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ABSTRACT 

 
Post-Fire Successional Effects on Breeding Grassland Birds in Mesquite Savanna 

Habitats of the Texas Rolling Plains.  (December 2006) 

Stephanie L. Lee, B.S., Auburn University 

Co-Chairs of Advisory Committee:   Dr. R. Dean Ransom, Jr. 
            Dr. R. Douglas Slack 

 

     North American grasslands and grassland birds have declined drastically due to 

habitat degradation by fire suppression (i.e., woody encroachment), fragmentation, and 

conversion to croplands.  A better understanding is needed of the relationships among 

disturbance regimes (e.g., fire), resultant vegetation changes, and grassland bird 

communities to effectively manage remaining grasslands and grassland birds.  I assessed 

the relationship between post-fire succession, and mean relative abundance and nesting 

ecology of breeding grassland  birds (i.e., nest-site selection and nest success) in 

mesquite-dominated rangeland of the Texas Rolling Plains, where prescribed fire is used 

as a tool to manage shrub encroachment.  Brush cover, grass cover, and visual 

obstruction generally increased with post-fire succession, and bare ground decreased 

with post-fire succession.  Species richness, grasshopper sparrows (Ammodramus 

savannarum), Cassin’s sparrows (Aimophila cassinii), and dickcissels (Spiza americana) 

responded positively to post-fire succession, and lark sparrows (Chondestes grammacus) 

responded negatively to post-fire succession.; abundance of these avian groups was low 

on the control sites.  During 2004–2005, 90 grassland bird nests were monitored.  I 

found conflicting results for vegetation parameters important to nest site selection and 
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probability of nest success.  For all species except lark sparrows, nest-site location was 

positively associated with visual obstruction and with grass or forb cover.  However, the 

probability of nest success increased with lower visual obstruction, bare ground cover, or 

grass cover.  Grassland bird abundance, nest-site location, and nest success had differing 

associations with vegetation variables.  These results suggest that to effectively manage 

remaining grasslands for sustainable breeding grassland  bird populations, managers 

should engage in practices that keep habitat in multiple vegetative successional stages. 
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CHAPTER I 

 INTRODUCTION 

 
     Before European settlement of the North American grasslands, the Great Plains 

comprised the largest vegetative province in North America and was estimated to cover 

162 million ha of land (Knopf 1994). The North American grasslands extended from 

central Mexico to the Canadian provinces and were characterized by diverse 

assemblages of vegetation types (Risser et al. 1981, Anderson 1990).  The Great Plains 

consists of 3 types of native prairie: tallgrass, mixed grass, and short grass plains.  The 

mixed grass prairie has declined by 72–99% and the tallgrass prairie has declined  

83–99% from their previous distributions due to the cumulative effects of overgrazing, 

suppression of fire, and conversion to cropland or urban development (Knopf 1996).   

     The grassland system evolved with and was maintained by climate and periodic 

disturbances, particularly fire and grazing (Wright and Bailey 1982, Higgins 1986).  Fire 

was a continuous disturbance regime in maintaining these grasslands, but not consistent 

in frequency or intensity (Curtis 1959, Daubenmire 1968, Vogle 1974).  Fire frequency 

primarily influenced the composition and structure of grassland vegetation communities 

(Riggs et al. 1996).  Wright and Bailey (1982) estimated pristine grasslands of level to 

gently rolling topography to have had a 5–10 year burn interval.  These periodic fires 

shaped grassland ecology by increasing grass productivity and fire tolerant species while 

decreasing forbs and woody plant species that are more susceptible to fire (Collins and 

Gibson 1990).  The recovery time from natural prairie fire is estimated to be 3–4 years 
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for tallgrass, 6 years for northern mixed prairie, and 5–10 years in a short grass prairie 

(Bragg 1995).  The recent fire history of the North American grassland ecosystem has 

been one of human suppression.   

     Continual suppression of fire and intensive grazing by domestic livestock has altered 

the vegetative composition and structure of many grassland systems, from native 

grasslands or savannahs to shrub-dominated lands (Archer et al. 1988, Archer 1989, 

Scifres and Hamilton 1993).  One of the most dramatic examples of this vegetation shift 

has been the increase of mesquite (Prosopis spp.) on grasslands of the southwestern 

United States (Archer 1989).  Historical records suggest honey mesquite (Prosopis 

glandulosa var. glandulosa Torr.) has always been a dominant species in the Texas 

Rolling Plains (Malin 1953).  Johnston (1963) provided further evidence that the 

geographic distribution of honey mesquite has changed little from its historical range, 

but has increased in density and height.  Over the past 100 years mesquite has grown 

into dense thickets due to livestock grazing and fire suppression (Wright et al. 1976).  

Early explorers traveling in west Texas and eastern New Mexico reported an abundance 

of honey mesquite on uplands and along streams (Marcy 1849, Micheler 1850).  In the 

Rolling Plains of Texas, Marcy (1849) described the area as "mesquite timber" in a 

"peach-like orchard."  

     The changes in fire frequency combined with grazing pressure and climate 

characteristics determine the structure and composition of grassland vegetation, which 

influences the grassland bird abundance, diversity, and avian communities present in a 
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grassland system (Axlerod 1985, Zimmerman 1997).  A study on the Konza prairie 

reported a shift from grassland-dependent avian communities to shrub-dependent avian 

communities as the vegetation structure of grasslands changed due to decreased fire 

frequency (Zimmerman 1997).  Another study in Arizona showed mesquite-dominated 

grasslands supported shrub-dependent avian communities, which historically had 

supported grassland-dependent avian communities (Lloyd et al. 1998). The role of 

vegetation composition and structure in relation to grassland bird habitat use is well-

documented (Cody 1968, Rotenberry and Wiens 1980).   

     Fire is a common tool used to manage woody encroachment in many rangeland 

habitats due to the low cost compared to mechanical and chemical management (Scifres 

and Hamilton 1993, Teague et al. 1997).  However, the effectiveness of fire as a 

restoration tool for grasslands and their passerine breeding bird communities from shrub 

dominated lands has received little attention (Skinner 1975, Risser et al. 1981, 

Kirkpatrick et al. 2002).  The majority of studies using prescribed fire have typically 

used only a single burn and control site (Renwald 1977, Huber and Steuter 1984, 

Pylypec 1991), or they have examined avian responses only 1–3 years post-burn (Forde 

et al. 1984, Herkert 1994).  Studies addressing long term effects are few.  More recent 

short-term studies investigating fire as a restoration tool have reported contrasting 

results, thus showing no clear patterns of prescribed-fire effects on grassland birds 

(Reynolds and Krausman 1998, Kirkpatrick et al. 2002).   

     Two studies that investigated long-term effects (>10 years) of fire on grassland birds 

noted short-term decreases in grassland bird abundance on 1-year post-burn sites, but no 
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long-term effects on grassland-bird abundance in the North Dakota mixed prairies 

(Johnson 1997, Madden et al. 1999).         

     This thesis explores the role of fire as a grassland restoration tool as it defines the 

vegetation patterns and bird communities in mesquite dominated rangelands.  The 

objectives of this thesis were to quantify relationships among breeding grassland  bird 

mean relative abundance, vegetation features, and nest success on the mesquite 

dominated shrubland in the Texas Rolling Plains.      

STUDY OBJECTIVES 

 

     This project examined the effects of prescribed fire on breeding grassland  bird mean 

relative abundance and nest success along a <1–9 year-old post-burn continuum in a 

mesquite shrubland of the Texas Rolling Plains.  The specific objectives were: 1) to 

examine trends in the abundance of grassland breeding bird communities and single 

species, 2) to determine nest success, and 3) to identify important vegetation 

characteristics associated with grassland breeding bird abundance, nest-site selection and 

nesting success on the Waggoner Experimental Ranch (WER).  
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CHAPTER II 

PRESCRIBED FIRE EFFECTS ON BREEDING GRASSLAND BIRD 

COMMUNITIES IN MESQUITE SAVANNA HABITATS 

 

INTRODUCTION 

 

     For the past 25 years, North American grassland birds have declined more than any 

other avian guild (Knopf 1994, Peterjohn and Sauer 1999).  Breeding Bird Survey (BBS) 

data have shown 14 of 19 widespread North American grassland bird species and 6 of 9 

endemic species are in decline (Knopf 1996).  Many grassland-dependent species such 

as the dickcissel (Spiza americana), the grasshopper sparrow (Ammodramus 

savannarum), and the Cassin's sparrow (Aimophila cassinii) are Partners in Flight 

species of concern (Carter et al. 1996) and have shown declining breeding population 

trends from 1966–1996 (Peterjohn and Sauer 1999). In Texas, breeding densities of lark 

sparrows (Chondestes grammacus) are among the highest in the United States but are 

declining 4.2% per year (Sauer et al. 1997).  Fragmentation, loss, and degradation (e.g., 

woody encroachment) of habitats are cited as the main causes for observed declines 

(Johnson and Igl 2001, Vickery and Herkert 2001).  The remaining grasslands are vitally 

important to grassland-dependent bird species persistence and diversity.   

     Grassland-bird communities are characterized by low diversity and density (Cody 

1966) and stable annual species richness (Wiens 1973).  A study on the Konza tall-grass 

prairie in Kansas reported 9 of 12 grassland-dependent species returned annually 

(Zimmerman 1993).  Furthermore, implementing fire annually and on 4-year intervals 
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had no significant effect on species composition of a grassland-dependent community in 

the Konza prairie (Zimmerman 1997).  This supports the overall lack of response to 

prescribed fire by grassland-dependent species (Fitzgerald and Tanner 1992, Johnson 

1997, Rohrbraugh et al. 1999).  Fire does not specifically define the grassland bird 

communities present so much as it suppresses woody-plant succession and shrub-

dependent avian communities (Zimmerman 1992).   

      Fire is a common tool used to manage woody encroachment in many rangeland 

habitats due to the low cost compared to mechanical and chemical management (Scifres 

and Hamilton 1993, Teague et al. 1997).  However, the effectiveness of fire as a 

restoration tool for grasslands and their passerine breeding bird communities from shrub 

dominated lands has received little attention (Skinner 1975, Risser et al. 1981, 

Kirkpatrick et al. 2002).  Scifres and Hamilton (1993) point out that although wildfires 

and those set by Native Americans did maintain grasslands from woody-plant 

encroachment, they did not convert shrublands of present-day proportions to grasslands.  

The majority of studies using prescribed fire have typically used only a single burn and 

control site (Renwald 1977, Huber and Steuter 1984, Pylypec 1991), or they have 

examined avian responses only 1–3 years post-burn (Forde et al. 1984, Herkert 1994).  

Few studies have investigated long-term fire effects.  More recent short-term studies 

investigating fire as a restoration tool have reported contrasting results, thus showing no 

clear patterns of prescribed-fire effects on grassland birds (Reynolds and Krausman 

1998, Kirkpatrick et al. 2002).  Two studies that have investigated long-term effects 

(>10 years) of fire on grassland birds in the North Dakota mixed prairies reported short-
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term decreases in grassland bird abundance on 1-year post-burn sites, but no long-term 

effects on grassland bird abundance (Johnson 1997, Madden et al. 1999).                         

     The use of prescribed fire as a restoration tool for grassland-bird communities should 

influence grassland-bird community demographics throughout post-burn succession of 

vegetation.  In shrub-dominated grasslands, fire can alter shrub height and canopy cover, 

leading to the reestablishment of a grassland matrix.  However, many woody plants (e.g., 

mesquite) are only top-killed by fire and have the ability to re-sprout with a multi-stem 

growth form, making density reduction by fire difficult to achieve (Scifres and Hamilton 

1993).  Thus, after an initial fire, vegetation may still approximate a shrubland rather 

than true grassland, so it remains to be seen if grassland-dependent birds will inhabit 

burned sites.  Kirkpatrick et al. (2002) reported a decline in grassland bird abundance 

immediately following a burn on mesquite-invaded treatment plots compared to 

mesquite-invaded control plots in southern Arizona grasslands.  However, frequent 

prescribed fires may enhance breeding bird populations by increasing plant biomass for 

nest concealment, decreasing predation (Johnson and Temple 1990), and/or increasing 

insect densities for food available to nestlings (Evans 1988).   

     A threshold may exist where grassland bird communities and reproductive success 

begin to decline along a successional gradient of woody vegetation growth.  Guthery 

(1999) noted a threshold likely existed for northern bobwhite (Colinus virginianus) 

where too little herbaceous cover and too much woody cover led to a loss of useable 

space and ultimately a decline in bobwhite abundance.  Similarly, Zimmerman (1992) 

noted the core grassland bird species were not affected by climatic extremes (i.e., 
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extreme dry or wet years) as long as the structural complexity of the habitat did not 

decline below a threshold.  Finding a threshold would help determine a fire frequency 

interval necessary for grassland-bird persistence, and may make it possible to 

simultaneously maintain cattle production and grassland- bird habitat by managing 

mesquite.  Addressing this relationship experimentally is necessary to further an 

understanding of grassland bird ecology and to improve the conservation and 

management of grassland bird populations and their habitat.        

     To effectively manage remaining grasslands, biologists need to better understand the 

relationships among disturbance regimes (e.g., fire), resultant vegetation changes, and 

grassland-bird communities.  The overall objective of this study was to examine the 

effects of prescribed fire on grassland-breeding bird mean relative abundance along a 

<1–9 year-old post-burn continuum in mesquite shrublands of the Texas Rolling Plains.  

The specific objectives were: 1) to examine trends in breeding grassland  bird 

communities and single species abundances and 2) to identify important vegetation 

characteristics associated with grassland bird abundance on the Waggoner Experimental 

Ranch.   



 9 

STUDY AREA 

 
     The study area was located on the 12,141 ha Kite Camp of the Waggoner 

Experimental Ranch (WER) in Wilbarger County, Texas (Figure 2.1).  The region is 

characterized by a continental and semiarid climate with an average growing season of 

220 days.  Annual precipitation averages 64.8 cm with seasonal peaks in May and 

September.  Ambient temperatures range from -2.3 Cº in January to 36.4 Cº in July.  

Topography is moderately rolling with elevations ranging from 335–396 m.  The 

landscape is characteristic of the Red Rolling Plains ecological region and was 

historically a grassland or grassland savanna maintained by periodic wildfire (Gould 

1975).  Currently, the WER is a shrubland savanna dominated by honey mesquite and 

lotebush (Ziziphus obtusifolia (T. & G.) Gray) in various stages of succession resulting 

from application of herbicides and prescribed fire (Gould 1975).  The herbaceous species 

are a mixture of cool and warm season grasses including Texas wintergrass (Stipa 

leucotricha Trin. & Rupr.), Texas bluegrass (Poa arachnifera Torr.), Japanese brome 

(Bromus japonicus Thunb.), buffalograss (Buchloe dacctyloides (Nutt.) Engelm.), silver 

bluestem (Bothriochloa saccharoides (Sw.) Rydb.), meadow dropseed (Sporobolus 

asper var. hookeri Trin.), and sideoats grama (Bouteloua curtipendula (Michx.) Torr.) 

(Gould 1975).  The Kite Camp is a cow-calf operation stocked at 1 animal unit (AU) /12 

ha in a continuous grazing system and a similarly stocked 1 herd 8 pasture short-duration 

rotational grazing systems (SDG).  The cattle are rotated through the pastures on a 

weekly basis during the growing season and every 2 weeks during the dormant season. 
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Figure 2.1.  Study area used in evaluating the effects of prescribed fire on breeding 

grassland birds on the Waggoner Experimental Ranch, Wilbarger County, Texas, 2002–

2005. 
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METHODS 

 

Study Site Selection 

 

     Individual pastures were managed with prescribed fire to increase forage production 

for livestock and to control honey mesquite.  Pastures were deferred from grazing for a 

growing season and burned once during February–March when vegetation was dormant 

or August–September after the nesting season.  I selected 8 pastures that ranged from 

<1–9 years post-burn for disturbed sites and 2 pastures ≥20 years post-burn for control 

sites.  Pastures ranged in size from 164 ha to 499 ha.  Newly summer-burned pastures in 

2003 and 2004 were integrated into the study design as disturbed sites to evaluate avian 

response to same-year fire treatments.  All study sites were within the 1 herd 8 pasture 

short duration rotational grazing systems (9 study pastures) or the continuously grazing 

system (1 study pasture).  All burn and control sites had replicates (2) except for the LC8 

pasture where a replicate was lost due to an application of herbicide treatment by the 

landowner (Table 2.1).  Pre-treatment data on fire-treated sites were not available given 

the pre-existing nature of the fire treatments.  As such, my study utilizes an After-Only: 

Impact Trend-by-Time Interaction design described by Morrison et al. (2001:129).   
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Table 2.1.  Study sites used to sample mean relative abunance for grassland birds, 

Waggoner Experimental Ranch, Wilbarger County, Texas, 2002–2005. 

   2002 2003 2004 2005 
 

Study Sites Size (ha) n
a YSBb YSBb YSBb YSBb 

 

Unburned – LC 1 338 4 ≥20 ≥20 ≥20 ≥20 
 

Unburned – SR 4 317 4 ≥20 ≥20 ≥20 ≥20 
 

LC 2 230 4 6 7 8 9 
 

TP 2 499 4 6 7 8 9 
 

SR 5 301 4 4 5 6 7 
 

SR 6 289 4 --- 5 6 7 
 

LC 5 225 4 4 5 6 <1 
 

LC 8c 164 4 2 3 4 5 
 

LC 4 206 1 --- --- <1 2 
 

SR 3 235 4 --- --- <1 2 
 

 

a Number of transect lines within burn unit 
b YSB = Years since last burn; for control sites,  previous treatment type was unknown 
c Pasture without a replicate 
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Abundance Sampling 

     I determined the mean relative abundance (birds/km) of breeding grassland birds 

(hereafter, birds) for each post-burn year using line transects from 2002–2005 (Burnham 

et al. 1980, Buckland et al. 2001).  I placed a set of 4 permanent transects in each pasture 

by randomly locating the first transect and systematically locating the 3 remaining 

transects parallel to one another and 200-m apart.  In the LC4 pasture there was 1 

continuous curved transect line.  Transects varied in length from 0.5 km to 2.4 km 

depending on pasture shape and size.  Transects were permanently marked with flagging 

tape to ensure accurate relocation on each visit (Buckland et al. 2001).  

     I surveyed a set of transects from 0600 to 1100 hours between May–July of each 

year.  Surveys were not conducted in inclement weather (e.g., rain or heavy winds).  In 

2002 transects were visited until >8 km per pasture had been surveyed, in 2003 transects 

were visited until >12 km per pasture had been surveyed, and in 2004–2005 transects 

were visited until > 19 km per pasture had been surveyed.  I identified the birds to 

species and recorded the perpendicular distance from the transect line to detection point 

with a range finder (Burnham et al.  1980).  All bird species seen were recorded 

(Appendix A), but only species recorded within 100 m were included in the final data set 

due to decreasing accuracy of range finders (Ransom and Pinchak 2003).   

     Surveys were conducted by 1 observer in 2002–2003, 4 observers in 2004, and 6 

observers in 2005.  To test for observer bias in 2004 and 2005, I used a Kruskal-Wallis 

test to compare the number of birds seen by each observer.  The order in which transects 

were surveyed was alternated such that every observer had the same effort per transect to 
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reduce bias from the treatment effect.  In order to reduce observer bias in study site 

abundance estimates, I had ≥2 or more observers surveying each pasture.   

Vegetation Sampling 

     Vegetation composition was measured in each pasture using the same methods each 

breeding season. I quantified herbaceous vegetation in June–August of each year at 

random locations off the bird survey transects.  Sample points were determined using a 2 

step process.  First, I randomly chose 2 of the 4 survey transects to be walked, and a 

random distance was determined and paced off along each transect.  A second random 

distance 0–15 m perpendicular to the transect was then paced to the sampling point 

(Noon 1981).  This process was alternated from left to right of the transect line to avoid 

biased measurements due to trampling from conducting bird surveys.  I visually 

estimated canopy cover (%) of grass, forbs, litter, and bare ground within a 20 cm x 50 

cm quadrat at 30 sample points per study site (Daubenmire 1959).  Each point was 

randomly sub-sampled within a 2-m radius along each of the 4 cardinal directions 

around the sample point.  As a result, each sample point was averaged over the 5 sub-

samples to obtain a mean value for a point value.  Similarly, I measured visual 

obstruction using a 1.5 m cover pole that was delineated into 15 1-dm sections (Robel et 

al. 1970).  The lowest strata visible from 4 m at a height of 1 m were recorded in the 4 

cardinal directions.  The 4 readings were averaged for each sub-sample point.   

     I measured post-fire density, height, and brush cover of woody shrubs from 8 

permanent 60-m transects in each study site in July every two years to monitor long-term 

response of mesquite.  I monitored woody vegetation every 2 years because previous 
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studies on similar soil types reported mesquite cover recovery rates of 1.1–2.2 % per 

year (Ansley et al. 2001). I estimated total canopy cover of all woody species using the 

line intercept method (Canfield 1941).  Total shrub density and height were estimated 

using the point-center-quarter method (Mueller–Dombois and Ellenberg 1974).  Every 

10-m along each 60-m transect line, I recorded the distance to the nearest woody plant in 

each of the 4 quadrants and the species of the woody plant.  The height of the closest 

woody plant in each of the 4 quadrants was measured to the nearest 0.1-m.  All transect 

lines were combined and averaged to obtain a mean shrub density value for each study 

site. 

Data Analyses 

     Vegetation.  I calculated the mean and coefficient of variation (CV) for each 

vegetation variable for the sub-samples within each plot; the CV has been used as a 

measure of heterogeneity of vegetation parameters (Roth 1976, Madden et al. 1999).  To 

reduce high correlations among vegetation variables, a Spearman rank correlation 

coefficient (rs) was calculated between all vegetation variables.  Variables were 

considered highly correlated when │rs│ > 0.80 or P ≤ 0.001 (Grant et al. 2004).  Eleven 

vegetation variables were retained for analysis (Table 2.2).  Brush cover was chosen 

over brush height and grass cover was chosen over litter cover.   

     Avian Abundance.  I calculated mean relative abundance for 5 grassland bird species 

(grasshopper sparrow, Cassin’s sparrow, lark sparrow, dickcissel, and eastern 

meadowlark (Sturnella magna)) as the number of birds per linear km of transect.  I 

defined total birds as all 5 species and grassland sparrow assemblage as all 3 sparrows 
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Table 2.2.  Vegetation variables measured for 8 burned sites and 2 unburned sites on the 

WER, Wilbarger County, Texas, 2002–2005. 

Vegetation Code Description 
 

Structural Variables 
 
Density Average mesquite plants per ha 
  
Brush cover Average percent canopy cover of brush 
  
CV density Coefficient of variation of density 
  
CV height Coefficient of variation of brush height 
  
CV cover Coefficient of variation of brush 
  
Grass cover Average percent canopy cover of grass 
  
Forb cover Average percent canopy cover of forbs 
  
Bare Average percent of canopy cover of bare ground 
  
Visual obstruction Average visual obstruction (dm)- height/density 
  
CV forb Coefficient of variation of average forb cover 
  
CV visual obstruction Coefficient of variation of visual obstruction readings 
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(i.e., Cassin’s sparrow, grasshopper sparrow, and lark sparrow).  I estimated a mean 

relative abundance for each study site.  As a result, the mean relative abundance for each 

post-burn year was averaged over the sub-samples of study sites to obtain a mean point.  

If a species was not observed on a site, a zero was used as the mean relative abundance. 

     I described bird communities in each post-burn year by species richness values, and 

Shannon-Wiener diversity and evenness indices.  I quantified post-burn bird community 

similarities across treatments using Morisita’s index (Horn 1966, Krebs 1999).  Post-

burn year communities are defined as all birds found within a single post-burn year (e.g., 

2 year post-burn site).  This statistical index (I) measures similarities between 

communities, such as overlap in seasonal patterns of abundance or nesting habitat (Horn 

1966).  I used descriptive statistics (i.e., confidence intervals) to investigate differences 

among total grassland bird abundances, individual species abundances, and species 

richness across fire treatments and controls. 

     I intended to use distance sampling methods to estimate absolute bird density, but the 

number of records was insufficient (n ≤ 35) to adequately estimate the detection function 

for individual species within each treatment and survey year.  Pooling the detections 

across sampling years for each site would assume a constant detection function.  Such an 

assumption was unlikely to hold because the brush height and cover increased over time, 

which likely affected the detectability of birds along the transect line.  This posed a 

problem when trying to compare density estimates among post-burn years with analysis 

of variance because each observation has to be independent.  Buckland et al. (2001) 

suggested dividing the density estimates by the common detection function to make the 
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observations independent.  However, to do such would result in a comparison of 

encounter rates (number/km) among treatments rather than a comparison of density 

estimates.  

Statistical Analysis 

     Although all bird species were recorded, only the 5 breeding grassland species were 

included in the community statistical analyses.  I used simple linear regression 

(Chatterjee et al.  2000) to quantify relationships between bird abundances and 

vegetation parameters on years since last burn.  I did not include the control sites in this 

analysis because the data between 9 and 20 year post-burn sites were lacking and thus 

assumed the relationships were linear over the range of missing data.  A repeated-

measure ANOVA could not be used because the experimental design was unbalanced 

and the sample sizes within treatments were unequal.   

     I used stepwise multiple linear regressions to determine if mean relative abundances 

of individual bird species, total birds, or the sparrow assemblage were selecting study 

sites based on certain vegetation characteristics or field size.  Regressions were 

performed on means of vegetation variables and mean abundance of grassland species 

for each burn unit.   

     I checked normality and residuals versus predicted value plots to test normality and 

constant variance.  Mean bird abundance was natural-log-transformed where needed to 

assure constant variances (Zar 1999).  I considered all statistical relationships significant 

at P < 0.10 because of reduced power to detect differences due to small sample sizes.  I 

used year-specific survey results for each site, rather than a single value to avoid 
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pseudoreplication within sites among years.  Using a single value could confound effects 

of vegetation variables on bird abundances, because herbaceous vegetation variables 

may vary from one year to the next.  Previous grassland bird studies have analyzed 

patterns of bird abundance over multiple years surveying the same sites and treated the 

data from each year as independent observations (Zimmerman 1992, Vickery et al. 1999, 

Swengel and Swengel 2001).  All data analyses used the Social Sciences statistical 

software package (SPSS 2003). 

RESULTS 

 
Vegetation and Fire 

     Simple linear regression showed 4 vegetation variables to have significant 

relationships (P ≤ 0.10) with years since last burn (Figure 2.2).  Brush cover, grass 

cover, and visual obstruction had a positive response and bare ground cover had a 

negative response to years since last burn, respectively (Figure 2.2).  However, brush 

cover exhibited the strongest relationship to years since last burn (r2 = 0.43, df=34, P ≤ 

0.001).  Brush density, forb cover and all CVs did not exhibit significant trends with 

years since last burn.  Annual precipitation during the 4 years vegetation variables were 

measured, is located in Appendix B.      

Avian Abundance  

     Grasshopper sparrows, Cassin’s sparrows, and dickcissels, had a positive relationship 

to years since last burn and lark sparrows had a negative response to years since last 

burn (Figure 2.3).  Eastern meadowlarks, total grassland bird, and the sparrow 

assemblage did not exhibit significant linear responses to years since last burn. 
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Figure 2.2.  Simple linear regression of years since last burn on mean (±SE) grass cover, 

bare ground cover, and brush cover (A, r2=0.21, 0.38, 0.45, P=0.016, ≤ 0.001, ≤ 0.001, 

df=26, respectively), and years since last burn on mean (±SE) visual obstruction (dm) 

(B, r2=0.13, P=0.062, df=26) on the WER, Wilbarger County, Texas, 2002–2005.  

Control sites not included in regressions (■ = burn sites; □ = control sites). 

(A) 

(B) 
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Figure 2.3.   Simple linear regression of years since last burn on mean (±SE) abundance 

of Cassin’s sparrows and grasshopper sparrows (A, r2=0.19, 0.30, P= ≤ 0.05, ≤ 0.05, 

df=26, respectively), and years since last burn on mean (±SE) abundance of lark 

sparrows and dickcissels (B, r2=0.29, 0.14, P=0.003, 0.059, df=26) on the WER, 

Wilbarger County, Texas, 2002–2005.  Control sites not included in regression (■ = burn 

sites; □ = control sites). 

(B) 

(A) 
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Figure 2.4.  Grassland bird species composition for years since last burned (n = 35), 

Waggoner Experimental Ranch, Wilbarger County, Texas, 2002–2005.  The study sites 

are grouped by years since last burn for all 4 years, which yields 35 sample sites. 
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     Eastern meadowlarks were the most abundant species across post-burn year 

categories (Figure 2.4). The youngest sites were dominated by lark sparrows and eastern 

meadowlarks; dickcissels and eastern meadowlarks dominated later successional stages.  

I did not detect significant observer bias in the number of birds observed between 

observers in either year (P = 0.33, df = 3; P = 0.44, df = 5).   

     Overall, bird species richness did not vary among burn sites, fluctuating from 4 to 5 

species.  Bird species diversity increased up to 8 years post-burn and then decreased 

(Figure 2.5).  Composition of the grassland species did not differ dramatically with post-

burn succession.  Morisita’s index of similarity values for post-burn avian communities 

for the 5 grassland species showed no difference with high overlap.  Values of I ranged 

from 0.62–0.99.  

Bird-Vegetation Associations 

     Brush cover, grass cover, bare ground cover, and visual obstruction were associated 

with mean bird abundances.  The stepwise multiple linear regression models for Cassin’s 

sparrows, eastern meadowlarks, dickcissels, and total birds had a negative correlation 

with brush cover, while lark sparrows had a positive correlation with brush cover (Table 

2.3).  Lark sparrows and grassland sparrows were positively correlated with an 

increasing amount of bare ground cover; whereas, dickcissels were negatively correlated 

with increasing bare ground cover.  Cassins’s sparrows and total birds had a positive 

correlation with grass cover.  The model did not indicate any significant predictive 

vegetation or habitat variables for grasshopper sparrows.  No models included pasture 

size as a significant predictive variable.   
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Figure 2.5.   Simple linear regression of years since last burned with mean grassland bird 

diversity (±SE), WER, Wilbarger County, Texas, 2002–2005.  Control sites not included 

in regression (● = burn sites; ○ = control sites).   

Grassland Bird Species Diversity 

r
2 = 0.41, df = 25, P = ≤ 0.001  
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Table 2.3.  Vegetation variables included in stepwise multiple linear regressions (P ≤ 

0.10) of grassland bird mean relative abundances, WER, Wilbarger County, Texas,  

2002–2005. 

Bird Species R
2 Vegetation Variables a,b Partial R2 

    

Cassin’s sparrow 0.292 - Brush cover  0.416 

  + Grass cover 0.341 
    
Lark sparrow 0.69 + Bare ground cover 0.766 

  + Brush cover 0.444 

  - Visual obstruction 0.439 
    
Eastern meadowlark 0.33 - Brush cover 0.577 
    
Dickcissel 0.28 - Bare ground cover  0.526 

  - Brush cover 0.384 
    
All grassland birds 0.37 - Brush Cover 0.545 

  + Grass cover 0.382 
    
Sparrow assemblage 0.27 + Bare ground cover 0.522 

    
 

a Independent variables listed in the order they were included in the model 
b Response based on slope (+ or -) of regression line 
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DISCUSSION 

Vegetation and Fire      

     Effects of fire on wildlife populations and their habitat depend on the frequency, 

intensity, extent, and season of fire (Whelan 1985, Debano et al. 1998).  The prescribed 

fires on my study were single winter (1996–2000) or single summer fires (2003–2004).  

The purpose of the fires was to topkill mesquite and to increase grass production for 

livestock.  The fires produced mesquite topkill that ranged from 20% (poor)–90% 

(excellent) (Ansley et al. 1999).  The prescribed fires were not constant in intensity, 

which influences the resulting post-fire vegetative community; thus, the vegetative 

communities present may not be indicative of the number of years post-fire.  

     On my study, mesquite density did not show a significant response to time since last 

fire.  The mesquite density was relatively high ranging from 803–1318 plants/ha and 

maintained a patchy distribution, leaving open grass patches on all sites.  The high 

mesquite density within a narrow range and patchy distribution was also characteristic of 

a semi-arid grassland in Arizona (Lloyd et al. 1998).  The lack of response by mesquite 

density to time since last fire concurs with a past study in the Red Rolling Plains that 

reported non-significant honey mesquite mortality from single prescribed fires and no 

reduction in mesquite density (Ansley and Jacoby 1998).  The average mesquite density 

on recently burned fields (x = 993 plants/ha) differed from unburned fields (x = 1257 

plants/ha) by 21% magnitude of difference.  This small difference in mesquite density 

could be due to the ineffectiveness of fire to achieve a good topkill on mesquite (Ansley 

and Jacoby 1998).  Brush cover showed a positive relationship to years since last fire 
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with the lowest brush cover in <1 year post-burn sites and the highest brush cover in 

control sites (Figure 2.2 A).  The positive response of brush cover to time since last fire 

could be due to resprouting of mesquite plants, recruitment of new mesquite plants from 

seed banks, clustering of mesquite patches, or short-lived topkill effects that maintain 

apical dominance.  Past studies have suggested increased brush cover is due to fire 

suppression and cattle grazing (Archer et al. 1988, Scifres and Hamilton 1993).  Overall, 

the brush cover on the burn sites ranged between 7.5–23.5% and was ≈34% on the 

control sites.   

     Grass cover and visual obstruction increased with years since last fire, while bare 

ground cover decreased with years since last fire (Figure 2.2 B).  The positive response 

by grass cover to post-fire years may be explained by a lower amount of brush cover on 

the burned sites.  Previous studies in semiarid grasslands have noted woody cover can 

increase to ≈ 20% and still maintain herbaceous productivity (Warren et. al. 1996, 

Ansley et al.2004).  Furthermore, brush canopy cover around 20% may increase water 

and nutrient availability for grass production (Scholes and Archer 1997, House et al. 

2003).  However, in terms of range management, my study sites ≥ 6 years post-burn 

were at the upper end or above the optimal herbaceous productivity threshold range of 

0–20% brush cover (Teague et al. 2001).  The negative response of bare ground cover to 

years since last fire may be explained by the positive response of grass cover.   

     The positive response in grass cover and brush cover to increasing time since last fire 

may explain the increase in visual obstruction.  In addition the positive response of 

visual obstruction could be related to the amount of precipitation received each year.  
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The annual precipitation can be extremely variable and influences the characteristic plant 

forms found in grasslands (e.g., short grass prairies).  In extremely dry years the 

productivity of herbaceous vegetation variables (i.e., biomass) may be reduced, thus 

decreasing the height and density of grasses and forbs.  I did not measure the impact 

grazing had on herbaceous cover and visual obstruction, which could confound the 

relationship to time since last burned.  However, I did not visually observe a difference 

in herbaceous height due to grazing. 

Avian Abundance     

     Mcpherson (1995) and Whelan (1995) reported bird species response to fire was 

closely linked to the effect of fire on the vegetation community.  Furthermore, 

Fuhlendorf and Engle (2001) noted that the grassland avian guild sustainability was 

linked to the heterogeneity of vegetation structure.  In my study, the prescribed fires 

were incomplete in their coverage and left unburned patches creating a mosaic of 

mesquite stands and mesquite grassland patches.  I believe this contributed to grassland 

birds being present in later successional stages and the limited change in the grassland 

avian community as a whole.  Similarly, Zimmerman (1993) noted dickcissels, 

grasshopper sparrows, and eastern meadowlarks did not decrease in total numbers due to 

annual or less frequent fires.  Species richness was highest among burn sites and lowest 

in unburned sites (≥20 years post-burn).  Other studies have reported species richness 

highest on sites associated with lack of fire, but have included non-grassland species 

associated with woody habitats (Arnold and Higgins 1986, Zimmerman 1992).  Species 

richness of breeding grassland birds ranged from 4–5 among burned sites.  This finding 
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was consistent with other studies that characterize breeding grassland  bird communities 

as having low diversity and density with relatively constant annual species richness 

(Cody 1966, Wiens 1973).   

     Abundances of grasshopper sparrows, Cassin’s sparrows, and dickcissels were 

positively related to time since last burned, but were reduced in numbers on the control 

sites (Figure 2.3 A, B).  Lark sparrows decreased with time since last burn (Figure 2.3 

B).  The response to fire may be related to each species habitat requirements in relation 

to vegetative parameters.  For example, lark sparrows have a negative association with 

grass cover and litter cover (Renwald 1977), which is typically associated with earlier 

successional stages.  Cassin’s sparrows, which prefer high amounts of grass cover for 

foraging and nesting (Bock and Webb 1984), increased with time since fire, while mean 

grass cover increased and bare ground cover decreased with time since fire (Figure 2.2 

A).   

     Species diversity is the number of species in an area weighted by the number of 

individuals for each species, thus species richness and species evenness.  The general 

increase in species diversity (Figure 2.5) with time since last burned appears to be 

attributed to species evenness because species richness fluctuated from 4–5 species over 

time.  The distribution among the number of individuals for each species increased with 

years since last burned.  As the distribution of species became less even, the diversity 

index (H’) increased.  The increase in grassland bird diversity has been associated with 

increasing spatial variability in vegetation variables (Roth 1976).  In addition the 

grassland patches suitable for nesting and foraging should increase with more spatial 
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variability in vegetation parameters.  The number of patches suitable in relation to each 

species specific habitat requirements may shift, thus the distribution of species becomes 

more dissimilar.   

     I found vegetation variables correlated to the abundance of all birds except 

grasshopper sparrows.  Past studies have suggested response of breeding grassland birds 

to fire is related to the natural history requirements of each species (Bock and Bock 

1992, Kirkpatrick et al. 2002).  Vegetation variables important to relative abundance 

concurred with general habitat preferences reported for each species.  For example, lark 

sparrow abundance increased with more bare ground cover and brush cover, and have 

been noted to prefer low litter and low grass cover (Renwald 1977), and sparse 

vegetation with scattered small trees (Martin and Parrish 2000).  Cassin’s sparrow 

abundance was correlated with lower brush cover and more grass cover.  Similarly, Bock 

and Webb (1984) observed Cassin’s sparrows on sites with high grass cover and 

scattered mesquite bushes.  Eastern meadowlark abundance increased with reduced 

amounts of mean brush cover.  My eastern meadowlark findings concurred with a 

previous study in the mixed-grass prairies, where meadowlarks were negatively 

associated with visual obstruction and shrub cover (Madden et al. 1999).  Similarly, 

dickcissel abundance was negatively correlated with bare ground cover and brush cover.  

My dickcissel results were similar to other studies that indicate abundance was 

correlated positively with grass cover and negatively with bare ground cover (Wiens 

1973, Rotenberry and Wiens 1980).  Total grassland bird abundance was positively 

associated with grass cover and negatively associated with brush density.  The positive 
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association with grass cover and the negative association with brush cover are not 

surprising with grassland birds preferring open grasslands as optimal habitat for breeding 

and foraging.  The grassland sparrow assemblage was positively correlated with bare 

ground cover, which could be due to lark sparrows and grasshopper sparrows preferring 

to forage and nest in areas containing bare ground.  The variability in habitat 

requirements for each species suggests a heterogeneous (i.e., variability in vegetation 

height and density) grassland is necessary to maintain the grassland avian guild 

(Fuhlendorf and Engle 2001).       

     I observed that brush cover increased with time since last fire to the higher end of the 

herbaceous productivity threshold between 7–9 years post-fire (Figure 2.2 A), and total 

grassland bird numbers decreased with increasing brush cover (Table 2.4).  Although, 

birds responded positively or negatively to time since last burn, all birds were present on 

<1–9 year post-burn sites to varying degrees.  The presence of grassland birds across 

post-burn years suggests the single burns on a 5–6 year rotation were able to maintain 

suitable habitat for grassland bird populations.  Prescribed fire may not be able to fully 

restore a shrub-invaded grassland to a pristine grassland state, but may be able to 

maintain grassland-bird populations at these local scales by creating vegetation 

communities at various successional stages.  Similarly, Fuhlendorf and Engle (2001) 

suggested that restoring rangelands using fire and grazing to a more heterogeneous state 

would maintain a diverse community of the grassland avian guild by providing various 

successional stages in vegetation structure.                 
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MANAGEMENT IMPLICATIONS 

 
     In my study, changes in mean bird abundance were associated with vegetation 

variables that differed among bird species.  Therefore there is no single management 

strategy to simultaneously increase abundance for all 5 study species, which may pose 

logistical challenges for ranchers interested in maintaining grassland bird populations as 

a secondary goal.  To maintain herbaceous productivity and improve visibility for 

livestock a single large scale (i.e., pasture level) fire is the most efficient and cheapest 

management tool.  On a rotational grazing system with several pastures prescribed fire 

can be implemented on multiple pastures every 5–6 years to manage for livestock and 

grassland birds in the Red Rolling Plains (Teague et al. 1997).  Results from this study 

suggest a burn regime of 5 years might be adequate to maintain habitat conditions for 

grassland bird communities. 
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CHAPTER III 

PRESCRIBED FIRE AND GRASSLAND BIRD NESTING ECOLOGY  

IN MESQUITE SAVANNA HABITATS  

INTRODUCTION 

 
     Before European settlement of the North American grasslands, the Great Plains 

comprised the largest vegetative province in North America and was estimated to cover 

162 million ha of land (Knopf 1994).  Grassland systems have decreased in size, with the 

mixed grass prairie declining by 72–99% and the tallgrass prairie declining 83–99% 

from their previous distributions due to the cumulative effects of overgrazing, 

suppression of fire, and conversion to cropland (Knopf 1996).  For the past 25 years, 

North American grassland birds have declined more than any other avian guild (Knopf 

1994, Peterjohn and Sauer 1999).  Breeding Bird Survey (BBS) data have shown that 14 

of 19 widespread North American grassland bird species and 6 of 9 endemic species are 

in decline (Knopf 1996).  Many grassland-dependent species such as the dickcissel, 

grasshopper sparrow, and Cassin's sparrow are Partners in Flight species of concern 

(Carter et al. 1996), and have shown declining breeding population trends from 1966–

1996 (Peterjohn and Sauer 1999).  Habitat fragmentation, loss, and degradation (e.g., 

woody encroachment) are cited as the main causes for observed declines (Johnson and 

Igl 2001, Vickery and Herkert 2001). 

     Implementing prescribed fire, as a restoration tool for grassland bird communities, 

should influence grassland bird community demographics throughout post-burn years by 

providing various stages of vegetation succession.  In shrub-invaded grasslands, fire can 
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alter shrub density, canopy cover and height, and in some cases shrub density, which 

could lead to the reestablishment of a grassland matrix.  Many woody plants (e.g., 

mesquite) are top-killed by fire, but have the ability to re-sprout with a multi-stem 

growth form (Scifres and Hamilton 1993).  Thus, after an initial fire, vegetation may still 

approximate a shrubland physiognomy rather than true grassland.  It remains to be seen 

if grassland-dependent birds will inhabit burned sites.  Previous studies reported a 

decline in grassland bird abundance immediately following a burn on shrub-invaded 

treatment plots (Reynolds and Krausman 1998, Kirkpatrick et al. 2002).  However, 

frequent prescribed fires may enhance breeding-bird populations by increasing plant 

biomass for nest concealment, decreasing predation (Johnson and Temple 1990), and/or 

increasing insect densities for food available to nestlings (Evans 1988).   

     Past studies have estimated grassland bird abundance and related this to habitat 

features measured within their study areas (Herkert 1994, Madden et al. 1999).  It has 

been suggested that density estimates alone may produce misleading conclusions about 

habitat quality (Van Horne 1983).  One problem could be time lags resulting from 

species-specific site fidelity (Rotenberry and Wiens 1978), which might obscure 

expected short-term responses to habitat disturbances (Wiens and Rotenberry 1985, 

Wiens et al. 1986).  For example, increased brush density may continue to attract 

breeding grassland birds, but may be an ecological trap resulting in lower reproductive 

success due to predation and parasitism (Ratti and Reese 1988).  Remes (2003) found 

higher breeding densities of blackcaps (Sylvia atricapilla) in exotic black locust 

plantations than native floodplain forests. However, reproductive success was lower in 
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black locust plantations (15.5%) than in native floodplains (59%).    Thus, prescribed fire 

implemented for shrubland to grassland conversions must also be evaluated in terms of 

nest survival and fledging success and over longer time frames (e.g., >5 years) (Johnson 

and Temple 1984, Johnson and Temple 1990, Kirkpatrick et al. 2002). 

     To effectively manage remaining grasslands, a better understanding is needed of the 

relationships among disturbance regimes (e.g., fire), resultant vegetation changes, and 

grassland-bird communities.  The objective of this study was to examine the effects of 

prescribed fire succession on grassland bird reproductive success along a <1–9 year 

post-burn continuum in a mesquite shrubland of the Texas Rolling Plains.  My research 

focused on answering the following questions: 

 1) How does grassland bird nest success vary over the stages of fire succession in 

 a mesquite dominated shrubland? 

 2) What vegetation characteristics are associated with nest-site selection by 

 grassland birds on the Waggoner Experimental Ranch?  
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STUDY AREA 

 
     The study was conducted on the 12,141 ha Kite Camp of the Waggoner Experimental 

Ranch (WER) in Wilbarger County, near Vernon, Texas (Chapter II, Figure 2.1).  The 

region is characterized by a continental and semiarid climate with an average growing 

season of 220 days.  Annual precipitation averages 64.8 cm with seasonal peaks in May 

and September.  Ambient temperatures range from -2.3 Cº in January to 36.4 Cº in July.  

Topography is moderately rolling with elevations ranging from 335–396 m (Gould 

1975).   

     The landscape is characteristic of the Red Rolling Plains ecological region and was 

historically a grassland or grassland savanna maintained by periodic wildfire.  Currently, 

the WER is a shrubland savanna dominated by honey mesquite and lotebush in various 

stages of succession resulting from application of herbicides and prescribed fire (Gould 

1975).  Herbaceous species are a mixture of cool and warm season grasses including 

Texas wintergrass, Texas bluegrass, Japanese brome, buffalograss, silver bluestem, 

meadow dropseed, and sideoats grama (Gould 1975).  The Kite Camp is a cow-calf 

operation stocked at 1 animal unit (AU) /12 ha in a continuous grazing system and a 

similarly stocked 1 herd 8 pasture short duration rotational grazing systems (SDG).   
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METHODS 

Study Site Selection 

     Individual pastures were managed with prescribed fire to increase forage production 

for livestock and to control honey mesquite.  Pastures were deferred from grazing for a 

growing season and burned once during February–March when vegetation was dormant 

or August–September after the nesting season.  I selected 8 pastures that ranged from 

<1–9 years post-burn for disturbed sites and 2 pastures ≥20 years post-burn for control 

sites with closed shrub canopies.  Pastures ranged in size from 164 ha to 499 ha.  Newly 

burned pastures in 2003 and 2004 were integrated into the study design as disturbed sites 

to evaluate avian response on same year fire treatments.  All study sites were within the 

1 herd 8 pasture short duration rotational grazing systems (9 study pastures) or the 

continuously grazing system (1 study pasture).  All burn and control sites had replicates 

(2) except for the LC8 (Long Creek) pasture where a replicate was lost due to an 

application of herbicide treatment by the landowner (Chapter II Table 2.1).  Pre-

treatment data on fire treated sites were not available given the pre-existing nature of the 

fire treatments.  As such, my study utilizes an After-Only: Impact Trend-by-Time 

Interaction design described by Morrison et al. (2001:129).   

Nest Monitoring 

     I located and monitored dickcissel, eastern meadowlark, Cassin’s sparrow, 

grasshopper sparrow, and lark sparrow nests from April–July of 2004 and 2005 

following U.S. Department of Agriculture Forest Service guidelines (Ralph et al. 1993).  

I located 4 nest plots (100 x 100 m) along each transect in each study site.  I 
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systematically searched the study sites using a sweeping pole (Winter et al. 2003).  Each 

nest plot received equal search effort and areas outside the nest plots were also searched 

every 2–3 days.  Nests were also located opportunistically when birds flushed or were 

observed carrying food or nesting materials.  Nest locations were marked with a global 

positioning system (GPS) unit and flagged approximately 10 m north of the nest to 

reduce disturbance (Ralph et al. 1993).  I monitored nests every 3–5 days to determine 

the clutch size and nest fate.  When nests became inactive, I categorized nest fate as 

successful (fledged) or failed (depredated or abandoned).  A nest was considered to be 

successful if field observations provided evidence that >1 young fledged (Johnson and 

Temple 1990, Martin and Geupel 1993).  Each nest was considered an independent 

observation.   

Vegetation Sampling 

     I measured vegetation at nest sites and random sites after the nest became inactive.  

The random plots were located by pacing a predetermined random distance (5–30m) and 

cardinal direction from the nest site.  I measured 2 random sites for every nest site to 

reduce the variability of measuring an atypical random site (Sutter 1997).  I limited the 

distance to 30m to avoid placing the random site in a distinctly different vegetative 

community (e.g., underneath a mesquite plant, mesquite stand).  All plots were assessed 

within 7 days of nest completion.  At the nest site I recorded the nest substrate species, 

substrate height, vegetative height above nest, distance to the closest woody plant, and 

percent nest concealment in the 4 cardinal directions (Ralph et al. 1993).  All nest site 

herbaceous vegetation parameters were measured at the center of the nest and at random 
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locations near the nest in each of the 4 cardinal directions from the nest.  The 5 values 

for each vegetation attribute were then averaged for a mean value.  For both nest plots 

and random plots, I measured visual obstruction using a 1.5 m cover pole that was 

delineated into 15 1-dm sections (Robel et al. 1970).  The lowest strata visible from 4 m 

at a height of 1 m were recorded in the 4 cardinal directions.  The readings were then 

averaged for an overall vertical structure estimate for each plot.  I determined canopy 

cover (%) of grass, forb, bare ground, and litter using a 20 cm x 50 cm Daubenmire 

sampling frame (Daubenmire 1959).  Each variable consisted of 4 values that were 

averaged to obtain a mean value.   

Data Analysis  

     Nest Success.  Nest success was estimated for the entire nesting and fledging period 

using program MARK (White and Burnham 1999), which takes unknown failure dates 

into account.  Nest survival was calculated for each post-burn year and for each 

sampling year (Krebs 1999) and then compared using program CONTRAST (Hines and 

Sauer 1989).  I used stepwise discriminant function analysis for grasshopper sparrows, 

Cassin’s sparrows, lark sparrows, eastern meadowlarks, and dickcissels to determine 

which vegetation variables were significantly different between successful and 

unsuccessful nests (Warren and Anderson 2005).  I used a significant level of entry 

(SLE) into the model of 0.25 for vegetation variables.  To reduce high correlations 

among vegetation variables, a Spearman rank correlation coefficient (rs) was calculated 

between all vegetation variables.  Variables were considered highly correlated when 

│rs│ > 0.80 or P≤0.001 (Grant et al.  2004).  The vegetation variables retained for 
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analysis were % grass cover, % forb cover, % bare ground, visual obstruction, nest 

height, substrate height, vegetative height above nest, distance to the closest woody 

plant, and percent nest concealment. 

     Nest-site Selection. –Nest-site characteristics were evaluated by comparing vegetation 

variables at nest sites with random sites.  I used discriminant function analysis to 

determine which vegetation variables were different between nest sites and random sites 

(Warren and Anderson 2005).  The same model approach used with nest success was 

applied to evaluate nest-site selection.  The vegetation variables used for analysis were 

% grass cover, % forb cover, % bare ground, and visual obstruction.  I used simple linear 

regression to evaluate the relationship between the number of nests and vegetation 

parameters (i.e., woody and herbaceous). 

     All percentage data were transformed by arcsine square root; height data were 

transformed by log for data analysis.  I checked normality and residuals versus predicted 

value plots to test normality and constant variance.  I considered all statistics significant 

at P ≤ 0.10 due to small sample size.  All data analyses were done using the Social 

Sciences statistical software package (SPSS 2003). 

RESULTS 

 

General Nesting  

 

     I found a total of 90 nests during 2004 (n = 36) and 2005 (n = 54) for the 5 bird 

species:  grasshopper sparrows (n = 5), Cassin’s sparrows (n = 22), lark sparrows (n = 

27), eastern meadowlarks (n = 22) and dickcissels (n = 14).  I found 81 nests in burned 

pastures (grasshopper sparrows (n = 5), Cassin’s sparrows (n = 22), lark sparrows (n = 
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21), eastern meadowlarks (n = 19) and dickcissels (n = 14)), and 9 nests in unburned 

pastures (lark sparrows (n = 6) and eastern meadowlarks (n = 3)).  I found 9 nests in <1 

year post-burn sites, 21 nests in 2 year post-burn sites, 1 nest in the 4 year post-burn site, 

1 nest in the 5 year post-burn site, 13 nests in 6 year post-burn sites, 18 nests in 7 year 

post-burn sites, 12 nests in 8 year post-burn sites, 6 nests in 9 year post-burn sites, and 9 

nests in ≥20 year post-burn sites.  Mean clutch size was 3.4 (SE = 0.5) for grasshopper 

sparrows, 3.9 (SE = 0.3) for Cassin’s sparrows, 3.9 (SE = 0.2) for lark sparrows, 4.6 (SE 

= 0.2) for eastern meadowlarks, and 3.8 (SE = 0.3) for dickcissels.    

Nest Success 

     Overall survival rates for nests did not differ among post-burn years (χ2 = 2.992, df = 

8, P = 0.93) or between 2004 and 2005 (χ2 = 0.046, df = 1, P = 0.83), so nest data were 

pooled for 2004–2005.  Nest success for individual species ranged from 14% for 

Cassin’s sparrows to 100% for grasshopper sparrows (Table 3.1).  During my study the 

main cause for unsuccessful nests was depredation (90%).  Nest success for individual 

species was not tested due to small sample sizes across post-burn years.     

     I found vegetation variables at nest sites that were correlated with nest success for 

lark sparrows, eastern meadowlarks, and dickcissels.  Successful lark sparrow nests had 

lower percent grass cover than depredated nests (F = 3.97, df = 1, P = 0.06) (Table 3.2).  

Visual obstruction was taller at depredated nests than at successful nests for eastern 

meadowlarks (F = 3.47, df = 1, P = 0.08) and dickcissels (F = 6.60, df = 1, P = 0.03) 

(Table 3.2).  Bare ground cover was greater at unsuccessful dickcissel nests than at 

successful nests (F = 5.14, df = 1, P = 0.04) (Table 3.2).   
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Table 3.1.  Number of nests, percent of the total nests found, and nest success for the 

five grassland species on the Waggoner Experimental Ranch, Wilbarger County, Texas, 

2004–2005. 

Species n 
a % of total nests Nest success 

    

Grasshopper sparrow 5 5.6 1.00 

    

Cassin's sparrow 22 24.4 0.14 

    

Lark sparrow 27 30.0 0.20 

    

Eastern meadowlark 22 24.4 0.19 

    

Dickcissel 14 15.6 0.26 

    
 

a Number of nests observed 
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Table 3.2.  Mean ±SE of vegetation variables that differed significantly (P ≤ 0.10) 

between successful and unsuccessful nests using stepwise discriminant analysis on the 

Waggoner Experimental Ranch, Wilbarger County, Texas, 2004–2005. 

  Successful nests  Unsuccessful nests   

       

Species  Variables n x  SE  n x  SE F P 

           

Lark sparrow  Grass cover (%) 7 26.80 8.79  20 41.89 6.07 3.97 0.06 
           

Eastern meadowlark  Visual obstruction (dm) 7 1.84 0.08  15 2.09 1.00 3.47 0.08 
           

Dickcissel  Visual obstruction (dm) 4 2.72 0.54  10 4.90 1.00 6.60 0.03 
           
 Bare ground cover (%)  0.10 0.06   1.16 0.61 5.14 0.04 
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Nest-site Selection 

     Vegetation variables differed between nest sites and random sites for all species.  

Grasshopper sparrow nest sites had greater visual obstruction (F = 3.93, df = 1, P = 0.07) 

and higher percent forb cover (F = 2.93, df = 1, P = 0.09) than random sites (Table 3.3).  

Cassin’s sparrows had taller visual obstruction (F = 28.69, df = 1, P = ≤ 0.001) and 

higher percent grass cover (F = 2.06, df = 1, P = ≤ 0.001) at nest sites than at random 

sites (Table 3.3).  For lark sparrows, visual obstruction was taller (F = 12.60, df = 1, P = 

≤ 0.001) and percent grass cover was lower (F = 7.62, df = 1, P = ≤ 0.001) at nest sites 

compared to random sites (Table 3.3).  Eastern meadowlarks had higher percent grass 

cover (F = 2.83, P = 0.10) and percent forb cover (F = 2.98, df = 1, P = 0.06) at nest sites 

compared to random sites (Table 3.3).  Dickcissels had taller visual obstruction (F = 

20.34, df = 1, P = ≤ 0.001) and higher percent forb cover (F = 11.67, df = 1, P = ≤ 0.001) 

at nest sites than at random sites (Table 3.3).  The number of nests found in each post-

burn site was positively correlated with increasing heterogeneity of brush density (CV%) 

(Figure 3.1).   

DISCUSSION 

 
Nest Success 

  I utilized a pre-existing design from a management practice of replicated pastures 

subjected to prescribed fire at different times to evaluate grassland-bird nest success and 

nest-site selection.   Nest success was similar among post-burn years suggesting that 

although prescribed fire altered the vegetative structure, the time since burning did not  



 45 

Table 3.3.  Mean ±SE of vegetation variables that significantly (P≤0.10) differed 

between nest sites and random sites using stepwise discriminant analysis on the 

Waggoner Experimental Ranch, Wilbarger County, Texas, 2004–2005. 

  Nest Site  Random Site   
       

Species (n) Variables x  SE  x  SE F P 

         

Grasshopper sparrow Visual obstruction (dm) 1.95 0.21  1.39 0.16 3.93 0.07 
         
(n = 5) Forb cover (%) 2.60 1.25  0.90 0.73 2.93 0.09 
         
Cassin's sparrow Visual obstruction (dm) 2.99 0.28  1.53 0.12 28.69 ≤ 0.001 
         

(n = 22) Grass cover (%) 72.78 3.27  70.66 3.75 20.06 ≤ 0.001 

         
Lark sparrow Visual obstruction (dm) 2.57 0.50  1.24 0.11 12.60 ≤ 0.001 
         

(n = 27) Grass cover (%) 37.98 5.12  43.84 3.95 7.62 ≤ 0.001 

         
Eastern meadowlark Grass cover (%) 88.88 2.81  82.80 2.74 2.83 0.10 
         
(n = 22) Forb cover (%) 5.53 1.35  3.55 0.67 2.98 0.06 

         

Dickcissel Visual obstruction (dm) 4.23 0.75  2.03 0.20 20.34 ≤ 0.001 
         

(n = 14) Forb cover (%) 4.59 1.87  3.61 1.13 11.67 ≤ 0.001 
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Figure 3.1.  Simple linear regression of the number of nests and CV (%) of mean brush 

density with 90% confidence intervals, Waggoner Experimental Ranch, Wilbarger 

County, Texas, 2004–2005. 

P = 0.03, df = 16, r2 = 0.26 
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influence overall nest success.  Similarly, Zimmerman (1997) noted no change in 

reproductive success for dickcissels, eastern meadowlarks, and grasshopper sparrows 

despite fire frequency.  It has been suggested that the lack of grassland bird response to 

prescribed fire is due to fire being a natural disturbance in the grassland system 

(Zimmerman 1997).  Although not significantly different, the overall nest success was 

highest on the 2 year post-burn sites (≈30%) and lowest on the ≥20 year post-burn site 

(≈10%), which lends support to past studies that noted an increase in reproductive 

success on areas that were recently burned (Zimmerman 1992, Shriver and Vickery 

2001, Delaney et al. 2002).   

     The effect prescribed fire has on the herbaceous vegetation and woody plants (i.e., 

cover and density) coupled with the woody plant regrowth rate should influence the 

amount of suitable nesting habitat present.  Overall, my study sites had relatively low 

brush canopy cover, ranging from 7.5–34.9%.  Prescribed fire may provide a mosaic of 

vegetative communities (Riggs et al. 1996), thus creating a mix of open grasslands or 

grassland savanna and scattered mesquite.  The patchy shrub distribution with the low 

brush cover rate and grassland or grassland savanna patches may have provided suitable 

nesting habitat for all grassland bird species.  On my study site, ≥20 year post-burn sites 

contained open, grassy patches, which provided limited nesting habitat.  In my study, 

post-burn years did not significantly affect the probability of nest success for grassland 

birds, but vegetation characteristics seemed to influence nest success and suitable 

nesting habitat. 
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     I found 3 vegetation variables that were important for predicting nest success: visual 

obstruction, grass cover (%), and bare ground cover (%) (Table 3.2).  Successful lark 

sparrow nests had lower percent grass cover compared to unsuccessful nests.  This was 

not surprising, as lark sparrows have been reported to prefer sites with bare ground and 

short grass height (Bock and Webb 1984).  Similarly, Luske et al. (2003) reported nest 

success was predicted best by less bare-ground and more litter cover.  For dickcissels 

lower visual obstruction and bare-ground cover differed between successful and 

unsuccessful nests.  The low bare ground cover may provide more nest concealment by 

increased amounts of herbaceous cover, thus reducing potential nest predation.  Eastern 

meadowlarks had shorter visual obstruction at successful nests compared to depredated 

nests.  This agrees with past descriptions of their breeding habitat as Schroder and Sousa 

(1982) reported nest sites occurred with lower visual obstruction in more heterogeneous 

habitats.   

     The important vegetative parameters for successful nests (i.e., shorter visual 

obstruction and lower grass cover (%)) reduced nest concealment.  The selection for 

lower visual obstruction and lower percent grass cover may seem counterintuitive, but 

this may provide a wider view of the surrounding area for better surveillance of 

predators and a more efficient escape route (Götmark et al. 1995).  The potential trade 

off between reduced nest concealment for increased predator avoidance is important, 

because predation is thought to be the primary cause for nest failure in birds (Martin 

1993).  Natural selection should favor selection of nest sites and life history traits that 

reduce nest predation risk and increase reproductive success.   



 49 

Nest-site Selection 

     Vegetative parameters selected for nest sites were greater than random sites (Table 

3.3).  The only exception was nest sites for lark sparrows, which had lower selection of 

grass cover than random sites.  The 5 grassland birds often overlapped in their vegetation 

parameters for nest sites.  Grasshopper sparrows, Cassin’s sparrows, and dickcissels all 

selected nest sites with taller visual obstruction and more forb cover or grass cover 

compared to random sites, which agrees with past descriptions of their nesting habitat 

(Whitmore 1981, Maurer et al. 1989, Roth 1980).  Grasshopper sparrows have been 

associated with breeding territories characterized by low to intermediate height and 

intermediate forb cover (Whitmore 1981, Herkert et al. 1993).  Nest sites of Cassin’s 

sparrows were associated with intermediate vegetation height, grass cover and small 

shrubs (Maurer et al. 1989).  Dickcissels have been associated with structurally complex 

nest sites surrounded by dense herbaceous cover (Roth 1980).  Furthermore, Zimmerman 

(1993) noted male territories with greater forb and grass cover attracted more females.  

The selection of nest sites by these 3 species with taller visual obstruction and more forb 

cover or grass cover provides greater nest concealment which should reduce predation 

risks (Martin 1993).  In addition, greater forb cover could provide singing perches and 

potentially support higher insect numbers (Dechant et al. 2003).      

     Eastern meadowlarks selected nest sites with more grass and forb cover than random 

sites.  Eastern meadowlarks are known to select nest sites in short to intermediate 

vegetation height with nests placed under grass or forb clumps (Skinner et al. 1984).  

The increased grass and forb cover provides additional nest concealment which should 
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reduce predation rates, increase nesting materials, and increase the number of singing 

perches.  As mentioned previously, areas with increased forb cover have been suggested 

to support more insects for foraging (Dechant et al. 2003).   

     Nest sites of lark sparrows had lower grass cover and higher visual obstruction 

compared to random sites.  Similarly, previous studies have reported lark sparrow nests 

in areas with sparse ground cover in depressions located at the base of small shrubs 

(Zimmerman 1993, Martin and Parrish 2000).  The reduced nest concealment from low 

grass cover may be countered by the increased visual obstruction.  The higher visual 

obstruction should provide nest concealment from potential predators and protection 

from rain or heat. 

     I found that greater vegetative visual obstruction was important for nest-site selection 

for 4 of the 5 grassland species.  While visual obstruction was lower at successful nests 

for 3 species and had no significant difference for the remaining 2 species.  These 

seemingly contradictory results suggest that the grassland birds in the Kite Camp are 

selecting nest sites with greater vertical density, while successful nests had lower vertical 

density.  One reason for the contradictory results may be the presence of a diverse 

predator community, which might reduce the chance of safe nest sites being related to 

specific vegetation parameters.  Dion et al. (2000) noted small mammals predated nests 

in short grass with spare herbaceous cover, while medium sized predators predated nests 

in taller vegetation.  Thus, the nest-site selection variables may be confounded due to a 

variety of predators searching subhabitats with different vegetation characteristics 

(Filliater et al. 1994).  In addition, small sample size of nests for each species coupled 
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with the smaller sample size for successful nests (e.g., lark sparrow, n = 7) compared to 

unsuccessful nests (e.g., lark sparrow, n =20) also make conclusions problematic (Table 

3.2).  Bird species preference for specific vegetation parameters has been well 

documented (Zimmerman 1993, Herkert 1994, Madden et al. 1999, Rohrbaugh et al. 

1999) and is related to their life history traits.  

     The number of nests per site was positively correlated with the increasing spatial 

variability of mesquite density (CV) (Figure 3.1), suggesting that prescribed fires on my 

study sites might sustain open grassland patches suitable for grassland bird nesting.  

Suitable habitat for all 5 grassland species has been associated with sparse shrub density 

or shrub savanna (Zimmerman 1993, Ruth 2000).  Current theory regarding nest success 

and productivity has centered on native grasslands or fragmented grasslands with 

forested borders.  The consistent theme has been reproductive success is greater with 

increasing distance from woody cover (Gates and Gysel 1978, Johnson and Temple 

1990, Burger et al. 1994); however, I did not find a significant relationship between 

distance of woody cover and nest success, which may be due to the contiguous 

landscape of the study sites. Also, reproductive success is generally higher in areas that 

were recently burned (Zimmerman 1992, Shriver and Vickery 2001, Delaney et al. 

2002). 

     Although, I found vegetation variables important to nest site selection and nest 

success, sample sizes were small and pooled across years, and should not be extrapolated 

beyond the Waggoner Experimental Ranch.  More research to increase sample size and 

the suite of vegetation parameters measured (e.g., litter depth, vegetation density) should 
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be conducted for a more conclusive assessment of nest-site selection and nest success 

related to post-burn years and to vegetative parameters.  However, based on the results, I 

would recommend a rotational burning regime to provide habitat in various vegetative 

successional stages to maintain suitable and productive nesting habitat for the 5 

grassland species.   
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CHAPTER IV 

CONCLUSIONS 

 
     My data indicated brush cover, grass cover, and visual obstruction generally 

increased with post-fire succession and bare ground decreased with post-fire succession.  

Species richness, grasshopper sparrows, Cassin’s sparrows, and dickcissels responded 

positively to post-fire succession and lark sparrows decreased with post-fire succession.  

All birds were present but reduced in numbers on the control sites.  Results suggest that 

grassland birds were not randomly selecting breeding sites on the Kite Camp.  However, 

each species had different vegetation characteristics that were significantly related to 

abundance.   

     During 2004–2005, 90 grassland bird nests were monitored.  For all species except 

lark sparrows, greater visual obstruction and more grass or forb cover were selected for 

at nest sites.  Probability of nest success increased as visual obstruction declined, bare 

ground cover declined, or grass cover declined.  Bird abundance was most associated 

with different vegetation variables than nest-sites or the probability of nest success.  

However, all grassland species were present and nesting on all treatment sites, 

suggesting that brush encroached areas can still provide habitat for these birds.  

Prescribed fire may not completely restore shrub-invaded areas to true grasslands, but it 

can maintain local grassland areas in various vegetative successional stages which are 

beneficial for sustaining the local grassland bird populations. 
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APPENDIX A 

 
Table A1.  All bird species detected on transects during the breeding season at the  
 
Waggoner Experimental Ranch, Wilbarger County, Texas, 2002–2005.   
 
Species 
 

Scientific Name 
 

 
Cassin's sparrow 
 

 

Aimophila cassinii 

Grasshopper sparrow 
 

Ammodramus savannarum 

Lark sparrow 
 

Chondestes grammacus 

Dickcissel 
 

Spiza americana 

Eastern meadowlark 
 

Sturnella magna 

Northern Bobwhite 
 

Colinus virginianus 

Burrowing Owl 
 

Athene cunicularia 

Scissor-tailed flycatcher 
 

Tyrannus forficatus 

Field Sparrow 
 

Spizella pusilla 

Brown-headed Cowbird 
 

Molothrus ater 

Mourning Dove 
 

Zenaida macroura 

Wild Turkey 
 

Meleagris gallopavo 

Eastern Bluebird 
 

Sialia sialis 

Barn Swallow 
 

Hirundo rustica 

Red-bellied Woodpecker 
 

Melanerpes erythrocephalus 

Golden-fronted Woodpecker 
 

Melanerpes aurifrons 

Ladder-backed Woodpecker 
 

Picoides scalaris 
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Table A1Continued  

Species Scientific Name 
 

Downy Woodpecker 
 

Picoides pubescens 

Hairy Woodpecker 
 

Picoides villosus 

Northern Flicker 
 

Colaptes auratus 

Ash-throated Flycatcher 
 

Myiarchus cinerascens 

Great Crested Flycatcher 
 

Myiarchus crinitus 

Loggerhead Shrike 
 

Lanius ludovicianus 

Northern Mockingbird 
 

Mimus polyglottos 

Northern Cardinal 
 

Cardinalis cardinalis 

Blue Jay 
 

Cyanocitta cristata 

Yellow-billed Cuckoo 
 

Coccyzus americanus 

Greater Roadrunner 
 

Geococcyx californianus 

Painted Bunting 
 

Passerina crisis 

Blue Grosbeak 
 

Guiraca caerulea 

Baltimore Oriole 
 

Icterus galbula 

Orchard Oriole 
 

Icterus spurious 

Bewick’s Wren 
 

Thryomanes bewickii 

Black-crested Titmouse 
 

Parus bicolor 

Red-winged Blackbird 
 

Agelaius phoeniceus 

Canyon Towhee 
 

Pipilo fuscus 

Curve-billed Thrasher 
 

Toxostoma curvirostre 

Western kingbird Tyrannus verticalis 
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Table A1 Continued  

Species 
 

Scientific Name 

Eastern Kingbird 
 

Tyrannus tyrannus 

Chihuahuan Raven 
 

Corvus cryptoleucus 

Common Raven 
 

Corvus corax 

Common Grackle 
 

Quiscalus quiscalus 

Great-tailed Grackle 
 

Quiscalus mexicanus 

Common Nighthawks 
 

Chordeiles minor 

Killdeer 
 

Charadrius vociferus 

Mississippi Kite 
 

Ictinia mississippiensis  

Swainson's Hawk 
 

Buteo sawinsoni 

Yellow-throated Vireo 
 

Vireo flavifrons 

 

Cattle Egret 
 

Bubulcus ibis 

Great Egret 
 

Ardea alba 

Snowy Egret 
 

Egretta thula 

Little Blue Heron 
 

Egretta caerulea 

Great Blue Heron 
 

Ardea herodias 

Yellow-crowned Night-Heron 
 

Nyctanassa violacea 
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Figure B1.  Monthly mean precipitation on the Kite Camp of the Waggoner  
 
Experimental Ranch, Wilbarger County, Texas, 2002–2005. 
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