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Abstract 

An Injectable Thermosensitive Hydrogel  

Potentially Used for Wound Dressing with Self-adhesive Properties 

 

By 

Yunxiu Qiu 

Master of Science in Material Science and Engineering 

Washington University in St. Louis, 2021 

Research Advisor: Professor Jianjun Guan 

 

Wound healing is a complex process, and different kinds of materials are tried to achieve rapid 

healing. Among them, hydrogel is one of the best candidates for would dressing due to its 

distinctive properties, such as high biocompatibility, flexibility, and sensitivity to physiological 

environments. Injectable hydrogels can be facilely delivered in vivo without massive impairment 

to the body, as no surgical incision is needed for hydrogel embedment. This is highly consistent 

with the need of minimal invasion on human body. Multiple stimuli could be applied to achieve 

its injectability, including pH, temperature, light, ions in body fluids. Thermosensitive hydrogel 

is commonly used due to its high retention of cells and drugs in the local sites. Poly (N-

Isopropylacrylamide) (PNIPAM) could be applied because PNIPAM-based polymers can 

achieve fast gelling at body temperature. Additionally, the introduction of dopamine could 

provide self-adhesive property for wound dressing applications because of possible bonds with 

cells, tissues and inorganics. In this thesis, a series of PNIPAM-based, dopamine-modified 

hydrogels are prepared. They show rapid gelation, high water content, degradability, no 



x 

cytotoxicity of degradation product to cells, and high in vivo biocompatibility. These hydrogels 

could also improve cell adhesion as well as promoting cell growth and proliferation. Moreover, 

the hydrogels could potentially present anti-bacterial properties when silver could be coated onto 

the hydrogel, which could provide further advantages in would dressing. 
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Chapter 1: Introduction 

1.1 Injectable hydrogels used in wound dressing 

Wound healing is a complex and dynamic process which is related with cell growth and tissue 

regeneration[1]. To achieve a rapid wound closure rate, an environment with appropriate 

moisture is always required as well as microbial infection prevention[2]. In previous works, 

several materials have been developed as wound dressing materials, such as hydrogels, 

hydrocolloids, synthetic foam dressings, silicone meshes, moisture-permeable adhesive films, 

and silver/collagen-containing dressing[3,4]. Among them, hydrogels outstands due to their 

biomimetic properties including high biocompatibility, proper stiffness and flexibility, 

sensitivity to physiological environments, and the ability to deliver drugs or growth factors to 

promote cell proliferation and tissue maturation[5–7]. At the same time, hydrogel dressed at 

wound cite also allows oxygen to penetrate, absorbs exudate from wound cite as well as 

remaining moist environment as required[8].  

However, normal dressing hydrogels, which are usually sheet-like, have limits of fitting 

different shaped wounds. Therefore, injectable hydrogels have been noticed and applied on 

wound dressing[9]. They can more easily fill wound cite and adhere to tissues[10,11]. These self-

healing hydrogels are injected into the body in liquid form and are instantly converted into 

solid hydrogels in situ by physical or chemical cross-linking. Stem cells, drugs, proteins or 

other biomolecules can be mixed with the precursor polymer solution before injection and 

then retained by the hydrogel network[12]. In addition, injectable hydrogels can also achieve 

minimal invasion[13]. To attain in situ gelling, several stimuli could be applied including pH, 

temperature, light, and ions in body fluids[14–16]. 
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1.2    Thermosensitive hydrogels used in would dressing 

1.2.1    PNIPAM-based hydrogels 

Among all the stimuli that could form in situ injectable hydrogels, temperature is the most 

widely used as no other condition is needed as injected in vivo. Poly(N-Isopropylacrylamide) 

(PNIPAM)-based hydrogel is one of the most widely studied owing to its thermo-sensitivity, 

biocompatibility and great structure tailorability and flexibility[17,18]. In an aqueous solution, as 

the temperature rises above the lower critical solution temperature (LCST) of approximately 

32°C, PNIPAM undergoes a phase change from a hydrophilic state to a hydrophobic state[19], 

[20].  

However, PNIPAM-based hydrogels still have some limits on wound dressing due to few 

available functional groups. For instance, during the volume shrinkage of the hydrogel, stable 

adhesion between the hydrogel and the skin is also required to keep the hydrogel attached to 

the skin, so as to ensure that the contractile force of the hydrogel can help the wound to 

close[19]. Several studies have been conducted to improve properties of PNIPAM-based 

hydrogels. For instance, collagen and hyaluronic acid were used to modify their 

biocompatibility, poly (amidoamine) (PAA) could also be added as crosslinker to improve 

stiffness[21,22].  
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1.2.2    Dopamine-modified hydrogels in wound dressing  

Dopamine, a natural type of neurotransmitter, contains two phenol groups which could react 

with surrounding environment easily. Therefore, it is widely grafted on hydrogels to promote 

wound closure and provide further grafting[23].  

In previous studies, polydopamine (PDA) coating to PNIPAM hydrogel was used to increase 

near-infrared (NIR) response as well as promoting cell adhesion and proliferation[24]. In 

addition, PDA could also conjugate with cellulose to form hydrogels, nanofibers and 

membranes, textiles and films in order to improve interface compatibility, interfacial stress 

sensitivity and crosslinking density[25]. Dopamine could also be added to achieve self-healing 

property in moist environment[26], which suggested improvement of mechanical properties as 

well. In this thesis, dopamine was added to modify PNIPAM-based hydrogel to broaden its 

applications in wound dressing.  

 

1.3    Functional domains used in hydrogels 

In this thesis, other monomers were also chosen and utilized to promote hydrogel properties.  

Poly(ethylene glycol) methacrylate (PEGMA) is a high-hydrophilic polymer which could 

provide hydrogen bond donor groups[27]. In this study, PEGMA was added to increase 

hydrophilicity of the hydrogel to achieve solubility. Acrylate-oligolactide (AOLA) could 

provide degradable side chains for the hydrogels[28–31]. In addition, the transition temperature 

of the degradation product was increased to above 37℃, making it bioeliminable in body 

fluids. N-acryloxysuccinimide (NAS) could provide succinimide side groups which are 
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capable of conjugating to amino acids, leading to the enhanced retention of growth factors and 

therapeutic drugs for controlled release[32–35]. At the same time, NAS could be applied to graft 

dopamine with the existence of easter bonds. 

 

1.4    Mesenchymal stem cells used in wound dressing 

Mesenchymal stem cells (MSCs) have the ability of self-renewal and multi-lineage 

differentiation to enhance cutenous wound healing. Implantation of MSCs could accelerate 

wound closure, increase therapeutic angiogenesis, promote the regression of wound 

inflammation, regulate extracellular matrix remodeling, and promote skin regeneration [36,37]. 

MSCs have also been proved to act as mediators in inflammatory environments, and have 

been applied in translational research studies [37]. The beneficial effects of exogenous MSC on 

wound healing have been observed in various animal models and clinical cases[38]. They could 

be injected to treat acute and chronic wounds. Therefore, MSCs were used in this study to 

imitate situation at wound cite. In addition, MSCs were applied to test the biocompatibility of 

synthesized hydrogels.  
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1.5    Silver Nano-Coatings used as antibacterial potential for wound dressing 

Bacterial inflammation has continually to be one of the urgent problems researchers need to 

consider when designing wound dressing materials. Several approaches have been devised, 

including releasing encapsulated drugs and directly using materials with inherent antibacterial 

activities[39]. Among those inherent antibacterial elements, silver has been widely used due to 

their excellent cytotoxicity[40]. The effectiveness of silver compounds as preservatives is based 

on the ability of biologically active silver ions (Ag+) to irreversibly destroy key enzyme 

systems in the cell membrane of pathogens[41]. In previous studies, Ag nanoparticles has been 

filled in hydrogels to improve antibacterial as well as mechanical properties by serving as 

secondary reinforcing agent. Ag+ ions could also be released at controlled manner as hydrogel 

matrix could perform as reservoir[42,43].  

In this thesis project, conjugated dopamine on the hydrogels had oxidizing property, which 

could reduce silver ions to simple silver. Thus, these dopamine-modified hydrogels could be 

further explored as antibacterial hydrogels with the addition of silver and proper treatment.  
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Chapter 2: An Injectable Thermosensitive Hydrogel Potentially 

Used for Wound Dressing with Self-adhesive Properties 

2.1    Material and methods 

2.1.1    Materials 

All materials included in this project were purchased from Sigma-Aldrich if not specifically 

mentioned.  

Chemicals included in this project: N-Isopropylacrylamide (NIPAM), poly(ethylene glycol) 

methacrylate (PEGMA), acrylate-oligolactide (AOLA), N-acryloxysuccinimide (NAS), N-

hydroxysuccinimide (NHS), benzoyl peroxide (BPO), dopamine hydrochloride (DOPA), silver 

nitrate (AgNO3), sodium carbonate (Na2CO3), sodium sulfate (Na2SO4), acryloylchloride (Ac). 

Solvent included in this project: dioxane, tetrahydrofuran (THF), hexane, diethyl ether, 

dimethylformamide (DMF), triethylamine (TEA), chloroform (CHCl3), dichloromethane (DCM), 

deionized water (DI water), phosphate-buffered saline (PBS).  

Materials included in cell culture: Dulbecco’s modification of eagle’s medium (DMEM, 

purchased from Corning), Minimum essential medium (MEM-α,), fetal bovine serum (FBS), 

Trypsin serine protease enzyme (Trypsin), Penicillin streptomycin (Pen Strep).  

Materials included in cell experiment: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide, 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI), F-actin kit (purchased 

from acbam).  



7 

2.1.2    Synthesis of Polymer I 

Four  monomers were used in synthesizing polymer I, including AOLA, NAS, N-

Isopropylacrylamide (NIPAM) and PEGMA. Both AOLA and NAS were synthesized through 

chemical reaction. N-Isopropylacrylamide (NIPAM) was purified through recrystallization 

before usage, and PEGMA was purified through vacuum dry.  

The first step of synthesizing AOLA is combining of 45.8g lactide and 1g sodium methoxide in 

10ml methanol (CH3OH), dissolve in 100ml DCM to form poly (lactide acrylate) (PLA). The 

reaction is conducted under 0 ℃ with nitrogen protection for 1.5 hours. After reaction, the 

product was washed using separating funnel with 0.1M hydrogen chloride (HCl) and brine. Then 

the PLA was dried with air blow overnight. Then 45g PLA was dissolved in the combination of 

50ml DCM and 32.5ml TEA, 19ml acryloyl chloride (Ac) was dripped into the system. The 

reaction took overnight under the condition of 0 ℃. After reaction finished, the product was also 

washed in order of 0.2M Na2CO3 solution, 0.1M HCl and brine for two times. Then Na2SO4 was 

added as desiccant to place overnight. The desiccant was filtered and removed through a funnel, 

then the product of AOLA was collected by 2 hours-lyophilization. 

NAS was synthesized by adding 11.5g NHS and 11g TEA into 160ml chloroform. After 

dissolving them under the condition of 0 ℃, 8.93ml acryloyl chloride was dripped into the 

system within an hour. The reaction took about 15 to 20 minutes. Then the product was washed 

with DI water and brine for three times. The organic solvent was dried through evaporation and 

the product was collected through vacuum dry.  

Polymer I (poly (NIPAM-PEGMA-AOLA-NAS)) was synthesized using 1.60g NIPAM, 1.5g 

PEGMA, 0.283g AOLA and 0.338g NAS. The monomer ratio of synthesizing Polymer I is listed 
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in Table 1.120ml dioxane was added to dissolve these monomers. After nitrogen protection for 

20 minutes, 0.2 wt% BPO was added into the system as initiator of the reaction dropwise. Then 

nitrogen was ventilated for another 10 minutes. The whole reaction took 24 hours under 70 ℃, 

350 rpm.  

The polymer was then purified after reaction. Polymer solution was dripped into 600ml cold 

hexane with stirring. Precipitation was formed and separated from solution using vacuum 

filtration. Then the filtered powder was dissolved into 20ml tetrahydrofuran (THF) and dropped 

into 500ml cold diethyl ether. Again, the newly formed precipitation was vacuum filtered to get 

the purified Polymer I. The hydrogel was collected by 24 hours-lyophilization thereafter. This 

Polymer I without addition of dopamine was named as D0 hydrogel. 

 

2.1.3    Conjugation of Polymer II 

Polymer II was obtained from conjugation of Polymer I and dopamine hydrochloride (DOPA). 

After calculating the weight ratio of NAS in Polymer I, 50% and 25% mole ratio of DOPA 

(70mg and 35mg) was added with 1g Polymer I into 10ml dimethylformamide (DMF). After 

ventilating nitrogen for 30 minutes, 68mg triethylamine (TEA) was added into the system. The 

conjugation took 20 hours under 60 ℃.  

For purification, the solvent of the polymer solution (DMF) was evaporated to dryness. Then, 

the residue was dissolved in 6ml THF and dripped into 150ml cold diethyl ether. The 

precipitation was vacuum filtered and then dissolved into 8ml THF. Again the solution was 

dripped into 160ml cold diethyl ether and the precipitation was filtered. The Polymer II was 
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collected after 24 hours vacuum dry under 60℃. Collected Polymer II were separately named 

as D1/4 (with 25% dopamine) and D1/2 (with 50% dopamine). 

 

2.1.4 Chemical structure of the synthesized polymer 

The structure of the synthesized polymers was confirmed through 1H nuclear magnetic 

resonance (NMR) spectrum. The monomer ratio of synthetic polymers was calculated through 

peaks’ integral. 

 

2.1.5 Solubility, injectability and thermosensitive gelation 

To test the solubility of synthesized hydrogel, 6 wt% of synthesized polymer was dissolved in 

PBS with continuous stirring under 4℃. Then the solution was put under 37℃ to test gelation 

properties. To test whether the hydrogel is he injectability, the polymer solution was injected 

through 27 Gauze needles. 

 

2.1.6    Water content of synthesized hydrogel 

6 wt% hydrogel solution in DPBS was prepared and sterilized under UV for half an hour. 

Each micro centrifuge tubes were labeled and weighed w1. 0.2mL hydrogel solution was 

injected using 1mL syringe into each tube; tubes were placed in 37℃ water baths for half an 

hour to allow gelation; 0.2mL sterilized DPBS was added as degradation medium into each 
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tube to replace the remaining medium after gelation. Tubes were incubated in 37℃ water 

baths. When collecting samples at each time point, media was transferred into labelled tubes 

respectively and stored in -80℃ freezer for degradation media cytotoxicity test. The remaining 

solid gels and tubes are stored in -80℃ freezer. After all samples are collected, tubes with 

solid gel were freeze dried and weight as w2. Dry weight of hydrogel at each time point were 

calculated (w2-w1). The day 0 samples were incubated for at least 5 hours to allow water 

equilibrium in the hydrogel. Liquid was discarded and the wet weight of the gel was weight as 

w3. Following equation was used to calculate water content: 

Water content (%) = 
𝑤3−𝑤2

𝑤3−𝑤1
 *100% 

 

2.1.7    In vitro degradation 

6 wt% hydrogel solution in DPBS was prepared and sterilized under UV for half an hour. 

Each micro centrifuge tubes were labeled and weighed w1. 0.2mL hydrogel solution was 

injected using 1mL syringe into each tube; tubes were placed in 37℃ water baths for half an 

hour to allow gelation; 0.2mL sterilized DPBS was added as degradation medium into each 

tube to replace the remaining medium after gelation. Tubes were incubated in 37℃ water 

baths. When collecting samples at each time point, media was transferred into labelled tubes 

respectively and stored in -80℃ freezer for degradation media cytotoxicity test. The remaining 

solid gels and tubes are stored in -80℃ freezer. After all samples are collected, tubes with 

solid gel were freeze dried and weight as w2. Dry weight of hydrogel at each time point were 

calculated (w2-w1). Average dry weight of day0 samples was regarded as original dry weight 
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of the hydrogel (used for normalizing the data). Remaining weights (w2-w1) data were 

recorded at day 0, 1, 3, 7, 14, 18, 21, and 28. Data were normalized by day 0 data and the 

percent weight remaining curve was plotted. 

 

2.1.8    Rheology test 

Rheology test was done to determine the lower critical solution temperature (LCST). When 

reaches the LCST from lower temperature, the mechanical properties of polymer solution 

(dissolve at 4℃) would change. The test was done on AR G2 Rheometer, with a temperature 

increasing rate of 0.5℃ per minute and temperature range from 4 to 40℃. 

 

2.1.9    Lap shear adhesion test 

The lap shear adhesion test was conducted to test the hydrogel’s adhesion behavior between 

hydrogel, glass, and mouse skin. Mouse skin was harvest from in vivo injection experiment. 

After cut into pieces with an area of 2.5 × 3 cm, the skin was kept in 4 ℃ for storage and used 

the other day. The tissue substrates were immobilized on glass slides using cyanoacrylate glue 

(The Original Super Glue, purchased from Amazon)[44]. Then the substrates were cured for 1 

hour before hydrogel was attached onto it. The polymer (0.3g) was dissolved in a glass vial 

with an inner diameter of 2.5 mm at 4℃ and put in 37℃ overnight for gelation and 

dehydration. After taking out from vial and extra PBS taking away, the hydrogel was put onto 

the mouse skin and spread using a pipette tip. Then it was covered by another piece of mouse 

skin attached to a piece of glass slide, as shown in scheme 1. The joint area was compressed 
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with a weight of 85g for 30 minutes before testing. And the area attached to the skin or the 

glass slides was measured. This experiment was done on Instron 5583 Load Frame (controlled 

by Instron Bluehill software) with a stretch rate of 5mm per minute until failing. The 

maximum load and displacement were recorded from software and the shear strength was 

calculated by dividing the maximum load by the original area of hydrogel attached to 

skin/glass substrate. Also, a control group of glass slides was tested using the exact same 

method.  

 

2.1.10    Cell culture 

Cells used in this project are rat cardio fibroblasts (RCF) and rat mesenchymal stem cells 

(RMSC). The RCF cells were cultured with a passage number of 10-15, while RMSC cells 

with a passage number of 15-20.  

Frozen cells were removed from liquid nitrogen environment and immediately put in 37 ℃ 

incubator to thaw. Gently swirl the vial in a 37°C water bath to quickly thaw the cells (within 

1 minute) until only a small amount of ice remains in the vial. Transfer the vial to a laminar 

flow hood. Before opening, wipe the outside of the vial with 70% ethanol. Drop the thawed 

cells in T75 flasks with the addition of 9mL culture media. For RCF, the culture media was 

prepared using DMEM as basal. 10% FBS and 2% Pen Strep was also added. The medium 

was filtered through Nalgene filter (purchased from Thermo Fisher) before used to culture 

cells. For RMSC cells, the culturing media was prepared using MEM as basal. 10% FBS and 

2% Pen Strep was also added. The medium was also filtered through Nalgene filter before 

usage. 
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The cells were cultured in the incubator with the condition of 37℃ and 5% CO2. The outside 

of the flasks needed to be wiped with 70% ethanol before putting into the incubator. The cell 

media needed to be changed when floating cells were observed through optical microscope 

after the adherent cells were attached to the flask bottom. Turbid media was removed with 

pipette. The flask was washed with 10ml PBS and twenty shakes. Then 10ml new media was 

added to the flask. After changing the media, flasks were put back to incubator for culturing.  

Cells needed to be sub-cultured after growing for some days, as the cells were 100% attached 

to the flask and could be observed through microscope. For RCF cells, previous media was 

removed, 3ml pre-heated trypsin and 4ml PBS was added. Then the flask was put back to 

37℃ incubator for 5 minutes. After confirming all attached cells were detached via 

microscope, 3ml DMEM-based culture media was added to flask. Culturing media needed to 

be added quickly to balance the pH of the system, or cells could be killed. Then the total 10ml 

of media was transferred into a 50ml centrifuge tube. 10ml PBS was used to wash the flask 

and also transferred into the tube. To separate the cells from media containing trypsin, RCF 

cells were centrifuged under 1500 rpm for 7 minutes. After wiped with 70% ethanol, tubes 

were moved back into bio-safety cabinet. Media containing trypsin was removed by pipette 

and 3ml culture media was added into the tube. The cell-media mix was blew by pipette for 10 

times for complete and evenly mixture, then 1ml mix was added to new T75 flask and another 

9ml media was also added.  For RMSC cells, 4ml pre-heated trypsin and 2ml PBS was added. 

Then the flask was put back to 37℃ incubator for 4 minutes. After confirming all attached 

cells were detached via microscope, 4ml MEM-based culture media was added to flask. Then 

the total 10ml of media was transferred into a 50ml centrifuge tube. 10ml PBS was used to 

wash the flask and transferred into the tube. RMSC cells were centrifuged under 1600 rpm for 
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6 minutes. Media containing trypsin was removed by pipette and 4ml culture media was added 

into the tube. The cell-media mix was blew by pipette for 10 times for complete and evenly 

mixture, then 1ml mix was added to new T75 flask and another 9ml media was also added. 

When cell growth was exceeded from needed, they could be cryopreserved. 1ml cell dispense 

was transferred from subculture step into cryogenic storage vials. 10% DMSO was added to 

each vial and the vial was put into Cryo 1℃ freezing container, which could achieve a cooling 

rate of -1℃/min. The container was put in -80℃ refrigerator overnight and transferred into 

liquid nitrogen environment the next day.  

 

2.1.11    Cytotoxicity of degradation media 

One way to indirectly test the cytotoxicity of the hydrogel without destroying hydrogel itself is 

testing MTT assay of its degradation media. Before adding media to cells, the RCF cells were 

digested using trypsin and PBS. After centrifuged, supernatant was removed and culture media 

was added back to the tube. Cell number was counted using hemacytometer through 

microscope, and how much it needed to be diluted was calculated. To seed on a 96 well plate, 

the seeding density of RCF cell was 0.01×106 cells per well. The cells were then cultured in 

37℃ for 24 hours until degradation media was added. The degradation media was collected 

when collecting degradation product and diluted 5 times with RCF culture media. After being 

irradiated under UV light for half an hour, the diluted media was added to the 96 well plate, 

200μL per well, replacing the original culture media. The degradation media with degradation 

date of 7, 14, 21, and 28 was selected to be tested. At the same time, a control group without 

any treatment was also conducted to show comparison. After another culturing for 48 hours, 



15 

20μL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide solution with a 

concentration of 5mg/ml was added to each well. Then the plate was cultured for 4 hours 

before removing media carefully and wash with PBS. 200μL DMSO was added to each well 

to dissolve the reaction product of MTT solution and cell NAD(P)H-dependent oxidoreductase 

enzymes. After shaking carefully, the absorption spectrum of the solution was read with light 

wavelength of 560nm and a background of 670nm (Instrument: SpectraMax iD3).  

 

2.1.12    Cell growth on synthesized hydrogels 

How cells could grow and proliferate on synthesized hydrogel was tested through MTT and 

dsDNA test. 

For the MTT test determining how many cells could grow on the hydrogel, 50μL of 6 weight 

percent polymer solution was added to each well of a 96-well plate, with a repeat group of 8. 

After completely gelation overnight, extra PBS was removed and RMSC was seeded with a 

seeding density of 0.01×106/well, 200μL media per well. The timepoint of conducting MTT 

test was 24 and 48 hours. MTT test protocol was introduced in 2.11. 

Another way to test cell growth and proliferation on hydrogel is using the PicoGreen 

proliferation assay, which makes use of a dye (PicoGreen) that fluoresces upon interacting 

with double-stranded DNA (dsDNA).  The DNA is assumed to correspond directly with the 

number of viable cells in that sample. Cells were cultured in 96 well plate with gelled 

hydrogel for 1, 2, and 3 days with a repeating group of 4. When reaching testing time point, 

media was removed and the plate was rinsed with 200 μL DPBS for 3 times. Then 200μL 1× 
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Papain solution was added to each well and the plates were sealed with parafilm and heated at 

60℃ for 20 hours. The papain solution was prepared on site with 48.6ml DPBS, 625μL papain 

stock (10mg/ml, dissolved in DI water, purchased from ), 500μL L-cystein stock (with a 

concentration of 200mM, dissolved in DI water), and 300μL EDTA stock (with a 

concentration of 333mM dissolved in DI water, pH adjusted to 8). The papain solution was 

restored at 4℃. After 20 hours-heating, the plates could be put in 4℃ for later determination.  

When all samples were collected, 50μL of TE buffer, 50μL of sample in each well, 100μL of 

work solution was added into a black 96 well plate. TE buffer is the combination of 10mM 

Tris and 1mM EDTA, pH adjusted to 8. The work solution is Picogreen (purchased from ) 

diluted in TE buffer for 200 times. After all samples were added to the black 96 well plate, the 

plate was shake for 10 minutes and read by fluorescence spectrophotometer with a wavelength 

of 480/520 nm.  

 

2.1.13    Cell adhesion and morphology on hydrogels 

The cell growth on synthesized hydrogel was tested on 24 well plates. To determine how 

many cells successfully grow on the hydrogel, coverslips (Celltreat round cover glass, 15mm) 

were autoclaved and put at the bottom of wells for gelation. 80μL of 6% weight percent PBS 

polymer solution was added to each well and incubate in 37℃ for at least 5 hours for complete 

gelation. Then the extra PBS was removed and RMSCs cells were seeded with a seeding 

density of 0.05×106/well. After 6 and 24 hours of culturing, the plates were removed from 

incubator and living cells were fixed with Paraformaldehyde (PFA) for at least half an hour. 

Then the plate was washed with PBS for three times, with a 5 to 10 minute-shaking each time. 
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Then the fixed cells were stained with DAPI for 0.5 hour and F-actin for 1 hour under 

protection from light. After washed 3 times and shake 5 minutes each time, the coverslips 

were removed from 24 well plate and placed upside down on a piece of glass slides which was 

pre-coated with tissue mounting medium (CC/Mount™, purchased from Sigma Aldrich). The 

cell adhesion and morphology were observed through confocal imaging (Zeiss LSM880 Laser 

Scanning Confocal Microscope with Airyscan, Washington University School of Medicine). 

 

2.1.14    Animal experiment 

All animal care and use followed National Institutes of Health guidelines and Institutional 

Animal Care and Use Committee approval by Washington University in St Louis. C57BL/6 

mice aged 8-10 weeks were used. To test the in vivo biocompatibility of synthesized hydrogel, 

200μL 6% polymer solution was injected subcutaneously into the back of mouse. Besides 

Polymer I, Polymer II D1/4, D1/2) solution, a control group was also conducted using 

collagen gel as injection. After 5 days, the mice were sacrificed, and the skin of injection area 

was harvested. The skin was then sliced and processed with histology staining. Hematoxylin 

and eosin stain (H&E staining) was performed and the images were captured to show the 

general layout and distribution of cells along the slice direction and provide a general 

overview of its structure.  
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2.2    Results and Discussions 

2.2.1    Synthesis and characterizations of hydrogels 

Polymer I was synthesized through the polymerization of NIPAM, PEGMA, AOLA, NAS, as 

shown in Figure 1. The representative 1H NMR spectra undertaken with Polymer I and II 

were shown in Figure 3. The characteristic peak at δ 4.0 ppm (d) in the spectrum represented 

the hydrogen atom connected to the tertiary carbon in NIPAM. The multi-peaks centered at δ 

3.6 and 3.8 ppm (e, f) represented the two methylene groups brought by PEGMA. The peaks 

centered at δ 5.2 ppm (g) and 2.9 (h) represent the tertiary carbon in AOLA and methylene 

groups in NAS separately. Polymer II was synthesized through the conjugation of Polymer I 

and DOPA, under the condition of 60℃, N2 protection, and TEA triggering, as shown in 

Figure 2. The multi-peaks in 1H NMR spectrum centered at δ 6.6 ppm (j, k, l) represent the 

methylene groups from DOPA, meaning that dopamine hydrochloride was successfully 

grafted onto Polymer I. Integral also reveals that different content of dopamine was conjugated 

onto Polymer I. 50% and 25% dopamine were successfully grafted onto the polymer, and were 

named D1/2 and D1/4 hydrogel separately.  

The feed ratio and real ratio of synthesized Polymer I are listed in Table 1. The real ratio was 

calculated from the integration of 1H NMR peaks. The critical components PEGMA and NAS 

has the similar ratio compared with feed ratio, as PEGMA enhances the solubility of the 

hydrogel and NAS provides possibility of conjugating DOPA. The real conjugation ratio of 

DOPA is also listed in Table 1. The conjugated DOPA could provide further crosslinking and 

anti-bacterial applications. 
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2.2.2    Solubility, injectability and thermosensitive gelation 

Solubility tests were done under 4℃, with a concentration of 6 weight percentage. 2ml of 

D1/2 polymer solution was placed under 4℃ overnight to completely dissolve the polymer. 

The solubility results were shown in Figure 4. The polymer could dissolve well in PBS at 

4℃, and gel in different times at 37℃. At the same time, it showed good injectability at 4℃ 

when being injected through 27 Gauze needles, as performed in Figure 5. This good 

injectability of these hydrogels could provide further applications in drug delivery and tissue 

regeneration as medical particles could be dissolved in the solution and retained at local sites 

once gelled.  

At lower temperatures, PNIPAM will fix itself in the solution to hydrogen bond with the water 

molecules that have been arranged. The water molecules must be redirected around the non-

polar region of PNIPAM, which causes a decrease in entropy. At lower temperatures (such as 

room temperature), the negative enthalpy term produced by the hydrogen bonding effect 

dominates the Gibbs free energy, causing the PNIPAM to absorb water and dissolve in 

solution. At higher temperatures, the entropy term dominates, causing the PNIPAM to release 

water and phase separate.  

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 

Unlike normal sol-gel transition in which subunits bond together to form a network extending 

throughout the whole substance [45], these synthesized hydrogels tended to gel with inner water 

drained. It’s possibly due to the high hydrophilicity of PEGMA, which tended to increase 

entropy value therefore increase Gibbs free energy. Dopamine is also a hydrophilic 
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component. The addition of dopamine could increase the hydrophilicity of hydrogels and 

increase their solubility.  

 

2.2.3    In vitro degradation and water content 

The data of day 0, 1, 7, 14, 18, 21 and 28 was retrieved and remaining hydrogel weights were 

calculated and plotted against day number. As shown in Figure 6, the polymer degraded 

mainly at the ester bonds on AOLA, degrading into lactic acid. The relationship between 

remaining weight against degradation day number of D1/2 hydrogeD1/4 hydrogel in Figure 7 

also revealed that these hydrogels degraded at backbone with a weight loss of around 20% 

after 28 days. Figure 7 and Table 2 showed the comparison between two hydrogels and it 

reveals that hydrogel with higher dopamine content (D1/2 hydrogel) could degrade relatively 

faster. It is possibly because of the existence of dopamine that increased the hydrophilicity of 

hydrogel, which promoted the reaction between hydrogel and solvent. Therefore, we could 

predict that the higher content dopamine the hydrogel has, the faster the hydrogel can degrade. 

The quick degradation also means that it will not stay for a long time at would sites or in 

human tissues. It could be an advantage as some tissues require quick degradation of injected 

materials which would not limit would-healing. 

Water content of these hydrogels were also calculated and listed in Table 3. We could tell 

from their water content that dopamine content could increase hydrogel water content. Higher 

water content could resemble soft tissue property better. Therefore, proper content of 

dopamine could possibly promote hydrogel biocompatibility and provide more applications. 
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2.2.4    Rheology test 

Rheology tests of synthesized hydrogels were done to determine their LCST. Because of the 

existence of PNIPAM, these hydrogels perform thermal-sensitivity and at LCST, their 

mechanical behaviors could have a sudden change. By testing their rheology behaviors, LCST 

could be determined and how the polymer content influence their properties could also be 

explored.  

The rheology tests were done on AR G2 Rheometer (MEMS shared instrument group) with a 

temperature increase rate of 0.5℃ per minute and temperature range from 4 to 40℃. In the 

rheology test, shear storage modulus (G’) and shear loss modulus (G’’) of these hydrogels 

against temperature were recorded. Then the ratio of loss modulus against storage modulus 

was calculated, which provides a measure of damping in the material.  

tan 𝛿 =
𝐺′′

𝐺′
 

The LCST is the temperature when tan δ suddenly changed. As listed in Table 4, the LCST of 

D0 hydrogel was 27℃, D1/4 gel was 22℃ and 17℃ for D1/2 hydrogel. With increasing 

content of dopamine, the LCST of hydrogel decreased. It was possibly because of the high 

hydrophilicity of dopamine that promoted reaction with solvent through hydrogen bonding, 

which further increased its entropy value. Therefore, these hydrogels tended to turn to entropy 

(∆S) domination at lower temperature, causing the decrease of LCST. We could conclude that 

besides PNIPAM, dopamine could also influence the rheology behavior of thermosensitive 

hydrogels. With the addition of proper dopamine content, we could adjust the properties of 
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hydrogels to our demands, such as more convenient to storage at given temperature and more 

adapted to temperature required for some drugs and growth factors.  

 

2.2.5    Lap shear adhesion tests and tissue adhesion 

Lap shear adhesion strength tests were conducted to determine the lap adhesive properties of 

synthesized hydrogels. The hydrogels were firstly applied to glass slides as control group. As 

shown in Table 5, the shear strength of the D1/4 hydrogel was 1.87kPa and 1.91kPa for D1/2 

hydrogel. Then the hydrogels were compressed between pre-cured mice skin/glass slides, as 

shown in Figure 8. The mice skin was pre-cured on glass slides with cyanoacrylate glue for 1 

hour to make sure it wouldn’t move on the slides. The stretch rate remained at 5mm/min and 

these hydrogels performed better adhesion properties than just with glass slides, as listed in 

Table 5. The lap shear strength of D1/4 hydrogel on inner layer skin was 3.93kPa and 5.13kPa 

on outer layer skin, while for D1/2 hydrogel was 5.40kPa on inside skin and 5.98kPa on 

outside skin. Because of the existence of different functional groups on both sides of skin, the 

hydrogels tended to form non-covalent bonds with the skin. Therefore, the lap shear strength 

tended to increase. At the same time, with the increasing content of dopamine, the hydrogels 

performed higher lap shear strength, suggesting that dopamine promoted the reactions between 

hydrogels and skin surfaces. It was probably because dopamine increased the amount of 

hydroxyl groups on the surface of hydrogels, which preferred to form hydrogen bonds with the 

skin and ECM. In addition, the π-π stacking might also help in the adhesion to the skin as 

benzene rings existed in dopamine structure as well as skin surface.  



23 

Experiments of direct adhesion between hydrogels and tissues harvested from mice were also 

done to test the adhesive properties to bio-tissues. As shown in Figure 9, both D1/4 and D1/2 

hydrogels could successfully adhere to mouse heart, liver, spleen and kidney without any 

treatment. Hence, it could be concluded that these dopamine-modified hydrogels had good 

bio-adhesion properties that could be potentially used for wound dressing.  

 

2.2.6    Cytotoxicity of degradation media 

MTT assay was applied to determine the cytotoxicity of degradation media. The degradation 

media at day 7, 14, 21, 28 of D1/4 hydrogel was applied. The RCFs cell viability was 

determined through light absorbance at 560 and 670nm. As shown in Figure 10, cells cultured 

with diluted degradation media at day 7, 14, 21, 28 all had no significant difference compared 

with control group which had no treatment. The statistical analysis was based on t test and the 

p value was greater than 0.05. The results showed good cell viabilities with over 90%, as listed 

in Table 6. It meant that the degradation media of D1/4 hydrogel was non-cytotoxic to RCF 

cells. It could further reveal that besides degradation media, hydrogel with content of 

dopamine would also not restrain the RCFs growth, indicating good biocompatibility of this 

hydrogel and more potential biomedical applications.  

 

2.2.7    Cell growth on hydrogels 

RMSCs cells were used to test cell growth on synthesized hydrogels. Because in future work, 

when these hydrogels are used as would dressing materials, stem cells could be added into the 
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injection to promote would healing. Using RMSCs could imitate the condition of would cite, 

which could provide information of how cells would grow and proliferate at would cite with 

the addition of synthesized hydrogels.  

One way of determining degree of cell growth on hydrogel is using MTT assay to calculate 

how many cells have grown on synthesized hydrogels. Also, the influence of hydrogels could 

also be concluded through the comparison between groups adding hydrogel and control group 

which had no treatment. However, the existence of hydrogel could influence the result of MTT 

assay. The principle of MTT solution and cells was the reaction between the NAD(P)H-

dependent oxidoreductase enzymes contained by cells and tetrazolium bromide. After 

reaction, MTT would be reduced to formazan and turned purple. Light absorbance was based 

on the color change. But dopamine was also oxidant, who could react with MTT without any 

additional condition. The light absorbance of this reaction product was tested first. Therefore, 

the result could be subtracted from cell/hydrogel-MTT light absorbance. As shown in Figure 

11 and Table 7, with the increasement of dopamine content, the light absorbance of hydrogel-

MTT reaction product became stronger. It meant that hydrogels with dopamine could affect 

MTT assay results, as D0 hydrogel had almost no reaction with MTT solution. The light 

absorbance was increased with dopamine content in the hydrogels, suggesting corresponding 

reaction happened. The statistical analysis was based on t test. Then the MTT assays of cells 

grown on hydrogels were done and the effect of hydrogel-MTT was subtracted, as shown in 

Figure 12 and Table 8. The D0 hydrogel showed low cytotoxicity to RMSCs cells. Both D1/4 

and D1/2 showed good advancement of 664% and 538% separately in light absorbance, 

suggesting that hydrogels with dopamine could improve cell growth.  
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Yet the influence of dopamine-MTT reaction couldn’t be completely removed. Another way 

to test cell growth on synthesized hydrogels was testing the double-stranded DNA (dsDNA). 

They could be dyed by PicoGreen dye, a fluorescent nucleic acid stain, and be quantified 

through fluorospectrometer. As shown in Figure 13 and Table 9, at timepoint of day1 and 2, 

D1/2 hydrogels had improvement on cell growth. Compared with D0 hydrogel, it promoted 

140-150% cell growth. It could be the reason that dopamine promoted cell adhesion and 

proliferation. There could be a proper content of dopamine which could improve cell growth 

at a maximum degree.  

The result of MTT assay and dsDNA tests provided evidence that dopamine-modified 

hydrogels could stimulate cell growth. Thus, it could be applied to would dressing as would 

healing requires tissue regeneration, whose foundation is cell growth and proliferation.  

 

2.2.8    Cell adhesion and morphology on hydrogels 

RMSCs were seeded on pre-gelled hydrogels in 24-well plates, and then grew for 6 and 24 

hours respectively to measure the cell-adhesive properties of synthesized hydrogels. At each 

time point, PFA was added to each well to fix cells. Then fixed cells were dyed with DAPI 

and F-actin for 1 hour before moved to glass slides with coverslips. As shown in Figure 14, 

cells adhere after 6 and 24 hours were fixed and imaged through confocal imaging which 

could capture fluorescent light from dyed cells. F-actin could be labeled to show the overall 

shape and structure of the cells and provide background information for other fluorescent 

markers. Figure 14 (a)-(c) suggested that after 6 hours, compared with number of cells grown 

on D1/4 hydrogel, more cells were attached and spread on D1/2 gel as cells grown on D0 
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hydrogel remained round shape. Figure 14 (d)-(f) showed that after 24 hours, both D1/4 and 

D1/2 hydrogels performed better cell adhesion compared with hydrogel without any dopamine 

(D0 hydrogel). Also, cell morphology in Figure 14 (f) suggested that D1/2 hydrogel improved 

the spreading ability of cells significantly. With the increasement of dopamine content, cells 

were more likely to attach on substrates. Therefore, it could be concluded that dopamine could 

promote cell adhesion and could be applied in wound dressing to accelerate tissue 

regeneration and wound healing. 

 

2.2.9    In vivo biocompatibility 

H&E staining is the combination of hematoxylin and eosin stain. The hematoxylin stains cell 

nuclei blue, and eosin stains the extracellular matrix and cytoplasm pink, with other structures 

taking on different shades, hues, and combinations of these colors[46]. 5 days after the 

subcutaneous injection of the hydrogel, the mice were sacrificed, and the skin of injection area 

was harvested. The skin was then sliced and processed with histology staining. Then the 

staining results were observed through optical microscope under the magnification of 10× and 

20×, as shown in Figure 15-19. Figure 15 showed the 10×magnificence image of stained 

slices. In this figure, the white area without any cells or tissue could be the location of 

subcutaneous injection. It meant that after only 5 days of injection, there were still hydrogel 

residue. Acute inflammation after injection could also be observed. Collagen gel has been 

widely used for subcutaneous injection as carrier of donor cells and implantation[47]. In Figure 

17, which showed slices 5 days after D0 hydrogel injection, hydrogel residue was observed 

between epidermis and dermis layer. It performed no significant difference with control group, 
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indicating low in vivo toxicity. Figure 18 and Figure 19 were skin slices after 5 days injection 

of D1/4 and D1/2 hydrogels, respectively. Both D1/4 and D1/2 hydrogels performed similar in 

vivo toxicity compared with collagen gel, which had already been proved to be harmless. 

Thus, D1/4 and D1/2 hydrogels could potentially be applied as drug carriers and adhesives in 

wound healing. 

 

 

2.3    Conclusions 

In this thesis, thermosensitive hydrogels with different content of dopamine were synthesized 

and different properties were tested. These dopamine-modified hydrogels performed good 

solubility and injectability, as well as high water content and good degradability. The 

increasing content of dopamine could improve the hydrophilicity of synthesized hydrogels, 

therefore brought lower LCST, higher water content and faster degradation. In addition, 

dopamine on these hydrogels could modify adhesive properties. Thus, these hydrogels 

performed higher lap shear strength and promoted cell adhesion and proliferation. The 

degradation media of these DOPA-modified hydrogels also showed low cytotoxicity, which 

meant good in vitro biocompatibility. Furthermore, these hydrogels behaved rather good in 

vivo biocompatibility after subcutaneously injected into mice. Therefore, it could be 

concluded that these dopamine-modified thermosensitive hydrogels could utilized as wound 

dressing to advance wound healing through direct adhesion and assistance of tissue 

regeneration.  
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Chapter 3: Future work 

3.1    Further improvements of hydrogel properties 

The synthesized hydrogels could promote cell adhesion and proliferation. However, the 

mechanical properties need to be modified by rather adjusting monomer ration or addition of 

secondary crosslinker. Moreover, long-time biocompatibility and in vivo degradation should 

be tested to determine whether these hydrogels could be utilized in chronic would healing. The 

ability of drug or cell loading of these DOPA-modified hydrogels could also be tested in 

future studies. 

3.2    Antibacterial Ag-coated dopamine hydrogel 

Silver particles could be reduced from ions by oxidizing DOPA. Further experiments 

exploring how silver particles would work on these DOPA-modified hydrogels need to be 

conducted, such as influence of Ag concentration and in vitro antibacterial estimation. Also, 

silver particles coated onto DOPA-modified hydrogels in this thesis were indeterminate. Thus, 

silver nanoparticles (AgNPs) could be further applied to improve the antibacterial properties 

of hydrogels. AgNPs’ loading and releasing could be the next steps of applying these 

hydrogels into wound dressing. 
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Figure 1. Synthesis of Polymer I. 

 

 

 

Figure 2. Conjugation of Polymer II. x=0.25, 0.5. 
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Figure 3. 1H NMR spectrum of synthesized polymer. (a) Polymer II, D1/2 hydrogel; (b) Polymer 

II, D1/4 hydrogel; (c) Polymer I, D0 hydrogel. 
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Figure 4. Solubility of synthesized polymers. (a) D0 hydrogel, (b) D1/4 hydrogel, and (c) D1/2 

hydrogel. All dissolved at 4℃ and gelled at 37℃. 

 

Figure 5. Injectability of synthesized polymers through 27 Gauze needles, at 4℃. (a) D0 

hydrogel, (b) D1/4 hydrogel, and (c) D1/2 hydrogel. 
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Figure 6. Schematic illustration of degradation product of Polymer II.  

 

 

Figure 7. Degradation of D1/4 and D1/2 hydrogels.  
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Figure 8. (a) Schematic illustration of lap shear adhesion tests. (b) Instron used to test the lap 

shear strength. (c) Direct adhesion between hydrogel and glass slides.  
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Figure 9. Adhesion between hydrogels and tissues. (a) D1/4 hydrogel with mouse kidney, (b) 

D1/4 hydrogel with mouse spleen, (c) D1/4 hydrogel with mouse liver; (d) D1/2 hydrogel with 

mouse heart, (e) D1/2 hydrogel with mouse kidney. 
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Figure 10. Cytotoxicity of degradation medium. Cell viability of day 7, 14, 21, 28 degradation 

media. n=8, ns: p≥0.05. 
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Figure 11. Reaction between hydrogels and MTT solution. Absorbance spectrum of reaction 

product at 560 and 670 nm. n=8. 

Figure 12. MTT assay of RMSCs growth on synthesized hydrogels. Absorbance spectrum of 

MTT assay at 560 and 670 nm, influence of dopamine-MTT solution reaction is removed. n=8. 
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Figure 13. Cell growth on synthesized hydrogels. dsDNA test of RMSCs growing on no 

treatment coverslip, D0 and D1/2 hydrogels after 1 and 2 days. n=4, *: p<0.05, **: p<0.01. 
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Figure 14. Image of cell adhesion on hydrogels. (a)-(c) Confocal imaging of RMSCs grew on 

D0, D1/4 and D1/2 hydrogels after 6 hours; (d)-(f) RMSCs grew on D0, D1/4 and D1/2 

hydrogels after 24 hours. Scale bar: 50μm. 
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Figure 15. 10× imaging of H&E staining after 5 days of subcutaneous injection skin slices. (a) 

Control group injected with collagen gel, (b) injected with D0 hydrogel, (c) injected with D1/4 

hydrogel, and (d) D1/2 hydrogel. Scale bar: 100μm 
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Figure 16. H&E staining of subcutaneous injection samples, control group injected with collagen 

hydrogel. (a) 10× and (b) 20× magnificence imaging of slices.  

  

 

 

Figure 17. H&E staining of subcutaneous injection samples, 200μL Polymer I solution (D0 

hydrogel) injected. (a) 10× and (b) 20× magnificence imaging of slices. 
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Figure 18. H&E staining of subcutaneous injection samples, Polymer II solution (D1/4 hydrogel) 

injected with collagen hydrogel. (a) 10× and (b) 20× magnificence imaging of slices. 

 

 

Figure 19. H&E staining of subcutaneous injection samples, Polymer II solution (D1/2 hydrogel) 

injected with collagen hydrogel. (a) 10× and (b) 20× magnificence imaging of slices.  
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Table 1 

Feed ratio and real ratio of synthesized Polymer I and Polymer II.  

  Monomer  

NIPAM PEGMA AOLA NAS DOPA 

Polymer I Feed ratio 71 15 4 10  

Real ratio 65 16 6 13 

Polymer II D1/4 Feed ratio  1 0.3 

Real ratio 1 0.23 

 D1/2 Feed ratio 1 0.6 

  Real ratio 1 0.53 
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Table 2 

Degradation remaining weight of synthesized hydrogels.  

 
D1/2 hydrogel D1/4 hydrogel 

Weight remaining Standard 

deviation 

Weight remaining Standard 

deviation 

Day0 100.00% 4.58% 100.00% 2.65% 

Day1 94.44% 5.27% 98.98% 3.61% 

Day3 93.46% 8.70% 89.77% 4.51% 

Day7 87.58% 9.12% 92.33% 6.62% 

Day14 86.27% 16.05% 91.05% 5.33% 

Day18 84.31% 1.69% 87.72% 6.77% 

Day21 75.49% 2.69% 81.07% 4.13% 

Day28 75.82% 3.20% 78.77% 6.81% 

 

 

 

Table 3 

Water content of synthesized hydrogels. 

Hydrogel  Water content Standard deviation 

D0 72.3% 7.08% 

D1/4 77.37% 4.32% 

D1/2 85.94% 2.17% 
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Table 4 

LCST of synthesized hydrogels.  

Dopamine content LCST (℃) 

0 27 

0.25 22 

0.5 17 

 

 

Table 5 

Lap shear strength of D1/4 and D1/2 hydrogels. 

 
Glass slide  

(kPa) 

Inside skin / Glass 

(kPa) 

Outside skin / Glass 

(kPa) 

D1/4 1.86963 3.9165 5.12843 

D1/2 1.9123 5.39856 5.98436 

 

  



45 

Table 6 

Cell viability percentage of MTT assay of RCFs growing on synthesized hydrogels. 

 
Without 

treatment 

Day7 Day14 Day21 Day28 

Average percentage 100% 93% 94% 94% 98% 

Standard deviation 10.96% 6.68% 7.12% 12.59% 6.59% 

 

 

Table 7 

Light absorbance of reaction product of D1/4 and D1/2 hydrogels with MTT solution. 

 
D0 D1/4 D1/2 

Average absorbance 0.01525 0.464875 1.253 

Standard Deviation 0.002605 0.045423 0.197174 

 

 

Table 8 

Light absorbance of RMSCs MTT assay with dopamine-MTT solution reaction influence 

removed. 

 
NO TREAT D0 D1/4 D1/2 

Average 100.00% 64.64% 663.98% 537.73% 

Standard Deviation 19.03% 9.70% 101.39% 74.38% 
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Table 9 

Proportion of fluorescence absorbance of cell growth on synthesized hydrogels 

 

D0 D1/2 

Average growth SD Average growth SD 

Day1 100.00% 27.14% 146.68% 11.08% 

Day2 82.39% 15.05% 140.09% 22.44% 

Day3 116.73% 18.22% 150.44% 7.13% 

 

  



47 

References  

1. Kokabi, M., Sirousazar, M., & Hassan, Z. M. (2007). PVA–clay nanocomposite hydrogels for 

wound dressing. European Polymer Journal, 43(3), 773–781. 

https://doi.org/10.1016/j.eurpolymj.2006.11.030 

2. Rujitanaroj, P., Pimpha, N., & Supaphol, P. (2008). Wound-dressing materials with 

antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. 

Polymer, 49(21), 4723–4732. https://doi.org/10.1016/j.polymer.2008.08.021 

3. Azad, A. K., Sermsintham, N., Chandrkrachang, S., & Stevens, W. F. (2004). Chitosan 

membrane as a wound-healing dressing: Characterization and clinical application. 

Journal of Biomedical Materials Research, 69B(2), 216–222. 

https://doi.org/10.1002/jbm.b.30000 

4. Dhivya, S., Padma, V. V., & Santhini, E. (2015). Wound dressings – a review. BioMedicine, 

5(4). https://doi.org/10.7603/s40681-015-0022-9 

5. Ajji, Z., Othman, I., & Rosiak, J. M. (2005). Production of hydrogel wound dressings using 

gamma radiation. Nuclear Instruments and Methods in Physics Research Section B: 

Beam Interactions with Materials and Atoms, 229(3), 375–380. 

https://doi.org/10.1016/j.nimb.2004.12.135 

6. Razzak, M. T., Darwis, D., Zainuddin, & Sukirno. (2001). Irradiation of polyvinyl alcohol and 

polyvinyl pyrrolidone blended hydrogel for wound dressing. Radiation Physics and 

Chemistry, 62(1), 107–113. https://doi.org/10.1016/S0969-806X(01)00427-3 

7. Balakrishnan, B., Mohanty, M., Umashankar, P. R., & Jayakrishnan, A. (2005). Evaluation of 

an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. 

Biomaterials, 26(32), 6335–6342. https://doi.org/10.1016/j.biomaterials.2005.04.012 

8. All-natural injectable hydrogel with self-healing and antibacterial properties for wound 

dressing | SpringerLink. (n.d.). Retrieved April 10, 2021, from 

https://link.springer.com/article/10.1007/s10570-019-02942-8 



48 

9. Zhao, X., Wu, H., Guo, B., Dong, R., Qiu, Y., & Ma, P. X. (2017). Antibacterial anti-oxidant 

electroactive injectable hydrogel as self-healing wound dressing with hemostasis and 

adhesiveness for cutaneous wound healing. Biomaterials, 122, 34–47. 

https://doi.org/10.1016/j.biomaterials.2017.01.011 

10. Gong, C., Wu, Q., Wang, Y., Zhang, D., Luo, F., Zhao, X., Wei, Y., & Qian, Z. (2013). A 

biodegradable hydrogel system containing curcumin encapsulated in micelles for 

cutaneous wound healing. Biomaterials, 34(27), 6377–6387. 

https://doi.org/10.1016/j.biomaterials.2013.05.005 

11. In Situ Forming and Rutin-Releasing Chitosan Hydrogels As Injectable Dressings for 

Dermal Wound Healing | Biomacromolecules. (n.d.). Retrieved April 10, 2021, from 

https://pubs.acs.org/doi/10.1021/bm200326g 

12. Mathew, A. P., Uthaman, S., Cho, K.-H., Cho, C.-S., & Park, I.-K. (2018). Injectable 

hydrogels for delivering biotherapeutic molecules. International Journal of Biological 

Macromolecules, 110, 17–29. https://doi.org/10.1016/j.ijbiomac.2017.11.113 

13. Xu, Q., A, S., Gao, Y., Guo, L., Creagh-Flynn, J., Zhou, D., Greiser, U., Dong, Y., Wang, F., 

Tai, H., Liu, W., Wang, W., & Wang, W. (2018). A hybrid injectable hydrogel from 

hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic 

wound healing. Acta Biomaterialia, 75, 63–74. 

https://doi.org/10.1016/j.actbio.2018.05.039 

14. Qu, J., Zhao, X., Ma, P. X., & Guo, B. (2017). PH-responsive self-healing injectable 

hydrogel based on N-carboxyethyl chitosan for hepatocellular carcinoma therapy. Acta 

Biomaterialia, 58, 168–180. https://doi.org/10.1016/j.actbio.2017.06.001 

15. Bioinspired pH- and Temperature-Responsive Injectable Adhesive Hydrogels with 

Polyplexes Promotes Skin Wound Healing | Biomacromolecules. (n.d.). Retrieved April 

10, 2021, from 

https://pubs.acs.org/doi/abs/10.1021/acs.biomac.8b00819?casa_token=mhN_R3JJ19IAA

AAA:yD1uSD2t_70p1wIPfVMBZmVEHSFIuwRydM7n7XHkBkLYtHD0Irqby4vX3sp

SVO6c0ydjDAUyuzjMEtM 



49 

16. Zubik, K., Singhsa, P., Wang, Y., Manuspiya, H., & Narain, R. (2017). Thermo-Responsive 

Poly(N-Isopropylacrylamide)-Cellulose Nanocrystals Hybrid Hydrogels for Wound 

Dressing. Polymers, 9(4), 119. https://doi.org/10.3390/polym9040119 

17. Gao, S., Ge, W., Zhao, C., Cheng, C., Jiang, H., & Wang, X. (2015). Novel conjugated 

Ag@PNIPAM nanocomposites for an effective antibacterial wound dressing. RSC 

Advances, 5(33), 25870–25876. https://doi.org/10.1039/C5RA01199J 

18. Vihola, H., Laukkanen, A., Valtola, L., Tenhu, H., & Hirvonen, J. (2005). Cytotoxicity of 

thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and 

amphiphilically modified poly(N-vinylcaprolactam). Biomaterials, 26(16), 3055–3064. 

https://doi.org/10.1016/j.biomaterials.2004.09.008 

19. Li, M., Liang, Y., He, J., Zhang, H., & Guo, B. (2020). Two-Pronged Strategy of 

Biomechanically Active and Biochemically Multifunctional Hydrogel Wound Dressing 

To Accelerate Wound Closure and Wound Healing. Chemistry of Materials, 32(23), 

9937–9953. https://doi.org/10.1021/acs.chemmater.0c02823 

20. Fan, Z., Xu, Z., Niu, H., Gao, N., Guan, Y., Li, C., Dang, Y., Cui, X., Liu, X. L., Duan, Y., 

Li, H., Zhou, X., Lin, P.-H., Ma, J., & Guan, J. (2018). An Injectable Oxygen Release 

System to Augment Cell Survival and Promote Cardiac Repair Following Myocardial 

Infarction. Scientific Reports, 8(1), 1371. https://doi.org/10.1038/s41598-018-19906-w 

21. Chen, S., Shi, J., Xu, X., Ding, J., Zhong, W., Zhang, L., Xing, M., & Zhang, L. (2016). 

Study of stiffness effects of poly(amidoamine)–poly(n-isopropyl acrylamide) hydrogel on 

wound healing. Colloids and Surfaces B: Biointerfaces, 140, 574–582. 

https://doi.org/10.1016/j.colsurfb.2015.08.041 

22. Ha, D. I., Lee, S. B., Chong, M. S., Lee, Y. M., Kim, S. Y., & Park, Y. H. (2006). 

Preparation of thermo-responsive and injectable hydrogels based on hyaluronic acid and 

poly(N-isopropylacrylamide) and their drug release behaviors. Macromolecular 

Research, 14(1), 87–93. https://doi.org/10.1007/BF03219073 



50 

23. Zhang, H., Sun, X., Wang, J., Zhang, Y., Dong, M., Bu, T., Li, L., Liu, Y., & Wang, L. 

(n.d.). Multifunctional Injectable Hydrogel Dressings for Effectively Accelerating 

Wound Healing: Enhancing Biomineralization Strategy. Advanced Functional Materials, 

n/a(n/a), 2100093. https://doi.org/10.1002/adfm.202100093 

24. Han, L., Zhang, Y., Lu, X., Wang, K., Wang, Z., & Zhang, H. (2016). Polydopamine 

Nanoparticles Modulating Stimuli-Responsive PNIPAM Hydrogels with Cell/Tissue 

Adhesiveness. ACS Applied Materials & Interfaces, 8(42), 29088–29100. 

https://doi.org/10.1021/acsami.6b11043 

25. Samyn, P. (2021). Polydopamine and Cellulose: Two Biomaterials with Excellent 

Compatibility and Applicability. Polymer Reviews, 0(0), 1–41. 

https://doi.org/10.1080/15583724.2021.1896545 

26. Wang, Y., Dong, J., Jin, J., & Jia, Y.-G. (n.d.). Polyrotaxane Crosslinked Self-Healing 

Hydrogels for Switchable Bioadhesion. Macromolecular Chemistry and Physics, 

n/a(n/a), 2000461. https://doi.org/10.1002/macp.202000461 

27. Lei, J., Mayer, C., Freger, V., & Ulbricht, M. (2013). Synthesis and Characterization of 

Poly(ethylene glycol) Methacrylate Based Hydrogel Networks for Anti-Biofouling 

Applications. Macromolecular Materials and Engineering, 298(9), 967–980. 

https://doi.org/10.1002/mame.201200297 

28. Fan, Z., Xu, Z., Niu, H., Sui, Y., Li, H., Ma, J., & Guan, J. (2019). Spatiotemporal delivery 

of basic fibroblast growth factor to directly and simultaneously attenuate cardiac fibrosis 

and promote cardiac tissue vascularization following myocardial infarction. Journal of 

Controlled Release, 311–312, 233–244. https://doi.org/10.1016/j.jconrel.2019.09.005 

29. Guan, Y., Niu, H., Dang, Y., Gao, N., & Guan, J. (2020). Photoluminescent oxygen-release 

microspheres to image the oxygen release process in vivo. Acta Biomaterialia, 115, 333–

342. https://doi.org/10.1016/j.actbio.2020.08.031 



51 

30. Niu, H., Li, C., Guan, Y., Dang, Y., Li, X., Fan, Z., Shen, J., Ma, L., & Guan, J. (2020). High 

oxygen preservation hydrogels to augment cell survival under hypoxic condition. Acta 

Biomaterialia, 105, 56–67. https://doi.org/10.1016/j.actbio.2020.01.017 

31. Niu, H., Li, X., Li, H., Fan, Z., Ma, J., & Guan, J. (2019). Thermosensitive, fast gelling, 

photoluminescent, highly flexible, and degradable hydrogels for stem cell delivery. Acta 

Biomaterialia, 83, 96–108. https://doi.org/10.1016/j.actbio.2018.10.038 

32. Oveissi, F., Naficy, S., Loan Le, T. Y., F. Fletcher, D., & Dehghani, F. (2019). Polypeptide-

affined interpenetrating hydrogels with tunable physical and mechanical properties. 

Biomaterials Science, 7(3), 926–937. https://doi.org/10.1039/C8BM01182F 

33. Wang, F., Li, Z., Khan, M., Tamama, K., Kuppusamy, P., Wagner, W. R., Sen, C. K., & 

Guan, J. (2010). Injectable, rapid gelling and highly flexible hydrogel composites as 

growth factor and cell carriers. Acta Biomaterialia, 6(6), 1978–1991. 

https://doi.org/10.1016/j.actbio.2009.12.011 

34. Chen, J.-P., & Chiu, S.-H. (2000). A poly(N-isopropylacrylamide-co-N-

acryloxysuccinimide-co-2-hydroxyethyl methacrylate) composite hydrogel membrane for 

urease immobilization to enhance urea hydrolysis rate by temperature swing☆. Enzyme 

and Microbial Technology, 26(5), 359–367. https://doi.org/10.1016/S0141-

0229(99)00181-7 

35. Li, Z., Guo, X., Palmer, A. F., Das, H., & Guan, J. (2012). High-efficiency matrix modulus-

induced cardiac differentiation of human mesenchymal stem cells inside a 

thermosensitive hydrogel. Acta Biomaterialia, 8(10), 3586–3595. 

https://doi.org/10.1016/j.actbio.2012.06.024 

36. Lau, K., Paus, R., Tiede, S., Day, P., & Bayat, A. (2009). Exploring the role of stem cells in 

cutaneous wound healing. Experimental Dermatology, 18(11), 921–933. 

https://doi.org/10.1111/j.1600-0625.2009.00942.x 



52 

37. Lee, D. E., Ayoub, N., & Agrawal, D. K. (2016). Mesenchymal stem cells and cutaneous 

wound healing: Novel methods to increase cell delivery and therapeutic efficacy. Stem 

Cell Research & Therapy, 7(1), 37. https://doi.org/10.1186/s13287-016-0303-6 

38. Maxson, S., Lopez, E. A., Yoo, D., Danilkovitch-Miagkova, A., & LeRoux, M. A. (2012). 

Concise Review: Role of Mesenchymal Stem Cells in Wound Repair. STEM CELLS 

Translational Medicine, 1(2), 142–149. https://doi.org/10.5966/sctm.2011-0018 

39. Liang, Y., Zhao, X., Hu, T., Han, Y., & Guo, B. (2019). Mussel-inspired, antibacterial, 

conductive, antioxidant, injectable composite hydrogel wound dressing to promote the 

regeneration of infected skin. Journal of Colloid and Interface Science, 556, 514–528. 

https://doi.org/10.1016/j.jcis.2019.08.083 

40. Chen, K., Wang, F., Liu, S., Wu, X., Xu, L., & Zhang, D. (2020). In situ reduction of silver 

nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with 

enhanced mechanical and antimicrobial property. International Journal of Biological 

Macromolecules, 148, 501–509. https://doi.org/10.1016/j.ijbiomac.2020.01.156 

41. Lansdown, A. B. G. (2006). Silver in Health Care: Antimicrobial Effects and Safety in Use. 

Biofunctional Textiles and the Skin, 33, 17–34. https://doi.org/10.1159/000093928 

42. Liu, Y., Ma, W., Liu, W., Li, C., Liu, Y., Jiang, X., & Tang, Z. (2011). Silver( i )– 

glutathione biocoordination polymer hydrogel: Effective antibacterial activity and 

improved cytocompatibility. Journal of Materials Chemistry, 21(48), 19214–19218. 

https://doi.org/10.1039/C1JM13693C 

43. Xie, Y., Liao, X., Zhang, J., Yang, F., & Fan, Z. (2018). Novel chitosan hydrogels reinforced 

by silver nanoparticles with ultrahigh mechanical and high antibacterial properties for 

accelerating wound healing. International Journal of Biological Macromolecules, 119, 

402–412. https://doi.org/10.1016/j.ijbiomac.2018.07.060 

44. Shan, M., Gong, C., Li, B., & Wu, G. (2017). A pH, glucose, and dopamine triple-

responsive, self-healable adhesive hydrogel formed by phenylborate–catechol 



53 

complexation. Polymer Chemistry, 8(19), 2997–3005. 

https://doi.org/10.1039/C7PY00519A 

45. Soft Condensed Matter—Richard A.L. Jones—Oxford University Press. (n.d.). Retrieved 

April 10, 2021, from https://global.oup.com/ukhe/product/soft-condensed-matter-

9780198505891?cc=us&lang=en& 

46. Chan, J. K. C. (2014). The Wonderful Colors of the Hematoxylin–Eosin Stain in Diagnostic 

Surgical Pathology. International Journal of Surgical Pathology, 22(1), 12–32. 

https://doi.org/10.1177/1066896913517939 

47. Bilic-Curcic, I., Kalajzic, Z., Wang, L., & Rowe, D. W. (2005). Origins of endothelial and 

osteogenic cells in the subcutaneous collagen gel implant. Bone, 37(5), 678–687. 

https://doi.org/10.1016/j.bone.2005.06.009 

 


	An Injectable Thermosensitive Hydrogel Potentially Used for Wound Dressing with Self-adhesive Properties
	Recommended Citation

	tmp.1619291348.pdf.klvdn

