

Cedarville University DigitalCommons@Cedarville

The Research and Scholarship Symposium

The 2021 Symposium

Cost Comparison of Calcium Phosphate Transfection and Lipofectamine Transfection for Production of PCDH19 Protein in HeLa Cells

Isaac W. Brenneman Cedarville University, isaacbrenneman@cedarville.edu

Sharon Cooper Cedarville University, coopers@cedarville.edu

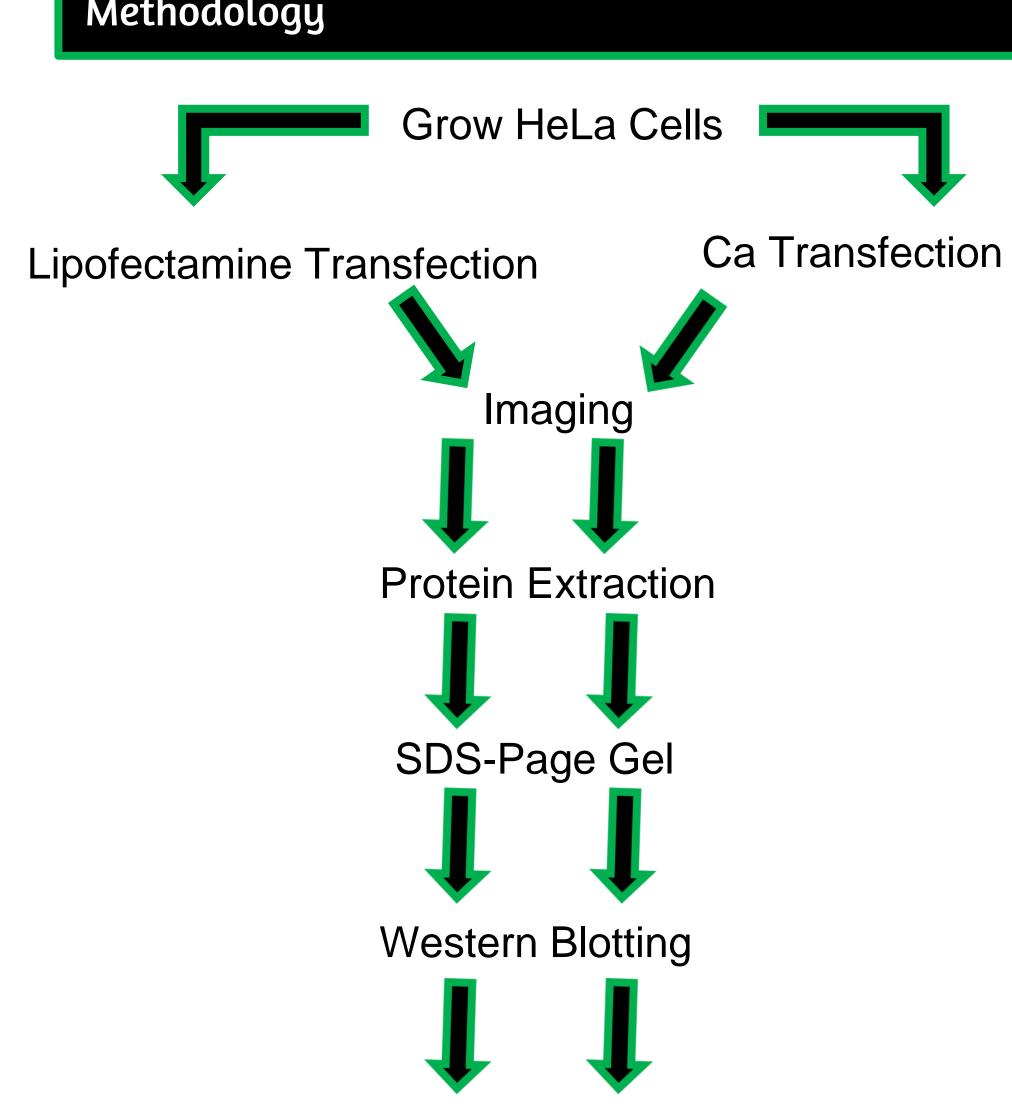
Follow this and additional works at: https://digitalcommons.cedarville.edu/rs_symposium

Brenneman, Isaac W. and Cooper, Sharon, "Cost Comparison of Calcium Phosphate Transfection and Lipofectamine Transfection for Production of PCDH19 Protein in HeLa Cells" (2021). *The Research and Scholarship Symposium*. 15.

https://digitalcommons.cedarville.edu/rs_symposium/2021/poster_presentations/15

This Poster is brought to you for free and open access by DigitalCommons@Cedarville, a service of the Centennial Library. It has been accepted for inclusion in The Research and Scholarship Symposium by an authorized administrator of DigitalCommons@Cedarville. For more information, please contact digitalcommons@cedarville.edu.

Cost Comparison of Calcium Phosphate Transfection and Lipofectamine Transfection in HeLa Cells

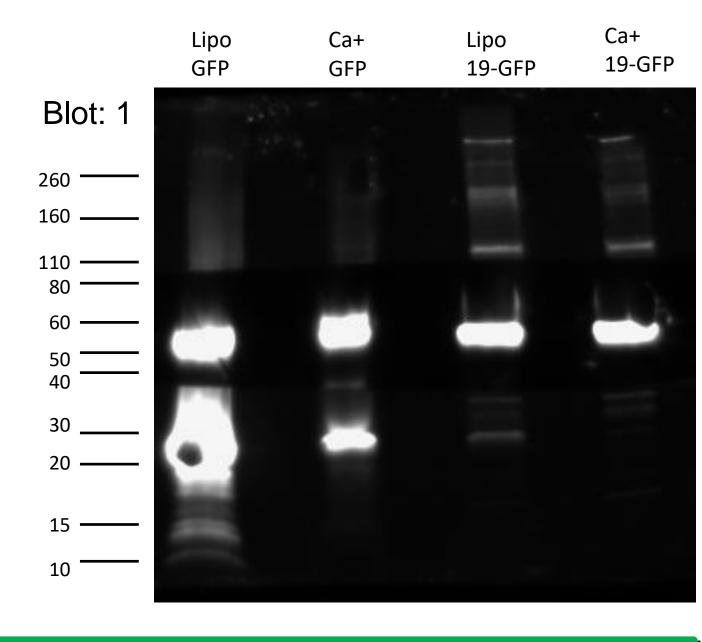

Isaac Brenneman and Sharon Cooper Department of Science and Mathematics, Cedarville University, Cedarville OH, 45314

Introduction

Protocadherin-19 (PCDH-19) is a specific gene located within the brain of most organisms. This gene, if mutated would cause epilepsy which often coincides with various degrees of intellectual disabilities. In addition, PCDH-19 is known for its contribution to the cranial nerve pathways along with other sensory structures and motor nuclei. During study of the gene, the zebrafish (Danio rerio) is the best model to discover its behavior. Most of the research conducted regarding this gene utilize a technique similar technique to situ hybridization, which is labeling and localizing DNA, RNA, and molecules from their associated tissue or cell (Liu, et al. 2015). Ultimately, by discovering how and why this gene behaves as it does within the brain, we can further our study into neurology. In order to study PCDH-19, we must first determine the best strategy scientifically and costly. The goal of this research is to determine which transfection is most cost efficient.

Methodology

References


• Liu, Q., Bhattarai, S., Wang, N., & Sochacka-Marlowe, A. (2015). Differential expression of protocadherin-19, protocadherin-17, and cadherin-6 in adult zebrafish brain. The Journal of comparative neurology, 523(9), 1419–1442. https://doi.org/10.1002/cne.23746

Western Blot Quantification

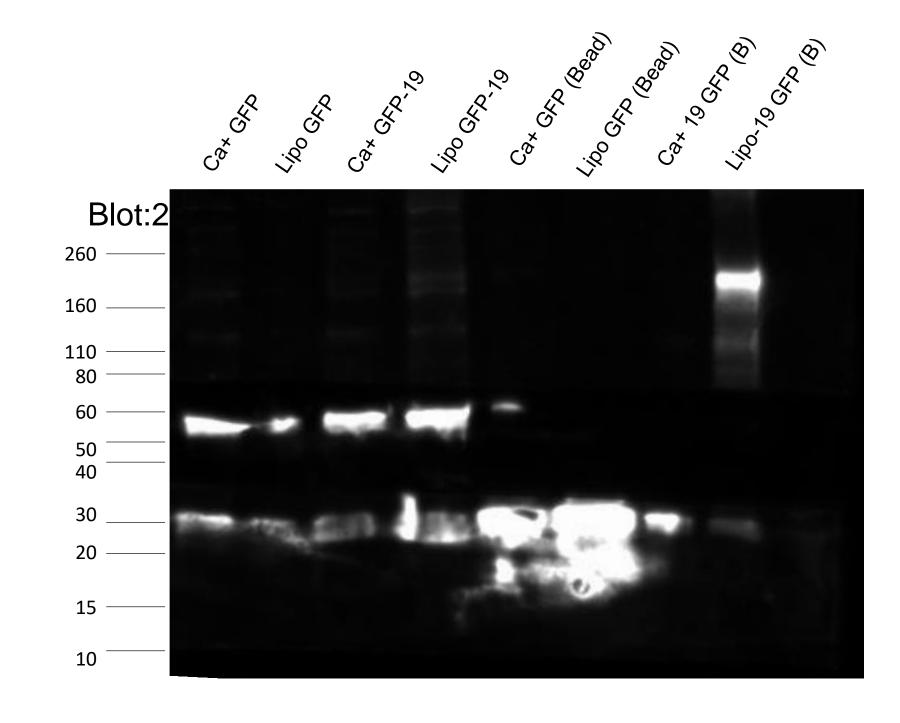

Results: Fluorescent Images Ca GFP (5s) White (400ms) Ca 19-GFP (30s) Lipo 19-GFP (30s)

Figure 1: Expression of protein using Ca+ phosphate and lipofectamine techniques.

Results: Western Blot Analysis

Table 1:	Lipo- GFP	Ca+ GFP	Lipo- GFP- 19	Ca+ GFP- 19
ratio (GFP/loading control)	0.5497	0.18045	0.01562 6	0.00610 2
ratio (PCDH- 19/loading control)	0.15233 5	0.14265 1	0.32757	0.19469 2

- Protein GFP- three Ca+ phosphate plates would be needed to produce the same amount of proteins as lipofectamine.
- PCDH-19 GFP- 1.7 plates are necessary of Ca+ phosphate to produce the same amount of proteins as lipofectamine.

Cost Analysis

Table 1: Ca Phosphate Total Cost: \$1.90 per reaction						
Reagent	Cost	Amount Needed	Final Cost			
DMEM Media	\$27.20 per 500ml	4ml	\$1.01 per reaction			
2X HBS	\$10.80 per 100ml	200µL	\$0.02 per reaction			
FBS	\$146 per 100ml	0.4ml	\$0.58 per reaction			
2M CaCl2	\$17.29 per 100ml	24.4µL	\$.01 per reaction			
DNA	\$82.96 per 300 reactions	4µg	\$0.28 per reaction			
Water	\$53.50 per liter (5,000 reactions)	200µL	\$0.01 per reaction			

Table 2: Lipofectamine Total Cost: \$9.17					
Reagent	Cost	Volume Needed	Final Cost		
DMEM Media	\$27.20 per 500ml	4ml	\$1.01 per reaction		
FBS	\$146 per 100ml	0.4ml	\$0.58 per reaction		
Opti-MEM I Media	\$22.84 per 100ml	580 µL	\$0.13 per reaction		
Lipofectamine 2000	\$215 per 0.3ml	10µL	\$7.17 per reaction		
DNA	\$82.96 per 300	4 µg	\$0.28 per reaction		

Conclusion

- Lipo-transfection nearly costs five times as much compared to Ca+ phosphate.
- We only get three times as much GFP protein from lipo-transfection compared to Ca+ phosphate.
- PCDH-19 has contradicting results; additional research must be done.
- Overall, we can conclude that the GFP construct for Ca+ phosphate is more cost effective than lipofectamine. On the contrary, the PCDH-19 construct needs more experimentation.