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Abstract. Lossy video stream compression is performed to reduce the bandwidth and storage
requirements. Moreover also image compression is a need that arises in many circumstances.It is
often the case that older archive are stored at low resolution and with a compression rate suitable
for the technology available at the time the video was created. Unfortunately, lossy compression
algorithms cause artifact. Such artifacts, usually damage higher frequency details also adding
noise or novel image patterns. There are several issues with this phenomenon. Low-quality
images can be less pleasant to persons. Object detectors algorithms may have their performance
reduced. As a result, given a perturbed version of it, we aim at removing such artifacts
to recover the original image. To obtain that, one should reverse the compression process
through a complicated non-linear image transformation. We propose a deep neural network
able to improve image quality. We show that this model can be optimized either traditionally,
directly optimizing an image similarity loss (SSIM), or using a generative adversarial approach
(GAN). Our restored images have more photorealistic details with respect to traditional image
enhancement networks. Our training procedure based on sub-patches is novel. Moreover, we
propose novel testing protocol to evaluate restored images quantitatively. Di↵erently from
previously proposed approaches we are able to remove artifacts generated at any quality by
inferring the image quality directly from data. Human evaluation and quantitative experiments
in object detection show that our GAN generates images with finer consistent details and these
details make a di↵erence both for machines and humans.

1. Introduction
A huge number of videos are produced, streamed and shared on the web, and many more are
used within private systems, such as mobile phones, cameras and surveillance systems. To store
e�ciently and transmit these videos compression is necessary. This allows to reduce bandwidth
and storage. Compressions is tipically lossy, given the need to deal with large quantities of data,
such as HD and 4K resolutions which are more and more common. These algorithms application
results in a more or less strong loss of content quality, to achieve a better compression ratio.
However, compression algorithms are designed to reduce loss of perceptual quality, exploiting
some human visual system mathematical model.

Compression of videos causes artifacts to appear. Artifacts are due to the di↵erent types of
lossy compressions used. MPEG-based algorithms such as H.264 and H.265/AVC or AV1, are
the most common and recent algorithm used nowadays. In such case artifacts are due to sub-
sampling of chroma (i.e. dropping of color information) and the DCT coe�cient quantization;
Due to how the original frame is partitioned blocking artifacts also arise. Blocking artifacts
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are also due to erroneous motion compensated prediction [18]. Lossy image compression
algorithms such as JPEG share similar artifacts. Finally, some artifacts are caused by erroneous
motion compensation and coding, yielding flickering; this is caused by di↵erences in frame
reconstruction between intra-frames and inter-frames (i.e. key frames encoded as images and
frames reconstructed using motion compensation) [30].

2. Related Work
Image enhancement has been vastly studied in the past, especially in the case of compressed
media. Several techniques are based on image processing algorithms [3, 6, 13, 16, 17, 29, 31,
33, 34]. Very recently, learning methods have been developed [15, 4, 20, 27, 28, 8, 7]. Deep
Convolutional Neural Networks (DCNN), trained to restore image quality using couples of
undistorted and distorted images, obtain the best quality. A major strength such approaches is
that knowing the process of image degradation, training data can be generated automatically
without the need for hand labeling. Degraded images are used as input to restoration
networks while high quality sources are used as target images. Kang et al [15] address
both super-resolution and deblocking in the case of highly-compressed images, learning sparse
representations that model the relationship between low- and high-resolution image patches with
and without blocking artifacts. The approach is tested on highly compressed JPEG images, with
QF values between 15 and 25.

Artifact removal using deep learning was first addressed by Dong et al [4] extending their work
on super-resolution SRCNN. A similar method has been proposed by Svoboda et al [27] with
improved results. Such improvement with respect to [4] is due to the more complex architecture
using skip-connections and residual learning. All weights are learned and there are no specific
functions implemented by the architecture. Residual blocks are used in many recent works
[2, 7, 32], favoring deeper architectures. In Cavigelli et al [2], a deep residual architecture with
12 layers and hierarchical skip-connections is used. Yooet al used a local frequency classifier
to condition and encoder-decoder network for JPEG artifact removal. In our previous work
we propose a GAN ensemble driven by a quality classifier allowing to restore static images
of unknown quality[7]. Perceived is superior to competing approaches, thanks to adversarial
training.

To the best of our knowledge the only method restoring compressed video frames is proposed
by He et al [12]. Although their method is tightly bound to HEVC coding. It exploits information
from coding units to learn a two-stream convolutional network which receives a decoded frame
and combines it with a feature map computed from the partition data.

3. Methodology
The objective of video compression artifact removal is to obtain a reconstructed frame image
I
R from a compressed input image I

C . In this context, IC = C (I) is the output frame of a
video compression algorithm C and I is an uncompressed input frame. Di↵erent C algorithms
will result in di↵erent I

C frames, with di↵erent compression artifacts. Many image and video
compression algorithms (e.g. JPEG, JPEG2000, VP9, H.264/AVC, H.265/HEVC) use color
spaces that separate luminance from chrominance information, like YCrCb. This allows to
better de-correlate color components leading to a more e�cient compression; it also permits a
first step of lossy compression through chrominance sub-sampling, based on the fact that the
human visual system has reduced sensitivity to its variations.

We represent frames I
R, I

C and I as real valued tensors with dimensions W ⇥ H ⇥ Ch,
where W and H are width and height, respectively, and Ch is the number of color channels. In
cases where the quality assessment is performed using luminance only we transform images to
gray-scale considering only the Y channel, and Ch = 1, in all other cases we have Ch = 3, using
the RGB color space as is commonly done when working with CNNs.
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The compression of an uncompressed video frame I 2 [0, 255]W⇥H⇥Ch is performed according
to:

I
C = C (I,QF ) 2 [0, 255]W⇥H⇥Ch (1)

using a function C, representing some video compression algorithm, which is parametrized by
some quality factor QF . The problem of video compression artifacts removal can be seen as to
compute an inverse generator function G ⇡ C

�1
QF

that reconstructs I from I
C :

G
�
I
C
�
= I

R ⇡ I (2)

Each generator can in principle be trained with images obtained from di↵erent QFs. In practice
we have shown in [9], that single QF generators perform better and can be driven by a QF
predictor.

To learn the generator function, we train a convolutional neural network G
�
I
C ; ✓g

�
where

✓g = {W1:K ; b1:K} are the parameters representing weights and biases of the K layers of the
network. Given N training images we optimize a custom loss function lAR by solving:

✓̂g = argmin
✓g

1

N

NX

n=1

lAR

�
I,G

�
I
C
, ✓g

��
(3)

In principle, the elimination of compression artifacts is a task that can be classified as image
transformation problem; it comprises several other tasks from super-resolution to style-transfer.
Recent works have shown that this category of tasks can be conveniently solved using generative
approaches, i.e. learning a fully convolutional neural network (FCN) [19] that given a certain
input image is able to generate, as an output, an improved version of it. A motivation to use
FCN architectures for these image processing tasks is that they are extremely convenient to
perform local non-linear image transformations; moreover, thanks to the lack of fully connected
layers they can process images and video frames of any size. This property is advantageous to
speed up the training process. In fact, the artifacts that we want to remove typically appear at
scales close to the block size used by the compression algorithm C. For this reason we can learn
models on smaller patches using larger batches.

Therefore, we propose to use fully convolutional architecture that can be optimized both with
direct supervision or otherwise combined in a generative adversarial framework using a novel
discriminator. Details of the proposed networks are presented in the following, together with
the proposed loss functions.

3.1. Generative Network
We use a deep residual network as a generator. The architecture is mainly composed by
convolutional layer blocks with LeakyReLU activations.

Our generator is inspired by [11]. Layers have 64 3 ⇥ 3 convolution kernels. After the first
convolutional layer we use stride to half the size of feature maps. We then use 15 residual blocks
with a padding of 1 pixel. The final upsampling is performed with a nearest-neighbour approach
followed by a final convolutional layer to remove upsampling artifacts [24]. The output image is
generated by a convolutional layer with a tanh activation. This produces output tensors with
values in [�1, 1], which are therefore comparable to the rescaled image input.

3.1.1. Discriminative Network The discriminator is a sequence of convolutional layers with one
pixel stride and no padding. LeakyReLU activations are used after each layer. Filter amount
is doubled every two layers. We do not use fully connected layers to allow di↵erent input
resolution patches. Each pixel of the final output is computed with a sigmoid activation, being
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Figure 1. Generative Adversarial Network trained for image artifact removal. Low quality
input images are the input of the generator. The Generator tries to “fool” the discriminator
network with restored images. The discriminator is trained to tell apart real from fake images.

the discriminator solving a binary classification problem. Average pooling is used to aggregate
decisions over pixels.

The set of weights  of the D network are learned by minimizing:

ld = � log
�
D 

�
I|IC

��
� log

�
1�D 

�
I
R|IC

��
(4)

We propose to discriminate at the sub-patch level; thanks to this approach we can better
detect patterns arising from removing artifacts which are formed into fine structures, typically
16⇥ 16 patches.

3.1.2. Perceptual Loss We design our loss exploiting findings from Dosovitskiy and Brox [5],
Johnson et al. [14], Bruna et al [1] and Gatys et al [10]; we add a perceptual similarity loss to
the adversarial loss. In particular, The distance between images is computed after projecting I

and I
R on a feature space by some di↵erentiable function � and taking the Euclidean distance

between the two feature representations:

lP =
1

WfHf

WfX

x=1

HfX

y=1

⇣
� (I)

x,y
� �

�
I
R
�
x,y

⌘2
(5)

where Wf and Hf are respectively the width and the height of the feature maps. The e↵ect
obtained using this loss is that output images will be closer to input high quality images not in
the pixel space but in the feature space of some neural network.

In this work we compute � (I) by extracting the feature maps from a pre-trained VGG-19
model [26], using the second convolution layer before the last max-pooling layer of the network,
namely conv5 3.
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3.1.3. Adversarial Patch Loss We train the generator combining the perceptual loss with the
adversarial loss thus obtaining:

lAR = lP + �ladv. (6)

Where ladv is the standard adversarial loss:

ladv = � log
�
D 

�
I
R|IC

��
(7)

that rewards solutions that are able to “fool” the discriminator.

4. Experiments
First we show qualitative results for static content. Our algorithm can be trained to restore
quality of several lossy compressed images; here for the sake of simplicity we only show
restoration on JPEG compressed images. In Fig. 2 we show the restoration of highly compressed
content on two patches. A first mean to measure quality of images is to apply so called no-

(a) JPEG (b) GAN (c) Raw

Figure 2. Our reconstruction algoritm (b) applied on JPEG compressed images (a) compared
to RAW images (c). Our method is able to remove all blocking artifacts and also keeping high
frequency details such as cat’s fur or the shape of rose’s petals.

reference metrics. We use two vastly used algorithms [21, 23]. Both algorithms are based on
the concept of image naturalness and while [21] trains a regressor to predict image quality
scores provided by humans based on image statistics, [23] is based on the idea of measuring
the similarity between the statistics of features of highly scored images and the images under
inspection. Resutls are reported in Tab.1.

We now report results on video frames. Here frames are degraded by H.264 compression. In
Fig. 3. We show how our method compares with Wave.one algorithm[25]. While we have slightly



HERITECH 2020
IOP Conf. Series: Materials Science and Engineering 949 (2020) 012068

IOP Publishing
doi:10.1088/1757-899X/949/1/012068

6

larger videos (3⇥), measured in bits per pixel(bpp) our algorithm has a much higher quality and
runs much faster(12⇥). In Table 2 we report an analysis based on no-reference metrics applied
to video frames. To take into account the peculiar nature of video we also report results of the
VIIDEO[22] algorithm, which evaluate also the temporal nature of media.

NIQE[23] BRISQUE[21]
JPEG10 6.36 53.17
GAN 4.27 19.65
ORIG 4.35 24.32

Table 1. Evaluation of our method using popular no-reference metrics, lower is better. GAN
score computed by both metrics is better than the score of ORIG.

Our: bpp 0.146 Raw: bpp 12 WaveOne [25]: bpp 0.0570
FPS: 20 FPS: - FPS: 1.6

Figure 3. Comparison of our method with [25]. Our network is faster (12x) and although uses
more bpp (3x) has much better quality while [25] is overly smoothed.

VIIDEO[22] NIQE [23] BRISQUE[21] FPS@720p
H.264 0.520 4.890 41.93 -
Our Very Fast 0.388 4.574 25.12 42
Our Fast 0.350 3.714 16.95 20
Galteri et al [7] 0.387 3.594 17.58 4
Uncompressed 0.276 4.329 23.73 -

Table 2. No reference quality assessment of our compression artifact removal networks.
VIIDEO is specifically designed for sequences, while NIQE and BRISQUE are geared towards
images. For all metrics lower figure is better.

In Fig. 4 are reported subjective evaluation results as MOS (Mean Opinion Scores) as
box plots, showing the quartiles of the scores (box), while the whiskers show the rest of the
distribution. The plots are made for the original images, the images compressed with JPEG using
a QF=10, and the images restored with our GAN-based approach from the heavily compressed
JPEG images. The figure shows that the GAN-based network is able to produce images that
are perceptually of much higher quality than the images from which they are originated; the
average MOS score for JPEG images is 1.15, for our GAN-based approach is 2.56 and for the
original images it is 3.59. The relatively low MOS scores obtained also by the original images
are related to the fact that COCO images have a visual quality that is much lower than that of
dataset designed for image quality evaluation.
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Figure 4. Subjective image quality evaluation of original COCO images (orange), heavily
compressed JPEG images (blue) and their restored version obtained with our GAN-based
approach (green). Restored images are perceived as having abetter quality than their compressed
versions.

5. Conclusion
In this paper we have shown a methodology to recover quality from video and image archive
that may have been preserved digitally at a low quality. Image and video storage is often
pursued via lossy compression which causes artifacts. We propose to use deep generative
adversarial network to recover quality of existing video archives. Our results show that our
algorithm improves quality with respect to exisiting no reference metrics and according to human
evaluators. Interestingly our algorithm can also be executed in real-time on modern GPUs, we
expect that in the future the improvement of hardware support for neural network would allow
our method to be applied directlu on consumer hardware such as smartphones and smartTVs.
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