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ABSTRACT

Quasi-geostrophic (QG) theory describes the dynamics of synoptic scale flows in the trophosphere that are balanced with respect to both
acoustic and internal gravity waves. Within this framework, effects of (turbulent) friction near the ground are usually represented by Ekman
Layer theory. The troposphere covers roughly the lowest ten kilometers of the atmosphere while Ekman layer heights are typically just a few
hundred meters. However, this two-layer asymptotic theory does not explicitly account for substantial changes of the potential temperature
stratification due to diabatic heating associated with cloud formation or with radiative and turbulent heat fluxes, which, in the middle
latitudes, can be particularly important in about the lowest three kilometers. To address this deficiency, this paper extends the classical
QG–Ekman layer model by introducing an intermediate, dynamically and thermodynamically active layer, called the “diabatic layer” (DL)
from here on. The flow in this layer is also in acoustic, hydrostatic, and geostrophic balance but, in contrast to QG flow, variations of
potential temperature are not restricted to small deviations from a stable and time independent background stratification. Instead, within
the diabatic layer, diabatic processes are allowed to affect the leading-order stratification. As a consequence, the diabatic layer modifies
the pressure field at the top of the Ekman layer, and with it the intensity of Ekman pumping seen by the quasi-geostrophic bulk flow. The
result is the proposed extended quasi-geostrophic three-layer QG-DL-Ekman model for mid-latitude (dry and moist) dynamics.

1. Introduction

a. Data and Motivation

The quasi-geostrophic (QG) theory is one of the most
fruitful foundations of theoretical meteorology. It has
guided our understanding of the mid-latitude dynamics
of the atmosphere to a large extent and has led to “poten-
tial vorticity (PV) thinking” as an instructive framework
for the interpretation of weather systems (Hoskins et al.
1985). The standard derivation of QG theory (see, e.g.,
Pedlosky 1992) captures balanced flow regimes for dry air
only, while later extensions include general diabatic source
terms and explicit moist process closures (see, e.g., Smith
and Stechmann 2017, and references therein). In recent
years there has also been considerable interest in reduced
dynamical models that are based on the QG balance and
include moist process submodels. Thus Lambaerts et al.
(2011, 2012); Laîné et al. (2011); Bembenek et al. (2020)
all consider moisture effects on synoptic scales utilizing
quasi-geostrophic dynamics, but they all restrict to shal-
low water, two-, and three-layer models only. A common
limitation of such moist extensions of QG theory is that
diabatic effects cannot substantially influence the potential
temperature background stratification, as further outlined
in the sequel. To address this limitation based on sys-
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tematic asymptotic analysis, the present work proposes a
new three-layer asymptotic description (QG-DL-Ekman)
involvingQGflow in the bulk of the troposphere, an Ekman
layer near the ground, and an intermediate dynamically and
thermodynamically active diabatic layer (DL).

To motivate the approach for mid-latitude flows, let us
analyze the strength of diabatic effects allowed for in the
QG theory. The diabatic source term of interest, QΘ, ap-
pears in the transport equation for the perturbation potential
temperature Θ̃,

∂Θ̃

∂t
+u ·∇qΘ̃+w

∂Θ̃

∂z
+w

dΘ
dz
=QΘ+ SΘ , (1)

in which (u,w) is the vector of horizontal and vertical ve-
locities, ∇q and ∂/∂z are the horizontal gradient and ver-
tical derivative operators, Θ(z) represents the background
potential temperature stratification that is independent of
time and horizontally homogeneous, and SΘ is a general
dissipation term, which we do not need to specify further
for the present purposes. In the asymptotic limit regime
of QG theory, the third term in (1) is negligible whereas
the remaining terms on the left are all of the same order of
magnitude. Therefore, to assess the characteristic strength
of the diabatic heating and dissipation terms on the right
as allowed for in QG theory, it suffices to assess the typical
magnitude of ∂Θ̃/∂t in the QG regime.
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The characteristic time scale of quasi-geostrophic mo-
tion is given by

t∗ref =
`∗syn

u∗ref

=
N∗ref

f ∗0

h∗sc
u∗ref

= 8 ·104 s ∼ 1day, (2)

where `∗syn = N∗ref h
∗
sc/ f ∗0 = 800 km is the synoptic length

scale, N∗ref = 10−2 s−1 is a characteristic buoyancy frequency
due to the stable background stratification, f ∗0 = 10−4 s−1

is a typical mid-latitude Coriolis parameter, h∗sc = 8.8 km
is the pressure scale height, and u∗ref = 10 m/s is a char-
acteristic flow velocity (see tables 2 and 3 below, which
are adapted from (Klein 2010) to match mid-latitude con-
ditions). Now, QG theory results from an asymptotic ex-
pansion justified by small Rossby numbers, Ro = u∗ref

f ∗0 `
∗
syn
=

10−1� 1, and the expansion of potential temperature reads

Θ = Θ0+ εΘ1(z)+ ε2
Θ̃(t,x, z)+ O

(
ε2) , (3)

where ε ∼ Ro is the small expansion parameter with a
constant of proportionality to be specified below. Thus we
find that deviations of potential temperature from the stable
background distribution are assumed to be O(ε2T∗ref) ∼ 3 K,
where Θ0 = T∗ref ∼ 300 K is the reference temperature.
These estimates, on the basis of (1), enable us to assess
the characteristic strength of the diabatic source terms al-
lowed for in QG theory as

Q∗
Θ
∼
ε2T∗ref

t∗ref

= 3 K/day . (4)

This level of diabatic heating compares well with the large-
scale/daily mean effects of radiation and other physical
source terms in reanalysis data (Zhang et al. 2017). Nev-
ertheless, the physical source terms representing, e.g., la-
tent heat release during cloud formation and turbulent heat
fluxes near the surface can be substantially stronger as is
also shown in (Zhang et al. 2017). Further corroboration
comes from Figure 4.8 of Hartmann (2016) (based on data
from Lettau and Davidson (1957)) who demonstrates that
near-surface temperature over land can vary by more than
15 K between sunrise and early afternoon, which implies
heating rates of more than 45 K/day near the surface, and
still more than 12 K/day above 500 m altitude. Finally,
radiative heating or cooling rates can largely exceed the
3 K/day average, in particular, near the upper and lower
edges of clouds. For example, Mather et al. (2007, see
their Fig. 8), based on remote sensing observations, esti-
mate heating rates in excess of 20 K/day near the base and
cooling rates of similar magnitudes near the top of clouds
in the tropical upper troposphere.

These considerations and estimates imply, that

1. QG theory describes only higher order (i.e., small)
deviations of potential temperature from a given, time
independent background stratification, and

2. the intensity of diabatic processes allowed for in QG
theory amount to potential temperature tendencies of
∼ 3 K/day. However, heating rates associated with
surface-atmosphere fluxes or radiation near cloud
edges can be much larger.

Therefore, QG scaling is inadequate to describe weather
with substantially stronger influence of diabatic processes.

These two implications are not restricted to the classical
dry-air QG system. Recent extensions of the QG the-
ory to moist dynamics by Smith and Stechmann (2017);
Marsico et al. (2019) are subject to the same limitations.
Thus, in their section 3, Smith and Stechmann (2017) state
that “appropriately defined Rossby and Froude numbers
are comparable and small”, and that one key assumption
of their theory is that the background stratification of the
equivalent potential temperature stratification is large. As
a consequence, with respect to the transport of buoyancy
their theory follows closely the lines of classical QG the-
ory. The immediate implication is again that, within their
model, the dynamics cannot substantially change the sta-
bility of the stratification.

Let us support our point regarding the strength of mois-
ture effects in the lowest few kilometers of the atmosphere
by two additational estimates. First, we assess a mean
precipitation rate that would correspond to the typical QG-
scale heating rate of approximately 3 K/day when gen-
erated by latent heat release and the subsequent fall-out
of rain. With L∗ref = 2.5 ·106 J/kg the latent heat of con-
densation of water vapor, c∗

pd
∼ 103 J/kg/K the dry air

heat capacity at constant pressure, ρ∗
d
∼ 1.25 kg/m3 and

ρ∗
l
∼ 103 kg/m3 the typical dry air and liquid water densi-

ties, respectively, and A some horizontal reference area on
the synoptic scale, we let

ρ∗d c∗pd Q∗
Θ

h∗sc A = ρ∗l L∗ref PQG A . (5)

Here, the left hand side is the rate of change of dry air
internal energy within a volume of h∗sc A due to the diabatic
heating Q∗

Θ
, while the right hand side represents the rate of

latent heat released by the condensation of water forming
precipitation. The rate of precipitation, PQG, is measured
in mm/h. This yields, given the previous concrete data
with a diabatic heating of Q∗

Θ
= 3 K/day, a characteristic

precipitation rate under QG scaling of

PQG =
ρ∗
d

ρ∗
l

c∗
pd

Q∗
Θ

L∗ref

h∗sc ∼ 0.4 mm/h . (6)

This is a very small number given that even the cate-
gory of “light rain” is associated with precipitation rates of
2.5 mm/h (American Meteorological Society 2020).

Secondly, we observe that in many mid-latitude situa-
tions most of the atmospheric water content resides in the
lowest few kilometers while it falls off rapidly with height.
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See fig. 1 for some instantaneous and time-averaged ver-
tical profiles of specific humidity in the mid-latitudes ex-
tracted from the ERA5 reanalysis data set (Hersbach et al.
2020). Although individual profiles more or less differ in
terms of magnitude and distribution of specific humidity
in the lower troposphere, in most of the profiles shown spe-
cific humidity is down to a quarter of its maximum value
at heights of 700 to 600 hPa, i.e., at about 3 to 4 km.

Fig. 1. Vertical profiles of specific humidity derived from the global
ERA5 Reanalysis data set (Hersbach et al. 2020) for specific locations
in the midlatitudes at some selected times during July 2019 (dashed
lines). The solid black line displays the mean vertical profile of the
boreal summer months June to August in the 5-year period 2015-2019
calculated for latitudes between 30◦N and 60◦N.

What is the precipitation rate that would be generated
if a substantial fraction of the water vapor with a mixing
ratio at the level of q∗v ∼ 10 g

kg = 0.01 resides in the lowest,
say three, kilometers (∼

√
εh∗sc) of the atmosphere initially

(i.e., in the diabatic layer) and if some frontal or related
process converts it into precipitation over the time scale
of a day? The corresponding rain mass flux density, ÛM ′′,
would amount to

ÛM ′′ =
ρ∗
d

q∗v
`∗syn/u∗ref

√
εh∗sc ∼

1
15

·10−2 kg
m2s

, (7)

which translates to a precipitation rate of

PDL =
ÛM ′′

ρ∗
l

·3600s/h ·1000mm/m ∼ 2.4 mm/h . (8)

This is substantially larger than the QG estimate in (6), and,
e.g., in line with typical mean precipitation rates within

midlatitude cyclones as shown, for instance, by Bengtsson
et al. (2009) who obtained averaged precipitation intensi-
ties in the range of 1.0...3.6 mm/h in a composite analysis
based on climate simulations and ERA40 reanalysis data.

Much of the enhanced diabatic heating described above,
except for the radiative heating at cloud edges, is restricted
mostly to the lower part of the troposphere. On the one
hand, this is related to the fact that the atmospheric mois-
ture content is a strong function of temperature and thus de-
creases with altitude (see again fig. 1), thereby constraining
the latent heat that can be released at higher levels. On the
other hand, turbulent convective heat fluxes are strongest
near the surface and generally decrease in magnitude with
height. In particular, turbulent fluxes over land are as-
sociated with the formation of mixing layers with typical
heights of 1.5...2.5 km (Wang and Wang 2014). These
layers are characterized by approximately constant values
of potential temperature and specific humidity with height,
while the humidity drops rapidly above the mixing layer
top. For the incorporation of such strong diabatic heating
in existing QG theories, it thus appears reasonable to focus
on a “diabatic layer” with a vertical extent of ∼ 3 km above
the surface.

b. Organization of the paper

The rest of the paper is organized as follows. Section 2
describes and summarizes the essential properties of the
diabatic layer. Section 3 provides the governing equations
and asymptotic scalings adopted in the sequel. Section 4
contains a brief overview of the classical QG–Ekman layer
theory, which we include here for the sake of completeness
and to render the paper largely self-contained. Section 5
derives the diabatic layer equations. Section 6 provides
further discussion, a summary, and an outlook.

2. The essence of the diabatic layer (DL) dynamics

Herewe summarize the essential differences between the
new QG-DL-Ekman and the classical QG-Ekman models.
Equations in this section are in dimensional form, but we
have dropped the ∗-indicator here to streamline the nota-
tion.

Classical QG theory divides the trophosphere into two
dynamically different vertical layers (Pedlosky 1992). In
the bulk of the troposphere, friction and turbulent transport
are neglected to leading order and the horizontal momen-
tum balance is dominated by the pressure gradient and
Coriolis terms. Near the ground, these terms are impor-
tant, however, and enter into a three-term balance with the
former two in the “Ekman layer”. As indicated above,
the scalings underlying that theory only allow for rather
weak diabatic effects. In particular, these are not strong
enough to substantially change the dominant potential tem-
perature stratification, which is represented by the terms
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Θ0+εΘ1(z) in (3). In fact, space-time dependent variabil-
ity of the potential temperature arises first at O(ε2). The
situation is sketched in the left panel of fig. 2. Yet, in
the lower few kilometers, thermal or moist convection can
cumulatively change the mean stratification all the way to
nearly neutral (Stevens 2005) on (sub-)daily time scales
and this is not covered by QG theory.

A remedy is proposed here by introduction of an ad-
ditional “diabatic layer”. As shown on the right panel
of fig. 2, we include a layer of an intermediate height
of
√
εhsc ∼ 3 km. Within this layer all deviations from

the reference potential temperature Θ0 are subject to the
layer’s dynamics, and not just higher-order deviations
from the leading and first order background stratifica-
tion Θ0 + εΘ1(z) as is the case in QG theory, see (3).
Mathematically, this change in scalings is represented by a
modified expansion scheme, Θ = Θ0 + ε

3
2 Θ̃(t,x, η)+h.o.t.

(h.o.t. = higher order terms) for the potential temperature
in the diabatic layer, with the scaled vertical coordinate
η = z/

√
ε. With this ansatz, the potential temperature

transport equation becomes

∂Θ̃

∂t
+u ·∇qΘ̃ =QΘ+ SΘ , (9)

from which the vertical advection terms are absent.
Clearly, in the absence of the source and dissipation terms
on the right, and for horizontally homogeneous initial data
Θ̃(0,x, η) = Θ̃∗(η), Θ̃ will remain constant in time and will
just maintain the time independent background stratifica-
tion, which is compatible with QG theory. The theory does
allow for non-zero diabatic source terms, however, and this
generates the leading-order variability of the potential tem-
perature soundings which QG theory cannot account for
(cf. the right panel of fig. 2).

The horizontal wind in the diabatic layer is determined
by geostrophic balance, i.e., by

f0k×u+ cpΘ0∇qπ = 0, (10)

and the (Exner) pressure perturbation, π, is subject to hy-
drostatic balance, i.e.,

cpΘ0
∂π

∂η
= g
Θ̃

Θ0
. (11)

Both these balances are also found in QG theory. The
next essential difference between the two regimes is that,
the diabatic layer being a boundary layer in the sense of
matched asymptotic expansions, the pressure near the top
of the layer has to agree asymptotically with that near the
bottom of the QG bulk flow. Therefore, the diabatic layer
pressure is determined by the pressure at the bottom of
the QG layer together with the hydrostatic relation in (11).
This is in contrast to QG theory in which the pressure is

QG QG-DL

bulk troposphere

diabatic layer

Ekman layer

Fig. 2. Magnitudes of the dynamically evolving deviations of poten-
tial temperature from the background stratificationΘ0+εΘ1(z) (dashed
line) across the pressure scale height according to the QG (left) and the
present three-layer theory (right). Whereas QG theory always assumes
a stable background stratification, dΘ1/dz > 0, dynamic variations of
potential temperature in the diabatic layer are comparable to the vari-
ability of the background stratification, so that it can accomodate neutral
or even unstable stratification.

determined as the solution to a three-dimensional Poisson-
type equation with the potential vorticity as a source term
(Pedlosky 1992).

Due to the hydrostatic balance in (11), the pressure at the
bottom of the diabatic layer will generally differ substan-
tially from that found at the bottom of the QG layer. But
it is the former which drives the Ekman layer, so that the
forcing by the diabatic layer will generate a horizontal dis-
tribution of Ekman pumping that deviates strongly from
the pumping that would be induced by the QG pressure
field.

Next it turns out, as we show below, that the leading
and first order horizontal flow fields in the diabatic layer
are divergence-free. As a consequence, the leading order
vertical velocity is constrained by mass conservation to be
constant throughout the diabatic layer, i.e.,

∂w

∂η
= 0 . (12)

This implies that the vertical velocity at the top of the
Ekman layer is maintained through the diabatic layer and
provides the bottom boundary condition for the vertical
velocity in the QG domain. In short, the diabatic layer
substantially influences Ekman pumping, and hence the
QG flow aloft. The latter, in turn, controls the pressure
field at the top of the diabatic layer, thereby closing a
feedback loop of couplings between the layers. Figure 3
summarizes these causal feedbacks and compares them
with those found in QG theory.
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QG QG-DL

bulk troposphere

diabatic layer

Ekman layer

Fig. 3. Feedbacks between the QG flow in the bulk of the trophosphere
and the underlying boundary layer(s) for QG (left) and QG-DL (right).

3. Dimensionless governing equations and distin-
guished limits

The dimensionless inviscid rotating compressible flow
equations in the beta plane approximation, including gen-
eral diabatic source and transport terms in the thermody-
namic equation, i.e.,

du
dt
+

1
ε3
Θ

Γ
∇qπ+

1
ε

f k×u = Su , (13a)

dw
dt
+

1
ε5
Θ

Γ

∂π

∂z
= −

1
ε5 + Sw , (13b)

dρ
dt
+ ρ∇q ·u + ρ

∂w

∂z
= 0, (13c)

dΘ̃
dt
+w

dΘ1
dz

=QΘ+ SΘ , (13d)

ε
(
Θ̃+Θ1

)
=
π

1
γ−1

ρ
−1 . (13e)

are our point of departure, with ε our main dimensionless
parameter which sets the limit regime for the asymptotic
expansions and is further explained in (19) below, and

d
dt
=
∂

∂t
+u ·∇q+w

∂

∂z
. (14)

The physical meaning of all variables is summarized in
table 1. These equations follow (Päschke et al. 2012),
except that we have introduced the Exner pressure π instead
of the thermodynamic pressure p, see (16) below.

In (13),

∇q = i∂/∂x+j ∂/∂y , ∇ =∇q+k∂/∂z , (15)

denote the horizontal and full three-dimensional gradients,
respectively.

Note that, although the present paper is partially mo-
tivated by the aim of including thermal effects of moist
processes at realistic magnitudes in a balanced flowmodel,
we have omitted themoisture transport equations andmoist

thermodynamic equations of state in (13) to avoid unneces-
sarily lenghty formal developments. In fact, our main aim
is to demonstrate how strong diabatic effects affecting the
lower few kilometers of the atmosphere can be included in
a QG framework in general, whereas the specifics of moist
processes are not essential to our arguments.

Thus, letting asteriscs denote dimensional quantities, the
variables

π =

(
p∗

p∗ref

)Γ
, ρ =

ρ∗

ρ∗ref

, Θ =
Θ∗

T∗ref

,

u =
u∗

u∗ref

, w =
w∗

u∗ref

`∗ref

h∗sc
,

(16)

in (13) are the dimensionless Exner pressure, density, dry
air potential temperature, and the horizontal and vertical
velocities, respectively, while

Γ =
R∗
d

c∗
pd

≡
γ−1
γ

(17)

is the ratio of the dry air heat capacity at constant pressure
and dry air gas constant, where γ is the dry air isentropic
exponent. The dimensionless time and the horizontal and
vertical coordinates used in (13) and the subsequent equa-
tions are

t =
t∗u∗ref

`∗ref

, x = (x, y) =
x∗

`∗ref

, z =
z∗

h∗sc
. (18)

To obtain the exact form of (13) in which ε� 1 appears
as the sole dimensionless small parameter giving rise to
asymptotic expansions, the following distinguished lim-
its for the Mach, Froude, and Rossby numbers have been
adopted:

M2 =
ρ∗refu

∗
ref

2

p∗ref

= ε3 , Ro =
u∗ref

f ∗0 `
∗
ref

=
ε

f0
,

β∗`∗ref
2

u∗ref

= ε2β .
h∗sc
`∗ref

= ε2 .

(19)

Here, f0 and β are O(1) as ε→ 0. Furthermore, (13e) en-
codes the assumption that deviations of the dimensionless
potential temperature from unity are ∆Θ∗/T∗ref = O(ε). Via
the scaling of the buoyancy frequency N∗ref , this provides an
interpretation of the chosen horizontal scale `∗ref as follows:
Since

N∗ref ∼

√
g∗

T∗ref

∆Θ∗

h∗sc
∼

√
ε
g∗

h∗sc
, (20)

we find, utilizing (19) and (20),

N∗ref h
∗
sc

f ∗0 `
∗
ref

∼
√
ε

√
g∗h∗sc
f ∗0 `
∗
ref

∼
√
ε

Ro
M
=

1
f0
=O(1) (ε→ 0) . (21)

That is, `∗ref = `
∗
syn/ f0, where `∗syn = N∗ref h

∗
sc/ f ∗0 is the usual

synoptic length scale and f0 is the ε-independent dimen-
sionless scaling factor first mentioned in the context of (3)
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dependent variables
u horizontal velocity vector
w vertical velocity
ρ density
Θ potential temperature
Θ1 background stratification of potential temperature

(first order in ε)
Θ̃ perturbation potential temperature (first order in ε)
π Exner pressure
q = (qv, qc, qr ) vapor, cloud, and rain water mixing ratios
Sξ turbulent transport term for variable ξ
Qξ source term for variable ξ

independent variables
t time
z vertical space coordinate
x = (x, y) horizontal coordinates

Table 1. Physical meaning of the variables in (13)

above. As a consequence, the reference length and time
scales chosen here are compatible with those adopted by
Pedlosky (1992) in his textbook derivation of the quasi-
geostrophic theory.

Table 2 lists the general characteristics of the mid-
latitude atmosphere (latitude φ = 45◦N) which we have
combined in Table 3 to obtain the reference values for non-
dimensionalization. In particular, u∗ref is an estimate of the
thermal wind shear due to the equator-to-pole potential
temperature difference (Klein 2010). The latter happens to
coincide in magnitude with both the vertical potential tem-
perature variation across the troposphere (see, e.g., Held
and Suarez 1994), and with temperature changes associ-
ated with the latent heat of moisture, ∆Θ∗ ∼ L∗refqv

∗
ref/c

∗
pd
.

Here, qv∗ref ∼ 10−2 kg/kg is a typical saturation water va-
por mixing ratio in the mid-latitudes. Quantitatively, this
amounts to

ε ∼
∆Θ∗

T∗ref

∼
1
10

(22)

for the chosen atmospheric reference conditions. This cor-
responds to a distinguished limit tying latent heating, back-
ground stratification, and Rossby number to the expansion
parameter ε via

∆Θ∗

T∗ref

∼
h∗scN∗ref

2

g∗
∼ Ro ∼ ε . (23)

See also (Klein 2010; Smith and Stechmann 2017; Hittmeir
and Klein 2018).

We remark that the atmospheric flow parameters in ta-
ble 2 are essentially equivalent to those used in the general
modelling framework in (Klein 2010), while the reference
quantities for nondimensionalization in table 3 have been
constructed from these to fit the present application and
streamline the subsequent developments.

Gravitational acceleration g∗ = 9.81 m s−2

Coriolis parameter (φ = 45◦ N) f ∗0 = 10−4 s−1

(d f ∗/dy)0 (φ = 45◦ N) β∗ = 8.0 ·10−12 m−1 s−1

Pressure p∗ref = 105 Pa
Temperature T ∗ref = 300 K
Brunt-Väisälä frequency N∗ref = 10−2 s−1

Dry gas constant R∗
d
= 287 m s−2 K−1

Latent heat of condensation L∗ref = 2.5 J/kg
water component mixing ratio q∗ref = 10 g/kg
Isentropic exponent γ = 1.4

Table 2. Characteristic atmospheric flow parameters

Density ρ∗ref =
p∗ref

RT ∗ref
∼ 1.16 kg m−3

Horizontal velocity u∗ref =
tanφ
π/2

N2

f 2
0
βh∗sc

2
∼ 10 m s−1

Vertical velocity w∗ref =
h∗sc
`∗syn

u∗ref ∼ 0.05 m s−1

Horizontal distance `∗syn =
N

f0
h∗sc ∼ 800 km

Vertical distance h∗sc =
p∗ref

gρ∗ref
∼ 8.1 km

Time t∗ref =
`∗syn

u∗ref
∼ 8 ·104 s

Table 3. Further derived reference values yielding (13)

4. The Quasi-geostrophic (QG) and Ekman Layer the-
ories

a. Quasi-geostrophic (QG) flow

Here we rederive the QG theory following (Pedlosky
1992) neglecting diabatic effects to highlight the essence
of the argument. The analysis proceeds with the expansion
scheme

π = π0 + επ1 + ε
2
(
π(2)+ π2

)
+ O

(
ε2) (24a)

ρ = ρ0+ ερ1 + ε
2
(
ρ(2)+ ρ2

)
+ O

(
ε2) (24b)

Θ = 1 + εΘ1+ ε
2
(
Θ
(2)+Θ2

)
+ O

(
ε2) (24c)

u = u(0)+ εu(1)+ O
(
ε
)

(24d)

w = εw(1) + O
(
ε
)

(24e)

where (πi, ρi,Θi)(z) and
(
u(i),w(i), π(i), ρ(i),Θ(i)

)
(t,x, z)

represent the mean background state and deviations from
it, respectively. Note that we work with dimensionless
variables here, and that the potential temperature is non-
dimensionalized by T∗ref . Since the potential temperature is
also constant in the vertical at leading order, the lead-
ing term in (24c) is just unity. Due to the effects of
gravity, however, the leading order Exner pressure π0(z)
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and density ρ0(z) do exhibit vertical variations at lead-
ing order. For these variables, the non-dimensionalization
merely amounts to π0(0) = ρ0(0) = 1 at the surface.

From the scalings of the pressure gradient and Cori-
olis terms in the horizontal momentum balance in (13a)
it follows that, under leading-order geostrophic balance,
deviations of the pressure from the background state will
arise first at order O(ε2). (The Coriolis term is O(1/ε), yet
the pressure gradient term has a prefactor 1/ε3. Thus, for
these two terms to balance each other, pressure variations
have to be of O(ε2).) The vertical momentum equation
in (13b) is dominated by hydrostatic balance up to at least
five orders in ε and, as a consequence, deviations of density
from the background state follow the pressure scaling and
also start at O(ε2). This explains the expansion schemes
in (24a)–(24c). In (24e) we have used that the vertical
velocity in a QG flow is by one order in the Rossby number
smaller than expected on the basis of the aspect ratio scaling
because the leading-order horizontal divergence vanishes
under geostrophic balance (see, e.g., Pedlosky 1992).

To streamline the notation, we use the following abbre-
viations in the rest of this section(

u, ũ,w, π, Θ̃
)
≡

(
u(0),u(1),w(1), π(2)/Γ,Θ(2)

)
. (25)

Using (25) at the leading order in ε, the momentum
equations, the mass balance, and the potential temperature
transport equation yield
Geostrophic Balance

f0k×u+∇qπ = 0, (26a)

Hydrostatic Balance
∂π

∂z
= Θ̃, (26b)

Anelastic Constraint
ρ0∇q · ũ+

∂

∂z

(
ρ0w

)
= 0, (26c)

Potential Temperature Transport
∂Θ̃

∂t
+u ·∇qΘ̃+w

dΘ1
dz
=QQG

Θ
, (26d)

where we have assigned the superscript QG to the source
term in (26d) to indicate that it represents a source term
with asymptotic scaling compatible with the QG regime
(see the discussion in section 1,a).
For later reference, we conclude from (26a) that

∇q ·u = 0 and u =
1
f0
k×∇qπ . (27)

An additional equation for the divergence of the perturba-
tion velocity, ∇q · ũ, appearing in (26c) is obtained from
the curl of the next-order horizontal momentum equation,
Vorticity Transport(

∂

∂t
+u ·∇q

) (
ζ + βy

)
+ f0∇q · ũ = 0, (28)

with the relative vertical vorticity

ζ = k · (∇q×u) . (29)

Eqs. (26)–(29) constitute the QG model for the un-
knowns

(
u,w, π, Θ̃, [∇q · ũ]

)
(t,x, z) defined in (25) given

the background state through ρ0(z) and (dΘ1/dz) (z). The
essence of the system is revealed through its classical for-
mulation involving an advection equation(

∂

∂t
+u ·∇q

)
q =

f0
ρ0

∂

∂z

(
ρ0 QQG

Θ

dΘ1/dz

)
(30)

for the QG potential vorticity

q = ζ + β y+
f0
ρ0

∂

∂z

(
ρ0 Θ̃

dΘ1/dz

)
. (31)

To verify these equations, one eliminates [∇q · ũ] from
(28) using (26c), and then eliminates w from the remaining
equation using (26d), and finally noticing that ∂u∂z ·∇qΘ̃= 0
follows straight from (26a) and (26b). Given the potential
vorticity field q at any time, the Exner pressure field can be
recovered by utilizing the hydrostatic balance from (26b)
and the divergence of the geostrophic balance (26a), which
gives

ζ =
1
f0
∇q2π, (32)

and inserting into (31) to obtain

∇q2π+
f 2
0
ρ0

∂

∂z

(
ρ0
Θ′1

∂π

∂z

)
= f0(q− βy) . (33)

We note in passing that QG theory obviously relies on
a stable background stratification with Θ′1 = dΘ1/dz , 0
everywhere, as seen from the second term on the left of
(33) which involves this quantity in the denominator.

b. The Ekman layer

The flow in the QG layer has been modelled essentially
as frictionless. Near the ground, however, friction is re-
sponsible to guarantee compliance with a no-slip or related
surface boundary conditions. Ekman layer theory (see,
e.g., Pedlosky 1992) describes this influence of friction.
In the context of QG flows, and under the assumption of a
constant turbulent friction coefficient, Pedlosky shows that
there is a vertical massflux out of or into the friction layer
that is proportional to the vertical vorticity near the ground.
By asymptotic matching, this generates an effective bottom
boundary condition for the surface vertical velocity within
the QG theory, i.e.,

within QG theory:

εw
(1)
QG(t,x,0) =

√
EV

2
ζ
(0)
QG(t,x,0) (34)
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where ζ = vx −uy is the vertical vorticity, and

EV =
2AV

f0h∗sc
2 (35)

is the vertical Ekman number based on the pressure scale
height h∗sc and the turbulent friction coefficient AV . The
usual assumption in the coupling of an Ekman layer with
QG flow is that

E∗V =
EV

ε2 = O(1) (ε→ 0), (36)

so that there is a vertical flow at the top of the Ekman layer
that imposes a nontrivial bottom boundary condition for
w(1) within the QG theory.

5. Geostrophically balanced diabatic layer

In the lower few kilometers, owing to the influence of
moist and other strong diabatic processes, we expect the
potential temperature stratification to vary on a shorter
vertical characteristic scale than it does in the bulk of the
troposphere. Thus we introduce an intermediate layer of
thickness O(

√
εh∗sc) resolved by a stretched vertical coor-

dinate
η =

z
δ

where δ ≡
√
ε . (37)

Within this layer, the potential temperature expands as

Θ = 1+ δ2
Θ1(0)+ δ3

Θ
(3/2)+ O

(
δ3) , (38)

where Θ(3/2) is a time dependent, three-dimensional field,
i.e.,

Θ
(3/2) = Θ(3/2)(t,x, η) . (39)

In this sectionwe label the asymptotic expansion functions,
such as Θ(3/2), by integer multiples of 1/2 to indicate that
we are expanding in terms of powers of δ = ε1/2 and to
distinguish the expansion functions introduced here from
those utilized in the QG expansions of the previous sec-
tion. Thus, e.g., φ(1) would be a variable from QG theory
whereas φ(2/2) would be the corresponding expansion term
for the same physical quantity at the same order in ε in the
diabatic layer.

For a layer of this thickness, and provided the horizon-
tal velocity magnitude remains comparable to that in the
bulk troposphere, turbulent friction will play a role only
at higher orders. Indeed a rescaling of the vertical coordi-
nate by ε instead of by

√
ε is needed in the Ekman layer

to lift turbulent friction to a leading-order effect (see the
discussion in section 4b above). As a consequence, the di-
abatic layer physics differs from that seen in the bulk of the
troposphere mainly by the scaling of potential temperature
perturbations as expressed in (38).

The particular asymptotic ansatz in (38) guarantees that
the total variation of potential temperature across the layer

is comparable in magnitude to that seen also in the QG
regime. In fact, consider some height z =

√
εη for a fixed

value of the stretched coordinate η. The QG-layer expan-
sion of potential temperature from (24c) yields, via Taylor
expansion, Θ = 1+ εΘ1(0)+ ε

3
2 ηΘ′1(0)+ h.o.t. (see also

(A3) in the appendix), where the prime notation repre-
sents the derivative with respect to the unscaled vertical
coordinate, z, as before. Thus, the deviation of poten-
tial temperature from its value at the ground is O(ε 3

2 ),
i.e., comparable to the deviations allowed for in diabatic
layer expansion in (38). The key new aspect of the latter
is, however, that flow-induced spatio-temporal variations
of potential temperature are no longer small perturbations
away from a given, approximately linear, background strat-
ification but appear directly in the leading order variability,
since the first two terms in (38) are constants. See also the
right panel of fig. 2 for illustration.

The remainder of this section summarizes the derivation
of the diabatic layer dynamics, which differs from QG
dynamics and reveals a decisive influence of diabatic and
moisture effects on the lower troposphere.

a. Expansion scheme for the diabatic layer

The expansion scheme in the new layer reads

π = 1+ δ π1/2 + δ
3 π3/2 + δ

4 π(4/2)+ δ5 π(5/2)+ O
(
δ5)
(40a)

ρ0 = 1+ δ ρ1/2+ δ
2 ρ2/2+ δ

3 ρ(3/2) + O
(
δ3) (40b)

u = u(0/2) + δu(1/2)+ O
(
1
)

(40c)

w = δ2w(2/2)+ O
(
δ2) (40d)

where (u,w, π, ρ,Θ)(i/2) (t,x, η) have the same dependen-
cies as those listed for Θ(3/2) in (39).

Note that in (40) we dropped some intermediate order
terms from the expansions to further streamline the nota-
tion and derivations below. These expansions lead to a
closed system of leading order equations so that they are
consistent with the scaling regime considered. None of
the omissions is ad hoc, however. To the contrary, the ab-
sence of the omitted intermediate level perturbations can
be justified by first including these terms and then demon-
strating that they must vanish for a consistent expansion
(not shown).

b. Diabatic layer governing equations

Inserting (38), (40) into the dimensionless governing
equations from (13) keeping in mind the definition of δ =
√
ε we obtain the following leading order equations

Geostrophic Balance
f0k×u(0/2)+

1
Γ
∇qπ(4/2) = 0, (41a)
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Hydrostatic Balance
1
Γ

∂π(4/2)

∂η
= Θ(3/2) , (41b)

Mass Balance ∇q ·u(0/2) = 0, (41c)

Potential Temperature Transport(
∂

∂t
+u(0/2) ·∇q

)
Θ
(3/2) = (QΘ+ SΘ)(3/2) . (41d)

These equations must be supplemented by initial condi-
tions for Θ(3/2), by a closure for the source terms on the
right hand side of (41d), and by the top-of-the-boundary
layer matching conditions. The latter will be discussed in
subsection c below.

Information regarding the leading order vertical velocity
in the diabatic layer is obtained from the next order expan-
sions. The horizontal momentum balance at the next order
is

f0k×u(1/2)+
1
Γ
∇qπ(5/2) = 0, (42)

and this implies
∇q ·u(1/2) = 0 . (43)

Now, since the next order mass balance is

∇q ·u(1/2)+
∂w(2/2)

∂η
= 0 (44)

we conclude that

w(2/2)(t,x, η) ≡ ŵ(2/2)(t,x) (45)

is independent of η.

c. Matching to the QG flow

To obtain a physically consistent smooth transition be-
tween the solution in the diabatic layer and the QG flow in
the bulk of the troposphere, the two solutions have to agree
asymptotically (in the limit ε→ 0) in an overlap region.

The horizontal velocity u(0/2) is entirely determined by
the Exner pressure perturbation field π(4/2) through the
geostrophic balance in (41a). Since this equation is the
exact equivalent of the corresponding geostrophic balance
equation for the bulk flow from (26a), the horizontal veloc-
ities in the QG and DL regions will automatically match
in an overlap region between the two layers if the pressure
perturbations π(2) and π(4/2), respectively, do so.

The vertical velocity is constant in the vertical direction
in the DL as shown in (45). As a consequence, matching
vertical velocities between the QG and DL flows implies
that

w(2/2)(t,x, η) ≡ ŵ(2/2)(t,x) = w(1)(t,x,0) . (46)

We derive the required large η behavior of Θ(3/2) and
π(4/2) by van Dyke’s approach (see van Dyke 1975; Eck-
haus 1979). Thus we expand the QG solutions for z � 1,

replace z = δη in the resulting expressions, and then com-
pare like powers of δ with the DL solutions. For the
potential temperature this yields (see (24c) and (38))

1+δ2
Θ1(0)+δ3

Θ
′
1(0)η = 1+δ2

Θ1(0)+δ3
Θ
(3/2)(t,x, η)+h.o.t .

(47)
That is, we require

Θ(3/2)(t,x, η)
η

−Θ′1(0) → 0 (η→∞), (48)

or equivalently δ→ 0 at fixed z. Considering the evolution
equation forΘ(3/2) in (41d), this conditionwill bemet if it is
met initially at t = 0 and if the driving terms (QΘ+ SΘ)(3/2)

vanish sufficiently rapidly for large η. The latter condition
must be satisfied if QG theory is to be applicable in the
bulk of the troposphere, i.e., above the bottom boundary
layers, in the first place.

As regards matching of the Exner pressure, we utilize
the fact that in both the QG and the DL regions we have
hydrostatic balance. Accordingly, in the QG layer the
Taylor expansion for z � 1 with the replacement z = δη
reads (see the appendix)

π(t, x, z;ε)|QG = 1− δΓη+ δ3
ΓΘ1(0)η (49)

+ δ4
(
π(2)(t,x,0)+ΓΘ′1(0)

η2

2

)
+h.o.t. .

The Exner pressure representation in the diabatic layer is

π(t, x, z;ε)|DL = 1− δΓη+ δ3
ΓΘ1(0)η (50)

+ δ4 ©«π(4/2)(t,x,0)+Γ
η∫

0

Θ
(3/2)(t,x, η′)dη′ª®¬

+h.o.t. .

Provided that Θ(3/2) approaches its asymptotic behavior
from (48) sufficiently rapidly, we conclude that

π(4/2)(t,x,0) = π(2)(t,x,0)+∆π(4/2)DL (t,x), (51)

where the effective pressure change across the DL reads

∆π
(4/2)
DL (t,x) = −Γ

∞∫
0

[
Θ
(3/2)(t,x, ζ)−Θ′1(0)ζ

]
dζ . (52)

Importantly, this shows that the dynamically relevant pres-
sure field changes substantially across the diabatic layer as
discussed in section 2.

d. Matching to the Ekman layer

Bottom boundary conditions for the diabatic layer are
provided by matching to the Ekman layer from section 4b.



10 AMS JOURNAL NAME

The latter remains entirely unchanged, except that the vor-
ticity at the bottom of the QG flow in section 4b is to be
replaced by that at the bottom of the DL, i.e, we have

with QG-DL-Ekman theory:

w
(1)
DL(t,x,0) =

√
E∗V
2

ζ
(0)
DL(t,x,0) = w

(1)
QG(t,x,0) . (53)

The second equality results from the fact that throughout
the diabatic layer the vertical velocity w(1) is independent
of the vertical coordinate, η, according to (46), so that
w
(1)
QG(t,x,0) = w

(1)
DL(t,x,0) as announced in section 2.

6. Summary and Discussion

In this paper we have extended the classical quasi-
geostrophic / Ekman layer theory (see Pedlosky 1992) by
including a low-altitude “diabatic layer” (DL) of interme-
diate thickness. Within this layer, dynamically evolving
potential temperature variations arise not as small devia-
tions froma stable background stratification, but are instead
comparable to the latter. Moreover, the synoptic-scale hor-
izontal mean stratification in the DL is not restricted to
being stable. The situation is sketched in fig. 2.

This latter result is important in the light of a proper
interpretation of the role of the DL for quasi-geostrophic
theory: According to the classical theory, QG solutions
in the bulk of the troposphere depend crucially on the
vertical velocity near the ground as generated by orography
or by the outflow from the Ekman friction layer of height
O(εh∗sc), see fig. 3. In the present theory, this vertical
velocity equals that at the bottom of the DL of height
O(
√
εh∗sc), i.e., w(2/2)(t,x,0) because, according to (44),

w(2/2) is homogeneous in the vertical coordinate η and is
thus mediated without change to the bottom of the bulk
tropospheric flow.

Ekman theory proceeds exactly as known from classical
textbooks, so that the Ekman layer outflow vertical velocity
can be expressed in terms of the leading order vertical
vorticity ζ (0) at the bottom of the next layer, which in the
present case is the diabatic layer. Since the QG and DL
flows are both geostrophic, the vorticity may be expressed
in terms of the Exner pressure perturbation field and we
arrive at

w(1) =
E∗V
2 f0

∇q2
(
π(2)+∆π

(2)
DL

)
. (54)

Here ∆π(2)DL is the (vertical) change of the dynamically rel-
evant Exner pressure variation across the DL. Thus we
conclude that diabatic and moist processes in this layer
influence the QG flow at leading order by contributing to
pressure and thus vorticity variations on top of the Ekman
layer which then, in turn, determine the vertical velocity
also at the lower boundary of the QG layer.

Corroboration of the existence of a dynamically relevant
layer of 3 km height in the lower troposphere within which

the energetically dominant part of moist processes take
place is found in in the literature. For instance, Wood and
Bretherton (2006) discuss how lower troposphere statistic
stability plays a strong role in stratiform low cloud devel-
opment, and Yue et al. (2011) argue that strong variations
in static stability are commonly seen in the ITCZ and other
stormy regions of the globe.

As an outlook to future work we mention that in the
present paper we have adopted the dry air QG theory for
the description of the bulk of the troposphere. A promis-
ing extension of the present work would be to adopt the
recent moist QG model developed by Smith and Stech-
mann (2017) (see also Marsico et al. 2019; Wetzel et al.
2019) and to include the diabatic layer. Moist processes
in the DL will likely have a multiscale character, and a
their thorough analysis may proceed along the lines of
Majda and Khouider (2002); Khouider and Majda (2006);
Owinoh et al. (2011); Hittmeir and Klein (2018) allowing
for multiple flow features (shallow and deep for example)
and, more importantly, cloud types to evolve and interact
with each other. Another current development concerns
explicit frontal solutions of the new three-layer model that
would include known QG fronts in the bulk troposphere
and a matching flow structure in the diabatic layer. This
would provide idealized mutual tests for the theory on the
one hand, and for full-fledged weather forecast models on
the other.
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APPENDIX A

Matching of pressures between the QG and
intermediate layers

As regardsmatching of the Exner pressurewe utilize that
in both the QG and intermediate layers we have hydrostatic
balance. Accordingly, in theQG layer the Taylor expansion
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near z = 0 with the replacement z = δη reads

π(t, x, z) (A1)

= 1+ δ4π(2)(t,x,0)−
∫ z

0

Γ

Θ(t,x, z′)
dz′

= 1+ δ4π(2)(t,x,0)−Γ
(
z− δ2

[
Θ1(0)z−Θ′1(0)

z2

2
+ ...

] )
= 1+ δ4π(2)(t,x,0)−Γ

(
δη− δ3

Θ1(0)η− δ4
Θ
′
1(0)

η2

2
+ ...

)
= 1− δΓη+ δ3

ΓΘ1(0)η+ δ4
(
π(2)(t,x,0)+Θ′1(0)

η2

2

)
+ ...

where we have used that

1
Θ
=

1
1+ δ2Θ1+ δ4(Θ(2)+Θ2)+ ...

(A2)

= 1− δ2
Θ1− δ

4
(
Θ
(2)+Θ2−

1
2
Θ

2
1

)
+ ...

as well as the Taylor expansion of Θ1 for z� 1,

Θ1(z) = Θ1(0)+Θ′1(0)z+Θ
′′
1 (0)

z2

2
+ ... . (A3)
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