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ABSTRACT

Bohr Model and Dimensional Scaling Analysis of Atoms and Molecules.

(December 2006)

Kerim Urtekin, B.S., Bogazici University (Istanbul, Turkey)

Chair of Advisory Committee: Dr. Marlan Scully

It is generally believed that the old quantum theory, as presented by Niels Bohr

in 1913, fails when applied to many-electron systems, such as molecules, and nonhy-

drogenic atoms. It is the central theme of this dissertation to display with examples

and applications the implementation of a simple and successful extension of Bohr’s

planetary model of the hydrogenic atom, which has recently been developed by an

atomic and molecular theory group from Texas A&M University. This ”extended”

Bohr model, which can be derived from quantum mechanics using the well-known

dimentional scaling technique is used to yield potential energy curves of H2 and sev-

eral more complicated molecules, such as LiH, Li2, BeH, He2 and H3, with accuracies

strikingly comparable to those obtained from the more lengthy and rigorous ”ab ini-

tio” computations, and the added advantage that it provides a rather insightful and

pictorial description of how electrons behave to form chemical bonds, a theme not

central to ”ab initio” quantum chemistry. Further investigation directed to CH, and

the four-atom system H4 (with both linear and square configurations ), via the inter-

polated Bohr model, and the constrained Bohr model (with an effective potential),

respectively, is reported. The extended model is also used to calculate correlation

energies.

The model is readily applicable to the study of molecular species in the presence

of strong magnetic fields, as is the case in the vicinities of white dwarfs and neutron

stars. We find that magnetic field increases the binding energy and decreases the
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bond length.

Finally, an elaborative review of doubly coupled quantum dots for a derivation of

the electron exchange energy, a straightforward application of Heitler-London method

of quantum molecular chemistry, concludes the dissertation.

The highlights of the research are (1) a bridging together of the pre- and post

quantum mechanical descriptions of the chemical bond (Bohr-Sommerfeld vs Heisenberg-

Schrödinger), and (2) the reporting of the appearance of new bound states of H2 in

the presence of very strong magnetic fields. The new states emerge above the critical

value of 5 × 107 G, and hence cannot be obtained perturbatively.
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CHAPTER I

INTRODUCTION

The most beautiful thing we can experience is the mysterious. It is the source

of all true art and science. He to whom this emotion is a stranger, who can no

longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are

closed.
Albert Einstein

When Niels Bohr proposed his shell model of the atom [1], it was in an effort

to explain how electrons could have stable orbits around the nucleus. The year was

1913, and a general acknowledgement of a tumulting inadequacy of classical mechanics

and electromagnetic theory (due in its final form largely to Maxwell) to successfully

treat an increasing host of problems, (e.g. the blackbody radiation originally posed

by Gustav Kirchoff as a challenge) had been well under way. The model, though

suspect, was a great success, and accurately predicted the discrete spectral lines of

atomic hydrogen. This work would later earn Bohr the 1922 Nobel Prize for Physics.

To put Bohr and his work in the better light that it deserves, then it is only fair

that we take a quick glance at the different phases through history of the advancement

of the idea of atom as the major building block of all matter.

Recorded history details such an idea essentially advanced by the Greek philoso-

pher Democritus of Abdera (c.460—c.370), pupil of Leucippus although there are

those who argue that Democritus was not the first to propose an atomic theory, in-

variably influenced by his teacher Leucippus (whose existence is doubted by some

The journal model is Physical Review A.
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writers) as well as the atomic system of Anaxagoras of Clazomenae. Democritus

atomic model essentially differs from that of Anaxagoras in that he conceives of the

atom as that of which all matter is made, and which may not be further subdivided.

His view is summarized in [2]:

“Democritus asserted that space, or the Void, had an equal right with reality, or

Being, to be considered existent. He conceived of the Void as a vacuum, an infinite

space in which moved an infinite number of atoms that made up Being (i.e. the physi-

cal world). These atoms are eternal and invisible; absolutely small, so small that their

size cannot be diminished (hence the name atomon, or ”indivisible”); absolutely full

and incompressible, as they are without pores and entirely fill the space they occupy;

and homogeneous, differing only in shape, arrangement, position, and magnitude.”

Another useful reference is [3]:

“Democritus’s theory of the atomic nature of the physical world, developed from

that of Leucippus, is known only through the works of critics of the theory such as

Aristotle and Theophrastus. It resolved the question of how a world evidently in

a state of flux could nevertheless have an underlying nature that was eternal and

unchanging. By positing infinitely small things that remained the same but formed

different combinations with each other, Leucippus initially, and Democritus in greater

detail, managed to answer the question in a way that has been subject to increasingly

successful elaboration ever since. One can trace the physical theory of atoms through

Epicurus, Lucretius, and Galileo to modern times.”

Credit for the first modern atomic theory goes to the English chemist, John

Dalton. In his 1808 book, A New System of Chemical Philosophy, Dalton outlined

five fundamental postulates about atoms:

1. All matter consists of tiny, indivisible particles, which Dalton called atoms.

2. All atoms of a particular element are exactly alike, but atoms of different
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elements are different.

3. All atoms are unchangeable.

4. Atoms of elements combine to form ”compound atoms” (i.e., molecules) of

compounds.

5. In chemical reactions, atoms are neither created nor destroyed, but are only

rearranged.

A key distinguishing feature of Dalton’s theory was his emphasis on the weights of

atoms. He argued that every atom had a specific weight that could be determined by

experimental analysis. Although the specific details of Dalton’s proposed mechanism

for determining atomic weights were flawed, his proposal stimulated other chemists

to begin research on atomic weights.

Dalton’s theory was widely accepted because it explained so many existing exper-

imental observations and because it was so fruitful in suggesting new lines of research.

But the theory proved to be wrong in many of its particulars. For example, in 1897,

the English physicist Joseph J. Thomson showed that particles even smaller than the

atom–electrons–could be extracted from atoms. Atoms could not, therefore, be indi-

visible. The discovery of radioactivity at about the same time showed that at least

some atoms are not unchangeable but, instead, spontaneously decay into other kinds

of atoms.

In order to explain the results of the experiments on scattering of X-rays by

matter Prof. Rutherford has given a theory of the structure of atoms. According to

this theory, the atoms consist of a positively charged nucleus surrounded by a system

of electrons kept together by attractive forces from the nucleus. . . . Great interest is

to be attributed to this atom-model; for, as Rutherford has shown, the assumption

of the existence of nuclei. . . . seems to be necessary in order to account for the results

of the experiments on large angle scattering of the X-rays.
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Rutherford’s model of the structure of the atom suffered from the apparent

instability of the system of electrons, which, according to classical mechanics and

electromagnetic theory, should spiral inward, and ultimately collapse into the nu-

cleus through a continuous radiative process, a problem to quote Bohr “purposefully

avoided in atom-models previously considered, for instance, in the one proposed by

Sir J. Thomson.”

As Bohr points out, an elucidation of the principal difference between the atomic

models of Thomson and Rutherford, namely the existence, in the former, of con-

figurations and motions of the electrons that allow for a stable equilibrium of the

atom, is possible by noticing also the presence of a characteristic length, i.e., the

radius of Thomson’s positive sphere having the same order of magnitude as the linear

extension of the atom whereas such a characteristic length does not appear among

the quantities, i.e., the electronic and positive-nuclear charges and masses specifying

Rutherford’s atom.

With the bearing evidence of the experiments on scattering of the X-rays by

matter leaving nothing to puzzle out the mystery of large angle deflections except

by an atomic structure that accommodates positively charged nuclei carrying the

bulk atomic mass, however, Thomson’s model must be discarded, and the difficulties

surrounding the Rutherford model, i.e., the implied instability of Keplerian orbits

and the absence of a natural parameter with the dimension of length, be addressed

squarely. It was, indeed, by this insufficiency of classical electrodynamics to offer a

natural parameter by which to ascertain the above-mentioned characteristic length

that Bohr was eventually tempted to advance an integration of Planck’s theory to

considerations of the structure of the atom as such a quantity, i.e., Plank’s constant,

the elementary quantum of action, does provide the necessary dimension of length.

The introduction of this quantity, together with the mass and charge of the particles,
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could now be used to determine a length of the required order of magnitude.

Admittedly by Bohr, this was an attempt to show how the application of Planck’s

theory to Rutherford’s atomic model could “afford a basis for a theory of the consti-

tution of atoms”, and to further show “that from this theory we are led to a theory

of the constitution of molecules”.

An early success of the Bohr model was its accurate prediction of the spectral

lines of hydrogen for which only an empirical formula (devised by Johannes Rydberg

in 1888, and offering no theoretical basis for a physical mechanism) had existed. Bohr

maintained that the emission or absorption of radiation could occur only as a result of

the system passing from one “state” to another, a term which acquired its broadened

meaning in the course of the later more rigorous formulation of quantum mechanics.

He asserted that the frequency of such radiation would be related to the energy it

imparted, given by Planck’s formula, and that in turn this energy would be equal to

the difference in energy between the initial and final states.

Decisive evidence for the discrete energy level structure of the atom came from

the prizewinning joint experimental work of James Franck and Gustav Hertz that

showed that upon collision with an atom, an electron must possess a certain energy

in order for that energy to be transferred to the atom (4.9 eV in the case of mercury

vapor.) This was a clear demonstration of the quantized inner structure of the atom

as foreseen by Niels Bohr, i.e., that energy could be absorbed by atoms only in quanta.

Franck and Hertz shared the Nobel Prize for Physics in 1925 for their work.

The success of Bohr’s model sparked a genuine interest in Arnold Sommerfeld,

who zealously set about exploring avenues of betterment. In particular, Sommerfeld

extended the model introducing elliptical orbits. This was a foundation of “old”

quantum mechanics which later was substituted by the “new” quantum mechanics

due to Schrödinger and Heisenberg.
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CHAPTER II

INTERPOLATED BOHR MODEL

A. Bohr model of H2 molecule

The Bohr model [1] for a one-electron atom played a major historical role and still

offers pedagogical appeal. However, when applied to the simple H2 molecule, the

“old quantum theory” proved unsatisfactory [4, 5]. Recently Svidzinsky, Scully and

Herschbach [6, 7] found a simple extension of the original Bohr model which describes

potential energy curves E(R) of simple molecules with striking accuracy. Such a

description provides an insightful picture of how electrons form chemical bonds in

molecules. In this introductory section we briefly discuss their findings and consider

H2 molecule as a simplest example.

The Bohr model can be derived from quantum mechanics using dimensional scal-

ing analysis technique developed in quantum chromodynamics. Dimensional scaling

analysis provides an unconventional method to treat electronic structure [8, 9, 10, 11,

12]. This method emulates an approach developed in quantum chromodynamics [13],

by generalizing the Schrödinger equation to D dimensions and rescaling coordinates

[11]. Early work found the tutorial D-scaling procedure of Witten [13] can be dramat-

ically improved; the ground state energy of He was obtained accurate to 5 significant

figures by interpolation between the D = 1 and D → ∞ limits [8], and to 9 figures by

a perturbation expansion in 1/D [14]. However, the scaling procedure which worked

well for atoms [8, 10] did not prove successful for two-center problems [11, 12]; e.g.,

for H2 that procedure did not yield a bound ground state. In the recently devel-

oped D-scaling approach [6], the large-D limit makes contact with the Bohr model

[1] which improves the accuracy. In this way we obtain a link between prequantum
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and postquantum mechanical descriptions of the chemical bond (Bohr-Sommerfeld vs

Heisenberg-Schrödinger).

Fig. 1. Cylindrical coordinates (top) and electronic distances (bottom) in H2 molecule.

The nuclei Z are fixed at a distance R apart. In the Bohr model, the two elec-

trons rotate about the internuclear axis z with coordinates ρ1, z1 and ρ2, z2 re-

spectively; the dihedral angle φ between the (ρ1, z1) and (ρ2, z2) planes remains

constant at either φ = π or φ = 0. The sketch corresponds to configuration 2

of Fig. 2, with φ = π.

Figure 1 displays the Bohr model for a hydrogen molecule [1, 7, 15], in which two

nuclei with charges Z|e| are separated by a fixed distance R (adiabatic approximation)

and the two electrons move in the space between them. The model assumes that the

electrons move with constant speed on circular trajectories of radii ρ1 = ρ2 = ρ.

The circle centers lie on the molecule axis z at the coordinates z1 = ±z2 = z. The

separation between the electrons is constant.

The net force on each electron consists of three contributions: attractive interac-

tion between an electron and the two nuclei, the Coulomb repulsion between electrons,
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Fig. 2. Energy E(R) of H2 molecule for four electron configurations (top) as a function

of internuclear distance R calculated within the Bohr model (solid lines) and

the “exact” ground 1Σ+
g and first excited 3Σ+

u state energy of Ref. [16] (dots).

Unit of energy is 1 a.u.= 27.21 eV, and unit of distance is the Bohr radius.

and the centrifugal force on the electron. We proceed by writing the energy function

E = T + V , where the kinetic energy T = p2
1/2m + p2

2/2m for electrons 1 and 2

can be obtained from the quantization condition that the circumference is equal to

the integer number n of the electron de Broglie wavelengths 2πρ = nh/p, so that we

have T = p2/2m = n2
~

2/2mρ2. All distances we express in terms the Bohr length

a0 = ~
2/me2, where m is the electron mass, and take e2/a0 as a unit of energy. The
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Coulomb potential energy V is given by

V = − Z

ra1

− Z

rb1

− Z

ra2

− Z

rb2

+
1

r12
+
Z2

R
, (2.1)

where rai (i = 1, 2) and rbi are the distances of the ith electron from nuclei A and B,

as shown in Fig. 1 (bottom), r12 is the separation between electrons. In cylindrical

coordinates the distances are

rai =

√

ρ2
i +

(
zi −

R

2

)2

, rbi =

√

ρ2
i +

(
zi +

R

2

)2

, (2.2)

r12 =
√

(z1 − z2)2 + ρ2
1 + ρ2

2 − 2ρ1ρ2 cosφ, (2.3)

here R is the internuclear spacing and φ is the dihedral angle between the planes

containing the electrons and the internuclear axis. The Bohr model energy for a

homonuclear molecule having charge Z is then given by

E =
1

2

(
n2

1

ρ2
1

+
n2

2

ρ2
2

)
+ V (ρ1, ρ2, z1, z2, φ). (2.4)

For n1 = n2 = 1 the energy (2.4) has extrema at ρ1 = ρ2 = ρ, z1 = ±z2 = z

and φ = π, 0. These four configurations are pictured in Fig. 2 (upper panel). For

example, for configuration 2, with z1 = −z2 = z, φ = π, the extremum equations

∂E/∂z = 0 and ∂E/∂ρ = 0 read

Z(R/2 − z)

[ρ2 + (R/2 − z)2]3/2
+

z

4[ρ2 + z2]3/2
− Z(R/2 + z)

[ρ2 + (R/2 + z)2]3/2
= 0, (2.5)

Zρ

[ρ2 + (R/2 − z)2]3/2
+

Zρ

[ρ2 + (R/2 + z)2]3/2
− ρ

4[ρ2 + z2]3/2
=

1

ρ3
, (2.6)

which are seen to be equivalent to Newton’s second law applied to the motion of

each electron. Eq. (2.5) specifies that the total Coulomb force on the electron along

the z−axis is equal to zero; Eq. (2.6) specifies that the projection of the Coulomb

force toward the molecular axis equals the centrifugal force. At any fixed internuclear
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distance R, these equations determine the constant values of ρ and z that describe

the electron trajectories. Similar force equations pertain for the other extremum

configurations.

In Fig. 2 (lower panel) we plot E(R) for the four Bohr model configurations

(solid curves), together with “exact” results (dots) obtained from extensive variational

calculations for the singlet ground state 1Σ+
g , and the lowest triplet state, 3Σ+

u [16].

In the model, the three configurations 1, 2, 3 with the electrons on opposite sides

of the internuclear axis (φ = π) are seen to correspond to singlet states, whereas

the other solution 4 with the electrons on the same side (φ = 0) corresponds to the

triplet state. At small internuclear distances, the symmetric configuration 1 originally

considered by Bohr agrees well with the “exact” ground state quantum energy; at

larger R, however, this configuration’s energy rises far above that of the ground state

and ultimately dissociates to the doubly ionized limit, 2H++2e. In contrast, the

solution for the asymmetric configuration 2 appears only for R > 1.20 and in the

large R limit dissociates to two H atoms. The solution for asymmetric configuration

3 exists only for R > 1.68 and climbs steeply to dissociate to an ion pair, H++H−.

The asymmetric solution 4 exists for all R and corresponds throughout to repulsive

interaction of two H atoms.

The simplistic Bohr model provides surprisingly accurate energies for the ground

singlet state at large and small internuclear distances and for the triplet state over the

full range ofR. Also, the model predicts the ground state is bound with an equilibrium

separation Re ≈ 1.10 and gives the binding energy as EB ≈ 0.100 a.u.= 2.73 eV. The

Heitler-London calculation, obtained from a two-term variational function, obtained

Re = 1.51 and EB = 3.14 eV [17], whereas the “exact” results are Re = 1.401 and

EB = 4.745 eV [16]. For the triplet state, as seen in Fig. 2, the Bohr model gives

remarkably close agreement with the “exact” potential curve and is in fact much
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better than the Heitler-London result (which, e.g., is 30% high at R = 2).

B. Introduction into interpolated Bohr model: H2 molecule

The original Bohr model assumes quantization of the electron angular momentum

relative to the molecular axis. This yields very accurate description of the H2 triplet

state E(R). However, ground state E(R) is less accurate at intermediate and larger

internuclear separation as seen in Fig. 2. To obtain a better result for the bound

states one can use the following observation [7, 18]. At large R each electron in H2

feels only the nearest nuclear charge because the remaining charges form a neutral

H atom. Therefore, at large R the momentum quantization relative to the nearest

nuclei, rather than to the molecular axis, must yield a better answer. We call it

atomic quantization. This leads to the following expression for the energy of the H2

molecule

E =
1

2

(
n2

1

r2
a1

+
n2

2

r2
b2

)
− Z

ra1

− Z

rb1

− Z

ra2

− Z

rb2

+
1

r12
+
Z2

R
(2.7)

For n1 = n2 = 1 and R > 2.77 the expression (2.7) has a local minimum for the

asymmetric configuration 2 of Fig. 2.

We plot the corresponding E(R) in Fig. 3 (curve 2). At R < 2.77 the electrons

collapse into opposite nuclei, i.e., rb1 and/or ra2 can vanish because the kinetic energy

term does not constrain this separation. As one can see from Fig. 3, the energy

function (2.7), which is a natural generalization of Bohr’s hydrogen atom to the

molecular case, is in good quantitative agreement with the “exact” energy over the

range of R > 2.77 where the local minimum exists. We plot the corresponding E(R)

without the 1/R term in Fig. 4 (curve 2).

At small R we apply the quantization condition relative to the molecular axis

which yields curve 1 in Fig. 4. To find E(R) at intermediate separation we connect
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H2

E
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.u
.

R, a.u.

Fig. 3. Potential energy curve of the ground state of the H2 molecule obtained from

the Bohr model with molecular axis quantization (curve 1) and quantization

relative to the nearest nucleus (curve 2). Solid circles are the “exact” energies

[19].

smoothly the two regions by a third order polynomial (thin line). Addition of the

1/R term yields the final potential curve, plotted in Fig. 5. The simple interpolated

Bohr model provides a remarkably close agreement with the “exact” potential curve

over the full range of R.

C. Interpolated Bohr model of CH

Motivated by the H2 result, here we calculate the potential energy curve of CH

molecule using the interpolated Bohr model.

Figure 6 shows electron configuration of carbon atom in the Bohr model pic-

ture. Distances are given in Bohr radii. Carbon atom has six electrons. Outer-shell
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Fig. 4. The Bohr model E(R) for H2 molecule without 1/R term. Curves 1 and 2

are obtained based on the quantization relative to the molecular axis (small

R) and the nearest nuclei (large R) respectively. Thin line is the interpolation

between two regions.

electrons of carbon form a regular tetrahedron in the Bohr model. This is simi-

lar to bond structure of CH4. Bohr model of carbon yields the ground state energy

EB = −37.8128 hartree, which deviates from the “exact” quantum mechanical answer

Eexact = −37.8420 hartree by 0.08% only.

To form the CH molecule we attach one hydrogen atom to carbon. At large R

the molecule can be treated as two neutral atoms polarized by Coulomb interactions.

Hence, at large R electrons feel only the nearest nucleus and, as in the case of H2, we

apply atomic quantization. To find the potential energy curve we consider only four

outer electrons of carbon which have principal quantum number n = 2. Contribution

of the inner electrons in R-dependence of E(R) is negligible. The simplest version of
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Fig. 5. Ground state E(R) of H2 molecule as a function of internuclear distance R

calculated within the interpolated Bohr model (solid line) and the “exact”

energy of Ref. [16] (dots).

the Bohr model we use can not distinguish the difference between p and s electrons of

carbon. By symmetry the four outer electrons of carbon are located at equal distanced

from the nucleus. We consider a configuration for which the hydrogen electron lies

on the molecular axis. Then the Bohr model energy function can be written as

E =
2n2

r2
1

+
1

2r2
2

+ V, (2.8)

where r1 is the spacing between an outer carbon electron and the nucleus and r2 is the

distance between hydrogen electron and the proton. At fixed R the Coulomb poten-

tial energy V depends on four parameters: r1, r2 and two angles which determine the

position of the carbon electrons in space. Minimization of the energy function with re-

spect to these four parameters yields E(R). We performed minimization numerically
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Fig. 6. Electron configuration of carbon atom in Bohr model. Distances are given in

Bohr radii.

using Maple. Figure 7 shows our result (curve “Bohr”).

The solution for atomic quantization exists at R > 3.95 a.u. At smaller R

electrons collapse into opposite nucleus. In the region where solution exists the simple

Bohr model yields remarkable accuracy as seen from comparison with the “exact”

quantum mechanical dots.

To find potential energy curve at very small R we note that at such separation

the outer carbon electrons practically does not contribute to change in E if we vary R.

Rather then they yield a fix contribution ∆E = −0.6 a.u. (additive constant). Two

inner carbon electrons screen the nucleus and effectively reduce it to Be nucleus. Only

hydrogen electron gives a substantial contribution into E(R). As a result, at very

small R, the CH problem is effectively equivalent to BeH4+ problem plus a constant

term ∆E. BeH4+ molecular ion is a simple one electron two center problem which
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Fig. 7. Finding E(R) in the interpolated Bohr model of CH. At large R we apply the

energy function (2.8). At small R we are dealing with the BeH4+ problem plus

a constant term. Dots are “exact” quantum mechanical result.

allows separation of variables in the Schrödinger equation. The potential energy curve

of BeH4+ is well known in literature, and we use this information.

Figure 7 shows the potential energy curve of BeH4+ plus ∆E. This yields quite

accurate description of CH potential curve at small R. In Fig. 8 we plot both

the small and large R curves without internuclear repulsion energy 4/R. This plot

shows that indeed small and large R asymptotics can be smoothly connected by a

simple polynomial curve. We make the connection using the following fourth order

polynomial

E = −5.96168 + 3.67843R− 1.29575R2 + 0.24723R3 − 0.01901R4. (2.9)

The result is shown in Fig. 8 as a dashed line.
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Fig. 8. Interpolated Bohr model of CH. The same as in Fig. 7 but without internuclei

repulsion term 4/R. Dashed line shows connection of the small and large R

segments by a fourth order polynomial.

Finally to obtain the potential energy curve for the CH molecule we add back the

internuclear repulsion 4/R to the interpolation polynomial. This yields solid line in

Fig. 9. Dots show “exact” quantum mechanical result. One can see that the simple

interpolated Bohr model yet provides quite good accuracy for E(R) at all R. This is

remarkable because CH is already an example of a complicated many electron system.
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Fig. 9. Ground state energy of CH molecule obtained within Interpolated Bohr model

(solid line) and “exact” quantum mechanical result (dots).
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CHAPTER III

CONSTRAINED BOHR MODEL APPROACH

The interpolated Bohr model discussed in the previous chapter involves a smooth

connection between different asymptotics of E(R). This contains undesired degree

of arbitrariness. Here we further study a method which allows us to obtain E(R)

at all R without interpolation. The present approach is based on Bohr’s molecular

model with a constraint imposed by quantum mechanics and was recently proposed by

Svidzinsky, Chin and Scully [18]. The approach is as simple and intuitively appealing

as the original Bohr model, but, at the same time, it allows us to obtain potential

energy curves with the chemical accuracy of a few milli Hartree.

We first introduce the method as applied to H2 and then extend it for other

molecules. Fig. 1 displays electron distances in H2. The original Bohr model [1]

assumes quantization of the electron angular momentum relative to the molecular

axis which yields Eq. (2.4) for the ground state energy.

In Fig. 3 (curve 1) we plot ground state E(R) derived from Eq. (2.4), together

with “exact” results (dots) obtained from extensive variational wave mechanical cal-

culations [19]. The simplistic Bohr model yields a quite accurate description of the

H2 ground state E(R) at small R, but becomes less accurate at larger internuclear

separation. There is a simple means to improve significantly the Bohr model result

for large R as discussed in the previous chapter [7]. An improvement emerges if we

use quantization of the electron momentum relative to the nearest nuclei, rather than

to the molecular axis. This leads to Eq. (2.7) for the H2 energy. For n1 = n2 = 1 and

R > 2.77 expression (2.7) has a local minimum for the top configuration of Fig. 11.

We plot the corresponding E(R) in Fig. 3 (curve 2). At R < 2.77 the local minimum

disappears and electrons collapse into the opposite nuclei. As one can see from Fig.
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3, the simple energy function (2.7) provides good quantitative agreement with the

“exact” potential curve over the range of R where solution exists. This encourages

us to seek a way to extend applicability of Eq. (2.7) over the full range of R.

Svidzinsky, Chin and Scully [18] have shown that a simple algebraic constraint

on electron locations obtained from quantum mechanics allows to avoid the collapse

problem preserving the simplicity and good accuracy of the energy function (2.7).

Next we summarize their derivation of the corresponding constraint equation.

A. Derivation of the effective potential for H2 molecule: Heitler-London vs Hund-

Mulliken

In quantum mechanics electrons are described by a wave function Ψ(r1, r2); the elec-

tron 1 is a charge cloud with a characteristic size r (see Fig. 10).

Fig. 10. In quantum mechanics the electron 1 is a cloud with characteristic size r. In

the Bohr model we treat electron as a point particle located distance r from

the nucleus A.

Let Φ(r, R) be an interaction potential between the electron cloud and the op-

posite nucleus B. In the Bohr picture we treat the electron as a point particle located
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on a sphere of radius r centered at the nucleus A. Position of the point electron on

the sphere gives correct quantum mechanical answer for the particle interaction with

the nucleus B if

− 1

rb1

= Φ(r, R) ≡
〈

Ψ

∣∣∣∣−
1

rb1

∣∣∣∣Ψ
〉
, (3.1)

where rb1 is the distance between the point electron and the opposite nucleus (see Fig.

1). To avoid electron collapse we impose constraint (3.1) on the electron location.

One can derive the effective potential Φ(r, R) using, for example, Heitler-London (HL)

[17] or Hund-Mulliken (HM) [20] variational wave function Ψ. HL wave function is a

linear combination of atomic orbitals with coordinate part

Ψ = a(1)b(2) ± b(1)a(2), (3.2)

where the sign “+” (“-”) corresponds to singlet (triplet) state and

a(i) =

√
α3

π
exp(−αrai), b(i) =

√
α3

π
exp(−αrbi), (3.3)

i = 1, 2, and α is a variational parameter. If we take a(1) as a variational wave

function for an isolated hydrogen atom A then the variational energy reads: E =

α2/2−α. This expression reduces to the Bohr model energy function of the hydrogen

atom if we identify α = 1/r, where r is the distance between the point electron and

the nucleus. We will also use this assignment for molecules with r being the distance

between the electron and the nearest nucleus.

For HL wave function the matrix element in Eq. (3.1) yields

Φ = − 1

1 ± S2

{∫
a2(1)

1

rb1

dr1 ± 2S

∫
a(1)b(1)

1

rb1

dr1

}
(3.4)

where the first term is the Coulomb integral, the last term is the exchange integral

and S =
∫
a(1)b(1)dr1. After integration we obtain the following expression for the
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HL singlet effective potential

Φs(r, R) = − 1

1 + S2(r, R)

[
1

R
− exp(−2R/r)

(
1

r
+

1

R

)
+ (3.5)

S(r, R)

r
exp(−R/r)

(
1 +

R

r

)]
, (3.6)

where

S(r, R) = exp(−R/r)
(

1 +
R

r
+
R2

3r2

)
. (3.7)

Triplet effective potential is

Φt(r, R) = − 1

1 − S2(r, R)

[
1

R
− exp(−2R/r)

(
1

r
+

1

R

)
− (3.8)

S(r, R)

r
exp(−R/r)

(
1 +

R

r

)]
. (3.9)

Singlet state Hund-Mulliken wave function Ψ = [a(1) + b(1)][a(2) + b(2)] yields HM

singlet effective potential:

Φs(r, R) = − 1

1 + S(r, R)

[
1

R
− exp(−2R/r)

(
1

r
+

1

R

)
+ (3.10)

1

r
exp(−R/r)

(
1 +

R

r

)]
. (3.11)

For the triplet state, HL and HM wave functions and, hence, the effective potentials

are identical.

B. Examples of method application: H2 molecule

Here we apply the effective potential approach to H2 molecule. Electron configurations

for the ground and triplet states of H2 are shown in Fig. 11. The energy function has

an extremum when ra1 = rb2 = r and ra2 = rb1. With the constraint (3.1) the Bohr
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Fig. 11. Electron configuration for the ground (singlet) and triplet states of H2

molecule.

model energy function reads

E(r, R) =
1

r2
− 2

r
+ 2Φ(r, R) +

1

r12
+

1

R
, (3.12)

where

r12 =

√
2r2 −R2 +

2

Φ2(r, R)
(3.13)

for the singlet configuration and

r12 =
1

RΦ2(r, R)
− r2

R
(3.14)

for the triplet state.

Minimization of the energy function (3.12) with respect to r yields the potential

energy curve E(R). Fig. 12 shows the ground state E(R) of H2 obtained using

the Bohr model with the HL (small dots) and HM (lower solid line) singlet effective

23 



24

potential constraint. Upper solid line is E(R) of the triplet state obtained using

the Bohr model with the triplet constraint (3.1), (3.9). Dots are “exact” results

[19]. The simple method gives surprisingly accurate E(R) at all R; it yields for the

ground state binding energy EB = 4.50 eV (HL potential) and EB = 4.99 eV (HM

potential), whereas the “exact” result is EB = 4.745 eV [21]. The Heitler-London

effective charge calculation (shown in Fig. 12, dashed curves) gives substantially

worse accuracy and predicts EB = 3.78 eV [17, 22]. Accuracy comparable to the

constrained Bohr model at all R can be obtained only using trial wave functions with

a few variational parameters including configuration interaction.

0 1 2 3 4 5 6
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-1.0

-0.9

-0.8

-0.7
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-0.5

Bohr model-effective potential (HM)
Bohr model-effective potential (HL)
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E
, a

.u
.

R, a.u.

Fig. 12. Potential energy curves of the ground 1Σ+
g and first triplet state 3Σ+

u of the

H2 molecule. Solid lines are obtained from the constrained Bohr model with

HM effective potential, while the small dot line is derived with HL potential.

Dashed curves are from HL effective charge variational treatment.
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Effective potentials (3.6), (3.9) and (3.11) are derived as a solution to the H2

problem.

Next we show that the approach works for other molecules. Generalization of

the constraint (3.1) to the system of several hydrogen atoms is straightforward. Let

us consider electron 1 that belongs to the nearest nucleus 1 and denote the distances

from the point electron 1 to the nuclei i as ri (i = 1, 2, . . . ). Then the constraint

equation reads

−
∑

i>1

1

ri

=
∑

i>1

Φi(r1, Ri), (3.15)

where Ri is the spacing between the nucleus 1 and i. Mutual spin orientation of

electrons 1 and i (that belongs to the nucleus i) determines a specific choice of Φi

(singlet or triplet) in Eq. (3.15).

Fig. 13. Electron configuration of a diatomic molecule composed of many-electron

atoms.

What about molecules composed of many-electron atoms? One can consider a

many-electron atom as a united atom limit of several hydrogen atoms. Then, by

continuity, Eq. (3.15) yields the following constraint equation for an electron a in a
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diatomic molecule pictured in Fig. 13:

− 1

ra

=
1

N
[Φ1(r, R) + Φ2(r, R) + . . .ΦN(r, R)], (3.16)

where N is the number of electrons that belong to the opposite atom. Mutual spin

orientation between the electron a and i (i = 1, 2, . . . N) determines the specific

choice of Φi (singlet or triplet).

Svidzinsky, Chin and Scully [18] demonstrated that the constrained Bohr model

approach works very well, in particular, for such molecules as H3 and Be2. The goal

of our study is to test their method for more complicated systems. In this chapter

we focus on H4 molecule.

C. H4 molecule

Next we calculate the ground state E(R) of the four-atomic H4 molecule using the

constrained Bohr model. Free H4 molecule does not exist in nature, it dissociates

into two H2. However, knowledge of E(R) is useful, e.g., for scattering problems.

We consider linear and square configurations shown in Figs. 14 and 16. The spacing

between the nearest nuclei is assumed to be the same and equal to R.

1. Linear geometry

Fig. 14 shows distances and spin configuration of the linear H4 molecule in the ground

state. We assume that spins of the nearest neighbor electrons are opposite. Due to

symmetry arguments only two distances and two angles are independent, they are

determined by minimization of the energy function. We choose r1, r2, θ1 and θ2 as

independent parameters (see Fig. 14). All other distances are expressed in terms of



27

Fig. 14. Electron and spin configuration and distances of the linear H4 molecule in the

ground state. All electrons are in the same plane.

r1, r2, θ1 and θ2 as follows

l3 =
√
r2
1 +R2 − 2r1R cos θ1

l4 =
√
r2
1 + 4R2 − 4r1R cos θ1

l5 =
√
r2
1 + 9R2 − 6r1R cos θ1

l6 =
√
r2
2 +R2 + 2r2R cos θ2

l7 =
√
r2
2 +R2 − 2r2R cos θ2

l8 = 2
√
r2
2 +R2/4 − r2R cos θ2

l9 =
√

(2R− r1 cos θ1 − r2 cos θ2)2 + (r1 sin θ1 − r2 sin θ2)2

l10 =
√

(R− r1 cos θ1 + r2 cos θ2)2 + (r1 sin θ1 + r2 sin θ2)2

l11 =
√
r2
2 + 4R2 − 4r2R cos θ2

l12 =
√

(3R− 2r1 cos θ1)2 + 4r2
1 sin2 θ1

The Bohr model energy function with the nearest nucleus quantization is given by

E(r1, r2, θ1, θ2, R) =
1

r2
1

+
1

r2
2

− 2

(
1

r2
+

1

l3
+

1

l4
+

1

l5

)
− 2

(
1

r2
+

1

l6
+

1

l7
+

1

l11

)
+
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+
2

l10
+

2

l9
+

1

l8
+

1

l12
+

13

3R
. (3.17)

To avoid the collapse problem at small enough R we must impose a constraint on

electron location. The constraint depends on the mutual spin orientation. Using the

prescription discussed in the previous section the constraint equation for electron 1

and 2 read

− 1

l3
− 1

l4
− 1

l5
= Φs(r1, R) + Φt(r1, 2R) + Φs(r1, 3R), (3.18)

− 1

l6
− 1

l7
− 1

l11
= 2Φs(r2, R) + Φt(r2, 2R), (3.19)

where li are defined in Fig. 14. In the ground state the nearest electrons in the

linear H4 molecule possess opposite spins; this justifies choice of the singlet effective

potential Φs(r1, R) and Φs(r2, R). If this is the case, the spins of the outermost

electrons are also antiparallel and we choose Φ(r1, 3R) to be singlet. Minimization of

the Bohr model energy function (3.17) with the constraints (3.18) and (3.19) yields

the potential energy curve. At fixed R we do the minimization with respect to the

four independent parameters r1, r2, θ1 and θ2 using Maple.

Fig. 15 shows the potential energy curve of the linear H4 molecule obtained

within the constrained Bohr model approach (solid line). For Φt we use Eq. (3.9) and

for Φs we take the HL potential (3.6). Dots are “exact” quantum mechanical results.

The potential curve, obtained by minimization of an algebraic energy function subject

to an algebraic constraint, is surprisingly accurate at all R. This provides an example

of a successful application of the constrained Bohr model technique, proposed by

Svidzinsky, Chin and Scully [18], for a four-atomic molecule. Such a simple approach

yields a clear picture of how electrons form chemical bond in molecules and show that

the bond can be treated as electrostatic.

We also calculated the ground state potential curve of linear H4 molecule taking

for Φs the HM effective potential (3.11). The result we obtained has substantially
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Fig. 15. Ground state E(R) of the linear H4 molecule obtained from the constrained

Bohr model with HL effective potential (solid curve) and “exact” numerical

solution of the Schrödinger equation (dots).

worse accuracy as compared to the HL effective potential, we prefer not to discuss it

here.

2. Square geometry

Here we study a square configuration of the H4 molecule in the ground state. As

before, the distances between the nearest nuclei are assumed to be the same and

equal to R. Fig. 16 shows point electron structure, spin orientation and distances

for the square nuclei configuration. We assume that spins of the nearest neighbor

electrons are opposite (singlet nearest electron bond). Two opposite electrons lie
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Fig. 16. Electron and spin configuration and distances of the square H4 molecule in the

ground state. Two opposite electrons are above and the other two electrons

are below the figure plane.

above, while the other two electrons are below the picture plane. θ is the angle (not

shown in the figure) between r and the molecule plane. By symmetry this angle is the

same for all four electrons. Motivated by the symmetry of the nuclei configuration we

impose an additional constraint that projections of electrons to the nuclei plane lie on

the diagonals of the square. As a result, the electron configuration is fully described

by only two independent parameters, which we choose to be r and θ. From this point

of view the square geometry is much more simple for numerical analysis as compared

to the linear configuration which is described by four degrees of freedom.

In terms of r and θ the other distances shown in Fig. 16 are expressed as

r1 =

√
r2 sin2 θ +R2 + r2 cos2 θ −

√
2Rr cos θ
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r2 =

√
(
√

2R− r cos θ)2 + r2 sin2 θ

r3 =

√
4r2 sin2 θ + (R−

√
2r cos θ)2

r4 =
√

2R− 2r cos θ.

The Bohr model energy function with atomic quantization is given by

E(r, θ, R) =
2

r2
− 4

(
2

r1
+

1

r2
+

1

r

)
+

2

r3
+

2

r5
+

2

r4
+

4

R
+

√
2

R
. (3.20)

For each electron the constraint equation (3.15) reads

− 2

r1
− 1

r2
= Φs(r, R) + Φt(r,

√
2R) + Φs(r, R). (3.21)

Minimization of the Bohr model energy function (3.20) subject to the constraint (3.21)

yields the potential energy curve. Again for Φs we take the HL effective potential

(3.6). The answer is shown in Fig. 17 (solid line). Dots are quantum mechanical

result. The answer we obtained in the Bohr model for the square geometry seems

much less accurate then those we got for the linear H4 case (calculation with the

HM effective potential also did not work well for square H4). The reason for such

a discrepancy remains unclear so far. One of the possible explanations is that the

ground state of the square H4 configuration is highly degenerate which makes very

hard obtaining a good accuracy in quantum mechanical numerical simulations. It is

also possible that the Bohr model may not be accurate for highly degenerate states.
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Fig. 17. Ground state E(R) of the square nuclei geometry of the H4 molecule. Solid

curve is the result of the constrained Bohr model with HL effective potential

while dots are the quantum mechanical answer.
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CHAPTER IV

BOHR MODEL AS A SIMPLE TOOL FOR CALCULATION OF THE

CORRELATION ENERGY

The Bohr model can also be applied to calculate the correlation energy for molecules

and then improve the Hartree-Fock (HF) treatment [23]. Figure 18 shows the ground

state potential curve for H2 molecule calculated in the Bohr-HF approximation. Such

an approximation omits the electron repulsion term 1/r12 in finding the electron

configuration from Eq. (2.4). The difference between the Bohr and Bohr-HF potential

curves yields the correlation energy plotted in the insert of Fig. 18.

In Fig. 19 we plot the ground state E(R) for the H2 molecule obtained with

the Heitler-London trial function that has the form of the combination of the atomic

orbitals [24]:

Ψ = C {exp[−α(ra1 + rb2)] + exp[−α(rb1 + ra2)]} , (4.1)

where α is a variational parameter. Addition of the correlation energy from Fig. 18

improves the Heitler-London result and shifts E(R) close to the “exact” values. The

improved potential curve yields the binding energy of 4.63 eV, while the “exact” value

is 4.745 eV [16].

Calculation of the correlation energy of the H2 molecule using the Bohr model was

first discussed by Chen et al. [23]. Their approach is based on the simplest formulation

of the Bohr model of H2, namely on the molecular axis quantization. However, such

a simple analysis yields worse accuracy for the ground state potential curve then, for

example, the constrained Bohr model which combines an atomic quantization and an

algebraic constraint derived from quantum mechanics. A natural question rises in this

context: can more sophisticated constrained Bohr model improve the accuracy for the

correlation energy as compared to the simple molecular axis quantization approach.
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Fig. 18. Ground state E(R) for the H2 molecule in the Bohr and Bohr-HF models.

Insert shows the correlation energy as a function of R.

Here we study this question in detail.

Next we calculate the correlation energy for the ground state of H2 molecule using

constrained Bohr model. We explore both the Heitler-London and Hund-Mulliken

effective potentials. In the constrained Bohr model of H2 the energy function is given

by

E(r, θ, R,A) =
1

r2
− 2

r
− 2√

R2 + r2 − 2rR cos(θ)
+

1

2
√
R2/4 + r2 − rR cos(θ)

+
1

R
+

+A

(
2rR cos(θ) −R2 − r2 +

1

Φ2
s(r, R)

)2

, (4.2)
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Fig. 19. Ground state energy E(R) of the H2 molecule in the Heitler-London method

and the improved E(R) after the addition of the correlation energy. Dots are

the “exact” result from [16].

where A is a large positive constant we introduce to insure satisfaction of the con-

straint equation −2rR cos(θ) + R2 + r2 = 1
Φ2

s(r,R)
. In numerical calculations we take

A = 1000. Φs(r, R) is a singlet effective potential given by Eqs. (3.6) or (3.11).

At fixed R the energy function (4.2) has to be minimized with respect to r and θ,

where r is a separation between the electron and the nearest nucleus and θ is the

angle between r and the molecular axis. We minimize the energy function (4.2) using

Maple, this gives electron configuration r0 and θ0. Then the potential energy curve

is obtained as E(R) = E(r0, θ0, R, 0). Please note that when we calculate E(R) we

substitute A = 0 into the energy function.
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In the Bohr-HF approximation we find the electron configuration rB-HF and θB-HF

by minimizing the energy function without electron repulsion term. That is we min-

imize

EB-HF(r, θ, R,A) =
1

r2
− 2

r
− 2√

R2 + r2 − 2rR cos(θ)
+

1

R
+

+A

(
2rR cos(θ) −R2 − r2 +

1

Φ2
s(r, R)

)2

, (4.3)

where again A is a large positive constant. Then the correlation energy is given by

Ecorr = E(rB-HF,θB-HF, R, 0) − E(r0, θ0, R, 0).
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Fig. 20. Correlation energy of H2 molecule as a function of R obtained in the Bohr

model with molecular axis quantization (solid line), constrained Bohr model

with Hund-Mulliken (dashed) and Heitler-London effective potential (dash–

dot line). Solid dots are obtained by substraction of the result of the self-con-

sistent Hartree-Fock method and “exact” dots from Ref. [16].
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Figure 20 shows the correlation energy of H2 molecule as a function of R ob-

tained in the Bohr model approach for three different cases. Solid line corresponds

to the Bohr model with molecular axis quantization which we discussed before. The

constrained Bohr model with Hund-Mulliken effective potential yields dashed line.

Finally, the constraint with the Heitler-London effective potential gives dash-dot line.

One can see that the sophisticated constrained Bohr model approach yields the an-

swer for the correlation energy which is very close to those obtained in a simple

molecular axis quantization scheme. Moreover, the Hund-Mulliken effective potential

curve lies below, while the Heitler-London curve lies a little above the molecular axis

quantization result. From this analysis we conclude that the simple Bohr model with

molecular axis quantization yields essentially the same accuracy for the correlation

energy as more complicated constrained Bohr model approach. And, therefore, there

is no use to go beyond the simple molecular axis quantization technique when we are

interested in the correlation energy.

The Hartree-Fock self-consistent method is perhaps the best known method in

molecular quantum chemistry and it works for multi-electron and multi-center cases.

In computational physics, the Hartree-Fock calculation scheme is a self-consistent

iterative procedure to calculate the optimal single-particle determinant solution to the

time-independent Schrödinger equation. As a consequence to this, while it calculates

the exchange energy exactly, it does not calculate the effect of electron correlation

at all. Figure 21 shows the ground state E(R) of H2 molecule calculated by the

self-consistent Hartree-Fock method (solid line). Subtraction of this solid line from a

very accurate quantum mechanical calculation (for example of Ref. [16]) yields the

“exact” correlation energy. It is shown as solid dots in Fig. 20.

The Bohr model approach we discussed in this chapter can be a useful supplement

to the Hartree-Fock self-consistent method as it allows us to calculate the missing
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Fig. 21. Ground state E(R) of H2 molecule calculated by the self-consistent Hartree–

Fock method (solid line) and the “exact” energy (dots).

correlation energy in a simple way.
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CHAPTER V

MOLECULES IN STRONG MAGNETIC FIELDS

A. Introduction to the model

First brought to the attention of its investigators after the discovery of startling field

magnitudes on the surfaces of pulsars—the fields can reach an intensity of 1013 G,

the study of atomic and molecular phenomena in strong magnetic fields has revealed

a large number of unusual and spectacular effects. The physical properties of matter,

atomic and molecular systems in particular immersed in strong magnetic fields typical

of the vicinities of neutron stars, or white dwarfs are of prime importance as, for

instance, remote, natural means of probing neutron star atmospheres and the strength

of the particular field prevalent near the suface as well as for monitoring various

cosmological processes, such as the intracacies of stellar formation. More specifically,

these investigations allow us to consider the possibilities of observing the spectral

lines in strong magnetic field regions and, therefore, to estimate the efficiency of

methods used for exploring physical conditions close to the surface of a neutron star.

Another intriguing consideration may be recognized as the possibility of the catalysis

of nuclear reactions now facilitated by the drastically augmented tunneling effects.

Thus, beyond pure theoretical interest, rather practical applications exist in as-

trophysics and in for instance, the solid-state physics, where laboratory magnetic

fields already become “superstrong” for excitons and shallow impurities. (In labora-

tory conditions this analogous problem, which takes place in semiconductors, concerns

excitons represented as hydrogen “quasiatoms”, or more interestingly yet as the close

solid-state analog of H2, the excitonic molecule, with a small effective mass and a large

dielectric constant. The appropriate dimensionless parameter, which determines the



40

“strength” of the field, is equal to γ = µBH/R∞, where µB is the Bohr magneton,

H the field strength (measured in gauss), R∞ the rydberg (Ry) in the case of atoms,

or effective rydberg in the case of excitons.) Last, the motivation for the physical

chemist is essentially one based on the need to understand the formation of the vari-

ous unusual, exotic chemical compounds whose existence is simply impossible without

the effects of strong magnetic fields.

The effect of a magnetic field B on the motion of an electron can best be charac-

terized by the energy gap ~eB/mec between the Landau levels of the electron moving

in that field. Landau levels are the energy levels of an otherwise unbound electron

interacting with a constant magnetic field. The magnetic field is considered “strong”

on the atomic scale when this energy is comparable to the atomic energy unit of

1 Hartree. These energies are exactly equal when the magnetic field is equal to

B0 = m2
ee

3c/~3 = 2.350 52 × 109G. For a brief understanding of the classification of

field strengths, let us note that typical white dwarf magnetic fields are in the range

γ ∼10−2 to 0.5 a.u., whereas fields on the surfaces of pulsars and neutron stars usually

fall between γ ∼102 a.u. and 103 a.u..

Research on the behavior of molecular systems in the presence of strong magnetic

fields has been confined for the most part to investigations of one-electron systems

owing to the siplicity. As such the emphasis hes been the molecular ions. Pioneering

work in the study of the properties of matter in strong magnetic fields is that of Schiff

and Snyder [25] in their treatment of quadratic Zeeman effect. Experimental work on

the nuclear radiofrequency spectra of D2 and H2 in intermediate and strong magnetic

fields using a molecular beam apparatus, was first carried out by Harrick et al [26].

An early theoretical study of molecular hydrogen and deuterium in magnetic fields

may be traced to Ramsey [27]. Ref[28] offers a quantum phase-space treatment of

hydrogen molecule in a magnetic field by obtaining analytical Wigner functions.
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Detailed calculations of the one-electron molecular ions H+
2 , H++

3 , H3+
4 , HeH++,

He3+
2 in a magnetic field ranging from 109 G to 4.414 × 1013 G (the Schwinger limit)

using trial wave functions with variational parameters may be found in the works of

Turbiner et al [29], [30].

A detailed and numerically impressive study came from the authors of ref [31],

who have reported their findings based on fully numerical Hartree-Fock calculations

regarding their analysis of the singlet 1Σg, triplet 3Σu, and triplet 3Πu states of H2

molecule in a strong parallel magnetic field.

A list of other useful references may be found in [32], [33], [34], [35], [36], [37],

[38] and [39].

We present here a semiclassical approach to study within a field strength range

of 108to 1010G, the behavior of hydrogen molecule, and in particular obtain clues as

to the formation of new molecular states in response to a strong external magnetic

field. We start therefore by first intoducing a reduction via dimensional scaling of a

Bohr model admitting of the interaction with a magnetic field.

B. Dimensional scaling analysis of hydrogen atom in a magnetic field

A Bohr model suitable for our purposes is obtained via consideration of the following

dimensional scaling analysis of the Schrodinger equation for a hydrogen atom in

a magnetic field.The Schrodinger equation in usual three dimensions describing a

hydrogen atom in a magnetic field is written (in scaled atomic units)

(
−1

2
∇2 − 1

r
+
γ2ρ2

8

)
Ψ = EΨ (5.1)

where γ (≡ B/B0), referred to “dimensionless parameter γ” in literature, denotes the

strength of a magnetic field incident parallel to the molecular axis, otherwise referred
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to internuclear separation vector, and is measured in units of m2
ee

3c/~3 (or c/ea2
0 in

terms of Bohr radius ) ∼ 2.350 52× 109G, the atomic unit of magnetic field strength.

Before we carry out in detail the necessary scaling transformation to the Hamil-

tonian and the wave function to extract a useful Bohr model, it is best to briefly

describe the utility and procedure of dimensional scaling analyses in general.

Dimensional scaling is still a relatively new field. It is based on the recognition

that for certain types of problems it may be useful to consider the spatial dimension-

ality as a parameter, which ordinarily has the physical value D=3. The reason for

taking this unusual approach is that many problems, especially those in electronic

structure, simplify dramatically at certain values of D. As may be observed from the

application of increased dimensionality to the problem of random walks, for instance,

the prolifirating degrees of freedom essentially suppress the dynamic features, which

appear in the form of derivatives and in the infinite-dimension limit render a static

picture of the interaction between the constituent particles, which now assume fixed

positions. For many problems one can also find useful simplifications when the di-

mensionality is lowered. Several different methods have been developed for utilizing

results obtained at non-physical values of D to construct approximate D=3 solutions.

One is the method of 1/D expansions, in which the infinite-D limit is used as a

starting point, and then systematically corrected by means of perturbation theory.

Another approach is to use results obtained at two or more nonphysical values of D

to interpolate approximate D=3 solutions. Finally, a third approach is to use only

the very simple infinite-D limit solutions explicitly, but to correct these for finite-D

effects by means of scale factors derived from the analytic structure of dimensional

singularities.

Typically dimensional scaling methods involve four steps:

(1) Generalization of the problem to D-dimensions.
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(2) Transforming to a suitably scaled space to remove the major, generic D-

dependence of the quantity to be determined.

(3) Evaluatation of the scaled quantity at one or more special D values, such as

D → ∞, where the computation is relatively “easy”.

(4) Obtaining an approximation for D=3, by relating it to the special D values

often by dimensional interpolation or perturbation expansions

Exemplary applications previously studied have included calculations of the radii

of gyration of random walks, viral coefficients of hard spheres, correlation energy of

two-electron atoms, and resonance energy arising from electronic tunneling in the H+
2

molecule-ion

We shall chiefly deal with ways to exploit the D → ∞ limit, which is particularly

simple to evaluate. In that limit, as stated above, electrons assume fixed positions

relative to the nuclei and each other, in the D-scaled space. The large-D electronic ge-

ometry and energy correspond to the minimum of an exatly known effective potential

and can be determined from classical electrostatics for any atom or molecule.

As might be expected, dimensional scaling results are in general not highly ac-

curate, at least by the standards of modern ab initio calculations. On the other

hand, the methods are computationally extremely simple. This renders them useful

for treating otherwise insoluble problems. Perhaps even more important, the simplic-

ity of the methods means that one can often use them to gain insight into complex

processes. Since the infinite-D limit is in fact a classical limit characterized by local-

ization of the electrons relative to each other, the insights are typically geometric in

nature. On the quantitative side, dimensional scaling has proven to be most useful for

studying electron correlation (that is, the error associated with the use of the orbital

approximation). Electron correlation remains a very challenging problem, even with

high-end computational facilities. The fundamental reason that dimensional scaling
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has proven to be so useful in treating correlation is that the simplifications that occur

in the dimensional limits are not due to dynamical approximations which destroy cor-

relation; thus the dimensional limit solutions upon which the method relies are fully

correlated results competitive in accuracy with ab initio calculations are obtained.

It is, therefore, a key aspect of dimensional scaling that nonseparable, many-body

effects are fully accomodated in the dimensional limits. In other words, the ability

to approximate the far more difficult D=3 solution by interpolation or perturbation

expansions or other means does not depend on the magnitude, number, or strength

of the electronic interactions but only on the dependence on dimension

C. Bohr model for hydrogen atom in a magnetic field

For a derivation of an effective Bohr model description suitable for atomic hydrogen

in a magnetic field, we turn our attention to the previously introduced procedure of

dimensional scaling. Dimensional scaling essentially establishes a transition from the

3D dynamic picture, expressed in the form of the 3D Schrodinger equation

(
−1

2
∇2 − 1

r
+
γ2ρ2

8

)
Ψ = EΨ (5.2)

via the following set of scaling transformations

∇2 =
1

ρD−2

∂

∂ρ

(
ρD−2 ∂

∂ρ

)
+

∂2

∂z2
+
L2

D−2

ρ2
(5.3)

r → (D − 1)2

4
r

ρ→ (D − 1)2

4
ρ
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E → 4

(D − 1)2E

γ → 8

(D − 1)3γ

Ψ = ρ−
D−2

2 Φ

to the D-scaled Schrodinger equation

{
−1

2

[
1

ρD−2

∂

∂ρ

(
ρD−2 ∂

∂ρ

)
+

∂2

∂z2
+
L2

D−2

ρ2

]
− 4

(D − 1)2

1

r
+

1

(D − 1)2

γ2ρ2

2

}
ρ−

D−2
2 Φ

=
4

(D − 1)2Eρ
−D−2

2 Φ,

which in the D → ∞ limit (ground state) gives the static picture energy function

E (ρ, z) =
1

2ρ2
− 1√

ρ2 + z2
+
γ2ρ2

2
(5.4)

which may now be numerically solved for its extrema to yield energy curves with

surprising accuracy. Notice that upon performing the scaling transformation, the

factor multiplying γ2ρ2 is 1
2
, and not 1

8
.

B2ρ2
i

8

D→∞−→ B2ρ2
i

2
(5.5)

This is essential for the projection of the similar model to be applied to the

molecule instead. It is a simple, yet crucial recipe that tells us to replace all such

factors with their counterparts in writing the Bohr model energy function, and this

is what we do in the next section.
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D. Hydrogen molecule in a magnetic field

The Bohr model approach to molecular systems dealt with so far have been endowed

with two types of quantization initiative to which it has been agreed to refer as

radial quantization and molecular-axis quantization. Inspired by the above simple yet

subtle analysis, we proceed to replace the Schrodinger equation describing a hydrogen

molecule in a magnetic field

(
−1

2
∇2

1 −
1

2
∇2

2 −
1

r1a

− 1

r1b

− 1

r2a

− 1

r2b

+
1

|−→r1 −−→r2 |
+

1

R
+
B2ρ2

1

8
+
B2ρ2

2

8

)
Ψ = EΨ

(5.6)

by the energy function

E (−→r1 ,−→r2 ) =
1

2

n2
1

ρ2
1

+
1

2

n2
2

ρ2
2

− 1

r1a

− 1

r1b

− 1

r2a

− 1

r2b

+
1

|−→r1 −−→r2 |
+

1

R
+
B2ρ2

1

2
+
B2ρ2

2

2
(5.7)

to construct a molecular-axis quantized Bohr Model, and by the energy function

E (−→r1 ,−→r2 ) =
1

2

n2
1

r2
1a

+
1

2

n2
2

r2
2b

− 1

r1a

− 1

r1b

− 1

r2a

− 1

r2b

+
1

|−→r1 −−→r2 |
+

1

R
+
B2ρ2

1

2
+
B2ρ2

2

2
(5.8)

to similarly construct a radially quantized Bohr Model.

Our first approach will be via enforcing quantization with regard to the molecular

axis. We do this by considering two spatial configurationinitiatives for the electrons,

to which we shall refer henceforth as the UP-UP and the UP-DOWN configurations.

These are shown in Fig. 11. The figure shows the spatial positions of the electrons

in the up-up and up-down configurations. Prepared in this dissociation limit the

axially quantized model has provided an excellent energy-curve description of the

antibonding 3Σu triplet state of the hydrogen molecule in the absence of field as well

as the lowest energy 1Σg singlet (ground) state. Once again, the configurations take
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their name intuitively after the positions of the electrons relative to the molecular

axis.

In what follows we also take n1 = n2 = 1 for reasons of greater reliability, and

hence focus primarily on the lower energy states this entails.

The defining simplifications of the UP-UP configuration are

ρ1 = ρ2 = ρ (5.9)

θ1 = θ2 = θ (5.10)

r1a = r2b =
ρ

sin θ
(5.11)

r2a = r1b (5.12)

with angle θ as shown in Fig. 11 so that the energy function whose extrema are

sought for varying R is given by

E (ρ, θ) =
1

ρ2
− 2 sin θ

ρ
− 2√(

R− ρ
tan θ

)2
+ ρ2

+
1∣∣R− 2ρ

tan θ

∣∣ +
1

R
+B2ρ2 (5.13)

It should be noted that this may in turn be regarded as an extremization of the

energy function (5.7) subject to such constraint as implied by equations (5.9)-(5.12).

The UP-DOWN configuration is similarly prepared by setting

ρ1 = ρ2 = ρ (5.14)

θ1 = θ2 = θ (5.15)

r1a = r2b =
ρ

sin θ
(5.16)

r2a = r1b, (5.17)

where now the angle θ is measured as shown in Fig. 11. The corresponding energy

function whose extrema for varying R yield the potential energy curves is now given
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by

E (ρ, θ) =
1

ρ2
−2 sin θ

ρ
− 2√(

R− ρ
tan θ

)2
+ ρ2

+
1√(

R− 2ρ
tan θ

)2
+ 4ρ2

+
1

R
+B2ρ2 (5.18)

In order of presentation our findings are:

(i) A description via potential energy curves of the behavior of the ground state

in response to a magnetic field corresponding to a range of field strength values from

0.1 a.u. to 0.8 a.u.. This is done within the axially quantized model and coincides

with the UP-DOWN configuration. The potential energy curves corresponding to

these configurations are shown in Fig. 22.

(ii) In particular the effect of the magnetic field on the binding energy and the

bond length are shown. Molecular binding energies for the ground state correponding

to incrementally increased field strengths are calculated for a range of fields from 0 to

4.0 a.u.. The result is shown in figure 23 and, predicts a deepening of the potential

well. Hence, the state becomes more strongly binding.

(iii) The bond length identified as the value of the internuclear seperation yield-

ing the minimum of the energy curve is similarly calculated for the same range of

incrementally advanced field strengths. The result shown in Fig. 24 is a prediction

of the shortening of the bondlength for this state.

(iv) The axially quantized model set in the up-up configuration was shown to

provide an accurate description of the lowest triplet state in the absence of magnetic

field, and as such now reliably presents a description of the evolution of this state

as a parallel magnetic field is introduced. The model predicts that the triplet state

remains unbinding. The potential energy curves for a range of field strengths are

indicated in Fig. 25.
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Fig. 22. The energy curves calculated at field strengths of γ = 0.2 a.u., 0.4a.u., 0.6

a.u., and 0.8 a.u. are shown and compared to the zero-field curve. Notice that

aside from the expected increase in the dissociation limit energy, the curves

also tend to bunch up with minima shifted to smaller internuclear distances,

and the well form becomes more pronounced.

(v) A straightforward application of the previously discussed concept of an effec-

tive potential as a safeguard against the “collapse” in intuitive terms of an electron

into the “other” nucleus yields the potential energy curves below (see Fig. 26). Typ-

ically of all binding, the curves descend as R is decreased, a prelude to forming

themselves into a well, but the descent is rather too sharp and decidedly premature.

The individual descents continue until a rendezvous with a curve that rather closely

contours the potential curve for the zero-field triplet state whereupon they instantly
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Fig. 23. The numerically obtained field strength dependence of molecular binding en-

ergy associated with the axially modelled 1Σg singlet state of H2 molecule is

shown. Characteristic of this and later plots is the form of the dependence in

the weak- and strong-field limits.

merge. Attempts at obtaining solutions past the point of line-crossing that would be

natural extensions of the original curves have so far failed. Although it may be argued

that the effective potential employed in the calculation is not one that inherently ac-

knowledges the presence of the magnetic field, it still does not explain how solutions

to the extremization of an energy function prepared in one configuration (up-down)

may be identified as solutions also to one in another configuration (up-up).

(vi) Of particular interest is the emergence of a new state that exists only above

a critical value of the magnetic field strength. This is predicted by the radially
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Fig. 24. The internuclear separation corresponding to the minimum of the energy curve

is identified as bondlength. Here we see the progression of the bondlength to

smaller values with increasing magnetic field.

quantized model fashioned in the UP-DOWN configuration and without an effective

potential (see Fig. 27). Potential energy curves corresponding to a range of magnetic

field strengths from 0.1 a.u. to 0.8 a.u. have been plotted. These are shown in the

figure 28.

Here, too, we notice at once the shift in the location of the minimum of the

energy curve as well as a deepening of the potential well as the strength of a par-

allel magnetic field is increased. The former implies that the effective bondlength

is shorter for more intense fields whereas the latter indicates stronger binding. The

bond lengths identified over a range of incrementally varied field strengths from 0 a.u
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Fig. 25. The energy curves calculated at field strengths of γ = 0.1 a.u. through 0.7 a.u.

in steps of 0.1 a.u., are shown and compared to the zero-field curve. Notice

that aside from an expected increase in the R→ ∞- limit energy, the model

predicts that the triplet state remains antibonding.

to 1.5 a.u. exhibit a marked difference in their dependence on the field from those

obtained using the axially quantized model. This is agreeably so and not surprising

given the observation that this state, unlike the axially treated ground state, is not al-

ways present, but rather springs into existence above the critical field strength value

of 0.020179 a.u.. Below this value the extremization does not admit of a numeric

solution.

A comparison of the dependence on field strength of binding energies reveals a

similarity, though in qualitative terms, between the axially treated ground state and

the radially treated “new state”. Despite their different intercepts the curves resemble

each other up to a rescaling of magnitudes both in the weak- and the strong-field
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Fig. 26. Crossing of energy lines.

limits. A highlight of the comparison in weak field is best summarized in the figures

below.

To gain an insight to the beginnings of this newly predicted state, it is instructive

to also examine the associated energy curve in its relationship to other curves. The

figure below compares energy curve of the new state at the field value of 0.1 a.u. with

those of the field-advanced (γ=0.1 a.u.) triplet, field-advanced (γ=0.1 a.u.) singlet,

zero-field triplet, and zero-field singlet states.

A broad-range field dependence of the binding energy associated with the radially

quantized “new” state is best described in Fig. 29. For a field dependence of the

bondlength associated with this state the reader is refered to Fig. 30. The weak-field

dependence of the binding energy is suspectedly parabolic. A close-up may be seen

in Fig. 31. The same parabolic dependence of the binding energy associated with the
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Fig. 27. Electron configuration for a new state that appears in magnetic field.

axially modelled 1Σg state in the weak-field limit is described in Fig. 32, which one

may now compare to that of the “new” state. An essential and detailed comparison

of the energy curve associated with this newly predicted state with four other related

curves those of is presented in Fig. 33. A family picture of all the potential energy

curves so far obtained and their relationship to one another is best summarized in

Figs. 34 and 35.
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Fig. 28. The potential energy curves for the newly predicted states are shown. An

increase in binding energy, and a shortening of bond length can be seen.
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Fig. 29. The figure shows a broad range field dependence of the binding energy asso-

ciated with the radially quantized new state.
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Fig. 30. The curve shows the field dependence of the bond length associated with the

radially modelled new state.
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Fig. 31. A close-up shows the almost parabolic weak-field dependence of binding en-

ergy associated with the radially quantized new state.
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Fig. 32. This close-up shows a similar parabolic dependence on weak-field of the bind-

ing energy associated with the axially modelled 1Σg state.
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Fig. 33. Figure shows a comparison of the energy curve associated with the newly

predicted state with four other related curves.
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Fig. 34. The figure shows the potential energy curves for the ground state 1Σg obtained

both via an effective potential-radially-quantized model, and by using axial

quantization, and for all field-advanced forms of the same state, together

with axially treated zero-field and field-advanced triplet 3Σu states, and the

newly predicted states of the radially quantized model set in the up-down

dissociation configuration.
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Fig. 35. A larger family picture of energy curves summarizing our findings.
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CHAPTER VI

QUANTUM DOT COMPUTING GATES

A. Introduction

The design and construction of the quantum computer (QC) is a major scientific

undertaking of the 21st Century. According to DiVincenzo [40], five requirements

must be satisfied in order to obtain a reliable QC system: (1) be scalable, (2) the

ability to initialize qubits, (3) relatively long decoherence times (longer than the gate

operation times), (4) a qubit-specific read-out capability, and (5) a universal set of

quantum gates.

Building devices to store and process computational bits quantum-mechanically

(qubits) is a challenging problem. In a typical field-effect transistor (FET) in an

electronic computer chip, 10, 000 to 100, 000 electrons participate in a single switch-

ing event. It is impossible to isolate, out of such a complex system, two quantum

mechanical states that would evolve coherently to play the role of a qubit.

Quantum dot(s) (QD) fabrication is a major segment of contemporary nan-

otechnology. QD devices, including diode lasers, semiconductor optical amplifiers,

IR detectors, mid-IR lasers, quantum-optical single-photon emitters, etc., are being

developed and considered for a wide variety of applications. QD are also a promising

candidate for the future QC technology. In this chapter, we hope to elucidate the

connection between the physics of QD and the basic mathematics of quantum gate

operations. We have put a certain emphasis on the mathematical derivations but we

also hope to explain some rudimentary science and technology of QD.

We begin by introducing what QDs are. QDs consist of nano-scale crystals from

a special class of semiconductor materials, which are crystals composed of chemical
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elements in the periodic groups II-VI, III-V, or IV-IV. The size of QD ranges from

several to tens of nanometers (10−9m) in diameter, which is about 10-100 atoms’. A

QD can contain from a single electron to several thousand electrons since the size of

the quantum dot is designable. QD are fabricated in semiconductor material in such

a way that the free motion of the electrons is trapped in a quasi-zero dimensional

“dot”. Because of the strong confinement imposed in all three spatial dimensions, a

QD behaves similarly to atoms and is often referred to as artificial atoms or giant

atoms.

If an electron travels far enough to be scattered by impurities or other electrons,

it will lose its phase coherence, which is called dephasing. The length in which an

electron travels yet can keep its phase coherent is called the phase coherence length.

The motion of the electron of coherent phase is regarded as a wave motion since it has

an interference effect. It is well-known that only standing wave exists within a confined

regime because of the destructive interference. Thus, the electron states are not

continuous but discrete. Therefore, energy quantization or momentum quantization

is observed if the motion of the electron is restricted within a very small regime. This

phenomenon is known as the size quantization effect.

In natural bulk semiconductor material, the overwhelming majority of electrons

occupy the valence band. However, an extremely small percentage of electrons may

occupy the conduction band, which has higher energy levels. The only way for an

electron in the valence band to be excited and be able to jump to the conduction

band is to acquire enough energy to cross the bandgap. If such a jump or transition

occurs, a new electric carrier in the valence band, called a hole, is generated. Since the

hole moves in the opposite direction of the electron, the charge of a hole is regarded

as positive. The pair of raised electron and hole is called an exciton. The average

physical separation between the electron and the hole is called the exciton Bohr radius.
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Exciton moves freely in bulk semiconductor. However, an exciton is trapped by high

energy barriers as an electron is. The size quantization effect is optically observable.

If the device length is smaller than the phase coherence length of the electron

or exciton Bohr radius, the energy levels are discrete and the size quantization effect

is observed. Since the energy levels are discrete, the three-dimensional energy band

becomes lower-dimensional depending on the number of confinement directions. If

there is only one directional length of device shorter than the phase coherence length,

the device is regarded as a two-dimensional device, called a quantum well. The phase

coherence length of a quantum well is about 1.62µm for GaAs and about 0.54µm for Si

at low temperature. However, since the phase coherence length depends on impurity

concentration, temperature and so on, it can be modified for electronic applications.

The exciton Bohr radius of GaAs is about 13 nanometers.

There are two approaches to fabricate nano-scale QD: top-down and bottom-up.

The semiconductor processing technologies, such as metal organic chemical vapor

deposition, molecular beam epitaxy and e-beam lithography, etc., are used in the

top-down approach. Surface and colloid chemistry such as self-assembly, vapor-liquid-

solid techniques are used in the bottom-up approach.

There are many methods to synthesize QD in the bottom-up approach, e.g.,

chemical reactions in colloidal solutions, long time annealing in solid state, chemical

vapor deposition on solid surface, wet or dry etching of thin film on solid surface, etc.

As mentioned above, several semiconductor processing technologies can be ap-

plied to QD fabrication in the top-down approach. Usually, a quantum well is the

starting point of the quantum dot fabrication. Thus, let us first describe the technol-

ogy of the quantum well fabrication.

By molecular beam epitaxy and metal organic chemical vapor deposition tech-

niques, an ultra-thin single crystalline layer can be deposited on a bulk substrate.
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The development of these advanced epitaxy techniques makes it possible to fabricate

quantum wells with a very fine boundary. There are two types of quantum wells.

One is formed by depositing several single crystalline layers through molecular beam

epitaxy, or through the metal organic chemical vapor deposition technique. The other

is by depositing single crystalline layers with modulated impurity concentration. The

former is usually chosen for optoelectronic devices such as laser where electrons and

holes need to be confined at the same time, and the latter is for electronic devices

where only either the electron or the hole needs to be confined.

Recent advances in epitaxial growth technology have lead to confinement of single

electrons in semiconductor QDs. In QD based “single-electron transistors” (SET), the

position of a single electron governs the electrical conductance. However, the same

factors that make single-electron detection simple also complicate construction of a

quantum computer based on sensing an electron’s position. Electrons are easily de-

localized by stray electric fields due to Coulomb interaction, and electrons placed in

delicate entangled quantum states rapidly lose quantum coherence. The localization

of a single dot can be achieved either by advanced epitaxial growth techniques or by

using novel optical manipulation techniques such as near-field optical probe.

It was first predicted in 1938 that any two materials with different lattice con-

stants would result in the formation of islands instead of flat layers beyond a critical

thickness [41]. The growth of first strain induced islands were reported by Gold-

stein, et al. [42] in 1985 where InAs islands were formed on GaAs. These islands

can have sizes in the range of a few nanometers and can confine charge carriers both

in the conduction band and in the valence band. Whatever we use the QD system

for and whatever the fabrication technology we use, there will always be a statis-

tical distribution of QD size and composition. This statistical distribution in turn

produces inhomogeneous broadening of the QD optical response such as transition
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frequencies: This favors the distinction of one qubit from the others since the energy-

domain discrimination is facile. Access to a specific qubit is achieved by positioning

the excitation/ probe beam spot onto the desired location where a number of qubits

with different frequencies can be accessed. Access to specific qubits can therefore be

achieved by position selective addressing combined with frequency discrimination.

As a single photon generation source, single photons were first generated in a

completely different kind of quantum dots, colloidal quantum dots, which are syn-

thesized in solutions [43]. These dots tend to suffer from blinking and bleaching,

improvements in their stability is required if practical devices are to be built with

these dots, their properties are currently closer to those of molecules than to those of

Stranski-Krastanow QD. But because of the advantages of Stranski-Krastanow grown

QD, most research has concentrated on epitaxially grown QD. However, one advan-

tage of colloidal dots over epitaxially grown dots is that they still emit efficiently at

room temperature.

The recombination of an electron-hole pair leading to the emission of a photon

with a specific energy is uniquely determined by the total charge configuration of the

dot [44]. If a QD is optically pumped with a pulsed laser leading to the creation

of several electron hole pairs in the dot, then it is possible to spectrally isolate the

single photon emitted by recombination of the last electron-hole pair [45]. QDs offer

several advantages as sources for single photons. They have large oscillator strengths,

narrow spectral linewidths, high photon yield, and excellent long-term stability. The

materials used to make QDs are compatible with mature semiconductor technolo-

gies, allowing them to be further developed and integrated with other components.

The usefulness of most QD single-photon sources, though, is limited by their low

efficiencies. The dots radiate primarily into the high-index substrates in which they

are embedded, and very few of the emitted photons can be collected. The source
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efficiency can be increased by placing a dot inside a microscopic optical cavity.

In addition, single-electron devices have a unique mechanism known as the

Coulomb blockade which is different from size quantization. Single electron tunnel-

ing occurs at the ultra-small junction. Electron cannot pass through the ultra-small

junction due to electrostatic charging energy, which is the Coulomb blockade. Only

when the electrostatic charging energy can be lowered by electron tunneling, a single

electron can then tunnel through the ultra-small junction, called a single electron

junction. Quantitatively, when the capacitance of the junction is much smaller than

e2/kBT , where e is the absolute charge of electron, kB is the Boltzmann constant and

T is the temperature, single-electron tunneling is observed.

Near-field optical spectroscopy can be used for quantum computation as this

probing technique is highly selective and has been utilized for exciting a single quan-

tum dot system. In GaAs based quantum dots the linewidth of emission from single

quantum dots has been observed to be less than few µeV. In GaN based quantum dots

the linewidth is broader due to larger longitudinal optical (LO) phonon scattering rate

and electron effective mass which leads to homogeneous broadening.

QD designs allow for tunable bandgap through the choices of QD sizes, shapes

and semiconductor materials. For quantum gate logic operations one can utilize

energy levels, spins, or excitonic levels of confined electrons in quantum dots. At

present, there exist three major designs of the quantum-dots based QC, due to

(i) Sherwin, Imamoglu and Montroy [46]: The idea is similar to a cavity-QED

design [47, 48] by trapping single electrons in quantum dot microcavities;

(ii) Burkard, Loss and DiVincenzo [49, 50]: It utilizes electron spins and their

interactions via the electromagnetic effect of tunneling;

(iii) Piermarocchi, Chen, Dale, and Sham [51]: It is based on coherent optical control
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of two electron-hole pairs (called a biexciton) confined in a single QD. Efforts

are being made to couple two of more QD in order to make this design scalable.

In this chapter we focus on the design due to Burkard, Loss and DiVincenzo.

B. Coupled electron spins in an array of quantum dots

1. Electron spin

The electron spin is a “natural” representation of a qubit since it comprises exactly

two levels. Unlike for charge (energy-level) states in an atom or quantum dot, there

are no additional degrees of freedom into which the system could “leak”. Another

great advantage of spins as compared to charge qubits is that in typical semiconduc-

tor materials like gallium arsenide (GaAs) or silicon (Si), the time over which the

spin of a conduction-band electron remains phase coherent can be several orders of

magnitude longer than the corresponding charge decoherence times. Of course these

numbers have to be compared with the time it takes to perform an elementary gate

operation. Even considering this, single spins seem to be very well suited as qubits.

The transverse decoherence time T2, which is most relevant in the context of quan-

tum computing, is defined as the characteristic time over which a single spin which

is initially prepared as a coherent superposition of “spin up” and “spin down” coher-

ently precesses about an external magnetic field. The transverse dephasing time of

an ensemble of spins in n-doped GaAs can exceed 100ns, as demonstrated by optical

measurements [52], while switching times are estimated to be on the order of 10-

100ps. The longitudinal (energy) relaxation time T1 determines how long it takes for

a non-equilibrium spin configuration to relax to equilibrium. T1 can be much longer

than T2 (and particularly long in confined structures), but while suppression of spin

relaxation is necessary for quantum computation, it is not sufficient.
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There are two main schemes for achieving qubits in quantum dots using electron

spin:

1. Single-qubit rotations: In principle, spin-flip Raman transition could rotate the

electron spin in τgate ∼ 10ps ≪ τdecoh ∼ 1µs.

2. Two-qubit gates: the real challenge in most schemes. In this case, the spin

decoherence during gate operation is a problem.

Spintronics requires the fabrication of ferromagnetic nanostructures that at room

temperature can transport spin-polarized carriers, and which can be assembled into

addressable hierarchies on a macroscopic chip. Most efforts have been directed to-

wards the mixing of transition-metal atoms (such as Ni, Fe and Mn, which have per-

manent magnetic moments) into semiconductor devices based on compounds from

groups II-VI (such as CdS) or III-V (GaAs) of the periodic table. Superstructures

consisting of alternating ferromagnetic/diamagnetic, metallic/oxide thin films have

also received attention; like spin valves, spin-polarized currents can be injected into

them and transported. An all-electrically controlled quantum dot array can be used

for switching qubits.

Recently, a new class of diluted magnetic semiconductor based on III-V system

is being studied due to it large intrinsic magnetic dipole moment. Gd doped GaN

materials are reported to have a strong intrinsic spin dipole moment. The tunneling

in quantum dot based diluted magnetic semiconductor can also be enhanced by using

a nanoscale electrode on a diluted magnetic semiconductor system.

2. The design due to D. Loss and D. DiVincenzo

In this section, we study questions related to the spintronics design [49]. The basics of

the Loss and DiVincenzo scheme is quite mathematically elegant. For a linear array
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of quantum dots a single electron is injected into each dot. The electron’s spin up

and down constitute a single qubit. Each quantum dot is coupled with its (two) next

neighbors through gated tunneling barriers. The overall Hamiltonian of the array of

coupled quantum dots is given in [50]:

H =
n∑

j=1

µBgj(t)BBBj(t) ·SSSj +
∑

1≤j<k≤n

Jjk(t)SSSj ·SSSk, (6.1)

where the first summation denotes the sum of energy due to the application of a

magnetic fieldBBBj to the electron spin at dot j, while the second denotes the interaction

Hamiltonian through the tunneling effect of a gate voltage applied between the dots,

and SSSj,SSSk are the spin of the electric charge quanta at, respectively, the j-th and

k-th quantum dot.

Quantum dots themselves may be viewed as artificial atoms as both manifest

similar behaviors. Coupled quantum dots, in this connection, may be considered

to a certain extent as artificial molecules [49]. Thus, Burkard, Loss and DiVincenzo

applied naturally the Heitler-London and Hund-Mulliken methods in molecular quan-

tum chemistry to evaluate the “exchange energy” J , which in terms of our notation

in (6.7) later in Section 3, is

J =
~

2
ω(t).

J is a function of B,E and a, among others, where

J = J(B,E, a), (6.2)
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with

B = the magnetic field strength,

E = the electric field strength, and

a = tunneling barrier height or, equivalently, inter-dot distance,

by varying which we will be lead to, respectively, the effects of wave function sup-

pression, level detuning, and the suppression of tunneling between the dots [49]. The

determination of ω(t) or, equivalently, J , is important. Technologically, the tailor-

ing, design and implementation of the control pulse ω(t) are also perhaps the most

challenging.

The coupling between two quantum dots consists of the usual Coulomb repelling

potential between the two electrons located within each dot and, in addition, a quartic

potential

V (x, y) =
mω2

0

2

[
1

4a2
(x2 − a2)2 + y2

]
. (6.3)

to model the effect of tunneling. Using the Heitler-London approach (likening the

coupled quantum dots as the H2 dimer), Burkard, Loss and DiVincenzo obtained the

exchange energy as

J =
~ω0

sinh(2d2(2b− 1
b
))

[
c
√
b

(
e−bd2

I0(bd
2) − ed2(b− 1

b
)I0

(
d2

(
b− 1

b

)))

+
3

4b
(1 + bd2) +

3

2

1

d2

(
eBa

~ω0

)2
]
, (6.4)

where

b ≡ Ω

ω0

, d = (mω0/~)1/2a

and
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Ω ≡

√

ω2
0 +

(
eB

2mc

)2

.

The above result given in [50] is very commendable but its calculation is lengthy.

Its derivations require special techniques and carefulness but details were not available

in [50]. We fill in such mathematical technical details in Appendices A and B, which

are our main results obtained in this chapter.

3. Model of two identical laterally coupled quantum dots

For the model given by Loss and DiVincenzo in [50], the underlying assumptions

leading to the main result (6.4) are itemized below:

(1) The geometry of the two coupled dots. The electron confinement is based on single

GaAs heterostructure quantum dots formed in a 2DEG (2-dimensional electron gas).

The electric and magnetic fields are

BBB = Beeez, with choice of vector potential AAA(x, y, 0) =
B

2
(−yeeex + xeeey) (6.5)

EEE = Eeeex (6.6)

(2) The quartic potential (6.3) for tunneling was motivated by the experimental fact

from [53] that the spectrum of single dots in GaAs is well described by a parabolic

confinement potential, e.g., with ~ω0 = 3meV ([50, 53]). (The quartic potential (6.3)

separates into two harmonic wells centered at x = ±a.) The constant a, the half

interdot distance, satisfies

a≫ aB,

where aB = [~/(mω0)]
1/2 = the effective Bohr radius of a single isolated harmonic well,
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µB : is the Bohr magneton;

gj(t) : is the effective g-factor;

BBBj(t) : is the applied magnetic field;

Jjk(t) : the time-dependent exchange constant [see [10] in the Refer-

ences therein], with Jjk(t) = 4t2jk(t)/u, which is produced by the

turning on and off of the tunneling matrix element tij(t) between

quantum dots i and j, with u being the charging energy of a single

dot. Moreover, Jjk(t) ≡ 0 if |j − k| > 1.

Note that for

SSSj = σ(j)
x eeex + σ(j)

y eeey + σ(j)
z eeez, j = 1, 2, . . . , n,

and

BBBj(t) = b(j)x (t)eeex + b(j)y (t)eeey + b(j)z (t)eeez, j = 1, 2, . . . , n,

where

eeex =




1

0

0



, eeey =




0

1

0



, eeez =




0

0

1




and σ
(j)
x , σ

(j)
y and σ

(j)
z are the standard Pauli spin matrices (at dot j):

σ(j)
x =




0 1

1 0


 , σ(j)

y =




0 −i

i 0


 , σ(j)

z =




1 0

0 −1


 ,

the dot products are defined by

SSSj ·SSSk = σ(j)
x σ(k)

x + σ(j)
y σ(k)

y + σ(j)
z σ(k)

z ,

BBBj(t) ·SSSj = b(j)x (t)σ(j)
x + b(j)y (t)σ(j)

y + b(j)z (t)σ(j)
z .

From the universal quantum computing point of view, as the collection of 1-bit
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and 2-bit quantum gates are universal, it is sufficient to study a system with only two

coupled quantum dots, whose Hamiltonian may now be written as ([54, 47])

H(t) ≡ ~

2
[ΩΩΩ1(t) · σσσ + ΩΩΩ2(t) · τττ + ω(t)σσσ · τττ ], (6.7)

followed by rewriting the notation

SSS1 = σσσ, SSS2 = τττ ; µBgj(t)BBBj(t) =
~

2
ΩΩΩj(t), j = 1, 2; J12(t) =

~

2
ω(t).

The ΩΩΩ1(t), ΩΩΩ2(t) and ω(t) are the control pulses. Thus, varying ΩΩΩ1(t) and ΩΩΩ2(t)

will generate complete 1-bit Rabi-rotation gates for the first and second qubits, re-

spectively ([47]). However, in order to generate the entangling controlled-not (CNOT)

gate or a quantum phase gate, both being 2-bit gates, the coupling term ω(t)σσσ · τττ in

(6.7) is indispensable. Therefore,

(3) The Coulomb interaction between the two electrons is described by

C =
e2

κ|rrr1 − rrr2|
, rrr1 = x1eeex + y1eeey, rrr2 = x2eeex + y2eeey. (6.8)

Here we assume that the screening length λ satisfies

λ/a≫ 1.

(4) The ratio between the Zeeman splitting (due to the magnetic field BBB) and the

relevant orbital energies (see (5) below) is small for all values of B of interest here.

The spin-orbit effect can be neglected since the spin-orbit coupling isgiven by

Hspin-orbit =

(
ω2

0

2mc2

)
LLL ·SSS (6.9)

and the ratio of its magnitude to the characteristic energy is

Hspin-orbit/(~ω0) ≈ 10−7,
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where ~ω0 = 3meV represents the characteristic energy.

Consequently, the dephasing effects by potential or charge fluctuations can couple

only to the charge of the electron, instead of the “holes.”

Under conditions (1)–(4) above, the total orbital Hamiltonian of the coupled

system may be given as

Horb = h1 + h2 + C, (6.10)

where

hj =
1

2m

∣∣∣pppj −
e

c
AAA(rrrj)

∣∣∣
2

+ exjE + V (rrrj), for j = 1, 2. (6.11)

(5) Assume further the cryogenic condition kT ≪ ~ω0, so we need only consider the

two lowest orbital eigenstates of the orbital Hamiltonian Horb, which are, respectively,

the (symmetric) spin-singlet and the (antisymmetric) spin-triplet. A perturbation

approximation then leads to the effective Heisenberg spin Hamiltonian

Hs = JSSS1 ·SSS2 (cf. J in (6.2))

J ≡ ǫt − ǫs = the difference between the triplet and singlet energies. (6.12)

A self contained account for the derivation of J involves rather technical math-

ematical analysis of the Fock-Darwin Hamiltonians and states, and clever simplifica-

tions of the various integrals in the exchange energy. We put together such work in

Appendices A and B.

Next we briefly reproduce the proof from literature of the universality and avail-

ability of the quantum computational operations that are supported by this physical

set-up. Without the identification of physical processes inherent to the set-up as cor-

responding to universal quantum gate operations, there would be no point to such

design.

The universality of the Loss–DiVincenzo QD quantum gates can now be pre-
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sented. We first show how to choose the control pulse ΩΩΩ1(t) in order to obtain the

1-bit unitary rotation gate Uθ,φ.

Theorem B.1. ([47, p. 111-112]) Let φ, θ ∈ [0, 2π] be given. Denote eee(φ) = cosφeeex+

sinφeeey +0eeez for the given φ. Let U1,ΩΩΩ1(t) be the time evolution operator corresponding

to the quantum system

i~
∂

∂t
|ψ(t)〉 = H(t)|ψ(t)〉, T > t > 0, cf. H(t) in (6.7) (6.13)

where the pulses are chosen such that

ΩΩΩ1(t) = Ω1(t)eee(φ), ΩΩΩ2(t) = 0, ω(t) = 0, t ∈ [0, T ], (6.14)

with Ω1(t) satisfying

∫ T

0

Ω1(t)dt = 2θ, for the given θ. (6.15)

Then the action of U1,ΩΩΩ1(t) on the first qubit satisfies

U1,ΩΩΩ1(t) = Uθ,φ, the 1-bit unitary rotation gate. (6.16)

Proof. We have

Uθ,φ =




cos θ −ie−iφ sin θ

−ieiφ sin θ cos θ




= cos θ111 − ie−iφ sin θ

(
σx − iσy

2

)
− ieiφ sin θ

(
σx − iσy

2

)

= cos θ111 − i sin θ cosφσx − i sin θ sinφσy

= cos θ111 − i sin θ(cosφσx + sinφσy)

= cos θ111 − i sin θeee(φ) · σσσ

= e−iθeee(φ)·σσσ, (6.17)
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noting that in the above, we have utilized the fact that the 2 × 2 matrix

eee(φ) · σσσ =




0 cosφ− i sinφ

cosφ+ i sinφ 0


 (6.18)

satisfies (eee(φ) · σσσ)2n = 111 for n = 0, 1, 2, . . ., where 111 is the 2 × 2 identity matrix.

With the choices of the pulses as given in (6.14), we see that the second qubit

remains steady in the time-evolution of the system. The Hamiltonian, now, is

H1(t) =
~

2
Ω1(t)eee1(φ) · σσσ (6.19)

and acts only on the first qubit (where the subscript 1 of eee1(φ) denotes that this is

the vector eee(φ) for the first bit). Because Ω1(t) is scalar-valued, we have

H1(t1)H1(t2) = H1(t2)H1(t1) for any t1, t2 ∈ [0, T ]. (6.20)

Thus

U1,ΩΩΩ1(T ) = e−
i
2

R T
0 Ω1(t)eee1(φ)·σσσ dt

= e[−
i
2

R T
0 Ω1(t)dt]eee1(φ)·σσσ

= e−iθeee1(φ)·σσσ, (by (6.15)) (6.21)

using (6.17). The proof is complete.

We may define U2,ΩΩΩ2 in a similar way as in Theorem B.1.

Next, we derive the 2-bit quantum phase gate Qπ and the CNOT gate. This will

be done through the square root of the swap gate Usw:

Usw(|ij〉) = |ji〉, for i, j ∈ {0, 1}. (6.22)

Theorem B.2. ([47, p. 110-111]) Denote by U(t) the time evolution operator for the
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quantum system (6.7) for the time duration t ∈ [0, T ]. Choose ΩΩΩ1(t) = ΩΩΩ2(t) = 0 in

(6.7) and let ω(t) therein satisfies

∫ T

0

ω(t)dt =
π

2
. (6.23)

Then we have U(T ) = −eπi/4Usw, i.e., U(T ) is the swapping gate (with a nonessential

phase factor −eπi/4.)

Proof. By assumptions, we have now

H(t) = ω(t)σσσ · τττ/2. (6.24)

Since ω(t) is scalar-valued, we have the commutativity

H(t1)H(t2) = H(t2)H(t1), for any t1, t2 ∈ [0, T ]. (6.25)

Therefore

U(T ) = e−i
R T
0 H(t)dt/~ = e[−

i
2

R T
0 ω(t)dt]σσσ·τττ

= e−iφσσσ·τττ
(
φ ≡ 1

2

∫ T

0

ω(t)dt

)

= cos(φσσσ · τττ) − i sin(φσσσ · τττ), (6.26)

where e−iφσσσ·τττ , cos(φσσσ · τττ) and sin(φσσσ · τττ) are 4 × 4 matrices. Since

σσσ · τττ =




1 0 0 0

0 −1 2 0

0 2 −1 0

0 0 0 1




has a 3-fold eigenvalue +1 (triplet) and a single eigenvalue (singlet) −3, the associated
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projection operators can be easily found to be

PPP 1 =
1

4
(3111 + σσσ · τττ) and PPP 2 =

1

4
(111 − σσσ · τττ); PPP jPPP k =





0, j 6= k,

PPP j, j = k.
(6.27)

Thus, from (6.26) and (6.27), we obtain

U(T ) = e−iφσσσ·τττ = e−iφ · 1

4
(3111 + σσσ · τττ) + e−3iφ · 1

4
(111 − σσσ · τττ). (6.28)

With a little manipulation, (6.28) becomes

U(T ) = eiφ

[
cos(2φ)111 − i sin(2φ)

111 + σσσ · τττ
2

]

= eiφ[cos(2φ)111 − i sin(2φ)Usw], (6.29)

by the fact that

Usw =




1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1




=
1

2
(111 + σσσ · τττ).

Choosing φ = π/4, we obtain the desired conclusion.

Corollary B.3. ([47, p. 110-111]) The square roots of the swapping gate, U
1/2
sw , are

U1/2
sw =

e±πi/4

√
2

(111 ∓ iUsw). (6.30)

Proof. From (6.29), we first obtain

Usw = ie−
πi
4 U(T ). (6.31)

Then use φ = ±π/8 in (6.29) to obtain

U1/2
sw = (ie−

πi
4 )1/2e±πi/8

[
1√
2
(111 ∓ iUsw)

]
(6.32)
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and the desired conclusion. (Note that these two square roots of Usw reflect the choices

of
√

1 = 1 and the square root of −1 = ±i for the square roots of the eigenvalues of

Usw.)

Corollary B.4. ([47, p. 112]) The quantum phase gate Qπ is given by

Qπ = (−i)U
1,ΩΩΩ

(2)
1
U2,ΩΩΩ2U

1/2
sw U

1,ΩΩΩ
(1)
1
U1/2

sw , (6.33)

where 



∫
ΩΩΩ

(1)
1 (t) dt = −πeee1z,

∫
ΩΩΩ

(2)
1 (t) dt = πeee1z/2,

∫
ΩΩΩ2(t) dt = −πeee2z/2,

(6.34)

and eee1z, eee2z denote the eeez vector of, respectively, the first and the second qubit.

Remark 1. In order to realize this succession of gates, only one of the ΩΩΩ(t) in (6.34) is

nonzero at any given instant t, with the duration when ΩΩΩ
(1)
1 (t) 6= 0 earlier than that

when ΩΩΩ2(t) 6= 0, and that when ΩΩΩ
(2)
1 (t) 6= 0 even later. Earliest is the period when

ω(t) 6= 0 for the first U
1/2
sw , and another period when ω(t) 6= 0 is intermediate between

those when ΩΩΩ
(1)
1 (t) 6= 0 and ΩΩΩ2(t) 6= 0.

Proof. Define

UXOR ≡ e
πi
4

σze−
πi
4

τzU1/2
sw ei π

2
σzU1/2

sw , (6.35)

with U
1/2
sw = e−

π
4 i

√
2

(111 + iUsw) chosen from (6.30). Then it is straightforward to check

that

UXOR|00〉 = |00〉(i), UXOR|01〉 = |01〉(i),

UXOR|10〉 = |10〉(i), UXOR|11〉 = |11〉(−i), (6.36)
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so that

UXOR = i(|00〉〈00| + |01〉〈01| + |10〉〈10| − |11〉〈11|)

= iQπ. (6.37)

As a final comment of this section, we note that the two quantum dots in coupling

are assumed to be identical. However, the state-of-the-art of fabrication of quantum

dots with uniform size and characteristics is far from being perfected in contemporary

technology. A more refined mathematical treatment for the modeling of two non-

identical quantum dots in coupling is needed.

4. Laterally coupled and vertically coupled arrays

Here we provide some details of quantum dot array arrangement. In coupled quantum

dots, there exists the combined action of the Coulomb interaction and the Pauli

exclusion principle. Two coupled electrons in absence of a magnetic field have a spin-

singlet ground state, while the first excited state in the presence of strong Coulomb

repulsion is a spin triplet. Higher excited states are separated from these two lowest

states by an energy gap, given either by the Coulomb repulsion or the single-particle

confinement. For lateral coupling, the dots are arranged in a plane, at a sufficiently

small distance, say 2a, cf. (6.2)-(6.4), such that the electrons can tunnel between

the dots (for a lowered barrier) and an exchange interaction J between the two spins

is produced. Lateral coupling amongst quantum dots lying in a single plane can be

achieved two different techniques. First by controlling the material system, by having

spatial correlation between adjoining dots that can lead to splitting of eigenstates

within a single dot into symmetric and antisymmetric states. Or secondly by using
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a near-field probe that can induce an electromagnetic coupling between neighboring

QDs. In the absence of tunneling between the dots we still might have direct Coulomb

interaction left between the electrons. However, this has no effect on the spins (qubit)

provided the spin-orbit coupling is sufficiently small, which is the case for s-wave

electrons in III-V semiconductors with unbroken inversion symmetry (this would not

be so for hole-doped systems since the hole has a much stronger spin-orbit coupling

due to its p-wave character). Finally, the vanishing of J in (6.1) or (6.2) can be

exploited for switching by applying a constant homogeneous magnetic field to an

array of quantum dots to tune J to zero (or close to some other desirable value).

Then, for switching J on and off, only a small gate pulse or a small local magnetic

field is needed.

The exchange interaction is not only sensitive to the magnitude of the applied

fields, but also to their direction. An in-plane magnetic field B‖ suppresses J ex-

ponentially; a perpendicular field in laterally coupled dots has the same effect. The

exchange coupling J until both electronic E⊥ orbitals are magnetically compressed

to approximately the same size, i.e. from this point, J decreases weakly, as for iden-

tically sized dots. A perpendicular electric field detunes the single-dot levels, and

thus reduces the exchange coupling; the very same finding was made for for laterally

coupled dots and an in-plane electric field. An in-plane electric field E‖ and different

dot sizes provide another switching mechanism for J .

Physical implementations of qubits using QD are fundamentally limited by the

interaction of the qubits with their environment and the dephasing. These interactions

of the qubits set the maximum time of coherent operation and an upper boundary

for the number of quantum gate operations to be applied on a single qubit; therefore

understanding the origin of decoherence is critical to control or reduce it, in order to

implement quantum logic gates.
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Because of their strong localization in all directions, electrons confined in quan-

tum dots are strongly coupled to longitudinal optical (LO) vibrations of the under-

lying crystal lattice. If the coupling strength exceeds the “continuum width” the

energy of keeping the LO phonons delocalized a continuous Rabi oscillation of the

electron arises, that is, an everlasting emission and absorption of one LO phonon.

As a result, electron-phonon entangled quasi-particles known as polarons form; these

play a substantial role in the rapid decoherence of the spin-based quantum dot qubits.

The decoherence time for an exciton typically ranges from 20ps to 100ps, which is

considerably shorter than the decoherence times of nuclear or electron spin. This is a

problem since gate operations take approximately 40ps to perform. However, imple-

menting ultrafast (femtosecond) optoelectronics may eventually enable us to bypass

this problem. Read-out on the QDs can be achieved by placing the excitation and

probe beam spots on a specific location where a number of qubits with different ex-

citonic frequencies can be accessed. The somewhat randomized distribution of the

QD size and composition allow qubits with different excitation frequencies to exist,

making it easier to identify specific qubits by singling out the different frequencies.
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CHAPTER VII

TWO ELECTRONS IN A RING

The quantum mechanical problem of two electrons confined to motion in a ring of

radius R is described by the following Schrödinger equation

{
− ~

2

2me

1

R2

∂2

∂θ2
1

− ~
2

2me

1

R2

∂2

∂θ2
2

+
e2√

2R2 (1 − cos (θ1 − θ2))

}
Ψ = EΨ. (7.1)

We introduce

θ ≡ θ1 + θ2

2
(7.2)

ϕ ≡ θ1 − θ2

2
. (7.3)

Then

∂

∂θ1

=
1

2

∂

∂θ
+

1

2

∂

∂ϕ
(7.4)

∂

∂θ2

=
1

2

∂

∂θ
− 1

2

∂

∂ϕ
(7.5)

∂2

∂θ2
1

+
∂2

∂θ2
2

=
1

2

∂2

∂θ2
+

1

2

∂2

∂ϕ2
(7.6)

and therefore the original equation reads

{
− ~

2

4me

1

R2

(
∂2

∂θ2
+

∂2

∂ϕ2

)
+

e2√
2R2 (1 − cos 2ϕ)

}
Ψ = EΨ (7.7)

or {
− ~

2

4me

1

R2

(
∂2

∂θ2
+

∂2

∂ϕ2

)
+

e2√
4R2 sin2 ϕ

}
Ψ = EΨ, (7.8)

where Ψ (θ, ϕ) ≡ Ψ (θ1, θ2). Further simplification is the following

{
− ~

2

4me

1

R2

(
∂2

∂θ2
+

∂2

∂ϕ2

)
+

e2

2R |sinϕ|

}
Ψ = EΨ (7.9)

− ~
2

4me

1

R2

∂2Ψ

∂θ2
− ~

2

4me

1

R2

∂2Ψ

∂ϕ2
+

e2Ψ

2R |sinϕ| = EΨ (7.10)
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− ~
2

4me

1

R2
Φ
d2Ψcm

dθ2
− ~

2

4me

1

R2
Ψcm

d2Φ

dϕ2
+

e2ΨcmΦ

2R |sinϕ| = EΨcmΦ (7.11)

After separation of variables Ψ (θ, ϕ) = Ψcm (θ) Φ (ϕ) we obtain

− ~
2

4me

1

R2

1

Ψcm

d2Ψcm

dθ2
− ~

2

4me

1

R2

1

Φ

d2Φ

dϕ2
+

e2

2R |sinϕ| = E. (7.12)

Dividing by Ψcm (θ) Φ (ϕ) yields

− ~
2

4me

1

R2

1

Ψcm

d2Ψcm

dθ2
≡ Ecm (7.13)

where E = Ecm + Erel and

− ~
2

4me

1

R2

1

Φ

d2Φ

dϕ2
+

e2

2R |sinϕ| = Erel. (7.14)

− 1

Ψcm

d2Ψcm

dθ2
= λ ≡ 4meR

2Ecm

~2
(7.15)

Single-valuedness and periodic boundary conditions imply

Ψcm ∼ einθ (7.16)

and

λ = n2, (7.17)

n = 1, 2, 3, ...

Ecm =
n2

~
2

4meR2
. (7.18)

On the other hand

{
− d2

dϕ2
+

g

|sinϕ|

}
Φ (ϕ) = ωΦ (ϕ) , (7.19)

where

g =
2meRe

2

~2
(7.20)
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and

ω =
4meR

2Erel.

~2
(7.21)

Furthermore, since the physical space is 0 ≤ ϕ ≤ π, we may remove the absolute

value sign and write

{
− d2

dϕ2
+

g

sinϕ

}
Φ (ϕ) = ωΦ (ϕ) (7.22)

or

{
− d2

dϕ2
+

g

sinϕ

}
Φk (ϕ) = ωkΦk (ϕ) . (7.23)

Although this equation is not amenable to standard methods, our numerically

obtained solutions reveal that the dependence of the eigenvalue ω on the scaled cou-

pling g is linear and given by (see figure 36 below)

ωk = bk g + k2. (7.24)

The coefficients bk are obtained as slopes of numerically calculated eigenvalues

as a function of g. In turn, the eigenvalues ωk are related to Erel, and therefore Etotal

given by

Etotal = Ecm + Erel =
n2

~
2

4meR2
+

~
2ωk

4meR2
(7.25)

is to a good approximation the total energy of a double excited state of the He atom

for appropriately chosen R upto a term 2/R.

Next we discuss some steps for analytical solution of the eigenvalue equation, the

Riccati form of the equation is

−y′ − y2 +
g

sinϕ
− ω (g) = 0. (7.26)
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Taking derivatives with respect to g yields

−y′g − 2yyg +
1

sinϕ
− b = 0. (7.27)

This equation is first order in yg, that is,

yg (x; g) = e−2
R x y(s;g)ds

{∫ x

dx′e2
R x′ y(s;g)ds

(
1

sinx′
− b

)
+ C1 (g)

}

yg (x; 0) = e−2
R x y(s;0)ds

{∫ x

dx′e2
R x′ y(s;0)ds

(
1

sinx′
− b

)
+ C1 (0)

}

Notice also that

y (x; 0) = ±n

Then

yg (x; 0) =

∫ x

dx′
(

1

sinx′
− b

)
+ C1 (0) e−n2

Similarly

−y′gg − 2y2
g − 2yygg = 0,

meaning

ygg (x; g) = e−2
R x y(s;g)ds

{∫ x

dx′e2
R x′ y(s;g)ds

(
−2y2

g (x′; g)
)

+ C2 (g)

}

or

ygg (x; 0) = −2

∫ x

dx′y2
g (x′; 0) + C2 (g) e−n2

.

Below are given several generations of derivatives curiously suggestive of how

perhaps to find an analytical solution.

−y′gg − 2y2
g − 2yygg = 0

−y′ggg − 6ygygg − 2yyggg = 0
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−y′gggg − 6y2
gg − 8ygyggg − 2yygggg = 0

−y′ggggg − 20yggyggg − 10ygygggg − 2yyggggg = 0

−y′gggggg − 20y2
ggg − 30yggygggg − 12ygyggggg − 2yygggggg = 0

−y′ggggggg − 70ygggygggg − 42yggyggggg − 14ygygggggg − 2yyggggggg = 0

−y′gggggggg − 70y2
gggg − 112ygggyggggg − 56yggygggggg − 16ygyggggggg − 2yygggggggg = 0

−y′ggggggggg−252yggggyggggg−168ygggygggggg−72yggyggggggg−18ygygggggggg−2yyggggggggg = 0.

Finally we solve the eigenvalue Eq. (7.23) numerically using Maple. The bound-

ary conditions are Φk (±π/2) = 0. Figure 36 shows ωk as a function of g for the first

four states k = 1, 2 , 3, and 4.
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Fig. 36. ωk as a function of g for k = 1, 2, 3 and 4.



89

CHAPTER VIII

CONCLUSIONS

Here we summarize our findings:

• We applied the interpolated Bohr model for the CH molecule and show that

such a simple model yet yields quite accurate potential energy curve for the

ground state of CH. This extends the database of molecules for which such an

approach has been successfully applied.

• Using the constrained Bohr model with an effective potential we study four-

atomic system, such as H4, and obtained potential energy curves both for linear

and square atomic configurations. Our work is the first application of this

method for the system of more then three atoms.

• We investigated the accuracy of different methods in calculating the correlation

energy and show that the constrained Bohr model approach yields essentially

the same accuracy as much more simple molecular axis quantization technique.

Therefore, there is no use to go beyond the simple molecular axis quantization

model when we are interested in the correlation energy.

• Using the Bohr model we study H2 molecule in superstrong magnetic fields. We

found that magnetic field increases the binding energy and decreases the bond

length. Also we found that magnetic field results in appearance of new bound

states. Such new states appear only if the field is greater then 5 × 107 G and

hence they can not be obtained in a perturbation theory.

• We consider double coupled quantum dots with two electrons in crossed electric

and magnetic fields. We applied the Heitler–London molecular method to model
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the system and provided a detailed derivation of a general expression for the

electron exchange energy.

• We explore the energy of double excited states of the He atom by considering

a problem of two electrons in a ring.
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APPENDIX A

THE FOCK–DARWIN STATES

The mathematical derivations of (6.4) rely heavily on the Fock–Darwin Hamil-

tonian, which models the motion of a conduction-band electron confined in a 2-

dimensional parabolic potential well in an external magnetic field perpendicular to

the 2-dimensional plane:

HFD =
1

2m

∣∣∣ppp− e

c
AAA
∣∣∣
2

+
1

2M
ω2

0r
2 (r = (x2 + y2)1/2); (A.1)

where the notation follows that introduced in Section 3. The Fock–Darwin Hamil-

tonian HFD and its eigenstates have pleasant mathematical properties (Fock [55],

Darwin [56]) and may be viewed as a 2-dimensional analog of the simple harmonic

oscillator.

From (A.1) and (6.5), we have

H =
1

2m

(
|ppp|2 − 2

e

c
ppp ·AAA+

e2

c2
|AAA|2

)
+

1

2
mω2

0(x
2 + y2)

=
|ppp|2
2m

− 1

2

eB

mc
(−pxy + pyx) +

e2B2

8mc2
(x2 + y2) +

1

2
mω2

0(x
2 + y2)

=
|ppp|2
2m

+
1

2
m

(
ω2

0 +
ω2

c

4

)
(x2 + y2) +

1

2
ωcLz, (A.2)

where

eB

mc
≡ ωc = the cyclotron frequency;

Lz = xpy − ypx = the z-component of the angular momentum, LLL = rrr × ppp.
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Next, from the four independent operators x, y, px and py, we define four new opera-

tors:

a = ε(x− iy) + η(ipx + py);

a+ = ε(x+ iy) + η(−ipx + py);

b = ε(x+ iy) + η(ipx − py);

b+ = ε(x− iy) + η(−ipx − py),





(A.3)

where ε and η are real numbers. Using (the commutation relations)

[x, px] = [y, py] = i~, (A.4)

[x, y] = [x, py] = [y, x] = [y, px] = 0, (A.5)

we can easily show that

[a+, b] = [a, b+] = [a, b] = [a+, b+] = 0, (A.6)

and

[a+, a] = εη[x+ iy, ipx + py] + εη[−ipx + py, x− iy]

= −4εη~, (A.7)

[b+, b] = εη[x− iy, ipx − py] + [−ipx − py, x+ iy]

= −4εη~. (A.8)

Thus, if we choose

η = 1/(4ε~), (A.9)

then 



[a, a+] = [b, b+] = 1;

all other commutators are zero.
(A.10)
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We obtain

p2
x + p2

y = (ipx + py)(−ipx + py)

=

(
a− b+

2η

)(
a+ − b

2η

)
; (A.11)

x2 + y2 = (x+ iy)(x− iy)

=

(
a+ + b

2ε

)(
a+ b+

2ε

)
, (A.12)

and

Lz = xpy − ypx =
1

2
[(x+ iy)(ipx + py) − (x− iy)(ipx − ipy)]

=
1

2

[(
a+ + b

2ε

)(
a− b+

2η

)
−
(
a+ b+

2ε

)(
b− a+

2η

)]
. (A.13)

Define

Ω2 = ω2
0 +

ω2
c

4
. (A.14)

Then

H =
1

2m

1

4η2
(a− b+)(a+ − b) +

1

2
mΩ2 · 1

4ε2
(a+ + b)(a+ b+)

+
1

2
ωc ·

1

8εη
[(a+ + b)(a− b−) − (a+ b+)(b− a+)]

=
1

8mη2
(aa+ − ab− b+a+ + b+b) +

mΩ2

8ε2
(a+a+ a+b+ + ba+ bb+)

+
ωc

16εη
(a+a+

/
ba− a+b+

∖
− bb+ −

/
ab+ aa+ − b+b+ b+a+

∖
). (A.15)

Recall from (A.9) that 1/η = 4ε~. If we further require that

1

8mη2
=
mΩ2

8ε2
=
mΩ2

8
(4η~)2 = 2mΩ2η2

~
2,

i.e.,

η =
1

2
√

~mΩ
, (A.16)
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then from (A.15) we see that cross-terms ab, ab+, a+b, a+b+, etc., cancel out:

H =
~Ω

2
{[aa+ −

/
ab− b+a+

∖
+ b+b] + [a+a+ a+b+

∖
+
/
ba+ bb+]}

+
~ωc

4
[a+a+ aa+

︸ ︷︷ ︸
2a+a+111

−bb+ − b+b︸ ︷︷ ︸
−2b+b−111

]

=
~Ω

2
[2a+a+ 111 + 2b+b+ 111] +

~ωc

2
[a+a− b+b]

= ~

(
Ω +

ωc

2

)(
a+a+

1

2

)
+ ~

(
Ω − ωc

2

)(
b+b+

1

2

)

= ~ω+

[
a+a+

1

2

]
+ ~ω−

[
b+b+

1

2

]
, (A.17)

where

ω± ≡ Ω ± ωc

2
. (A.18)

We can now define the Fock–Darwin states

|n+, n−〉 =
1

[(n+!)(n−!)]1/2
(a+)n+(b+)n−|0, 0〉, (A.19)

for any integers n+ and n−, n+ ≥ 0, n− ≥ 0, where





a = ε(x− iy) + η(ipx + py),

b = ε(x+ iy) + η(ipx − py),
(A.20)

with

η =
1

2
√

~mΩ
, ε =

1

4~η
=

1

4~
· 2
√

~mΩ =
1

2

√
mΩ

~
. (A.21)

From (A.17), (A.18) and (A.19), we have

H|n+, n−〉 =

[
~ω+

(
n+ +

1

2

)
+ ~ω−

(
n− +

1

2

)]
|n+, n−〉, (A.22)

for integers n+ ≥ 0, n− ≥ 0.
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Instead of using x and y, we can also use the complex variable z and its conjugate

z̄:

z = x+ iy, z̄ = x− iy. (A.23)

Then 



∂x =
∂

∂x
=
∂z

∂x

∂

∂z
+
∂z̄

∂x

∂

∂z̄
= ∂z + ∂̄z,

∂y =
∂

∂y
=
∂z

∂y

∂

∂z
+
∂z̄

∂y

∂

∂z̄
= i∂z − i∂̄z,

(A.24)

from where we obtain in turn

∂z =
1

2
(∂x − i∂y), ∂̄z =

1

2
(∂x + i∂y). (A.25)

From (A.19)–(A.25), we thus have





a =
1

2

√
mΩ

~
z̄ +

1

2
√

~mΩ
2~∂z =

1√
2

[
z̄

2ℓ0
+ 2ℓ0∂z

]
,

b =
1

2

√
mΩ

~
z +

1

2
√

~mΩ
2~∂̄z =

1√
2

[
z

2ℓ0
+ 2ℓ0∂̄z

]
,

(A.26)

where ℓ0 ≡ [~/(2mΩ)]1/2.

Theorem .5. The ground state of the Fock–Darwin states are given by

|0, 0〉 =

√
mΩ

π~
e−

mΩ
2~

(x2+y2). (A.27)

Proof. Since

a|0, 0〉 = 0,

we have

|0, 0〉 = c̃e−
mΩ
2~

z̄z, (A.28)

where c is a normalization constant. We also see that (A.28) satisfies

b|0, 0〉 = 0.
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Thus

|0, 0〉 = c̃e−
mΩ
2~

(x2+y2).

The constant of normalization is easily computed to be c̃ = [(mΩ)/(π~)]1/2. The rest

can also be easily verified.
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APPENDIX B

EVALUATION OF THE EXCHANGE ENERGY

The point of view taken by Burkard, Loss and DiVincenzo [50] is to regard the

coupled two quantum dots as a “molecule” obtained by combining two quantum dots

through perturbation with a Fock–Darwin-like ground state as the ground state of

the single electron spin on each dot.

Let us rewrite the overall Hamiltonian in (6.10) of the coupled system as

Horb = H1(ppp1, rrr1) +H2(ppp2, rrr2) + C(rrr1, rrr2) +W (rrr1, rrr2), (B.1)

(ppp1 = (px1 , py1 , 0), rrr1 = (x1, y1), ppp2 = (px2 , py2 , 0), rrr2 = (x2, y2))

H1(ppp1, rrr1) =
1

2m

∣∣∣ppp1 −
e

c
AAA(x1, y1, 0)

∣∣∣
2

+ eEx1 +
mω2

0

2
[(x1 + a)2 + y2

1], (B.2)

H2(ppp2, rrr2) =
1

2m

∣∣∣ppp2 −
e

c
AAA(x2, y2, 0)

∣∣∣
2

+ eEx2 +
mω2

0

2
[(x2 − a)2 + y2

2], (B.3)

C(rrr1, rrr2) =
e2

κ|rrr1 − rrr2|
, same as (6.8)

W (rrr1, rrr2) = W1(x1) +W2(x2), with (B.4)

Wj(xj) ≡
mω2

0

2

[
1

4a2
(x2

j − a2)2 − (xj − a)2

]
, for j = 1, 2. (B.5)

The H1 and H2 given above are not Fock–Darwin Hamiltonians. However, after

simple similarity transformations, they become Fock–Darwin plus a constant.

Lemma .1. Given H1 and H2 as in (B.1) and (B.3), define

H̃1 = e
i
~
( e2BE

2mω2
0c

+ eBa
2c

)y1

H1e
− i

~
( e2BE

2mω2
0c

+ eBa
2c

)y1

,

H̃2 = e
i
~
( e2BE

2mω2
0c

− eBa
2c

)y2

H2e
− i

~
( e2BE

2mω2
0c

− eBa
2c

)y2

.





(B.6)
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Then

H̃j = Hj,FD −
(
− e2E2

2mω2
0

∓ eEa

)
; “−” for j=1, “+” for j = 2, (B.7)

where Hj,FD is a Fock–Darwin Hamiltonian for j = 1, 2 defined by

Hj,FD =
1

2m

∣∣∣pppj −
e

c
AAA(xj∓, yj, 0)

∣∣∣
2

+
mω2

0

2
(x2

j∓ + y2
j ); (B.8)

where

xj∓ ≡ xj − (−1)ja+
eE

mω2
0

, (B.9)

and “−” for j = 1 and “+” for j = 2.

Proof. For j = 1, the similarity transformation (B.6)1 effects a translation of py1 , the

y-component of ppp1, as follows

py1 −→ py1 +
e2BE

2mω2
0c

+
eBa

2c
, (B.10)

while the remaining variables x1, y1 and px1 are left unchanged. Thus from (B.6)

H̃1 =
1

2m

[(
px1 +

eBy1

2c

)2

+

(
py1 −

e2BE

2mω2
0c

+
eBa

2c
− eBx1

2c

)2
]

+
mω2

0

2

[(
x1 − a+

eE

mω2
0

)2

+ y2
1

]
− eE

(
eE

2mω2
0

− a

)
. (B.11)

Define

x1 = x1 + a+
eE

mω2
0

(B.12)

as in (B.9). Then

H̃1 =
1

2m

∣∣∣⇀p 1 −
e

c

⇀

A(x1−, y1, 0)
∣∣∣
2

+
mω2

0

2
(x2

1− + y2
1) −

e2E2

2mω2
0

+ eEa (B.13)

≡ H1,FD +

(
eEa− e2E2

2mω2
0

)
, (B.14)

where H1,FD is a Fock–Darwin Hamiltonian (of variables ppp1, x1− and y1). H2 and H̃2

can be similarly treated.
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We thus have

H1 = e
− i

~
( e2BE

2mω2
0c

− eBa
2c

)y1

H1,FDe
i
~
( e2BE

2mω2
0c

− eBa
2c

)y1

+

(
eEa− e2E2

2mω2
0

)
, (B.15)

whose eigenstates are

e
− i

~
( e2BE

2mω2
0c

− eBa
2c

)y1|n(1)
+ , n

(1)
− 〉, cf. (A.22), (B.16)

with eigenvalues

ε(n
(1)
+ n

(1)
− ) ≡ ~ω+

(
n

(1)
+ +

1

2

)
+ ~ω−

(
n

(1)
− +

1

2

)
+

(
eEa− eE2

2mω2
0

)
, (B.17)

(
ωω ≡

√

ω2
0 +

(
eB

2mc

)2

± eB

2mc

)
. (B.18)

Similarly, H2 and H2,FD can be obtained from (B.3), (B.14) and (B.15) by simply

replacing the index 1 by 2 and x− by

x+ ≡ x− a+
eE

mω2
0

. (B.19)

Since the ground state |0, 0〉 of the Fock–Darwin Hamiltonian, HFD, is (cf. (A.27))

Φ0(x, y) =

√
mΩ

π~
e−

mΩ
2~

(x2+y2),


Ω ≡

√

ω2
0 +

(
eB

2mc

)2

 ,

therefore, the ground state of the Hamiltonians H1 and H2 are, respectively,

Φ
(1)
0 (x, y) = e

− i
~
( e2BE

2mω2
0c

+ eBa
2c

)y

√
mΩ

π~
e−

mΩ
2~

(x2
−

+y2), (B.20)

Φ
(2)
0 (x, y) = e

− i
~
( e2BE

2mω2
0c

− eBa
2c

)y

√
mΩ

π~
e−

mΩ
2~

(x2
++y2). (B.21)

We are now in a position to apply the well known Heitler–London method in

quantum molecular chemistry to model the coupled system. The method utilizes
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“quantum dot” orbitals:

a(j) ≡ Φ
(1)
0 (xj, yj), j = 1, 2,

b(j) ≡ Φ
(2)
0 (xj, yj), j = 1, 2,





(B.22)

from which, further define

|Ψ±〉 = ν[a(1)b(2) ± a(2)b(1)] (B.23)

where ν is the normalization factor. Note that |Ψ+〉 is the singlet state, while |Ψ−〉

is the triplet state. Note that our notation in (B.21) and (B.23) follows from the

convention used by Slater [10, Chap. 3].

Lemma .2. We have the overlap integral

S ≡ 〈Φ(2)
0 |Φ(1)

0 〉 = e−bd2−d2(b− 1
b
), (B.24)

where

b ≡ Ω

ω0

, d = (mω0/~)1/2a. (B.25)

Consequently, the normalized singlet and triplet states are

|Ψ±〉 =
1√

2(1 ± S2)
[a(1)b(2) ± a(2)b(1)], (B.26)

satisfying

〈Ψ+|Ψ+〉 = 1, 〈Ψ−|Ψ−〉 = 1

and

〈Ψ+|Ψ−〉 = 0.
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Proof. We evaluate (B.24):

S ≡
∞∫

−∞

∞∫

−∞

Φ̄
(2)
0 (x, y)Φ

(1)
0 (x, y)dxdy

=

∞∫

−∞

∞∫

−∞

e
− i

~
( e2BE

2mω2
0c

+ eBa
2C

− e2BE

2mω2
0c

+ eBa
2c

)y · mΩ

π~
· e−

mΩ
~

[(x+ eE

mω2
0
)2+a2+y2]

dxdy

= e−
mΩ

~
a2− e2B2a2

4~mΩc2

(
mΩ

π~

) ∞∫

−∞

e
−mΩ

~
(x+ eE

mω2
0
)2

dx

︸ ︷︷ ︸√
π

(mΩ/~)

·
∞∫

−∞

e−
mΩ

~
(y+i eBa

2mΩc
)2dy

︸ ︷︷ ︸√
π

(mΩ/~)

= e−
mΩ

~
a2− e2B2a2

4~mΩc2 = e−bd2−d2(b− 1
2
).

The rest follows from straightforward calculations.
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The exchange energy, by (6.12), now can be written as

J ≡ 〈Ψ−|Horb|Ψ−〉 − 〈Ψ+|Horb|Ψ+〉

=
1

2(1 − S2)

{
〈a(1)b(2)|Horb|a(1)b(2)〉 + 〈a(2)b(1)|Horb|a(2)b(1)〉

− 〈a(1)b(2)|Horb|a(2)b(1)〉 − 〈a(2)b(1)|Horb|a(1)b(2)〉
}

− 1

2(1 + S2)

{
〈a(1)b(2)|Horb|a(1)b(2)〉 + 〈a(2)b(1)|Horb|a(2)b(1)〉

+ 〈a(1)b(2)|Horb|a(2)b(1)〉 + 〈a(2)b(1)|Horb|a(1)b(2)〉
}

= · · · (combining the two parentheses, using (B.1) and expanding)

=
S2

1 − S4

{[
〈a(1)|H1|a(1)〉 + 〈a(2)|H2|a(2)〉 + 〈b(1)|H1|b(1)〉 + 〈a(2)|H2|a(2)〉

]

− 1

S2

[
〈a(1)|H1|b(1)〉〈b(2)|a(2)〉 + 〈b(2)|H2|a(2)〉〈a(1)|b(1)〉

+ 〈b(1)|H1|a(1)〉〈a(2)|b(2)〉 + 〈a(2)|H2|b(2)〉〈b(1)|a(1)〉
]

+ [〈a(1)b(2)|C|a(1)b(2)〉 + 〈a(2)b(1)|C|a(2)b(1)〉]

− 1

S2

[
〈a(1)b(2)|C|a(2)b(1)〉 + 〈a(2)b(1)|C|a(1)b(2)〉

]

+
[
〈a(1)b(2)|W |a(1)b(2)〉 + 〈a(2)b(1)|W |a(2)b(1)〉

− 1

S2

(
〈a(1)b(2)|W |a(2)b(1)〉 + 〈a(2)b(1)|W |a(1)b(2)〉

)]}
(B.27)

≡ S2

1 − S4

{
B1 −

1

S2
B2 + B3 −

1

S2
B4 + B5

}
, (B.28)

where each Bj, j = 1, 2, 3, 4 and 5, represents a square bracket inside the curly paren-

theses in (B.27) in the correct sequential order. We evaluate these Bj one by one

below.

Lemma .3. We have

B1 −
1

S2
B2 = 4ma2ω2

0. (B.29)
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Proof. Note the following pairs of cancellations

〈a(1)|H1|a(1)〉 − 〈b(1)|H1|a(1)〉〈b(2)|a(2)〉
S2

= 0, (B.30)

〈b(2)|H2|b(2)〉 − 〈a(2)|H2|b(2)〉〈b(1)|a(1)〉
S2

= 0, (B.31)

because

H1|a(1)〉 = E0|a(1)〉

as |a(1)〉 is the ground state of H1 and E0 is the ground state energy (cf. (B.17) with

n
(1)
+ = n

(1)
− = 0 therein) and so

Left Hand Side of (B.30) = E0〈a(1)|a(1)〉 − E0〈b(1)|a(1)〉〈b(2)|a(2)〉
S2

= E0 −
E0 · S · S

S2
= 0.

Similarly,

H2|b(2)〉 = E0|b(2)〉,

so (B.31) also holds.

For the two remaining terms in B1, we have

〈b(1)|H1|b(1)〉 + 〈a(2)|H2|a(2)〉

= 2〈b(1)|H1|b(1)〉 (B.32)

and by translation along the x2-axis.

2〈b(1)|H1|b(1)〉 = 2〈b(2)|e i
~
[( eBa

c
)y2−2apx2)]H2e

− i
~
[( eBa

c
)y2−2apx2 ]|b(2)〉.
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For H2(ppp2, rrr2) in (B.3), we have

H2(px2 , py2 , x2, y2) =
1

2m

[(
px2 +

eB

2c
y2

)2

+

(
py2 −

eBa

2c
+

e2BE

2mcω2
0

− eB

2c
x2+

)2
]

+
mω2

0

2
(x2

2+ + y2
2) − eE

(
eE

2mω2
0

− a

)
,

so

e
i
~
[( eBa

c
)y2−2apx2 ]H2(px2 , py2 , x2, y2)e

− i
~
[( eBa

c
)y2−2apx2 ]

= H2

(
px2 , py2 −

eBa

c
, x2 − 2a, y2

)

= · · · (substituting and simplifying)

= H2(px2 , py2 , x2, y2) +
mω2

0

2
(4a2 − 4ax2+).

Therefore

(B.32) = 2〈b(1)|H2|b(1)〉 = 2[〈b(2)|H2|b(2)〉 − 2amω2
0〈b(2)|x2+|b(2)〉 + 2ma2ω2

0]

p p

=0 because the

integrand is an odd

function of x2+

= 2(E0 + 2ma2ω2
0). (B.33)

The remaining terms in − 1
S2 B2 are

− 1

S2
[〈a(1)|H1|b(1)〉S + 〈b(2)|H2|a(2)〉S]

= − S

S2
[〈E0a(1)|b(1)〉 + 〈E0b(2)|a(2)〉]

= − S

S2
· 2E0S = −2E0. (B.34)

By adding (B.33) and (B.34), we obtain (B.29).
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Lemma .4. We have

B3 −
1

S2
B4 = 2~ω0

[
c
√
b e−bd2

I0(bd
2) − c

√
b ed2(b− 1

b
)I0

(
d2

(
b− 1

b

))]
. (B.35)

Proof. Note that by the symmetry C(rrr1, rrr2) = C(rrr2, rrr1), we have

B3 = 2〈a(1)b(2)|C|a(1)b(2)〉

=

∫

R2

∫

R2

Φ
(1)
0 (x1, y1) Φ

(2)
0 (x2, y2)

e2

κ|⇀r 1 −
⇀
r 2|

Φ
(1)
0 (x1, y1)Φ

(2)
0 (x2, y2)dx1dy1dx2dy2

=

(
mΩ

π~

)2
e2

κ

∫

R2

∫

R2

1

|⇀r 1 −
⇀
r 2|

e
−mΩ

~
[(x1+a+ eE

mω2
0
)2+y2

1+(x2−a+ eE

mω2
0
)2+y2

2 ]
dx1dy1dx2dy2.

(B.36)

Introduce the center of mass coordinates:





⇀

R =
1

2
(
⇀
r 1 +

⇀
r 2) (center of mass)

⇀
r =

⇀
r 1 −

⇀
r 2 (relative coordinates)

(B.37)





X =
1

2
(x1 + x2), Y =

1

2
(y1 + y2); X = R cos Φ, Y = R sin Φ,

x =
1

2
(x1 − x2), y =

1

2
(y1 − y2); x = r cosφ, y = r sinφ.

(B.38)

This change of coordinates has Jacobian equal to 1. Then the integral in (B.36)
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becomes

(B.36) =

(
mΩe

π~

)2
1

κ

∫

R2

∫

R2

1

r

e
−mΩ

~
[X2+xX+x2

4
+(a+ eE

mω2
0
)(2X−x)+(a+ eE

mω2
0
)2

+X2−xX+x2

4
+( eE

mω2
0
−a)(2X−x)+( eE

mω2
0
−a)2+Y 2+yY + y2

4
+Y 2−yY + y2

4
]
rdrdφRdRdΦ

=

(
mΩe

π~

)2
1

κ

∫ 2π

0

dφ

∫ ∞

0

dr

∫ 2π

0

dΦ

∫ ∞

0

dR ·R

×
{
e
−mΩ

~
[2R2+ r2

2
+2(a2+( eE

mω2
0
)2)+2ax+ 4eE

mω2
0

X2]
}

=

(
mΩe

π~

)2
1

κ
e
− 2mΩ

~
(a2+ e2E2

m2ω4
0
)
∫ 2π

0

dΦ

∫ ∞

0

dR R e
−mΩ

~
[2R2+ 4cE

mω2
0

X]

×
∫ 2π

0

∫ ∞

0

drdφ · e−mΩ
~

[ r2

2
+2ar cos φ]

=

(
mΩe

π~

)2
1

κ
e
− 2mΩ

~
(a2+ e2E2

m2ω4
0
)





∞∫

−∞

e
−mΩ

~
[2X2+ 4eE

mω2
0

X]




∞∫

−∞

e−
2mΩ

~
Y 2

dY


 dX





×





∫ ∞

0

e−
mΩ
2~

r2

[∫ 2π

0

e−
2mΩa

~
r cos φ dφ

]

︸ ︷︷ ︸
(J1)

dr




. (B.39)

We evaluate the integral (J1) above by using the expansion

e−( 2mΩa
~

r) cos φ =
∞∑

m=−∞
(−1)mIm

(
2mΩa

~
r

)
eimφ

= I0

(
2mΩa

~
r

)
+ 2

∞∑

m=1

Im

(
2mΩa

~
r

)
cos(mφ)

(cf. Abramowitz and Stegun [57, p. 376, Formula 9.6.34])
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(J1) =

∫ 2π

0

{
I0

(
2mΩa

~
r

)
+ 2

∞∑

m=1

Im

(
2mΩa

~
r

)
cosmφ

}
dφ

= 2πI0

(
2mΩa

~
r

)
.

Substituting (J1) into (B.39) above and continuing, we obtain

(B.36) =

(
mΩe

π~

)2
1

κ
e
− 2mΩ

~
(a2+ e2E2

m2ω4
0
) · e

2mΩ
~

e2E2

m2ω4
0 ·

∞∫

−∞

e
− 2mΩ

~
(X+ eE

mω2
0
)2

dX

︸ ︷︷ ︸
( π~

2mΩ)
1/2

·

·
∞∫

−∞

e−
2mΩ

~
Y 2

dY

︸ ︷︷ ︸
( π~

2mΩ)
1/2

·2π
∫ ∞

0

e−
mΩ
2~

r2

I0

(
2mΩa

~
r

)
dr

︸ ︷︷ ︸
(J2)

.

To evaluate the integral (J2), we use

∫ ∞

0

e−ax2

Iν(bx)dx =
1

2

√
π

a
e

b2

8a I 1
2
ν

(
b2

8a

)
(for Re ν > −1, Re a > 0)

(cf. Abramowitz and Stegun [57, p. 487, Formula 11.4.31]).

Then

(J2) =
1

2

√
2~π

mΩ
e

mΩa2

~ I0

(
mΩa2

~

)
.

Therefore, we have arrived at

B3 = 2〈a(1)b(2)|C|a(1)b(2)〉 = 2

(
πmΩ

2~

)1/2
e2

κ
e−

mΩa2

~ I0

(
mΩa2

~

)

= 2~ω0c
√
b e−bd2

I0(bd
2);

(
with c =

e2

κ

1

~ω0

√
πmω0

2~
, cf. (6.9)

)
. (B.40)

Next, we proceed to evaluate integral in B4:

B4 = 〈a(1)b(2)|C|a(2)b(1)〉 + 〈a(2)b(1)|C|a(1)b(2)〉

= 2 Re〈a(1)b(2)|C|a(2)b(1)〉

Similarly to (B.36)–(B.39), using the center-of-mass coordinates (B.37) and (B.38),
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this may be written

B4 = 2 Re

(
mΩe

π~

)2
1

κ

2π∫

0

2π∫

0

∞∫

0

∞∫

0

1

r
exp

{
i
eBa

~c
y − mΩ

~

[(
2X + x

2

)2

+

(
2X − x

2

)2

+2a2 +

(
2Y + y

2

)2

+

(
2Y − y

2

)2
]}

rdrRdR · dφdΦ

= 2 Re

(
mΩe

π~

)2
1

κ
e−

2mΩa2

~

2π∫

0

2π∫

0

∞∫

0

∞∫

0

e



ieBa
~c

y−mΩ
~

»

2X2+2Y 2+x2

2
+ y2

2

–ff

drR dR dφ dΦ

= 2 Re

(
mΩe

φ~

)2
1

κ
e−

2mΩa2

~

∞∫

−∞

e−
2mΩ

~
X2

dX ·
∫ ∞

−∞
e−

2mΩ
~

Y 2

dY

·
∫ ∞

0

e−
mΩ
2~

r2

[∫ 2π

0

e
ieBa

~c
r sin φdφ

]

︸ ︷︷ ︸
(J3)

dr

= 2 Re

(
mΩe

π~

)2
1

κ
e−

2mΩa2

~ ·
(

π~

2mΩ

)1/2

·
(

π~

2mΩ

)1/2 ∫ ∞

0

e−
mΩ
2~

r2

(J3)dr

︸ ︷︷ ︸
(J4)

,

where

(J3) =

∫ 2π

0

e
ieBa

~c
r sin φdφ = J0

(
eBa

~c
r

)
· 2π

(cf. Abramowitz and Stegun [57, p. 360, Formula (9.1.18)])

and

(J4) = 2π

∫ ∞

0

e−
mΩ
2~

r2

J0

(
eBa

~c
r

)
dr = 2π

√
~π

2mΩ
e−( eBa

~c
)2 ~

4mΩ · I0
((

eBa

~c

)2
~

4mΩ

)

(cf. Gradshteyn and Ryzhik [58, p. 732, Formula (6.618(1))]).
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Therefore, we have arrived at

B4 = 2 Re〈a(1)b(2)|C|a(2)b(1)〉

= 2 Re

(
mΩ

~

)1/2√
π

2

e2

κ
e−

2mΩ
~

a2− e2B2a2

4~c2mΩ I0

(
e2B2a2

4~c2mΩ

)

= 2~ω0c
√
b e−2bd2

e−d2(b− 1
b
)I0

(
d2

(
b− 1

b

))
.

(B.41)

Using S in (B.24), we obtain from (B.40) and (B.41) that B3 − (1/S2)B4 is indeed

equal to (B.35).

Finally, we evaluate B5.

Lemma .5. We have

B5 = −4mω2
0a

2 + 2 ·
(
mω2

0

2

)[
3~

2mΩ
+ 3

(
eE

mω2
0

)2

+
3

2
a2

]
. (B.42)

Proof. First, we want to show that

〈a(1)b(2)|W |a(1)b(2)〉 + 〈a(2)b(1)|W |a(2)b(1)〉

= 2〈a(1)b(2)|W |a(1)b(2)〉 − 4mω2
0a

2. (B.43)

The first term in B5 (and on the left hand side of (B.43)) satisfies

〈a(1)b(2)|W |a(1)b(2)〉 = 〈a(1)|W1|a(1)〉 + 〈b(2)|W2|b(2)〉 (see (B.4), (B.5))

= 〈b(1)|e i
~
( eBa

c
y1−2apx1 )W1e

− i
~
( eBa

c
y1−2apx1 )|b(1)〉

+ 〈a(2)|e− i
~
( eBa

c
y2−2apx2)W2e

i
~
( eBa

c
y2−2apx2)|a(2)〉. (B.44)

But

W1(x) =
mω2

0

2

[
1

4a2
(x2 − a2)2 − (x+ a)2

]
,
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so

e
i
~
( eBa

c
y1−2apx1)W1(x1)e

− i
~
( eBa

c
y1−2apx1 ) = W1(x1 − 2a)

=
mω2

0

2

[
1

4a2
((x1 − 2a)2 − a2)2 − (x1 − 2a+ a)2

]

= · · · (expanding and regrouping terms)

= W1(x1) +
mω2

0

2

[
4ax1 −

2

a
(x1 − a)3

]
. (B.45)

Similarly, for W2 given in (B.5),

e−
i
~
( eBa

c
y2−2apx2 )W2(x2)e

i
~
( eBa

c
y2−2apx2 ) = W2(x2 + 2a)

= W2(x2) +
mω2

0

2

[
−4ax2 +

2

a
(x2 + a)3

]
. (B.46)

Thus, continuing from (B.44) using (B.45) and (B.46), we have

(B.44) = 〈b(1)|W1|b(1)〉 + 〈b(1)|mω
2
0

2

[
4ax1 −

2

a
(x1 − a)3

]
|b(1)〉

+ 〈a(2)|W2|a(2)〉 + 〈a(2)|mω
2
0

2

[
−4ax2 +

2

a
(x2 + a)3

]
|a(2)〉

= 〈b(1)a(2)|W |b(1)a(2)〉 + 2mω2
0a[〈b(1)|x1|b(1)〉 − 〈a(2)|x2|a(2)〉]

+
mω2

0

a
[〈a(2)|(x2 + a)3|a(2)〉 − 〈b(1)|(x1 − a)3|b(1)〉]

= 〈b(1)a(2)|W |b(1)a(2)〉 + 2mω2
0a

[
〈b(1)|(x1)+ + a− eE

mω2
0

|b(1)〉
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−〈a(2)|(x2)− − a− eE

mω2
0

|a(2)〉
]

+
mω2

0

a

[
〈a(2)|

(
(x2)− − eE

mω2
0

)3

|a(2)〉 − 〈b(1)|
(

(x1)+ − eE

mω2
0

)3

|b(1)〉
]

(where, recall that x+ = x− a+
eE

mω2
0

and x− = x+ a+
eE

mω2
0

)

= 〈b(1)a(2)|W |b(1)a(2)〉 + 4mω2
0a

2

+
mω2

0

a

[
〈a(2)|(x2)

3
− − 3eE

mω2
0

(x2)
2
− + 3

(
eE

mω2
0

)2

(x2)− −
(
eE

mω0

)3

|a(2)〉

−〈b(1)|(x1)
3
+ − 3

eE

mω2
0

(x1)
2
+ + 3

(
eE

mω2
0

)2

(x1)+ −
(
eE

mω0

)3

|b(1)〉
]

= 〈b(1)a(2)|W |b(1)a(2)〉 + 4mω2
0a

2. (B.47)

By (B.44) and (B.47), we have confirmed (B.43). So our objective now is to

evaluate

〈a(1)b(2)|W |a(1)b(2)〉:

〈a(1)b(2)|W |a(1)b(2)〉 = 〈a(1)|W1|a(1)〉 + 〈b(2)|W2|b(2)〉; (B.48)

〈a(1)|W1|a(1)〉 =
mΩ

π~

∫ ∞

−∞

∫ ∞

−∞
e
−mΩ

~
[(x1+a+ eE

mω2
0
)2+y2

1 ]·

· mω
2
0

2

[
1

4a2
(x2

1 − a2)2 − (x1 + a)2

]
dx1dy1 ≡ f(a);

(B.49)

〈b(2)|W2|b(2)〉 =
mΩ

π~

∞∫

−∞

∞∫

−∞

e
−mΩ

~
[(x2−a+ eE

mω2
0
)2+y2

2 ]·

· mω
2
0

2

[
1

4a2
(x2

2 − a2)2 − (x2 − a)2

]
dx2dy2. (B.50)

By comparing (B.49) and (B.50), we see that if the outcome of (B.49) is f(a) (with all

the parameters other than a being fixed), then the outcome of (B.50) will be f(−a).
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Similarly,

〈a(1)|W1|b(1)〉 =
mΩ

π~

∞∫

−∞

∞∫

−∞

e
i
~

eBa
c

y1e
−mΩ

~
[(x1+ eE

mω2
0
)2+a2+y2

1 ]·

· mω
2
0

2

[
1

4a2
(x2

1 − a2)2 − (x1 + a)2

]
dx1dy1 ≡ g(a), (B.51)

then

〈b(2)|W2|a(2)〉 =
mΩ

π~

∞∫

−∞

∞∫

−∞

e−
i
~

eBa
c

y2e
−mΩ

~
[(x2+ eE

mω2
0
)2+a2+y2

2 ]·

· mω
2
0

2

[
1

4a2
(x2

2 − a2)2 − (x2 − a)2

]
dx2dy2 = g(−a). (B.52)

By translating x 7→ x− a− eE
mω2

0
, we have

〈a(1)|W1|a(1)〉 = (B.49) =
mΩ

π~




∞∫

−∞

e−
mΩ

~
y2

dy






∞∫

−∞

e−
mΩ

~
x2

W1

(
x− a− eE

mω2
0

)
dx


 .

(B.53)

Here

W1

(
x− a− eE

mω2
0

)
= W1(x− a− β)

(
β ≡ eE

mω2
0

)
(B.54)

=
mω2

0

2

{
1

4a2
[(x− a− β)2 − a2]2 − (x− β)2

}

=
mω2

0

2

[
1

4a2
(x− β)4 − 1

a
(x− β)3

]

=
mω2

0

2

[
1

4a2
x4 −

(
β

a2
+

1

a

)
x3 +

(
3

2

β2

a2
+

3β

a

)
x2

−
(
β3

a2
+

3β2

a

)
x+

(
β4

4a2
+
β3

a

)]
. (B.55)
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Recall the formulas for Gaussian integrals

∞∫

−∞

x2ne−αx2

dx = −
(
∂

∂α

)n
∞∫

−∞

e−αx2

dx =

(
− ∂

∂α

)n√
π

α

=

[
n∏

k=1

(
1

2
+ k − 1

)](
1

αn

√
π

α

)
, for n = 1, 2, . . . , (B.56)

∞∫

−∞

x2n+1e−αx2

dx = 0, for n = 0, 1, 2, . . . , (B.57)

from (B.53), (B.55)–(B.57) we obtain

〈a(1)|W1|a(1)〉 =
mΩ

π~

(
π~

mΩ

)1/2(
mω2

0

2

)

×
[

1

4a2

∂2

∂α2
−
(

3β2

2a2
+

3β

a

)
∂

∂α
+

(
β4

4a2
+
β3

a

)](√
π

α

)

(where α ≡ mΩ/~)

=
mΩ

π~

(
π~

mΩ

)1/2
mω2

0

2

(
π~

mΩ

)1/2

×
[

1

4a2

3~
2

4m2Ω2
+

1

2

(
3β2

2a2
+

3β

a

)
~

mΩ
+

β4

4a2
+
β3

a

]

=
mω2

0

2

[
3~

2

16m2Ω2a2
+

(
3β2

4a2
+

3β

2a

)
~

mΩ
+

β4

4a2
+
β3

a

]

= f(a); cf. (B.49).

Then 〈b(2)|W2|b(2)〉 = f(−a) and so from (B.48), we obtain

〈a(1)b(2)|W |a(2)b(1)〉 =
mω2

0

2

[
3~

2

8m2Ω2a2
+

3β2
~

2a2mΩ
+

β4

2a2

]
. (B.58)
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Next, repeat similar procedures,

(B.51) =
mΩ

π~
e−

mΩ
~

a2




∞∫

−∞

e
i
~

eBa
c

y−mΩ
~

y2

dy






∞∫

−∞

e−
mΩ

~
x2

W1(x− β)dx




=
mΩ

π~
e−

mΩ
~

a2




∞∫

−∞

e−
mΩ

~
(y−i eBa

2mΩc
)2−mΩ

~

e2B2a2

4m2Ω2c2 dy




·
∞∫

−∞

e−
mΩ

~
x2 · mω

2
0

2

[
1

4a2
(x− β + a)4 − 1

a
(x− β + a)3

]
dx

=

(
mΩ

π~

)
e−

mΩ
~

a2− e2B2a2

4~mΩc2

(
π~

mΩ

)1/2

·
(
π~

mΩ

)1/2

· mω
2
0

2
·

{
3~

2

16m2Ω2a2
+

[
3(β − a)2

4a2
+

3(β − a)

2a

]
~

mΩ
+

(β − a)4

4a2
+

(β − a)3

a

}
= g(a).

(B.59)

Therefore,

〈a(1)b(2)|W |a(2)b(1)〉 = 〈a(1)|W1|b(1)〉〈b(2)|a(2)〉 + 〈a(1)|b(1)〉 · 〈b(2)|W2|a(2)〉

= S[〈a(1)|W1|b(1)〉 + 〈b(2)|W2|a(2)〉]

= S[g(a) + g(−a)] (by (B.52))

= S · e−a2

~
(mΩ+ e2B2

4mΩc2
)mω

2
0

2

[
3~

2

8m2Ω2a2
+

(
3β2

2a2
+

3

2
− 3

)
~

mΩ

+
β4

2a2
+ 3β2 +

a2

2
− 6β2 − 2a2

]
(by (B.58) and (B.52)).

But the factor e−
a2

~
(mΩ+ e2B2

4mΩc2
) behind S is just S itself by (B.24). Thus

1

S2
〈a(1)b(2)|W |a(2)b(1)〉 =

mω2
0

2

[
3~

2

8m2Ω2a2
+

3

2

(
β2

a2
− 1

)
~

mΩ
+

β4

2a2
− 3β2 − 3

2
a2

]
.

(B.60)
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Summarizing (B.43), (B.58) and (B.60), we have

B5 = 2〈a(1)b(2)|W |a(1)b(2)〉 − 4mω2
0a

2

− 2 Re · 1

S2
〈a(1)b(2)|W |a(2)b(1)〉

= −4mω2
0a

2 + 2 ·
(
mω2

0

2

)(
3~

2mΩ
+ 3β2 +

3

2
a2

)
.

This is (B.42).

We can now combine all the preceding lemmas and finally obtain the following.

Theorem .6. The exchange energy is given by

J = 〈Ψ−|Horb|Ψ−〉 − 〈Ψ+|Horb|Ψ+〉

= (6.4).

Proof. We only need note that with S given in (B.24), we have

S2

1 − S4
=

1

S−2 − S2
=

1

2 sinh(2d2(2b− 1
b
))
.

Thus, the coefficient outside the parentheses in (B.28) is determined as above. We

now collect all the terms in (B.29), (B.35), and (B.42), noting the cancellation of the

terms 4ma2ω2
0 and −4ma2ω2

0 in (B.28) and (B.42), and then simplify (just a little).

We then obtain (6.4).
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