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Catherine Riley, Department of Science and Mathematics, Cedarville University,

Abstract

"he Conway-Norton monstrous moonshine conjecture set off a quest to
discover the connection between the Monster and the J-function. The goal of
this poster is to give an overview of the components of the conjecture, the
conjecture itself, and some of the ideas that led to its solution. Special focus
is given to Klein's J-function.

The Monster Group

In 1973, Fischer and Griess independently conjectured that the Monster
group, denoted M, existed. In 1980, Griess constructed it by hand as the
automorphism group of a 196,883-dimensional commutative nonassociative
algebra [2]. The Monster is the largest of a collection of groups called the
sporadic groups. The order of the Monster (the number of elements in the
Monster considered as a set) is

M| =2%.3%0.5%.7°.112.13°.17-19-23 .29 .31 -41 - 47-59 - 71
~ 8 x 10>

We want to think about ways this group can be represented.

Representation and Character Theory

We can consider any finite group G as a finite subgroup of the group

GL(n, C) of n x n invertible matrices with entries that are complex numbers
via a special function f which takes each element g in the group G to an n
oy n matrix in GL(n, C). The function f is called a representation and is a
nomomorphism. We can break a homomorphism down into multiple
nomomorphisms. Concretely, since our homomorphism sends the elements of
the group to matrices, this looks like breaking down a matrix into smaller
matrices along the diagonal [3].

As an example, let us think about As, the group of even permutations of a
five element set. Suppose each element of As maps to an 18 by 18 matrix.
An example of what such a matrix would look like is
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where the black squares represent elements in C (the complex numbers).
Given that As has irreducible representations of dimension 5, dimension 4,
two different representations of dimension 3, and one of dimension 1, this
representation can be broken down into irreducibles, perhaps with one block
of dimension 4, one block of dimension 3, two blocks of the other
representation of dimension 3, and five blocks of dimension 1. This gives us
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Representation and Character Theory (cont.)
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where the first representation of dimension 3 is shown by the black squares
and the other representation is shown by the asterisks.

The Monster has 194 equivalence classes of irreducible representations. In
1978, Fischer, Livingstone, and Thorne determined the dimensions of these

representations. Starting with the trivial representation, the dimensions of the

first few irreducible representations are
(rn)n=1.-.10a = (1,196 883,21 296 876, 842 609 326, 18 538 750 076, - - - )

and the rest of the sequence can be found in the ATLAS of Finite Groups or

the Online Encyclopaedia of Integer Sequences [4].

Preliminary Notation for the J-Function

To understand the J-function, we need to understand elliptic functions. For a

function to be elliptic it must be doubly periodic, which means it has two
veriods, wy and wy, both of which are complex numbers, with ratio w,/ws,
where this ratio is not real. A pair of periods (w1, w>) for a function f is a
fundamental pair if all the periods of f are in the set

Q = {mwy + nwo|m,n € Z}. We can create a parallelogram by considering
O, Wi, W, and W1 + Wy.

(1)1+(D2

) "JI

Figure 1.2.a from [1]

This parallelogram is important because it is part of a larger lattice. If we

More of the Lattice

understand what is happening in this one parallelogram, for instance, if it has

a singularity at p, we will know what is happening in all the other
parallelograms in the lattice.

The J-function is an elliptic function defined as quotient of two other
functions. We define invariants go = 60G4 and g3 = 140Gg, where

G, = Zweﬂ, w#oﬁ. One more function, called the discriminant, is defined by

A=g5— 27g32.
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Definition of the J-Function

We now define Klein's J-function. This function is a combination of g» and
A. For wy/wi € R (the real numbers), we define Klein's function as

g23(w1, W)
J(wl, wg) — A(wl, wz) — J()\wl -+ )\(,dg)
for A £ 0. For 7 = wy/wy we have that J(1,7) = J(wy,wy) [1].
The J-function can be written as a Fourier expansion, or a sum in terms of
exponentials. Formally, we have the Fourier expansion

12°J(7) = e ™' + 744 + Z c(n)e*™ .
n=1

where the c(n) are integers [1].
The coefficients of this sum have been calculated for n < 100. The first few
are c(0) =744, c(1) = 196884, c(2) = 21493760, and c(3) = 864 299 970.
In some versions of this formula the 744 is subtracted from both sides, and
the result is called J(7). For g = e°™7, that gives us
123J(7) — 744 = g~ 1 4+ 196 884q + 21 493 760qg> + 864 299 970g° + - - - .
From now on we will refer to this version of the formula as J(7).

Monstrous Moonshine

At this point, we return to the Monster. Recall that the first few dimensions
of irreducible representations of the Monster are

(Fo)pet.. 104 = (1,196 883,21 296 876, 842 609 326, 18 538 750 076, - - - ).

We now notice that

196884 = 1 + 196 883
21493760 = 1 + 196883 + 21296876
8642999/0 =2 -1+ 2-196383 + 21296 3/6 + 342609 326,

where the numbers on the left hand side of the equation are coefficients from
J(7) and the numbers on the right are from the dimensions of the irreducible
representations of the Monster. Although Conway and Norton's conjecture
that there was a reason behind this connection was first seen as “moonshine”
or a crazy idea, in 1992 Borcherds proved that a connection existed using a
vertex operator algebra and a result from string theory. So the connection
between the J-function and the Monster group was formally shown. Hence,
two different areas of mathematics were united in a beautiful way [2].
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