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Abstract

Background: In recent years, a number of serious disease outbreaks caused by viruses and viroids on greenhouse
tomatoes in North America have resulted in significant economic losses to growers. The objectives of this study
were to evaluate the effectiveness of commercial disinfectants against mechanical transmission of these pathogens,
and to select disinfectants with broad spectrum reactivity to control general virus and viroid diseases in greenhouse
tomato production.

Methods: A total of 16 disinfectants were evaluated against Pepino mosaic virus (PepMV), Potato spindle tuber viroid
(PSTVd), Tomato mosaic virus (ToMV), and Tobacco mosaic virus (TMV). The efficacy of each disinfectant to deactivate
the pathogen’s infectivity was evaluated in replicate experiments from at least three independent experiments.
Any infectivity that remained in the treated solutions was assessed through bioassays on susceptible tomato plants
through mechanical inoculation using inocula that had been exposed with the individual disinfectant for three
short time periods (0–10 sec, 30 sec and 60 sec). A positive infection on the inoculated plant was determined
through symptom observation and confirmed with enzyme-linked immunosorbent assay (PepMV, ToMV, and TMV)
and real-time reverse transcription-PCR (PSTVd). Experimental data were analyzed using Logistic regression and the
Bayesian methodology.

Results: Statistical analyses using logistic regression and the Bayesian methodology indicated that two disinfectants
(2% Virkon S and 10% Clorox regular bleach) were the most effective to prevent transmission of PepMV, PSTVd,
ToMV, and TMV from mechanical inoculation. Lysol all-purpose cleaner (50%) and nonfat dry milk (20%) were also
effective against ToMV and TMV, but with only partial effects for PepMV and PSTVd.

Conclusion: With the broad spectrum efficacy against three common viruses and a viroid, several disinfectants,
including 2% Virkon S, 10% Clorox regular bleach and 20% nonfat dry milk, are recommend to greenhouse facilities
for consideration to prevent general virus and viroid infection on tomato plants.

Keywords: Pepino mosaic virus, Tomato mosaic virus, Tobacco mosaic virus, Potato spindle tuber viroid, Disinfectant,
Mechanical transmission, Greenhouse tomato
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Background
Tomato (Solanum lycopersicum L.) is one of the world’s
most economically important vegetables. According to
the FAO statistics [1], a total of 162 million tons of
tomatoes were produced worldwide in 2012. The top
tomato producing countries are China, India, USA, and
Turkey. Nearly 40% of fresh tomatoes sold in the U.S.
supermarkets are produced in greenhouses [2]. Intensive
crop manipulations in greenhouse tomato productions,
such as grafting, bumblebee pollination, intercropping and
deleafing, could lead to disease outbreaks from a number
of mechanical transmitted viruses and viroids [3,4].
In the last decade, one of the most widespread viruses in

greenhouse tomato productions in Europe and North
America has been Pepino mosaic virus (PepMV), in the
genus Potexvirus and family Alphaflexiviridae [5,6]. PepMV
was discovered on pepino (Solanum muricatum) from Peru
in 1980 [7]. It was first reported to infect greenhouse
tomatoes in the Netherlands in 2000 [8] and has be-
come endemic in Europe [9-15], Americas [16-21], and
beyond [22-24].
In recent years, viroid disease outbreaks on tomatoes

have been reported frequently both in Europe [25,26]
and North America [4,27-31]. These viroids include
Potato spindle tuber viroid (PSTVd), Tomato chlorotic
dwarf viroid (TCDVd), Mexican papita viroid (MPVd),
Citrus exocortis viroid (CEVd), Columnea latent viroid
(CLVd), and Tomato apical stunt viroid (TASVd). Symp-
toms incited by these pospiviroids on tomatoes include
plant stunting, leaf chlorosis and necrosis, with smaller
size fruits to no fruit at all.
In addition to the endemic PepMV and the emerging

pospiviroids, two tobamoviruses in the family Virgaviri-
dae, Tomato mosaic virus (ToMV) and Tobacco mosaic
virus (TMV), are frequently observed in greenhouse to-
matoes [3].
Grafting is a common practice in greenhouse tomato

seedling production. Contaminated tomato seeds used as
scion and/or rootstock for grafting could also be an im-
portant source of initial virus inoculum [20,32]. Once a
virus is established inside a greenhouse, rapid spread of
the disease could occur due to many hands-on activities
in greenhouse tomato production, and the nature of
mechanical transmission of these concerned viruses and
viroids [4,6]. Therefore, efficient and effective sanitation
and disinfection protocols should be implemented to
prevent or minimize the spread of these viruses and
viroids in greenhouse tomato productions.
In recent years, several studies conducted to identify dis-

infectants that reduce the infectivity of plant viruses and
viroids have been reported for ornamental plants [33-35],
cucurbits [36], and greenhouse tomatoes [37,38]. Several
common disinfectants (i.e., bleach and nonfat dry milk)
have been shown to be effective in preventing the spread

of certain viruses. However, currently there is still no clear
understanding as to the effectiveness of disinfectants
against a range of viruses and viroids encountered in
greenhouse tomato productions. In this study, we investi-
gated the efficacy of 16 disinfectants against three viruses
(TMV, ToMV, and PepMV) and one viroid (PSTVd) com-
monly identified in greenhouse tomato productions. This
work is to identify the most effective disinfectant(s) to pre-
vent infection by these viruses and viroid.

Results and discussion
PepMV infection with cut- and rub-inoculation
In experiments to assess the virus infectivity remained in
the treated solutions, two different inoculation methods
were applied, cut- and rub-inoculation. In the first two cut-
inoculation experiments for PepMV, since expression of
typical disease symptoms (mosaic) from PepMV-infected
tomato plants was not obviously visible, ELISA was used to
determine the PepMV infection. Preliminary data indicated
that there was a significant delay in the onset of PepMV in-
fection from the cut-inoculated plants because extra time
was needed to regenerate side shoots on the test plants
after the primary shoot was removed by cut-inoculation. It
took approximately 5 weeks post inoculation for PepMV
to be detectable by ELISA achieving a 100% infection rate
in plants from the positive control. In comparison, it typi-
cally took approximately only 1–3 weeks for PepMV to be
detectable by ELISA in rub-inoculated plants. Such delay
in the onset of PepMV infection to test plants through cut-
inoculation hindered evaluation efficiency. In addition, the
first two cut-inoculation experiments generated a higher
infection rate (>50%) on test plants from all disinfectant
solutions (Table 1).
Consequently, rub-inoculation method was introduced in

the following two experiments for PepMV. Data from the
third experiment for PepMV showed that Virkon S (1% and
2%) completely deactivated the PepMV infection. Only 1 or
2 in a total of 9 test plants tested positive from disinfectant
solutions in nonfat dry milk, Trisodium phosphate, Lysol
all-purpose cleaner, or Clorox regular bleach. The data
from experiments 3 and 4 were similar (Table 1), with
Virkon S (1% and 2%), Lysol all-purpose cleaner, nonfat dry
milk, and Clorox regular bleach offering complete deactiva-
tion to PepMV infection. The data obtained from the first
two cut-inoculation experiments were not very convincing
due to a long delay for the onset of a positive infection,
combined data analysis using pooled number of infected
plants from four experiments by Bayesian analysis did not
show significant difference among disinfectants (Figure 1A).
However, if considering datasets only in the last two experi-
ments by rub-inoculation, four disinfectants: Virkon S (1%
and 2%), Lysol all-purpose cleaner (50%), nonfat dry milk
(20%), and Clorox regular bleach (10%), were the most
promising disinfectants against PepMV infection (Table 1).
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Efficacy of disinfectants against PSTVd
From a panel of 16 disinfectants used for PSTVd test, dis-
tinguishable effects to PSTVd infection were observed on
the test tomato plants (Table 1). Due to consistent and
high infection rates (30%) generated in the first two exper-
iments, six disinfectants were excluded. The remaining 10
disinfectants that were used in the experiment 3 were
Greenhouse Guardian, BioSide, Green-Shield, SaniDate,
Menno-Ter Forte, StorOx, Octave, Lysol all-purpose
cleaner, Clorox regular bleach, Nonfat dry milk, Virkon S
(1% and 2%). After evaluation in three independent expe-
riments, only two chemicals (10% Clorox regular bleach

and 2% Virkon S) were able to completely deactivate
PSTVd infectivity (Figure 1B, Table 1). Besides those
two disinfectants with full effects, 20% nonfat dry milk
and 50% Lysol also deactivated the PSTVd infectivity
(Table 1). The Bayesian analysis supported such conclu-
sions (Figure 1B).

Efficacy of disinfectants against ToMV
ToMV infection on tomato seedlings of ‘VTV’ hybrid
was so severe that a positive infection resulted in plant
death. Mosaic and necrotic lesions to the upper leaves
were observed within one week post inoculation. In two

Table 1 Effectiveness of disinfectant solutions to deactivate pathogen infectivity as measured through experiments on
tomato plants against Pepino mosaic virus (PepMV), Potato spindle tuber viroid (PSTVd), Tomato mosaic virus (ToMV),
and Tobacco mosaic virus (TMV) infection

Disinfectanta PepMVb PSTVdc ToMVc TMVc

0-10 sec 30 sec 60 sec 0-10 sec 30 sec 60 sec 0-10 sec 30 sec 60 sec 0-10 sec 30 sec 60 sec

POS 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 2 2 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

GG 2 3 3 - 3 3 3 - 3 3 3 - 1 2 2 0 1 2 1 1 3 2 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

BS 2 3 3 - 3 3 3 - 3 2 3 - 1 2 2 1 2 3 0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

GS 3 2 3 - 3 3 3 - 3 1 3 - 0 0 1 0 1 2 1 0 2 2 1 3 3 1 3 3 1 3 3 2 3 3 3 3 3 3 3

VOR 1 3 3 - 2 3 3 - 2 3 3 - 1 3 - 0 3 - 2 0 - 3 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 3 3

SD 3 3 3 - 3 2 3 - 3 2 3 - 0 3 3 1 2 3 1 3 1 3 2 3 3 3 3 3 3 2 3 2 3 3 1 3 3 3 3

DOG-0.1 2 3 3 - 3 3 3 - 3 2 3 - 2 2 - 2 3 - 1 2 - 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

DOG-0.2 2 1 3 - 3 2 3 - 3 1 3 - 1 3 - 1 3 - 3 2 - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

KG 2 3 3 - 2 3 3 - 1 2 3 - 1 2 - 1 1 - 1 2 - 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 3

MF 2 1 3 2 0 3 2 3 2 2 3 1 0 2 - 2 1 - 1 1 - 0 0 1 0 1 2 0 2 3 2 2 3 3 2 3 2 2 2

MTF 0 2 3 1 0 2 3 1 2 2 2 1 0 0 3 0 0 1 1 0 0 1 0 2 0 0 2 0 0 2 0 1 1 0 0 2 0 0 3

SO 2 3 3 3 1 1 2 3 0 2 3 3 0 0 3 0 1 0 1 1 1 1 3 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3

OCT 0 2 3 1 0 2 1 0 0 0 1 0 0 0 3 0 0 1 0 0 1 1 3 3 2 3 3 3 3 3 3 2 3 3 3 3 3 3 3

VS-0.5 0 3 1 - 0 3 2 - 0 3 2 - 1 2 - 2 1 - 3 2 - 3 2 1 3 3 3 3 3 2 3 2 3 3 1 3 3 3 3

TSP 0 2 0 2 0 2 2 3 0 2 0 0 2 2 - 2 3 - 0 3 - 2 2 1 0 2 0 2 2 0 2 0 2 2 0 2 3 0 2

LYSOL 3 3 2 0 3 3 0 0 3 3 0 0 0 0 1 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

CLOROX 1 3 2 0 3 2 0 0 1 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NFDM 0 3 0 0 0 3 1 0 1 3 1 0 0 0 1 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VS-1.0 1 3 0 0 2 2 0 0 2 1 0 0 2 1 0 2 1 0 2 2 0 2 0 0 0 0 1 0 0 0 3 1 0 3 0 2 1 0 3

VS-2.0 0 3 0 0 2 3 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NEG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
aThe designations and application rates for each disinfectant used for these experiments are: POS: Virus or viroid infection only; GG: Greenhouse Guardian
(1.1 g/L); BS: BioSide (0.78 mL/L); GS: Green-Shield (5.20 mL/L); VOR: Vortexx (1.95 mL/L); SD: SaniDate (3.82 mL/L); DOG-0.1: DES-O-GERM (1.0 mL/L); DOG-0.2:
DES-O-GERM (2.0 mL/L); KG: KleenGrow (4 mL/L); MF: Menno Florades (30 mL/L); MTF: Menno-Ter forte (10 mL/L); SO: StorOx (9.77 mL/L); OCT: Octave (7.81 mL/L);
VS-0.5: Virkon S (5 g/L); TSP: Trisodium phosphate (100 mL saturated solution/L); LYSOL: Lysol all-purpose cleaner (500 ml/L); CLOROX: Clorox Regular-Bleach
(100 mL/L); NFDM: Nonfat dry milk (200 g/L); VS-1.0: Virkon S (10 g/L); VS-2.0: Virkon S (20 g/L); NEG: Buffer only. Three most effective disinfectants (Clorox, NFDM
and VS-2.0) were highlighted with bold letters.
bThere were four independent experiments for Pepino mosaic virus (PepMV). First two experiments were by cut-inoculation and the last two experiments by
rub-inoculation. The count number of infected plants from a total of 3 inoculated plants at each exposure time point (0–10 sec, 30 sec and 60 sec) for each
disinfectant is presented. “–” Represents no data available, as that particular disinfectant was not included in that experiment.
c There were three replicated experiments for Potato spindle tuber viroid (PSTVd), Tomato mosaic virus (ToMV), and Tobacco mosaic virus (TMV). At each
experiment, three tomato seedlings were inoculated with the designated inoculum at each exposure time point (0–10 sec, 30 sec, and 60 sec). Number of plants
infected out of the total three inoculated at each time point are shown at each column in the table. Infected plants were determined through symptom observation
followed by ELISA for PepMV, ToMV, and TMV and real-time RT-PCR for PSTVd. The count number of infected plants from a total of 3 inoculated plants at each
exposure time point (0–10 sec, 30 sec and 60 sec) for each disinfectant is presented. “–” Represents no data available, as that particular disinfectant was not
included in that experiment.
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weeks post inoculation, symptom expression was so ob-
vious that some severely infected plants began to die.
Thus, scoring of plant infection was easily done through
symptom observation. Data sets on the efficacy tests of
16 disinfectants against ToMV were consistent among
three experiments (Table 1). The most effective disinfec-
tants against ToMV were 10% Clorox regular bleach, 2%
Virkon S, and 50% Lysol all-purpose cleaner (Table 1).
Only a small proportion (<10%) of plants in treatments
with 20% nonfat dry milk or 1% Virkon S resulted in
infection (Table 1). Three other chemicals (3% Menno-
Florades, 1% Menno-Ter Forte, and 10% Trisodium
phosphate) prevented 30% plants from infection. The
Bayesian statistical analysis supported above conclusions
(Figure 1C).

Efficacy of disinfectants against TMV
TMV infection on the tomato ‘VTV’ plants was also
very severe without treatment, similar to those by
ToMV, which resulted in plant death. The treatment ef-
fects were consistent in all 3 experiments (Table 1).
Three disinfectants with full effects against TMV infec-
tion were 10% Clorox regular bleach, 2% Virkon S, and
20% nonfat dry milk. The 50% Lysol all-purpose cleaner
was also effective in deactivating TMV infectivity, only 1
of 9 plants infected in one of the three experiments
(Table 1). Another disinfectant, 1% Menno-Ter Forte,
had partial effect which resulted in less than 9 of 27 test
plants infected from three experiments. The results from
Bayesian analysis also supported the above conclusion
(Figure 1D).

Figure 1 Assessing the effectiveness of various disinfectants against virus infection. Statistical analysis using the Bayesian method was
used to evaluate the effect of different disinfectants against infectivity through mechanical inoculation on tomato plants of four viral and viroid
pathogens, including A). Pepino mosaic virus (PepMV), B). Potato spindle tuber viroid (PSTVd), C). Tomato mosaic virus (ToMV), and D). Tobacco
mosaic virus (TMV). In Bayesian analysis with a credibility interval (CI) of 1 representing 100% infection rate, meaning there was no effect in that
treatment, whereas CI of 0 representing zero infection rate, meaning a full protection of treated plants by that disinfectant. The lower the CI
value, the better effect that disinfectant against that pathogen. The higher the CI value, more plants were infected, thus the efficacy of that
disinfectant was lower. Variable effects of each disinfectant are represented with a range of CI values generated from different replications. Those
disinfectants with CI values not in overlap indicates significant differences between them. POS: positive control with pathogen only (PepMV,
PSTVd, ToMV and TMV) without treatment; GG: Greenhouse Guardian (1.1 g/L); BS: BioSide (0.78 mL/L); GS: Green-Shield (5.20 mL/L); VOR: Vortexx
(1.95 mL/L); SD: SaniDate (3.82 mL/L); DOG-0.1: DES-O-GERM (1 mL/L); DOG-0.2: DES-O-GERM (2 mL/L); KG: KleenGrow (4 mL/L); MF: Menno Florades
(30 mL/L); MTF: Menno-Ter forte (10 mL/L); SO: StorOx (9.77 mL/L); OCT: Octave (7.81 mL/L); VS-0.5: Virkon S (5 g/L); TSP: Trisodium phosphate (100 mL
saturated solution/L); LYSOL: Lysol all-purpose cleaner (500 ml/L); CLOROX: Clorox regular-bleach (100 mL/L); NFDM: Nonfat dry milk (200 g/L); VS-1.0:
Virkon S (10 g/L); VS-2.0: Virkon S (20 g/L); NEG: negative control with inoculation buffer only.
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Impact of application rate on efficacy
The effect of disinfection is also dependent on the applica-
tion rate. When comparing Virkon S in three concentra-
tions (0.5%, 1% and 2%), the impact of application rate to
TMV infection were observed (Figure 2). In general, 0.5%
Virkon S had little effect to slow down virus or viroid
transmission (Table 1). Partial protection to TMV was ob-
served when 1% Virkon S was used (Figure 2). However,
when 2% Virkon S solution was used, full protection from
TMV infection was observed (Figure 2). Taken together,
2% Virkon S achieved the most consistent effects against
four tomato virus and viroid pathogens: PepMV, PSTVd,
TMV, and ToMV (Table 1 and Figure 1).

Efficacy of selected disinfectants upon storage
To address concerns over the stability of disinfectants in
prolong storage, the two most effective disinfectants
(10% Clorox regular bleach and 2% Virkon S) were
examined against TMV infection. Each treatment was
performed through mixing an equal volume of TMV in-
oculum with a 2X stock solution of a respective disin-
fectant. In the case of Clorox regular bleach, the 2X
stock solution (20% Clorox regular bleach) was stored at
room temperature (20-30°C) for 30 days. Virkon S, 4%
stock solution (2X) was prepared and stored for two
time periods, 10 days and 30 days. At each storage time
point, treatments were carried out by mixing an equal
volume of a prepared virus inoculum with a 2X stock
solution for 30 seconds just before used for a bioassay.
Results showed that in comparison to that of a freshly
prepared solution, the ability to deactivate TMV infecti-
vity of Clorox regular bleach in storage for over 30 days
was equally effective (Figure 3A). Virkon S, stock solu-
tions (2X) in storage for 10 days or 30 days were equally
effective to deactivate TMV infectivity in comparison to
those of a freshly prepared solution. While all the test
plants in the positive control without treatment were se-
verely infected and dying, plants treated with a freshly

prepared solution or those solutions in storage for
10 days and 30 days were fully protected from TMV in-
fection (Figure 3B).
A total of 16 disinfectants were evaluated for their

effectiveness in preventing transmission of three major
tomato viruses (PepMV, ToMV, and TMV) and one
viroid (PSTVd) through mechanical inoculation on to-
mato seedlings. This study demonstrated consistently
the broad spectrum effects from two common disin-
fectants (2% Virkon S and 10% Clorox regular bleach) in
deactivating the infectivity of PepMV, PSTVd, ToMV,
and TMV (Table 1). Four other disinfectants (1% Virkon
S, 50% Lysol all-purpose cleaner, 20% nonfat dry milk,
and 1% Menno-Ter Forte) also had promising efficacy in
deactivating certain target pathogens (Table 1, Figure 1).
The three exposure times (0–10 sec, 30 sec, or 60 sec)

in treatment of inocula by disinfectants were selected to
mimic the short time intervals in cutting tissues between
plants during tomato crop work in a greenhouse, such
as grafting, deleafing, or fruit harvesting. However, there
were no significant differential responses observed among
the three time intervals. These results suggested that the
effects of those effective disinfectants against virus and
viroid infectivity were immediate upon mixing and ex-
posure. With such swift action from the effective dis-
infectants, there is no need to wait after dipping for a
disinfectant to achieve its full function.
Growers are concerned about how long a diluted dis-

infectant could be stored in a greenhouse without losing

Figure 2 Effects of various concentrations of Virkon S in
deactivating Tobacco mosaic virus (TMV) infectivity as assessed
in bioassays through rub-inoculation upon exposure for 30 sec
using Virkon S at 0.5% (left) with no protection, at 1% (middle)
with partial protection, and at 2% (right) with full protection.

Figure 3 Stability of prepared disinfectants in prolong storage
for their effect in deactivating Tobacco mosaic virus (TMV)
infectivity. A). Comparative effectiveness of freshly prepared 10%
Clorox® bleach solution (Fresh) and a similarly prepared solution in
storage at room temperature (20–30°C) for 30 days. The positive
control (TMV only) without treatment was used to assess the TMV
infectivity in the inoculum. B). Comparative effectiveness of 2%
Virkon S solutions from a freshly prepared (Fresh), those in storage
for 10 days (10 days) and 30 days (30 days) after preparation at
room temperature (20–30°C). A positive control (TMV only) was used
to assess TMV infectivity in the inoculum.
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its efficacy. Our tests demonstrated that there was no
major reduction in the effect of a disinfectant in deacti-
vating TMV infectivity when those ready-to-use solu-
tions of Virkon S and Clorox regular bleach were stored
for more than 30 days. It is not surprising given the long
shelf life of these highly stable products. However, cau-
tion should be considered when using disinfectants with
high amount of organic matter, such as a large quantity
of leaf sap, which could compromise the disinfectant
activity [37].
Results obtained in screening of 16 disinfectants against

three viruses in tomato were consistent with some conclu-
sions achieved in previous studies from other plant-virus
systems. Hu et al. (33) found that undiluted skim milk
inactivated Cymbidium mosaic virus (CyMV) on a local
lesion host and commercial bleach inactivated both CyMV
and Odontoglossum ringspot virus (ORSV) at 10% or 20%
concentration. Kamenova and Adkins [34] reported that
in experiments mimicking plant propagation and pruning,
10% bleach solution and 20% nonfat dry milk completely
prevented Hibiscus latent Fort Pierce virus infection in
hibiscus. In searching for effective disinfectants in orna-
mental production to control TMV transmission during
propagation, Lewandowski et al. [35] discovered that seve-
ral common disinfectants including 20% nonfat dry milk
or 10% household bleach completely eliminated TMV
transmission to petunias. They also showed that treatment
of contaminated tools with 1% Virkon S solution or 20%
nonfat dry milk (7% protein) also significantly reduced the
incidence of TMV-infected petunias. Coutts et al. [36] ex-
amined 13 disinfectants for their effectiveness in inactiva-
ting ZYMV in cucurbits. They discovered that none of test
plants became infected when nonfat dry milk (20% w/v) or
bleach solution (42 g/L NaOCl, diluted 1:4) was used.
Matsuura et al. [37] found that active component NaOCl
at a concentration of 0.5% (10% bleach solution) or more
was the most effective in disinfecting Tomato chlorotic
dwarf viroid (TCDVd)-contaminated scalpels. Winterman-
tel [38] demonstrated that 0.5% sodium hypochlorite treat-
ment for two seconds was sufficient for inactivation of
potyviruses during pruning operations and superior to
quaternary ammonium solution. Although the virus-plant
systems tested were different, the general effective role of
three disinfectants, 1% or 2% Virkon S, 10% Clorox regular
bleach (containing 0.525% NaOCl), and nonfat dry milk
(containing 7% protein), were consistently able to deacti-
vate virus infection. This is the first time in this study to
show that nonfat dry milk can also suppress the viroid
infectivity. The possible mode of action for nonfat dry
milk against viroid infectivity is awaiting further study.
Taken together, it is reasonable to believe that these dis-
infectants could be generally applied to other virus/
viroid-plant systems. In addition, Virkon S and Clorox
regular bleach have been shown to be effective against

some common bacterial and fungal pathogens on to-
mato [39].

Conclusions
With their broad spectrum effects against infection on
treated tomato plants for three viruses and a viroid, 2%
Virkon S, 10% Clorox regular bleach and 20% nonfat dry
milk could be recommended to greenhouse vegetable
growers to protect plants from virus infection in various
crop work activities, including grafting, deleafing, and fruit
harvesting. A suitable disinfectant for greenhouse tomato
production should satisfy several criteria, including: short
contact time, broad efficacy against viruses and viroids or
even other plant pathogens, safe for workers, not corrosive
to infrastructure, not phytotoxic to plants, and economic.
Although Virkon S is relatively expensive and also corro-
sive, it is the most promising disinfectant and has already
been proven effective against human and animal viral
pathogens [40,41]. Clorox regular bleach is widely used at
home for killing common household germs; however, the
strong corrosive effect to the greenhouse structure and
tools and the potential phytotoxic effect on tomato plants
might not be welcomed by greenhouse tomato growers.
Nonfat dry milk, the third most efficient disinfectant, is
safe for application, economic to use, and seems to satisfy
the above disinfectant criteria. By rotating the application
of several effective disinfectants with different mode of ac-
tions, the risk of a virus and viroid outbreak on green-
house tomatoes may be brought under control.

Materials and methods
Sources of viruses and viroid and their maintenance
The PepMV isolate (TX10-01) was isolated from a dis-
eased tomato plant collected in Texas in 2010 and deter-
mined by sequence analysis to be genotype CH2 [6].
ToMV (isolate V13-07) and TMV (isolate U1) were pro-
vided by Heinz Co. and Monsanto, respectively. PSTVd
(isolate NC12-01) was isolated from North Carolina in
2012 [4]. Active cultures of each individual virus and vir-
oid were maintained through rub-inoculation on tomato
cultivars ‘Rutgers’ or ‘Moneymaker’ and kept separately
inside an insect-proof bug-dome in a greenhouse. Those
symptomatic tomato leaves from plants inoculated 4–8
weeks prior and confirmed to be infected by a particular
virus or viroid were collected as inoculum sources to as-
sess the efficacy of disinfection.

Plant preparation and growth
Certified healthy tomato seeds (cv. VTV, F1 hybrid indeter-
minate Saladette tomato) were provided by Monsanto. Ex-
periments were conducted in a greenhouse (temperature
of 25-30°C, a natural sun-light period of 14 hours). For
each replicated experiment (one virus or a viroid treated
with 16 disinfectants and controls), over 220 seeds were
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individually sowed in 5-inch pots filled with soil-less pot-
ting mix (Sunshine mix, SunGro Horticulture) in a green-
house. The test plants were maintained in each individual
pot on trays to keep them separated in space to prevent
potential cross contamination. Normal plant maintenance
activities, including daily watering, weekly fertilizing and
occasional spraying to control insects, were performed.

Disinfectants
A total of 16 products were selected for evaluation in
this study, their active ingredients and application rates
are listed in Table 2. Product concentrations were deter-
mined based either on the labeled rates, earlier studies
by others with different plant-virus systems [33-38], or

from grower experiences. Each product with 2× stock of
application rate was prepared within 1 hour before use
in the same day.

Preparation of virus inoculum
The virus and viroid sources were maintained on tomato
plants in individual insect-proof domes in a greenhouse.
Virus inoculum was prepared by grinding symptomatic
tomato leaves (1:5 w/v) in a plastic bag containing saline
phosphate buffer, pH 7.0 (140 mM NaCl, 8 mM Na2H-
PO4.12H20, 1.5 mM KH2PO4, 2.7 mM KCl and 0.8 mM
Na2SO3) using a Homex-6 tissue homogenizer (BioReba
AG, Switzerland). PSTVd inoculum was prepared using
the above listed saline phosphate buffer or 1× TE buffer

Table 2 List of disinfectants and their application rates used to evaluate their efficacy as disinfectants against three
tomato viruses and one viroid

No. Disinfectant Application rate Designation Active ingredients Manufacturer

1 Clorox regular bleach 10% (100 mL/L) CLOROX 5.25% Sodium hypochlorite (NaOCl) The Clorox Company. Oakland, CA,
USA

2 KleenGrow 0.4% (4 mL/L) KG 7.5% Didecyl dimethyl ammonium
chloride

Pace Chemicals. Burnaby, BC, Canada

3 Virkon S 0.5% (5 g/L) VS-0.5 20.4% Potassium peroxymonosulfate,
1.5% Sodium chloride

DuPont Chemical Solutions,
Wilmington, DE, USA

Virkon S 1.0% (10 g/L) VS-1.0

Virkon S 2.0% (20 g/L) VS-2.0

4 Greenhouse Guardian 0.11% (1.1 g/L) GG Trichloromelamine GermFreePlanet, Tucson, AZ, USA

5 Green-Shield 0.52% (5.20 mL/L) GS 10% n-alkyl [60% C14, 30% C16, 5%
C12, 5% C18] Dimethyl benzyl
ammonium chloride, 10% n- alkyl
[68% C12, 32% C14] Dimethyl
ethylbenzyl ammonium chloride

BASF, Research Triangle Park, NC,
USA

6 Non-fat dry milk (Sanalac) 20% (200 g/L) NFDM 34.78% Protein ConAgra Food, Omaha, NE, USA

7 Vortexx 0.195% (1.95 mL/L) VOR 6.9% Hydrogen peroxide, 4.4%
Peroxyacetic acid, 3.3% Octanoic acid

Ecolab Center, St. Paul, MN, USA

8 Octave 0.781% (7.81 mL/L) OCT 7.52% Hydrogen peroxide, 0.94%
Peroxyoctanoic acid, 2.72% Octanoic
acid

Ecolab Center, St. Paul, MN, USA

9 BioSide 0.078% (0.78 mL/L) BS 15% Peroxyacetic acid, 22%
Hydrogen peroxide

Enviro Tech Chemical Services,
Modesto, CA, USA

10 SaniDate 0.382% (3.82 mL/L) SD 23.0% Hydrogen peroxide, 5.3%
Peroxyacetic acid

Biosafe Systems, Glastonbury, CT,
USA

11 StorOx 0.977% (9.77 mL/L) SO 27% Hydrogen dioxide Biosafe Systems, Glastonbury, CT,
USA

12 Lysol all-purpose cleaner 50% (500 mL/L) LYSOL 0.1% alkyl [50% C14, 40% C12, 10%
C16] Dimethylbenzyl ammonium
saccharinate

Reckitt Benckiser, Parsippany, NJ, USA

13 DES-O-GERM 0.1% (1 mL/L) DOG-0.1 Poly hexamethylenebiguanide
hydrochloride, Benzalkonium
chloride

Des-O-Germ (PTy), Africa-Australia-
Mauritius-New Zealand

DES-O-GERM 0.2% (2 mL/L) DOG-0.2

14 Menno Florades 1% (10 mL/L) MF 9% (w/v) Benzoic acid Menno Chemie-Vertrieb Gmbh,
Norderstedt, Germany

15 Menno-Ter forte 1% (10 mL/L) MTF 32.5% Didecyl dimethyl ammonium
chloride

Menno Chemie-Vertrieb Gmbh,
Norderstedt, Germany

16 Trisodium phosphate 10% (100 mL/L
saturation)

TSP Trisodium phosphate Fisher Scientific, Fair Lawn, NJ, USA
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(10 mM Tris–HCl and 1 mM EDTA, pH 8.0). The
freshly prepared virus or viroid inoculum was main-
tained on ice prior to use.

Virus inoculation
The processed virus/viroid inoculum was kept on ice in
a 50-mL gamma irradiation-sterilized conical crew cap
centrifuge tube (USA Scientific) prior to use. Equal vol-
umes (0.3 ml) of the prepared disinfectant stock solution
and virus/viroid inoculum were mixed in a 1.5 mL
Eppendorf tube. Each disinfectant and inoculation com-
bination was left at room temperature for 0–10 sec, 30
sec or 60 sec prior to use for inoculation.
For PepMV only, the first 2 experiments were done

using cut-inoculation, which simulated to the deleafing
process. The cut-inoculation was done by dipping a clean
surgical blade to the treated solutions as stated above and
cut off a leaf or a shoot on 3 tomato seedlings at each ex-
posure time intervals (0–10 sec, 30 sec and 60 sec).
Rub-inoculation was conducted by rubbing gently with

a cotton-swab (Q-tip) soaked in the treated solution onto
3 tomato seedlings lightly dusted with Carborundum
(320-grit, Fisher Scientific) at 2–3 leaf stage. Each treated
inoculum was inoculated on 3 tomato seedlings for each
exposure time period (0–10 sec, 30 sec or 60 sec). In each
experiment, 3 plants at each time point were inoculated
with the same virus or viroid inoculum that were mixed
with an equal volume of water as positive controls. Same
number of mock-inoculated plants with the inoculation
buffer were served as negative controls. The entire process
from inoculum preparation to the completion of an inocu-
lation experiment took 2–3 hours. As a control, the infec-
tivity of a virus inoculum that remained in the solution at
the end of each experiment was tested by inoculating
3 additional tomato seedlings to confirm symptom ex-
pression. The virus/disinfectant solution was washed off
gently with tap water from the inoculated plants after
application.
Tests on PSTVd, ToMV and TMV, consisted of 3 repeat

experiments and were done using the rub-inoculation
method. For PepMV, 2 experiments were done with the
cut-inoculation method and 2 experiments were done
with the rub-inoculation method. The data from two
inoculation methods were compared for PepMV. The in-
oculated plants were randomized on a bench and main-
tained in a greenhouse for 4–6 weeks post inoculation for
symptom observation. ELISA for virus detection and qRT-
PCR for PSTVd were performed as described in the
following to confirm each virus or viroid infection. The
experimental plant materials were bagged, autoclaved, and
disposed of after completion of each experiment. For each
pathogen, the experiment to each disinfectant was re-
peated for 3 times. Due to the limitation in greenhouse
space and to prevent potential cross contamination, only

plants inoculated by the same type of pathogen at each
time were placed in the same greenhouse. The entire ex-
periments were carried out from April 2012 to June 2013
in an environmental controlled greenhouse.

Efficacy of selected disinfectants in storage
To assess the efficacy of selected disinfectants in storage,
2X stock solutions of Clorox regular bleach (20%) were
stored at room temperature (25°C) for 30 days and then
used to treat the TMV inoculum with an exposure time
for 30 sec. In comparison, a freshly prepared 20% Clorox
regular bleach was used as a control and a non-treated
TMV inoculum was used to assess the virus infectivity
in the inoculum. For Virkon S, the 2X stock solution
(4%) was assessed after storage for 10 to 30 days, in
comparison with a freshly prepared stock solution to
treat the TMV inoculum with a 30 sec exposure. A non-
treated TMV inoculum was included as a positive
control. Preparation and maintenance of plants for in-
oculation and the method on rub-inoculation were
described as above.

Enzyme-linked immunosorbent assay (ELISA)
To assess virus infection on the test plants for PepMV,
TMV, and ToMV, a standard ELISA method was used
following the manufacturer’s instructions (Agdia, USA)
with minor modifications. For sample processing, a
small leaf tissue (ca. 150 mg) was collected from individ-
ual inoculated plant in a plastic bag. After addition of
2.0 ml 1X tissue extraction buffer (General) (BioReba,
Switzerland) into each bag, the tissue was grounded
thoroughly with a Homex-6 homogenizer (BioReba,
Switzerland). The ELISA plate was pre-coated with
100 μl of primary antibody for PepMV (catalog no.
13001, Agdia, USA), ToMV (catalog no. 35400, Agdia,
USA) or TMV (catalog no 57400, Agdia, USA) in suit-
able dilution in the coating buffer overnight at 4°C. After
washing with 1x PBS-Tween buffer for 3–4 times, the
above prepared leaf crude extract (100 μl) was added to
the wells of the antibody-coated plate and incubated for
2 h at 37°C or overnight at 4°C. A positive control
(virus-infected), negative control (not virus-infected),
and non-template control (extraction buffer only) were
included in each plate. After rigorous washing, the plate
was filled with 100 μl of secondary antibody-Alkaline
phosphatase enzyme conjugate (1:200 dilution in the
conjugate buffer) and incubated for 2 h at 37°C. Color
development was generated by incubation with 100 μl of
p-nitrophenyl phosphate (PNP) substrate and absorbent
readings were measured at 405 nm with an ELISA plate
reader (SpectraMAX PLUS 384, Molecular Devices,
USA). Absorbance values at least twice over that of the
negative control were considered positive.
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Real-time RT-PCR
Real-time RT-PCR reaction was used to determine the in-
fection of PSTVd and carried out using a Takara One Step
Ex Taq qRT-PCR kit (Clontech Laboratories, USA) on an
Mx3000P qPCR machine (Stratagene/Agilent Technolo-
gies, USA). RNA template was prepared with a simple di-
lution of crude tissue extract method [42]. Approximately
150 mg leaf tissue was ground in a plastic bag filled with
1.5 ml of 0.1 M Tris–HCl buffer (pH 8.0). The crude
extract was diluted 1:100 with diethylpyrocarbonate
(DEPC)-treated water and 0.5 μl of diluted extract was
added to the reaction mixture. The primers for PSTVd
(PSTV-231 F: 5’-GCCCCCTTTGCGCTGT-3’; PSTV-
296R: 5’-AAGCGGTTCTCGGGAGCTT-3’) and TaqMan
probe (PSTV-251 T: CY5-CAGTTGTTTCCACCGGG
TAGTAGCCGA- BHQ2) were derived from published se-
quences [43] and synthesized by IDT (Coralville, IA,
USA). Each real-time RT-PCR reaction mixture (10 μl)
consisted of 5 μl of 2X reaction buffer, 0.25 μl Ex Taq HS
mix (5 U/μl), 0.25 μl RTase mix (5 U/μl) in Takara’s Pre-
mix EX Taq (Clontech, USA), 0.25 μl forward primer
(20 μM), 0.25 μl reverse primer (20 μM), and 0.25 μl Taq-
Man probe (10 μM), 0.19 μl of ROX reference dye (500X
dilution, Clontech, USA), and 0.5 μl RNA. The thermocy-
cling program included an initial cycle for reverse tran-
scription at 50°C for 30 min and a denaturation at 95°C
for 2 min, then 40 cycles of 95°C for 10 sec and 55°C for
30 sec. A positive control (virus-infected), negative control
(non- virus-infected), and non-template control were in-
cluded in each test. A cycle threshold value (Ct) above
31.00 at a threshold fluorescence level of 0.025 was deter-
mined as a background reaction.

Statistics analysis
To determine whether there was any significant effect
between disinfectants on each target pathogen, the num-
ber of plants infected for each disinfectant solution and
exposure time were pooled and analyzed using Logistic
regression and the Bayesian methodology [44]. To do so,
a Markov Chain Monte Carlo (MCMC) approach was
used as implanted in JAGS [45] through the R statistical
software [46]. The credibility intervals (CI) were de-
signated between 0–1, where those CI values between
disinfectant solutions with no overlap are considered
significantly different. If the CI value in a disinfectant so-
lution was equal to zero, that result indicated complete
deactivation of the pathogen infectivity was achieved
and none of the test plants was infected. If a CI value
approached 1, the result indicated there was no effect of
that disinfectant against the pathogen infectivity, as all
the test plants were infected.
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