
BUFFER INSERTION IN LARGE CIRCUITS

USING LOOK-AHEAD AND BACK-OFF TECHNIQUES

A Thesis

by

MANDAR WAGHMODE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2005

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4271601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BUFFER INSERTION IN LARGE CIRCUITS

USING LOOK-AHEAD AND BACK-OFF TECHNIQUES

A Thesis

by

MANDAR WAGHMODE

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Weiping Shi
Committee Members, Jiang Hu

D. M. H. Walker

Head of Department, C. N. Georghiades

December 2005

Major Subject: Computer Engineering

iii

ABSTRACT

Buffer Insertion in Large Circuits

Using Look-ahead and Back-off Techniques. (December 2005)

Mandar Waghmode, Bachelor of Engineering, University of Pune, India

Chair of Advisory Committee: Dr. Weiping Shi

Buffer insertion is an essential technique for reducing interconnect delay in sub-

micron circuits. Though it is a well researched area, there is a need for robust and

effective algorithms to perform buffer insertion at the circuit level. This thesis pro-

poses a new buffer insertion algorithm for large circuits. The algorithm finds a buffer-

ing solution for the entire circuit such that buffer cost is minimized and the timing

requirements of the circuit are satisfied. The algorithm iteratively inserts buffers in

the circuit improving the circuit delay step by step. At the core of this algorithm are

very simple but extremely effective techniques that constructively guide the search

for a good buffering solution. A flexibility to adapt to the user’s requirements and the

ability to reduce the number of buffers are the strengths of this algorithm. Experi-

mental results on ISCAS85 benchmark circuits show that the proposed algorithm, on

average, yields 36% reduction in the number of buffers, and runs three times faster

than one of the best known previously researched algorithms.

iv

To my parents

v

ACKNOWLEDGMENTS

I am greatly indebted to my advisor, Dr. Weiping Shi. Sir, I could not have

realized my potential without your invaluble guidance, consistent encouragement and

emphasis on quality of the research contribution. My words are simply insufficient to

express gratitude towards you.

Special thanks to Dr. Jiang Hu and Zhuo Li for the brain-storming sessions

we had during the course of this research and to Cliff Sze for making their research

available for comparison.

I also extend my sincere gratitude to many people who made my masters program

at Texas A&M University one of the most enriching experiences I have ever had.

Quality and Excellence is literally overflowing in my teachers, mentors and collegues

here. I am specially grateful to Dr. Sunil Khatri and Dr. M. Ray Mercer in this

regard.

Last, but not the least, without constant support and encouragement of my

parents and friends, it was not possible for me to come thus far. They have always

been and will always be there for me.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. A Little Digression . 1

B. Motivation . 3

C. Previous Work . 4

D. Organization of the Thesis 6

II PROBLEM DESCRIPTION AND PRELIMINARIES 7

A. Problem Description . 7

B. Preliminaries . 10

III LOOK-AHEAD AND BACK-OFF STRATEGIES 12

A. The Concept . 12

B. Few More Definitions . 13

C. Look-ahead . 14

D. Back-off . 16

IV SPEED-UP TECHNIQUES . 17

A. Reducing the Number of Buffer Positions Evaluated 17

B. Reducing the Effort of Processing Multi-pin Nets 18

C. Fast and Greedy Net-based Buffer Insertion 20

D. Faster Identification of Some Back-off Moves 20

E. Overall Flow . 22

V EXPERIMENTAL RESULTS OF LAB ALGORITHM 24

VI A FRAMEWORK TO OBTAIN EXACT OPTIMUM 28

A. Representation of a Candidate 28

B. Propagating the Candidates 30

C. Computing Non-redundant Candidates for a Net 31

D. Pruning Techniques . 32

E. Propagation Using Output Subgraph 34

F. Selecting Method of Propagation 35

G. Practicality . 36

vii

CHAPTER Page

VII BOOSTER MODELING AND INSERTION 37

A. Delay Models . 37

1. Single Booster . 39

2. Multiple Boosters . 43

B. Insertion . 45

C. Experimental Results . 46

1. Single Booster . 46

2. Multiple Boosters . 47

VIII CONCLUSIONS AND FUTURE WORK 50

REFERENCES . 52

VITA . 55

viii

LIST OF TABLES

TABLE Page

I Size of the benchmark circuits. 24

II Comparison against a contemporary algorithm. 26

III Booster modeling notations. 42

IV Single booster at different positions on a single wire. 48

V Booster delay models compared with SPICE simulations. 49

VI Multiple boosters on a single wire. 49

ix

LIST OF FIGURES

FIGURE Page

1 (a) Example combinational circuit. (b) Corresponding DAG rep-

resentation. 7

2 Look-ahead strategy for buffer insertion. 12

3 Example cost vs. delay profile, and benefit of looking ahead. 13

4 Look-ahead in its simplest form. 15

5 Back-off in its simplest form. 16

6 Estimating circuit slack approximately. 19

7 Aggressive net-based buffer insertion. 21

8 Top-level view of the algorithm. 23

9 Additional cost vs slack improvement for test-cases. 25

10 Comparison of cost performance of net-based insertion and look-

ahead levels 0,1 and 2 for different test-cases. 27

11 Sample input subgraph and its set of output nodes {h, n, e}. 29

12 (a) Booster placed in an interconnect. (b) Operation of booster. . . . 38

13 (a) Original circuit. (b) Circuit before triggering of booster. (c)

Circuit after booster has triggered for method 1. (d) Circuit after

booster has triggered for method 2. 40

14 Effect of booster on sink node voltage. 41

15 Multiple boosters on a single wire. 43

16 Effect of upstream booster on downstream booster node. 44

1

CHAPTER I

INTRODUCTION

A. A Little Digression

A one-day game of cricket, first fifteen overs and oh, how delightful is the stroke-play of

the likes of India’s “Little-Master-Sachin” or Australia’s “Always-Delivers-Gilchrist”!

The field restrictions are in place, and the batsmen have the luxury of taking risks in

order to score at a rapid pace. In contrast, in the middle of the innings, the focus is on

being watchful, taking fewer risks and building a solid inning. That is why the likes

of India’s “The-Wall-Dravid” and Pakistan’s “Mammoth-Inzi excel” in the middle

order. And then come the stars of the slog overs like South Africa’s “Zulu-Klusner”

smashing the ball mercilessly all over the field. There is nothing to lose in the slog

overs and making the most of the remaining deliveries is the key. Do these cricket

strategies suggest how to perform buffer insertion? How uncomplicated the life of a

VLSI CAD engineer would be if buffer insertion could be done effectively with such

simple strategies!

Similarly, in the game of chess, masters think of their own as well as opponent’s

possible future moves and strategize accordingly. The more they can look ahead into

the future moves, the greater is their mastery. Early in the game, few future moves

need to be visualized. Later on in the game, one has to be more careful, and need to

think of many more possible moves. Is this strategy applicable to buffer insertion?

As interconnect delay poses a limit to the performance of VLSI circuits, the

cost of required buffering resources to meet the timing constraints is exploding [7].

The journal model is IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems.

2

Therefore, we want to minimize the number of buffers inserted in the circuit while

satisfying the timing requirements. It is akin to the goal of scoring maximum runs in

the alloted fifty overs of a one-day cricket game. Then, are the cricketing strategies

applicable to buffer insertion? Let us see. Start from a state where no buffers are

inserted in the circuit and the slack is worst. Then continue adding buffers one by

one till the timing requirements are satisfied. Early on, don’t scratch your head

much because the chances of inserting a buffer in the wrong net are low. Relative

improvement in slack per newly added buffer is high. Later on, when the slack has

improved sufficiently, the returns from each newly added buffer are lower. At this

point, buffers should be inserted carefully because the chances of inserting buffers in

the wrong place are high.

Well, the next question is – how can we know if it is advantageous to insert a

buffer in a particular location? Like a chess master, this can be achieved by looking

ahead. Look a few steps into the future, evaluate which move is likely to give higher

slack improvements when some more buffers get added, and fix the most advantageous

move. If you try to look ahead into all permutations and combinations of the future

moves, you will exhaust the whole solution space and get the exact optimum solution

but it will need enormous amounts of time to solve the problem. So to borrow from a

chess master’s strategy, early on, you need not look much ahead. Later on, you need

to look ahead more and evaluate the possible moves carefully.

The next question is – does this strategy of looking ahead just as much as needed

yield an efficient way to solve buffer insertion problem? No – one crucial item is still

missing from the strategy. We have one luxury in buffer insertion that the cricketers

or chess-masters don’t have. What if somebody tells the batsman that he can choose

a few bad shots in his innings, those deliveries will be bowled at him again and he

can play them afresh? Or if somebody told a grand-master that he can to choose

3

some bad moves, take them back and play alternative moves instead? This is what

we call the back-off strategy, where we determine the least effective moves that we

made while inserting buffers, and revert them.

The back-off strategy adds a great amount of flexibility and effectiveness to

the overall buffer insertion algorithm. It not only improves the cost performance

of the algorithm but also the run-time of the algorithm. The cost improvement

seems intuitive while the run-time improvement doesn’t. The reason for the run-

time improvement is that the back-off strategy gives us the power to be much more

aggressive while inserting buffers. With the back-off strategy in our arsenal, we can

cut back on the number of look-ahead levels while inserting buffers and this results in

a much faster algorithm. It also gives rise to a flexible algorithm because we can use

these two strategies one after other with varying intensities at different stages of the

algorithm. It provides us a basic framework that can be used to trade off the solution

cost and run-time performance. These two simple ideas give us LAB (Look-ahead

And Back-off), the new buffer insertion algorithm that is proposed in this work.

B. Motivation

Buffer insertion is a very effective technique for reducing interconnect delay. Buffer

insertion for a single net or interconnect tree is a well-researched problem. L.P.P.

van Ginneken [1] proposed an O(n2) time dynamic programming algorithm in 1991

to maximize the slack of the net. Since then, his algorithm has become a classic

in this field and a substantial body of research has developed on the basis of van

Ginneken’s algorithm. The work of [8] suggested a wire segmenting algorithm to

be used as a precursor to van Ginneken’s algorithm resulting in faster run-time.

Lillis et al. [2] extended the framework to minimize buffer cost while satisfying the

4

timing requirements. Li et al. [9] improved the time bound on van Ginneken’s

algorithm to O(n log n). The authors of [10] prove that optimizing the total cost

given arbitrary buffer costs is a NP-hard problem, and also suggest techniques to

improve the efficiency of Lillis’ algorithm. Previous researchers [16, 14, 15] have

taken other approaches to solve different variants of the buffer insertion problem

like simultaneous routing, simultaneous gate sizing, and inclusion of slew and signal

integrity constraints.

In real applications, however, the primary objective is to reduce path delay in

combinational circuits rather single net delay. Therefore, buffer insertion should be

performed at the circuit level rather than at the net-level. This calls for efficient

algorithms at the circuit level that capitalize on the progress made by the faster net-

level buffer insertion algorithms cited above. The motivation of this research work is

to develop such a circuit level buffer insertion algorithm that uses efficient net-level

algorithms as its subroutines and builds upon them.

A simple-minded approach could be to apply van Ginneken’s algorithm, one

net at a time from primary outputs to primary inputs. Although this approach

guarantees that the slack at the primary input nodes is maximized, too many buffers

will be used since van Ginneken’s algorithm does not control buffer cost. To use Lillis’

framework, which controls buffering resources, will also run into problems due to the

re-convergences which are frequently encountered in combinational circuits.

C. Previous Work

A Lagrangian relaxation based algorithm for circuit level buffer insertion was proposed

in [3, 4]. A restrictive assumption, that buffers are placed equidistant from each other

is used in [3]. In practice, however, the availability of space dictates whether a buffer

5

can be inserted in a particular location. The work of [4] tries to get around this

restrictive assumption but resulting algorithms do not scale very well. In [3], the

CPU time is prohibitive even without cost optimization. With cost optimizations

and the restrictive assumptions are removed, it is likely to get much worse.

A path based buffer insertion algorithm is proposed in [5] that builds on the

dynamic programming approach of [1, 2]. It inserts buffers on statically computed

critical paths in the order of their criticality. However, due to its local focus on critical

paths, it may actually insert buffers that are locally effective on a particular path but

less effective when the whole circuit is considered. Highly critical paths in the circuit

require as many buffering resources as possible, and there is less scope to reduce the

buffer cost in such areas. Comparatively, the less critical areas of the circuit offer

more scope for cost optimization, but they get a lower priority in this scheme.

A network flow based algorithm is suggested in [6]. It tries to identify the nets

which should be given priority for inserting buffers by using the min-cut idea in

network flow problems. Though this idea is likely to overcome the disadvantages of

path based methods, this work assumes that buffers are placed to decouple certain

parts of the nets irrespective of layout space availability and also assumes that the

buffers are placed equidistantly in the interconnect. As mentioned earlier, such a

placement may not be possible in a pre-routed circuit. The quality of the solution

deteriorates when the buffer positions are adjusted during the legalization step.

[11, 12, 13] also address the circuit level buffer insertion problem coupled with

other problems such as accurate delay modeling and transistor sizing.

6

D. Organization of the Thesis

The rest of the chapters in this thesis are organized as follows. Chapter II presents

the problem statement. Chapter III explains the main idea of the look-ahead and

back-off strategies of the algorithm. Chapter IV describes the methods to further

speedup the algorithm. The experimental results for LAB algorithm are presented in

Chapter V. This heuristic approach of using look-ahead and back-off strategies is the

main contribution of this thesis.

A framework to find the exact optimum solution to the buffer insertion problem

was also developed in the early part of this research. This framework is presented

in Chapter VI. Another earlier work, in which delay models and insertion algorithm

were developed for interconnects with boosters [17], is also presented in Chapter VII.

Readers interested only in LAB can skip Chapter VI and Chapter VII. Chapter VIII

concludes the findings of this work and describes avenues for future work.

7

CHAPTER II

PROBLEM DESCRIPTION AND PRELIMINARIES

A. Problem Description

We represent a combinational circuit as a Directed Acyclic Graph (DAG) G = (V, E).

The set V = Vt ∪ Vn is a set of vertices (nodes) in the graph, where Vt comprises of

primary input, primary output, gate input and gate output nodes in the circuit, and

Vn is set of internal nodes in the interconnect routing trees. The set of edges E consists

of the edges in the interconnect routing trees and input-to-output edges connecting

the input and output nodes of the gates. Fig. 1 shows an example combinational

circuit and the corresponding DAG representation.

j

a b c d

g h i k l

m n

p q r s

a b c d

e

f

lkjh

n

r sqp
u

v w

Primary Inputs

(a)

primary outputs
w

u

v

t

o m o

t

(b)

f

e

ig

Fig. 1. (a) Example combinational circuit. (b) Corresponding DAG representation.

8

A buffer library B is also provided as a part of problem statement. The locations

where buffers can be inserted are given as a function f : Vn → 2B. Under this

definition, each node in the interconnect routing tree allows certain types of buffers,

or no buffer. Each buffer type bi ∈ B is modeled by driving resistance R(bi), input

capacitance C(bi), intrinsic delay D(bi) and cost W (bi). The cost of a buffer can be

either area or power or any other criteria, depending on the optimization objective.

Each interconnect edge e is modeled as a π type RC circuit and is associated

with resistance R(e) and capacitance C(e). Each gate is modeled in similar manner

as a buffer. Thus each edge e connecting a gate input to a gate output is associated

with delay D(e), each gate input node v is associated with input capacitance C(v)

and each gate output node v is associated with driving resistance R(v).

Following previous researchers [1, 2, 8], the Elmore delay model is used for in-

terconnect and a linear delay model is used for gates and buffers. For each edge e =

(vi, vj), signals travel from vi to vj. The Elmore delay of e is D(e) = R(e)
(

C(e)
2

+ C(vj)
)
,

where C(vj) is the downstream capacitance at vj. For any gate or buffer b at vertex vj,

the gate or buffer delay is D(vj) = K(b)+R(b) ·C(vj), where C(vj) is the downstream

capacitance at vj. For a gate input node v, the capacitance viewed from upstream is

C(v). Similarly, the capacitance viewed from upstream for inserted buffer b is C(b).

For any subgraph G′ = (V ′, E ′), the set of its input nodes I(G′) is such that no

edge in E ′ is directed towards the nodes in I(G′). Similarly, a set of its output nodes

O(G′) is such that no edge is directed away from the nodes in O(G′). As an example,

for G′ = G, I(G′) is a set of all primary inputs and O(G′) is a set of all primary

outputs.

Consider a subgraph G′ = (V ′, E ′) where V ′ ⊂ V , E ′ ⊂ E such that if v ∈ V ′

is a node in an interconnect routing tree in G, then the whole routing tree is in

G′. A buffer assignment is a function α(G′) : V ′
n → B ∪ {∅} that specifies the type

9

of buffer inserted for each node in V ′
n, where V ′

n is a set of legal buffer locations in

the interconnect routing tree. Since each of these assignments is a candidate for the

optimal one, we also refer them as candidates. W (α(G′)) denotes the total buffer cost

of α(G′).

If a directed path exists from node u to node v in G′, then delay of the path from

u to v under assignment α is defined as

D(u, v, α) =
∑

e=(vj ,vk)

(D(vj) + D(e)),

where the sum is over all edges e in the path from u to v.

The Required Arrival Time (RAT) Q(u) at node u is a user-specified value if u is

a primary output node. Otherwise, RAT at node u under α(G′) is defined as follows.

Q(u, α(G′)) = min
v∈O(G′)

{Q(v)−D(u, v, α(G′))}

Also, the Arrival Time (AT) T (u) at a node u is a user specified value if u is a primary

input node. Otherwise, AT at node u under α(G′) is defined as follows.

T (u, α(G′)) = max
v∈I(G′)

{T (v) + D(v, u, α(G′))}

The Slack at a node u under α(G′) is defined as follows.

S(u, α(G′)) = T (u, α(G′))−Q(u, α(G′))

Also, the slack of subcircuit G′ under α(G′) is given as

S(α(G′)) = min
v∈I(G′)

S(v, α(G′))

A buffer assignment α(G) satisfies the timing requirements of the circuit if

S(α(G)) > 0. The optimum solution to this problem is a buffer assignment that

has minimum cost among all the assignments, and satisfies the timing requirements

10

of the circuit.

The main algorithm presented in this work is a heuristic approach that tries to

minimize the buffer cost without guaranteeing an exact optimum solution. Addition-

ally, a framework to find the exact optimum solution was also developed in the early

part of this research. This framework is also presented in Chapter VI.

B. Preliminaries

Consider the dynamic programming based approaches of [2] and [10] to find the

optimal cost buffer assignment for a tree structure. Any assignment of a routing

subtree is represented as a triplet (Q,C,W) in these algorithms where Q is RAT

at the root of the subtree, C is the capacitive load presented to the upstream and

W is the cost of the buffers inserted under the assignment. Let us generalize this

representation for any circuit subgraph. In general, to adopt a dynamic programming

approach, an assignment for any circuit subgraph can be completely expressed as a

vector with the following parameters.

• Timing parameters:

This parameter is either the RAT or the AT, depending upon the direction

in which the subcircuits are being processed in the dynamic programming ap-

proach. Also, depending on the nature of the subgraph under consideration,

the number of nodes for which timing parameters need to be represented in the

vector may differ. As is evident from the definitions of RAT and AT, greater

the RAT or lesser the AT, better is the assignment in terms of timing.

For example, in the framework of [2], since the subgraph under consideration

is a tree and it is processed from leaves towards root, at RAT at exactly one

node is sufficient to represent a candidate. Later on, in Chapter VI, we will

11

develop a framework which uses RAT/AT at more than one node to represent

a candidate.

• Loading or Driving Parameters:

These parameters are either capacitive load seen by the upstream or driving

resistance seen by the downstream. Similar to timing parameters, the nature

and number of these parameters in the vector depends on the direction of pro-

cessing and the nature of the subgraph. For example, in the framework of [2],

capacitive loading at only one node is sufficient to represent a candidate.The

greater the driving resistance or lesser the capacitive loading, the better is the

assignment.

• Cost:

This is simply the total cost of buffers inserted under an assignment. The lesser

the cost, the better the assignment in terms of cost.

Given two assignments α1 and α2, we say α1 dominates α2, if α1 has lower

cost, better timing and better loading/driving parameters compared to α2. Note

that the specifics specifics of the representation of an assignment for various types of

subcircuits will be discussed in subsequent chapters as required.

The set of non-redundant assignments for any subgraph G′, denoted as N(G′) is a

set of assignments such that no assignment in N(G′) dominates any other assignment

in N(G′) and any buffer assignment for G′ is dominated by some assignment in N(G′).

12

CHAPTER III

LOOK-AHEAD AND BACK-OFF STRATEGIES

A. The Concept

S_b

Avg. on adding
one more bufer
after b

after a
Avg. on adding one more buffer

S_a

S

Better Slack

Fig. 2. Look-ahead strategy for buffer insertion.

As shown in Figure 2, suppose we have added a certain amount of buffers already

in the circuit, and the resulting circuit slack is S. If we add one more buffer in position

a, the circuit slack becomes Sa. Alternatively, if we add a buffer in position b, the

circuit slack becomes Sb. Also, let Sb be lower (i.e. worse) than Sa. But if we choose

to insert buffer at a and then try inserting one more buffer elsewhere in the circuit,

the average slack improvement is much lower compared to the case where we would

have chosen to insert buffer at b. Thus, just by looking one level ahead, we can make

a better decision about which buffer should be inserted. For sake of simplicity, let us

say we have only one buffer type. Then, the look-ahead level is simply the number of

additional buffers we try while evaluating the future effectiveness of inserting a buffer

in a particular location.

Figure 3 shows the cost vs. delay profile of a sample circuit with 2 nets. It

13

 0
 1

 2
 3

 4
 5

 0 1 2 3 4 5

 400

 600

 800

 1000

 1200
 1400

 1600

 1800

 2000

Circuit delay
Cost-Delay profile

Bad moves, cost is 6
Good moves, cost is 5

Buffers in first netBuffers in second net

Circuit delay

Fig. 3. Example cost vs. delay profile, and benefit of looking ahead.

illustrates that without lookahead, 6 buffers are required to satisfy the timing re-

quirements whereas with lookahead, 5 buffer are required and thus one buffer could

have been saved by looking ahead one level.

As we discussed in the introduction to this thesis in Chapter I, the concepts of

look-ahead and back-off are as simple as evaluating the consequences of a move before

committing to it in chess or allowing the grand master to take back their moves. But

to describe them formally, let us define a few more terms.

B. Few More Definitions

As a side note, given the RAT at each leaf node of a net, non-redundant assignments

for the whole net can be expressed by (RAT, Cost) i.e. (Q,W) pairs. Also, there

14

is a unique non-redundant assignment for each possible value of W . Let us use the

symbol η to denote a net. Lillis’ algorithm [2] along with predictive pruning [10] is a

core subroutine used in LAB for the purpose of finding N(η) given the RAT at each

leaf of η.

Let us now define two operations, namely incrementing and decrementing an

assignment. Let α(G) be an assignment of the whole circuit graph G, and W be

the cost of buffers inserted under this assignment in net η. Let N(η) be the set of

non-redundant candidates when RAT Q(v) at each sink v of η is Q(v) = Q(v, α(G)).

Also, let αa(η) be the assignment in N(η) with next higher cost than W . Incrementing

α(G) over η, represented as {α(G)}+η, is defined as follows:

{α(G)}+η = {α(G \ η)} ∪ αa(η)

Similarly, let αb(η) be the assignment in N(η) with next lower cost than W .

Decrementing α(G) over η, represented as {α(G)}−η, is defined as follows:

{α(G)}−η = {α(G \ η)} ∪ αb(η)

C. Look-ahead

Now that an increment operator is defined for an assignment, a subroutine to find

next assignment by looking l levels ahead, in its simplest form, can be represented by

the pseudo-code in Figure 4.

Note that when we decide the next assignment after a look-ahead step, we are

only incrementing the number of buffers or the cost of buffers inserted in the selected

net and we are not fixing the exact positions for these inserted buffers. This is because

optimal placement of buffers for a net may be drastically different for different buffer

costs. In other words, buffer positions chosen under a lower cost non-redundant

15

1: Let α(G) be current assignment, l be look-ahead level and n be

number of nets in G.

2: for each net η ∈ G do

3: trial assignment α′(G) = α(G)

4: Cumulative Slack Improvement I(η) = 0

5: for each combination c in nCl combinations of nets in G do

6: for each net η in combination c do

7: α′(G) = {α′(G)}+η

8: end for

9: I(η) = I(η) + {S(α′(G)) − S(α(G))}

10: end for

11: end for

12: Choose net η′ : I(η′) = maxη∈G{I(η)}

13: Next assignment after look-ahead α(G) = {α(G)}+η′

Fig. 4. Look-ahead in its simplest form.

assignment may not prove to be good choices for a higher cost assignment. Also,

RAT at the nodes in the circuit keeps changing as we go on inserting or removing

buffers. Hence we just specify the cost of buffers inserted in each net under an

assignment rather than the exact buffer positions in the net.

For a simple case of only one buffer type, it can be seen from the pseudo-code

that the number of circuit slack computations performed in one look-ahead iteration

get multiplied by n when l is increased by one. Therefore, more approximations are

required to make the approach practically applicable. These will be discussed in the

16

following chapter.

D. Back-off

Similar to the look-ahead strategy, we can look-back a few levels to decide the buffers

that are least effective and remove them. The idea here is to let the look-ahead do

the job of careful selection, and back-off by a few steps to correct the decisions taken

by look-ahead which proved less effective in retrospect. Therefore we need a faster

back-off routine which need not be vary careful while removing buffers but should be

effective enough to allow aggressive and faster look-ahead. Thus, the back-off routine

in its simplest form can be represented by the pseudo-code in Figure 5.

1: Let α(G) be current assignment, n be number of nets in G.

2: for each net η ∈ G do

3: Trial assignment α′(G) = {α(G)}−η

4: Reduction in slack F (η) = {S(α(G)) − S(α′(G))}

5: end for

6: choose net η′ : F (η′) = minη∈G{F (η)}

7: Next assignment after back-off α(G) = {α(G)}−η′

Fig. 5. Back-off in its simplest form.

As seen above, we are not fixing any buffer positions while deciding the assign-

ment after back-off but just decrementing the cost or number of buffers inserted in

a particular net. Similar to look-ahead, we employ some clever tricks in back-off as

well to make it faster without loosing its effectiveness. These speed up techniques are

discussed in the following chapter.

17

CHAPTER IV

SPEED-UP TECHNIQUES

From the pseudo-code presented in Figures 4 and 5, we can see that the most compute

intensive task is that of finding circuit slack while evaluating the effectiveness of the

possible moves. To be more specific, an assignment specifies the cost or number of

buffers to be inserted in each net. The circuit slack is then computed by processing

the nets, with Lillis’ (Q,C, W) framework [2, 10], in their topologically sorted order.

Thus, more the number of circuit slack computations performed by the algorithm,

more is the run-time of the algorithm. Further looking closely at a single circuit

slack computation, we can see that non-redundant assignments for a 2-pin net are

independent of the RAT at its sink. Therefore, non-redundant candidates for a 2-

pin net can be computed in the preprocessing step even before starting with the

algorithm. Thus, most of the CPU time in one circuit slack computation is spent in

processing multi-pin nets with (Q,C, W) framework.

Thus the key to speed-up this scheme is to reduce the number of circuit slack

computations and more specifically the number of non-redundant candidate compu-

tations on multi-pin nets. The speed-up techniques presented in this chapter are very

effective. There can be more than one ways of employing these techniques and hence

the implementation presented here is intended only to serve as an example.

A. Reducing the Number of Buffer Positions Evaluated

As described in the previous chapter, we need not evaluate the effect of adding a buffer

in each and every net. Adding a new buffer in one of the critical nets is most likely

to provide the most advantageous move. Therefore, the proposition is to determine

the critical nets after adding each buffer and restricting the algorithm to try only the

18

critical nets for the next move.

With each new buffer added in the circuit, the nets that were previously critical

may become non-critical and vice versa. Since the critical nets are not statically

determined at the beginning of the algorithm, the algorithm does not lose its global

view by restricting itself to critical nets. Thus the sacrifice in terms of quality or

buffer cost is not as significant compared to the gain in CPU time. Moreover, the

number of nets evaluated for a possible move can be changed depending on the stage

the algorithm is in.

Also, rather than just adding the buffer that gives the best improvement in

each iteration of look-ahead, we can add more than one buffer in one iteration. The

proposition is to determine the critical nets after adding each new buffer and continue

adding the second best buffer and then the third best buffer and so on as long as the

buffers are being added on dynamically determined critical nets. Again, the algorithm

can be more or less conservative about the number of buffers being added in one

iteration, depending on the stage it is in. Also, the later back-off iterations will more

than likely correct the moves in case they later prove to be less effective.

B. Reducing the Effort of Processing Multi-pin Nets

Since we add or remove buffers one at a time, previously computed RAT information

can be reused. Thus, if we change the number of buffers inserted in a particular net,

then the RAT needs to be updated only for the nodes in the fan-in cone of the net in

question.

Moreover, we can compromise the computation of the exact slack value wherever

exact slack information is not needed. For example, while backing-off during the

early steps of the algorithm, the purpose is only to judge less effective moves and an

19

approximate circuit slack value can be used for this purpose. Also, if l is the look-

ahead level, then the circuit slack of the assignment found by adding lth additional

buffer is needed only for estimation purposes, and hence can be approximated.

Net whose cost has changed

Fan−in
Cone

Most critical primary

input in fan−in cone

Fig. 6. Estimating circuit slack approximately.

More specifically, after an assignment has been incremented or decremented over

net η, referring to Figure 6, the proposition is to process only the most critical path

in the fan-in cone of η to get the new approximate or very likely value of circuit slack.

This way, we can get approximate circuit slack by processing significantly fewer nets.

Also, if the given circuit has larger nets with many buffer positions, then such

interconnect trees can be partitioned by fixing a buffer temporarily in a legal position

that partitions the tree proportionately. Such restrictions can be placed in the early

stages of the algorithm in order to speed up the computation. These restrictions can

be removed later in order to achieve better quality.

20

C. Fast and Greedy Net-based Buffer Insertion

Rather than looking ahead fewer levels, a more aggressive strategy is to determine the

critical nets in the circuit and to populate the critical nets greedily with buffers till

the given slack requirement is achieved. In this manner, we can reduce the number

of circuit slack computations significantly but at the cost of large number of buffers.

Since we invoke the back-off strategy to remove unnecessary buffers, we can afford to

flood the circuit with such aggressive insertion of buffers in the initial stages of the

algorithm. Also, a careful selection of critical nets can prevent such a greedy insertion

from adding a lot of less effective buffers. A routine employed for this purpose in the

current implementation is sketched in Figure 7.

Note that this sketch is just one way of using the idea of flooding the circuit

with buffers in a greedy manner i.e. just looking at local improvements in slack at

the source of critical nets. Aggressive and fast buffer insertion can be performed in

some other manner as well.

D. Faster Identification of Some Back-off Moves

Let α(G) be the current assignment of the whole circuit graph and α(η) = α(G ∩ η)

represent the partial buffer assignment in net η under α(G). Let node u be the root

or source node of η. Also, let α′(η) be the non-redundant assignment having next

lower cost than W (α(η)). Consider a condition such that:

S(u, α(G)) > (S(α(η))− S(α′(η)))

If this condition is true for some net η ∈ G, then it can be easily seen that there is

enough surplus slack at node u such that decrementing α(G) over η will not change

the circuit slack. Thus, the decision of adding the last buffer in η had no effect on

21

1: Let α(G) be current assignment and S ′ be desired circuit slack.

2: while S(α(G)) < S ′ do

3: find set of critical nets R

4: for Each critical net η ∈ R do

5: α(η) = α(G ∩ η), Local improvement L(η) = S({α(η)}+η) − S(α(η))

6: end for

7: Cumulative improvement I = 0.

8: Sort the nets in R in the decreasing order of L(η)

9: for each net η in sorted order do

10: α(G) = {α(G)}+η, I = I + L(η)

11: if (I > (S ′ − S(α(G)))) then break the for loop

12: end for

13: end while

14: Next assignment after fast insertion is α(G).

Fig. 7. Aggressive net-based buffer insertion.

the circuit slack and hence η can be safely chosen for back-off. Note that the effort

of computing circuit slack for all possible back-off moves and then choosing the best

move is saved by identifying the back-off moves with above criterion.

Also, an option of applying this criterion more aggressively, i.e. choosing nets

for back-off that are likely to have little if any effect on circuit slack based on such a

local comparison, yields additional speedup in the earlier stages of algorithm.

22

E. Overall Flow

In this and previous chapters, we have referred to utilizing different strategies at

different stages in the algorithm. Figure 8 shows the overall flow of the algorithm

that brings together various strategies discussed till now. As seen in Figure 8, trade-

offs can be made in the performance of the algorithm with two input parameters

i.e. look-ahead level and cost of buffers inserted with net-based insertion. This flow

just serves as an example. More flexibility can be provided in terms of more input

parameters and controlling the interleaving of the look-ahead and back-off routine

and their intensities.

In our experiments with ISCAS85 benchmark circuits, looking ahead just by one

level yielded tremendous improvements in cost with very efficient run-times. Also,

inserting 80% of the buffers with the net-based greedy buffer insertion did not harm

the cost-performance of the algorithm. Thus referring to Figure 8, l = 1 and p = 0.8

gave a good balance between run-time and buffer cost for experimental ISCAS85

test-cases. The experimental results are presented in Chapter V.

23

1: Input parameters: l=Look-ahead level, p=Cost inserted with

net-based insertion as a fraction of initial cost estimate Wi.

2: Let α(G) be an assignment such that W (α(G)) = 0

3: while S(α(G)) < 0 do

4: Update α(G) with net-based insertion and back-off.

5: end while

6: Initial cost estimate Wi = W (α(G))

7: while W (α(G)) > (p × Wi) do

8: Decrement α(G) with back-off.

9: end while

10: while S(α(G)) < 0 do

11: Update α(G) with look-ahead and back-off.

12: end while

13: return α(G)

Fig. 8. Top-level view of the algorithm.

24

CHAPTER V

EXPERIMENTAL RESULTS OF LAB ALGORITHM

The newly proposed Look-ahead and Back-off (LAB) algorithm is compared with

path based buffer insertion (PBBI) algorithm of [5]. Table I shows the ISCAS85

benchmark circuits and their respective sizes in terms of number of source and sink

nodes. The test-cases are created by scaling the actual layouts performed in 0.18µ

technology, so as to create the need for buffering. Only one buffer type is used for

these experiments.

Table I. Size of the benchmark circuits.

Ckt #Sources #Sinks #Buffer Locations

c432 196 343 868

c499 243 440 1216

c880 443 775 1632

c1355 587 1096 1868

c1908 913 1523 4037

c2670 1502 2292 7192

c3540 1719 2961 7729

c5315 2485 4509 11403

c6288 2448 4832 10865

c7552 3720 6253 16758

Timing constraints are determined by maximum achievable slack with given legal

buffer positions. The RAT at the primary output nodes is computed according to the

maximum achievable slack.

25

Figures 9, 10(a) and 10(b) present the experimental statistics showing the effect

of various intensities of look-ahead and back-off on the buffer cost. Figure 9 shows the

percentage improvement in slack per additional percentile of buffer cost for the test

circuits. It can be seen that due to the tightest possible timing constraints, almost

40% of the buffers added in the later stage result only in 10% improvement in slack.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

S
la

ck
 Im

pr
ov

em
en

t (
%

)

Buffers (%)

Fig. 9. Additional cost vs slack improvement for test-cases.

Figure 10(a) shows improvement in cost performance as we go on increasing the

look-ahead level. The results in Figure 10(a) are obtained without back-off just for

comparison purpose. It can be seen that the improvement saturates after look-ahead

level 1 for most of the test-cases.

Figure 10(b) shows the cost performance for various look-ahead levels with back-

off. It can be seen that the difference in the number of buffers inserted for different

look-ahead levels is very less compared to Figure 10(a). Also, performance of greedy

26

net-based insertion with back-off is close to higher look-ahead levels. Hence net-

based insertion can be used to insert 80% to 90% of the buffers initially and higher

look-ahead levels can be used to insert remaining buffers. This results in the desired

balance of run-time and buffer cost minimization.

Table II shows the comparison of LAB and PBBI [5] algorithm with respect to

number of buffers inserted and the CPU time. Referring to Figure 8, the experimental

results are obtained with l = 1 and p = 0.8 for LAB. On an average, LAB gives 36%

reduction in number of buffers inserted and 3× speed-up as compared to PBBI.

Table II. Comparison against a contemporary algorithm.

Ckt PBBI [5] LAB (New)

#Buffers Time(s) #Buffers Time(s) Reduction Speed up

c432 61 0.4 37 1.5 39.3% 0.26x

c499 69 0.7 47 1.2 31.8% 0.58x

c880 48 1.9 29 0.7 39.5% 2.71x

c1355 143 3.9 78 3.6 45.4% 1.08x

c1908 137 16.9 96 7.6 29.9% 2.22x

c2670 187 63.2 94 10 49.7% 6.32x

c3540 202 85.2 109 21.6 46% 3.94x

c5315 269 194.4 164 21 39% 9.25x

c6288 508 182 433 149 14.91% 1.22x

c7552 282 429.4 208 49.5 26.2% 8.67x

Average 36.2% 3x

27

 0

 50

 100

 150

 200

 250

 300

 350

 400

 c7552 c5315 c3540 c2670 c1908 c1355 c880 c499 c432

N
um

be
r

of
 b

uf
fe

rs

Circuits

(a) Without back-off.

 0

 50

 100

 150

 200

 250

 c7552 c5315 c3540 c2670 c1908 c1355 c880 c499 c432

N
um

be
r

of
 b

uf
fe

rs

Circuits

(b) With back-off.

Fig. 10. Comparison of cost performance of net-based insertion and look-ahead levels

0,1 and 2 for different test-cases.

28

CHAPTER VI

A FRAMEWORK TO OBTAIN EXACT OPTIMUM

In this chapter, we present an algorithm that solves the problem optimally. Since the

worst-case running time is exponential, we call this algorithm as a subroutine only

for circuit with no more than 30 gates.

A. Representation of a Candidate

A subgraph GI = (VI , EI) of G is called an input subgraph of G if I(GI) ⊂ I(G)

and for every node u ∈ VI , if there is a directed path from node v to u in G, then

v ∈ VI . Also, a subgraph GO = (VO, EO) of G, is called an output subgraph of G if

O(GO) ⊂ O(G) and for every node u ∈ VO, if there is a directed path from node u to

v in G, then v ∈ VO. Figure 11 shows an example input subgraph represented by the

dotted area and its set of output nodes (h, n, e).

Consider the algorithms of [2] and [10] that find a optimal cost buffer assignment

for a tree structure. In these algorithms, to represent a buffer assignment for a subtree

rooted at a node v, Required Arrival Time only at node v is sufficient. This is because

edges merge with each other when a tree is traversed from leaf nodes towards root

node. But in case of a DAG, no matter how the graph is traversed, the edges merge

as well as fork away from each other. Therefore, in this framework, assignment is

represented as follos.

Consider a graph G = (V,E), its input subgraph GI and set of its output nodes

O(GI) = {v1, v2, . . . , vk}. Arrival time value T (vi, α(GI)) for any node vi ∈ O(GI)

under an assignment α(GI) can be computed since arrival time value at each primary

input of G is known. Thus, provided that O(GI) ⊂ Vt, a candidate α(GI) can be

29

j

a b c d

g h i k l

m n

p q r s

a b c d

f

lkj

r sqp
u

v w

Primary Inputs

(a)

primary outputs
w

u

v

t

o m o

t

(b)

f

e

ig

e

n

h

Example Input Subgraph

Fig. 11. Sample input subgraph and its set of output nodes {h, n, e}.

represented as a vector

W (α(GI)), T (v1, α(GI)), . . . , T (vk, α(GI)).

Similarly, for output subgraph GO and corresponding set of inputs I(GO) =

{v1, v2, . . . , vk}, if I(GO) ⊂ Vt, any buffer assignment α(GO) can be represented as a

vector

W (α(GO)), T (v1, α(GO)), . . . , T (vk, α(GO)).

α1(GI) dominates α2(GI) if W (α2(GI)) ≥ W (α1(GI)), and T (v, α2(GI)) ≥
T (v, α1(GI)) for each v ∈ O(GI). Similarly, α1(GO) dominates α2(GO) if W (α2(GO) ≥
W (α1(GO)), and Q(v, α2(GO)) ≤ Q(v, α1(GO)) for each v ∈ I(GO).

30

B. Propagating the Candidates

Similar to the dynamic programming algorithms for a single net [1, 2], our algo-

rithm traverses the graph and computes the set of non-redundant assignments for the

traversed subgraph.

To traverse the whole graph, we have a choice about the direction in which

we can traverse the graph. We can start from the primary inputs where the input

subgraph has no edges and grow the input subgraph to eventually traverse the whole

circuit graph. Alternatively, we can start from the primary outputs and grow the

output subgraph to eventually traverse the whole graph. Propagation using input

subgraph is described in detail the following discussion. Since similar scenarios exist

for propagation using output subgraph, it is addressed in short at the end of the

section. Also, the criteria used to choose one method over the other for solving a

particular problem are discussed.

Following is a simple flow of the algorithm with propagation using input sub-

graph.

1: GI = (VI , EI), VI = Set of primary inputs.

2: while GI 6= G do

3: Select subcircuit G′ to grow GI.

4: Propagate candidates of GI over G′

5: Update GI and N(GI).

6: end while

7: Solution = candidate with minimum cost in N(F)

Consider an input subgraph Ga
I = (V a

I , Ea
I) and a subgraph G′ = (V ′, E ′) such

that I(G′) ⊆ O(Ga
I) and a subgraph Gb

I = (V b
I , Eb

I),where Eb
I = Ea

I ∪ E ′, is also an

31

input subgraph. Also, let I(G′) = {i1, . . . , il} and O(G′) = {o1, . . . , om}.
Provided that O(Ga

I) ⊂ Vt, an assignment α(Ga
I) can be expressed in terms

of arrival time values at nodes in O(Ga
I). With this set of arrival time values and

provided that O(G′) ⊂ Vt, any buffer assignment α(G′) for the subgraph G′ can be

expressed as α(G′) = {W (α(G′)), T (o1, α(G′)), . . . , T (om, α(G′))}. Then the resultant

assignment for Gb
I will be as follows:

W (α(Gb
I)) = W (α(Ga

I)) + W (α(G′))

T (u, α(Gb
I)) =





T (u, α(G′)) if u ∈ O(G′)

T (u, α(Ga
I)) otherwise

The subgraph G′ chosen for growing the input subgraph can simply be a single

net. But G′ can also be chosen with added intelligence to facilitate lesser cardinality

and efficient computation of set of resultant non-redundant candidates.

C. Computing Non-redundant Candidates for a Net

Consider a net represented as a routing tree η with leaf nodes l1, l2, . . . , lk. A 2-pin

net is a special case tree with only one leaf.

When forward direction of propagation is used, RAT at leaf nodes of the net is

not available. Hence (Q, C, W) framework of [2, 10] can not be used to compute the

non-redundant candidates for the net. When propagating in forward direction, the

framework we use to represent the candidate for the subtree η′ rooted at node v is a

vector W (α(η′)), C(α(η′)), T (l1, α(η′)), . . . , T (lk, α(η′)), where T (li, α(η′)) is the delay

from v to leaf li, and C(α(η′)) is the downstream capacitance seen from node v under

α(η′).

Basic operation of this framework is same as (Q,C,W) framework except the

computation of delay values while propagating the candidates. Similar to the (Q,C,W)

32

framework, candidates are generated by traversing the net from the leafs toward the

root. Also, three basic operations during the traversal are adding a wire, adding

a buffer and merging two subtrees [10]. When propagating the candidates in these

scenarios, W (α(η′)) and C(α(η′)) are computed in the exact same manner as the

(Q,C, W) framework. To propagate delay values however, while adding a wire or a

buffer, delay values T (li, α(η′)) are incremented by wire or buffer delay respectively.

In merging operations, the delay values remain unchanged.

D. Pruning Techniques

Basic mechanism for pruning the assignments is comparing the assignments for the

input or output subgraph against each other and deleting the inferior ones by the

pruning criterion described earlier. In the following, we discuss pruning techniques

that help to prune many more assignments effectively. We define following additional

terms for node u ∈ Vt.

Qbest(u) = max
α∈N(G)

{Q(u, α)}

Tbest(u) = min
α∈N(G)

{T (u, α)}

Qworst(u) =





RAT(u) if u ∈ Vpo

max(Tbest(u), Q(u, α(η))) otherwise

where η is the net rooted at node u, and α(η is such that RAT (v) = Qworst(v) for

each leaf v of η and W (α(η)) = 0.

• Qbest based filtering:

33

Consider an input subgraph GI and its set of output nodes O(GI). Then, an assign-

ment α(GI) can be deleted if for some vi ∈ O(GI):

T (vi, α(GI)) > Qbest(vi)

From the definition of Qbest, it can be easily seen that such an assignment cer-

tainly won’t satisfy the timing requirements of the circuit. This condition is checked in

propagation step itself and generation of such assignments having insufficient buffer-

ing is prevented. Also, whenever the input subgraph engulfs a primary output node

vi, all the assignments that survive Qbest based filtering satisfy the RAT (vi). Hence

node vi can be dropped from the candidate representation so that the exact value of

T (vi) will be disregarded while comparing the assignments with each other resulting

in further pruning.

• Qworst based filtering:

Consider an input subgraph GI and its set of output nodes O(GI). Consider an

assignment α(GI) such that for some Vi ∈ O(GI),

T (vi, α(GI)) < Qworst(vi)

This condition suggests that sufficient buffers have been added in the transitive

fan-in cone of node vi under α(GI) and even no buffering in the net rooted at node

vi is sufficient to meet the timing requirements. Thus, α(GI) is propagated only

with the minimum cost assignment on the net rooted at node vi and generation of

unnecessarily buffered assignments is prevented.

• Cost stepping:

In stead of generating all the candidates, we put a limit on cost of a candidate such

that the candidates with cost more than the limit will not be generated in the current

34

iteration of candidate propagation. If the solution is not found in the current iteration,

the limit is increased by a certain amount and the candidates under the new limit are

evaluated. This is repeated till a solution is found. This simple technique prevents

the computation of assignments with cost more than optimal.

• Computing Qbest and Tbest:

To find Qbest we run van Ginneken’s algorithm [1] on each net from primary output

towards primary input, using the RAT for all primary output nodes. Unlike Qbest,

computation of Tbest is affected by the re-convergence in the circuit. Therefore, we

need to keep track of re-convergences in the circuit to compute exact values of Tbest.

Alternatively an approximate value of Tbest which is lesser than the exact value can be

computed by ignoring the effect of re-convergences and following a procedure similar

to Van Ginneken’s algorithm.

E. Propagation Using Output Subgraph

Propagation using output subgraph is similar to that using input subgraph described

in detail above. In this case, initially I(GO) is the set of primary outputs and even-

tually after traversing the whole GO = G.

Consider an output subgraph Ga
O = (V a

O , Ea
O) and a subgraph G′ = (V ′, E ′) such

that O(G′) ⊆ I(Ga
I) and a subgraph Ga

O = (V a
O , Ea

O), where Eb
O = Ea

O ∪ E ′, is also

an output subgraph. Also, I(Ga
O) ⊂ Vt and I(G′) ⊂ Vt. Also, let I(G′) = {i1, . . . , il}

and O(G′) = {o1, . . . , om}.
Consider an assignment α(Ga

O) expressed in terms of required arrival time values

at nodes in I(Ga
O). With this set of required arrival time values and provided that

I(G′) ⊂ Vt, any buffer assignment α(G′) for the subgraph G′ can be expressed as

α(G′) = {W (α(G′)), Q(i1, α(G′)), . . . , Q(im, α(G′))}. Then the resultant assignment

35

for Gb
O is computed as follows:

W (α(Gb
O)) = W (α(Ga

O)) + W (α(G′))

Q(u, α(Gb
O)) =





Q(u, α(G′)) if u ∈ I(G′)

Q(u, α(Ga
O)) otherwise

To compute nonredundant candidates for a net, (Q,C, W) framework of [2, 10]

is used. Counterpart of Qbest based filtering is Tbest based filtering. Note that the

effectiveness of Tbest based filtering is reduced because of using an approximate value

of Tbest which is lesser than its exact value, but it does not result in deletion of an

assignment that should not have been deleted. Also note that there is no counterpart

of the Qworst based filtering.

F. Selecting Method of Propagation

Note that the circuit DAG could be viewed to be made up of 2 types of trees. First

type is the interconnect routing trees of a multi-pin net (multi-pin tree). The root

of a such a multi-pin tree is towards the primary input side and leaves are towards

primary output side. Second type is the tree formed by 2-pin nets (2-pin tree) and

input-to-output edges within the gates merging at gate output nodes. The root of

such a 2-pin tree is towards the primary output side and leaves are towards primary

input side. Also, every gate output node that is a root of some multi-pin tree is also

a root of some 2-pin tree.

While propagating the candidates, merging of edges is desired than forking be-

cause forking causes longer vectors to represent the candidate and consequently larger

cardinality of set of non-redundant candidates. Thus, if input subgraph is used for

propagation, edges in multi-pin trees fork away from each other and cause the number

of candidates to blow up. Similarly, if output subgraph is used for propagation, 2-pin

36

trees cause the number of candidates to blow up.

Thus, the relative sizes of the multi-pin and 2-pin trees provide the criteria

to choose one method of propagation over the other. Disadvantage of using input

subgraph for propagation is it can not handle bigger multi-pin nets effectively. Disad-

vantage of using output subgraph for propagation is less effective pruning. In general,

if number of buffer locations in 2-pin nets is more than that in the multi-pin nets, we

choose input subgraph for propagating the candidates.

G. Practicality

For this framework, the worst-case running time is exponential and hence this frame-

work can not be run for circuits having more than 30 gates. But it is likely to improve

the cost performance when used in conjunction with path based algorithms like [5].

Initially, such an algorithm can be used to insert buffers on critical paths and con-

sequently partition the bigger circuit along these critical paths to arrive at smaller

subcircuits. Then the proposed framework can be used to obtain optimum buffering

for smaller subcircuits.

37

CHAPTER VII

BOOSTER MODELING AND INSERTION

A device named booster was introduced in [17] to drive long on-chip interconnect

wires. Compared to traditional buffers, boosters sometimes offer better delay [17].

Furthermore, boosters offer unique advantages as they can be used for bidirectional

wires, and multiple boosters can be used to drive the same wire without risking the

possibility of short circuits.

Models to estimate delay of buffered interconnect and techniques to optimally

insert buffers are mature but there is no delay model or algorithm for boosters. Some

guidelines on where to insert boosters on a uniform interconnect are given in [17], but

many factors, such as driver strength, non-uniform interconnect parasitic and sink

capacitance are ignored. Therefore, in order to use boosters efficiently, it is necessary

to develop a reasonable delay model and corresponding insertion algorithms.

In this chapter, a delay model is proposed, based on Elmore delay [18] and tree

link partitioning [19], to estimate interconnect delay when one or multiple boosters

are present on a 2-pin net. In section B, booster insertion algorithm, that uses newly

developed delay model, is proposed. The algorithm adopts the dynamic program-

ming approach to find optimal booster insertion in polynomial time based on the

delay model. The experimental results of the new models and the new algorithm are

presented in section C. It shows that the proposed delay model is sufficiently accurate

for physical synthesis and proposed algorithm is efficient.

A. Delay Models

Booster is attached to an interconnect wire, as shown in Figure 12(a). Figure 12(b)

shows the stages through which the booster goes when the interconnect switches from

38

Fig. 12. (a) Booster placed in an interconnect. (b) Operation of booster.

logic low to logic high and back to low. When the signal rises on the interconnect, the

booster detects the rise early and applies a strong pull-up to boost the signal strength.

When signal potential reaches close to V dd, booster turns off the strong pull-up and

applies a weak pull-up to just sustain the signal level. Similarly, when the signal falls

on the interconnect, booster detects the fall early and applies a strong pull-down on

the wire. When the signal potential reaches close to V ss, booster turns off strong

pull-down and applies a weak pull-down. The weak pull-up and pull-down, applied

by the booster when switching is not occurring on the signal gives a better noise

immunity. Whenever booster is said to be on while applying a strong pull-up/pull-

39

down, and said to be off otherwise. Driving strength of the booster is different in its

on and off states but its input capacitance is always felt on the interconnect.

There are several differences between boosters and traditional buffers/repeaters:

• Boosters do not distinguish upstream or downstream. Therefore we can use

boosters to drive bi-directional wires.

• Boosters are not always active. Therefore we can use multiple boosters to drive

a net having a non-tree topology without the risk of short circuits.

• Boosters do not cut the interconnect wire. Therefore, the intrinsic delay that

appears in buffered interconnects can be avoided by using boosters.

1. Single Booster

To model the behavior of boosters, its operation is divided into two states, its on state

and its off state, and interconnect delay for these stages are calculated separately. The

node voltages are approximated as piecewise linear and this approximation is applied

to combine delays of separate stages and find the final delay at the sink.

Figure 13(a) shows a booster placed on a 2-pin net whose parasitic is represented

by a π model. Before the booster is triggered on, its driving strength is ignored and

as shown in Figure 13(b), it is represented on the interconnect just by its input

capacitance.

For second stage of the booster’s operation, i.e. the case after booster is triggered

on, two different models are proposed here. In the first model, after the booster is

triggered on, as shown in Figure 13(c), it is represented by a driving resistor cor-

responding to its strong pull-up or pull-down. In the second model, as shown in

Figure 13(d), a further simplifying assumption is made to combine two drivers on the

40

Fig. 13. (a) Original circuit. (b) Circuit before triggering of booster. (c) Circuit after

booster has triggered for method 1. (d) Circuit after booster has triggered for

method 2.

interconnect into a single driver. This resultant driver Rp is equivalent to a parallel

combination of main input side driver (Rd + R1) and booster driving resistance Rb.

Furthermore, the voltage of every node in the circuit is approximated as a piece-

wise linear function as shown in Figure 14. Consider the case of rising signal. Before

the booster is triggered on, the voltage at a node increases with a certain slope from

V ss to V dd. When the booster is triggered on, the voltage at the node starts increas-

ing at a higher slope because of booster’s additional drive.

In the method (Method 1) of Figure 13(c), since there are two drivers driving

the same interconnect, we use the tree-link partitioning technique of [19] to find

the Elmore delay. Second method (Method 2), i.e. the method of Figure 13(d), is

a further approximation, where multiple drivers on the interconnect are combined

41

Fig. 14. Effect of booster on sink node voltage.

into one driver. Since there is only one driver in this method, simple Elmore delay

calculation applies. Table III describes the terminology used in rest of this chapter.

Threshold voltage of a booster is set below threshold voltage of a traditional

buffer so that booster can detect the signal transition early and boost the signal

strength according to the direction of switching. For example, threshold voltage of a

booster can be 40% and 60% V dd, for rising and falling transitions respectively. The

scale-down factor tf is defined as tf = tp/50. For example, if triggering threshold of

the booster is 40% of V dd, then tf = 0.8.

The delay for the booster node to reach triggering threshold is calculated as

TV 1=TTV = tf (R0(C0 + C1 + C2 + Cb) + R1(C1 + C2 + Cb))

42

Table III. Booster modeling notations.

Rd Driver resistance

Rb Driving resistance of booster

Cb Input capacitance of booster

Rp New driving resistance after booster triggers

Ri Resistance between node i− 1 and i

Ci Ground capacitance at node i

T(V i=V) Time required for node i to reach voltage V

TTV Triggering Threshold Voltage of the booster

Db Triggering time of the booster

DS1 Delay to sink considering circuit before booster triggers

DS2 Delay to sink considering circuit after booster triggers

tf Scale-down factor for deciding booster triggering time

tp Booster threshold voltage as a percentage of V dd

ti Intrinsic delay of booster

The triggering time of the booster is given as

Db = TV 1=TTV + ti

Elmore delay at the sink considering the circuit before booster triggers i.e. Fig-

ure 13(b) will be

DS1 = R0(C0 + C1 + C2 + Cb) + R1(C1 + C2 + Cb) + R2C2

In first method in which two drivers are considered to be driving the interconnect,

i.e. the circuit in Figure 13(c), treating R1 as a link, the delay according to Tree Link

43

Partitioning method is given as

DS2 = Rb(C1 + C2 + Cb) + R2C2 + (
R0C0 −Rb(C1 + C2 + Cb)

R0 + R1 + Rb

×Rb)

In second method in which two drivers are combined into a single driver, i.e. the

circuit in Figure 13(c), Elmore delay at the sink is given as

DS2 = Rp(C1 + C2 + Cb) + R2C2

Now, according to piecewise linear approximation, the delay at the sink in pres-

ence of a booster is given as,

T(V 2=0.5V DD) = Db + (1−Db/DS1)DS2

Note that this model assumes that once the booster is turned on, it remains

on till the signal level reaches a full rail value. Also, the effect of weak pull-up and

pull-down when booster is off is ignored in this model.

2. Multiple Boosters

Fig. 15. Multiple boosters on a single wire.

Figure 15 shows the case when multiple boosters are inserted in the interconnect.

Method 2 of single booster model described above, i.e. combining multiple drivers

44

into one, is extended to model multiple boosters on 2-pin interconnect. The only

difference is this case from that of single booster is, instead of a sink that triggers

at normal 50% threshold, another booster triggering at early threshold can appear

in the downstream of one booster. As the triggering threshold of all the boosters is

same, the situation can be simplified as shown in Figure 16.

Fig. 16. Effect of upstream booster on downstream booster node.

Consider two adjacent boosters at nodes i and i + 1. To calculate the triggering

time of the downstream booster in presence of an upstream booster, let

d0 = Time when upstream booster node reaches threshold

d1 = Triggering time of upstream booster, d0 + ti

d2 = Elmore delay from node i to node i + 1

δ = Rp(Total downstream capacitance at node i)

Then the improved time when downstream booster reaches threshold is given as

45

Improved downstream booster triggering time =

= d1 + (distance traveled with new slope)× (new slope)

= d1 + ((1− d1

d0+(tf×d2)
)× tp)(

d2+δ
50

)

Note that only adjacent upstream booster is considered while calculating the

improved triggering time of a downstream booster. In other words, we are making a

assumption that booster at node i is on till node booster at node i + 1 triggers and

the rest of the upstream boosters are off when node i booster triggers. As we proceed

from the source towards sink, we finally get the triggering time of the last booster.

While proceeding from the last booster to the sink, the threshold time is calculated

according to equations in subsection 1.

B. Insertion

Using new delay models and following a dynamic programming approach [1], we can

find placement of boosters on a single line such that delay from source to sink is

minimized. Consider a general situation of Figure 16 where nodes 1 to n represent

possible booster positions on the interconnect wire. The algorithm represents the

candidate solutions at any node i by a (Q,C, j) triplet, where Q is the slack at

that node, C is the downstream capacitance at that node i, and j is the nearest

downstream booster node which can take the values i . . . n. The algorithm starts

from the sink and traverses towards the source, calculating non-redundant set of

candidate solutions in terms of (Q,C, j) triplets and pruning inferior solutions on the

way. A candidate (Q1, C1, i) is redundant if there is another candidate (Q2, C2, i)

such that Q1 ≤ Q2 and C1 ≥ C2. Since there are at most n values of C, it is easy

to see that the maximum possible number of non-redundant candidates at any node

46

is at most n2. Whereas, a brute force method will need to consider all 2n possible

booster placement combinations. The algorithm works as follows. Initially for the

sink, we have one candidate solution (Q,C, ∅), where Q is the required arrival time at

the sink and C is the sink capacitance. The algorithm then moves towards the source

calculating solutions for each node i considering the options of presence and absence

of the booster at node i and using the model in the previous section. After pruning

the redundant candidates, we move upwards to process booster position i − 1. The

solution having the maximum Q among the final solutions at the source node gives

the minimal delay. The time complexity of the algorithm is bounded by O(n3).

C. Experimental Results

The experimental results for the models described in section A are presented here in

comparison to SPICE. Two different boosters with different driving resistance and

switching thresholds were used for these experiments.

1. Single Booster

The ”Booster Placement” field in Table IV indicates the location of the booster

from the source as a fraction of total wire length. As seen from the representative

experimental cases in Table IV, as the position of the booster is varied, the trend

in change of delay predicted by the model matches closely with SPICE though not

exactly. Also, the difference in the delay values predicted by the model and that

by SPICE for the same booster placement is comparable to the difference between

Elmore delay and the delay predicted by SPICE for general interconnects [20].

Table V represents the average readings for 10 random cases in our experiments,

each case having 10 possible booster locations and number of boosters limited to one.

47

The average percentile difference between SPICE delay values of the optimal position

predicted by SPICE and that predicted by the models is very less. For uniform wire,

the performance of Method 1 and 2 has no significant difference. For non-uniform

wires, Method-1 performs better than Method-2 as the loading of the booster due to

upstream capacitance is ignored in the Method-2. The time taken by the models to

run is significantly less than that taken by SPICE.

2. Multiple Boosters

For these experiments, the boosters are placed equidistantly on a single wire for the

sake of convenience though this is not an optimal fashion to place the boosters. As

seen from Table VI, the trend of change in delay for the model, as more boosters are

placed on the wire, follows SPICE readings closely.

48

Table IV. Single booster at different positions on a single wire.

Booster Placement Delay in model(ps) Delay in SPICE (ps)

Method 1 Method 2

Sample case: Uniform Wire

0.1L 919 916 671

0.2L 887 882 662

0.3L 863 857 659

0.4L 847 841 666

0.5L 841 834 683

0.6L 842 836 705

0.7L 848 842 734

0.8L 859 853 759

0.9L 871 865 778

Sample case: Non-uniform Wire

0.1L 696 687 538

0.2L 688 661 537

0.3L 673 641 542

0.4L 667 635 564

0.5L 670 637 595

0.6L 678 644 630

0.7L 686 648 653

0.8L 696 651 670

0.9L 704 653 682

49

Table V. Booster delay models compared with SPICE simulations.

Method 1 Method 2 SPICE

Difference from optimal (Uniform wire) 2.38% 2.73% -

Difference from optimal (Non-uniform wire) 1.8% 7.2% -

CPU Time 0.01s 0.01s 24s

Table VI. Multiple boosters on a single wire.

Number of boosters Delay in model (ps) Delay in SPICE (ps)

Representative Case

1 878 726

2 828 723

3 819 737

4 828 752

50

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

This thesis proposed a buffer insertion algorithm called LAB (Lookahead and Backoff)

for combinational circuits such that the timing requirements are satisfied and buffer

cost is minimized. Experimental results on ISCAS85 circuits show that compared to a

recently proposed algorithm in the research community, Lookahead-backoff algorithm

can reduce the number of buffers by 15% to 50% and runs up to 9x faster on bigger

ISCAS85 benchmark circuits.

The main contributions of this work are the ideas of look-ahead and back-off

that can be employed to guide the solution search efficiently. These ideas are very

simple in terms of implementation and highly flexible in terms of user’s constraints on

quality of the solution and run time. These ideas provide a general infrastructure to

guide the solution search for combinational optimization problems and can be applied

to optimization problems other than buffer insertion.

Another strength of LAB is that it builds on top of well-researched net-level

algorithms and does not have any restrictive modeling assumptions. Consequently,

any future advances in the dynamic programming based net-level algorithms can be

seamlessly integrated into LAB.

As a part of future work, testing LAB with even bigger circuits and extending it

with further speed-up techniques is essential to make the algorithm more robust and

efficient. Also, to broaden its applicability, it can be extended as a general framework

for gate sizing along with buffer insertion.

Along with LAB, two of the earlier works, namely exact optimum framework for

buffer insertion problem and delay models and insertion algorithm for boosters are also

presented in this work. In the framework proposed to obtain exact optimum solution

51

to buffer insertion problem, the worst-case running time is exponential and hence this

framework can not be run for bigger circuits. But it can be used in conjunction with

path based algorithms like [5] to improve the cost-performance. Experimental results

for the proposed booster delay models and insertion algorithm show that proposed

models closely follow the SPICE predictions, and are suitable for physical synthesis.

But only 2-pin nets were considered for these delay models and future work is needed

to extend these models for any general interconnect topology.

52

REFERENCES

[1] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree network for

minimal Elmore delay,” in Proc. Int. Symp. on Circuits and Systems, 1990, pp.

865–868.

[2] J. Lillis, C. K. Cheng and T.-T. Y. Lin, “Optimal wire sizing and buffer insertion

for low power and a generalized delay model,” IEEE Trans. Solid-State Circuits,

vol. 31, no. 3, pp. 437–447, March 1996.

[3] I-Min Liu, A. Aziz, D.F. Wong and H. Zhou, “An efficient buffer insertion al-

gorithm for large networks based on Lagrangian relaxation,” in Proc. Int. Conf.

on Computer Design, 1999, pp. 210–215.

[4] I.-M. Liu, A. Aziz, and D. F. Wong, “Meeting delay constraints in DSM by

minimal repeater insertion,” in Proc. Design Automation and Test in Europe,

2000, pp. 436–441.

[5] C. Sze, C. Alpert, J. Hu and W. Shi, “Path-based buffer insertion,” in Proc.

ACM/IEEE Design Automation Conf., 2005, pp. 509–514.

[6] R. Chen and H. Zhou, “Efficient Algorithms for Buffer Insertion in General

Circuits Based on Network Flow,” in Proc. Int. Conf. on Computer Aided Design,

2005, pp. 509–514.

[7] P. Saxena, N. Menezes, P. Cocchini, and D. A. Kirkpatrick, “Repeater scaling

and its impact on CAD,” IEEE Trans. on Computer Aided Design of Integrated

Circuits and Systems , vol. 23, no. 4, pp. 451–463, April 2004.

[8] C. J. Alpert and A. Devgan. “Wire segmenting for improved buffer insertion,”

in Proc. ACM/IEEE Design Automation Conf., 1997, pp. 588–593.

53

[9] W. Shi and Z. Li, “An O(n log n) time algorithm for optimal buffer insertion,”

in Proc. ACM/IEEE Design Automation Conf., 2003, pp. 580–585.

[10] W. Shi, Z. Li and C.J. Alpert, “Complexity analysis and speedup techniques for

optimal buffer insertion with minimum cost,” in Proc. Asia and South Pacific

Design Automation Conf., 2004, pp. 609–614.

[11] Y. Zhang, Q. Zhou, X. Hong and Y. Cai, “Path-based timing optimization by

buffer insertion with accurate delay model”, in Proc. 5th International Confer-

ence on ASIC, Vol.1, pp. 89–92, Oct. 2003.

[12] Y. Jiang, S. Sapatnekar, C. Bamji and J. Kim, “Interleaving buffer insertion

and transistor sizing into a single optimization”, IEEE Transactions on VLSI

Systems, vol. 6, no. 4, pp. 625–633, Dec. 1998.

[13] K.S.Lowe and P.G. Gulak, “A joint gate sizing and buffer insertion method for

optimizing delay and power in CMOS and BiCMOS combinational logic”, IEEE

Trans. on Computer Aided Design of Integrated Circuits and Systems , vol. 17,

no. 5, pp. 419–434, May 1998.

[14] S. Lin and M. Marek-Sadowska, “A fast and efficient algorithm for determining

fanout tree in large networks”, in Proc. of EDAC, Feb 1991, pp. 539–544.

[15] H. Zhou, D. F. Wong, I. M. Liu, and A. Aziz, “Simultaneous routing and buffer

insertion with restrictions on buffer locations”, IEEE Trans. on Computer Aided

Design of Integrated Circuits and Systems , vol. 19, no. 7, pp. 819–824, July

2000.

[16] C. C. N. Chu and D. F. Wong. “A quadratic programming approach to simulta-

neous buffer insertion/sizing and wire sizing”, IEEE Trans. on Computer Aided

54

Design of Integrated Circuits and Systems, vol. 18, no. 6, pp. 787–798, Sept.

1999.

[17] A. Nalamalpu, S. Srinivasan and W. Burleson, “Boosters for driving long on-

chip interconnects: Design issues, interconnect synthesis and comparison with

repeaters”, IEEE Trans. on Computer Aided Design of Integrated Circuits and

Systems, vol. 21, no.1, pp. 50–62, Jan. 2002.

[18] W. C. Elmore, “The transient response of damped linear networks”, Journal of

Applied Physics vol. 19, pp. 55–63, Jan 1948.

[19] P. K. Chan and K. Karplus, “Computing signal delay in general RC networks

by tree/link partitioning”, IEEE Trans. on Computer Aided Design of Integrated

Circuits and Systems, vol. 9, no. 8, pp. 898–902, Aug. 1990.

[20] R. Gupta, B. Tutuianu and L.T. Pileggi, “The Elmore delay as a bound for RC

trees with generalized input signals”, IEEE Trans. on Computer Aided Design

of Integrated Circuits and Systems, vol. 16, no. 1, pp. 95–104, Jan. 1997.

55

VITA

Mandar Waghmode attended Government College of Engineering, Pune, India

and received his Bachelor of Engineering degree in Instrumentation and Control from

University of Pune, India. After working in the field of VLSI logic design and simu-

lation for three years in Pune, he enrolled in Texas A&M University, College Station,

Texas, USA, in the Master of Science program in Computer Engineering. During the

school year 2004-2005, he also served as a Teaching and Research Assistant in the

Department of Electrical and Computer Engineering at Texas A&M University.

Mandar Waghmode

Neelkanth, Shivaji Chowk, Indapur, 413106, India

