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Abstract 

Modulation and Long-term Release of Cardiac Fibroblast Secretome to Enhance Cardiac Cell 

Survival under Hypoxia 

By 

Jin Zhai 

Master of Science in Biomedical Engineering 

Washington University in St. Louis, 2021 

Professor Jianjun Guan 

The irreversible damage to the heart caused by myocardial infarction (MI) leads to over one million 

deaths in the United States every year. There are several approaches to treat MI, such as 

angioplasty, redirected blood flow, and electrical medical devices, but they cannot promote new 

cardiac tissue generation, thus leading to potential high risk of re-surgeries. To overcome this 

limitation, stem cell therapy is regarded as a promising method. However, the implantation of stem 

cells has ethical and safe concern and the efficiency is limited due to low cell engraftment. 

Moreover, the effect of stem cell is predominantly attributed to paracrine effect. Therefore, the 

delivery of stem cell secretome is expected to be a prominent approach, since it has potential to 

achieve similar effect without causing safety and ethical problems with cell implantation. Among 

different cells, cardiac fibroblast (CF) is the largest cell population in the heart, and its secretome 

has been shown to protect cardiomyocytes under hypoxia. Thus, the objective of this work is to 

deliver CF secretome to the heart after MI. In the first part of this thesis, CF secretome was 

optimized in vitro by adjusting environmental oxygen condition and substrate stiffness. We found 

that the secretome collected under hypoxic condition (1% O2) and soft substrate (6 kPa) can most 

effectively boost the survival of endothelial cells and cardiomyocytes under hypoxia. In the second 
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part, we developed platelet-membrane coated nanoparticles as a delivery vehicle for CF secretome. 

The nanoparticles had the capability of sustainedly releasing various growth factors such as PDGF, 

VEGF and bFGF. This secretome delivery system has potential to promote cardiac repair after MI. 
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Chapter 1 Introduction 

1.1 Myocardial infarction  

 Myocardial infarction (MI) is the one of main causes of death worldwide. Over one 

million deaths due to MI are reported in the United State every year [1]. MI causes irreversible 

damage to the heart because of decreasing blood flow and lack of oxygen supply [2]. Currently, 

there are several kinds of treatment for MI. Patients can directly take drugs to break up blood clot 

or dissolve arterial blockage, such as aspirin and tissue plasminogen activator [2]. Also, some 

drugs can be injected in the blood to treat. Moreover, the angioplasty can be performed to open 

narrowed blood vessel and let blood flow easily [3]. To redirect blood flow around the blocked 

blood vessels, the coronary bypass surgery may be performed [4]. Furthermore, some electronic 

medical devices, such as pacemakers, can be implanted in the infarcted heart to keep regular beat 

[2]. For patients with end-stage heart failure, a heart transplantation may be required [2].  

 After MI, the loss of cardiomyocytes and formation of scar tissues are irreversible, 

leading to decreased cardiac function [5]. Thus, it is important to replace the injured cells. 

However, the existing surgical treatments are unable to promote the generation of new cardiac 

tissue. The application of stem cells can be a promising therapeutic option [6].  

1.2 Stem cell therapy to treat MI 

 The use of stem cells to treat MI is expected by their two conspicuous capacities of self-

renewal and differentiation into tissues [7]. In order to achieve the goal of regenerating the 

damaged tissues, the stem cell should be able to differentiate into cardiac lineages, such as 

myocytes and vascular endothelial cells [6]. The primary types of stem cells used in treatments for 

myocardial infarction are embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), 

bone marrow mononuclear cells (BMMNCs), and mesenchymal stem cells (MSCs) [6]. Among 
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these stem cells, both ESCs and iPSCs are pluripotent and able to differentiate into all cell types, 

but ESCs may lead to ethical and safety concern, and iPSCs have the tumorigenic possibility [8,9]. 

BMMNCs has been shown to enhance left ventricular function, but they can differentiate into 

heterogeneous cell types which may not be advantaged for heart repair [6]. Although MSCs 

perform the immune-privileged ability , its cell retention, engraftment, and survival rate still is 

low [6].  

 Based on the above disadvantages of stem cell therapy, stem cell secretome has emerged 

as a promising therapeutic option. It has been shown that the key element of stem cell therapy 

should be attributed to its paracrine mechanism to promote regeneration [10].  

1.3 Cell secretome  

 Stem cells can affect the surrounding cells by secreting soluble growth factors, cytokines, 

extracellular vesicles, and exosomes, altogether known as secretome [10]. As the part of 

composition of secretome, growth factors play a significant role in heart repair by promoting cell 

proliferation, cytoprotection, and migration. The commonly secreted factors include 

angiopoietin-1 (Ang-1), angiopoietin-2 (Ang-2), basic fibroblast growth factor (bFGF), platelet-

derived growth factor (PDGF), vascular endothelial growth factor (VEGF), hepatocyte growth 

factor (HGF), tumor necrosis factor alpha (TNF-a), collagens, insulin-like growth factor 1 (IGF-

1), interleukin-1 (IL-1), matrix metalloproteinases (MMPs), transforming growth factor beta 

(TGF-b), tissue inhibitor of metalloproteinases (TIMPs), bone morphogenetic protein 4 (BMP-

4), interleukin-6 (IL-6), interleukin-7 (IL-7), neurotrophin-3 (NT-3), nerve growth factor (NGF), 

glial cell line-derive neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF). 

Among these factors, Ang-1, bFGF, IGF-1, IL-1, PDGF, VEGF, HGF, and TNF-a have been 

shown to be useful to angiogenesis in the heart [10]. Except for angiogenesis, bFGF, HGF, IGF-1, 
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IL-1, and VEGF also have been stated they have specific function in cardioprotection [10]. 

Moreover, several secreted factors can inhibit fibrosis, such as collagens, MMPs, TGF-b, and 

TIMPs [10].  

1.4 Delivery system for cell secretome 

 In order to deliver secretome to the damaged tissues, several approaches have been 

investigated, such as transplantation of artificial cardiac patch encapsulated secreted factors from 

stem cells, injectable and biocompatible hydrogels as carriers of secretome, injectable nanofibers 

bonded with secretome, and biomimetic nanoparticles [11–15]. Huang et al. have developed 

therapeutic cardiac patch to deliver the secreted factors of cardiac stromal cells to rat/porcine 

heart after MI, and they found that the cardiac recovery was supported by reducing scarring and 

improving angiomyogenesis [11]. An injectable hydrogel has been developed by Waters et al to 

deliver secretome secreted by human adipose-derived stem cells to the peri-infarct myocardium, 

leading to decreased scar area and increased cardiac function [12]. Webber et al. have designed a 

factor-loaded injectable nanofiber network and injected into mouse heart after MI, and the 

preservation of haemodynamic function was found by them [13]. Yasin et al have fabricated 

nanoparticles loaded with VEGF to a murine myocardial infarction model, followed by 

reductions infarct size and angiogenesis [16]. 
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Chapter 2 Modulation of Cardiac Fibroblast Secretome in Response to Different 

Environmental Cues 

2.1 Introduction 

 Compared to the disadvantages of stem cells, which are the unlimited cell types 

differentiated from stem cells, the sophisticated extraction procedure, and high cost, the 

advantage of cardiac fibroblasts (CFs) is prominent. CFs has been defined as the main effector to 

prevent heart rupture by secreting factors in the infarcted heart [17]. Moreover, the large number 

of CFs is easier to obtain compared to stem cells. Furthermore, the largest cell numbers in the 

heart are cardiac fibroblasts, which has been shown to be conductive to mechanical, structural, 

and biochemical properties of the heart [18]. Compared to other stem cells, CFs are the host cells 

obtained the natural advantages. CFs also have been stated to be able to secrete a large number of 

growth factors used in treatments for MI, such as VEGF, PDGF, bFGF, TNF-a, and IL-1b [19]. 

Furthermore, the secreted factors from CFs can protect cardiomyocytes from hypoxic condition, 

induced hypertrophy, and ischemia injury [20]. 

2.2 Materials and methods 

2.2.1 Materials 

Acrylamide and N,N′-methylenebisacrylamide were purchased from Sigma-Aldrich. 

N,N,N′,N′-Tetramethylethylenediamine (TEMED) and ammonium persulfate (APS) were 

purchased from Bio-rad. Isopropanol was purchased form Fisher Scientific. Collagen type I was 

obtained from Corning. Hydrophobic glass slides were purchased from Bio-rad. TRI Reagent 

was purchased from Sigma. Acid phenol:CHCl3 was purchased from Ambion. Nuclease-free 

water and SYBR Green were purchased from Thermo Scientific. High-capacity cDNA reverse 

transcription kit was purchased from Thermo Fisher Scientific. 
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2.2.2 RCF culture 

 Rat cardiac fibroblasts (RCFs) were cultured and seeded in a T75 flask with 10 mL 

culture medium consisting of Dulbecco’s modified Eagle medium (DMEM), 12% fetal bovine 

serum (FBS), and 1% penicillin/streptomycin under normal culture conditions (21% O2, 5% 

CO2, 37°C). The culture medium was changed every two days and RCFs were passaged when 

90% confluency was reached. 

After 90% confluency was reached, RCFs were digested using 0.25% trypsin/EDTA for 5 

mins at 37℃ and centrifuged at 1600 rpm for 7 min. Collected cells were seeded in 100-mm 

dishes supplemented with culture medium consisting of DMEM, 12% FBS, and 1% penicillin. 

The cells were maintained under normal culture conditions (21% O2, 5% CO2, 37°C) overnight. 

The medium was then replaced with serum-free medium. One dish was incubated under hypoxic 

condition (1% O2, 5% CO2, 37°C) for 24 hours. One dish was incubated under 5% O2 and 5% 

CO2 at 37°C for 24 hours. One dish was incubated under normal culture condition (21% O2, 5% 

CO2, 37°C) for 24 hours. After incubation, the media was aspirated, and the cells were lysed 

using 1 mL of TRI reagent and then transferred into a 1.7 mL centrifuge tube to store at -80℃ 

for further experiments. 

2.2.3 PAM gel fabrication and characterization  

 Acrylamide, bis-acrylamide, and APS were dissolved in deionized (DI) water to form 

solutions with concentration of 40% w/v, 2% w/v, and 10% w/v, respectively. Polyacrylamide 

(PAM) gel solution was prepared by mixing 40% w/v acrylamide solution, 2% w/v bis-

acrylamide solution, and DI water at 4 different ratios [21]. The ratio of these reagents and the 

abbreviation of the corresponding gel were specified in Table 1. 5mL of polyacrylamide gel 

solution was placed into a 50-mL tube. 25 μL of 10% w/v APS and 2.5 μL of TEMED were 
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added into the same tube to achieve final concentration of 0.05% and 0.5%, respectively. The 

solution was gently mixed by pipetting up and down 10 – 15 times. The gel solution was pipetted 

onto the 0.75 mm space which was hold by two hydrophobic glass slides. 500 μL of isopropanol 

was pipetted above the gel solution to remove bubbles. After 1 hour, the PAM gel was peeled off 

carefully. To obtain a desired shape which was similar to the plate well of a 6-well plate, the cap 

of a 50-mL tube was used to cut PAM gels to circles. One PAM gel was placed in each well by 

forceps. 

 To determine PAM gels stiffness, the storage modulus was measured by rheometer. The 

Young’s modulus, E was related to storage modulus by using the equation: 𝐸 = 𝐺!2(1 + 𝑣), 

where 𝑣, the Poisson ratio was approximated to 0.5 for PAM gel [22].  

2.2.4 Collagen coating of PAM gels 

Before coating, the 6-well plate was placed under an UV lamp for 1 hour while all PAM 

gels were soaked in 1x phosphate buffered saline (PBS) to keep hydrated. 0.2 mg/mL collagen 

solution was prepared by diluting the 3.78 mg/mL collagen type I solution in PBS. 500 μL of 

diluted collagen solution was pipetted into each well to completely cover the gel surface. The 

plate was covered by parafilm and placed at 4℃ overnight to allow collagen coating. After 

aspirating collagen solution and rinsing with PBS to remove excess collagen solution, the plate 

was placed in a biosafety cabinet under UV to sterilize for 1 hour.  

2.2.5 Immunocytochemical staining 

  RCFs were cultured and seeded on PAM gels in 6-well plate with 2 mL culture medium 

consisting of DMEM without serum at a hypoxia incubator (1% O2, 5%CO2, 37°C) overnight. 

RCFs were fixed with 500 μL of 4% paraformaldehyde (PFA) solution. After fixation for 50 

mins, blocking buffer was added to each well and incubated for 1 hour. Then, the fixed cells 
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were incubated with mouse anti-alpha smooth actin-alpha (α-SMA, Abcam) at 4 C overnight. 

Goat anti-mouse Alexa Fluor 647 (Invitrogen) was used as a secondary antibody to stain the cells 

at room temperature for 1 hour. Nuclei and cytoplasm were stained with DAPI (Sigma) and F-

actin (Invitrogen), respectively. Fluorescent images were taken using a confocal microscope 

(Olympus FV1200). 

2.2.6 RCF secretome collection 

 After 90% confluency was reached, RCFs were digested using 0.25% trypsin/EDTA for 5 

mins at 37℃. Collected cells were seeded onto the PAM gels supplemented with culture medium 

consisting of DMEM, 12% FBS, and 1% penicillin. The cells were left to settle under normal 

culture conditions (21% O2, 5% CO2, 37°C) overnight. The medium was then replaced with 

serum-free medium, and the plate was incubated under hypoxic condition (1% O2, 5% CO2, 

37 °C) for 24 hours. The medium of each PAM gel was collected, filtered by 0.22 μm filter, and 

stored at –80°C for further experiments. The secretomes collected on 4 PAM gels with different 

stiffness were named as PAM1, PAM2, PAM3, PAM4, respectively. The remaining cells were 

collected for mRNA collection. 

2.2.7 mRNA collection and concentration measurement 

 Cells from RCF secretome collection were lysed using 1 mL of TRI reagent and then 

transferred into a 1.7 mL centrifuge tube to incubate at room temperature for 5 mins. 150 μL 

phenol/CHCl3 was added to mixture until it became cloudy. The tube was vortexed for 20 

seconds and then incubated at room temperature for 10 mins, followed by centrifugation at 

12,000 g, 4℃ for 15 mins. After centrifugation, the upper transparent RNA-rich layer was 

collected in a new 1.7 mL centrifuge tube, following by adding 150 μL isopropanol. The tube 

was vortexed for 20 seconds and then incubated at room temperature for 15 mins. The tube was 
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centrifuged at 12,000 g, 4°C for 10 mins. After centrifugation, the supernatant was removed, 

followed by adding 150 μL of 75% ethanol (in DEPC water). The tube was vortexed for 20 

seconds and centrifuged at 12,000 g, 4°C for 5 mins. After centrifugation, the supernatant was 

removed. The open capped tube was placed in the biosafety cabinet for 20 mins to air-dry. 22 μL 

nuclease free water was added to dissolve the remaining RNA. RNA concentration was 

measured by NanoDrop (ND-1000 Spectrophotometer) for cDNA synthesis. 

2.2.8 cDNA synthesis 

 Complementary DNA (cDNA) was synthesized at 1000 ng/reaction using a high capacity 

cDNA reverse transcription kit (Thermo Fisher) by Mastercycler (Eppendorf). The synthesized 

cDNA was stored at – 20°C for Real-time RT-PCR.  

2.2.9 Real-time RT-PCR 

 As described at cDNA Synthesis, cDNA was obtained. SYBR green (Invitrogen) and 

selected primer pairs (Table 2) were mixed to perform real-time RT-PCR. β-actin was served as 

a housekeeping gene.  Fold of increase was calculated using ΔΔCt method. 

2.2.10 Sodium dodecyl sulphate–polyacrylamide gel electrophoresis (SDS-PAGE)  

 Protein concentration was measured using Bradford protein assay. 

Mini-protean TGX stain-free precast gel (Bio-rad) was used to load proteins. 20 ug protein was 

loaded in each lane. The running buffer for SDS-PAGE was 25 mM Tris, 190 mM glycine and 

0.1% SDS. The voltage was kept at 30 V for 15 min and 80 V for 1 hour. The images of the gel 

were obtained by Chemi-Doc XRS+ system (Bio-rad) 
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2.2.11 Enzyme-linked immunosorbent assay (ELISA) 

 100 µL diluted capture antibody was added to each well of a 96-well plate, followed by 

sealing with parafilm and incubating overnight at room temperature. The remaining liquid was 

aspirated, following by washing with wash buffer (0.05% Tween-20 in PBS) for 4 times. After 

that, 300 µL block buffer (1% bovine serum albumin in PBS) was added to each well and 

incubated for 1 hour at room temperature. Then, liquids were aspirated, and the plate was washed 

with wash buffer for 4 times. Serial diluted standard protein and release media were added to the 

plate with replicate number of 3, followed by incubating at 4℃ overnight. Then, the remaining 

liquid was aspirated, followed by washing with wash buffer for 4 times. Diluted detection 

antibody was added to each well and incubated for 2 hours at room temperature. After that, the 

liquids were aspirated and followed by washing with wash buffer for 4 times. Diluted Avidin-

HRP conjugate was added to each well and incubated for 30 min at room temperature. Then, the 

liquids were aspirated and followed by washing with wash buffer for 4 times. ABTS liquid 

substrate solution was added to each well and incubated at room temperature in the dark. The 

color development was monitored by a plate reader at 405 nm with wavelength correction at 650 

nm. 

2.2.12 HUVEC culture 

 Human umbilical vein endothelial cells (HUVECs) were cultured and seeded in a T75 

flask supplemented with 10 mL culture medium consisting of EBM and EGM-2 SingleQuots 

(Lonza) under normal culture conditions (21% O2, 5% CO2, 37°C). The culture medium was 

changed every two days and HUVECs were passaged when 90% confluence was reached. 
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2.2.13 HUVEC survival (MTT assay) 

 As previously described at RCF secretome collection, the medium of each PAM gel was 

collected. The medium of PAM2 and EBM without serum were blended at a ratio of 1:1 at a T25 

flask, following by being incubated under hypoxic condition (1% O2, 5% CO2, 37°C) for over 24 

hours to allow gas balance. The medium of PAM4 and EBM without serum were blended at a 

ratio of 1:1 at a T25 flask, following by being incubated under hypoxic condition (1% O2, 5% 

CO2, 37°C) for over 24 hours. All media used in this experiment was stored at hypoxic incubator 

(1% O2, 5% CO2, 37°C) for future experiments. Also, EBM without serum was placed to a T25 

flask and incubated under hypoxic condition (1% O2, 5%CO2, 37 °C) for over 24 hours, named 

as Control medium stored at hypoxic incubator (1% O2, 5% CO2, 37°C) for further experiments. 

 HUVECs were cultured and seeded in two 96-well plates (concentration of 30,000 

cells/mL) with replicate number of 10 for each group supplemented with 200 µL culture 

medium. The cells were maintained under normal culture conditions (21% O2, 5% CO2, 37°C) 

overnight. Without changing culture medium, two plates were transferred to hypoxic incubator 

(1% O2, 5% CO2, 37°C) and incubated. At day 0 and day 4, cell viability was measured for 

control group, PAM2 group (secretome collected on PAM2 gel blended with EBM) and PAM4 

group (secretome collected on PAM4 gel blended with EBM) using MTT assay. Briefly, 20 µL 5 

mg/mL MTT solution was added to each well to incubate for 4 hours. After that, the medium 

was removed carefully and 200 µL DMSO was added to each well, following by shaking for 10 

mins to dissolve all solids at bottom and reading the absorbance at 560 nm by a plate reader, and 

substracting background at 670 nm.   
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2.2.14 HUVEC migration 

 HUVECs were cultured and seeded in a 24-well plate (concentration of 175,000 

cells/mL) with replicate number of 4 for each group supplemented with 800 μL culture medium. 

The cells were left to settle under normal culture conditions (21% O2, 5% CO2, 37°C). After 

~90% confluency was reached, the cell monolayer was scratched using a pipette tip, and the cells 

were treated with EBM medium (control group) and secretome collected on PAM2 gel blended 

with EBM (PAM2 group). At 0, 15, 24, and 40 hours, cell migration was quantified by taking 

images with an optical microscope (Olympus IX70). 

2.2.15 HUVEC tube formation 

Three-dimensional collagen gel solution was prepared by mixing 3.78 mg/mL collagen 

type I solution, 5x DMEM, 1x DMEM, and FBS and adjusting pH to 7.3 by adding 1 M NaOH, 

followed by pipetting up and down 10 times. 500 µL solution was added to each well of a 48-

well plate with replicate number of 2 for each group. After 1-hour incubation, the remaining 

liquid was aspirated, following by washing with PBS for 2 times.  

 HUVECs were seeded in collagen gels (concentration of 50,000 cells/mL) supplemented 

with 400 µL culture medium. The cells were left to settle under normal culture conditions (21% 

O2, 5% CO2, 37°C) for 24 hours. The cells were treated with EBM medium (control group) and 

secretome collected on PAM2 gel blended with EBM (PAM2 group). After 24-hour incubation, 

the medium was aspirated, following by washing with PBS. HUVECs were fixed using 4% PFA 

for 50 min, followed by washing with PBS for 4 times. After that, cells were blocked using 

blocking buffer for 40 min, followed by washing with PBS. The diluted F-actin and DAPI were 

used to stain cells for 1 hour, followed by washing with PBS for 5 times. Fluorescent images 
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were taken for each collagen gel using Olympus FV1200 confocal microscope. The tube density 

was quantified from large lumens.  

2.2.16 Cardiomyocyte culture 

 Rat neonatal cardiomyocytes were purchased from Lonza and cultured per 

manufacturer’s instruction. Briefly, the cells were seeded in nitrocellulose-coated plates with rat 

cardiomyocyte growth media (rCGM, Lonza). Bromodeoxyuridine was added to the culture 

media to suppress fibroblast formation. 

2.2.17 Cardiomyocyte survival (MTT assay) 

 Cardiomyocytes were seeded in two 96-well plates (concentration of 10,000 cells/mL) 

with replicate number of 5 for each group supplemented with 200 µL culture medium. At day 0 

and day 2, cell viability was measured for control group, PAM2 group (secretome collected on 

PAM2 gel blended with EBM) and PAM4 group (secretome collected on PAM4 gel blended 

with EBM) using MTT assay. Briefly, 20 µL 5 mg/mL MTT solution was added to each well to 

incubate for 4 hours. After that, the medium was removed carefully and 200 µL DMSO was 

added to each well, following by shaking for 10 mins to dissolve all solids at bottom and reading 

the absorbance at 560 nm by a plate reader, and substracting background at 670 nm.   

2.2.18 Statistical analysis  

 All data were presented as mean ± standard deviation. One-way ANOVA was used to 

analyze the significant difference between experimental groups. The significant difference was 

defined as p < 0.05.  
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2.3 Results and Discussion 

2.3.1 Gene expression of RCF secretome in response to oxygen content 

 To investigate how the RCF secretome changed in response to environmental oxygen 

content, the growth factor expressions were quantified at the mRNA level under 1% O2, 5% O2, 

and 21% O2 culture conditions. RCF secretome under 1% O2 exhibited significantly higher 

Vascular endothelial growth factor (VEGF) expression than 5% O2 (p<0.0001) and 21% O2 

(p<0.0001) (Figure 1a). Besides VEGF, the 1% O2 group had significantly lower interleukin 

(IL1β) expression (p<0.05) and transforming growth factor β (TGFβ) expression (p<0.001) than 

21% O2, whereas 1% O2 and 5% O2 had similar expressions (p>0.05) (Figure 1b, 1c). 

 VEGF is one of the most effective proangiogenic factors [23]. It also plays a crucial role in 

promoting the formation of new blood vessels in the heart with myocardial infarction or other 

ischemic heart diseases [16]. Thus, the significantly higher VEGF expression was the advantage 

of 1% O2 group compared to other groups. Moreover, suppression of IL1β has been proven to be 

a treatment in myocardial infarction [24]. It has been shown that the expression of genes which are 

essential to the regulation of calcium homeostasis are reduced by IL1β [25]. The expression of 

nitric oxide synthase in cardiac myocytes is promoted by IL1β [26]. In addition, TGFβ has been 

proven to induce myocardial infarction and activate fibrosis in the infarcted heart [27]. Therefore, 

the lower expression of IL1β and TGFβ was another advantage of 1% O2 group compared to 

other groups. The above results reveal that the lower environmental oxygen content significantly 

optimized RCF secretome. Hypoxic culture condition (1% O2, 5% CO2, 37°C) was chosen for 

further experiments. 
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2.3.2 PAM Gel Fabrication and Characterization 

 PAM gels were fabricated with four different concentrations of acrylamide and 

crosslinker bis-acrylamide and cut to circles (Figure 2a). To determine PAM gels stiffness, the 

storage modulus was measured by using rheometer (Table 3). The Young’s modulus, E was 

related to storage modulus by using the equation: 𝐸 = 𝐺!2(1 + 𝑣), where 𝑣, the Passion ratio 

was approximated to 0.5 for PAM gels [22]. For PAM1 which contained 5% acrylamide and 0.1% 

crosslinker bis-acrylamide, its storage modulus was 0.43 ± 0.02 kPa and Young’s modulus was 

1.29 ± 0.05 kPa. For PAM2 which contained 8% acrylamide and 0.1% crosslinker bis-

acrylamide, its storage modulus was 2.04 ± 0.10 kPa and Young’s modulus was 6.11 ± 0.31 kPa. 

For PAM3 which contained 8% acrylamide and 0.25% crosslinker bis-acrylamide, its storage 

modulus was 4.82 ± 0.09 kPa and Young’s modulus was 14.46 ± 0.27 kPa. For PAM4 which 

contained 12% acrylamide and 0.25% crosslinker bis-acrylamide, its storage modulus was 10.83 

± 0.10 kPa and Young’s modulus was 32.50 ± 0.31 kPa (Figure 2b). These results confirmed that 

the stiffness of PAM gel was controllable by adjusting the concentration of acrylamide or 

crosslinker (bisacrylamide) concentration. We found that higher acrylamide or crosslinker 

(bisacrylamide) concentration resulted in stiffer PAM gel. 

To determine RCF morphology and the tendency to differentiate into myofibroblasts, 

immunocytochemical staining of SMA was performed, and the fluorescent images were taken 

for RCF on PAM1 to 4 and normal culture plate (Figure 3). α-SMA is regarded as a marker for 

myofibroblasts [28]. With the increase of stiffness, the α-SMA expression increased and the RCFs 

were observed to differentiate into myofibroblasts. The above results demonstrate that the 

stiffness of PAM gel could affect the α-SMA expression. Higher stiffness of PAM gel could lead 

to more α-SMA expression. RCFs would differentiate into myofibroblasts on a stiffer substrate.   
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Fibroblasts has been shown to proliferate, migrate, and regulate cardiac extracellular 

matrix (ECM), leading to sustain cardiac homeostasis [29]. Myofibroblasts are differentiated from 

fibroblasts, which are unusually present in the healthy myocardium, but normal in the infract 

scar, leading to fibrogenesis [30]. The activeness of myofibroblasts in healthy area of the heart can 

lead to fibrosis and adverse myocardial remodeling [31]. Myocardial remodeling (REM) is a 

detrimental process of changing in the heart’s size and shape, being caused by myocardial 

infarction [32]. High myofibroblast density in the remote myocardium results in increased 

myocardial stiffness, leading to systolic and diastolic dysfunction and heart failure [29]. 

Moreover, compared to the proven myocyte  hypertrophy caused by secretome activated 

myofibroblasts, secretome of CFs has been performed to protect cardiomyocytes from induced 

hypertrophy [20,33]. Therefore, the PAM gel with less α-SMA expression performed greater than 

others.  

2.3.3 Effects of PAM gels on RCF secretome under hypoxic condition 

 To investigate how the stiffness of PAM gels affects RCF secretome under hypoxic 

condition, the total amounts of protein in RCF cultured on PAM1 to 4 were measured by running 

SDS-PAGE (Figure 4). Compared to other three groups, the PAM2 groups expressed apparently 

much greater amount of protein.  

 To determine how RCF paracrine effects were expressed on PAM gels under hypoxic 

condition, the growth factor expressions were quantified at the RNA level. For basic fibroblast 

growth factor (bFGF), the PAM2 group exhibited significantly higher than PAM3 group 

(p<0.05) and PAM4 group (0.01) (Figure 5a). For platelet-derived growth factor (PDGF), the 

PAM2 group also performed significantly higher than PAM3 group (p<0.01) and PAM4 group 
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(p<0.0001) (Figure 5b). For VEGF, the PAM2 group also performed significantly higher than 

PAM3 group (p<0.05) (Figure 5c).  

bFGF has been shown to be a protective role in myocardial infarction and hypoxia 

cardiomyocytes [34]. Also, bFGF can promote cardiac stem cell migration, reduce infarct size, 

and enhance cardiac systolic function [35,36]. Moreover, it has been shown that PDGF is one of the 

growth factors which can promote cell growth, differentiation, proliferation, and migration, 

leading to stimulate angiogenesis [37]. The importance of VEGF in myocardial infarction has 

been discussed before. Thus, the significantly higher expressions of PDGF, VEGF, and bFGF 

were the advantage of PAM2 group compared to other three groups. The above results 

demonstrate that PAM2 gel optimized RCF secretome under hypoxic condition.  

 To determine the concentration of bFGF of RCF secretome collected on PAM1 to 3 

under hypoxia, ELISA was used to measure. The PAM2 gel significantly increased the 

concentration of bFGF in RCF secretome compared to PAM1 (p<0.01) and PAM3 (p<0.01) 

(Figure 6). These results demonstrate that PAM2 significantly enhanced the amount of bFGF in 

RCF secretome under hypoxia.  

 Therefore, based on the above results, PAM2 group was chosen for further experiments. 

2.3.4 Effects of RCF secretome on HUVEC survival, migration and tube formation under 

hypoxic condition 

Endothelial cells play a pivotal role in angiogenesis, which is a crucial process after 

myocardial infarction. The survival, migration and fusion of endothelial cells is the prerequisite 

for formation of new blood vessels [38].  
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To investigate whether the PAM2 can increase HUVEC survival under hypoxic 

condition, HUVECs were cultured using three different culture media. Control group was used 

with serum-free medium; PAM2 group was used with serum-free medium and PAM2 medium at 

ratio of 1:1; PAM4 group was used with serum-free medium and PAM4 medium at ratio of 1:1. 

Although the cell viability of all three groups at day 4 decreased compared to day 0, the cell 

number of PAM2 group was significantly higher than control group (p<0.0001) and PAM4 

group (p<0.01) (Figure 7). Moreover, there was no significant difference between control group 

and PAM4 group (p>0.05). The in vitro results reveal that the secretome collected on low 

stiffness promoted HUVEC survival under hypoxic condition, but the secretome collected on 

high stiffness did not have much greater effect than serum-free medium. Thus, PAM2 medium 

was used for further experiment. 

 To determine whether the RCF secretome collected on PAM2 enhanced HUVEC 

migration, the migration ratio of two groups (Control and PAM2) was statistically measured 

based on images taken at 0, 15, 24, and 40 hours (Figure 8a). For control group, the migration 

ratios at 15, 24, and 40 hours were lower than 20%. For PAM2 group, the migration ratios at 15, 

24, and 40 hours were persistently increasing. At these three time spots, PAM2 group had 

significantly greater migration ratios than control group (p<0.0001) (Figure 8b).  

 To investigate whether the RCF secretome collected on PAM2 promoted HUVEC tube 

formation, the normalized tube density of two groups was statistically measured based on 

fluorescent images taken after 24-hour incubation (Figure 9a). For the number of cells, PAM2 

group performed apparently much greater than control group. Besides the number of cells, 

PAM2 group had significantly greater tube density than control group (p<0.001) (Figure 9b). 
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The above results reveal that the RCF secretome collected on PAM2 played an essential role on 

HUVEC survival, migration, and tube formation. 

2.3.5 Effect of RCF secretome on cardiomyocytes survival under hypoxic condition 

To investigate whether the PAM2 can increase cardiomyocytes survival under hypoxic 

condition, cardiomyocytes were cultured using three different culture media. Control group was 

used with serum-free medium; PAM2 group was used with serum-free medium and PAM2 

medium at ratio of 1:1; PAM4 group was used with serum-free medium and PAM4 medium at 

ratio of 1:1. Although the cell viability of all three groups at day 2 decreased compared to day 0, 

the cell number of PAM2 group were significantly higher than control group (p<0.01) and 

PAM4 group (p<0.001) (Figure 10). Moreover, there was no significant difference between 

control group and PAM4 group (p>0.05). The in vitro results reveal that the secretome collected 

on low stiffness protected cardiomyocytes under hypoxic condition, but the secretome collected 

on high stiffness did not have greater effect than serum-free medium.  

2.4 Conclusion 

 In this work, RCF secretome was modulated in response to different environmental 

oxygen contents and stiffness. Under hypoxic culture condition (1% O2, 5% CO2, 37°C), the 

RCF secretome collected on PAM2 gel exhibited greater secretion of growth factors cytokines at 

both RNA and protein level. Higher cell survival ratio, migration ratio, and tube formation ratio 

confirmed the useful treatment of optimized RCF secretome. This modulation of cardiac 

fibroblast secretome may promote heart repair after myocardial infarction. 
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Chapter 3 Targeted Delivery of Platelet Membrane Coated PLGA Nanoparticles with 

Sustained Cardiac Fibroblast Secretome Release 

3.1 Intro  

 Among the current delivery methods, such as injectable hydrogel and transplantation of 

patch, they are limited by indirect delivery with a surgery to open chest, leading to high risk to 

break myocardium [39]. In addition, nanoparticle delivery system is a minimally-invasive method 

by intravenous injection, and its size is small enough to circulate in the blood stream [40]. To 

overcome the limitations of nanoparticle, such as short retention and potential immune rejection, 

a cell-membrane coated nanoparticle delivery system has been designed [41]. Among various cell 

membranes, platelet membrane coating has advantage of avoiding immune rejection, capability 

of ligand binding and selectively binding to injured endothelium by nature. The objective of this 

work is to coat platelet membrane with nanoparticles to targeted bind to the injured endothelium 

[42]. 

3.2 Materials and methods 

3.2.1 Materials 

 Poly (lactide-co-glycolic acid) (PLGA, LACTEL) with a LA/GA ratio of 50/50 was 

purchased from Lactel Absorbable Polymers. 

3.2.2 Secretome collection  

As described at RCF secretome collection, the medium of PAM2 was collected, filtered 

by 0.22 μm filter, and freeze-dried. The powder was dissolved in 2 mL DI water, and 

concentrated using vivaspin 500 concentrator (MWCO=3kDa) to obtain a desalted secretome 

solution for nanoparticle fabrication. 
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3.2.3 Nanoparticle fabrication and characterization 

 100 mg PLGA was weighed and dissolved in 2 mL dichloromethane (DCM). 200 µL 

secretome solution was emulsified with PLGA solution using an ultrasonicator for 1 min to 

obtain a homogeneous and opaque solution. The solution was quickly transferred into a beaker 

with 8 mL of 1% w/v polyvinyl alcohol (PVA) water solution, following by 1-minute 

ultrasonication. After that, the beaker was placed on a magnetic stirring plate with a moderate 

stirring speed at room temperature overnight to evaporate solvent. The remaining solution was 

transferred into a 50-mL tube, following by adding DI water to 35 mL and centrifuging at speed 

of 12,000 rpm for 15 mins. After centrifugation, the supernatant was removed carefully. The 

centrifugation/resuspension process was repeated for 4 times to remove PVA. After that, the 

washed nanoparticles were freeze-dried, collected, and stored at -80℃ for further experiments.  

 The size distribution of nanoparticles was measured by dynamic light scattering at room 

temperature. The samples were prepared by diluting nanoparticles with DI water and filtering 

with a 0.45 µm membrane filter. 

3.2.4 Growth factor release characterization 

 75 mg of fabricated nanoparticles was weighed and suspended in 5 mL PBS with 1% 

penicillin to achieve a final concentration of 15 mg/mL. The suspension was evenly separated 

into twelve 1.7-mL centrifuge tube and incubated in a 37℃ water bath for release. At day 1, 2, 3, 

5, 7, 10, and 14, the release media were collected and stored at -80℃ for further experiments.  

 The concentration of growth factor was measured by ELISA [43,44]. 100 µL diluted 

capture antibody was added to each well of a 96-well plate, followed by sealing with parafilm 

and incubating overnight at room temperature. The remaining liquid was aspirated, followed by 

washing with wash buffer (0.05% Tween-20 in PBS) for 4 times. After that, 300 µL block buffer 
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(1% Bovine Serum Albumin in PBS) was added to each well and incubated for 1 hour at room 

temperature. Then, liquids were aspirated, and the plate was washed with wash buffer for 4 

times. Serial diluted standard and release media were added to the plate with replicate number of 

3, followed by incubating at 4℃ overnight. Then, the remaining liquid was aspirated, followed 

by washing with wash buffer for 4 times. Diluted detection antibody was added to each well and 

incubated for 2 hours at room temperature. After that, the liquids were aspirated and followed by 

washing with wash buffer for 4 times. Diluted Avidin-HRP conjugate was added to each well 

and incubated for 30 mins at room temperature. Then, the liquids were aspirated and followed by 

washing with wash buffer for 4 times. ABTS liquid substrate solution was added to each well 

and incubated at room temperature in the dark. The color development was monitored by a plate 

reader at 405 nm with wavelength correction set at 650 nm. 

3.2.5 Platelet membrane coating and characterization 

The platelet rich plasma was extracted from bovine blood. Three freeze-thaw processes 

were conducted on the platelets in a 1.7-mL centrifuge tube to break the cell membrane. After 

the final thaw process, the tube was centrifuged at 4,500 g for 5 min at room temperature. Then, 

the pelleted platelet membrane was washed with PBS containing protease inhibitor for 3 times. 

After sonication for 5 min, 2 mg freeze-dried nanoparticles were added into 2 mL platelet 

membrane solution, following by sonicating for 5 mins. The platelet membrane coated (PLM-

coated) nanoparticles were stored at 4℃ for further experiments. 

 The size distribution of platelet membrane coated nanoparticles was measured by 

dynamic light scattering at room temperature. The samples were prepared by diluting 

nanoparticles with DI water and filtering with a 0.45 µm membrane filter. 
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3.2.6 Cell uptake  

 As described at Platelet membrane coating and characterization, PLM-coated 

nanoparticles were obtained. Ischemia-targeting peptide CSTSMLKAC (CST) in NaH2PO4 

buffer was mixed with PLM-coated nanoparticles, following by adding suberic acid bis(N-

hydroxysuccinimide ester) dissolved in DMSO and stirring at room temperature for 2 hours. 

After adding glycine and dialyzing against DI water overnight, CST conjugation was finished. 

 Glass slides were placed in a 24-well plate, coated with collagen, and incubated for 1 

hour at room temperature. After the remaining liquids were aspirated, the plate was placed in a 

biosafety cabinet under UV to sterilize for 1 hour. HUVECs and RCFs were cultured and seeded 

in the glass slides (concentration of 50000 cells/mL) with replicate number of 2 for each kind of 

cells supplemented with 800 μL culture medium. The cells were left to settle under normal 

culture conditions (21% O2, 5% CO2, 37°C). After 24-hour incubation, the medium was replaced 

with 1 mg/mL diluted, conjugated PLM-coated nanoparticles with normal medium. After 24-

hour incubation, the medium was aspirated, following by washing with PBS. HUVECs and 

RCFs were fixed using 4% PFA for 50 mins, following by washing with PBS for 4 times. After 

that, cells were blocked using blocking buffer for 40 mins, following by washing with PBS. The 

diluted F-actin and DAPI were used to stain cells for 1 hour, following by washing with PBS for 

5 times. Fluorescent images were taken for each glass slide using Olympus FV1200 confocal 

microscope. The ratios of cell uptake were quantified by measuring the number of cells which 

have nanoparticles inside divided by total number of cells. 
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3.2.6 Statistical analysis  

 All data were presented as mean ± standard deviation. One-way ANOVA was used to 

analyze the significant difference between experimental groups. The significant difference was 

defined as p < 0.05. 

3.3 Results and Discussion 

3.3.1 Fabrication and characterization of PLGA nanoparticles 

 The PLGA nanoparticles were fabricated by the method of double emulsion to form core-

shell structure with PLGA as shell and RCF secretome as core. The size of uncoated PLGA 

nanoparticles was 218.33 nm with a PDI of 0.17, while the size of PLM-coated PLGA 

nanoparticles was 239.80 with a PDI of 0.04 (Figure 11a). The results demonstrate that the size 

of nanoparticles increased after coating with platelet membrane (Table 3). The size of PLGA 

nanoparticles did not change significantly within 30-day incubation in PBS at 37ºC (Figure 11b). 

The above results reveal that the PLGA nanoparticles were stable in physiological environment. 

3.3.2 Growth factor release kinetics  

 To determine how different growth factors released from the nanoparticles, the 

concentrations of PDGF, VEGF, and bFGF in release media were measured and calculated by 

performing ELISA (Figure 12). The above results demonstrate that the growth factors were 

sustainedly released by nanoparticles in 37°C over 14 days.  

Herein, among PDGF, VEGF, and bFGF, they all play essential roles in the treatment of 

myocardial infarction. The sustained release delivery system is useful to avoid a consequence 

that the loaded secretome are metabolized and eliminated from the body too fast to achieve the 

desired therapeutic effect [45].  
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3.3.3 Cell uptake for platelet membrane coated nanoparticles 

 To investigate how the platelet membrane affected HUVEC and RCF uptake 

nanoparticle, the ratio of cell uptake was quantified by counting the number of cells endocytosed 

nanoparticles. For both of HUVEC and RCF, the ratios of cell uptake were lower than 15% 

(Figure 13).  

3.4 Conclusion 

 In this work, a RCF secretome release system was designed and fabricated. The RCF 

secretome nanoparticles exhibited sustainedly release RCF secretome and stability in 

physiological environment. This delivery system may have the potential treatment for the heart 

repair following myocardial infarction. 
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Chapter 4 Future Work 

 The PLM-coated PLGA nanoparticles can sustainedly release the loaded RCF secretome 

which is modulated based on hypoxic culture condition and environmental stiffness. However, 

we still do not know whether the amount of secretome loaded is enough to promote heart repair 

following myocardial infarction. The effect of secretome loaded nanoparticles should be tested 

by further and deeper experiments in vitro and in vivo. Thus, the therapeutic effect of this 

nanoparticles can be exhibited.  
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Table 1. Concentration of acrylamide and bis-acrylamide of PAM gels.  

Polyacrylamide 

hydrogel 

Acrylamide 

% 

Bis-

acrylamide % 

Acrylamide 

from 40% 

stock solution 

(mL) 

Bis-acrylamide 

from 2% stock 

solution (mL) 

DI water 

(mL) 

PAM1 5 0.1 0.625 0.25 4.125 

PAM2 8 0.1 1 0.25 3.75 

PAM3 8 0.25 1 0.625 3.375 

PAM4 12 0.25 1.5 0.625 2.875 

 

Table 2. Primer sequences used in real-time RT-PCR.  

 Forward primer Reverse primer 

VEGF TATCTTCAAGCCGTCCTGTG GATCCGCATGATCTGCATAG 

PDGFBB AAATCGTGGAAGACATGAAC TTCACAAGCACAATGCAC 

TGFβ ATATAGCAACAATTCCTGGC CGTGGAGTACATTATCTTTGC 

bFGF AACTACAGCTCCAAGCAG GTAACACACTTAGAACCAG 

IL1β CACCTCTCAAGCAGAGCACAG GGGTTCCATGGTGAAGTCAAC 
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Table 3. PAM gel stiffness measured by rheology.  

Polyacrylamide 

hydrogel 
Storage Modulus G’ ± SD (kPa) 

Young’s Modulus E ± SD 

(kPa) 

PAM1 0.43 ± 0.02 1.29 ± 0.05 

PAM2 2.04 ± 0.10 6.11 ± 0.31 

PAM3 4.82 ± 0.09 14.46 ± 0.27 

PAM4 10.83 ± 0.10 32.50 ± 0.31 

 

Table 4. Size and PDI of uncoated and PLM-coated nanoparticles. 

 Z-average (nm) PDI  

Uncoated nanoparticle 218.33 0.17 

PLM-coated nanoparticle 239.80 0.04 
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Figure 1. Gene expression of VEGF, IL1β, and TGFβ in RCF under 1% O2, 5% O2, and 21% O2 

culture conditions. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 

 

 

Figure 2. Fabricated PAM gel and stiffness of PAM gels as measured by rheometer.  
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Figure 3. Immunocytochemical staining of F-actin (green) and α-SMA (red) of RCF cultured on 

PAM1 to 4 and culture plate. Nuclei were stained with DAPI (blue).  

 

Figure 4. Protein expression of RCF cultured on PAM1 to 4 gels.  
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Figure 5. Gene expression of RCF cultured on PAM1 to 4. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001 

 

Figure 6. Concentration of bFGF of RCF secretome collected on PAM1 to 3. *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001 
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Figure 7. In vitro HUVEC survival under hypoxic condition. *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001 

 

Figure 8. In vitro HUVEC migration under hypoxic condition. scale bar = 200 µm, *p<0.05, 

**p<0.01, ***p<0.001, ****p<0.0001  
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Figure 9. In vitro HUVEC tube formation under hypoxic condition with quantification. Nuclei and 

cytoplasm were stained with DAPI (blue) and F-actin (green). *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001 

 

 

Figure 10. In vitro cardiomyocytes survival under hypoxic condition. *p<0.05, **p<0.01, 

***p<0.001, ****p<0.0001 
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Figure 11. DLS of uncoated and PLM-coated nanoparticles and stability of uncoated 

nanoparticles. 

 

 

Figure 12. Growth factor release kinetics. The PDGF, bFGF, and VEGF release of the 

uncoated nanoparticles was tested for 14 days under 37℃. 
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Figure 13. Cell uptake of PLM-coated nanoparticles with quantification.  
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