that the incipient behavior of the cable was almost 

stable for a few weeks, but worsened over time leading to a failure in June. This graph in 

conjunction with the graph of the global severity index depicted in Fig. 6.13 indicates that the 

cable is migrating from its current state toward a more deteriorated state as the severity degrees 

show an increasing trend. Therefore, there are twice as many evidences as before that a fault is 

imminent. 

The CUSUM response and detection result is given in Fig. 6.18. Setting the threshold at 

2.59, alarm value at 20.28 with 5% probability of error, CUSUM predicted the fault 48.06 days 

prior to the actual fault time. The time-to-failure is a function of the alarm value. Increasing the 

alarm value results in a decrease in TTF. However, unreasonably chosen alarm values may cause 

CUSUM to fail to indicate the change.  

The detection results and the response of the EWMA algorithm are provided in Fig. 6.19. In 

this case, the TTF was 45.99 days, approximately two days less than that of CUSUM. The 

response of the algorithm was computed using the same parameters reported in Chapter V.  
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Fig. 6.17: Detection index and MLE of the mean path 
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Fig. 6.18: Detection using CUSUM 

 
 
 

Finally, Fig. 6.20 presents the detection result and the response of the third algorithm i.e. 

the GLR method. In this case, the TTF was 14.35 days. Fig. 6.21 depicts the detection results 

from the three algorithms on a single graph for comparison. From this graph, it is observed that 

the change time was indicated by all three techniques before the fault time. This result along 

with the complementary graph of the global severity index shown earlier in Fig. 6.13 provides 

sufficient evidences that a fault is imminent. 
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Fig. 6.19: Detection using EWMA 
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Fig. 6.20: Detection using GLR 
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Fig. 6.21: Detection results from three algorithms 
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6.3.3.3 Summary of Detection Results for All Cases 

The cumulative results of the IFDS for all fault cases at warning level 1, 2, and 3 are 

presented in Table 6-2, Table 6-3, and Table 6-4, respectively. For each case, the tables include 

the Time-To-Failure (TTF) values for each detection algorithm obtained from running the IFDS 

in sequential mode. The TTF values are expressed in days.  

Table 6-2 presents the performance of the IFDS at the first warning level. This warning 

level indicates the first time the underground cable deviates from the norm established through 

the SOM model. Intuitively, the resulting TTF values provide the maximum time window 

available prior to the failure. The IFDS detected all incipient faults by at least one of its detection 

algorithms. The minimum TTF at this warning level was 3.66 days achieved for case VII 

through the GLR and CUSUM algorithms.  

It should be noted that in view of variable number of measurements, the TTF values for 

each case are specific to that case and should not be compared across all faults. Comparing the 

detection algorithms, the CUSUM algorithm was the most successful, giving 100% success rate 

for all the faults, but there are more parameters to specify in this algorithm. The EWMA and 

GLR performed similarly at this warning level.  

 
 
 

Table 6-2: 
Summary of the IFDS results at warning level 1 

TTF (days) 
Case 

CUSUM EWMA GLR 
I 182.00 180.00 183.00 
II 167.70 150.02 149.80 
III 87.90 87.10 87.10 
IV 22.80 16.95 18.16 
V* 17.78 17.08   
VI* 4.54     
VII 3.66   3.66 

* fault on adjacent lateral 
TTF: time-to-failure   
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The detection results of IFDS at warning level 2 were presented in Table 6-3. At this 

warning level, the IFDS detected all incipient faults that were on the monitored lateral, but the 

faults on the adjacent laterals were not seen. For most of the cases, CUSUM and GLR 

successfully detected incipient faults; however, the CUSUM algorithm was the most successful, 

giving 100% success rate for all faults that were on the monitored lateral. The minimum TTF of 

3.62 days was achieved in case VII through the CUSUM algorithm.  

 
 
 

Table 6-3: 
Summary of the IFDS results at warning level 2 

TTF (days) Case 
CUSUM EWMA GLR 

I 110.71 110.66 106.74 
II 114.82 108.75 52.06 
III 39.93   1.07 
IV 17.15 13.48 16.87 
V*       
VI*       
VII 3.62     

* fault on adjacent lateral 
TTF: time-to-failure   

 
 
 
 

The detection results of IFDS at warning level 3 were presented in Table 6-4. This warning 

level is the most critical level which provides the shortest time window prior to a fault. From the 

table, it is seen that the IFDS detected all incipient faults that were on the monitored lateral, but 

similar to warning level 2, the faults on the adjacent laterals were not seen. The CUSUM 

algorithm was the most successful, giving 100% success rate for all faults that were on the 

monitored lateral. The minimum TTF of 3.57 days was achieved in case VII through the 

CUSUM algorithm.  
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Table 6-4: 
Summary of the IFDS results at warning level 3 

TTF (days) Case 
CUSUM EWMA GLR 

I 15.99 15.19   
II 48.06 45.95 14.35 
III 39.24     
IV 6.73     
V*       
VI*       
VII 3.57     

* fault on adjacent lateral 
TTF: time-to-failure   

 
 
 

Through a number of studies, it was observed that the TTF values are greatly influenced by 

how the mean values of the detection index grow and reach a maximum before a fault. The slope 

or rates of increase in the mean values determine the best achievable TTF. When relatively rapid 

changes take place in a shorter interval within a few days, as in case VII, the best achievable 

TTF is highly sensitive to the selected warning level. On the other hand, for a gradual increase as 

in case I and II, the best achievable TTF is not greatly affected by the warning level. It was 

concluded that it is always feasible to consistently achieve a risk-free TTF which provides the 

longest time window prior to a fault, but the minimum TTF determination depends upon the 

allowable risk of missing the detection. As expected, higher risks result in smaller TTF values 

and vice versa. Formulation and quantitative assessment of this optimization problem require 

that more data and more fault scenarios be studied.  

6.4 SUMMARY 

In this chapter, the IFDS and its operational components were reviewed. Using field 

recorded data, the detection functionality of the IFDS was evaluated. The detection functionality 

of the IFDS is achieved through a temporal severity measure termed GSI and a detection method 

based on the SOM modeling of the incipient abnormality data. The GSI is based on the temporal 

analysis of arrival times of incipient abnormalities. The results using this measure provided 

compelling picture of the deterioration trajectory of the cable preceding each failure.  
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The detection approach uses the numerical modeling capabilities of SOM and statistical 

change detection techniques. The SOM based quantitative detection approach uses the natural 

logarithm of the minimum modeling errors in chronological order as the detection index. Three 

modified change detection algorithms namely Cumulative Sum (CUSUM), Exponentially 

Weighted Moving Averages (EWMA), and Generalized Likelihood Ratio (GLR) were 

introduced and tailored to each fault scenario. Using these algorithms, the near failure time was 

determined at three warning levels. For each warning level, an adaptive threshold was 

determined in a consistent manner across all fault cases. The detection results showed 

satisfactory operation and specifically showed that at least one detection technique provides an 

early warning that a fault is imminent. It was observed that CUSUM algorithm was the most 

successful, giving 100% success rate for all fault cases on the monitored lateral. However, there 

are more parameters to specify in this algorithm, as opposed to EWMA and GLR. 
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 CHAPTER VII  

CONCLUSIONS AND FUTURE WORK 

7.1 CONCLUSIONS 

In this dissertation, a methodology for an efficient, non-destructive, and online incipient 

fault diagnosis system (IFDS) was developed. The system detected underground cable incipient 

faults before they become catastrophic and provided vital information to help the operator with 

the decision-making process regarding the condition assessment of the underground cable. The 

IFDS used voltage and current measurements as the input information and utilized a 

comprehensive data processing modules to achieve its two major functionalities i.e. 

classification and detection. Field recorded data over a long period from monitoring sites were 

used to evaluate, test, and study the performance of the IFDS.  

Through advanced digital signal processing and pattern analysis techniques, crucial 

information manifested in data was extracted and classifiers were designed to classify patterns 

into a number of designated categories. In the IFDS, the data was first fed to the preprocessing 

module to perform the necessary preprocessing operations, namely DC removal, resampling, and 

denoising. The preprocessed data were then passed through the rule-based classifier. In this 

module, a set of time-domain features was extracted and used to evaluate a set of rules defined 

for the designated categories of the data. At this stage, DC classes, various switching type events 

(load changes), normal, and potential incipient abnormality patterns were recognized. If the 

classification at this stage did not result in an incipient abnormality pattern, the measurement 

was directly passed to the post-processing module. Otherwise, the feature extraction module 

operated on the data, and another set of features in time and wavelet domain was extracted.  

Applying the dimensionality reduction principles, 14 informative features were determined 

and used in the supervised classifiers. These features included the first eight features at level 4 

and last four features at level 3 of the wavelet packet decomposition tree as well as and the two 

time-domain features termed as VSI and HSI. The supervised classifiers deployed in the system 

were Support Vector Machines (SVM), Self-Organizing Map (SOM), K Nearest Neighbors 

(KNN), and Discriminant classifiers. The classification results of the IFDS using these classifiers 

were satisfactory. Overall, an average classification rate of 97.17% was achieved during a 
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testing. For the given test data, the SVM classifier outperformed the other classifiers in terms of 

the classification rate and false positive/negative measures. Each classifier made decisions on the 

input patterns; however the system classification labels used in the detection stage were 

determined by the SVM classifier. 

For the detection module, a novel severity measure called the GSI was developed. This 

temporal severity measure not only takes into account the local content of the measured incipient 

abnormality, it also incorporates the past observations in assessing the current severity degree of 

incipient abnormalities. The Laplace Test Statistic played an important rule in computation of 

the GSI. The deterioration trajectory of the underground system studied for two case studies 

showed that this index was in fact applicable and successful in portraying the incipient behavior 

of the system.  

The severity measure based on the GSI provided the severity path of ongoing incipient 

behavior over time, but it was not designed to indicate the warning time. This desired feature of 

the IFDS was achieved through the SOM based detection approach utilizing the natural 

logarithm of the minimum modeling errors in chronological order as the detection index. The 

detection approach incorporated the numerical modeling capabilities of SOM and statistical 

change detection techniques. Three modified change detection algorithms namely Cumulative 

Sum (CUSUM), Exponentially Weighted Moving Averages (EWMA), and Generalized 

Likelihood Ratio (GLR) were introduced, and tailored to this specific application. Using these 

algorithms, the near failure time was determined from the instantaneous values of the detection 

index at three warning levels. For each warning level, an adaptive threshold was determined in a 

consistent manner across all fault cases. 

The performance studies and detection results of the integrated incipient fault diagnosis 

system were conducted and presented using the field recorded data. The performance studies 

included an assessment of the IFDS capability in predicting the faults that actually occurred in 

the monitored lateral. The detection results showed highly satisfactory operation and specifically 

showed that at least one detection technique with proper settings successfully provided an early 

warning that a fault was imminent. It was observed that the CUSUM algorithm was the most 

successful one giving 100% success rate for all the fault cases on the monitored lateral. It was 

concluded that it is always feasible to consistently achieve a risk-free TTF which provides the 

maximum amount of time prior to fault, but the minimum TTF determination depends upon the 
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allowable risk of missing the detection. As expected, taking the higher risks result in the smaller 

TTF values and vice versa. 

7.2 COMMENTS AND RECOMMENDATIONS 

The developed incipient fault diagnosis system was shown to perform as expected on the 

field data and available fault scenarios. Nevertheless, its operation and performance are subject 

to a number of considerations. These conditions and requirements can be discussed and 

commented in terms of the classification and detection functionalities as follows. 

Speaking of the classification functionality of the system, three points must be made. The 

rule-based classifier, although it uses a set of rules, is very effective in reducing the computation 

complexity of the supervised classifiers. It is possible to design the system with supervised 

classifiers only but this will not be the best possible solution. The good classification rate, 

acceptable training time and generalization capability of such a system requires much more data 

and logistics than the current design using an ensemble of classifiers. Furthermore, the settings 

and thresholds used in the decision rules are either automatically induced from the data or 

selected by the user in a subjective manner. It is important to realize that the non-incipient data 

are not used in the supervised classifiers. Yet, if a non-incipient pattern is directed to this 

module, the consequences are more tolerable by the system than that of the case where an 

incipient pattern is spuriously labeled as non-incipient. This is helpful in setting the user-defined 

thresholds. 

The second comment about the classification is about the supervised classifiers. Although, 

implicitly mentioned, the first challenge in utilizing any classification method in supervised 

mode is to have access to a set of training data that are already labeled. This time-consuming 

task was accomplished manually on the field data and the labeling was made through a 

subjective judgment of the captures. This requires some degree of familiarity with the incipient 

abnormality data and their characteristics which was achieved through studying and examination 

of a large number of field data from various sites. Application of the IFDS may require that the 

training phase be repeated over time. Currently, there is no automatic mechanism to update and 

modify the trained classifiers.  

As discussed, the IFDS classification functionality includes four supervised classifiers. The 

SVM classifier was found to perform superior over the other three classifiers and thus the class 

labels needed for the GSI computations are the SVM decisions. Nevertheless, extensive studies 
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might be needed to possibly improve the system operation by combining the classification 

results from all supervised classifiers included in the system. 

The detection functionality of the IFDS requires a number of important attentions. The 

temporal severity measure used to quantify the degradation path of the cable, although very 

effective as shown, is solely a subjective measure and should not be expected to behave similarly 

at all times. The performance and usefulness of this measure is influenced by the result of the 

supervised classifiers. As it uses the arrival times of the incipient data, it is important to make 

sure that the classification results are as high as possible. False classification results may cause 

the GSI to indicate spurious deterioration paths. On the other hand, this measure is not highly 

susceptible to a single wrong classification. This is due to the fact that its computation involves a 

set of arrival times located within the window and not an individual arrival time. Therefore, a 

single wrong arrival time should not drastically influence the GSI values as long as the right 

arrival times in the same window are highly dominant. Another point regarding this measure is 

the size of the window. A good rule of thumb is to remember that the bias-variance trade off 

holds true in this case as well. The longer the size of the window, the smoother the GSI values 

and vise versa. The optimum choice of the window size can be obtained through a number of 

runs with different values of the span.  

The measurements and monitoring must be conducted at regular uninterrupted intervals for 

computation of the GSI. The interrupt times where no capture is made are seen as elapsing times 

with no incipient data. The GSI will spuriously take the interrupt times into account once the 

first incipient data becomes available after the interruption is over. The best practice to avoid 

false calculations is to start over every time there is an interruption in data. The SOM based 

detection index does not use the arrival times of incipient abnormalities, but depending upon the 

cause of the interruption, it may become necessary to modify the model and update the settings. 

The best examples of such situations are the interruptions imposed by a change in the 

configuration of the underground cable or a catastrophic failure.  

Finally, the IFDS detection functionality includes three algorithms, indicating the change 

point at different times. The final decision of the IFDS regarding an imminent incipient fault 

may be improved by integrating the results from each detection algorithm. However, this 

improvement necessitates extensive studies and a number of fault cases. 
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7.3 FUTURE WORK 

The future work may investigate the following aspects. The developed diagnosis system 

was used to make decisions in sequential mode on a number of actual fault scenarios and the 

results were highly acceptable. Nevertheless, the generalization capability of the IFDS is a major 

topic for future work. More data from different sites and more fault cases are needed to assess 

the IFDS adaptation and generalization capabilities. Also, new rules and trained classifiers need 

to be developed for novel patterns that neither observed nor emerged in the data.  

The IFDS classification and detection functionalities include four supervised classifiers and 

three detection algorithms. It was found that the SVM classifier and the CUSUM detection 

algorithm performed well; nevertheless, future work may include extensive studies to possibly 

improve the system operation by integrating the classification and detection results provided by 

the other classifiers and detection algorithms. 

Hidden Markov Model (HMM) is a statistical approach that has been predominantly used in 

automatic speech recognition, yet it has become the gold standard for time series analysis. HMM 

has a great potential for classification problems involving temporal or sequential patterns. In the 

IFDS, the features used in the classification of incipient abnormalities are treated as static values 

and the temporal nature of the patterns is absorbed in the GSI. One can investigate application of 

HMMs to combine the static classification and GSI to produce a unified statistical detection 

index addressing the temporal nature of incipient faults.  

Finally, the IFDS primarily relies on the voltage, phase current, and notch high frequency 

signals to perform its operation. The notch low frequency current signal is not an information 

resource for the system and application of this signal can be investigated for possible 

improvements. 
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