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ABSTRACT
Hunting stability is a long-standing research topic and has been
deeply investigated due to its great influence on railway vehicle
dynamic performances. Most of the existing hunting monitoring
methods detect only the large amplitude hunting instability (LAHI).
However, the small amplitudehunting instability (SAHI) is still hard to
be detected accurately and efficiently. To face this challenging prob-
lem, this paper describes a signal analysis based hunting instability
detection methodology. The proposed method is based on cross-
correlation techniques and is able to detect both SAHI and LAHI in a
simple, efficient and effective way. Eight cross-correlation indicators
(CCIs) are exploited to detect anomalous SAHI and LAHI conditions. A
fully detailed dynamic model of one typical high-speed railway vehi-
cle is developed to test the methodology and to compare the CCIs
under different vehicle operating conditions. The most effective CCI
and its critical values are determined on the basis of the statistics and
comparisons of the simulation results. Furthermore, the robustness
of the proposed method to distinguish hunting instability and peri-
odic excitations coming from track irregularities has been verified.
Finally, the proposed instability detection methodology has been
validatedbydetecting theSAHI successfully on field test data coming
from specific experimental campaigns.
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1. Introduction

The rapid increase in the operating mileage of high-speed railway and in the operation
speedmake the safety and security technologies of high-speed railway face enormous chal-
lenges. In this framework, the hunting motion, characterised by self-excited lateral-yaw
oscillations, is one of the key aspects in vehicle system dynamics and has been deeply stud-
ied throughout the development of railway vehicles [1,2]. The hunting motion occurs at a
certain speed called the critical speed, which determines the actual operating speed of the
railway vehicle. Once the vehicle speed exceeds the critical speed, the vibration amplitude
increaseswith increasing speed and eventually causes a violent lateral swing of thewheelset,
which deteriorates the ride comfort, makes the vehicle prone to derailment, damages the
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track and induces fatigue failure in vehicle structure. Therefore, it is of great importance
to develop accurate hunting instability detection methods, not only for vehicle design pur-
poses but also for safety reasons under operating conditions. To face this problem, in this
work a signal analysis based hunting instability detection method for high-speed railway
vehicles is proposed. More particularly, the proposed strategy is based on cross-correlation
techniques and is able to detect in a simple, efficient and effective way both small and
large amplitude hunting instabilities. The proposed detection method has been validated
bymeans of field test data coming from specific experimental campaigns performed by the
authors’ research group.

There are different evaluation parameters for the lateral stability assessment on high-
speed railway vehicles in existing standards. A moving Root Mean Square (RMS) of the
sum of guiding forces, the sum of lateral axle box forces and lateral accelerations on bogie
frame above axle boxes can all be used to assess the stability of the vehicle [3–8].

The guiding forces and lateral axle box forces are the most effective parameters to
assess the vehicle running stability, as they can well highlight the influence of bogie hunt-
ing motion on the vehicle running safety. However, both these forces need instrumented
wheelset to bemeasured and the instrumentedwheelsets need to be recalibrated frequently,
which is highly expensive and not suitable for standard activities [9]. The bogie lateral
accelerations are generally adopted for the hunting instability detection around the world.
In China, as the operating speed has increased up to 350 km/h, all the ‘Renaissance’ high-
speed trains are equippedwith accelerometers on bogie frame above axle boxes for hunting
stability monitoring. Based on the bogie lateral acceleration, there exist two kinds of meth-
ods in the standards for the hunting instability assessment. The first one is to adopt the
RMS of the acceleration as the evaluation value, and the instability frequency has to be
determined before the evaluation of test results [4]. The second one is to identify the num-
ber of times when the peak value of the acceleration exceeds the limit value continuously
[8]. However, the definitions of stability in mechanics and in railway practice are usually
not identical. Consequently, the results of stability assessment through these two meth-
ods are different from that by the way of a bifurcation calculation, especially in the case
of the supercritical bifurcation [10–12]. Figure 1 shows the time-domain signals and the
assessment results of the two methods based on the bogie frame lateral acceleration. It can
be seen that the methods mentioned above can detect the large amplitude hunting insta-
bility (LAHI: amplitude of lateral acceleration signals from bogie frame exceed the safety
limit), but cannot detect the small amplitude hunting instability (SAHI: amplitude of lateral
acceleration signals from bogie frame is within the safety limit, but the wheel has a small
displacement perturbation). At the same time, further problems may arise due to delays or
early withdrawals of the alarm in existing monitoring systems.

Concerning SAHI detection, many researchers have conducted specific studies on this
problem. Wang et al. [13] introduced the basic concept of vibration energy method to
judge the bogie hunting instability of freight wagon. As the frequency range to consider
is different, this method is not suitable for high-speed vehicles. Yao et al. [14] applied
the RMS of bogie lateral acceleration under different frequency band as a criterion to
evaluate the lateral stability of high-speed trains by considering the most unfavourable
track conditions and by improving the safety margin. Numerical simulation shows that
the proposed method can lead to early warning for bogie slight hunting instability, but
that some key parameters have to be tuned in advance on the basis of a large number of
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Figure 1. Time-domain signals and the assessment results for the two methods based on the bogie
frame lateral acceleration.

test data. Gasparetto et al. [15] proposed a method to monitor the running stability in a
high-speed railway bogie by using the random decrement technique and Prony method.
Numerical experiments and line tests showed the capability of the method to separate the
case of a bogie with new wheel profiles from a condition with worm profiles. Based on
Multiscale Permutation Entropy and Local Tangent Space Alignment, Ning et al. [16] pro-
posed a feature extractionmethod to distinguish the different states of complex signals and
to identify the bifurcation evolution of small amplitude hunting signals. Empirical mode
decomposition (EMD) is a common approach to decompose and extract local character-
istic signals, especially for the analysis and processing of nonlinear nonstationary signals
[17]. To address the issue of SAHI for high-speed train, a newmethod [18,19] which com-
bines ensemble empiricalmode decomposition (EEMD), entropy features and least squares
support vector machine (LSSVM) was proposed to diagnose hunting abnormal motion
state. To improve the robustness of the small-amplitude hunting monitoring methods, Ye
et al. [20] proposed an idea of the bogie frame’s lateral-longitudinal-vertical data fusion
and a new feature extraction method. The field test results showed that this method is
superior to the single lateral diagnosis method. Based on the vibration signals of axle box,
the indirect monitoring method for wheelset lateral displacement was proposed for bogie
hunting instability detection in [21]. The amplitude of wheelset lateral motion correspond-
ing to hunting instability can be calculated by the singular value decomposition through
Hankel matrix. The degree of hunting instability thus can be evaluated by focusing on the
displacement amplitude.

In the real-time monitoring system, not only the identification accuracy but also the
computational efficiency and robustness of an algorithm are really important. However, the
calculation accuracy and efficiency of identification algorithmare often conflicting require-
ments, especially for signal decomposition methods [16–21]. Furthermore, the robustness
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of the algorithm is often not concerned enough and only the bogie acceleration is taken
into account in the above methods.

Actually, there exist strong correlation between the bogie and the carbody vibration
during the hunting instability, and this correlation can be effectively exploited to detect
hunting instability [22]. Cross-correlation analysis is a widely used method in the railway
industry for health monitoring of railway vehicle suspension system. Mei [23,24] estab-
lished amethod of fault detection and conditionmonitoring for the primary suspension of
railway vehicles based on signal cross-correlation analysis. This method is very sensitive to
different fault conditions. Li [25,26] developed a fully detailed dynamic model of 40t axle
load heavy haul wagon. With the help of auto-correlation and cross-correlation analysis,
the fault diagnosis for secondary bolster spring was studied, and an online fault diagnosis
strategy was proposed.

The work described in this paper starts from some ideas described in [23–26] con-
cerning the application of cross-correlation techniques to detect suspensions faults in
railway vehicles and making use of measurement coming from axle-box, bogie and car-
body, and tries to extend and apply such ideas to a new field, the detection of the hunting
instability.

More particularly, faults in suspensions usually cause an imbalance in vehicle dynamic
systems, resulting in dynamic interferences between different vibrations, which provides
a key indication to distinguish between normal and abnormal states of suspensions. Simi-
larly, once the vehicle hunting instability occurs, the vibration characteristics of the vehicle
system in different directions and the vibration transmission among different compo-
nents change significantly. On the basis of this characteristics change, this work attempts
to diagnose the hunting instability for high-speed vehicles from the perspective of cross-
correlation analysis between different acceleration signals coming from bogie and carbody.
The goal of the proposed detection method is to identify both the LAHI and the SAHI
effectively. In this way, if the cross-correlation analysis shows hunting instability, the driver
can take effective measures such as lowering the speed timely to prevent the train from
reaching LAHI.

This paper is organised as follows. In Section 2, the mathematical introduction of cross-
correlation analysis is presented and the proposed detectionmethod for hunting instability
is introduced. In Section 3, a fully detailed dynamic model of one typical high-speed
railway vehicle is developed for numerical simulations. Some cross-correlation indicators
(CCIs) are proposed to describe the cross-correlation of the considered signals and are
compared to each other under different vehicle operating conditions. In this way, the most
effective CCI and its critical value in detecting hunting instabilities is determined on the
basis of the obtained results and of the comparisons. In Section 4, robustness analysis of
the proposed method is carried out to distinguish the hunting instability and the periodic
excitations from the track irregularities. In Section 5, the proposed detectionmethod is val-
idated bymeans of field test data coming from specific experimental campaigns performed
by the authors’ research group.

2. Hunting instability identification via cross-correlation analysis

The signal-based hunting instability detection method for high-speed railway vehicles is
developed in this section. The new method relies on the cross-correlation analysis of the
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sensor-collected acceleration signals measured on bogie and carbody. The method aims at
detecting the incipient instability of the bogie in advance, before the level of bogie vibration
can trigger an alarm due to the conventional instability detectors.

2.1. Cross-correlation analysis

The correlation analysis methods for vibration signals mainly rely on the concepts of
correlation function and correlation coefficient to study the correlation and the mutual
dependence between two signals. The cross-correlation coefficient has been widely used in
the signal processing field to explore the similarity of two signals or determine the positions
of vibration source via the time lag [27–29].

Here, the definition of cross-correlation coefficient is briefly introduced and illustrated
from amathematical point of view. By way of example two different time-series signals x(t)
and y(t) are considered. Equation (1) gives the cross-correlation coefficient between these
two signals at time lag of τ :

δxy(τ ) = Rxy(τ ) − μxμy

σxσy
(1)

where μx and μy are the mean values of the signals, σx and σy are the standard deviations
of the signals, and Rxy(τ ) is the cross-correlation function associated to the two signals.
For discrete random signals, Rxy(τ ) can be expressed as follows:

Rxy(τ ) = 1
N

⎛
⎝N−|τ |∑

n=1
xnyn+τ

⎞
⎠ , τ = 0,±1,±2, . . . (2)

where N is the sample number considered for the signals couple. The cross-correlation
coefficient is a number between −1 and 1.

The cross-correlation curves show the cross-correlation coefficient δxy(τ ) between two
signals on a certain range of time lag τ . In Figure 2(a,b), by way of example, the cross-
correlation analyses of acceleration random and purely harmonic signals are carried out
to highlight the difference in the cross-correlation behaviour. The signals window is equal
to 10 s. Signal A1 and signal A2 are white noise while signal B1 and signal B2 are sine
waves (same periods and different phases) added with white noise. It can be seen that the
cross-correlation curve between signal A1 and signal A2 is nearly zero until the time lag
τ is close to the signal window (in such condition the correlation analysis is useless). The
cross-correlation curve between signal B1 and B2 is harmonic with increasing time lag τ .
The amplitude of the cross-correlation curves reaches 1, and the period of the curves is
the same of the original signals. Obviously, there exists a significant difference in the cross-
correlation curves between random signals and harmonic signals with the same period.
This difference can be effectively exploited for the hunting instability detection.

2.2. Methodology

The proposed detectionmethodology is shown in Figure 3. In the first step, the vehicle geo-
metric and kinematic parameters and the track characteristics are inserted as inputs into
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Figure 2. The time history of the signals x(t) and y(t) and cross-correlation curves for (a) random signals
and (b) harmonic signals.

Figure 3. Flowchart of the proposed hunting instability detection methodology.

the high-speed railway vehicle dynamic model. The wheel/rail profiles and yaw damper
characteristics are two critical parameters for the critical speed and bifurcation type of
the vehicle. In the second step, three kinds of vehicle states (including stability, SAHI and
LAHI) are reproduced by adjusting the critical parameters. The acceleration signals of
bogie frame and carbody are collected in three directions (x, y, z) by the simulated sensors
simultaneously.

The simulated sensors are installed both on the carbody and on the bogie frame; the
sensors locations are illustrated in Figure 4. The sensor A_b1 is located at the rear-right
part of the rear bogie and acquires the longitudinal, lateral and vertical acceleration signals
(A_b1_X,A_b1_Y andA_b1_Z). The sensorA_b2 is located in themiddle of the rear bogie
and acquires the lateral acceleration signal (A_b2_Y). The sensor A_b3 is located at the
front-left part of the front bogie, and acquires the lateral acceleration signal (A_b3_Y). Two
sensors A_c1 and A_c2 are mounted on the rear-right and front-left parts of the carbody
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Figure 4. Sensor arrangement on the railway vehicle model.

floor. The sensor A_c1 acquires the longitudinal, lateral and vertical acceleration signals
(A_c1_X, A_c1_Y and A_c1_Z) while the sensor A_c2 acquires the lateral acceleration
signal (A_c2_Y).

The cross-correlations between the sensor-collected acceleration signals are calculated
and analysed to extract various dynamic behaviours of the bogie frame and carbody in
proposed vehicle states. The cross-correlation analyses focused on in this paper include
three categories:

• Category 01: cross-correlation between the acceleration signals coming from the bogie
frame.

• Category 02: cross-correlation between the acceleration signals coming from the
carbody.

• Category 03: cross-correlation between the acceleration signals coming from the bogie
frame and carbody.

Among the cross-correlations included in Category 01, 02 and 03, eight cross-
correlation indicators are proposed in this paper as CCIs (see Table 1). Taking the cross-
correlation indicator B_XY as an example, the character B denotes the bogie frame (while
the character C denotes the carbody) and the characters XY denote the directions of accel-
eration signals used to calculate the cross-correlation. In particular, B_Yϕ denotes the
cross-correlation between the lateral acceleration and yaw angle acceleration of the bogie
frame. The yaw angle acceleration can be easily derived from lateral accelerations of A_b1
and A_b2 and from the knowledge of the carbody wheel base.

The phase delay between the bogie and carbody acceleration signals may exist on
account of the suspension system transmission characteristic [22]. As a result, the cross-
correlation at 0.0 s time shift doesn’t reach the peak value. The cross-correlation analysis
introduced above show that the amplitude of cross-correlation curve in one period can
distinguish the random signal and harmonic signal effectively. As the hunting frequency is
basically larger than 1Hz [22], the maximum of cross-correlation coefficient between the



8 J. SUN ET AL.

Table 1. Cross-correlation indicators (CCIs).

Category CCI Description Acceleration signals

Category 01 B_XY Cross-correlation between the acceleration signals from
the bogie frame

A_b1_X, A_b1_Y

B_YZ A_b1_Y, A_b1_Z
B_Yϕ A_b1_Y, A_b2_Y
B_YY A_b1_Y, A_b3_Y

Category 02 C_XY Cross-correlation between the acceleration signals from
the carbody

A_c1_X, A_c1_Y

C_YZ A_c1_Y, A_c1_Z
C_YY A_c1_Y, A_c2_Y

Category 03 BC_YY Cross-correlation between the acceleration signals from
the bogie frame and carbody

A_b1_Y, A_c1_Y

time shift of 0.0 and 1.0 s would be an appropriate indicator, and is therefore used in this
paper to evaluate the cross-correlation between acceleration signals.

The inputs of the third step are the CCIs previously described, that is the acceleration
cross-correlations calculated for the three different vehicle states. The CCIs for the stabil-
ity case are considered as baseline (BL) (for example, B_XY_BL) whereas the CCIs of the
SAHI and LAHI cases are considered as fault cases (FC) (for example, B_XY_SAHI and
B_XY_LAHI). For each CCI, the relative diagnosis indicator D can be calculated as well,
like for instance:{

D = |(B_XY_SAHI − B_XY_BL)/B_XY_BL| for SAHI
D = |(B_XY_LAHI − B_XY_BL)/B_XY_BL| for LAHI (3)

At this point, the fault diagnosis is finally performed by properly comparing the CCIs
and their statistical parameters under different vehicle states (stability, SAHI and LAHI
conditions), see Section 3. The strategy proposed to reach this goal is very efficient and
tries to minimise the number of unknown parameters that have to be set up and tuned a
priori.

3. Application of the proposedmethodology to simulated scenarios

In order to numerically test the proposed procedure, a suitable multibodymodel of railway
vehicle has been developed and numerical simulations have been carried out to study the
behaviour of the eight CCIs under different vehicle states (stability, SAHI and LAHI con-
ditions). Starting from these simulations, the most effective CCIs and their critical values
have been determined to detect the hunting instability of the high-speed vehicles, especially
for SAHI.

3.1. Recurrence of different vehicle states

To calculate the CCIs described in the previous section, the required vehicle states (sta-
bility, SAHI and LAHI conditions) have to be reproduced through suitable multibody
simulations, and the acceleration signals mentioned in Table 1 have to be collected
simultaneously.
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Figure 5. Multibody model of the railway vehicle.

To reach this goal, a complete railway vehicle multibody model has been developed in
SIMPACK. The vehicle model is considered as a rigid multibody system composed of 4
conventional wheelsets, 8 axle boxes, two pairs of bogie frame, one carbody, primary and
suspensions, as shown in Figure 5. The carbody and the bogie frames are characterised
by six independent degrees of freedom (DoFs) which allow free movements and rotations
with respect to the longitudinal, lateral and vertical directions, respectively. Concerning the
wheelsets, six DoFs are considered, but only four DoFs are independent and two of them
(z-axis, rotation about x-axis) are dependent. Finally, the axle boxes are characterised with
oneDoFwith respect to thewheelset (rotation about y-axis). Overall, 42 independentDoFs
are considered for rigidmotions in thismodel. The vehicle in themodel runs with constant
speed on the straight line. The primary vehicle parameters used in the simulation are listed
in Appendix.

To reproduce various vehicle states (stability and, especially SAHI and LAHI condi-
tions), the nonlinearities of wheel/rail contact and yaw damper have to be carefully taken
into account. Considering the standard rail profile CHN60, three kinds of wheel profile
are used in the simulation, and the related equivalent conicity are calculated starting from
the wheel/rail contact geometry and according to the standard regulation in force UIC 519
[30], as shown in Figure 6(a,b) respectively.Wheel profile 1 is the standard profile S1002CN
whereas wheel profile 2 as well as wheel profile 3 are measured worn profiles. The match of
wheel/rail profile 2 shows a decreasing equivalent conicity function in the range of ampli-
tudes between 0 and 3mm. The wheelsets thus possess a large gravity stiffness at a small
amplitude which limits the further increase of the wheelset lateral displacement, leading to
supercritical bifurcationwith low limit cycles. On the contrary, thematch of wheel/rail pro-
file 3 shows an increasing equivalent conicity function in the range of amplitudes between
0 and 3mm. Consequently, once the running speed exceeds the nonlinear critical speed,
the vehicle dynamics shows a subcritical bifurcation characterised by a sudden transition
from stable behaviour to a pronounced limit cycle [31]. In general, the linear critical speed
corresponding to wheel/rail profile 3 is larger than that corresponding to wheel/rail profile
2, as its equivalent conicity is smaller.

Figure 6(c) illustrates three kinds of yaw damper with different nonlinear, non-smooth
characteristics. Yaw damper 2 provides a small force for a small piston velocity and a large
blow-off force, which results in a small linear critical speed and a supercritical bifurcation
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Figure 6. Critical parameters of the vehicle dynamic model: (a) Wheel profiles; (b) equivalent conicity;
(c) nonlinear yaw damper characteristics; and (d) lateral track irregularity.

with low limit cycles. At the same time, yaw damper 3 provides a large force for a small
piston velocity and a small blow-off force, which results in a large linear critical speed
and a subcritical bifurcation with pronounced limit cycles [12]. Furthermore, the exist-
ing Wuhan-Guangzhou irregularity spectrum is applied in the simulation, and its lateral
irregularity is illustrated in Figure 6(d).

Applying the wheel/rail contact nonlinearities and yaw damper characteristics men-
tioned above to the vehicle dynamic model, the bifurcation diagrams in these three cases
are calculated, and the results are illustrated in Figure 7(a). The cases 1, 2 and 3 corre-
spond to the combination of wheel/rail profile and yaw damper 1, 2 and 3, respectively. It
can be observed that the vehicle in case 1 shows the supercritical bifurcation with the crit-
ical speed of 400 km/h, and the vehicle in case 2 shows the supercritical bifurcation with
the critical speed of 250 km/h, and the vehicle in case 3 shows the subcritical bifurcation
with the critical speed of 280 km/h. In this way, three kinds of vehicle running state can be
reproduced by setting the vehicle running speed to 350 km/h: stability condition by using
the parameters of case 1, SAHI conditions by using the parameters of case 2 and LAHI
conditions by using the parameters of case 3.

The bogie lateral accelerationsA_b1_Y with 0.5–10Hz band pass filtering are illustrated
in Figure 7(b). It can be clearly seen that the bogie acceleration signals in both case 2 and
case 3 show a strong harmonic characteristic whereas, in case 1, the signal show random
vibrations. Moreover, the amplitude of lateral acceleration signals measured on the bogie
frame in case 3 exceeds 8m/s2 for more than 6 times consecutively, which satisfies a typical
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Figure 7. (a) Bifurcation diagram under different critical parameters and (b) bogie lateral acceleration
under different vehicle states (stability, SAHI and LAHI conditions).

alarm condition [8]. The amplitude in case 2 is about 4m/s2, which is far from reaching
the alarm condition and conforms to the characteristic of SAHI. Finally, the acceleration
signals for cross-correlation analysis (that is all the CCIs) are collected for 30 s.

3.2. Selection of themost effective CCI

In this section, the proposed methodology is applied to the simulated results described in
Section 3.1 to investigate the cross-correlation of the bogie frame and carbody acceleration
signals in different vehicle states (stability, SAHI and LAHI conditions). Among the 8 CCIs
proposed in Section 2.2 and calculated from the simulated data for all the vehicle states, the
most effective indicator to identify hunting instabilities (especially SAHI) will be selected.

Considering the fluctuation of cross-correlation in the time, 21 index values have been
calculated by means of sliding windows for all the CCIs (one CCI value for each sec-
ond, i.e. time acquisition rate equal to 1 s). The window length has been set equal to
10 s. Figure 8 shows the CCIs in the proposed vehicle states (stability, SAHI and LAHI
conditions). It can be observed that most of the CCIs almost remain unchanged near a
certain mean value whereas some CCIs fluctuate a lot. For a specific CCI, a large fluctua-
tion means a poor robustness, therefore it should be considered as an invalid indicator for
hunting instability detection. Apart from the robustness, an effective CCI should show sig-
nificant differences among the different vehicle running states (stability, SAHI and LAHI
conditions) to effectively indicate the fault condition.

At this point, the mean values and standard deviations of each CCI for different vehicle
states have been calculated and listed in Table 2. It can be seen that the standard deviations
of the cross-correlation indicators B_YY, C_XY, C_YZ and C_YY are significantly larger
than those of other CCIs. Furthermore, the mean values of CCIs for different vehicle states
are compared in Figure 9(a) whereas the relative diagnosis indicators D associated to each
CCI (see Equation (3)) are illustrated in Figure 9(b) for both SAHI and LAHI conditions.

An empirical interpretation of correlation coefficients CCIs is illustrated in Table 3. In
general, 0.5 is regarded as the limit value for correlation analysis. When the CCI is larger
than 0.5, this related signals show a significant correlation.When, on the contrary, the CCI
is smaller than 0.5, this related signals show a low correlation or no correlation. The limit
value is highlighted through a red dashed line in Figure 9(a). It can be observed that the
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(a) (b)

(c)

Figure 8. Cross-correlation indicators CCIs for different vehicle states: (a) stability; (b) SAHI; and (c) LAHI.

Table 2. Statistical values of CCIs for different vehicle states (stability, SAHI and LAHI).

Stability SAHI LAHI

CCI Mean value
Standard
deviation Mean value

Standard
deviation Mean value

Standard
deviation

B_XY 0.50 0.018 0.70 0.014 0.67 0.012
B_YZ 0.10 0.021 0.14 0.022 0.17 0.009
B_Yϕ 0.35 0.018 0.50 0.012 0.53 0.015
B_YY 0.10 0.012 0.25 0.091 0.43 0.096
C_XY 0.63 0.027 0.37 0.092 0.22 0.018
C_YZ 0.12 0.022 0.43 0.107 0.56 0.095
C_YY 0.49 0.062 0.46 0.131 0.88 0.060
BC_YY 0.33 0.015 0.63 0.015 0.80 0.012

Table 3. Empirical interpretation of the correlation coef-
ficients [32].

Correlation coefficient r (the CCIs) Degree of correlation

0 ≤ |r| < 0.30 Weak or no correlation
0.30 ≤ |r| < 0.50 Low correlation
0.50 ≤ |r| < 0.80 Significant correlation
0.80 ≤ |r| < 1.00 Strong correlation

cross-correlation indicators B_XY, B_Yϕ and BC_YY exceed the limit value under both
the SAHI and LAHI conditions.

At the same time, the relative diagnosis indicator D, highlighting the volatility of CCIs,
are calculated between the conditions of stability and instability (both in the SAHI and in
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(a) (b)

Figure 9. Summary of the cross-correlation analysis results: (a) mean cross-correlation indicators CCIs
(for stability, SAHI and LAHI); and (b) relative diagnosis indicators (both for SAHI and LAHI).

the LAHI cases). A large value of D means a good discrimination between the baseline
and fault cases, and tow limit values are initially proposed for the fault diagnosis. The first
limit is set equal to 0.5 (blue dashed line in Figure 9(b)) for the SAHI case whereas the
second limit is set equal to 1.0 (red dashed line in Figure 9(b)) for the LAHI case. It can be
observed that the relative diagnosis indicator D for the cross-correlator indicators (ICCs)
B_YY, C_YZ and BC_YY exceed the limit values under both SAHI and LAHI conditions.
However, considering the small mean values and the high standard deviations of some
CCIs, it would be unreasonable to evaluate the effectiveness of the CCIs only by using the
relative diagnosis indicator D. For example, the diagnosis indicator D related to B_YY,
exceeds 1.5 under SAHI conditions and exceeds 3.0 under LAHI conditions; at the same
time, the cross-correlation indicator B_YY is less than 0.3 under SAHI conditions and less
than 0.5 under LAHI conditions. Consequently, in this case, the small mean value and the
high standard deviation of the considered CCI may deeply affect the results in terms of
relative diagnosis operator D, making the instability detection procedure quite unreliable.

Therefore, to face this problem, the followingmore accurate requirements are proposed
to determine the most effective CCI for hunting instability detection:

• the standard deviation of cross-correlation indicators CCI for different vehicle states
(stability, SAHI and LAHI conditions) should be less than 0.08;

• themean value of cross-correlation indicators CCI for different vehicle states (SAHI and
LAHI conditions) should be larger than 0.5;

• the relative diagnosis indicator D for the considered CCI should be larger than 0.5 for
the SAHI vehicle state and larger than 1.0 for the LAHI vehicle state.

Looking at the results of the simulation campaign described in these sections, only the
cross-correlation indicator BC_YY, among the proposed CCIs, fully satisfies the previ-
ous requirements. The cross-correlation indicator BC_YY is therefore the most promising
candidate for hunting instability detection and will be exploited in the following of the
work.

Furthermore, to distinguish the hunting instability (especially SAHI) with the stability,
the critical value of BC_YY should be determined. Applying the simulation models corre-
sponding to cases 2 and 3 aforementioned, the limit cycle amplitude of wheelset and the
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(a) (b)

Figure 10. Behaviour of the wheelset amplitude and the mean cross-correlation indicator BC_YY as
a function of the vehicle speed under the condition of (a) supercritical bifurcation and (b) subcritical
bifurcation.

cross-correlation indicator BC_YY at specified vehicle speeds are calculated and plotted
together in Figure 10. For the supercritical bifurcation, the BC_YY increases as the vehi-
cle speed increases, and it exceeds 0.5 for the first time at the speed of 260 km/h where the
vehicle starts showing a small amplitude hunting instability. For the subcritical bifurcation,
the BC_YY doesn’t exceed 0.2 when the vehicle speed is below the critical speed. Once the
vehicle speed exceeds the critical speed, both the wheelset amplitude and the BC_YY sud-
denly reach a quite large value. To detect the hunting instability effectively (especially for
SAHI), the critical value of BC_YY is set to 0.5 finally.

3.3. Efficiency

The computation efficiency is a key indicator for evaluating the merits of a real-time mon-
itoring method. The comparison of the efficiency between the proposed methodology and
the method adopted in Reference [21] is performed by processing the same acceleration
signals duration equal to 10 s. The calculations have been performed on a quite standard
Dell Inspiron 15-7559 computer with an Intel Core i7-6700HQ @2.6GHz and a NVIDIA
GeForceGTX960M.As a result, the calculation time of the cross-correlation analysis in the
proposed methodology is only 0.02 s, whereas the calculation time of the method in Ref-
erence [21] exceeds 0.3 s. Obviously, the proposed methodology has a good performance
in terms of computational efficiency.

4. Robustness of the proposedmethodology

The proposed methodology has been developed by detecting the periodic components
between 0.5 and 10Hz in the lateral acceleration signals on the bogie frame and carbody
floor. However, not only the hunting instability but also the periodical excitation com-
ing from the track can cause some effect on these signals and their cross-correlations in
such frequency range. The hunting instability is a self-excited vibration while the response
under periodic excitation is a forced vibration.As the origins and effects of these two abnor-
mal vibration are different, it is important to distinguish the hunting instability from track
periodic excitation during the operation.

In this robustness analysis, the new excitation due to track lateral irregularities is
obtained by superimposing a harmonic excitation with wavelength equal to 20m on the



VEHICLE SYSTEM DYNAMICS 15

original lateral irregularity wavelength distribution. The total amplitude distribution and
the Power Spectral Density (PSD) of the combined lateral irregularities are illustrated in
Figure 11(a), in which the harmonic excitation amplitude is equal to 1mm. The frequency
of the periodical excitation is 4.9Hz at the vehicle speed of 350 km/h, which is included in
the frequency range of 0.5–10Hz considered for the lateral acceleration signals. Integrating
the track lateral irregularity into the simulation model under the vehicle state of stability,
the time-domain and spectra of the bogie’s lateral acceleration with 0.5–10Hz band pass
filtering are obtained, as shown in Figure 11(b). It is seen that the periodic components
and the dominant frequency are noticeable even if their amplitudes are relatively small. In
this way, the cross-correlation analysis should be carried out further to distinguish these
two cases.

Three kinds of harmonic excitation with amplitudes equal to 1, 2 and 3mm are used
to study the robustness of the methodology. The new irregularities are then integrated
into the simulation model corresponding to the vehicle state of stability, SAHI and LAHI
respectively. The mean cross-correlation indicators B_YY and BC_YY for the considered
irregularity levels (1, 2 and 3mm) are calculated and compared with the original cross-
correlation (without periodic irregularity, namely 0mm) for the vehicle states of stability,
SAHI and LAHI, as shown in Figure 12. It can be observed that both the cross-correlation
indicators BC_YY and B_YY increase with increasing excitation amplitudes under all the
vehicle states. With regard to BC_YY, when the vehicle is under the state of stability,
the cross-correlation increases only a little under the excitation amplitude equal to 1mm
whereas it exceeds 0.6 and 0.7 for the excitation amplitudes equal to 2 and 3mm, respec-
tively. These results conflict with the results for SAHI and LAHI conditions reported in

(a)

(b)

Figure 11. Robustness analysis: (a) amplitude distribution and PSD of the lateral irregularity; and (b)
time-domain and spectra of the bogie’s lateral acceleration.
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Figure 12. Results for the mean cross-correlation indicators BC_YY and B_YY for different irregularity
levels under different vehicle states (stability, SAHI and LAHI).

Figure 8(b,c) where periodic track irregularities are not considered. In fact, in this case, it
is not possible to understand if the cause of the BC_YY increase is the hunting instability
or the track irregularity or both.

However, as regards the cross-correlation indicator B_YY, when the vehicle is under the
state of stability, the cross-correlation increases significantly in presence of periodic track
irregularities, and it reaches values near 0.8–0.9 for excitation amplitudes equal to 2 and
3mm (see Figure 12). On the contrary, looking at the results reported in Figure 8(b,c), it is
seen that the cross-correlation indicator B_YY is always below 0.5 in absence of periodic
irregularities, both under SAHI and LAHI conditions. Themain reason for that is probably
that, even though the structure and characteristics of front and rear bogies are the same, the
damping ratios and the hunting mode frequencies of front and rear bogies are different at
the same speed [33]. Furthermore, in the actual operation of high-speed trains, the wheel
profiles of the front and rear bogies may be different as well. All these reasons may lead
to a smaller cross-correlation indicator B_YY. Furthermore, it can be observed that both
the cross-correlation indicators BC_YY and B_YY exceed 0.9 in presence of periodic track
irregularities, both under SAHI and LAHI conditions.

The previous considerations suggest that the cross-correlation indicator B_YY can be
effectively used to distinguish the hunting motion from the periodic excitations due to
track irregularities. More particularly, the origin of the periodic components between 0.5
and 10Hz in the lateral acceleration signals on the bogie frame and carbody floor can be
determined as follows:

• The origin is due to hunting instability, if the cross-correlation indicatorBC_YY exceeds
0.5 and the cross-correlation indicator B_YY does not exceed 0.5.

• The origin is due to track irregularities, if the cross-correlation indicator BC_YY is
between 0.5 and 0.8, whereas the cross-correlation indicator B_YY exceeds 0.5.

• The origin is due to both the hunting instability and the track irregularities, if the cross-
correlation indicator BC_YY is exceeds 0.8, whereas the cross-correlation indicator
B_YY exceeds 0.8.

5. Experimental validation of themethodology

The proposed methodology has been experimentally validated through a specific field
test. The field test has been performed on a Chinese high-speed train running from
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Guangzhou to Shenzhen. The on-boarder data acquisition system is used to continuously
record the accelerations (measured through suitable accelerometers as shown for example
in Figure 13). All the required acceleration signals on bogie frame and carbody were col-
lected according to Section 2 to properly calculate the CCIs (see Section 3) and to verify
the proposed instability detection methodology.

After the processing of the test data, the acceleration signals coming from the accelerom-
eters are analysed. A 0.5–10Hz band pass filtering is performed on the acceleration signals
measured on the bogie frame andon the carbody. Byway of example, both the time-domain
signals and the short time Fourier transform (STFT) of the filtered acceleration signals are
illustrated in Figure 14 for A_b1_y and A_c1_y. As for the peak value, the lateral accelera-
tion of bogie frameA_b1_y is within 4m/s2, which is far from reaching the alarm limit [8].
However, the energy of vibration around 8Hz is prominent in the time interval 260–300
s. With regard to the carbody A_c1_y, a vibration around 1Hz is present for almost in the
whole time history and is related to the rigid mode of the carbody. Furthermore, also in
this case, the vibrations around 8Hz during the period of 260–300 s is significantly larger
than that in other sections.

Looking at the measurements of the accelerometers A_b1 and A_c1, SAHI probably
occurs during the time interval 260–300 s. To further verify the conjecture, a local zoom
of the accelerations A_b1_y and A_c1_y in the suspected time section is illustrated in
Figure 15, which highlights a common harmonic vibration in the vehicle components
(bogie and carbody) at a frequency of around 8Hz.

At this point, to verify the conjecture, the cross-correlation analysis is then performedon
the specific acceleration signals. Figure 16 shows the time history of cross-correlation indi-
catorsBC_YY andB_YY. It can be observed that, concerningBC_YY, the cross-correlation
signal is below 0.5 almost everywhere, however, the cross-correlation indicator BC_YY
corresponding to the period of 260–300 s reaches nearly 0.8 and is significantly larger than
that in the other time sections. Moreover, the cross-correlation indicator B_YY is always
below 0.5, which excludes the possibility of a periodic excitation conclusion from the track.
According to the criteria reported in Sections 3 and 4, it may be inferred that the vehicle

(a) (b)

Accelerometer

X

Y

Z

AccelerometerX

Y

Figure 13. Field test campaign: (a) accelerometer A_b1 (see Section 2) on bogie frame above axle box
and (b) accelerometer A_c1 (see Section 2) on the carbody floor.
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Figure 14. Time-domain signals and STFTs of the tested accelerations (a) A_b1_y from the bogie frame
and (b) A_c1_y from the carbody.
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Figure 15. Local zoom of the lateral accelerations A_b1_y and A_c1_y in the SAHI time section.

experienced SAHI during the time interval 260–300 s, and the result further confirms the
initial conjecture on the presence of SAHI based on the time-domain and STFT experi-
mental data. Consequently, the proposed instability detection methodology turns out to
be able to identify SAHI condition effectively.

Finally, to better highlight the connection between wheel/rai profile conditions (from
new to worn), bogie or carbody accelerations and CCIs, and instability conditions (both
SAHI and LAHI), the relation between the maximum value of bogie lateral acceleration
A_b1_y and the cross-correlation indicator BC_YY has been investigated. More partic-
ularly, several measurements have been performed on the vehicle for different travelled
distances after turning intervention and, consequently, for different wheel/rail profile con-
ditions (from new to worn). The acceleration signals have beenmeasured on the same part
of the track and are referred to the same time window.

Figure 17 shows the variation of the maximum values of the bogie lateral acceleration
A_b1_y and of the cross-correlation indicator BC_YY for increasing running distances of
the considered high-speed railway vehicle after the turning intervention. It can be seen
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Figure 16. Experimental cross-correlation results of the BC_YY and B_YY.

Figure 17. The evolution of themaximumvalues of the bogie lateral accelerationA_b1_y and the cross-
correlation indicator BC_YY.

that, when the running distance does not exceed 12.6 × 103 km, the maximum values
of acceleration are all below 1.0m/s2 and only have little changes whereas the maximum
of the cross-correlation indicator BC_YY are all below 0.2. When the running distance
exceeds 12.6 × 103 km, the maximum values of both acceleration and cross-correlation
indicator BC_YY increase gradually with increasing running distance, and show a simi-
lar behaviour. When the running distance reaches 14.4 × 103 km, the cross-correlation
indicator BC_YY exceeds 0.5 whereas the maximum value of the acceleration exceeds
1.5m/s2 for the first time, a noteworthy value for this vehicle. Finally, when the running
distance reaches 18.6 × 103 km, the wheel profiles are repaired through a turning inter-
vention and the new profiles are restored. The maximum value of acceleration and the
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cross-correlation indicator BC_YY drop to a very small level immediately, and the hunting
instability disappears.

The last results show again the connection between wheel/rail profile conditions, bogie
or carbody accelerations and CCIs, and instability condition, and highlight very well
the capability of the proposed methodology of detection hunting instability conditions
(especially in the SAHI case).

6. Conclusions

Based on the cross-correlation analysis techniques, a new methodology for hunting insta-
bility detection (especially for small amplitude hunting instability) of high-speed railway
vehicles has been proposed in this paper. The following important conclusions can be
drawn:

(1) The evidence from this study suggests that there exists a strong correlation between
the bogie frame and the carbody vibrations during the hunting instability. More par-
ticularly, the cross-correlation between the lateral accelerations of the bogie frame
and carbody increases with the increasing of the hunting instability amplitudes, and
this phenomenon can be effectively exploited to detect the small amplitude hunting
instability.

(2) Combining the cross-correlation indicators BC_YYandB_YY, the proposed detection
methodology can identify the origin of the vibration by distinguishing the hunting
instability from the periodic track irregularities. This aspect is innovative and can be
also helpful to reduce or eliminate abnormal vibrations on railway vehicle specifically.

(3) The sensor network of the proposed detectionmethod consists of just four accelerom-
eters mounted on the front left and rear right of the bogie fames and carbody (see
Figure 4), which is compatible with most of the existing monitoring system on the
high-speed railway vehicles. Furthermore, the implementation costs are quite low and
the algorithm is really efficient because it is based only on simple signal processing
techniques.

(4) Due to the limitation of experimental resources, this paper only considered one typical
high-speed railway vehicle to validate the proposed detection methodology. Further
numerical and experimental validations are required to verify the performance of the
proposedmethodology for different types of trains, wheel/rail profiles and bifurcation
diagrams.
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Appendix

Table A1. Primary parameters of the railway vehicle.

Notation Parameter Value Unit

Mc Car body mass 40,384 kg
Mt Bogie frame mass 2800 kg
Mw Wheelset mass 1713 kg
Icx Roll moment of inertia of car body 93,303 kg·m2

Icz Yawmoment of inertia of car body 1,552,360 kg·m2

Itx Roll moment of inertia of bogie frame 1846 kg·m2

Itz Yawmoment of inertia of bogie frame 2792 kg·m2

Iwz Yawmoment of inertia of wheelset 1050 kg·m2

Kpx Longitudinal locating stiffness of axle-box 85 MN/m
Kpy Lateral locating stiffness of axle-box 5 MN/m
Kpz Vertical stiffness of primary suspension 0.95 MN/m
Ksx Longitudinal stiffness of secondary suspension 0.15 MN/m
Ksy Lateral stiffness of secondary suspension 0.15 MN/m
Ksz Vertical stiffness of second suspension 0.21 MN/m
Cpy Lateral damping of primary suspension 10 kN·s/m
Cpz Vertical damping of primary suspension 10 kN·s/m
Csy Lateral damping of secondary suspension 20 kN·s/m
Csz Vertical damping of secondary suspension 10 kN·s/m
Kd dynamic stiffness of yaw damper 5 MN/m
Cd dynamic damping of yaw damper - kN·s/m
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