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Abstract 

Wire-arc additive manufacturing is a metal additive manufacturing process that enables the 

production of large components at a high deposition rate. This process transfers a large amount of 

heat to the workpiece, requiring the introduction of idle times between the deposition of subsequent 

layers so that the workpiece cools down. This procedure prevents the workpiece from collapsing 

and ensures a suitable interpass temperature. The main challenge is the selection of such an idle 

time capable of ensuring the required interpass temperature, because the cooling rate of the 

workpiece changes throughout the process, entailing the need for a different idle time between the 

deposition of subsequent layers to achieve a constant interpass temperature. 

This paper proposes an innovative approach to schedule the deposition of interlayer idle times for 

wire-arc additive manufacturing process. The technique is based on a finite element analysis of the 

thermal behavior of the workpiece, by solving the heat transfer equations. The simulation data are 

processed using the developed algorithm to compute specific idle times for the deposition of each 

layer, thereby ensuring a constant interpass temperature. The effectiveness of the proposed 

technique is validated by experiments performed on a test case component. The idle times are 

calculated using the proposed technique, by simulating the process, and used to manufacture the 

test case. The temperature data measured during the process are compared with the FE 

simulation results to verify the accuracy of the model. An analysis of the geometry of the 

manufactured workpiece confirms that the adoption of the idle times obtained by the proposed 

technique prevents the occurrence of major structural collapses. 

 

Keywords 

Wire-Arc Additive Manufacturing, Gas-Metal-Arc-Welding, Finite Element. 

 

1. Introduction 

The wire-arc additive manufacturing (WAAM) process is an additive manufacturing (AM) 

technology to produce metal components. This process produces the components by the selective 

deposition of subsequent layers using an arc welding heat source to melt a wire feedstock. 

Standard arc welding equipment can be used to perform WAAM operations, using different 

technologies [1], such as gas metal arc welding (GMAW), gas tungsten arc welding (GTAW), or 

plasma arc welding (PAW). Compared to other metal AM processes, the main advantages of 

WAAM are the high achievable deposition rate and the efficiency in manufacturing large 

components[2]. 

However, the components manufactured using WAAM are prone to thermal issues caused by the 

large amount of heat introduced in the workpiece during the process [3], which could lead to 

excessive residual stresses, significant distortions [4], and workpiece structural collapse [5]. A 

common practice to mitigate such issues is the introduction of idle times between the deposition of 

subsequent layers [6], during which the workpiece cools down transferring the accumulated heat to 

the environment. Hence, the idle time value controls the interpass temperature, namely the 
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temperature of the workpiece at the beginning of the deposition of subsequent layers. This 

parameter is crucial for the WAAM process: Zhao et al. [7] showed that by increasing the idle times 

(i.e., by decreasing the interpass temperature), the magnitude of the residual stresses can be 

reduced; Geng et al. [8] stated that controlling the interpass temperature is essential to avoid bead 

defects and to prevent component collapse. Moreover, the interpass temperature selection is 

fundamental to avoid solidification defects and to achieve adequate material properties. Shen et al. 

[9,10] investigated the influence of interpass temperature on the WAAM processing of iron 

aluminide alloys, concluding that it has a significant influence on the yield stress, elongation, and 

the occurrence of longitudinal cracking. Ma et al. [11] studied titanium aluminide alloys and found a 

significant influence of interpass temperature on the local chemical composition, microstructure, 

phase concentration, and microhardness. 

Currently, two main techniques are used to schedule the idle times in WAAM processes: (i) fixed 

idle time selection and (ii) substrate temperature monitoring. In the first case, a fixed idle time is 

introduced at the end of the deposition of each layer in the deposition part program [12]. This 

technique allows the workpiece to cool down; however, it requires a series of pretests to set the 

correct idle time. Furthermore, fixed idle times might not allow to maintain a constant interpass 

temperature. This is due to the heat transfer mechanism from the molten pool to the workpiece. As 

shown by Zhao et al. [13], the most relevant heat flux is the conduction in the building direction, 

which is significantly affected by the workpiece height, i.e., by the number of formerly deposited 

layers. Therefore, to provide the same interpass temperature, the idle time should be increased as 

the deposition progresses.  

This is usually achieved by the second technique, i.e., monitoring the substrate temperature by 

using a sensor, usually a thermocouple. After the deposition of a layer, the process is kept idle until 

the thermocouple signal reaches the prescribed value. Despite that this technique keeps the 

substrate temperature constant at the end of the deposition of each layer, it does not allow to 

achieve a constant molten pool size. Indeed, with the increase in the distance between the current 

layer location and the substrate, the volume of molten pool increases, as shown by Wang et al. 

[14]. Similar to that in the fixed idle, this is related to the decrease in the conductive heat flux due to 

the increase in workpiece height during the deposition process. This is a significant drawback of 

the substrate temperature monitoring technique, because limiting the increase in the molten pool 

volume is crucial to achieve adequate process results, both in terms of homogeneous mechanical 

properties [14,15] and avoiding the local structural collapse of the workpiece that result in poor 

dimensional accuracy [16]. 

This paper proposes an innovative technique to schedule the interlayer idle times for the WAAM 

technology, based on a finite element (FE) simulation of the process. The interpass temperature is 

monitored during the simulation at different points for each layer. A different idle time is calculated 

for the deposition of each layer, ensuring a constant interpass temperature on the previously 

deposited layer. It is demonstrated that this approach ensures a constant molten pool size during 

the process. The calculated idle times can be included as dwells in the WAAM part program, 

ensuring the consistency between the simulated and the actual process. The usage of a FE 

simulation rather than a sensor-based monitoring has a twofold advantage: it overcomes the 

issues related to temperature measurements in the workpiece areas close to the molten pool [17] 

and enables to perform sensitivity analysis using different interpass temperatures. To verify its 

effectiveness, the proposed technique was used to schedule the idle times for the manufacturing of 

a test case component. Such component was then manufactured using the prescribed idle times. 

Finally, coordinate measurement machine (CMM) measurements were made on the workpiece to 

verify the effect of the proposed approach on the dimensional accuracy of the component. 

Section 2 shows the details of the proposed idle time calculation technique, and section 3 presents 

the test case manufacturing procedure and the experimental results. 

 

2. Proposed technique 
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This paper proposes a novel approach to calculate the idle times required to achieve a constant 

interpass temperature and to ensure a constant molten pool size in WAAM operations. The basic 

idea is to monitor the cooling of each layer right after its deposition using a FE simulation of the 

WAAM process, calculating the required idle times to meet the predefined interpass temperature. 

Unlike the most common procedure of monitoring the substrate temperature in a set of fixed points, 

in this technique, a specific control point is associated with each layer. This enables a local control 

of the interpass temperature, compensating the reduction of the conductive heat flux. The FE 

simulation, a consolidated practice for WAAM [18] and different metal AM processes [19], provides 

the knowledge of the workpiece temperature field in an arbitrary point, an outcome barely 

achievable by direct measurement [20]. 

This section presents the two key points of the proposed technique: 

 FE modelling of the WAAM process. 

 The idle time computation algorithm. 

 

2.1 FE modelling of the WAAM process 

 

In the proposed technique, a numerical simulation is used to evaluate the thermal behavior of the 

workpiece. The WAAM process is simulated at a macroscale level, i.e., solving the heat transfer 

problem in the workpiece. For simplification, the heat and mass transfer phenomena, which occur 

in the molten pool, are neglected. This is a common approach in the simulation of many metal AM 

processes [21]. The problem is described by the partial differential equation of heat diffusion in a 

solid body, as shown in Eq. 1: 

 

𝛻(𝜆(𝑇)𝛻𝑇(𝑋, 𝑌, 𝑍, 𝑡)) + 𝑞(𝑋, 𝑌, 𝑍, 𝑡) = 𝜌𝐶𝑝(𝑇)
𝜕𝑇(𝑋, 𝑌, 𝑍, 𝑡)

𝜕𝑡
 

Eq. 1 

 

where T is the unknown temperature, a function of time (t) and position (X,Y,Z); λ(T) is the 

temperature-dependent thermal conductivity; Cp(T) is the temperature-dependent heat capacity; ρ 

is the mass density; and q(X,Y,Z,t) is the source term of the equation, representing the heat input 

of the welding process. The final term is a function of both time and spatial coordinates, because it 

is related to the deposition path. The boundary and initial conditions of Eq. 1 are presented in Eq. 

2: 

 

{
 
 

 
 −𝜆(𝑇)

𝜕𝑇

𝜕�⃗� 
|
Ω,𝑡
= ℎ(𝑇 − 𝑇∞)

−𝜆(𝑇)
𝜕𝑇

𝜕�⃗� 
|
Ω,𝑡
= 𝜀𝜎(𝑇4 − 𝑇∞

4)

𝑇|𝑥,𝑦,𝑧,0 = 𝑇0

 
Eq. 2 

 

The first relation represents the boundary condition of convection described by Newton’s law, 

where h is the heat transfer coefficient, T∞ is the far-field air temperature, and �⃗�  is the normal 

vector of the heat transfer surface Ω. The second relation represents the boundary condition of 

radiation to the environment, described by the Stefan-Boltzmann law, where ε is the surface 

emissivity and 𝜎 is the Stefan-Boltzmann constant. The third relation represents the initial condition 

of uniform temperature (T0) throughout the integration domain. 

Eq. 1 is solved using the FE method, according to the techniques previously presented in [22,23]. 

The most distinctive features of the simulation technique presented in this study are as follows: 

 

 The heat source model 

 The material deposition modelling 
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2.1.1 Heat source model 

 

The heat source included in the simulation delivers the heat input of the welding process to the 

workpiece. The WAAM process involves complex interactions among the electric arc, feedstock, 

and molten pool, which occur at different dimensional and time scales [24]. To increase the time 

efficiency of the simulation, a heat source model is used. 

One of the most widespread model of heat source for the arc welding processes is the double 

ellipsoid one, proposed by Goldak et al. [25]. In the Goldak model, the heat input is the heat 

generated internally per unit volume (W/m3), having a Gaussian distribution in a coordinate system 

moving along the deposition path. The heat source model used in this paper is a modified version 

of the double ellipsoid one [22], tailored for the GMAW process. The heat distribution function is 

presented in Eq. 3: 

 

 

�̇� = {
�̇�𝑏 =

6√3�̇�𝑏𝑓𝑓,𝑟

𝜋√𝜋𝑎𝑓,𝑟𝑏𝑐
exp [−3 (

𝑥2

𝑎𝑓,𝑟
2 +

𝑦2

𝑏2
+
𝑧2

𝑐2
)]

�̇�𝑤 =
�̇�𝑤

𝑉𝑒𝑙

 
Eq. 3 

 

In the proposed heat source, the heat input of the welding process is split into two power density 

contributions: the base metal (�̇�𝑏) and the filler or deposited metal (�̇�𝑤). This strategy allows to 

control the amount of power transferred to both the base (�̇�𝑏) and the filler metal �̇�𝑤, provided that 

the following condition is fulfilled: 

 

�̇�𝑏 + �̇�𝑤 = �̇� = 𝑖𝑉𝜂 
Eq. 4 

 

That is, the sum of the base and filler metal power must be equal to the total power transmitted to 

the workpiece (�̇�), calculated as the product of the welding current i, the welding voltage V, and the 

arc efficiency factor 𝜂. 

The power delivered to the base metal is distributed according to a Gaussian function as in the 

double ellipsoid model. Eq. 3 depicts the power density function of the base metal. The terms x, y, 

and z are the point coordinates in the moving frame of reference O as shown in Figure 1b (local 

coordinates): the x axis is directed along the feed direction, the z axis is directed in the arc aiming 

direction outward from the molten pool, and the y axis is determined by the right hand rule. The 

local coordinates of a generic node depend on its global coordinates (X, Y, Z) and on the 

simulation time, namely on the toolpath. 
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(a)

(b) 
Figure 1: Heat source model used for WAAM simulation (a); Moving coordinate system used in the heat source definition 
(b). 

 

The terms af, ar, b, and c are the shape factors of the base metal distribution, i.e., the semi-axes of 

a double ellipsoidal surface as shown in Figure 1a. The subscripts f and r represent the front and 

the rear parts of the ellipsoids, respectively. If a point is located at a positive x coordinate, the af 

value will be used for the x semi-axis. By contrast, ar will be used for negative x values. The terms 

ff and fr are the distribution factors, giving the power repartition between the front and back sides of 

the ellipsoid. 

For the filler metal, the heat source model uses a constant power density distribution. As depicted 

in Eq. 3, the power density �̇�𝑤 is calculated by dividing the deposited metal power �̇�𝑤 by Vel, the 

volume of the elements lying inside a box-shaped control volume (Figure 1a), moving along the 

deposition path. The dimensions of such control volume ll, wl, and hl are related to the mesh size of 

the deposited material, as shown in Figure 1b. Further details on the adopted heat source model, 

including the control volume parameters, are provided in [22]. 

 

2.1.2 Material deposition modelling 

 

In every AM process, the workpiece is manufactured by progressive material addition. This 

material deposition process is simulated using specific techniques. This paper uses a technique 

described in the welding simulation literature [26], based on inactive element strategy [27]. In this 

technique, all the elements representing the workpiece are included from the beginning of the 

simulation, as shown in Figure 2a. The progressive addition of a material is simulated by modifying 

the value of its thermal conductivity: at the initial state, an extremely low value is assigned to the 
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thermal conductivity of the elements representing the weld layers, and then, it is increased to its 

actual value when the element temperature exceeds a threshold value. This technique is effective 

in simulating the material deposition because the low thermal conductivity of the inactive elements 

does not allow any heat transfer between the active and inactive elements, making the contribution 

of the former ones negligible to the thermal behavior of the base material. Moreover, the inactive 

elements experience a significant temperature increase only when they are directly heated by the 

heat source, making the activation sequence consistent with the actual deposition process. 

The presented technique is implemented in the FE solver using Eq. 5 to define the material thermal 

conductivity: 

 

𝜆(𝑇(𝜏)) = 𝛾(𝑇𝑚𝑎𝑥)𝜆𝑎𝑐𝑡(𝑇(𝜏)) + (1 − 𝛾(𝑇𝑚𝑎𝑥))𝜆𝑞𝑢𝑖𝑒𝑡 
Eq. 5 

 

where 𝜆 is the thermal conductivity, which is a function of the temperature T at the current 

simulation time 𝜏; 𝜆𝑎𝑐𝑡 and 𝜆𝑞𝑢𝑖𝑒𝑡 are the active and inactive values of the thermal conductivity; 𝛾 is 

the activation variable, which is a function of Tmax, i.e., the maximum temperature experienced by 

the element up to the current simulation time. The pattern of 𝛾(𝑇𝑚𝑎𝑥) is shown in Figure 2b: the 

activation is performed in a temperature range to avoid convergence issues in the FE simulation. 

 

(a) (b) 

 
Figure 2: Active and inactive elements on a sample workpiece (a) and the function used for the element activation (b). 

It must be pointed out that the element temperature is evaluated at its integration points; Eq. 5 is 

hence evaluated for every time step at every integration point of the deposited material elements. 

Therefore, the activation of an element is completed when 𝛾 is equal to 1 at all the integration 

points. 

 

2.2 Idle time calculation 

 

The FE simulation technique presented in section 2.1 is used to predict the thermal behavior of the 

workpiece during the WAAM process. This section depicts how the process model is used to 

calculate the idle times for the deposition of interlayers. 

 

The proposed approach consists of the following steps, which is repeated for the deposition of 

each layer of the component: 

 

 The deposition of the current layer is simulated without any idle time at the end of the 

calculation. 

 The final temperature field at the end of the simulation is prescribed as the initial condition 

to a twin FE model of the workpiece. Then, the natural cooling of the workpiece for a fixed 
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period of time is simulated, which is significantly higher than the time expected to meet the 

required interpass temperature constraint. 

 The temperature time history of a predetermined node, serving as a specific monitoring 

point for the current layer, is extracted from the cooling simulation results. Such data are 

analyzed, thereby calculating the idle time associated with the deposition of the current 

layer. 

 At this stage, the deposition of the next layer is simulated, prescribing an initial idle time 

equal to the calculated one. 

 

The following subsections provide a detailed description of the key aspects of the proposed 

technique: the control point positioning, the deposition and cooling simulation steps, and the idle 

time calculation. 

 

2.2.1 Control node positioning 

 

A control point is defined for each layer of the workpiece to monitor its cooling after the deposition 

and to calculate the required idle time to meet the target interpass temperature. In the simulation 

domain, the control points correspond to a set of FE nodes, located on the top surface of each 

layer at the end of its deposition path, i.e., the points of the deposition path where the idle time 

shall be introduced. Figure 3 shows this arrangement on a straight wall, which is used as the 

sample component. 

 

 
Figure 3: Control point location strategy. 

 

In this case, the deposition is carried out following an alternate strategy, i.e., the deposition end 

points of subsequent layers (circle marks) lying on the opposite ends of the wall, resulting in an 

alternate positioning of the control nodes. The selection of the end of each layer as the control 

point is a conservative strategy because it is the point that will experience the highest temperature 

after the deposition. Therefore, compared to other areas of the layer, it requires the highest idle 

time to achieve the target interpass temperature. 

 

2.2.2 Deposition and cooling simulation 
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In this paper, a specific idle time for each layer is calculated to fulfill the constant interpass 

temperature condition. The required cooling time is dependent on the amount of heat accumulated 

in the workpiece during the deposition and cooling phases of the former layers. Therefore, the idle 

time for the deposition of each layer cannot be identified separately: the calculation for a layer must 

consider the results of the former ones, which is achieved in this paper by using the simulation 

strategy outlined in Figure 4. 

 

 
Figure 4: FE simulation strategy used for the idle time calculation 

 

The technique is based on twin models, one for the heating (deposition) and one for the cooling 

simulation. The two models are identical in terms of mesh topology, material properties, and 

boundary conditions, and the only difference is the heat source, which is used only in the heating 

model. In the heating step, the deposition of the current layer is simulated without any idle time at 

the end of it. The end state of this simulation is used to define the initial conditions for the cooling 

step, i.e., the initial temperature field and the active/inactive state of the elements. The initial 

element activation state is prescribed by the initial value of the 𝛾(𝑇𝑚𝑎𝑥) variable. The cooling 

simulation is then started, reproducing the thermal behavior of the workpiece during the idle time at 

the end of the deposition of the current layer. To ensure that the control node of the current layer 

reaches the required interpass temperature, the cooling behavior must be simulated for a longer 
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time than the expected idle time. This is achieved by tuning the total simulation time for the specific 

workpiece and process parameters. It must be pointed out that this is not a time-consuming 

approach because a large time step can be used in the cooling phase.  

The results of the cooling simulation are used to calculate the idle time required for the current 

layer to reach the desired interpass temperature. The computed idle time is then used as input for 

the heating simulation of the new layer. This is achieved by including an initial idle time in the 

heating simulation of the generic layer k, corresponding to the value calculated for layer k-1. This 

strategy allows to consider the effect of the former idle times. 

The proposed idle time calculation technique was implemented using a MATLAB code to start the 

FE simulations, update the models, and calculate the idle times. The FE simulation can be 

implemented using any commercial FE code that is suitable to deal with nonlinear heat transfer 

analyses. In this paper, the commercial FE code LS-DYNA is used. The heat source model and the 

element activation techniques, described in section 2.1.1, are implemented using the 

*LOAD_HEAT_GENERATION and the *MAT_THERMAL_USER_DEFINED features, respectively 

[28]. 

 

2.2.3 Idle time calculation 

 

The idle time calculation procedure is outlined in Figure 5. 

 

 
Figure 5: Idle time calculation procedure. 

 

Let 𝑇𝑘
𝑐𝑛 be the time history of the control node temperature returned by the FE solver during the 

cooling simulation of the k-th layer. These data can be expressed as a continuous function of the 

simulation time (𝑡) by a piecewise linear interpolation of the discrete data. This step returns the 

function 𝑇𝑘
𝑐𝑛(𝑡). Let 𝑇𝑖𝑝 be the target interpass temperature. The goal is to identify the target 

simulation time tt, which fulfills the following equation: 

 

𝑇𝑘
𝑐𝑛(𝑡𝑡) − 𝑇𝑖𝑝 = 0 Eq. 6 

 

Eq. 6 can be solved using numerical techniques. This solution is directly used to calculate the idle 

time corresponding to the k-th layer, 𝜏𝑘
𝑑𝑤: 
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𝜏𝑘
𝑑𝑤 = 𝑡𝑡 − 𝑡0 

Eq. 7 

 

where the term t0 corresponds to the initial time value of the k-th layer cooling simulation. Hence, at 

the end of the calculation, an idle time value is associated with each layer. 

 

3. Verification of the proposed technique 

 

The proposed technique was applied on a test case component, and the idle times required for the 

manufacturing process were identified. The manufacturing process was then simulated using the 

calculated idle times. Simulation data were postprocessed to evaluate the trend of the molten pool 

size with the increase in the number of layers deposited, thus assessing the fulfillment of the 

activity goal. 

The test case was manufactured using a WAAM machine. A thermocouple was attached to the 

substrate of the component to acquire the temperature time history of a specific point during the 

process. These data were compared with those of FE simulation to show the accuracy of the 

modelling techniques used in this paper. After the test case was manufactured, its geometry was 

measured using a CMM and compared with the reference geometry, and the results showed that 

no significant collapses occurred with the use of the proposed idle time calculation scheme. 

 

3.1 Test case and experimental description 

 

The test case used in this paper is an airfoil. The schematic and dimensions of the component are 

shown in Figure 6a: the cross-section is constant throughout the chordal length, and the camber 

line geometry is defined according to the NACA 9403 designation. The deposition was carried out 

using a 0.8-mm wire made of ER70S-6, and a standard filler material was used for carbon steel 

welding. The airfoil was deposited on a block made of S235JR structural steel with low carbon 

content. The manufactured test case is shown in Figure 6b. 

 

(a) (b) 
Figure 6: The airfoil used as test case: dimensions and thermocouple arrangement (a); actual manufactured part 

 

The WAAM process was carried out using a commercial GMAW machine (AWELCO 250 

PULSEMIG), installed on a three-axis milling machine. The process parameters used for the 

deposition are listed in Table 1. 

 
Table 1: Process parameters used for the test case manufacturing. 

Current [A] Voltage [V] Heat input [W] Deposition Wire feed speed 

ACCEPTED M
ANUSCRIP

T



 
 

speed [mm/min] [m/min] 

80 18 1440 300 4.6 

 

A layer of about 1.5-mm height and 5.0-mm width was obtained using the presented parameters, 

thus requiring 41 layers to create the geometry. No preheating was applied to the substrate, 

starting the deposition at room temperature. A k-type thermocouple was used to measure the 

substrate temperature during the manufacturing process. The sensor was attached to the top 

surface of the substrate positioned as shown in Figure 6a. The thermocouple signal was logged 

using a National Instrument 9213 acquisition system at a sample rate of 10 Hz. After the deposition 

process, the workpiece was scanned using a Mitutoyo Euro Apex C776 CMM to acquire its 

geometry. 

 

3.2 FE model and idle time calculation 

 

The FE model of the test case was developed using 24543 hexahedral elements with a single 

integration point. The resulting FE model is shown in Figure 7. 

 

 
Figure 7: FE model of the test case. 

 

The FE simulations were carried out using the FE solver LS-DYNA, using a Crank-Nicolson time 

integration scheme with a variable time-stepping algorithm [28] that adapted the time step size to 

achieve a maximum temperature variation of 400 K per step. Temperature dependency was 

considered for both the thermal conductivity and the heat capacity using literature curves [29]. The 

thermal conductivity was artificially increased in the liquid range to capture the convective heat 

transfer in the molten pool [30]. The inactive value of the thermal conductivity was set as a fraction 

(1.0e-5) of its active state value, according to the recommendations of Michaleris [26]. The latent 

heat of fusion was considered for both the base and the deposited materials using the technique 

presented in [22,23]. The latent heat values together with the solidus and liquidus temperatures of 

both ER70S-6 and S235JR were obtained from the literature [31,32]. Both free convection and 

radiation were included in the FE model. The convective coefficients were calculated by 

nondimensional correlations commonly used in the heat transfer literature [33]: 9.94 W/m2K on the 

substrate vertical surfaces, 10.44 W/m2K on the substrate top surface, 5.22 W/m2K on the 

substrate bottom surface, and 7.8 W/m2K on the airfoil vertical surfaces. The far-field temperature 
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was set to 294 K, equal to the room temperature. For the radiation condition, the emissivity was set 

to 0.4, according to the literature data [34]. 

First, the FE model of the test case was used to calculate the interlayer idle times, prescribing a 

constant interpass temperature of 600 K [29]. The result of this calculation is shown in Figure 8a, 

where the idle times are presented as a function of index of the current layer. As expected, the 

proposed technique prescribes a significant increase in the idle time to achieve a constant 

interpass temperature on the top of the current layer, thus compensating the reduction of the 

conductive heat flux in the substrate direction. Besides, the idle time increase is not constant with 

the workpiece growth. The curve shows a sigmoidal trend with three distinct regions (Figure 8a) 

having different rates of idle time increase. Such pattern can occur considering the distance 

between the substrate and the molten pool. The vicinity region corresponds to the first layers, 

where the substrate is close to the molten pool. This creates a heat sink effect leading to a quick 

cooling. In this phase, the growth of the workpiece has a marginal effect on the conductive heat 

flux, resulting in the small variations of the idle time. However, the high substrate distance region 

corresponds to the last layers, where the heat sink effect of the substrate is significantly reduced. 

In this condition, the cooling problem approaches the one-dimensional behavior, where the 

magnitude of the conductive heat flux is roughly proportional to the overall workpiece height. 

Therefore, the conductive heat flux experiences a slight reduction for any additional layer, because 

of the lower value of the layer height than the workpiece height, resulting in a slight increase in the 

idle times. Considering these results, the central part of the curve is labeled as a transition region, 

in which the heat sink effect of the substrate on the cooling behavior is reduced, resulting in a high 

increase in the idle times. It must be pointed out that the extensions of the three regions are 

expected to be dependent on the prescribed interpass temperature, process parameters, and 

workpiece geometry. 

 

(a) (b) 
Figure 8: Results of the idle time calculation procedure: idle time values (a) and molten pool volume for each layer. 

 

After the calculation of the idle times, the manufacturing of the whole test case was simulated 

including the idle times to evaluate the effect on the molten pool size, quantified as volume of the 

elements above the solidus temperature [35]. The calculation was repeated for each step of the 

simulation results, and an average value was extracted for each layer. The result of this calculation 

is shown in Figure 8b. It is highlighted that the molten pool size is almost constant throughout all 

the layers. Indeed, except for the initial six layers, the maximum variation of the molten pool 

volume is below 15%. The initial steep growth of the molten pool is related both to the absence of 

preheating and to the heat sink effect of the substrate. This is consistent with the trend of Figure 

8a, which shows that the upper bound of the substrate vicinity region is in correspondence of the 

sixth layer. It is expected that preheating of the workpiece would result in a slighter variation in the 

molten pool volume in the first layers. 

 

3.3 Experimental results 
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This section presents and discusses the results of both thermocouple and CMM measurements. 

The goal of the thermocouple measurements was to highlight the accuracy of the FE simulation 

technique. Figure 9 shows the comparison of the thermocouple data with the temperature time 

history of a node located in the same position. The thermal history of the first 17 layers was 

corrupted by excessive measurement noise. Therefore, in Figure 9, we show the 

numerical-experimental comparison starting from the 18th layer. However, this does not affect the 

relevance of the comparison because as already mentioned, the thermal history of each layer is 

considerably affected by the former ones. Hence, a good correlation of the simulated and 

measured data in the top layers highlights a good correlation over the whole manufacturing cycle. 

 

 
Figure 9: Comparison of simulation and thermocouple data. 

 

Figure 9 shows that the simulation data are in good agreement with the measured ones in terms of 

both overall trend and specific values. This is a relevant result because the proposed idle time 

calculation is effective only if the FE model accurately predicts the workpiece temperature field; 

otherwise, the interpass temperature constraint might not be fulfilled in the actual process. 

Moreover, this result supports the reliability of the molten pool size pattern shown in Figure 8b, 

which was obtained from the simulation data. 

The goal of the CMM measurements was to show that the proposed technique allowed to avoid 

major part collapses without performing trial-and-error operations to select the idle times. The 

functional surfaces of the airfoil, namely the pressure and the suction side, were scanned by the 

CMM and compared with the target surfaces, as shown in Figure 10. 
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Figure 10: Comparison of the measured blade surface and the reference CAD model. 

 
The average deviation from the target surface was 0.65 mm for the pressure side and 0.39 mm for 
the suction side. It must be pointed out that the measured surfaces were affected by a significant 
waviness (Figure 6b) typical of the WAAM process [36]. This result confirms that no significant 
collapse occurred during the deposition process. However, it is worthwhile to highlight that despite 
the effectiveness of the proposed technique, an excessive interpass temperature could still 
collapse the workpiece. Therefore, it is important to refer to the literature that provides the 
interpass temperature values for various materials. 
 
4. Conclusions 
 
This paper presents a novel approach to calculate the interlayer idle times required for WAAM 
operations. The proposed technique uses a FE model to simulate the thermal behavior of the 
workpiece during the process. This enables the calculation of suitable idle times. The proposed 
algorithm calculates an idle time value specific for each layer allowing to meet the condition of 
constant interpass temperature. Such parameter is measured by observing the top surface of the 
current layer. This allows to limit the increase in the molten pool size during the deposition process 
responsible for component collapses and nonhomogeneous mechanical properties along the 
building direction. 
The effectiveness of the proposed technique was tested on a test case component. The idle times 
were calculated according to the proposed technique, which can be used in the manufacturing 
process. The deposition was then simulated using the calculated idle time. An analysis of the 
simulation results confirms that in the selected test case, the proposed technique effectively 
ensures a constant molten pool size. The test case, using the calculated idle times, was monitored 
using a thermocouple installed on the substrate. The measured data were compared with the 
simulation time histories, thereby proving the accuracy of the FE model in predicting the thermal 
behavior of the WAAM workpiece and, hence, in calculating suitable idle times. Finally, the 
geometry of the manufactured test case was acquired and compared with the reference CAD 
model. This comparison confirmed that no major collapses occurred by the use of the proposed 
technique, because the deviation between the reference and measured geometries was within the 
range of the component surface waviness. 
In conclusion, the proposed technique achieves two significant goals: it provides a constant 
interpass temperature and ensures a constant molten pool size. Moreover, the use of an FE model 
avoids time-consuming trial-and-error procedures to select the idle times, thus providing a 
simulation tool to investigate the effect of process parameters and toolpath on the idle times. This 
can contribute to increase the performance of the WAAM process both in terms of quality and 
productivity. 
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