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ABSTRACT OF THE THESIS

Data-Driven Approaches to Solve Inverse Problems

by

Peijie(Ricardo) Qiu

Master of Science in Computer Science

Washington University in St. Louis, May 2021

Research Advisor: Professor Umberto Villa & Ulugbek Kamilov

The main purpose of this thesis is to discuss data-driven approaches to solve inverse problems

in image reconstruction. In the Bayesian framework, the image prior serves as a regularizer

in the computation of a maximum-a-posterior estimation of the reconstructed image. Clas-

sical image priors include Gaussian random space(e.g. Tikhonov regularization) or Besov

prior (e.g. Total Variation regularization). Inspired by generative adversarial networks, a

critic (discriminator) can serve as a regularizer, because of its capability of distinguishing the

distribution of the ground-truth images from the distribution of the naively reconstructed

images with classical regularization functional. Another data-driven approach, regulariza-

tion by denoising (RED), provides a flexible and effective way to combine the state-of-the-art

denoisers and model-based methods with a variety of optimization strategies to solve the in-

verse problem. Unlike traditionally hand-crafted regularizers, the data-driven regularization

has the potential to learn an optimal regularizer from the data. In this thesis, we will con-

sider two widely used linear forward models, and two data-driven approaches to solve inverse

problem: adversarial regularizer and regularization by denoising.
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Notation

The notations which will be used in the remain of this thesis.

d← the measurement data

m← the sought-after parameter or image

A← the linear forward operator

n← the additive noise

(nx, ny)← pixel index for each image pixel

θ ← trainable parameters in the paraterized adversarial regularizer

Rθ ← the parameterized regularizer

f ← denoiser

σ ← the additive Gaussian noise standard deviation

xii



Chapter 1

Introduction

In this section, the inverse problem is introduced. We also provide analysis of the ill-

posedness of inverse problem and how it can be formulated as optimization problem. Next,

modern data-driven approaches will be introduced to improve image quality including the

construction of advanced regularization functionals. Related work in solving the inverse

problem using data-driven approaches will also be reviewed as the motivation for this project.

Finally, the outline of the whole thesis will be presented.

1.1 Inverse Problems

In many medical imaging modalities, for example computed tomography, the direct mea-

surement that we can obtain through the imaging system is not the image itself. The mapping

from the sought-after parameter (image) to the measurement data is generally defined as

forward model. The measurement data is often corrupted by noise. Thus, the measurement

data are often modeled as

d = F (m) + n, (1.1)

where d is the measurement data, F is the forward model, m is the sought-after parameter, n

is the noise. The goal of an inverse problem is to reconstruct m given the noisy measurement

d and the forward model F .
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1.1.1 Ill-posedness

Solving the inverse problem is non-trivial because of its ill-posedness. According to the

Hadmard’s definition, a well-posed inverse problem satisfies the three conditions below,

1. The solution m always exists for all the measurement d. (Existence)

2. the solution m is unique for all d. (Uniqueness)

3. The solution is stable with respect to small perturbations, which means the solution

m changes continuously with respect to the measurement d. (Stability)

In contrast, if one of the above properties is not satisfied, the inverse problem is ill-posed.

For the linear forward operators which are used in this thesis, the goal is to find the

solution m such that

d ≈ Am, (1.2)

where A denotes the linear forward operator. This problem is generally ill-posed, because in

practical applications, the stability of the solution is hard to achieve.

1.2 Inverse Problems as Optimization

To overcome the instability of the ill-posed inverse problems, we reformulate the inverse

problem as optimization problem by incorporating a regularization term. For a properly cho-

sen regularization function, this approach gives raise to a convex deterministic optimization

problem, which then admits a unique solution. However, the quality of the solution depends

on the choice of the regularization. This motivates us to find an advanced regularization

functional based on our prior information about the image.
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1.2.1 Data Fidelity & Regularization

The variational formulation of an inverse problem can be written as

m∗ = arg min
m

1

2
‖ Am− d ‖2

2 +λR(m), (1.3)

where 1
2
‖ Am − d ‖2

2 is the data fidelity term, R(x) is the regularization term, and λ

controls the regularization strength. The data fidelity term measures the data consistency

of the solution m∗ to the observation d. The regularization term imposes the desired prior

knowledge onto the solution. For example, Tikhonov regularization induces a solution with

small norm, generalized Tikhonov regularization produces a smooth solution, Total Variation

regularization preserves edges. However, these regularization also introduce bias in the

reconstructed images. Tikhonov does not capture well edges, Total Variation leads to prefer

piece-wise constant images, thus introducing “cartoon” like artifact in the reconstruction.

1.2.2 Data-Driven Approaches for Finding Optimal regularization

To overcome the above challenges, in this thesis we explore approaches to learn optimal

regularization functionals from the data. The methods we introduce are related to the

adversarial learning regularizer and regularization by denoising (RED).

The basic hypothesis of adversarial regularizer is that the ground-truth images m fol-

lows an unknown distribution Pmr . The images mrecon reconstructed using any classical

method follows a distribution Pmrecon . According to the theory of adversarial learning, we

can learn a critic in a semi-supervised manner to differentiate the true distribution Pmr from

Pmrecon , outputting small values for samples from true distribution Pmr while larger values

for samples from Pmrecon . Then the learned critic can be used as a regularization functional

in the variational regularization method. The solution can be obtained using the numerical

optimization methods that will be discussed in Chapter 2.

Regularization by denoising (RED)combines state-of-the-art denoiser with the model-

based method for image reconstruction. RED enables the flexibility to choose among many

denoisers, from median filter to CNN-based denoiser, to regularize the inverse problem.
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Although the CNN-based denoiser is generally trained in a supervised way, adding the noise

to the ground-truth image to generate the training dataset is a trivial process.

Another advantage of RED is that the cost function in the reconstruction problem is

well-defined and convex, which guarantees converge to the global optimum. A family of

convex optimization methods can then be used to solve this convex minimization problem,

for example, fixed-point solution, gradient-based method, etc.

1.2.3 Related Work

Learning image priors has gained a lot of attention in solving inverse problems in the

past decade. Previous work can be characterized as either discriminative supervised learning

methods or the adversarial unsupervised learning methods. Both approaches incorporate

physical models and numerical optimization methods to produce the final solution.

Supervised learning

Zhang et al.[1] proposed learning the residual mapping between the true image and the

observation. The learned network can serve as a denoising prior. It can also be plugged

into the variational regularization model to solve the inverse problem by variable splitting

optimization strategies, for example half-quadratic splitting.

Jin et al.[2] proposed learning a deep convolutional neural network (U-net) which inputs

a direct inversion of the computed tomography using filtered back projection (FBP) method

and regresses the FBP result directly to the ground-truth images. Once the network is

trained, it is plugged into different iterative method,(ISTA[3], FISTA[4], ADMM[5]) to solve

the inverse problem. The learned network is able to remove the artifacts caused by the

direct inversion using filtered back project method, and hence, is effective to solve the inverse

problem.

Venkatakrishnan et al.[6] introduced a powerful and flexible framework, Plug-and-Play(PnP),

for inverse problems in image reconstruction. This model-based method is able to combine
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different state-of-the-art priors (for example, priors learned by a neural network) with differ-

ent forward models in different tasks to simplify the design of image reconstruction methods

while providing a variety of possible solutions. The underlying principle of this methodol-

ogy is to take advantage of the Alternating Direction Method of Multipliers (ADMM) that

decouples the optimization of data fidelity terms and regularization terms. The resulting

method minimizes each term separately and alternatively. However, the PnP framework has

no explicit cost function making the convergence and convexity analysis difficult.

Romano et al. [7] mitigated this issue by proposing the regularization by denoising(RED)

method. This method builds on the top of adaptive image filters. By deploying this method-

ology, we can formulate an explicit convex cost function, while can be minimized with differ-

ent optimization algorithms, such as gradient descent, ADMM, Fixed point iteration. With

this approach, a variety of state-of-the-art denoisers, such as deep denoising convolutional

neural network(DnCNN)[8, 9], can be chosen to be a regularizer.

Unsupervised learning

Lunz et al.[10] proposed the concept of learning an adversarial regularizer in an unsu-

pervised setting. This work is inspired by the critic in Wasserstein generative adversarial

networks (WGANs [11, 12]), which is able to tell apart the true distribution of the ground-

truth images from a fake distribution. Therefore, a critic can be learned to replace the

variational regularization term in the physical model to solve the inverse problem iteratively.

Mukherjee1 et al.[13] extends the idea of adversarial regularizer to learn convex adver-

sarial regularizers. They propose a network called the data-adaptive input-convex neural

network (ICNN) which serves as the regularizer. Because the data fidelity term is convex in

the physical model, if the regularizer is convex as well, the whole problem will be a convex

optimization problem. Families of convex optimization methods can be hence applied to

solve the inverse problem iteratively. The convergence of the iterative optimization method

can be analyzed with standard methods.
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1.3 Contribution of this thesis

The main contribution of this thesis is the implementation of a computational framework

for solving inverse problems using data-driven regularization functionals using PyTorch[14].

Automatic differentiation of PyTorch eases the way to hand-craft the gradient of the cost

function, especially when the neural networks are involved in solving the inverse problem

iteratively. Besides, we compare the performance of several regularization methods from

classical regularizations to data-driven approaches.

1.4 Thesis Outline

In the remaining of this thesis, we will introduce two widely used forward models and

model-based reconstruction method using standard regularization in Chapter 2. In chapter 3,

adversarial regularizer will be introduced. In chapter 4, we will introduce the regularization

by denoising (RED). In the chapter 5, the conclusion of this research will be discussed.
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Chapter 2

Model-based Approaches to Image

Reconstruction

In this chapter, we present two commonly used imaging operators (also called forward

models): the Gaussian Blurring operator, and the Radon transform. Reconstructing images

from their measurements is formulated as an optimization problem. Finally, different com-

binations of optimizers and regularization terms are presented to solve the corresponding

optimization problem via PyTorch[14]. The image reconstruction algorithms are of vital

importance to our proposed method on Chapter 3 to generate the training dataset online.

2.1 Forward Model

The forward model is a map from the sought image or parameter to a measurable quantity.

The forward model is usually a physical model, such as the equations govern propagation

of energy, the absorption of certain substance, and etc. For example, the X-ray is used

to capture the measurable quantity of computed tomography. The energy of the X-ray

is attenuated by the tissues, organs, and other objects within a human body, then the

measurable quantity through any inhomogeneous object can be used to reconstruct the X-

ray image. In this section, two common linear forward operators, Gaussian blurring operator

and Radon transform, are presented.
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2.1.1 Gaussian Blurring

Image blurring is one of the most common forward models or imaging operators en-

countered while capturing images. It is caused by motion, out of focus, or other physical

variations. Generally, image blurring is modeled by convolving the image m with a kernel k:

d(x, y) =

∫
Ω

k(x− x′, y − y′)m(x′, y′)dx′dy′, (2.1)

where Ω is the domain of the image m, d denotes the measurement data. Mathematically, a

Gaussian kernel is defined as:

k(x, y) = C exp

(
−x

2 + y2

2σ2

)
, (2.2)

σ > 0 controls the width of the kernel, and C is normalization parameter.

Convolving an image with a Gaussian kernel is equivalent to weighted average over a

patch of neighbor pixels. For numerical computation, a Gaussian kernel can be discretized

as a N ×N 2-dimensional matrix K where each element

Ki,j = h C exp

(
−((i− j)h)2

2σ2

)
1 ≤ i, j ≤ N, (2.3)

where h = 1
N

, N is the kernel size. A Gaussian kernel is also separable which means

convolution with a 2D Gaussian kernel can be implemented by convolving with two 1D

Gaussian kernels, separately, reducing computational cost.

As a result, the blurring measurement d can be computed as the discretized convolution

between m and a Gaussian kernel K

d[nx, ny] =
∑
i

∑
j

m[nx − i, ny − j]K[i, j], (2.4)

where (nx, ny) is the index of each pixel. The discrete convolution, however, is in essence a

matrix multiplication by taking advantage of the Toeplitz matrix and unrolling m and d into

1-dimensional. Therefore, the measurement d can be expressed as the linear combination of
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the ground-truth image m

d = Akm, (2.5)

where Ak is a doubly block circulant matrix, a special case of Toeplitz matrix.

2.1.2 Radon Transform

The Radon transform is used to obtain computed tomographic scans, which is a projection

of the original sought-after image. Therefore, the inversion of Radon transform provides a

way to reconstruct the original image and hence, the tomographic tomography.

The Radon transform is defined as an set of integrals along paths. The most straight-

forward path is a set of straight lines, which corresponds to the X-ray transform. The Radon

transform is defined as

Rf(L) =

∫
L

f(x) dx, (2.6)

where f is an unknown attenuation coefficients, L is a straight line, commonly the X-ray

path.

For a X-ray tomography, the received energy I at the detector location can be expressed

as an attenuation process according to Beer’ Law,

I = I0e
m(x)∆x, (2.7)

where I0 is the incident energy at the source, m is the attenuation coefficient(tomographic

image), ∆x is the length of the X-ray through the object. According to equation(1.7), for

any point x in any inhomogeneous object, the attenuation of a monochromatic X-ray can be

modeled as

I = I0 exp

{
−
∫
L

m(l)dl

}
, (2.8)

where L dentoes the path of the X-ray through the object. In practice, q parellel X-rays are

used. Assuming each source energy is identical, for each X-ray the measured quantity is the

ratio between source energy I and the incident energy Ii on the receiver plane, that is∫
Li

m(l)dl = − ln

(
Ii
I0

)
, i = 1, . . . q, (2.9)
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where Li is the path of X-ray i through the object. As indicated by equation(1.9), the Radon

Transform of the attenuation coefficients m equals to ratio that we can measure.

To discretize the integral, an inhomegeneous object is approximated by N homogeneous

materials in the object. Then ratio between the incident energy and source energy is dis-

cretized as

− ln

(
Ii
I0

)
=

∫
Li

m(l)dl

=
N∑
j=1

mj∆xj

, (2.10)

where ∆xj is the length of the X-ray through material j. Let us further assume, for each

pixel at location (nx, ny) on the image place, the attenuation coefficients mnx,ny is constant.

Then the ratio can be further rewritten as

− ln

(
Ii
I0

)
=

∑
(nx,ny)∈rayi

mnx,ny∆Linx,ny
, (2.11)

where ∆Linx,ny
denotes the length of ray i at pixel (nx, ny). If the pixels on the image are

stacked into a single vector with each element mj = mnx,ny , the lengths of all X-rays through

an object can be represented as a matrix A ∈ Rq×N , those entries are given by

Ai,j =

∆Linx,ny
if mnx,ny ∈ rayi

0 otherwise
. (2.12)

Therefore, the forward operator can be linearized by the equation

d = Am. (2.13)

Notice that the matrix A is sparse. It has only O(
√
N) non-zero elements per row.
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2.2 Reconstruction as Optimization

As we described in Chapter 1; the image formation process can be modeled as ,

d = F (m) + n, (2.14)

where the d is the measurement data, m is the sought-after image, F is the forward model,

n is the noise. The reconstruction problem can then be casted as maximizing the poste-

rior probability of ground-truth image m given its measurements d by use of the Bayesian

framework, we have

m∗ = arg max
m

Prpost(m|d)

= arg max
m

Prlike(d|m)Prprior(x)

= arg min
m
− log Prlike(d|m)− log Prprior(m),

(2.15)

where the negative log-likelihood − log Prlike is related to data fidelity term measures the

difference between m and F (x), while the negative log-prior − log Prprior is related to the

regularization term R(x). Then the equation (2.3) can be rewritten as

m∗ = arg min
m

1

2
‖ F (m)− d ‖2

2 +λR(m), (2.16)

which turns the image reconstruction as an optimization problem. The parameter λ controls

the strength of the regularization and R(m) corresponds to the image prior. Two widely

used regularization methods are discussed in this section: Tikhonov regularization and Total

Variational regularization.

2.2.1 Tikhonov Regularization

Tikhonov regularization is one of the most commonly used regularization terms in ill-

posed inverse problems. Tikhonov regularization can be derived probabilistically by making

two assumptions: the ground-truth discrete image or parameter m is a Gaussian random

varible with zero mean and covariance matrix C ∈ RN×N , m ∼ N (0, C) ; the noise term n
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is additive Gaussian noise with zero mean and a covariance matrix Σ ∈ Rq×q, n ∼ N (0, Σ) .

Then according to equation (1.15), the reconstruction problem can be rewritten as

m∗ = arg min
m
− log Prlike(d|m)− log Prprior(m)

= arg min
m
− log

1√
(2π)qdet(Σ)

exp

(
−1

2
‖ F (m)− d ‖2

Σ−1

)
− log

1√
(2π)Ndet(C)

exp

(
−1

2
‖ m ‖2

C−1

)
= arg min

m

1

2
‖ F (m)− d ‖2

Σ−1 +
1

2
‖ m ‖2

C−1

. (2.17)

The Tikhonov regularization term corresponds to R(m) = 1
2
‖ m ‖2

C−1=
1
2
‖ Γm ‖2

2 with

Γ = C−
1
2 , which is usually defined as generalized Tikhonov regularization.

The generalized Tikhonov regularization term is therefore formally defined as

RT ik(m) =
1

2
‖ Γm ‖2

2, (2.18)

when Γ is an identity matrix, the Tikhonov regularization is reduced to a L2 penalty term.

In cases where Γ is the discretization of a differential equation, it can impose smoothness

of the image. The drawbacks of Tikhonov regularization is also obvious. The Tikhonov

regularization loses sharp edges and details as it smoothes out them.

2.2.2 Total Variation Regularization

Unlike Tikhonov regularization term which uses the L2 norm, the total variation regu-

larization takes advantage of the L1 norm to impose sparsity. Sparsity in the gradients is

used to preserve edge information. The total variation is defined as

Rtv(m) =

∫
Ω

|∇xm(x)|dx, (2.19)

This discretion of T.V. in 2D space domain is given by

Rtv(m) =
∑
nx,ny

√
|mnx+1,ny −mnx,ny |2 + |mnx,ny+1 −mnx,ny |2, (2.20)
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where (nx, ny) denotes the index of each pixel. In the optimization phase, this discretized

total variation method is intractable by gradient-based iterative methods, because of its

non-differentiability. Thus, the sub-gradient method or primal-dual method must be used.

A variant of T.V. is the anisotropic total variation, defined as

Rtv−aniso(m) =
∑
nx,ny

|mnx+1,ny −mnx,ny |+ |mnx,ny+1 −mnx,ny |, (2.21)

, which is easier to optimize. While as all the anisotropic function, the anisotropic total-

variation norm is variant to rotations preserving the edges aligned with the coordinate axes.

Efficient proximal methods exists for anisotropic T.V., however, this functional is not ratio-

nally invariant.

The total variation is intuitive. Statistically, the absolute gradients of the majority of

the natural image are close to zero except for the high-frequency edges, details and other

unwanted components. Therefore, by reducing the total variation, the reconstructed signal

has a high probability to eliminate possibly unwanted components and hence to reconstruct

the ground-truth.

2.2.3 L-Curve

Finding the regularization strength is an empirical question, because there is no canon-

ical way to measure the quality of the reconstructed images. The quality of reconstructed

signal is traded-off between the data fidelity term and regularization term. The higher the

regularization is, the more the information will be lost. In the contrast, smaller regular-

ization may cause to instability. Ideally, an equilibrium should be achieved by balancing

out the data fidelity term and regularization term to obtain both visually accurate and

quantitatively accurate reconstructions. In addition, different images may need different

regularization strengths which make choosing the regularization strength a challenging task.

L-curve criterion will be introduced in this part to mitigate this problem.

The methodology of L-curve criterion is straight-forward. For different regularization

strengths, the norm of the data residual is plotted against the norm of the regularization

term in a logarithmic scale. As informed by its name, this curve is generally L-shaped. The
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corner on the L-curve suggests the optimal regularization strengths among all the candidates.

Although no theoretical guarantees exist for this method, it provides a heuristic way to search

out the regularization strength.

2.3 Overview of Numerical Optimization Methods

To solve the optimization problem, many iterative methods exist. The most commonly

used is gradient-based method, specially, when the cost function is convex, for example, using

either Tikhonov regularization or Total Variation regularization. The gradient method can

be guaranteed to converge to its global optimum.

2.3.1 L-BFGS Optimizer

L-BFGS[15] is a powerful numerical optimization method for solving large-scale opti-

mization problems. It is a Quasi Newton’s method which efficiently approximates the

inverse of the Hessian using historical information. The L-BFGS also extends the Broy-

den–Fletcher–Goldfarb–Shanno (BFGS[16]) algorithm while mitigating its shortcoming of

explicitly stores a dense inverse Hessian matrix. The update rule of BFGS is formally de-

fined as

xk+1 = xk − αkBkgk, (2.22)

where αk is the step size at the kth iteration, Bk is the inverse Hessian matrix, gk is the

derivative. The inverse Hessian matrix is further updated as

Bk+1 = V T
k BkVk + ρksks

T
k , (2.23)

where sk = xk+1 − xk, yk = gk+1 − gk, ρk = 1
yTk sk

, Vk = I − ρkyks
T
k . In the BFGS, a

dense inverse Hessian approximation (n× n) has to be stored. When n is large, the inverse

Hessian approximation is prohibitively impractical to be stored in memory, which leads to

the L-BFGS algorithm.
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The key idea of L-BFGS is to store only a few vectors in the history, the pair of {sk, gk},
used to construct the Hessian matrix. Both sk and gk are vectors with dimension of n × 1.

According to equation (1.23), the inverse Hessian approximation can be expressed as

Bk =(V T
k−1 . . . V

T
k−m)B0

k(Vk−m . . . Vk−1)

+ ρk−m(V T
k−1 . . . V

T
k−m+1)sk−ms

T
k−m(Vk−m+1 . . . Vk−1)

+ . . .

+ ρk−1sk−1s
T
k−1,

(2.24)

where m is the number of stored pairs {sk, gk} in the history, B0
k is the initial guess of inverse

Hessian approximation. A two-loop recursion can be derived to compute the Hkgk efficiently

as is shown in Algorithm 1. B0
k can be obtained by solving the system of equations that

Algorithm 1 two-loop recursion Hessian approximation
q ← gk
for i = k − 1, . . . , k −m do

αi = ρis
T
i q

q = q − αiyi
r ← B0

kq
for i = k −m, . . . , k − 1 do

β = ρiy
T
i r

r = r + si(αi − β)

Bkgk = r

r = B0
kq. Practically, B0

k =
sTk−1yk−1

yTk−1yk−1
I has been proven to be effective. Therefore, the whole

optimization of L-BFGS is formulated as Algorithm 2.

Algorithm 2 L-BFGS update

Require: pre-defined m, initial guess x0

while x has not converged do

B0
k ←

sTk−1yk−1

yTk−1yk−1
I

pk ← Bkgk (where Bkgk is obtained by Algorithm 1)
Line search for step size αk
xk+1 ← xk − αkpk
update the vector pair {sk, gk} in current iteration
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Table 2.1: Tissue Labels with Corresponding Distributions.

Tissue Labels Distribution
Water 0 0.

Fat 1 U(.005, .015)
Skin 2 U(.002, .070)

Glandular 29 U(.005, .015)
Nipple 33 U(.002, .070)
Muscle 40 U(.010, .020)

Ligament 88 U(.005, .015)
TDLU 95 U(.005, .015)
Duct 125 U(.005, .015)

Artery 150 U(.360, .465)
Tumor 200 U(.030, .050)
Vein 225 U(.360, .465)

U(a,b) denotes a uniform distribution between a and b.

2.4 Image Dataset

The dataset used in this thesis is from Virtual Imaging Clinical Trial for Regulatory

Evaluation(VITRE)[17]. We used VITRE to generate 973 3D numerical breast phantoms

with size of 1024 × 1024. However, in this thesis, we only focus on certain structure of the

images for example, vein, tumor, artery, duct, and etc, while discarding the majority of the

background such as water. Each tissue with specific label will be assigned intensity as shown

in Table 2.1. Then, we took maximum intensity projection and down-sample the image to

the size of 128× 128. However, the images in this dataset are inherently hard to reconstruct

because of their thin tubules structure.
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2.5 Numerical Examples

All the implementations are built on the top of pytorch. For the Gaussian Blurring

forward operator, the convolutional function provided by pytorch is used to perform blurring.

For the radon transform, a matrix form of Radon transform is generated by a Matlab code[18]

and then take advantage of the sparse tensor in PyTorch to accelerate the computation. In

the reconstruction phase, both Gaussian Deblurring and the inversion of Radon transform

are formulated as an optimization problem and solved by L-BFGS optimizer in PyTorch with

Thihonov and Total Variation regularization. A batch implementation of reconstruction in

PyTorch provides a way to solve multiple inverse problems at once.

2.5.1 Gaussian Deblurring

In this section, the numerical experiments of Gaussian Deblurring problem are conducted.

First, the L-curve is used to select the Tikhonov regularization parameter with a canonical

Gaussian kernel with kernel size=5, standard deviation=2 and an additive Gaussian noise

with zero mean and standard deviation=0.01 are used. Different scenarios including moder-

ate versus severe blurring, high noise versus low noise are considered using both Tikhonov

and Total Variation regularization with optimal parameters selected by the L-curve. The

numerical experiments for Gaussian deblurring task is conducted as shown in table 2.2.
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Choice of Regularization Parameter

Figure 2.1: Regularization parameter selection experiment for Gaussian deblurring using

Tikhonov regularization with kernel size=5, standard deviation=2, noise is an additive Gaus-

sian noise with zero mean and standard deviation=0.01. From left to right is 1) L-curve;

2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates are [1e-7, 1e-6, 1e-5,

1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization strength in this setting is 0.01.

18



Table 2.2: Numerical Experiments for Gaussian Deblurring.

kernel-size kernel-std noise std Regularization strength MSE(10−3) SSIM Curves Results

5 2.0 0.01 Tikhonov 0.01 2.6, (1.9, 3.4) 0.77, (0.76, 0.79) 2.1 2.2

5 2.0 0.01 TV 0.001 2.4, (1.6, 3.7) 0.85, (0.80, 0.89) 2.1 2.2

5 2.0 0.05 Tikhonov 0.1 4.0, (2.8, 5.7) 0.65, (0.61, 0.67) 2.4 2.3

5 2.0 0.05 TV 0.01 3.5, (2.2, 5.1) 0.75, (0.69, 0.80) 2.5 2.3

5 1.0 0.01 Tikhonov 0.01 1.9, (1.5, 2.3) 0.82, (0.81, 0.83) 2.10 2.9

5 1.0 0.01 TV 0.001 1.6, (1.1, 2.3) 0.90, (0.88, 0.92) 2.11 2.9

5 1.0 0.05 Tikhonov 0.1 3.8, (3.1, 4.8) 0.65, 0.63, 0.66) 2.7 2.6

5 1.0 0.05 TV 0.01 2.9, (1.9, 4.3) 0.78, (0.74, 0.82) 2.8 2.6

The MSE and SSIM columns, formatted as [average, (minimum, maximum)], are produced

by reconstructing 100 images with either Tikhonov or Total Variation regularization.

Figure 2.2: The Gaussian deblurring results with kernel size=5, standard deviation=2, and

additive Gaussian noise with zero mean and standard deviation=0.01. The regularization

term used is Tikhonov regularization with parameter 0.1,0.01,0.0001.
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As shown in Figure 2.1, optimal regularization parameter suggested by the L-curve is 0.01.

This is consistent with the parameter suggested by the mean square error curve. However,

the structural similarity curve indicates that the parameter 0.1 maximizes the structural

similarity between ground-truth image and the reconstructed image. The high structural

similarity generally suggests a visually appealing reconstruction, which is consistent with

the reconstruction result on Figure 2.2.

Moderate v.s. Severe Blurring

The moderate versus severe blurring reconstruction experiments were conducted with

kernel size=5, additive Gaussian noise with zero mean and standard deviation=0.05. The

standard deviation of the Gaussian kernel is 1 and 2, respectively. The optimal regularization

parameter selected by the L-curve for both moderate and severe blurring are 0.1 for Tikhonov

and 0.01 for Total Variation. As shown in Figure 2.4 and 2.7, for the Tikhonov regularization,

the parameter selected by the L-curve may not be consistent with the SSIM-curve, which

means the parameter selected by the L-curve may not be of high perceptual quality.
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Figure 2.3: The Gaussian deblurring results with kernel size=5, standard deviation=2, noise

is an additive Gaussian noise with zero mean and standard deviation=0.05.
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Figure 2.4: Curves for Gaussian deblurring using Tikhonov with kernel size=5, standard

deviation=2, additive Gaussian noise with zero mean and standard deviation=0.05. From left

to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates

are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization strength in this

setting is 0.1.
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Figure 2.5: Curves for Gaussian deblurring using Total Variation with kernel size=5, stan-

dard deviation=2, additive Gaussian noise with zero mean and standard deviation=0.05.

From left to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parame-

ter candidates are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization

strength in this setting is 0.001.
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Figure 2.6: The Gaussian deblurring results with kernel size=5, standard deviation=1, noise

is an additive Gaussian noise with zero mean and standard deviation=0.05.
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Figure 2.7: Curves for Gaussian deblurring using Tikhonov with kernel size=5, standard

deviation=1, additive Gaussian noise with zero mean and standard deviation=0.05. From left

to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates

are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization strength in this

setting is 0.1.
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Figure 2.8: Curves for Gaussian deblurring using Total Variation with kernel size=5, stan-

dard deviation=1, additive Gaussian noise with zero mean and standard deviation=0.05.

From left to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parame-

ter candidates are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization

strength in this setting is 0.01.

High v.s. Low Noise

The high noise versus low noise Gaussian deblurring were conducted with kernel size=5,

standard deviation=1. The additive noise is Gaussain noise with zero mean and standard

deviation=0.01 and 0.05, respectively. The optimal regularization parameter selected by

the L-curve of low noise are 0.01 for Tikhonov and 0.001 for Total Variation. The optimal

regularization parameter selected by the L-curve of high noise are 0.1 for Tikhonov and 0.01

for Total Variation. As shown in Figure 2.10 and 2.13, for the Tikhonov regularization, the

parameter selected by the L-curve does not neccessarily look visually appealing.

26



Figure 2.9: The Gaussian deblurring results with kernel size=5, standard deviation=1, noise

is an additive Gaussian noise with zero mean and standard deviation=0.01.
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Figure 2.10: Curves for Gaussian deblurring using Tikhonov with kernel size=5, standard

deviation=1, additive Gaussian noise with zero mean and standard deviation=0.01. From left

to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates

are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization strength in this

setting is 0.01.
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Figure 2.11: Curves for Gaussian dDeblurring using Total Variation with kernel size=5,

standard deviation=1, additive Gaussian noise with zero mean and standard deviation=0.01.

From left to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter

candidates are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10].The optimal regularization strength

in this setting is 0.001.
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Figure 2.12: The Gaussian deblurring results with kernel size=5, standard deviation=1,

noise is an additive Gaussian noise with zero mean and standard deviation=0.05.
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Figure 2.13: Curves for Gaussian deblurring using Tikhonov with kernel size=5, standard

deviation=1, additive Gaussian noise with zero mean and standard deviation=0.05. From

left to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter

candidates are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10].

Figure 2.14: Curves for Gaussian deblurring using Total Variation with kernel size=5, stan-

dard deviation=1, additive Gaussian noise with zero mean and standard deviation=0.05.

From left to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter

candidates are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10].

31



2.5.2 Radon Transform

In this section, the numerical experiments with Radon transform are conducted. Different

scenarios including sparse versus dense view, high noise versus low noise are considered using

both Tikhonov and Total Variation regularization with optimal parameters selected by the

L-curve. The numerical experiments for Radon transform are conducted as shown in Table

2.3.

Table 2.3: Numerical Experiments for Radon Transform.

num-rayse num-views noise std Regularization Strength MSE(10−3) SSIM Curves Results
181 90 0.1 Tikhonov 1.0 0.7, (0.4, 0.9) 0.93, (0.92, 0.95) 2.16 2.15
181 90 0.1 TV 0.1 0.2, (0.1, 0.4) 0.99, (0.98, 0.99) 2.17 2.15
181 90 0.01 Tikhonov 0.1 1.2, (0.8, 1.5) 0.87, (0.86, 0.88) 2.22 2.21
181 90 0.01 TV 0.01 0.5, (0.2, 0.7) 0.97, (0.96, 0.98) 2.23 2.21
181 45 0.1 Tikhonov 1 2.3, (1.5, 3.4) 0.79, (0.76, 0.83) 2.19 2.18
181 45 0.1 TV 0.1 1.6, (0.8, 2.6) 0.90, (0.85, 0.93) 2.20 2.18

The MSE and SSIM columns, formatted as [average, (minimum, maximum)], are obtained
by reconstructing 100 images using either Tikhonov or Total Variation regularization.

Sparse view v.s. Dense view

The sparse versus dense views experiments were conducted with a Radon transform with

181 rays for each view, an additive Gaussian noise with zero mean and standard devia-

tion=0.1. The number of views are 90 and 45 for dense and sparse view, respectively. The

selected parameter of L-curve for both sparse and dense view are 1.0 for Tikhonov and 0.1

for Total Variation. As indicated by Figure 2.16 and 2.19, the selected parameter by L-curve

does not neccessarily the best choice of MSE-curve and SSIM-curve.
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Figure 2.15: The Radon transform reconstruction results with number of rays=181, num-

ber of views=90, noise is an additive Gaussian noise with zero mean and standard devia-

tion=0.01.
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Figure 2.16: Curves for Radon transform using Tikhonov regularization with number of

views=90, additive Gaussian noise with zero mean and standard deviation=0.01. From left

to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates

are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization strength in this

setting is 1.0.
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Figure 2.17: Curves for Radon transform using Total Variation regularization with number of

views=90, additive Gaussian noise with zero mean and standard deviation=0.01. From left

to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates

are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10].The optimal regularization strength in this

setting is 0.1.
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Figure 2.18: The Radon transform reconstruction results with number of rays=181, number

of views=45, noise is an additive Gaussian noise with zero mean and standard deviation=0.1.
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Figure 2.19: Curves for Radon transform using Tikhonov regularization with number of

views=45, additive Gaussian noise with zero mean and standard deviation=0.1. From left

to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates

are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization strength in this

setting is 1.0.
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Figure 2.20: Curves for Radon transform using Total Variation regularization with number of

views=45, additive Gaussian noise with zero mean and standard deviation=0.1. From left to

right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates

are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization strength in this

setting is 0.1.

High v.s. Low noise

The high noise versus low noise experiments were conducted with a Radon transform with

90 views and 181 rays for each view. The noise is an additive Gaussian noise with zero mean

and standard deviation=0.01 and 0.1, respectively. The selected parameter of L-curve for

both sparse and dense view are 0.1 for Tikhonov and 0.01 for Total Variation. As indicated

by Figure 2.16 and 2.22, the selected parameter by L-curve does not neccessarily agrees with

MSE-curve and SSIM-curve.
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Figure 2.21: The Radon transform reconstruction results with number of rays=181, num-

ber of views=90, noise is an additive Gaussian noise with zero mean and standard devia-

tion=0.01.
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Figure 2.22: Curves for Radon transform using Tikhonov regularization with number of

views=90, additive Gaussian noise with zero mean and standard deviation=0.1. From left

to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates

are [1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization strength in this

setting is 0.1.
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Figure 2.23: Curves for Radon using Total Variation regularization with number of views=90,

additive Gaussian noise with zero mean and standard deviation=0.1. From left to right is 1)

L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates are [1e-7,

1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 10]. The optimal regularization strength in this setting is

0.01.

2.6 Remarks

The forward model is of vital importance to project the sought-after image onto a measur-

able quantity. The reconstruction using classical regularization methods with the optimally

selected regularization strength is able to reconstruct the ground-truth image with a reason-

ably good quality. Especially, for the Radon transform with dense views, the reconstruction

using Total Variation regularization is able to approximate the ground-truth image very well.

Furthermore, the batch implementation of reconstruction in PyTorch provides us a feasible

way to online generate the training dataset for training adversarial regularizer in Chapter 3.
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Chapter 3

Adversarial Regularizer

In this chapter, the proposed adversarial regularizer will be introduced along with its

training strategy. We first present how the learned regularizer can be used to solve the

image reconstruction problem in Chapter 2. Network architecture can be formulated as a

critic in the adversarial generative network. Secondly, we will explain how the proposed

adversarial regularizer will be implemented. We will discuss the loss function used to train

the proposed networks. Finally, the proposed regularizer will be applied to solve the inverse

problem discussed in Ch 2.

3.1 Regularizer as a Critic

Conventionally, a direct mapping from the measurement d to the ground-truth image

m, or a residual mapping from the residual term F (m) − d to the noise n is learned in

a supervised setting. However, there are two main limitations when it comes to solve the

inverse problem in medical imaging reconstruction. The first is that the limited number of

training dataset may not achieve a good performance in a supervised learning setting. The

second is that the inversion of a complex forward operator in an inverse problem is always

hard to learn.

One possible solution to those two obstacles is the combination of the physical model

and the neural network. As demonstrated in Chapter 2, the image reconstruction problem

can be formulated as an optimization problem with a variational regularization. In this

chapter, a parametric form of a regularization functional Rθ(m) is learned from the training
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data. Then, we plug in the learned regularizer in equation (2.16) and solve the minimization

problem iteratively to approach the ground-truth image.

Ideally, a good regularization functional Rθ(m) is able to differentiate the ground-truth

image m from its degraded or partially reconstructed version md. For a ground-truth im-

age m, the value of a good regularization functional Rθ(m) should be small; while for a

degraded image, the value of Rθ(m) should be large. In a statistical view, the ground-truth

image m comes from a distribution mr ∈ Pmr , and the degraded image also comes from a

distribution md ∈ Pmd
. This leads to the discriminator or critic in a adversarial generative

network(GAN), which is capable of differentiating the ground-truth image from any other

images. Mathematically, the quantity

EX∈Pmr
Rθ(X)− EX∈Pmd

Rθ(X) (3.1)

should be as small as possible for a reasonably good regularization functional Rθ. A good

regularization functional can then be found by solving

R∗θ = arg min EX∈Pmr
Rθ(X)− EX∈Pmd

Rθ(X), (3.2)

where θ is a set of parameters of regularization functional. Furthermore, the critic is trained

in an unsupervised way, which mitigates the limited size of training images in our case. We

will further describe the network architecture, loss function, and training strategy of training

a critic as regularizer in the following sections.

3.2 Structure of the Network

The proposed neural network is implemented as a convolutional neural network, because

the convolutional neural network can extract the hierarchical features of an image[19]. Con-

sidering training a deep neural network is computationally expensive, in order to validate

the propose method, a shallow network is developed at the first phase. The simple architec-

ture aims to mimic the functionality of a total variation regularization. While the complex

architecture works like a discriminator in the Deep convolutional GANs.
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Simple Architecture

Table 3.1: Simple Network Architecture.

Name Layer Type Filter Size (K1 ×
K2 × Cin × Cout)

Feature Map Size

(Hout ×Wout × Cout)
Input 128 × 128 × 1

Conv1 convolution 3× 3× 1× 4 126× 126× 4

Conv2 convolution 1× 1× 4× 8 126× 126× 8

avgpool1 avgpooling 1

Figure 3.1: The simple neural network architecture.

Complex Architecture

The complex architecture makes use of the architecture used in the deep convolutional

GANs.
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Figure 3.2: The complex neural network architecture.

Table 3.2: Complex Network Architecture.

Name Layer Type Filter Size (K1 ×
K2 × Cin × Cout)

Feature Map Size

(Hout ×Wout × Cout)
Input 128 × 128 × 1

Conv1 convolution 5× 5× 1× 16 128× 128× 4

Conv2 convolution 5× 5× 16× 32 128× 128× 32× 8

Conv3 convolution 5× 5× 32× 32 64× 64× 32

Conv4 convolution 5× 5× 32× 64 32× 32× 64

Conv5 convolution 5× 5× 64× 64 16× 16× 64

Conv6 convolution 5× 5× 64× 128 8× 8× 128

FC1 fully-connected 1× 1× 8192× 256 1× 1× 256

FC2 fully-connected 1× 1× 256× 1 1× 1× 1
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3.3 Wasserstein Loss Function

According to our aim indicated in equation (1.2), to train our network is equivalent to

maximize the distance between two distributions. While measuring the distance between two

distributions remain intractable, Martin et al[11]., proposed a good distance called Wasser-

stein distance to measure how close two distributions are when training GANs. Based on

the Kantorovich-Rubinstein duality[20], the Wasserstein distance is then formally defined as

W (Pmr ,Pmd
) = sup

f∈1−Lip
EX∈Pmd

f(X)− EX∈Pmr
f(X), (3.3)

where f is a functions with Lipschitz constant equal to 1. The negative Wasserstein distance

is then the loss function to minimize in equation(3.2), so-called the wasserstein loss function.

Several methods exist to impose the 1-Lipschitz constrain including weight clipping[11],

gradient penalty[12], spectral normalization[21]. The weight clipping, which is a heuristic

method to clip the weight of the entire neural network, has no theoretical guarantees. In

this work, the gradient penalty will be added to the loss function to constrain the Lipschitz

constant in the form of

L(θ) = EX∈Pmd
f(X)− EX∈Pmr

f(X) + χ(Rθ), (3.4)

where L(θ) is the loss function, χ(Rθ) is the indicator of the set 1 − Lip of all Lipschitz

continuous function with constant 1. That is

χ(f) = λ(|∇f |2 − 1)2
+ (3.5)

3.4 Training Strategy

The training strategy to the proposed network is quite different from that of the ma-

jority of the neural networks. The first concern is that the original dataset only contains

ground-truth images. Therefore, the very first step is to generate the measurements using a

forward operator and add noise to them. Subsequently, the partially reconstructed images
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are generated online using the optimization strategy proposed in Chapter 2, which means

the partially reconstructed training images are generated at each training epoch. There

are two main reasons by doing so. On one hand, a richer training set will be obtained,

even if the ground-truth images m are repeated each epoch, the noise n will not remain the

same. This is a useful data augmentation when it comes to the limited training dataset.

Furthermore, generating the training set online can save the memory, only one batch of the

image reconstruction is computed. Even though the computation needed for per epoch is

slightly increased because of the forward and reconstruction process, the batch implementa-

tion introduced in Chapter 2 in conjunction with GPU acceleration partially mitigates this

problem.

The whole algorithm of learning an adversarial regularizer Rθ is shown in Algorithm

3. The regularization term R(x) used to compute the partially reconstructed images is

either Tikhonov regularization or Total Variation regularization in this thesis. The forward

operator A used in this thesis is linear forward operators discussed in Chapter 2, which is

either Gaussian blurring or Radon transform.

Algorithm 3 Learning an Adversarial Regularizer

Require: the ground-truth images m, forward operator A, noise standard deviation σn,
regularization strength λ, the number of batches b, Adam hyperparameters α
while θ has not converged do

for i = 1, . . . , b do
Sample ground truth image mi ∼ Pmr

di = Ami +N (0, σ2
nI)

mrecon
i ← arg min

mi

1
2
‖ Ami − di ‖2

2 +λR(mi)

Li ← Rθ(mi)−Rθ(m
recon
i ), Rθ ∈ 1− Lip

θ ← Adam(∇θLi, α)

3.5 Adversarial Regularizer for Inverse Problems

Once the adversarial regularizer Rθ(x) is learned from the network, it can be plugged in

the equation (2.16) to serve as the regularization term, hence, solving the inverse problem

as

m∗ = arg min
m

1

2
‖ F (m)− d ‖2

2 +αRθ(m) + βR(m), (3.6)
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Table 3.3: Numerical Experiments for Gaussian Deblurring.

model training set critic curves Reconstruction Regularization strength mse avg(10−3) ssim avg

Naive Tikhonov 3.3, 3.4 3.5, 3.6
Tikhonov 0.1 4.17 0.641

TV 0.01 4.02 0.727
Adv (0.1,1000) 4.35 0.711

Deep Tikhonov 3.7, 3.8 3.9, 3.10
Tikhonov 0.1 4.17 0.641

TV 0.01 4.02 0.727
Adv (0.1,0.1) 4.2 0.641

The MSE and SSIM are obtained by reconstructing 100 images using adversarial
regularizer. The results are produced by Gaussian deblurring problem with kernel size=5,

standard deviation=2.0, noise deviation=0.05. The regularization α and β of using
adversarial regularizer is formatted as (α, β).

where α is the regularization strength for adversarial regularizer, R(x) is the regularization

term other than the adversarial regularizer, β is the regularization strength for R(x).

To solve this optimization problem, we can still use the same iterative methods proposed

in Chapter 2.

3.6 Numerical Results

3.6.1 Gaussian Deblurring

For Gaussian deblurring problem, the training dataset is reconstructed from Gaussian

blurring with kernel size=5, standard deviation=2.0, noise deviation=0.05 using Tikhonov

regularization regularization or Total Variation regularization.

Shallow Model
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Figure 3.3: The total training losses and Wasserstein distance between true images and their

classical reconstruction with Tikhonov regularization over 300 training epochs.

Figure 3.4: The Tikhonov regularization against the learned adversarial regularization over

100 ground-truth images and their corresponding reconstructions using Tikhonov regular-

ization.
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Figure 3.5: The reconstruction from Gaussian blurring with kernel size=5, standard devia-

tion=2.0, noise deviation=0.05 using Tikhonov regularization, Total Variation regularization

and learned adversarial regularization.
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Figure 3.6: The reconstruction from Gaussian blurring with kernel size=5, standard devia-

tion=2.0, noise deviation=0.1 using Tikhonov regularization, Total Variation regularization

and learned adversarial regularization.
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Deep Model

Figure 3.7: The total training losses and Wasserstein distance between true images and their

coarse reconstruction with Tikhonov regularization over 300 training epochs.

Figure 3.8: The Tikhonov regularization against the learned adversarial regularization over

100 ground-truth images and their corresponding reconstruction using standard Tikhonov

regularization.
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Figure 3.9: The reconstruction from Gaussian blurring with kernel size=5, standard devia-

tion=2.0, noise deviation=0.05 using Tikhonov regularization, Total Variation regularization

and learned adversarial regularization.
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Figure 3.10: The reconstruction from Gaussian blurring with kernel size=5, standard devia-

tion=2.0, noise deviation=0.1 using Tikhonov regularization, Total Variation regularization

and learned adversarial regularization.

3.6.2 Radon Transform

Shallow Model

For Radon transform reconstruction problem, the training dataset is reconstructed from

Radon transform with number of views per-ray=45, number of rays=181, noise deviation=0.1

using Tikhonov regularization regularization.
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Table 3.4: Numerical Experiments for Radon Transform.

model training set critic curves Reconstruction Regularization strength mse avg(10−3) ssim avg

Naive Tikhonov 3.11, 3.12 3.13,3.14
Tikhonov 1.0 2.46 0.760

TV 0.1 1.87 0.876
Adv (1,1000) 2.36 0.808

Deep Tikhonov 3.15, 3.16 3.17, 3.18
Tikhonov 1.0 2.46 0.760

TV 0.1 1.87 0.876
Adv (1.0, 0.1) 2.46 0.760

The MSE and SSIM are obtained by reconstructing 100 images using Adversarial
regularizer. The results are produced by Radon transform problem with number of views

per-ray=45, number of rays=181, noise deviation=0.1. The regularization α and β of using
adversarial regularizer is formatted as (α, β).

Figure 3.11: The total training losses and Wasserstein distance between true images and

their coarse reconstruction with Tikhonov regularization over 200 training epochs.
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Figure 3.12: The Tikhonov regularization against the learned adversarial regularization over

100 ground-truth images and their corresponding reconstruction using standard Tikhonov

regularization.
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Figure 3.13: The reconstruction from Radon transform with number of views per-ray=45,

number of rays=181, noise deviation=0.1 using Tikhonov regularization, Total Variation

regularization and learned adversarial regularization.
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Figure 3.14: The reconstruction from Radon transform with number of views per-ray=45,

number of rays=181, noise deviation=0.5 using Tikhonov regularization, Total Variation

regularization and learned adversarial regularization.

58



Deep Model

Figure 3.15: The total training losses and wasserstein distance between true images and

their coarse reconstruction with Tikhonov regularization over 200 training epochs.

Figure 3.16: The Tikhonov regularization against the learned adversarial regularization over

100 ground-truth images and their corresponding reconstruction using standard Tikhonov

regularization.
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Figure 3.17: The reconstruction from Radon transform with number of views per-ray=45,

number of rays=181, noise deviation=0.1 using Total Variation regularization, Total Varia-

tion regularization and learned adversarial regularization.
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Figure 3.18: The reconstruction from Radon transform with number of views per-ray=45,

number of rays=181, noise deviation=0.1 using Total Variation regularization, Total Varia-

tion regularization and learned adversarial regularization.

The experimental results in Figure 3.4, 3.8, 3.12, 3.16 demonstrated that the proposed

networks, both the shallow and deep network architectures, are able to distinguish the

ground-truth images from their naive reconstruction using other regularization term from

Gaussian blurring. However, as is shown in Figure 3.5, 3.13, the reconstruction, which uses

the same setting as the training dataset, performance using the proposed shallow adversarial

regularizer is slightly better than the Tikhonov regularization while worse than the T.V.

regularization. But as the noise level increases, the adversarial regularizer outperforms both

Tikhonov and T.V. regularization as is shown in Figure 3.10, 3.14. Finally, as is shown in Fig-

ure 3.9, 3.17, there is no big difference between the performance of the shallow architecture

and the deep architecture.
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3.7 Remarks

As demonstrated by the experimental results, the trained adversarial regularizer is able

to differentiate the ground-truth images from their corresponding naive reconstruction us-

ing classical regularization methods. However, the trained adversarial regularizer performs

poorly to solve the inverse problem with the same setting as generating the training dataset:

slightly better than the Tikhonov regularization but worse than the Total Variation regu-

larization. While it works way better as the noise level goes higher, generally better than

the Tikhonov and Total Variation regularization in both Gaussian deblurring problem and

inverse Radon transform. Finally, the shallower neural network architecture performs even

better than the deep architecture.
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Chapter 4

Regularization by Denoising (RED)

In this chapter, a powerful and flexible image reconstruction framework, regularization

by denoising (RED), will be discussed in detail. We will first discuss the basic principle of

RED, which is built on the top of image-adaptive Laplacian filter. Next, we summarize the

conditions under which the RED framework works. Subsequently, we will demonstrate how

denoisers can be used to solve inverse problem in image reconstruction based on the RED

model. Finally, we will present the image denoiser used in this thesis, which uses a deep

convolutional neural network.

4.1 Laplacian Regularization

A proper denoiser f is able to remove the noise of a noisy image and create a reason-

ably clean noise-free image that approximates the ground-truth image. A denosier can be

described as a pseudo-linear filter which is in the form of

f(m) = W (m)m, (4.1)

where f(m) is the denoiser, W (m) denotes the pseudo-linear filter, and m is the noisy image

unrolled as a vector.
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Then, according to [22], the image-adaptive Laplacian, which is widely used to regularize

a variety of inverse problems, can be formulated as

RL(m) =
1

2
mTL(m)m

=
1

2
mT(I −W (m))m

=
1

2
mT(m−W (m)m).

(4.2)

where L(m) = I −W (m) is the image-adaptive Laplacian filter. The cost function of the

inverse problem is then written as

m∗ = arg min
m

1

2
‖ F (m)− d ‖2

2 +
λ

2
mT(m−W (m)m). (4.3)

One key challenge in solving equation (1.3) using gradient-based methods is the com-

putation of the gradient of W (m) with respect to m. In RED, W (m)m is replaced by an

arbitrary denoiser f(m). The regularization term RL(m) can be rewritten as

RL(m) =
1

2
mT(m− f(m)). (4.4)

Using this formulation, no explicit W (m) is needed, instead, a more general filter f(m) is

introduced. We also observe that the regularization term will equal to zero if one of the

following conditions is satisfied where 1) m = 0, 2) m = f(m), 3) m and f(m) is orthogonal.

The gradient of the Laplacian regularizer can be computed as

∇mRL(m) = m− 1

2
∇m{mTf(m)}, (4.5)

The above expression can be further simplified as

∇mRL(m) = m− f(m). (4.6)
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4.2 Underlying Conditions

There are four basic underlying conditions that ensure the derivation of the gradient of

RL(m) is equation (4.6) and impose the convexity of entire cost function: 1) Differentiability,

2) Local homogeneity, 3) Symmetric Jacobian, and 4) the Passivity.

Condition 1: Differentiability

Condition 1 requires the denoiser to have a directional derivative. Mathematically, the

directional derivative is defined as

∇mf(x) = lim
γ→0

f(x+ γm)− f(x)

γ

= lim
γ→0

f(x) + γ∇f(x)Tm+ o(γ)− f(x)

γ

= ∇f(x)Tm.

(4.7)

To obtain the expression above, f(x+γu) is expanded based on Taylor’s expansion, and the

definition of o(g) ( limγ→0
o(γ)
γ
→ 0) is used.

Condition 2: Symmetry Jacobian

Condition 2 constrains the denoiser to have a symmetric Jacobian, which means

∇mf(m) = [∇mf(m)]T (4.8)

Condition 3: (Local) Homogeneity

The definition of homogeneity is that given a scale factor c, the scaled image cm will

result in corresponding scaled output of the denoiser cf(m). Local homogeneity relaxes this

condition to the case of c such that |c − 1| ≤ ε where ε → 0. The directional derivative of
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f(m) along m direction can be expressed as

∇mf(m)m =
f((1 + ε)m)− f(m)

ε

=
(1 + ε)f(m)− f(m)

ε

= f(m).

(4.9)

Condition 4: Strong Passivity

The strong passivity is satisfied if the spectral radius of the Jacobian of f(m) is no greater

than 1.

η{∇mf(m)} ≤ 1, (4.10)

where η denotes the spectral radius of the Jacobian of f(m). Then the Hessian of RL(m),

∇{∇RL(m)} = ∇{m− f(m)} = I −∇f(m) � 1. (4.11)

The positive definiteness of the Hessian of f(m) guarantees the convexity of RL(m).

4.3 Denosiers

In RED, f(m) can be an arbitrary denoiser as long as the above conditions are satisfied.

Commonly chooses of f(m) include median filters, Total Variation filters, and the state-of-

the-art convolutional neural network-based denoiser. In this thesis, the denoiser we used is a

deep convolutional neural network (DnCNN). As suggested by the gradient of the Laplacian

regularizer, instead of learning a denoiser f(m) outputting the clean image, we learn the

residual m− f(m) via DnCNN.

The network architecture is inspired by [1, 9, 8], but no batch normalization is used in

our case since training images are already scaled. The basic block is convolutional layer

followed by a Relu activation. The entire architecture is shown in Table 4.1.
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The network is trained is learn the residual between the ground-truth image m and its

denoised image through the denoiser f(m). At each training epoch, additive Gaussian noise

nσ is added to the ground-truth image and output of the network is nσ. We also relax the

conditions of the denoiser in section 4.2, as DnCNN does not have the symmetric Jacobian

and passivity.

Table 4.1: DnCNN Architecture.

Name Layer Type Filter Size (K1 ×
K2 × Cin × Cout)

Feature Map Size

(Hout ×Wout × Cout)
Input 128 × 128 × 1

Conv1 convolution 3× 3× 1× 64 128× 128× 64

Conv2 convolution 3× 3× 64× 64 128× 128× 64

Conv3 convolution 3× 3× 64× 64 128× 128× 64

Conv4 convolution 3× 3× 64× 64 128× 128× 64

Conv5 convolution 3× 3× 64× 64 128× 128× 64

Conv6 convolution 3× 3× 64× 64 128× 128× 64

Conv7 convolution 3× 3× 64× 1 128× 128× 1

4.4 Optimization Strategy

The data fidelity term in the cost function is convex, the regularization term is also convex

under the assumption of passivity. Then the entire cost function is convex, hence, a variety

of convex optimization strategy can be applied to solution this minimization problem.

For a linear forward model F (m) = Am (as those considered in this thesis), we write the

optimization problem

m∗ = arg min
m

1

2
‖ F (m)− d ‖2

2 +
λ

2
mT(m−W (m)m). (4.12)
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First order optimality conditions require the gradient of the cost function to vanish, that is

AT(Am− d) + λ(m− f(m)) = 0. (4.13)

Equation (1.12) can be solved using the fixed point iteration

mk+1 = (ATA+ λA)−1(ATd+ λf(mk)). (4.14)

AT(Am− d) + λ(m− f(m)) = 0, (4.15)

However, the computation of (ATA + λA)−1 is infeasible if the dimension of ATA is large,

which leads us to gradient-based method. For simplicity, this thesis will use vanilla gradient

descent as shown in Algorithm 4.

Algorithm 4 Steepest Gradient Descent For RED

Require: the measurement d, forward operator A, regularization strength λ, step size α,
noise standard deviation σ
Initialization m0 = d
for k = 1, 2 . . . , N do

Denoising mk = fσ(mk−1)
Update mk = mk−1 − α[AT(Amk−1 − d) + λ(mk−1 −mk)]

4.5 Numerical Results

For both Gaussian deblurring and Radon transform problem, the training dataset is

generated with the additive Gaussian with zero mean and 0.001 standard deviation. The

training curves of the DnCNN is shown in Figure 4.1. The total loss of the network converges.
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Figure 4.1: The total training losses of the DnCNN.

4.5.1 Gaussian Deblurring

The reconstruction test is performed on Gaussian Blurring image with kernel size=5,

standard deviation = 2, the noise is the additive Gaussian noise with zero mean and 0.05

standard deviation.

Table 4.2: Numerical Experiments for Gaussian Deblurring.

kernel-size kernel-std noise std Regularization strength MSE(10−3) SSIM Curves Results

5 2.0 0.05 Tikhonov 0.1 4.0, (2.8, 5.7) 0.65, (0.61, 0.67) 4.2

5 2.0 0.05 TV 0.01 3.5, (2.2, 5.1) 0.75, (0.69, 0.80) 4.2

5 2.0 0.05 Adv (0.1, 1000) 4.4, (3.1, 5.6) 0.71, (0.68, 0.75) 4.2

5 2.0 0.05 RED 10 5.0, (3.8, 6.3) 0.67, (0.51, 0.78) 4.3 4.2

The mse and ssim columns, formatted as [average, (minimum, maximum)], are computed

by reconstructing 100 images. The regularization α and β in adversarial regularizer is

formatted as (α, β) in the strength column.
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Figure 4.2: The Gaussian deblurring reconstruction samples with a kernel size=5, stan-

dard deviation=2, noise is an additive Gaussian noise with zero mean and standard devia-

tion=0.05.

70



Figure 4.3: Curves for Gaussian deblurring using RED reconstruction with with a kernel

size=5, standard deviation=2, noise is an additive Gaussian noise with zero mean and stan-

dard deviation=0.05. From left to right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The

regularization parameter candidates are [1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3]. The optimal

regularization strength suggested by the curves is 10.

4.5.2 Radon Transform

The reconstruction test is performed on Radon transform with number of views per-

ray=45, number of rays=181, and additive Gaussian noise with zero mean and 0.1 standard

deviation.
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Table 4.3: Numerical Experiments for Radon Transform.

num-rays num-views noise std Regularization Strength MSE(10−3) SSIM Curves Results
181 45 0.1 Tikhonov 1.0 2.3, (1.5, 3.4) 0.79, (0.76, 0.83) 4.4
181 45 0.1 TV 0.1 1.6, (0.8, 2.6) 0.90, (0.85, 0.93) 4.4
181 45 0.1 Adv (1.0,1000) 2.3, (1.6, 3.0) 0.80, (0.77, 0.83) 4.4
181 45 0.1 RED 100 2.0, (1.5, 2.6) 0.89, (0.84, 0.94) 4.5 4.4

The MSE and SSIM columns, formatted as [average, (minimum, maximum)], are produced
by reconstructing 100 images using different regularization. The regularization α and β in

adversarial regularizer is formatted as (α, β) in the strength column

Figure 4.4: The Radon transform reconstruction samples with number of rays=181, number

of views=45, noise is an additive Gaussian noise with zero mean and standard deviation=0.1.
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Figure 4.5: Curves for Radon transform using Total Variation regularization with number of

views=45, additive Gaussian noise with zero mean and standard deviation=0.1. From left to

right is 1) L-curve; 2)MSE-curve; 3) SSIM-curve. The regularization parameter candidates

are [1e-3, 1e-2, 1e-1, 1e0, 1e1, 1e2, 1e3]. The optimal regularization strength suggested by

the curve is 100.

4.6 Remarks

The experiment demonstrated that the L-curve, MSE-curve, and SSIM-curve is able to

help us select the best regularization strength. The results using RED outperforms those

using the adversarial regularizer in the inversion of Radon transform task. While the adver-

sarial regularizer outperforms the RED in the Gaussian deblurring problem.
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Chapter 5

Conclusion

In this thesis, two commonly encountered inverse problems in image reconstruction have

been discussed: Gaussian deblurring problem and the inversion of Radon transform. We

have first presented the mathematical formulation of the inverse problem involving Gaus-

sian blurring and Radon transform. Model-based variational regularization formulations as

well as numerical optimization algorithm were introduced subsequently to solve this model-

based inverse problem. Finally, we focused on the design of the regularization functional

and explored both classical regularization functional (such as Tikhonov and Total Variation

regularization) and modern data-driven regularization methods. The whole framework was

built on the top of PyTorch taking advantage of PyTorch automatic differentiation, GPU

acceleration and sparse matrix operation 1.

In Chapter 3, we implemented and numerically assessed an adversarial regularizer ap-

proach. The key idea of the method is that a proper regularizer should be able differ-

entiate ground-truth images from the naively reconstructed images. Two neural network

architectures, a shallow architecture inspired by Total Variation and a deeper architecture

inspired by WGANs, were trained for this task. A penalty term was incorporated into to

loss function to satisfy the 1-Lipschitz constraint during the training of the network. The

numerical experiments demonstrated that the proposed adversarial regularizers were able

to effectively differentiate the ground-truth images from those naively reconstructed ones.

However, the proposed adversarial regularizer did not show significant improvement in the

quality of the reconstructed images. In particular, the learned regularizer performed not bet-

ter than Tikhonov and T.V. regularization in the low noise case. The possible reason is that

1https://github.com/uvilla/ganPrior
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the images used in this thesis is extremely hard to reconstruct as they contains thin tubular

structures. However, some improvement in image quality was observed for extremely noisy

data. Furthermore, the deeper network architecture of the adversarial regularizer works even

worse than the shallower architecture. One possible reason might be the loss of convexity of

the deeper architecture, which makes the iterative optimization hard to converge.

In Chapter 4, we discussed the regularization by denoising (RED) approach. We briefly

introduced the image-adaptive Laplacian as a precursor of RED. Next, we summarized the

underlying hypotheses in the RED framework, which are needed to derive the gradient of

the cost function and ensure the convexity of the cost function. The CNN-based denoiser

(DnCNN) was designed to serve as the denoiser in our case. We further discuss the numerical

optimization algorithms to minimize the cost function in the reconstruction phase. The L-

curve, in conjunction with the mean-square-error curve and structural similarity curve were

used to select the optimal regularization strength. Finally, we compared the performance of

the four regularization methods (Tikhonov, T.V., Adversarial regularizer, and RED) in this

thesis. The RED approach outperformed the Tikhonov and Adversarial regularizer in the

inversion of Radon transform problem and was close to the T.V. approach. In the Gaussian

deblurring task, the RED worked worse than the Adversarial regularizer and just slightly

better than the Tikhonov regularization. One possible reason is that the DnCNN denoiser

might not satisfy some of the underlying conditions of the RED framework. In fact, the

DnCNN was not restricted to satisfy the strong passivity, because there was no constraint

on the DnCNN to enforce the spectral radius of its Jacobian to be no greater than 1. This

leads to the loss of convexity in the cost function making the numerical optimization difficult.

75



References

[1] K. Zhang, W. Zuo, S. Gu, and L. Zhang, “Learning deep cnn denoiser prior for image
restoration,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3929–3938, 2017.

[2] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural
network for inverse problems in imaging,” IEEE Transactions on Image Processing,
vol. 26, no. 9, pp. 4509–4522, 2017.

[3] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear
inverse problems with a sparsity constraint,” Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences,
vol. 57, no. 11, pp. 1413–1457, 2004.

[4] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear
inverse problems,” SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183–202, 2009.

[5] S. Boyd, N. Parikh, and E. Chu, Distributed optimization and statistical learning via
the alternating direction method of multipliers. Now Publishers Inc, 2011.

[6] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play priors for
model based reconstruction,” in 2013 IEEE Global Conference on Signal and Informa-
tion Processing, pp. 945–948, IEEE, 2013.

[7] Y. Romano, M. Elad, and P. Milanfar, “The little engine that could: Regularization by
denoising (red),” 2017.

[8] Y. Sun, J. Liu, and U. S. Kamilov, “Block coordinate regularization by denoising,” in
Proc. Ann. Conf. Neural Information Processing Systems (NeurIPS), May 2019.

[9] J. Liu, Y. Sun, C. Eldeniz, W. Gan, H. An, and U. S. Kamilov, “Rare: Image recon-
struction using deep priors learned without ground truth,” IEEE Journal of Selected
Topics in Signal Processing, vol. 14, no. 6, pp. 1088–1099, 2020.
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