
Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

On primitives for compensation handling as adaptable

processes

Jovana Dedeić a,∗, Jovanka Pantović a,∗, Jorge A. Pérez b,c

a University of Novi Sad, Serbia
b University of Groningen, the Netherlands
c CWI, Amsterdam, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 April 2020
Received in revised form 13 March 2021
Accepted 17 March 2021
Available online 23 March 2021

Keywords:
Concurrency
Process calculi
Relative expressiveness
Compensation handling
Dynamic update

Mechanisms for compensation handling and dynamic update are increasingly relevant in the
specification of reliable communicating systems. Compensations and updates are intuitively
similar: both specify how the behavior of a concurrent system changes at runtime in
response to an exceptional event. However, calculi for concurrency with compensations
and updates are technically quite different.
We compare calculi for concurrency with compensation handling and dynamic update
from the standpoint of their relative expressiveness. We develop two encodings of a
process calculus with compensation handling into a calculus of adaptable processes. These
encodings differ in the target language considered: the first considers adaptable processes
with subjective updates in which, intuitively, a process reconfigures itself; the second
considers objective updates in which a process is reconfigured by a process in its context.
Our main discovery is that subjective updates are more efficient than objective ones
in encoding primitives for compensation handling: the first encoding requires less
computational steps than the second one to mimic a single computation step in the source
language of compensable processes. Our encodings satisfy strong correctness criteria; they
shed light on the intricate semantics of compensation handling.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Many software applications are based on long-running transactions (LRTs). Frequently found in service-oriented sys-
tems [11], LRTs are computing activities which extend in time and may involve distributed, loosely coupled resources.
These features sharply distinguish LRTs from traditional database-like transactions. One particularly delicate aspect of LRTs
is managing (partial) failures: mechanisms for detecting failures and bringing the LRT back to a consistent state need to be
explicitly programmed. Because ensuring the correctness of such mechanisms is error prone, specialized constructs, such as
exceptions and compensations, have been put forward to offer direct programming support for LRTs. For instance, in Java we
find the construct try P catch(e) Q , where Q is in charge of managing exceptions e raised inside P ; in WS-BPEL [1] we find
advanced mechanisms exploiting fault, termination, and compensation handlers to handle errors. In this paper, our focus
is in compensation mechanisms: as their name suggests, they are meant to compensate the fact that an LRT has failed or
has been canceled. Upon receiving a failure signal, a compensation mechanism is expected to install and activate alternative
behaviors for recovering system consistency. Such a compensation behavior may be different from the LRT’s initial behavior.

* Corresponding authors.
E-mail address: radenovicj@uns.ac.rs (J. Dedeić).
https://doi.org/10.1016/j.jlamp.2021.100675
2352-2208/© 2021 Elsevier Inc. All rights reserved.

https://core.ac.uk/display/427150486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.jlamp.2021.100675
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2021.100675&domain=pdf
mailto:radenovicj@uns.ac.rs
https://doi.org/10.1016/j.jlamp.2021.100675

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
A variety of calculi for concurrency with constructs for compensation handling has been proposed (see, e.g. [2,5,17,6,11]).
Building upon process calculi such as CCS [18], CSP [14], and the π -calculus [19], they capture different forms of error
recovery and offer reasoning techniques (e.g., behavioral equivalences) on communicating processes with compensation
constructs. The relationships between the different proposals are not clear, and there has been limited work aimed to
formally comparing the expressiveness of the proposed mechanisms—relevant studies in this direction include those in [6,
4,15,16]. In particular, Lanese et al. [15] develop a formal comparison of different approaches to LRTs in a concurrent and
mobile setting. They consider a process language on top of which different primitives for error handling, distilled from the
vast literature on the subject, are uniformly considered. This approach naturally leads to clear comparisons.

More in details, Lanese et al. defined a core calculus of compensable processes, which extends the π -calculus with
transactions t[P,Q] (where processes P and Q represent default and compensation activities, respectively), protected blocks
〈Q 〉, and compensation updates inst�λX .Q �.P , which reconfigure a compensation activity. One key merit of their calculus
is that different proposals arise as instances. To this end, compensations may admit static or dynamic recovery (depending
on whether compensation updates are allowed) and the response to failures can be specified via preserving, discarding, and
aborting semantics. The process language in [15] thus leads to six distinct calculi with compensation primitives.

Related to compensation handling, but on a somewhat different vein, a process calculus of adaptable processes was pro-
posed by Bravetti et al. [3], with the aim of specifying dynamic update in communicating systems. Adaptable processes
specify forms of dynamic reconfiguration that are triggered by exceptional events, not necessarily catastrophic. A simple
example is the reconfiguration of specific units of a robot swarm, which is usually hard to predict and entails modifying
the device’s behavior; still, it is certainly not a failure. Adaptable processes can be deployed in locations, which serve as
delimiters for dynamic updates. A process P located at l, denoted l[P], can be reconfigured by an update prefix l{(X).Q }.R ,
where Q denotes an adaptation routine for l, parameterized by variable X .

Using located processes and update prefixes, dynamic update in [3] is realized by the following reduction rule, in which
C1 and C2 denote contexts of arbitrarily nested locations:

C1
[
l[P]] | C2

[
l{(X).Q }.R] −→ C1

[
Q {P/X}] | C2

[
R
]

(1)

We call this an objective update: a located process is reconfigured by an update prefix at a different context. Indeed, the
update prefix l{(X).Q } moves from C2 to C1, and the reconfigured behavior Q {P/X} is left in C1. Notice that X may occur
zero or many times in Q ; if Q does not contain X then the current behavior P will be erased as a result of the update.
This way, dynamic update is a form of process mobility, implemented using higher-order process communication as found in
languages such as, e.g., the higher-order π -calculus [22], the Kell calculus [23], and Homer [13].

An alternative to objective update is subjective update, in which process reconfiguration flows in the opposite direction:
it is the located process the one to move to a (remote) context enclosing an update prefix, as expressed by the following
reduction rule:

C1
[
l[P] | R1

] | C2
[
l{(X).Q }.R] −→ C1

[
0 | R1

] | C2
[

Q {P/X} | R
]

(2)

As objective update, subjective update relies on process mobility; however, the direction of movement is different: above, P
moves from C1 to C2, and the reconfigured behavior Q {P/X} is left in C2, not in C1. Thus, in a subjective update the located
process “reconfigures itself”, which makes for a more autonomous semantics for adaptation than objective updates.1

Example 1.1. We contrast objective and subjective update by means of an example, adapted from [3]. Consider an interrupt
operator that starts executing process P but may abandon its execution to execute Q instead; once Q emits a termination
signal tQ , the operator returns to execute what is left of P . Using adaptable processes, this kind of behavior can be expressed
as follows:

S ys = l1
[
l[P] | R1

] | l2
[
l{(X).Q | tQ .X}.R2

]
where l, l1, and l2 are different locations and name tQ is only known to Q . If P evolves into P ′ right before being inter-
rupted, under a semantics with objective update we have

S ys −→∗ l1
[
l[P ′] | R1

] | l2
[
l{(X).Q | tQ .X}.R2

]
−→ l1

[
Q | tQ .P ′ | R1

] | l2
[

R2
]

−→∗ l1
[

P ′ | R1
] | l2

[
R2

]
This way, P and its derivative P ′ reside at location l1. Notice that executing S ys under a semantics with subjective update
would yield a different behavior, because P ′ (and Q) would be wrongly moved to l2:

1 We use adjectives ‘subjective’ and ‘objective’ for updates following the distinction between subjective and objective mobility, as in calculi such as
Ambients [7] and Seal [8]. As explained in [8], Ambients use subjective mobility (an agent moves itself), while Seal uses objective mobility (an agent is
moved by its context).
2

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
S ys −→∗ l1
[
l[P ′] | R1

] | l2
[
l{(X).Q | tQ .X}.R2

]
−→ l1

[
R1

] | l2
[

Q | tQ .P ′ | R2
]

−→∗ l1
[

R1
] | l2

[
P ′ | R2

]
This shows that to achieve the intended interrupt behavior in a subjective setting, S ys should be modified in order to
eventually bring process P ′ back to l1. The following variation of S ys achieves this:

S ys′ = l1
[
l[P] | l′{(X).X}.R1

] | l2
[
l{(X).l′[Q | tQ .X]}.R2

]
where we use l′ as an auxiliary location that “pulls back” P ′ from l2 into l1.

The aim of this paper is to compare process calculi with compensation handling (as formalized in [15]) and with dynamic
update (as formalized in [3]), from the point of view of relative expressiveness. There are good reasons for focusing on
compensation handling as in [15] and on dynamic update as in [3]. On the one hand, the calculus of compensable processes
in [15] is expressive enough to capture several different languages proposed in the literature; the analyses of expressiveness
in [15] are exhaustive and bring uniformity to the study of formal models for LTRs. Because of its expressiveness, this
calculus provides an appropriate starting point for further investigations. On the other hand, as we have seen, the calculus
of adaptable processes in [3] is a simple process model of dynamic adaptation, based on a few process constructs and
endowed with a clean operational (reduction) semantics, which supports both objective and subjective updates. (In contrast,
as we will see, the calculus of compensable processes relies on an intricate Labeled Transition System.) As such, adaptable
processes provide a flexible framework to elucidate the underpinnings of compensation handling, from a fresh perspective.

Contributions. In this paper, we present the following contributions:

1. We develop two translations of a core calculus with compensation handling with discarding semantics [15] into adapt-
able processes [3]: while the first translation relies on a calculus with objective updates, the second exploits subjective
updates.

2. We establish that the two translations are valid encodings [12], i.e., they satisfy structural properties (compositionality
and name invariance) and semantic properties (operational correspondence, divergence reflection, and success sensi-
tiveness) that bear witness to their robustness.

3. We exploit the correctness properties of our two encodings to clearly distinguish between subjective and objective
updates in calculi for concurrency. We introduce an encodability criterion called efficiency, which allows us to formally
state that subjective updates are better suited to encode compensation handling than objective updates, because they
induce tighter operational correspondences.

Points (1) and (3) deserve further explanations. Concerning (3), our encoding into adaptable processes with objective
updates reveals a limitation: in representing the collection of protected blocks scattered within nested transactions, objective
updates leave behind processes in the “wrong” location. The situation is reminiscent of the differences shown in Example 1.1
for the interrupt behavior. To remedy this, the encoding uses additional synchronizations to move processes to the right
locations. This reflects prominently in the cost of the encoding, i.e., the number of target computation steps required to
mimic a source computation step (this number is spelled out precisely by our operational correspondence results). The
encoding into the calculus with subjective updates does not require these additional synchronizations, and so it is more
efficient than the encoding that uses objective update.

Concerning (1), while we focus on compensable processes with discarding semantics, we also consider the cases in
which the source calculus uses preserving semantics, aborting semantics, and dynamic compensations. § 8 discusses how
our encoding can account for these three variations. In all cases, the target language uses subjective updates, which, as just
discussed, are more efficient than objective update.

Outline. The paper is organized as follows. In § 2 we informally present the syntax and semantics of the source and target
calculi; § 3 gives a formal introduction. § 4 introduces the correctness criteria for encodings. Then, we present our two
encodings and prove them correct: § 5 considers a target calculus with subjective update and § 6 considers the case with
objective update. § 7 compares the two encodings by formalizing the efficiency claim. § 8 discusses additional encodings,
involving a source calculus with preserving and aborting semantics, and with dynamic update. § 9 discusses related works
and § 10 collects some concluding remarks. The appendices collect omitted proofs for our technical results.

Origin of the results. This paper distills, improves, and collects preliminary results from our papers [9] and [10]. While in [9]
we studied encodings into adaptable processes with objective updates, in [10] we studied encodings into adaptable processes
with subjective updates, and compared them against those in [9]. A main difference between [9,10] and the current paper
is that here we concentrate on a specific source calculus, namely the calculus in [15] with static recovery and discarding
semantics. Indeed, the developments in [9,10] consider also source calculi with dynamic recovery and/or preserving and
3

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
aborting semantics. The calculus with static recovery and discarding semantics arguably defines the simplest setting for both
encodings, one in which the key differences between compensable and adaptable processes can be more sharply presented.
Also, this focus allows us to have a concise presentation. As we discuss in § 8, the (efficient) encoding in § 5 extends to
source calculi with the semantics we considered in [9] and [10].

2. Compensable and adaptable processes, by example

We give an intuitive account of the core calculus with primitives for compensation handling (as presented by Lanese et
al. [15,16]) and the calculus of adaptable processes (introduced by Bravetti et al. [3]). In both cases, we illustrate their most
salient features by means of a simple example.

2.1. Compensable processes

The process language with compensations that we consider is based on the calculus in [16] (which is, in turn, a variant
of the language in [15]). The languages in [16,15] were introduced as extensions of the π -calculus with primitives for static
and dynamic recovery. We consider a variant with static recovery and without name mobility; this allows us to focus on the
fundamental aspects of compensations. The languages in [16,15] feature two distinguishing constructs:

1. Transactions t[P,Q], where t is a name and P , Q are processes;
2. Protected blocks 〈Q 〉, where Q is a process.

A transaction t[P,Q] consists of a default activity P and a compensation activity Q . Transactions can be nested: process P in
t[P,Q] may contain other transactions. Also, they can be canceled: process t[P,Q] behaves as P until an error notification
(failure signal) arrives along name t . Error notifications are output messages coming from inside or outside the transaction;
to illustrate this, consider the following transitions:

t[P,Q] | t.R
τ−−→ Q | R t[t.P1 | P2,Q] τ−−→ Q (3)

The left (resp. right) transition shows how t can be canceled by an external (resp. internal) signal. Failure discards the
default behavior; the compensation activity is executed instead. In both cases, the default activity is discarded entirely. This
may not be desirable in all cases; after a compensation is enabled, we may like to preserve (some of) the behavior in the
default activity. To this end, one can use protected blocks: processes Q and 〈Q 〉 have the same behavior, but 〈Q 〉 is not
affected by failure signals. This way, the transition

t2[P2,Q 2] | t2
τ−−→ 〈Q 2〉,

says that the compensation behavior Q 2 will be immune to failures. Consider now process

P = t1
[
t2[P2,Q 2] | t2.R1,Q 1

]
,

in which transaction t2 occurs nested inside t1 and P2 does not contain protected blocks. The labeled transition system
(LTS) in [16,15] refines (3) by providing ways to (partially) preserve behavior after a compensation step. This is realized by
the extraction function on processes, denoted extr(·). For process P , the semantics in [16,15] decree:

t1
[
t2[P2,Q 2] | t2.R1,Q 1

] τ−−→ t1
[〈Q 2〉 | extr(P2) | R1,Q 1

]
.

There are different choices for this extraction function: in the discarding semantics that we consider here, only top-level
protected blocks are preserved (cf. Fig. 1); hence, in the example above, extr(P2) = 0. The languages in [16,15] include
extraction functions for preserving and aborting semantics that would preserve also (top-level) transactions in P2. To further
illustrate the extraction function, consider the process:

P ′ = t
[
t1[P1,Q 1] | t2[〈P2〉,Q 2] | 〈P3〉,Q 5

]
. (4)

We would have t | P ′ τ−−→ 〈P3〉 | 〈Q 5〉. Thus, the discarding semantics only concerns the compensation activity for transaction
t and the protected block 〈P3〉; the protected block 〈P2〉, nested inside t2, is discarded.

With these intuitions in place, we illustrate compensable processes by means of an example that we will use throughout
the paper:

Example 2.1 (Hotel booking scenario). Consider a simple hotel booking scenario in which a hotel and a client interact to book
and pay a room, and to exchange an invoice. This scenario may be represented using compensable processes as follows
(below we omit trailing 0s):
4

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
Reservation
def= Hotel | Client

Client
def= book.pay.(invoice + t.ref und)

Hotel
def= t[book.pay.invoice,ref und]

Here we represent the hotel’s behavior as a transaction t that allows clients to book a room and pay for it. If the client is
satisfied with the reservation, then the hotel will send her an invoice. Otherwise, the client may cancel the transaction; in
that case, hotel offers the client a refund. Suppose that the client decides to cancel his reservation; as we will see, there are
four transition steps for process Reservation:

Reservation
τ−→ t[pay.invoice,ref und] | pay.(invoice + t.ref und)
τ−→ t[invoice,ref und] | invoice + t.ref und

τ−→ 〈ref und〉 | ref und
τ−→ 〈0〉.

2.2. Adaptable processes

The calculus of adaptable processes was introduced as a variant of Milner’s CCS [18] (without restriction and relabeling),
extended with the following two constructs, aimed at representing the dynamic reconfiguration (or update) of communi-
cating processes:

1. A located process, denoted l[P], represents a process P which resides in a location called l. Locations can be arbitrarily
nested, which allows to organize process descriptions into meaningful hierarchical structures.

2. Update prefixes specify an adaptation mechanism for processes at location l. We write l〈 〈(X).Q 〉 〉 and l{(X).Q } to denote
subjective and objective update prefixes; in both cases, X is a process variable that occurs zero or more times in Q .

This way, in the calculus of adaptable processes the update of a (located) process is given the same status as point-to-point
communication. That is, an update prefix for location l can interact with a located process at l to update its current behavior.
Depending on the kind of prefix (objective or subjective), this interaction is realized by a reduction rule ((1) or (2), see also
below).

We illustrate adaptable processes by revisiting the example above:

Example 2.2. Consider again the hotel booking scenario in Example 2.1, this time expressed using the calculus of adaptable
processes (below we omit trailing 0s):

Reservation
def= Hotel | Client

Client
def= book.pay.(t.ref und + invoice)

Hotel
def= t[book.pay.invoice] | t.t〈〈(Y).0〉〉 | pt[ref und]

We use CCS processes with the located processes and (subjective) update prefixes. The client’s behavior involves sending
requests for booking and paying for a room, which are followed by either the reception of an invoice or an output on t
signaling the end of the transaction and the request for a refund. The expected behavior of the hotel is located at location
t: the hotel allows the client to book a room and pay for it; if the client is satisfied with the reservation, the hotel will
send him/her an invoice. The hotel specification includes also (i) a subjective update prefix t〈 〈(Y).0〉 〉 (in the same way,
can be used objective update t{(Y).0}), which deletes the location t with its content if the client is not satisfied with the
reservation, and (ii) a simple refund procedure located at pt , which handles the interaction with the client in that scenario.

If the client decides to cancel his reservation, the reduction steps for process Reservation would be as follows:

Reservation −→ t[pay.invoice] | t.t〈〈(Y).0〉〉 | pt[ref und] | pay.(t.ref und + invoice)

−→ t[invoice] | t.t〈〈(Y).0〉〉 | pt[ref und] | t.ref und + invoice

−→ t[invoice] | t〈〈(Y).0〉〉 | pt[ref und] | ref und −→ pt[ref und] | ref und −→ pt[0].

In this example we could have used objective update t{(Y).0} instead of subjective update t〈 〈(Y).0〉 〉; with objective
update, the behavior of process Reservation is quite similar. A detailed derivation and explanation for this scenario will be
provided later on, once we have formally defined our translations.

3. The calculi

We now introduce formally compensable processes (§ 3.1) and adaptable processes (§ 3.3). To focus on their essentials,
both calculi are defined as extensions of CCS [18] (no name passing is considered). In § 3.2 we identify a class of well-formed
compensable processes, useful in our developments.
5

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
extr(t[P,Q]) = 0 extr(〈P 〉) = 〈P 〉 extr(P | Q) = extr(P) | extr(Q)

extr((νx)P) = (νx)extr(P) extr(0) = extr(π.P) = 0 extr(!π.P) = 0

Fig. 1. Extraction function.

We start by defining some relevant base sets for names.

Definition 3.1 (Base sets). We assume the following countable sets of names:

• Nt is a finite set of transaction names, ranged over by t, t′, s, s′, . . ., also used as error notification names;
• Nl is a set of location names, ranged over by l, l′, t, t′, s, s′, . . ., also used as input names;
• Ns is the set that collects all other (input/output) names, ranged over by a, b, c,

For compensable processes, we shall use the set Nc =Nt ∪Ns; for adaptable processes, we shall use the set Na =Nl ∪Ns .
Some assumptions on these sets are in order. First, Nl ∩ Ns = ∅ and Nt ∩ Ns = ∅. Also, Nt ⊆ Nl: our encoding will map
each transaction into a process residing at a location with the same name.

Finally, we shall use x, y, w, x′, y′, w ′, . . . to denote elements of the three sets when there is no need to distinguish
them. For adaptable processes, we shall use X, Y , Z , . . . to denote process variables.

3.1. Compensable processes

Syntax. We introduce the calculus of compensable processes (with discarding semantics). It considers prefixes π and processes
P , Q , . . . defined as:

π ::= a | x

P , Q ::= 0 | π.P | !π.P | (νx)P | P | Q | t[P,Q] | 〈Q 〉
Prefixes π include input actions (a), output actions (a) and error notifications (t). Processes for inaction (0), action prefix
(π.P), guarded replication (!π.P), restriction ((νx)P) and parallel composition (P | Q) are standard. Protected blocks 〈Q 〉
and transactions t[P,Q] have already been motivated. Name x is bound in (νx)P . In our encodability results, we shall write
C to denote the calculus of compensable processes.

Operational semantics. Following [15,16], the semantics of compensable processes is given in terms of a Labeled Transition
System (LTS). Ranged over by α, α′ , the set of labels includes a, a, t and τ . As in CCS, a denotes an input action, a denotes
an output action, t denotes an error notification and τ denotes synchronization (internal action). As explained in § 2, this
LTS is parametric in an extraction function, which is defined in Fig. 1 and realizes the intended discarding semantics.

Error notifications can be internal or external to the transaction: if the error notification is generated from the default
activity then we call it internal; otherwise, the error notification is external. Fig. 2 gives the rules of the LTS; we comment
briefly on each of them:

• Axioms (L-In) and (L-Out) execute input and output prefixes, respectively.
• Rule (L-Rep) deals with guarded replication.
• Rule (L-Par1) allows one parallel component to progress independently.
• Rule (L-Res) is the standard rule for restriction. A transition of process P determines a transition of process (νx)P ,

where the side condition provides that the restricted name x does not occur inside α.
• Rule (L-Comm1) defines communication on x.
• Rule (L-Block) specifies that protected blocks are transparent units of behavior.
• Rule (L-Rec-Out) allows an external process to abort a transaction via an output action t . The resulting process contains

two parts: the first is obtained from the default activity of the transaction via the extraction function (cf. Fig. 1); the
second corresponds to the compensation activity, executed in a protected block.

• Rule (L-Scope-Out) allows the default activity of a transaction to progress.
• Rule (L-Rec-In) handles failure when the error notification is internal to the transaction.

It is convenient to define structural congruence (≡) and evaluation contexts also for compensable processes.

Definition 3.2 (Structural congruence). Structural congruence is the smallest congruence relation on processes that is gener-
ated by the following rules:
6

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(L-In)

a.P
a−→ P

(L-Out)

x.P
x−→ P

(L-Rep)

π.P
α−→ P ′

!π.P
α−→ P ′ | !π.P

(L-Par1)

P
α−→ P ′

P | Q
α−→ P ′ | Q

(L-Res)

P
α−→ P ′ α /∈ {x, x}

(νx)P
α−→ (νx)P ′

(L-Comm1)

P
x−→ P ′ Q

x−→ Q ′

P | Q
τ−→ P ′ | Q ′

(L-Block)

P
α−→ P ′

〈P 〉 α−→ 〈P ′〉
(L-Rec-Out)

t[P,Q] t−→ extr(P) | 〈Q 〉

(L-Scope-Out)

P
α−→ P ′ α /∈ {t, t}

t[P,Q] α−→ t[P ′,Q]

(L-Rec-In)

P
t−→ P ′

t[P,Q] τ−→ extr(P ′) | 〈Q 〉
Fig. 2. LTS for compensable processes. The symmetric counterparts of (L-Par1) and (L-Comm1) have been omitted.

P | Q ≡ Q | P (νx)0 ≡ 0
P | (Q | R) ≡ (P | Q) | R (νx)(ν y)P ≡ (ν y)(νx)P
P | 0 ≡ P Q | (νx)P ≡ (νx)(P | Q) if x /∈ fn(Q)

!π.P ≡ π.P | !π.P t[(νx)P,Q] ≡ (νx)t[P,Q] if t �= x, x /∈ fn(Q)

P ≡ Q if P ≡α Q 〈(νx)P 〉 ≡ (νx)〈P 〉

The first column in Definition 3.2 contains standard rules: commutativity, associativity, and neutral element for parallel
composition. We rely on usual notions of α-conversion (noted ≡α). The second column contains garbage collection of
useless restrictions, swapping of restrictions, and scope extrusion for parallel composition, transaction scope and protected
blocks.

Definition 3.3 (Evaluation contexts). The syntax of contexts in compensable processes is given by the following grammar:

C[•] ::= [•] | 〈C[•]〉 | t[C[•],P] | C[•] | P | (νx)C[•],
where P is a compensable process.

We write C[Q] to denote the process obtained by replacing the hole [•] in context C[•] with Q .

The following proposition is key to our operational correspondence statements.

Proposition 3.1. Let P be a compensable process. If P τ−→ P ′ then one of the following holds:

(a) P ≡ E[C[a.P1] | D[a.P2]] and P ′ ≡ E[C[P1] | D[P2]],
(b) P ≡ E[C[t[P1,Q]] | D[t.P2]] and P ′ ≡ E[C[extr(P1) | 〈Q 〉] | D[P2]],
(c) P ≡ C[t[D[t.P1],Q]] and P ′ ≡ C[extr(D[P1]) | 〈Q 〉],

for some contexts C, D, E, processes P1, P2, Q and names a, t.

Proof. See § A.1 at page 37. �
Remark 3.2 (Reductions). It is convenient to define a reduction semantics for compensable processes. We do so by exploiting
the LTS just introduced: we shall write P −→ P ′ whenever P

τ−−→ P ′′ and P ′′ ≡ P ′ , for some P ′′ . As customary, we write
−→∗ to denote the reflexive and transitive closure of −→ .

3.2. Well-formed compensable processes

We shall focus on well-formed compensable processes: a class of processes that disallows certain non-deterministic inter-
actions that involve nested transaction and error notification names. Concise examples of processes that are not well-formed
are the following:

P = t1
[
a | t2[b,b̄],ā

] | t1 | t2 × P1 = t1[a,b] | t2[t1,d] | t2 × P2 = t1[t2,a] | t2[t1,b] × (5)

Processes P , P1 and P2 feature concurrent error notifications (on t1 and t2), which induce a form of non-determinism that
is hard to capture properly in the (lower level) representation that we shall give in terms of adaptable processes. Indeed,
P features an interference between the failure of t1 and t2; it is hard to imagine patterns where this kind of interfering
concurrency may come in handy. From the same reason, we will assume that all transaction names in a well-formed
process are different. In contrast, we would like to consider as well-formed the following processes (where t1 �= t2):
7

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
P ′ = t1
[
a | t2[b,b̄],ā

] | t2.t1 � P ′′ = t1[a,ā] | t2[b,b̄] | t1 | t2 � (6)

In what follows, we formally introduce well-formed compensable processes. We require some notations: (a) sets of pairs
�, � ⊆Nt ×Nt ; (b) sets γ , δ ∈Nt ; and (c) boolean p ∈ {�, ⊥}. These elements have the following reading:

- � is the set of (potential) pairs of parallel failure signals in P ;
- � is the set of (potential) pairs of nested transaction names in P (with form (parent, child));
- γ is the set of failure signals in P ;
- δ is the set of top-level transactions in P ;
- p is true if and only if P contains protected blocks.

This way, the well-formedness predicate, denoted �; � |−−−−
γ ;δ;p

P , is inductively defined in Fig. 3. We write P(P) to denote
the parameters �, �, γ , and δ associated to P , i.e., P(P) = (�, �, γ , δ).

We briefly comment on the rules in Fig. 3:

• Rule (W-Nil) states that the inactive process has neither parallel failure signal nor nested transactions; it also does not
contain protected blocks.

• Rules (W-Out1), (W-Out2), and (W-In) enforce that protected blocks or transactions do not appear behind prefixes (i.e.,
p =⊥, δ = ∅). Rule (W-Out1) says that if the name of the prefix is the failure signal then it will be collected by γ .
Rule (W-Out2) says that if the name of the prefix is not the failure signal then the set of the failure signals will be as
in the process that appears after the prefix. For example, by (W-Nil) and two successive applications of (W-Out1), we
can infer ∅; ∅ |−−−−−−−−−{t1,t2};∅;⊥ t2.t1.

• Rule (W-Res) says that if P satisfies the predicate for some parameters, then (νx)P satisfies the predicate with the
same parameters.

• Rule (W-Block) specifies that if P satisfies the predicate for some parameters, then 〈P 〉 satisfies the predicate with the
same �, �, γ and δ. The fifth parameter for 〈P 〉 specifies that it contains protected blocks (p = � in the conclusion).
This way, for example, we have ∅; ∅ |−−−−−−−−−{t1,t2};∅;� 〈t2.t1〉.

Rules (W-Rep), (W-Trans), and (W-Par) rely on the following auxiliary notations. First, given sets γ1, γ2, δ and a name t ,
we introduce the following sets:

γ1 × γ2 = {(t′, t′′) : t′ ∈ γ1 ∧ t′′ ∈ γ2} {t} × δ = {(t, t′) : t′ ∈ δ}. (7)

Also, we write �s and �t to denote the symmetric closure of � and the transitive closure of �, respectively. We will use,
respectively the following functions ft and f for conditions in Rules (W-Trans) and (W-Par):

ft(P(P),P(Q)) = (�1 ∪ �2 ∪ (γ1 × γ2),�1 ∪ �2 ∪ ({t} × (δ1 ∪ δ2 ∪ γ1 ∪ γ2))) (8)

f (P(P),P(Q)) = (�1 ∪ �2 ∪ (γ1 × γ2),�1 ∪ �2) (9)

where P(P) = (�1, �1, γ1, δ1) and P(Q) = (�2, �2, γ2, δ2).
We may now discuss Rules (W-Rep), (W-Trans), and (W-Par):

• Rule (W-Rep) says that the set of pairs of parallel failure signals in !π.P is γ × γ , where γ is the set of failure signals
in π.P . This is directly related to the transition rule (L-Rep) in Fig. 2. All other parameters of the predicate satisfied by
!π.P are the same as for π.P .
For example, we can derive {t1, t2} × {t1, t2}; ∅ |−−−−−−−−−{t1,t2};∅;⊥ ! t2.t1.

• Rule (W-Trans) specifies the well-formed conditions for t[P,Q]. First, δ = {t}. The set of pairs of parallel failure sig-
nals is the union of the respective sets for P and Q and the set whose elements are pairs of failure signals; in
the pair, one element belongs to the set of failure signals of P and the second element is from the set of fail-
ure signals of Q . This extension with γ1 × γ2 is necessary for t[P,Q], because P may contain protected blocks
which will be composed in parallel with 〈Q 〉 in case of an error. The set of pairs of nested transactions is ob-
tained from those for P and Q , also considering further pairs as specified by {t} × (δ1 ∪ δ2 ∪ γ1 ∪ γ2) (cf. (7)).
The rule also enforces that the sets of parallel failure signals and nested transaction names in the parallel composi-
tion are disjoint (i.e., (�1 ∪ �2 ∪ (γ1 × γ2))

s ∩ (�1 ∪ �2 ∪ ({t} × (δ1 ∪ δ2 ∪ γ1 ∪ γ2)))
t = ∅). For example, we can derive

∅; {(t1, t2)} |−−−−−−−−∅;{t1};⊥ t1[a | t2[b,b̄],ā].
• Rule (W-Par) specifies the cases in which P | Q satisfies the predicate provided that P and Q individually satisfy it.

The set of pairs of parallel failure signals is obtained as in Rule (W-Trans). The set of pairs of nested transactions is
obtained as the union of sets of pairs of nested transactions for P and Q . Also, it must hold that (�1 ∪ �2 ∪ (γ1 × γ2))

s ∩
(�1 ∪ �2)

t = ∅. For example, for P ′ and P ′′ in (6) we have

∅; {(t1, t2)} |−−−−−−−−−−−−t1
[
a | t2[b,b̄],ā

] | t2.t1 and {(t1, t2)}; ∅ |−−−−−−−−−−−−−−−t1
[
a,ā

] | t2[b,b̄] | t1 | t2.
{t1,t2};{t1};⊥ {t1,t2};{t1,t2};⊥

8

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(W-Nil)

∅;∅ |−−−−∅;∅;⊥ 0

(W-Out1)

�; ∅ |−−−−
γ ;∅;⊥ P

�; ∅ |−−−−−−−−
γ ∪{t};∅;⊥ t.P

(W-Out2)

�; ∅ |−−−−
γ ;∅;⊥ P

�; ∅ |−−−−
γ ;∅;⊥ a.P

(W-In)

�; ∅ |−−−−
γ ;∅;⊥ P

�; ∅ |−−−−
γ ;∅;⊥ a.P

(W-Res)

�;� |−−−−
γ ;δ;p

P

�,� |−−−−
γ ;δ;p

(νx)P

(W-Block)

�;� |−−−−
γ ;δ;p

P

�;� |−−−−
γ ;δ;� 〈P 〉

(W-Rep)

�; ∅ |−−−−
γ ;∅;⊥ π.P

γ × γ ; ∅ |−−−−
γ ;∅;⊥ !π.P

(W-Trans)

�1;�1 |−−−−−−
γ1;δ1;p1

P �2;�2 |−−−−−−
γ2;δ2;p2

Q ft(P(P),P(Q)) = (�,�) �s ∩ �t = ∅
�,� |−−−−−−−−−−−−−−−

γ1∪γ2;{t};p1∨p2
t[P,Q]

(W-Par)

�1;�1 |−−−−−−
γ1;δ1;p1

P �2;�2 |−−−−−−
γ2;δ2;p2

Q f (P(P),P(Q)) = (�,�) �s ∩ �t = ∅
�,� |−−−−−−−−−−−−−−−

γ1∪γ2;δ1∪δ2;p1∨p2
P | Q

Fig. 3. Auxiliary relation for well-formed compensable processes.

One should notice that processes from (5) do not satisfy the predicate, since their sets of pairs of parallel failure signals
and nested transaction names are not disjoint: they are both equal to {(t1, t2)}.

We then have the following definition:

Definition 3.4 (Well-formedness). A compensable process P is well-formed if

(i) transaction names in P are mutually different, and
(ii) �; � |−−−−

γ ;δ;p
P holds for some �, �, γ , δ, p.

The following theorem captures the main properties of well-formed processes: they do not contain subterms with protected
blocks or transactions behind prefixes; also, they do not contain potential parallel failure signals for nested transaction
names. Since the former is required to hold also for compensations within transactions, we extend evaluation contexts
(Definition 3.3) as follows:

C w f [•] ::= [•] | 〈C w f [•]〉 | t[C w f [•],P] | C w f [•] | P | (νx)C w f [•] | t[P,C w f [•]]. (10)

Theorem 3.3. Let �; � |−−−−
γ ;δ;p

P , for some �, �, γ , δ and p. Then the following holds:

(i) if P ≡ C w f [π.P1] then �′; ∅ |−−−−
γ ′;∅;⊥ P1 , for some �′ and γ ′ , and

(ii) �s ∩ �t = ∅.

Proof. (i) By induction on the structure of C w f [•]. (ii) By case analysis. �
We may now state a soundness result, which ensures that well-formedness is preserved by transitions.

Theorem 3.4. If �; � |−−−−
γ ;δ;p

P and P α−→ P ′ then there are �′ ⊆ � and �′ ⊆ � such that �′; �′|−−−−−−
γ ′;δ′;p′ P ′ .

Proof. By induction on the depth of the derivation P
α−−→ P ′ . See § A.2 at page 39. �

The following is immediate from Definition 3.4 and Theorem 3.4:

Corollary 3.5. If P is a well-formed compensable process and P −→∗ P ′ then P ′ is well formed.
9

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(R-In-Out)

E
[

C
[
x.P

] | D
[
x.Q

]] −→ E
[

C
[

P
] | D

[
Q

]] (R-Ob-Upd)

E
[

C
[
l[P]] | D

[
l{(X).Q }.R]] −→ E

[
C
[

Q {P/X}] | D
[

R
]]

(R-Sub-Upd)

E
[

C
[
l[P]] | D

[
l〈〈(X).Q 〉〉.R]] −→ E

[
C
[
0
] | D

[
Q {P/X} | R

]] (R-Str)

P ≡ P ′ P ′ −→ Q ′ Q ′ ≡ Q

P −→ Q

Fig. 4. Reduction semantics for adaptable processes..

3.3. Adaptable processes

Syntax. We consider prefixes π and processes P , Q , . . . defined as:

π ::= x | x | l〈〈(X).Q 〉〉 | l{(X).Q }
P , Q ::= 0 | π.P | !π.P | (νx)P | P | Q | l[P] | X

We consider input and output prefixes (denoted x and x, respectively) as well as the update prefixes l〈 〈(X).Q 〉 〉 and l{(X).Q }
for subjective and objective update, respectively. We assume that Q may contain zero or more occurrences of the process
variable X .

Although here we consider a process model with both update prefixes, we shall consider target calculi with only one of
them: the calculus of adaptable processes with subjective and objective update will be denoted S and O, respectively.

The syntax includes constructs for inaction (0); action prefix (π.P); guarded replication (!π.P), i.e. infinitely many occur-
rences of P in parallel, which are triggered by prefix π ; restriction ((νx)P); parallel composition (P | Q); located processes
(l[P]); and process variables (X). We omit 0 whenever possible; we write, e.g., l〈 〈(X).P 〉 〉 instead of l〈 〈(X).P 〉 〉.0.

Name x is bound in (νx)P and process variable X is bound in l〈 〈(X).Q 〉 〉. Given this, the sets of free and bound names for
a process P —denoted fn(P) and bn(P)—are as expected (and similarly for process variables). We rely on expected notions
of α-conversion (noted ≡α) and process substitution: we denote by P {Q/X} the process obtained by (capture-avoiding)
substitution of Q for X in P .

Operational semantics. Adaptable processes are governed by a reduction semantics, denoted P −→ P ′ , a relation on processes
that relies on structural congruence (denoted ≡) and contexts (denoted C, D, E).

Definition 3.5 (Structural congruence). Structural congruence is the smallest congruence relation on processes that is gener-
ated by the following rules, which extend standard rules for the π -calculus with scope extrusion for locations:

P | Q ≡ Q | P (νx)0 ≡ 0 (νx)l[P] ≡ l[(νx)P] if l �= x
P | (Q | R) ≡ (P | Q) | R (νx)(ν y)P ≡ (ν y)(νx)P !π.P ≡ π.P | !π.P
P | 0 ≡ P Q | (νx)P ≡ (νx)(Q | P) if x /∈ fn(Q) P ≡ Q if P ≡α Q

Contexts are processes with a hole [•]; their syntax is defined as follows:

Definition 3.6 (Evaluation contexts). The syntax of contexts is given by the following grammar:

C[•] ::= [•] | l
[
C[•]] | C[•] | P | (νx)C[•].

We write C[Q] to denote the process resulting from filling in the hole [•] in context C with process Q .

Reduction −→ is the smallest relation on processes induced by the rules in Fig. 4, which we now briefly discuss:

• Rule (R-In-Out) formalizes synchronization between processes x.P and x.Q , enclosed in contexts C and D , respectively.
• Rules (R-Sub-Upd) and (R-Ob-Upd) formalize the equations (1) and (2) given in the Introduction. They implement sub-

jective and objective update of a process located at location l that resides in contexts C and E . In general, we shall use
one of these two rules, not both.

• Rule (R-Str) is self-explanatory.

We write −→∗ to denote the reflexive and transitive closure of −→ .
10

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
4. The notion of encoding

Our objective is to relate compensable and adaptable processes through valid encodings (simply encodings in the follow-
ing). Here we define a basic abstract framework that will help us formalize these relations.

An encoding is a translation of processes of a source language into the processes of a target language; this translation
should satisfy certain correctness criteria, which attest to its quality. The existence of an encoding shows that the target
language is at least as expressive as the source language.

To define valid encodings, we adopt five correctness criteria formulated by Gorla [12]: (1) compositionality and (2) name
invariance (so-called structural criteria) as well as (3) operational correspondence, (4) divergence reflection, and (5) success sen-
sitiveness (so-called semantic criteria). Structural criteria describe the static structure of the encoding, whereas the semantic
criteria describe its dynamics—how the behavior of encoded terms relates to that of source terms, and vice versa. As stated
in [20], structural criteria are needed in order to measure the expressiveness of operators in contrast to expressiveness of
terms. As for semantic criteria, operational correspondence is divided in completeness and soundness properties: the for-
mer ensures that the behavior of a source process is preserved by the translation in the target calculus; the latter ensures
that the behavior of a translated (target) process corresponds to that of some source process. Divergence reflection ensures
that a translation does not introduce spurious infinite computations, whereas success sensitiveness requires that source and
translated terms behave in the same way with respect to some notion of success.

Following [12], we start by defining an abstract notion of calculus, which we will later instantiate with the three calculi
of interest here:

Definition 4.1 (Calculus). We define a calculus as a triple (P, −→, ≈), where:

• P is a set of processes;
• −→ is its associated reduction semantics, which specifies how a process computes on its own;
• ≈ is an equality on processes, useful to describe the abstract behavior of a process, which is a congruence at least with

respect to parallel composition.

We will further assume that a calculus uses a countably infinite set of names, usually denoted N . Accordingly, the
abstract definition of encoding refers to those names.

Definition 4.2 (Encoding). Let Ns and Nt be countably infinite sets of source and target names, respectively. An encoding of
the source calculus (Ps, −→s, ≈s) into the target calculus (Pt, −→t, ≈t) is a tuple (�·�, ϕ�·�) where �·� : Ps −→ Pt denotes
a translation that satisfies some specific correctness criteria and ϕ�·� :Ns −→ Nt denotes a renaming policy for �·�.

The renaming policy defines the way names from the source language are translated into the target language. A valid
encoding cannot depend on the particular names involved in source processes.

We shall use the following notations. We write −→∗ to denote the reflexive, transitive closure of −→ . Also, given k ≥ 1,
we will write P −→k P ′ to denote k consecutive reduction steps leading from P to P ′ . That is, P1 −→k Pk+1 holds whenever
there exist P2, . . . , Pk such that P1 −→ P2 −→ · · · −→ Pk −→ Pk+1.

For compositionality, we use a context to combine the translated subterms, which depends on the source operator that
combines the subterms. This context is parametrized on a finite set of names, noted N below, which contains the set of free
names of the respective source term. In a slight departure from usual definitions of compositionality, the set N may contain
transaction names that do not occur free in the term. As we will see, we have an initially empty parameter on the encoding
function that is accumulated while translating a source term.

For operational correspondence our encodings follow more strict criteria than in [12]. For divergence reflection we will
use the following definition:

Definition 4.3 (Divergence). A process P diverges, written P −→ω , if there exists an infinite sequence of processes {Pi}i≥0
such that P = P0 and for any i, Pi −→ Pi+1.

To formulate success sensitiveness, we assume that both source and target calculi contain the same success process �;
also, we assume that ⇓ is a predicate that asserts reducibility (in a “may” modality) to a process containing an unguarded
occurrence of �. This process operator does not affect the operational semantics and behavioral equivalence of the calculi:
� can not reduce and n(�) = fn(�) = bn(�) = ∅. Therefore, this language extension does not affect the validity of the
encodability criteria, except for success sensitiveness.

Definition 4.4 (Success). Let (P, −→, ≈) be a calculus. A process P ∈ P (may)-succeeds, denoted P ⇓, if it is reducible to a
process containing an unguarded occurrence of �, i.e., if P −→∗ P ′ and P ′ = C[�] for some P ′ and context C[•].

The following definition formalizes the five criteria for valid encodings:
11

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
Definition 4.5 (Valid encoding). Let Ls = (Ps, −→s, ≈s) and Lt = (Pt, −→t, ≈t) be source and target calculi, respectively,
each with countably infinite sets of names Ns and Nt . An encoding (�·�, ϕ�·�), where �·� : Ps −→ Pt and ϕ�·� : Ns −→ Nt ,
is a valid encoding if it satisfies the following criteria:

(1) Compositionality: �·� is compositional if for every n-ary (n ≥ 1) operator op on Ps and for every set of names N there is
an n-adic context CNop[•1, . . . , •n] such that, for all P1, . . . , Pn with fn(P1, . . . , Pn) ⊆ N it holds that �op(P1, . . . , Pn)� =
CNop

[
�P1�, . . . , �Pn�

]
.

(2) Name invariance: �·� is name invariant if for every substitution σ : Ns −→ Ns there is a substitution σ ′ : Nt −→ Nt
such that (i) for every a ∈Ns : ϕ�·�(σ (a)) = σ ′(ϕ�·�(a)) and (ii) �σ(P)� = σ ′(�P�).

(3) Operational correspondence: �·� is operational corresponding if it satisfies the two requirements:
a) Completeness: If P −→s Q then there exists k such that �P� −→k

t ≈t �Q �.
b) Soundness: If �P� −→∗

t R then there exists P ′ such that P −→∗
s P ′ and R −→∗

t ≈t �P ′�.
(4) Divergence reflection: �·� reflects divergence if, for every P such that �P� −→ω

t , it holds that P −→ω
s .

(5) Success sensitiveness: �·� is success sensitive if, for every P ∈Ps , it holds that P ⇓ if and only if �P� ⇓.

Concrete instances. We now instantiate Definition 4.1 with the source and target calculi of interest:

Source calculus: Cλ The source calculus will be the calculus of compensable processes with discarding semantics defined
in § 3.1. The set of processes, which we will denote C , will contain only well-formed compensable processes (cf.
§ 3.2). We shall consider the reduction relation −→ defined at the end of § 3.1. We shall use structural congruence
(Definition 3.2) as behavioral equivalence.

Target calculi: S and O There will be two target calculi, both based on the calculus of adaptable processes defined in § 3.3.
The first one, with set of processes denoted S , uses subjective updates only; its reduction semantics is as given in
Fig. 4, with updates governed by Rule (R-Sub-Upd). Similarly, the second calculus, with set of processes denoted
O, uses objective updates only; its reduction semantics is governed by Rule (R-Ob-Upd) instead. In both cases, the
structural congruence of Definition 3.5 will be used as behavioral equivalence.

As already mentioned, in § 8 we shall consider three variants of the source calculus C (cf. Definition 8.1).

The purpose of ≈t in the definition of operational correspondence is to abstract away from “junk” processes, i.e., pro-
cesses left behind as a result of the translation that do not add any meaningful source behavior to translated processes.
As we will see, our translations do not pollute: the inactive process 0 will be the only possible junk process. As such, it is
trivially inactive junk in the sense that it does not perform further reductions on its own nor interact with the surrounding
target terms. This is why it suffices to use structural congruences on source and target processes as behavioral equalities.

We now move on to present our encodings of C into S and O. To compare these two encodings, we shall define the
abstract notion of efficient encoding—see Definition 7.1.

5. Encoding C into S: the case of subjective update

We shall now present our first encoding, which translates the calculus of compensable processes (C , our source calculus)
into the calculus of adaptable processes with subjective update (S , our target calculus). We shall prove that this translation
is valid, in the sense of Definition 4.5. Before giving a formal presentation of the encoding, we introduce some useful
conventions and intuitions.

5.1. Preliminaries

Recall the base sets defined in Definition 3.1; in particular, Nt denotes the base set of transaction names. Our encodings
rely on the following notion of path, a sequence of transaction names:

Definition 5.1 (Paths). Let N k
t (with k ∈N) be the set of sequences/tuples of names in Nt . These sequences will be denoted

by μ, μ′, . . .; we assume they have pairwise distinct elements. We obtain paths from the concatenation of such sequences
with ε (the empty path) at the end; paths are denoted by ρ, ρ ′, . . . (i.e., ρ = με, ρ ′ = μ′ε, . . .). We will sometimes omit
writing the tail ε in ρ . By a slight abuse of notation, given a transaction name t and a path ρ , we will write t ∈ ρ if t
occurs in ρ .

We also require sets of reserved names. We have the following definition:

Definition 5.2 (Reserved names). The sets of reserved names N r
s and N r

l are defined as follows:

• N r
s = {hx | x ∈Nt} is the set of reserved synchronization names, and

• N r = {pρ | ρ is a path} is the set of reserved location names.
l

12

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
If t1, t2 ∈Nt such that t1 �= t2 then ht1 �= ht2 and pt1 �= pt2 . We let N r
l ⊆Nl \Nt and Ns ∩N r

s = ∅. In what follows we shall
use the set Na =Nl ∪ (Ns ∪N r

s) for adaptable processes.

We will find it convenient to adopt the following abbreviations for adaptable processes.

Convention 5.1. Recall that l〈 〈(X).Q 〉 〉 and l{(X).Q } denote subjective and objective update prefixes, respectively.

• We write
n∏

i=1
l[Xi] to abbreviate the process l[X1] | . . . | l[Xn].

• We write t〈 〈†〉 〉 to denote the subjective update prefix t〈 〈(Y).0〉 〉, which “kills” both location t and the process it hosts.
This way, for instance:

s[t[c]] | t〈〈†〉〉 −→ s[0] (11)

Similarly, we write t{†} to stand for the objective update prefix that “kills” t and its content.
• We write t〈 〈(Y1, Y2, . . . , Yn).R〉 〉 to abbreviate the nested update prefix t〈 〈(Y1).t〈 〈(Y2). · · · .t〈 〈(Yn).R〉 〉 · · · 〉 〉〉 〉. For instance:

s
[
t
[
l1[a] | l1[b] | c

] | l1〈〈(X1, X2).(l2[X1] | l2[X2])〉〉
]

−→∗ s
[
t
[
c
] | l2[a] | l2[b]

]
.

Similarly, t{(Y1, Y2, . . . , Yn).R} will stand for the objective prefix t{(Y1).t{(Y2). · · · .t{(Yn).R} · · · }}.

5.2. The translation, informally

Transactions, protected blocks, and the extraction function that governs compensations (cf. Fig. 1) are the distinguishing
constructs in compensable processes; they represent the most interesting process terms to be addressed in our encodings.

We shall use paths (cf. Definition 5.1) to model the hierarchical structure induced by nested transactions. A path can
represent and trace the location of the transactions and protected blocks in a process. Our translation of C into S will be
indexed by a path ρ: it will be denoted �·�ρ (cf. Definition 5.5 below). This way, e.g., the encoding of a protected block
found at path ρ will be defined as:

�〈P 〉�ρ = pρ

[
�P�ε

]
where pρ is a reserved name in N r

l (cf. Definition 5.2).
A key aspect in our translation is the representation of the extraction function. As we have seen, this function is an

external device, embedded in the operational semantics, that formalizes the protection of transactions/protected blocks.
Our translation explicitly specifies the extraction function by means of update prefixes. We use the auxiliary process
outs(l1 , l2 , n , Q), which moves n processes from location l1 to location l2, and composes Q in parallel. Using the no-
tations from Convention 5.1, it can be defined as follows:

outs(l1 , l2 , n , Q) =
⎧⎨
⎩

Q if n = 0

l1〈〈(X1, . . . , Xn).
(n∏

i=1
l2[Xi] | Q

)〉〉 if n > 0
(12)

Example 5.2. Consider the process:

s
[
t
[
l1[a] | l1[b] | c

] | outs(l1 , l2 , 2 , Q)
]

We have two reductions:

s
[
t
[
l1[a] | l1[b] | c

] | l1〈〈(X1, X2).(l2[X1] | l2[X2] | Q)〉〉] −→2 s
[
t
[
c
] | l2[a] | l2[b] | Q

]
.

The first reduction corresponds to the synchronization between l1[a] and l1〈 〈(X1, X2).(l2[X1] | l2[X2] | Q)〉 〉, while the second
is the synchronization between l1[b] and l1〈 〈(X2).(l2[a] | l2[X2] | Q)〉 〉. Fig. 5 depicts these interactions using boxes to denote
nested locations.

5.3. The translation, formally

Our translation of compensable processes into adaptable processes relies on a process denoted extr〈 〈t, l1, l2〉 〉, which
uses outs(l1, l2 , n , Q) to represent the extraction function (Definition 5.4). We need the following functions.

Definition 5.3. Let P be an adaptable process.
13

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
s

t

a

l1
| b

l1
| c | outs(l1 , l2 , 2 , Q) −→2

s

t

c | a

l2
| b

l2
| Q

Fig. 5. Example 5.2: Illustrating outs(l1 , l2 , 2 , Q).

(1) Function nl(l, P) denotes the number of occurrences of locations l in process P . It is defined as follows:

nl(l1, l2[P]) = nl(l1, P) + 1 if l1 = l2 nl(l1, l2[P]) = nl(l1, P) if l1 �= l2
nl(l, (νx) P) = nl(l, P) nl(l, P | Q) = nl(l, P) + nl(l, Q)

nl(l,0) = nl(l, !π.P) = 0 nl(l, l〈〈(X).Q 〉〉) = nl(l, l{(X).Q }) = 0

(2) For a transaction name t and a process P , function ch(t, P) returns ht .0 if P equals to an evaluation context with the
hole replaced by ht .P ′ (for some P ′), where the hole is not located within pt,ρ , and returns 0 otherwise. It is defined
as follows:

ch(t,ht .P) = ht .0 ch(s,ht .P) = 0 ch(t,π.P) = 0 if π �= ht

ch(t, l[P]) =
{

0 if l = pt,ρ

ch(t, P) otherwise
ch(t, P | Q) = ch(t, P) | ch(t, Q) ch(t, (νx)P) = ch(t, P)

ch(t,0) = ch(t, X) = 0 ch(t, !π.P) = 0

We are now ready to define process extr〈 〈t, l1, l2〉 〉:

Definition 5.4 (Update prefix for extraction). Let t , l1, and l2 be names. We write extr〈 〈t, l1, l2〉 〉 to stand for the following
(subjective) update prefix:

extr〈〈t, l1, l2〉〉 = t〈〈(Y).t[Y] | ch(t, Y) | outs(l1 , l2 , nl(l1, Y) , t〈〈†〉〉.ht)〉〉. (13)

Intuitively, process extr〈 〈t, l1, l2〉 〉 serves to “prepare the ground” for the use of outs(l1 , l2 , n , Q) which is the one that
actually extracts processes from one location and relocates them into another one. Once that occurs, location t is destroyed,
which is signaled using name ht .

We are now ready to formally define the translation of C into S .

Definition 5.5 (Translating C into S). Let ρ be a path. We define the translation of compensable processes into subjective
adaptable processes as a tuple (�·�ρ, ϕ�·�ρ

) where:

(a) The renaming policy ϕ�·�ρ
:Nc −→ P(Na) is defined as:

ϕ�·�ρ
(x) =

{
{x} if x ∈ Ns

{x,hx} ∪ {pρ : x ∈ ρ} if x ∈ Nt
(14)

(b) The translation �·�ρ : C −→ S is as in Fig. 6.

Some intuitions are in order. Our renaming function focuses on transaction names: if x is a transaction name, then it is
mapped into the set of all (reserved) names that depend on it, including reserved names whose indexed path mentions x.
Otherwise, x is mapped into the singleton set {x}.

We now explain the process mapping in Fig. 6, which is parametric into a path ρ that records the hierarchical structure
induced by nested transactions. This way, a process P ∈ C is translated as �P�ε , i.e., P under the empty path ε. Unsur-
prisingly, the main challenge in the translation is in representing transactions and protected blocks as adaptable processes.
More in details:

• The translation of a protected block found at path ρ will be enclosed in the location pρ .
• In the translation of t[P,Q] we represent processes P and Q independently, using processes in separate locations. More

in details:
- The default activity P is enclosed in a location t while the compensation activity Q is enclosed in a location pρ . That

is, Q is immediately treated as a protected block.
- The translation of P is obtained with respect to path t, ρ , thus denoting that t occurs nested within the transactions

described by ρ .
14

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�〈P 〉�ρ = pρ

[
�P�ε

]
�t[P,Q]�ρ = t

[
�P�t,ρ

]
| t.

(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε]

)
�a.P�ρ = a.�P�ρ

�a.P�ρ = a.�P�ρ

� t.P �ρ = t.ht .�P�ρ

�0�ρ = 0

�(νx)P�ρ = (νx)�P�ρ

�P1 | P2�ρ = �P1�ρ | �P2�ρ

�!π.P�ρ =!�π.P�ρ

Fig. 6. Translating C into S .

- In case of a failure signal t̄ , our translation activates process extr〈 〈t, pt,ρ , pρ〉 〉 (cf. Definition 5.4): it extracts all
processes located at pt,ρ (which correspond to translations of protected blocks) and moves them to their parent
location pρ .

- The structure of a transaction and the number of its top-level processes change dynamically. Whenever we need to
extract processes located at pt,ρ , we first substitute Y in process outs (cf. (12)) and in function ch(t, ·) (cf. Defini-
tion 5.3), by the current content of the location t .

- We use the reserved name ht (introduced by extr〈 〈t, pt,ρ , pρ〉 〉) to control the execution of failure signals; it is par-
ticularly useful for error notifications that occur sequentially (one after another in the form of a prefix, e.g. t.t1.tn).

- Once the translation of protected blocks has been moved out of t , the location only contains “garbage”: we can then
erase the location t and its contents. To this end, we use the prefix t〈 〈†〉 〉 (cf. Convention 5.1), which is also introduced
by extr〈 〈t, pt,ρ , pρ〉 〉).

- In case of an internal error notification t , function ch(t, ·) is particularly useful: it searches for processes of the form
ht .P within the current content at t and replaces them with ht .0. This is done before the update prefix t〈 〈†〉 〉 deletes
both location t and processes located at t , as described above. Notice that we would need to preserve synchroniza-
tions between input ht and its corresponding output ht .

With the above intuitions, translations for the remaining constructs should be self-explanatory.

5.4. Translation correctness

We now establish that the translation �·�ρ is a valid encoding (Definition 4.5). To this end, we address the correctness
criteria: compositionality, name invariance, operational correspondence, divergence reflection, and success sensitiveness.

Our results apply for well-formed processes as in Definition 3.4; we briefly discuss this condition. Consider P =
t1

[
a | t2[b,b̄],ā

] | t1 | t2, the ill-formed process presented in (5). Intuitively, P is not well-formed because it can either com-
pensate t1 or t2 in a non-deterministic fashion: if t1 is compensated then the failure signal on t2 will not be able to
synchronize; if t2 is compensated then t1 can still be compensated. That is, P −→∗ 〈b〉 | 〈a〉. Consider how this possibility
would be mimicked by �P�ε , the encoding of P :

�P�ε = t1
[
a | t2

[
b
] | t2.

(
t2〈〈(Y).t2[Y] | ch(t2, Y) | t2〈〈†〉〉.ht2〉〉 | pt1 [b]

)]
| t1.

(
t1〈〈(Y).t1[Y] | ch(t1, Y) | outs(pt1 , pε , nl(pt1 , Y) , t1〈〈†〉〉.ht1)〉〉 | pε[a]

)
| t1.ht1 | t2.ht2

−→2 t1
[
a | t2

[
b
] | t2〈〈(Y).t2[Y] | ch(t2, Y) | t2〈〈†〉〉.ht2〉〉 | pt1,ε[b]]

| t1〈〈(Y).t1[Y] | ch(t1, Y) | outs(pt1 , pε , nl(pt1 , Y) , t1〈〈†〉〉.ht1)〉〉 | pε[a] | ht1 | ht2

−→4 pε[b] | pε[a] | ht2 .

Hence, when applied into ill-formed processes, our encoding induces target processes with “garbage processes” (such as ht2

above), which do not satisfy operational correspondence as defined in Definition 4.5. Specifically, the soundness property
would not hold, because �P�ε would have behaviors not present in P . A similar conclusion can be drawn for the other two
ill-formed processes presented in (5).

5.4.1. Structural criteria
The compositionality criterion says that the translation of a composite term must be defined in terms of the translations

of its subterms. The translation is initially parametrized with ε (i.e., without external names); afterwards, when applied to
15

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
nested subterms, the list of parameters is extended with transaction names ρ , as specified in Definition 4.5. Accordingly,
we consider compositional contexts that depend on an arbitrary list ρ of external transaction names. Nevertheless, our
encoding still preserves the main principles of the notion of compositionality. We can translate compensable terms by
translating their operator without need to analyze the structure of the subterms. Another peculiarity appears in the process
extr〈 〈t, pt,ρ , pρ〉 〉, which is defined in Definition 5.4. It depends on the function nl(l1, Y) that dynamically counts the
current number of locations l1 in the content of t . To mediate between these translations of subterms, we define a context
for each process operator, which depends on free names of the subterms:

Definition 5.6 (Compositional context). For every process operator from C , we define a compositional context in S as follows:

C〈〉,ρ [•] = pρ

[[•]] Ct[,],ρ [•1,•2] = t
[[•1]

] | t.
(
extr〈〈t, pt,ρ , pρ〉〉 | pρ

[[•2]
])

C | [•1,•2] = [•1] | [•2]
Ca.[•] = a.[•] Ca.[•] = a.[•] Ct.[•] = t.ht .[•] C(νx)[•] = (νx)[•] C!π.[•] =!π.[•]

Using this definition, we may now state the following result:

Theorem 5.3 (Compositionality for �·�ρ). Let ρ be an arbitrary path. For every process operator in C and for all well-formed compens-
able processes P and Q it holds that:

�〈P 〉�ρ = C〈〉,ρ [�P�ε] �t[P,Q]�ρ = Ct[,],ρ
[
�P�t,ρ , �Q �ε

]
�P | Q �ρ = C |

[
�P�ρ, �Q �ρ

]
�a.P�ρ = Ca.

[
�P�ρ

]
�t.P�ρ = Ct.

[
�P�ρ

]
�(νx)P)�ρ = C(νx)

[
�P�ρ

]
�a.P�ρ = Ca.

[
�P�ρ

]
�!π.P�ρ = C!π.

[
�P�ρ

]
Proof. Follows directly from the definition of contexts (Definition 5.6) and from the definition of �·�ρ : C −→ S (Fig. 6). See
§ B.1 at page 40 for further details. �

We now consider name invariance. We will say that a function σ : Nc → Nc is a valid substitution if it is the identity
except on a finite set and it respects syntactically the partition of Nc into subsets Ns and Nt , i.e., σ(Ns) ⊆Ns and σ(Nt) ⊆
Nt . If ρ = t1, . . . , tn, ε, we write σ(ρ) to denote the sequence σ(t1), . . . , σ(tn), ε. We now state name invariance, by relying
on the renaming policy in Definition 5.5(a).

Theorem 5.4 (Name invariance for �·�ρ). For every well-formed compensable process P and valid substitution σ : Nc → Nc there is
a σ ′ :Na −→ Na such that:

(i) for every x ∈ Nc : ϕ�·�σ (ρ)
(σ (x)) = {σ ′(y) : y ∈ ϕ�·�ρ

(x)} and (ii) �σ(P)�σ (ρ) = σ ′(�P�ρ).

Proof. See § B.2 at page 41. �
5.4.2. Semantic criteria

We prove the three criteria, following the order in which they were introduced in Definition 4.5: operational correspon-
dence, divergence reflection, and success sensitiveness.

Operational correspondence. Among the semantic criteria, operational correspondence is usually the most interesting one, but
also the most delicate to prove. We aim to establish a statement of operational correspondence that includes the number
of reductions required in S to correctly mimic a reduction in C . This will allow us to support our claim that subjective
updates are more efficient than objective updates (cf. Definition 7.1). To precisely state completeness results we introduce
some auxiliary notions.

Definition 5.7. Given a compensable process P , we will write pb(P) to denote the number of protected blocks in P —see
Fig. 7 for a definition.

Given a transaction t[P,Q], the following lemma ensures that the number of protected blocks in the default activity P
is equal to the number of locations pt,ρ in �P�t,ρ (Definition 5.3).

Lemma 5.5. Let t[P,Q] and ρ be a well-formed compensable process and an arbitrary path, respectively. Then it holds that pb(P) =
nl(pt,ρ , �P�t,ρ).

Proof. By induction on structure of P .

• P = 0 or P = π.P1 or P =!π.P1: By Definition 5.3, Definition 5.7 and Definition 5.5, we can derive nl(pt,ρ , �P�t,ρ) =
0 = pb(P).
16

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
pb(〈P 〉) = 1 pb(P | Q) = pb(P) + pb(Q) pb((νx)P) = pb(P)

pb(!π.P) = pb(π.P) = 0 pb(t[P,Q]) = 0 pb(0) = 0

Fig. 7. Number of protected blocks for discarding semantics.

• P = 〈P1〉: By Definition 5.3, Definition 5.7 and Definition 5.5,

nl(pt,ρ , �〈P1〉�t,ρ) = nl(pt,ρ , pt,ρ

[
�P1�ε

]
) = 1 = pb(〈P1〉).

• P = s[P1,Q 1]: By Definition 5.5, �s[P1,Q 1]�t,ρ = s
[
�P1�s,t,ρ

]
| s.

(
extr〈〈s, ps,t,ρ , pt,ρ〉〉 | pt,ρ [�Q 1�ε]

)
. Noticing that

nl(pt,ρ , �P1�s,t,ρ) = 0, by application of Definition 5.3 and Definition 5.7, we get nl(pt,ρ , �s[P1,Q 1]�t,ρ) = 0 =
pb(s[P1,Q 1]).

• P = P1 | Q 1: By Definition 5.3 and Definition 5.5, nl(pt,ρ , �P1|Q 1�t,ρ) = nl(pt,ρ , �P1�t,ρ |�Q 1�t,ρ) = nl(pt,ρ , �P1�t,ρ) +
nl(pt,ρ , �Q 1�t,ρ). By induction hypothesis, we conclude nl(pt,ρ , �P1|Q 1�t,ρ) = pb(P1) + pb(Q 1).

• P = (νx)P1: By Definition 5.3 and Definition 5.5, nl(pt,ρ , �(νx)P1�t,ρ) = nl(pt,ρ , (νx)�P1�t,ρ) = nl(pt,ρ , �P1�t,ρ). By
induction hypothesis and Definition 5.7, nl(pt,ρ , �(νx)P1�t,ρ) = pb(P1) = pb((νx)P1). �

The following example illustrates this claim.

Example 5.6. Let P = t[P1,d] be a well-formed compensable process, with default activity P1 = 〈a〉 | 〈b〉 | c. By Fig. 7, we
have pb(P1) = 2. Also, by Definition 5.5, we have:

�P�ρ = t
[
�P1�t,ρ

]
| t.

(
extr〈〈t, pt,ρ , pρ〉〉 | pρ

[
d
])

,

such that �P1�t,ρ = pt,ρ
[
a
] | pt,ρ

[
b
] | c. Now, by Definition 5.3 it is clear that nl(pt,ρ , �P1�t,ρ) = 2.

For the proof of operational correspondence, we introduce a mapping from evaluation contexts of compensable processes
into evaluation contexts of adaptable processes.

Definition 5.8. Let ρ be a path. We define mapping �·�ρ from evaluation contexts of compensable processes into evaluation
contexts of adaptable processes as follows:

�[•]�ρ = [•] �〈C[•]〉�ρ = pρ [�C[•]�ε] �C[•] | P�ρ = �C[•]�ρ | �P�ρ �(νx)C[•]�ρ = (νx)�C[•]�ρ
�t[C[•],Q]�ρ = t

[
�C[•]�t,ρ

] | t.
(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε]

)
Convention 5.7. We will use �C�ρ [P] to denote the process that is obtained when the only hole of context �C[•]�ρ is
replaced with process P .

We now state our operational correspondence result:

Theorem 5.8 (Operational correspondence for �·�ε). Let P be a well-formed process in C .

(1) If P −→ P ′ then �P�ε −→k �P ′�ε where for
a) P ≡ E[C[a.P1] | D[a.P2]] and P ′ ≡ E[C[P1] | D[P2]] it follows k = 1,
b) P ≡ E[C[t[P1,Q]] | D[t.P2]] and P ′ ≡ E[C[extr(P1) | 〈Q 〉] | D[P2]] it follows k = 4 + pb(P1),
c) P ≡ C[u[D[u.P1],Q]] and P ′ ≡ C[extr(D[P1]) | 〈Q 〉], it follows k = 4 + pb(D[P1]),
for some contexts C , D, E, processes P1, Q , P2 and names t, u.

(2) If �P�ε −→n R with n > 0 then there is P ′ such that P −→∗ P ′ and R −→∗ �P ′�ε .

Proof (Sketch). Here we present an overview to the proof and some auxiliary results.

(1) The proof of completeness is by induction on the derivation of P −→ P ′ and uses:
• Proposition 3.1 (page 7) for determining three base cases. Below we illustrate one of them: the case (b) in which

reduction corresponds to a synchronization due to an external error notification for a transaction scope.
• Definition 5.5 (page 14), i.e., the definition of translation.
• Lemma B.1 (page 43), which maps evaluation contexts in C into evaluation contexts of S .
• Lemma B.6 (page 45), which concerns function ch(·, ·).
We discuss completeness for the particular case (b). We consider P ≡ E[C[t[P1,Q]] | D[t.P2]], with m = pb(P1), and
P ′ ≡ E[C[extr(P1) | 〈Q 〉] | D[P2]]. We have the following derivation, where ρ , ρ ′ , and ρ ′′ are paths to holes in contexts
E[•], C[•], and D[•], respectively:
17

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�P�ε ≡ �E[C[t[P1,Q]] | D[t.P2]]�ε = �E�ε

[
�C[t[P1,Q]]�ρ | �D[t.P2]�ρ

]
= �E�ε

[
�C�ρ [�t[P1,Q]�ρ ′] | �D�ρ [�t.P2�ρ ′′]

]
= �E�ε

[
�C�ρ

[
t
[
�P1�t,ρ ′

] | t.
(
extr〈〈t, pt,ρ ′ , pρ ′ 〉〉 | pρ ′ [�Q �ε]

)]
| �D�ρ [t.ht .�P2�ρ ′′]]

−→ �E�ε
[
�C�ρ

[
t
[
�P1�t,ρ ′

] | extr〈〈t, pt,ρ ′ , pρ ′ 〉〉 | pρ ′ [�Q �ε]
]

| �D�ρ [ht .�P2�ρ ′′]]
−→ �E�ε

[
�C�ρ

[
t
[
�P1�t,ρ ′

] | ch(t, �P1�t,ρ ′)

| outs(pt,ρ ′ , pρ ′ , nl(pt,ρ ′ , �P1�t,ρ ′) , t〈〈†〉〉.ht) | pρ ′ [�Q �ε]
] | �D�ρ [ht .�P2�ρ ′′]

]
−→m+1 �E�ε

[
�C�ρ

[
�extr(P1)�ρ ′ | ht | �〈Q 〉�ρ ′

] | �D�ρ
[
ht .�P2�ρ ′′

]]
−→ �E�ε

[
�C�ρ

[
�extr(P1) | 〈Q 〉�ρ ′

] | �D�ρ
[
�P2�ρ ′′

]]
= �E�ε

[
�C[extr(P1) | 〈Q 〉]�ρ | �D[P2]�ρ

]
= �E[C[extr(P1) | 〈Q 〉] | D[P2]]�ε
≡ �P ′�ε

Therefore, we can conclude that for �P�ε −→k �P ′�ε such that k = 4 + m.
For more details see B.3.1 (page 42) and § B.3.4 (page 54).

(2) The proof of soundness is by induction on n, i.e., the length of the reduction �P�ρ −→n R . We rely crucially on two
lemmas (Lemma B.10 and Lemma B.11). Lemma B.10 concerns the shape of processes R and P ′ , whereas Lemma B.11
ensures that the obtained adaptable process R can evolve until reaching a process that corresponds to the translation
of a compensable process. More in details:
• By analyzing the processes obtained by translating the composition of a transaction and its externally triggered failure

signal (and its computation), we come to Lemma B.8 (page 46), which identifies processes that are created before a
synchronization on ht .

• Similarly, the analysis of the processes obtained by translating a transaction and its internally triggered failure sig-
nal (and its computation) leads us to Lemma B.9 (page 49), which identifies processes that are created before a
synchronization on hu .

• In the statement of Lemma B.8 and Lemma B.9 we use the definition of intermediate processes given by Definition B.2
and Definition B.3, respectively. The proofs proceed by case analysis for the step R −→ R ′ .

• Lemma B.10 (page 50) is about the shape of process R , and also ensures that there is a process P ′ with an appropriate
shape. The proof proceeds by induction on n. The base case uses Lemma B.4 (page 44); in the inductive step, we
exploit the fact that the target term R1 has a specific shape, which is in turn ensured by Lemma B.8 and Lemma B.9.

• Lemma B.11 (page 54) ensures that the adaptable process obtained thanks to Lemma B.8 and Lemma B.9 can evolve
until reaching a process that corresponds to the translation of a compensable process.

For full details see B.3.1 (page 42) and § B.20 (page 55). �
In Theorem 5.8, Case (1) concerns completeness, while Case (2) describes soundness. Case (1)–(a) concerns usual syn-

chronizations, which are translated by �·�ρ with an additional synchronization (on name ht). Cases (1)–(b) and (c) concern
synchronizations due to compensation signals; here the analysis distinguishes four cases, as the failure signal can be exter-
nal or internal (see page 6) and the transaction can be replicated or not. In all cases, the number of reduction steps required
to mimic the source transition depends on the number of protected blocks of the transaction being canceled. We illustrate
this with an example.

Example 5.9. P = s
[
t[〈a〉 | 〈b〉 | c,d],0

] | t.s is a well-formed compensable process. By the LTS of C (cf. Fig. 2), we have:

P
τ−→ s[〈a〉 | 〈b〉 | 〈d〉,0] | s̄

τ−→ 〈a〉 | 〈b〉 | 〈d〉.
The encoding of P is obtained by expanding Definition 5.5:

�P�ε = s
[
t
[

pt,s
[
a
] | pt,s

[
b
] | c

] | t.
(
extr〈〈t, pt,s, ps〉〉 | ps

[
d
])] | s.extr〈〈s, ps, pε〉〉 | t.ht .s.hs

−→6 s
[

ps[a] | ps
[
b
] | ps

[
d
]] | s.extr〈〈s, ps, pε〉〉 | s.hs
18

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
−→7 pε[a] | pε

[
b
] | pε

[
d
] = �〈a〉 | 〈b〉 | 〈d〉�ε.

Let us write P1 to denote the process 〈a〉 | 〈b〉 | c (the default activity of transaction t) and P2 to denote the process
〈a〉 | 〈b〉 | 〈d〉 (the process obtained above). Our operational correspondence result ensures that k in �P�ε −→k �P2�ε is
equal to

k = 4 + pb(P1)︸ ︷︷ ︸
for transaction t

+ 4 + pb(P2)︸ ︷︷ ︸
for transaction s

= 6 + 7 = 13

Let us analyze in detail these reduction steps:

i) The first step corresponds to the synchronization between t and t .
ii) Once process extr〈 〈t, pt,s, ps〉 〉 is released, the second step is a synchronization on update prefix

t〈 〈(Y).t[Y] | ch(t, Y) | outs(pt,s , ps , nl(pt,s, Y) , t〈 〈†〉 〉.ht)〉 〉 and location t
[

pt,s
[
a
] | pt,s

[
b
] | c

]
.

iii) Since we get process outs(pt,s , ps , 2 , t〈 〈†〉 〉.ht), the third and fourth steps correspond to synchronizations between
locations pt,s[a] and pt,s[b] with the (nested) update prefix pt,s〈 〈(X1, X2).ps[X1] | ps[X2] | t〈 〈†〉 〉.ht〉 〉, which relocates the
encoding of protected blocks.

iv) The fifth step is the synchronization between update prefix t〈 〈†〉 〉 and location t[. . .], whereby the location is deleted
together with its content (cf. equation (11));

v) The sixth reduction step is a synchronization on name ht , which enables behavior corresponding to the encoding of
transaction s.

To encode the failure of transaction s, we repeat the exact same steps as before. For location s we have one more reduction
step, because in process outs(ps , pε , 3 , s〈 〈†〉 〉.hs) we have three locations ps[. . .] that have to be relocated on location
pε[. . .].

We illustrate the encoding also on the Hotel booking scenario discussed earlier (§ 2, Example 2.1, page 4).

Example 5.10. Recall process Reservation from Example 2.1. We have:

�Reservation�ε = t
[
book.pay.invoice

] | t.(extr〈〈t, pt, pε〉〉 | pε[ref und]) | book.pay.t.ht .ref und

−→3 t
[
invoice

] | t〈〈(Y).t[Y] | ch(t, Y | outs(pt , pε , nl(pt , Y) , t〈〈†〉〉.ht))〉〉
| pε[ref und] | ht .ref und

−→ t
[
invoice

] | ch(t, invoice) | outs(pt , pε , nl(pt, invoice) , t〈〈†〉〉.ht)

| pε[ref und] | ht .ref und

≡ t
[
invoice

] | outs(pt , pε , 0 , t〈〈†〉〉.ht) | pε[ref und] | ht .ref und

= t
[
invoice

] | t〈〈†〉〉.ht | pε[ref und] | ht .ref und

−→3 pε[0].
Therefore, we get �Reservation�ε −→7 pε[0]. There are three reduction steps, denoted −→3, as a result of synchronizations
on input prefixes: book, pay and t with corresponding outputs. Now, the structure of the default activity of transaction is
changed and we have one reduction step for updating its current content. After that, there are three more reduction steps:
one for erasing the location t and its content, and two reduction steps as result of synchronizations on input names ht and
ref und with corresponding outputs.

Divergence reflection. In the following, we are going to prove that the encoding does not introduce divergent computations.
We need the following definition, which counts all protected blocks in process P .

Definition 5.9. Given a well-formed compensable process P , we will write npb(P) to denote the number of protected blocks
in P —see Fig. 8 for a definition.

Notice that npb(P) is different from pb(P) in Definition 5.7. The difference is in the definition for processes 〈P 〉 and
t[P,Q]. In Definition 5.7 we count all processes that may become protected, e.g., after a reduction of the considered com-
pensable process. Intuitively, with npb(P) we are looking for protected blocks at all levels of the observed compensable
process.
19

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
npb(〈P 〉) = 1 + npb(P) npb(P | Q) = npb(P) + npb(Q) npb((νx)P) = npb(P)

npb(!π.P) = npb(π.P) = 0 npb(t[P,Q]) = 1 + npb(P) + npb(Q) npb(0) = 0

Fig. 8. Number of protected blocks.

To establish divergence reflection, we relate a sequence of adaptable processes and a sequence of compensable pro-
cesses. One reduction of an adaptable process from the sequence corresponds either to one reduction of the corresponding
compensable process or to equal consecutive compensable processes. This reflects that a single reduction of compensable
processes is mimicked by several reductions of a corresponding adaptable process. The following lemma proves that such
a relation does exist, providing also the upper bound for the number of successive, non-equivalent, adaptable processes
with the property that their corresponding adaptable processes are equal. This last property directly induces that the set of
compensable processes is infinite, too.

Lemma 5.11. Let {Ri}i≥0 be a sequence of adaptable processes such that Ri −→ Ri+1 , with R0 = �P0�ρ , for some compensable process
P0 and path ρ . Then for every i ≥ 1 there is Pi such that

(i) Ri −→∗ �Pi�ρ ,
(ii) Pi−1 = Pi or Pi−1 −→ Pi , and
(iii) Ri �≡ Ri+1 �≡ . . . �≡ Ri+m and Pi = Pi+1 = . . . = Pi+m imply m ≤ 4 + npb(P0).

Proof. See § B.4 at page 57. �
The following theorem concerns infinite reduction sequences: it says that an infinite reduction sequence originating from

a target term can only arise from an infinite reduction sequence of a corresponding source term. Hence, it suffices to
establish divergence reflection, as in Definition 4.5:

Theorem 5.12 (Divergence reflection for �·�ρ). Let {Ri}i≥0 be an infinite sequence of adaptable processes such that

(1) R0 = �P0�ρ for some P0 and ρ, and (2) Ri −→ Ri+1 for any i ≥ 0.

Then there is an infinite sequence of adaptable processes {P ′
j} j≥0 such that

(3) P ′
0 = P0, and (4) P ′

j −→ P ′
j+1 for any j ≥ 0.

Proof. By Lemma 5.11, there is a sequence {Pi}i≥0 such that

(i) Ri −→∗ �Pi�ρ and (ii) Pi−1 = Pi or Pi−1 −→ Pi .

Consider now a sequence of compensable processes P ′
0, P ′

1, P
′
2, . . . such that

(1) P ′
j−1 −→ P ′

j , for any j ≥ 1, and
(2) for every i there is j such that Pi = P ′

j .

By Lemma 5.11, at most 4 +npb(P0) reduction steps from the sequence {Ri}i≥0 correspond to one reduction step of {P ′
j} j≥0.

Hence, the number of processes in {P ′
j} j≥0 is not less than the number of processes {Ri}i≥0 divided by 4 + npb(P0). Since

the sequence {Ri}i≥0 is infinite, the same holds for {P ′
j} j≥0. �

Success sensitiveness. To prove that the translation satisfies success sensitiveness we need first to extend Definition 5.5 with
���ρ =�.

Further, we adapt the definition of may-succeed (Definition 4.4) to adaptable and compensable processes. It is defined
in exactly the same way for the two calculi, but it relies on different definitions of operational semantics and evaluation
contexts.

Definition 5.10. Let P be an adaptable/compensable process. We say that P may-succeeds, denoted P ⇓, if P −→∗ P ′ and
P ′ = C[�] for some process P ′ and evaluation context C[•].

Theorem 5.13 (Success sensitiveness for �·�ρ). Let P be a well-formed compensable process and ρ an arbitrary path. Then P ⇓ if and
only if �P�ρ ⇓.

Proof. See § B.5 at page 58. �

20

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
s

t

a

l1
| b

l1
| c | outo(t, l1, l2, , 2 , Q) −→2

s

t

c | zt{(Z). a

l2
| b

l2
| Q } | zt [0] −→

s

c

t
| a

l2
| b

l2
| Q

Fig. 9. Example 6.2: Illustrating outo(t, l1 , l2 , 2 , Q).

6. Encoding C into O: the case of objective update

Having detailed a valid encoding of compensable processes into adaptable processes with subjective update, in this
section we turn our attention to the case of adaptable processes with objective update, in which a located process is recon-
figured in its own context by an update prefix residing at a different context (cf. § 3.3). Here we define a translation �·�oρ
which we prove to be a valid encoding (cf. Definition 4.5).

6.1. The translation, informally

To encode transactions and their extraction function we use the auxiliary process outo(t, l1, l2 , n , Q), which is similar
to the process outs(l1, l2 , n , Q) (cf. (12)) that we used in the encoding �·�ρ .

Using objective update prefixes, we define this auxiliary process as follows:

outo(t, l1 , l2 , n , Q) =
⎧⎨
⎩

Q if n = 0

l1{(X1, . . . , Xn).zt{(Z).
n∏

i=1
l2[Xi] | Q }}.zt[0] if n > 0.

(15)

It is instructive to compare processes outs (12) and outo (15), because differences between them will reflect directly
on the efficiency of our encodings. These differences concern parameter n:

Remark 6.1 (Comparing outs and outo). Consider the case n > 0: while in outo the process
n∏

i=1
l2[Xi] | Q appears enclosed

inside an update prefix on name zt , in outs this is not the case. In outo , once n updates on name l1 have been executed,

the resulting process
n∏

i=1
l2[Pi] | Q will be enclosed in a (wrong) location (say, t). Process

n∏
i=1

l2[Pi] | Q must be relocated

and t must be deleted. In (15), this relocation is achieved via a synchronization on name zt . In contrast, because outs
uses subjective updates, process reconfiguration follows in the opposite direction. This ensures that, after n updates, process

n∏
i=1

l2[Pi] | Q will remain in its original location, and so no relocation using zt is needed—see Example 5.2 and Fig. 5.

Example 6.2 (Example 5.2, revisited). Consider process P ′ = s
[
t
[
l1[a] | l1[b] | c

] | outo(t, l1, l2 , 2 , Q)
]

, similar to the process
in Example 5.2. P ′ has the following reductions, which are illustrated in Fig. 9:

P ′ = s
[
t
[
l1[a] | l1[b] | c

] | l1{(X1, X2).zt{(Z).l2[X1] | l2[X2] | Q }}.zt[0]
]

−→2 s
[
t
[
c | zt{(Z).l2[a] | l2[b] | Q }] | zt[0]

]
−→ s

[
t
[
c
] | l2[a] | l2[b] | Q

]
In this case, the wrong location is t: the last reduction is needed to move process l2[a] | l2[b] | Q out of zt .

Notice that the number n of protected blocks in the default activity of the transaction scope is directly related to the
number of reduction steps induced by our translations. If n = 0 then the number of reduction steps will be the same for
subjective and objective updates; otherwise, if n > 0, the translation with subjective update will exhibit less reduction steps
than the translation with objective update.

6.2. The translation, formally

The function for determining the number of locations nl(·, ·) in an adaptable process and the function ch(t, ·) are as
introduced in Definition 5.3. We now define process extr{t, l1, l2}:
21

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�〈P 〉�oρ = pρ

[
�P�oε

]
�t[P,Q]�oρ = t

[
�P�ot,ρ

]
| t.

(
extr{t, pt,ρ , pρ} | pρ [�Q �oε])

�a.P�oρ = a.�P�oρ

�a.P�oρ = a.�P�oρ

� t.P �oρ = t.ht .�P�oρ

Fig. 10. Translating C into O.

Definition 6.1 (Update prefix for extraction). Let t , l1, and l2 be names. We write extr{t, l1, l2} to stand for the following
(objective) update prefix:

extr{t, l1, l2} = t{(Y).t[Y] | ch(t, Y) | outo(t, l1, l2 , nl(l, Y) , t{†}.ht)}. (16)

The intuitions for process extr{t, l1, l2} are just as for process extr〈 〈t, l1, l2〉 〉 given in Definition 5.4. We can now
formally define the translation of C into O:

Definition 6.2 (Translation C into O). Let ρ be a path. We define the translation of compensable processes into objective
adaptable processes as a tuple (�·�oρ, ϕ�·�oρ) where:

(a)

ϕ�·�ρ
(x) =

{
{x} if x ∈ Ns

{x,hx, zx} ∪ {pρ : x ∈ ρ} if x ∈ Nt
(17)

(b) �·�oρ : C −→ O is as defined in Fig. 10 and as a homomorphism for other operators.

Intuitions for the translation of t[P,Q] are as in the case of subjective update. For erasing the location and all unneces-
sary processes in it, in this case we need an update prefix t{†} (cf. Convention 5.1).

6.3. Translation correctness

We prove that the translation �·�oρ is a valid encoding (cf. Definition 4.5). We thus consider the five criteria: composi-
tionality, name invariance, and operational correspondence, divergence reflection, and success sensitiveness.

6.3.1. Structural criteria
The first property is compositionality. Compositionality for �·�oρ as well as compositionality for �·�ρ (cf. Theorem 5.3)

includes a path ρ in its formulation.

Theorem 6.3 (Compositionality for �·�oρ). Let ρ be an arbitrary path. For every process operator in C and for all compensable processes
P and Q it holds that:

�〈P 〉�oρ = C〈〉,ρ
[
�P�oε

]
�t[P,Q]�oρ = Ct[,],ρ

[
�P�ot,ρ , �Q �oε

]
�P | Q �oρ = C |

[
�P�oρ, �Q �oρ

]
�a.P�oρ = Ca.

[
�P�oρ

]
�t.P�oρ = Ct.

[
�P�oρ

]
�(νx)P)�oρ = C(νx)

[
�P�oρ

]
�a.P�oρ = Ca.

[
�P�oρ

]
�!π.P�oρ = C!π.

[
�P�oρ

]
Proof. Follows directly from the definition of contexts (Definition 5.6) and from the definition of �·�oρ : C −→ O (Fig. 10)
and has the same derivation as the proof of Theorem 5.3. �

The second property is name invariance with respect to the renaming policy in Definition 5.5 Case (b).

Theorem 6.4 (Name invariance for �·�oρ). For every well-formed compensable processes P and substitution σ : Nc −→ Nc there is
σ ′ :Na −→ Na such that:

(i) for every x ∈ Nc : ϕ�·�oσ (ρ)
(σ (x)) = {σ ′(y) : y ∈ ϕ�·�oρ (x)} and (ii) �σ(P)�oσ (ρ) = σ ′(�P�oρ).

Proof. The proof proceeds in the same way as the proof of Theorem 5.4 by using �·�oρ instead of �·�ρ . �

22

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
6.3.2. Semantic criteria
We consider operational correspondence, divergence reflection, and success sensitiveness.

Operational correspondence. As before, we are interested in precisely accounting for the number of computation steps induced
by our translation. We need the following definition.

Definition 6.3. Let P be a well-formed compensable process, then function Z(P) is defined as follows:

Z(P) =
{

0 if pb(P) = 0,

1 if pb(P) > 0.

The number of reduction steps required for translating a transaction scope depends on the number of protected blocks
in its default activity. As already mentioned, if the default activity contains at least one protected block then the translation
of the transaction has an update location on name zt (it occurs in process outo , cf. (15)); otherwise (if the number of
protected blocks is zero) the number of reduction steps is the same as in the subjective case. This fact is presented by using
the function Z(P) in the following theorem for operational correspondence.

Theorem 6.5 (Operational correspondence for �·�oε). Let P be a well-formed process in C .

(1) If P −→ P ′ then �P�oε −→k �P ′�oε where for
a) P ≡ E[C[a.P1] | D[a.P2]] and P ′ ≡ E[C[P1] | D[P2]] it follows that k = 1.
b) P ≡ E[C[t[P1,Q]] | D[t.P2]] and P ′ ≡ E[C[extr(P1) | 〈Q 〉] | D[P2]] it follows k = 4 + pb(P1) + Z(P1),
c) P ≡ C[u[D[u.P1],Q]] and P ′ ≡ C[extr(D[P1]) | 〈Q 〉], it follows k = 4 + pb(D[P1]) + Z(D[P1]).
for some contexts C , D, E, processes P1, Q , P2 and names t, u.

(2) If �P�oε −→n R with n > 0 then there is P ′ such that P −→∗ P ′ and R −→∗ �P ′�oε .

Proof (Sketch). We present an overview to the proof, giving pointers to results in the appendices:

(1) The proof of completeness is by induction on the derivation of P −→ P ′ and uses:
• Proposition 3.1 (page 7) for determining three base cases. Below we illustrate one of them: the case (c) in which

reduction corresponds to a synchronization due to an internal error notification for a transaction scope.
• The definition of translation, given in Definition 6.2 (page 22).
• Lemma B.1 (page 43) and Lemma B.6 (page 45) hold also for translation �·�oρ , and their role is explained in the proof

sketch of Theorem 5.8 (1).
Now, we illustrate case (c). Therefore, we consider P ≡ C[u[D[u.P1],Q]], with m = pb(D[P1]), and P ′ ≡ C[extr(D[P1]) |
〈Q 〉]. We have the following derivation where paths ρ , ρ ′ , and ρ ′′ are paths to holes in contexts E[•], C[•], and D[•],
respectively:

�P�oε ≡ �C[u[D[u.P1],Q]�oε = �C�oε [�u[D[u.P1],Q]�oρ]
= �C�oε [u[

�D[u.P1]�ou,ρ

] | u.
(
extr{u, pu,ρ , pρ} | pρ [�Q �oε])]]]

= �C�oε [u[
�D�ou,ρ [u.hu .�P1�oρ ′]] | u.(extr{u, pu,ρ , pρ} | pρ [�Q �oε])]

−→ �C�oε

[
u
[
�D�ou,ρ

[
hu .�P1�oρ ′

]]
| u{(Y).u[Y] | ch(u, Y) | outo(u, pu,ρ , pρ , nl(pu,ρ , Y) , u{†}.hu)} | pρ [�Q �oε]

]
−→ �C�oε

[
u
[
�D�ou,ρ

[
hu .�P1�oρ ′

]] | ch(u, �D�ou,ρ

[
hu .�P1�oρ ′

]
)

| outo(u, pu,ρ , pρ , nl(pu,ρ , �D�ou,ρ

[
hu .�P1�oρ ′

]
) , u{†}.hu) | pρ [�Q �oε]

]
−→m+2 �C�oε

[
�extr(D[P1])�oρ | hu | hu | pρ [�Q �oε]

]
−→ �C�oε �extr(D[P1])�oρ | pρ [�Q �oε]

]
= �C[extr(D[P1]) | 〈Q 〉�oε
≡ �P ′�oε

Therefore, the number of reduction steps is k = 4 + m + Z(D[P1]) = 5 + m.
For more details see B.3.1 (page 42) and § C.1.1 (page 62).
23

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(2) To prove soundness, we follow the same ideas as for the proof of soundness for �·�ρ (Theorem 5.8 (2)). The proof is by
induction on n, i.e., the length of the reduction �P�oρ −→n R , and proceeds as for Theorem 5.8 (2), because the auxiliary
results that we used for �·�ρ hold also for �·�oρ . Most notably, we rely crucially on two lemmas: Lemma B.10, which
concerns the shape of processes R and P ′ , and Lemma B.11, which ensures that the obtained adaptable process R can
evolve until reaching a process that corresponds to the translation of a compensable process.

For more details see B.3.1 (page 42) and § C.1.1 at page 64. �
In Theorem 6.5, Case (1) concerns completeness, while Case (2) describes soundness. The following example illustrates

the operational correspondence property:

Example 6.6. Let P be a process as in Example 5.9 (page 18). Expanding Definition 6.2 the following holds:

�P�oε = s
[
t
[

pt,s
[
a
] | pt,s

[
b | c

] | t.
(
extr{t, pt,s, ps} | ps

[
d
])]] | s.extr{s, ps, pε} | t.ht .s.hs

= s
[
t
[

pt,s
[
a
] | pt,s

[
b
] | c

] | t.
(
t{(Y).t[Y] | ch(t, Y) | outo(t, pt,s, ps , nl(pt,s, Y) , t{†}.ht)} | ps

[
d
])]

| s.extr{s, ps, pε} | t.ht .s.hs

−→2 s
[
t
[

pt,s
[
a
] | pt,s

[
b
] | c

] | outo(t, pt,s , ps , 2 , t{†}.ht) | ps
[
d
]] | s.extr{s, ps, pε} | ht .s.hs

−→2 s
[
t
[
zt{(Z).ps[a] | ps

[
b
] | t{†}.ht}

] | zt[0] | ps
[
d
]] | s.extr{s, ps, pε} | ht .s.hs

−→3 s
[

ps[a] | ps
[
b
] | ps

[
d
]] | s.extr{s, ps, pε} | s.hs

−→8 pε[a] | pε

[
b
] | pε

[
d
]

= �〈a〉 | 〈b〉 | 〈d〉�oε .

We have �P�oε −→k �P2�
o
ε with k = 15:

k =4 + pb(P1) + Z(t[〈a〉 | 〈b〉 | c,d])︸ ︷︷ ︸
for transaction t

+4 + pb(P2) + Z(s[〈a〉 | 〈b〉 | 〈d〉,0])︸ ︷︷ ︸
for transaction s

= 4 + 2 + 1 + 4 + 3 + 1 = 15.

We briefly analyze the reduction steps that are related to the translation of transactions on name t and s:

- For location t there are 7 reduction steps: synchronization on t and t , updating location t , two steps as relocation
of process on location pt,s by process outo on location ps , update on location zt , erasing location t using t{†} and
synchronization ht with corresponding output ht .

- For location s there are 8 reduction steps, one more step than for location t; because now location s contains three
processes on location ps that have to be relocated on location pε by using process outo .

Example 6.7. Recall process Reservation from the hotel booking scenario (§ 2, Example 2.1, page 4). We use encoding with
objective update:

�Reservation�oε = t
[
book.pay.invoice

] | t.(extr{t, pt, pε} | pε[ref und]) | book.pay.t.ht .ref und

−→3 t
[
invoice

] | t{(Y).t[Y] | ch(t, Y)

| outo(t, pt , pε , nl(pt , Y) , t{†}.ht)} | pε[ref und] | ht .ref und

−→ t
[
invoice

] | ch(t, invoice) | outo(t, pt , pε , nl(pt, invoice) , t{†}.ht)

| pε[ref und] | ht .ref und

≡ t
[
invoice

] | outo(t, pt , pε , 0 , t{†}.ht) | pε[ref und] | ht .ref und

= t
[
invoice

] | t{†}.ht | pε[ref und] | ht .ref und

−→3 pε[0]
Therefore, we get �Reservation�oε −→7 pε[0] and so the number and justification for the obtained reduction steps is the
same as in Example 5.10. This is because the transaction t does not contain protected blocks. In turn, in our encodings,
this means that there are no differences between processes outs and outo , i.e., they are equal to some process Q . In this
example, Q = t〈 〈†〉 〉.ht .
24

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
Divergence reflection and success sensitiveness. We close our analysis of correctness for the translation �·�oρ by considering
divergence reflection and success sensitiveness. We state the corresponding results; their proofs proceed similarly as for
Theorem 5.12 and Theorem 5.13, respectively.

Theorem 6.8 (Divergence reflection for �·�oρ). Let {Ri}i≥0 be an infinite sequence of adaptable processes such that

(1) R0 = �P0�oρ for some P0 and ρ, and (2) Ri −→ Ri+1 for any i ≥ 0.

Then there is an infinite sequence of adaptable processes {P ′
j} j≥0 such that

(3) P ′
0 = P0, and (4) P ′

j −→ P ′
j+1 for any j ≥ 0.

Theorem 6.9 (Success sensitiveness for �·�oρ). Let P be a well-formed compensable process and ρ is an arbitrary path. Then P ⇓ if and
only if �P�oρ ⇓.

7. Comparing subjective vs objective updates

Having introduced two encodings of compensable processes into adaptable processes, here we compare their efficiency.
We define efficiency in abstract terms, considering the number of reduction steps that a target language requires to mimic
the behavior of a source language:

Definition 7.1 (Efficient encoding). Let Li = (Pi, −→i, ≈i) (with i ∈ {1, 2, 3}) be calculi as in Definition 4.1. Suppose �·�1 :
P1 −→ P2 and �·�2 : P1 −→ P3 are encodings as in Definition 4.5. We say that �·�1 is as or more efficient than �·�2 if for
every process P from P1 the following implication holds (with k1, k2 > 0):

If P −→ P ′ and �P�1 −→k1 �P ′�1 and �P�2 −→k2 �P ′�2 then k1 ≤ k2.

We then have the following theorem:

Theorem 7.1. The encoding �·�ρ : C −→ S is as or more efficient than �·�oρ : C −→ O.

Proof. The proof follows directly the operational correspondence results for each encoding, given in Theorem 5.8 and The-
orem 6.5. Let P be a well-formed compensable process such that P −→ P ′ and �P�ρ −→k1 �P ′�ρ and �P�oρ −→k2 �P ′�ρ .
Based on Proposition 3.1, we consider the following three cases, for some contexts C, D, E , processes P1, Q , P2 and names
t, u:

a) Case P ≡ E[C[a.P1] | D[a.P2]]: Here Theorem 5.8 and Theorem 6.5 ensure that k1 = k2 = 1. Thus, update prefixes make
no difference when encoding usual input-output synchronizations.

b) Case P ≡ E[C[t[P1,Q]] | D[t.P2]]: In this case, Theorem 5.8 ensures k1 = 4 + pb(P1), while Theorem 6.5 ensures k2 =
4 + pb(P1) + Z(P1).

c) Case P ≡ C[u[D[u.P1],Q]]: Here Theorem 5.8 ensures k1 = 4 + pb(D[P1]) and Theorem 6.5 ensures k2 = 4 +
pb(D[P1]) + Z(D[P1]).

Thus, in all three cases k1 ≤ k2; by Definition 7.1 we conclude that �·�ρ is as or more efficient than �·�oρ . �
Let us dwell a bit on the content of the previous theorem, to understand better the differences between the two en-

codings (and between objective and subjective update). Recall that the main difference between our encodings is in the
auxiliary processes

extr〈〈t, l1, l2〉〉 and extr{t, l1, l2}
which are used in the encoding of transaction scopes in the subjective and objective case, respectively. In turn, those
auxiliary processes rely on processes outs(l1 , l2 , n , Q) and outo(t, l1 , l2 , n , Q) (cf. (12) and (15), respectively), which
extract n processes located at l1 in Q and relocate them to l2.

A closer look at outs(l1 , l2 , n , Q) and outo(t, l1 , l2 , n , Q) reveals that they differ in the use of name z, which is used
in the objective case (when n > 0) but not in the subjective case. The use of zt appears indispensable: under a semantics
with objective update, after n updates, the located processes will stay at the wrong location (i.e. t). To avoid this, we use zt
as an auxiliary location. This auxiliary location enables us to move processes out of t and to relocate them to their parent
location.

This synchronization step on name zt is the key to the efficiency gains obtained when moving from objective to sub-
jective updates—clearly, the improvement will be proportional to the number of compensation operations in the source
25

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
process. Consider again Example 5.9 and Example 6.6, which translate process P = s
[
t[〈a〉 | 〈b〉 | c,d],0

] | t.s using subjective
and objective updates, respectively. Here the subjective encoding outperforms the objective encoding by two reduction steps.
In Example 6.6, these two steps correspond to two synchronizations on name zt , which are not needed in Example 5.9.

Finally, as the proof of Theorem 7.1 makes explicit, the two encodings are equivalent, in terms of efficiency, when
n = 0 in outs(l1 , l2 , n , Q) and outo(t, l1 , l2 , n , Q). This is because in this case we do not need to save any process
from the default activity of the transaction scope—we need an equal number of reduction steps for achieving operational
correspondence.

8. Extensions

In this section we discuss extensions to the source calculus of compensable processes that we have considered here, and
how our encoding into (subjective) adaptable processes can account for such extensions.

8.1. Extensions to compensable processes

In the paper [15], Lanese et al. present different variants of the calculus of compensable processes:

• compensations may admit static or dynamic recovery (i.e., recovery without/with compensation updates); and
• nested transactions and protected blocks can be kept after failures via discarding, preserving, and aborting semantics.

Up to here, we have considered compensable processes with discarding semantics (§ 3.1). We now discuss and explain the
main differences with respect to the other alternatives.

Static compensations. To motivate the differences between discarding semantics and preserving and aborting semantics, we
consider their corresponding extraction function. The extraction function for preserving and aborting semantics (denoted
extrP(·) and extrA(·), respectively) are different from the function for discarding semantics (cf. Fig. 1) only when the process
P is a transaction scope:

• extrP(P) keeps protected blocks and transactions at the top-level in P . Other processes are discarded.

extrP(t[P1,Q]) = t[P1,Q] (18)

• extrA(P) keeps all protected blocks in P , including protected blocks from all nested transactions in P and their respective
compensation activities. Other processes are discarded.

extrA(t[P1,Q]) = extrA(P1) | 〈Q 〉 (19)

This way, discarding, preserving, and aborting semantics define different levels of protection for protected blocks. As an
example, consider the process P = t

[
t1[P1,Q 1] | t2[〈P2〉,Q 2] | 〈P3〉,Q 5

]
(cf. (4)), where process P1 does not contain pro-

tected blocks and transaction scopes. Writing τ−−→D , τ−−→P , and τ−−→A to denote the LTSs induced by the different extraction
functions, we would have:

Discarding : t | P
τ−→D 〈P3〉 | 〈Q 5〉

Preserving : t | P
τ−→P 〈P3〉 | t1[P1,Q 1] | t2[〈P2〉,Q 2] | 〈Q 5〉

Aborting : t | P
τ−→A 〈P3〉 | 〈P2〉 | 〈Q 1〉 | 〈Q 2〉 | 〈Q 5〉

Unlike the discarding semantics, the preserving semantics protects also the nested transactions t1 and t2. The aborting
semantics preserves all protected blocks and compensation activities in the default activity for t , including those in nested
transactions, such as 〈P2〉. Therefore, aborting semantics preserves more behaviors than discarding semantics (including
protected blocks in nested transactions), while preserving semantics has the highest level of protection.

Dynamic compensations. Compensations can be dynamic rather than static, in the following sense: given a transaction t[P,Q],
process P can use compensation updates to specify an update for the compensation behavior Q . This is achieved by the
operator inst�λX .Q �.P , where λX .Q is a function (with parameter X) that represents the compensation update. As a
simple example, consider the following transition:

t
[
inst�λX .R�.P1,Q

] τ−→ t
[

P1,R{Q/X}] (20)

This way, inst�λX .R�.P produces a new compensation behavior R{Q/X} after an internal transition. As variable X
may not occur in R , this step may fully discard the previous compensation activity Q . A compensation update has priority
over other transitions; that is, if process P in transaction t[P,Q] has a compensation update at top-level then it will be
performed before any change of the current state.
26

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
Definition 8.1. Building upon the syntax in § 3.1, we shall write CP and CA o denote compensable processes with preserving
and aborting semantics, respectively. Also, we write Cλ to denote compensable processes with compensation updates.

Remark 8.1. The notion of well-formed compensable processes (cf. Section 3.2) extends to CP and CA as expected. For Cλ ,
the definition of well-formed processes must account for compensation updates (cf. Remark 8.8). Our translations of CP , CA
and Cλ into S will be defined for well-formed compensable processes.

8.2. Extensions to our (efficient) encoding

We discuss key modifications required to encode CP , CA and Cλ into S . We focus on S as target language, as we have
already seen that this language induces encodings that are more efficient than encodings into O. In all cases, we focus on
highlighting the modifications required to define the translations, omitting details on their associated correctness properties.

8.2.1. Translating CP into S
The translation CP into S , denoted �·�ρ , uses very similar ideas as the encoding �·�ρ . This way, the translation of a

protected block found at path ρ , is defined as:

�〈P 〉�ρ = pρ

[
�P �ε

]
.

To encode a preserving semantics we extend the base sets given in Definition 5.1 as follows:

• N r
s = {hx, jx, rx | x ∈Nt} is the set of reserved synchronization names;

• N r
l = {pρ, βρ | ρ is a path} is the set of reserved location names.

We extend the set of reserved location names with name βρ , because besides protected blocks we have to keep transactions
that are in default activity P (cf. (18)) in the case that a failure signal exists. We use a revised auxiliary process, denoted
outps(t, l1, l′1, l2, l′2 , n , m), which (i) moves n processes from location l1 to location l′1; (ii) moves m processes from location
l2 to location l′2. To define process outps , we need some auxiliary notions. In the case, when we move m processes from
location l2 to location l′2 it will be necessary to remove some names from the path in processes that are enclosed in l′2. The
following function removes a name from a path:

Definition 8.2. Let ρ = t1, . . . , tn be a path and r be a name in Nt . We define the function ρ/r as follows:

ρ/r =
⎧⎨
⎩

t1, t2, . . . , ti−1, ti+1, . . . , tn if ti = r

ρ if ti �= r and 1 ≤ i ≤ n.

It should be noted that name r can occur only one time in ρ (cf. Definition 3.4 (i)).
The following definition serves to remove names mentioned in an adaptable process. This is important: if a transaction t

had nested transactions and location name t is lost, then we have to remove t from all the paths that contained it.

Definition 8.3. Let P be an adaptable process, and let ρ be a path that contains name s. The function E(P , s) is defined as
follows:

E(P , s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l[E(P1, s)] if P = l[P1] and l /∈ N r
l

pρ/s[E(P1, s)] if P = pρ [P1]
βρ/s[E(P1, s)] if P = βρ [P1]
E(P1, s) | E(P2, s) if P = P1 | P2
π.E(P1, s) if P = π.P1
!π.E(P1, s) if P =!π.P1
(νx)E(P1, s) if P = (νx)P1
0 if P = 0
X if P = X .

Definition 8.4. Let l be a name and P an adaptable process. Function top(l, P) denotes the list of location names from P
that are nested (at top level) in l. It is defined as follows:

top(l, l′[P]) =
{

{l′′} if l′ = l and P ≡ l′′[Q] | R for some Q , R and l′′ ∈ Nt

∅ otherwise
top(l, P | Q) = top(l, P) ∪ top(l, Q) top(l,0) = top(l, X) = ∅
top(l, (νx)P) = top(l, P) top(l,π.P) = top(l, !π.P) = ∅
27

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
tsP(t[P,Q]) = 1 tsA(t[P,Q]) = 1 + tsA(P) ts(π.P) = ts(〈P 〉) = 0

ts(P | Q) = ts(P) + ts(Q) ts((νx)P) = ts(P) ts(!π.P) = ts(0) = 0

Fig. 11. Number of transactions.

For the definition of outps(t, P , l1, l′1, l2, l′2 , n , m) we introduce the following auxiliary processes:

outps1(t, l1, l′1,n) = l1〈〈(X1, . . . , Xn).

(
n∏

i=1

l′1[Xi] | t〈〈†〉〉. jt .rt

)
〉〉;

outps2(t, t1, . . . , tm, l2, l′2,m) = l2〈〈(Y1, . . . , Ym).

(
rt .

(
m∏

k=1

(
l′2[E(Yk, t)] | jtk .l

′
2〈〈(X).X〉〉.rtk .htk

))
| t〈〈†〉〉. jt

)
〉〉;

outps3(t, t1, . . . , tm, l1, l′1, l2, l′2,n,m) = l1〈〈(X1, . . . , Xn).l2〈〈(Y1, . . . , Ym).(
n∏

i=1

l′1[Xi] | rt .

(
m∏

k=1

(
l′2[E(Yk, t)] | jtk .l

′
2〈〈(X).X〉〉.rtk .htk

))
| t〈〈†〉〉. jt

)
〉〉〉〉.

The auxiliary process outps(t, P , l1, l′1, l2, l′2 , n , m), where top(l2, P) = {t1, . . . , tm} for m > 0,is defined as follows:

outps(t, P , l1, l′1, l2, l′2 , n , m) =

⎧⎪⎪⎨
⎪⎪⎩

t〈〈†〉〉. jt .rt if n,m = 0
outps1(t, l1, l′1,n) if n > 0,m = 0
outps2(t, t1, . . . , tm, l2, l′2,m) if n = 0,m > 0
outps3(t, t1, . . . , tm, l1, l′1, l2, l′2,n,m) if n,m > 0

(21)

The following example illustrates process outps (cf. (21)). A more detailed explanation is given later on.

Example 8.2. We illustrate the revised auxiliary process:

s
[
t
[
l1[c] | l1[d] | e

] | outps1(t, l1, l′1,2)
]

= s
[
t
[
l1[c] | l1[d] | e

] | l1〈〈(X1, X2).
(
l′1[X1] | l′1[X2] | t〈〈†〉〉. jt .rt

)〉〉]
−→ s

[
t
[
l1[d] | e

] | l1〈〈(X2).
(
l′1[c] | l′1[X2] | t〈〈†〉〉. jt .rt

)〉〉]
−→ s

[
t
[
e
] | l′1[c] | l′1[d] | t〈〈†〉〉. jt .rt

]
−→ s

[
l′1[c] | l′1[d] | jt .rt

]
Above, the two reduction steps are used for relocation of l1[c] and l1[d] that are nested in location t (with omitted

trailing occurrences of 0). The third step is the synchronization between update prefix t〈 〈†〉 〉 and location t[e], where the
update deletes the location and its content.

In order to give a precise account of the number of computation steps used by our translation, we use pb(P) (as before)
but also one additional notion. Given a compensable process P , we will write tsP(P) and tsA(P) to denote the number of
transactions in P for preserving and aborting semantics, respectively. Whenever a notion coincides for the both semantics,
we shall avoid decorations P and A. The function ts(·) is presented in Fig. 11. It should be noted that the number of
protected blocks and transactions in the default activity of the transaction scope correspond to the number of locations pt,ρ

and βt,ρ after the encoding of protected blocks and transactions in this transaction.
The last ingredient we need to translate CP into S is the following auxiliary process.

Definition 8.5 (Update prefix for extraction). Let t , l1, l2 be names and P is an adaptable process. We write
extrp〈 〈t, P , l1, l′1, l2, l′2〉 〉 to stand for the following (subjective) update prefix:

extrp〈〈t, P , l1, l′1, l2, l′2〉〉 = t〈〈(Y).t[Y] | ch(t, Y) | outps(t, P , l1, l′1, l2, l′2 , nl(l1, Y) , nl(l2, Y))〉〉 (22)

Now, we may formally define �·�ρ :

Definition 8.6 (Translating CP into S). Let ρ be a path. We define the translation of compensable processes with preserving
semantics into (subjective) adaptable processes as a tuple (�·�ρ , ϕ�·�) where:
ρ

28

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�〈P 〉�ρ = pρ

[
�P�ε

]
�t[P,Q]�ρ = βρ

[
t
[
�P�t,ρ

] | t.
(
extrp〈〈t, �P�t,ρ , pt,ρ , pρ,βt,ρ , βρ〉〉 | pρ [�Q �ε]

)]
| jt .βρ〈〈(X).X〉〉.rt .ht

�a.P�ρ = a.�P�ρ

�a.P�ρ = a.�P�ρ

�t.P�ρ = t.ht .�P�ρ

Fig. 12. Translating CP into S .

pbA(〈P 〉) = pbP(〈P 〉) = 1 pbP(t[P,Q]) = 0 pbA(t[P,Q]) = 1 + pbA(P)

pb(inst�λX .Q �.P) = 0 pbP(inst�λX .Q �.P) = 0 pbA(inst�λX .Q �.P) = 0

Fig. 13. Number of protected blocks for preserving and aborting semantics and dynamic recovery.

(a) The renaming policy ϕ�·�ρ
:Nc −→ P(Na) is defined with

ϕ�·�ρ
(x) =

{
{x} if x ∈ Ns

{x,hx, jx, rx} ∪ {pρ,βρ : x ∈ ρ} if x ∈ Nt
(23)

(b) The translation �·�ρ : CP −→ S is as in Fig. 12 and as a homomorphism for other operators.

Consider the translation of t[P,Q]: as in the encoding �·�ρ (cf. Fig. 6), the structure of a transaction and the number
of its top-level processes dynamically changes if there is a failure signal; whenever we need to extract processes located at
pt,ρ and βt,ρ we will first substitute Y in process outps (cf. (21)) by the content of the location t and count the current
number of locations pt,ρ and βt,ρ . The translation of the transaction body P with location t is nested in location βρ , and
the compensation activity Q is encoded as a protected block and nested in location pρ . If P contains n top-level protected
blocks and m top-level transaction scopes (with n, m > 0) when the failure signal t̄ is activated, after synchronizations on
t and updates, the translation will release n + m successive update prefixes by using auxiliary processes outps . Indeed,
thanks to processes outps , n protected blocks at location pt,ρ and m transaction scopes at location βt,ρ will be moved
to their parent locations (pρ and βρ , respectively). Subsequently, there is a synchronization on location t that discards it
with its content. After that, there are synchronizations on names jt , βρ , rt , and ht . As we explained before, we use function
E(P , s) (cf. Definition 8.3) when we have to take the name s out from all the paths that contain it.

The following example illustrates the translation.

Example 8.3. Notably, P = s
[
t[v[b,0],c] | 〈d〉,0

] | t.s is a well-formed compensable process. By the LTS (cf. Fig. 2), we have

P
τ−→P s[v[b,0] | 〈c〉 | 〈d〉,0] | s̄

τ−→P v[b,0] | 〈c〉 | 〈d〉.
We have that pbP(P) = 0 and tsP(P) = 1. Let P1 = t[v[b,0],c]: by Fig. 13 it follows that pbP(P1) = 0; by Fig. 11 that
tsP(P1) = 1. We have a sequential error notification such that activation starts from nested transactions on name t . By
expanding Definition 8.6, we have the following translation and derivation:

�P �ε = βε

[
s
[
βs

[
t
[
βt,s

[
v
[

b
]

| v.
(
extrp〈〈v, �b�v,t,s, pv,t,s, pt,s, βv,t,s, β,t,s〉〉

)]
| jv .βt,s〈〈(X).X〉〉.rv .hv

]
| t.

(
extrp〈〈t, �v[b,0]�t,s, pt,s, ps, βt,s, βs〉〉 | ps

[
c
])]

| jt .βs〈〈(X).X〉〉.rt .ht | ps
[
d
]]

| s.
(
extrp〈〈s, �P1 | 〈d〉�s, ps, pε,βs, βε〉〉

)]
| js.βε〈〈(X).X〉〉.rs.hs | t.ht .s.hs

= βε

[
s
[
βs

[
t
[
βt,s

[
v
[

b
]

| v.
(
extrp〈〈v, �b�v,t,s, pv,t,s, pt,s, βv,t,s, β,t,s〉〉

)]
| jv .βt,s〈〈(X).X〉〉.rv .hv

]
| t.

(
t〈〈(Y).t[Y] | ch(t, Y) | outps(t, �v[b,0]�t,s, pt,s, ps, βt,s, βs , nl(pt,s, Y) , nl(βt,s, Y))〉〉 | ps

[
c
])]

| jt .βs〈〈(X).X〉〉.rt .ht | ps
[
d
]]

| s.
(
extrp〈〈s, �P1 | 〈d〉�s, ps, pε,βs, βε〉〉

)]
| js.βε〈〈(X).X〉〉.rs.hs | t.ht .s.hs

−→8 βε

[
s
[
βs

[
v
[

b
]

| v.
(
extrp〈〈v, �b�v,s, pv,s, ps, βv,s, βs〉〉

)]
| jv .βs〈〈(X).X〉〉.rv .hv | ps

[
c
] | ps

[
d
]]
29

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
| s.
(
s〈〈(Y).t[Y] | ch(s, Y) | outps(s, �P1 | 〈d〉�s, ps, pε,βs, βε , nl(ps, Y) , nl(βs, Y))〉〉)]

| js.βε〈〈(X).X〉〉.rs.hs | s.hs

−→9 βε

[
v
[

b
]

| v.
(
extrp〈〈v, �b�v , pv , pε,βv , βε〉〉

)]
| jv .βε〈〈(X).X〉〉.rv .hv | pε

[
c
] | pε

[
d
]

= �v[b,0] | 〈c〉 | 〈d〉�ε.
Therefore, the number of reduction steps is k = 17. Indeed, we have 8 reduction steps for location t and 9 reduction

steps and for location s:

i) the first step is a synchronization on name t;
ii) now the process extrp〈 〈t, �v[b,0]�t,s, pt,s, ps, βt,s, βs〉 〉 is released and the second step is synchronization on update

prefix t〈 〈(Y).t[Y] | ch(t, Y) | outps(t, �v[b,0]�t,s, pt,s, ps, βt,s, βs , nl(pt,s, Y) , nl(βt,s, Y))〉 〉 and location

t
[
βt,s

[
v
[

b
]

| v.
(
extrp〈〈v, �b�v,t,s, pv,t,s, pt,s, βv,t,s, β,t,s〉〉

)]
| jv .βt,s〈 〈(X).X〉 〉.rv .hv

]
;

iii) as a result, process

outps(t, �v[b,0]�t,s, pt,s, ps, βt,s, βs , 0 , 1) = βt,s〈〈(Y).
(

rt .
(
βs[E(Y , t)] | jt .βs〈〈(X).X〉〉.rt .ht

) | t〈〈†〉〉. jt

)
〉〉

triggers the third step: the synchronization of location βt,s[. . .] with update prefix βt,s〈 〈(Y). . . . 〉 〉;
iv) the fourth step is the synchronization between update prefix t〈 〈†〉 〉 and location t[. . .], where the update deletes the

location and its content (cf. (11));
v) the fifth step is a synchronization on name jt , which enables an update on βs〈 〈(X).X〉 〉;

vi) the sixth step is a synchronization between βs〈 〈(X).X〉 〉 and βs

[
. . .

]
, which deletes the location βs;

vii) the seventh step is a synchronization on name rt , which releases the process

βs

[
v
[

b
]

| v.
(
extrp〈〈v, �b�v,s, pv,s, ps, βv,s, βs〉〉

)]
| jt .βs〈〈(X).X〉〉.rt .ht;

viii) the eighth step is a synchronization on ht , which activates visit to location on name s.

At this point, we have the same reduction steps but for location s. We have one more reduction step, though, since in
process outps(s, �P1�s, ps, pε, βs, βε , 1 , 1) we have a location ps[. . .] that has to be relocated to pε[. . .]. Consequently, we
have 9 reduction steps for handling the location on name s.

We conclude by illustrating the translation on Example 2.1 (cf. page 4).

Example 8.4. We consider the hotel booking scenario where the client cancels a reservation after booking and paying. In
compensable processes for preserving semantics we have that:

Reservation
τ−→P t[pay.invoice,ref und] | pay.(invoice + t.ref und)
τ−→P t[invoice,ref und] | invoice + t.ref und

τ−→P 〈ref und〉 | ref und
τ−→P 〈0〉.

We apply the translation (cf. Definition 8.6) on process Reservation:

�Reservation�ε = βε

[
t
[
book.pay.invoice.

] | t.
(
extrp〈〈t,book.pay.invoice., pt, pε,βt , βε〉〉 | pε[ref und]

)]
| jt .βε〈〈(X).X〉〉.rt .ht | book.pay.t.ht .ref und

−→3βε

[
t
[
invoice

] | t〈〈(Y).t[Y] | ch(t, Y)

| outps(t,book.pay.invoice., pt, pε,βt, βε , nl(pt , Y) , nl(βt, Y))〉〉 | pε[ref und]
]

| jt .βε〈〈(X).X〉〉.rt .ht | ht .ref und

−→βε

[
t
[
invoice

] | t〈〈†〉〉. jt .rt | pε[ref und]
]

| jt .βε〈〈(X).X〉〉.rt .ht | ht .ref und

−→5 pε[ref und] | ref und

−→ pε[0]
Therefore, �Reservation�ε −→10 pε[0]. There are three reduction steps, denoted −→3, as a result of synchronizations on
names book, pay, and t . Now, the structure of the default activity of transaction is changed and we have one reduction
step for updating its current content. After that, there are six additional reduction steps: one for erasing location t and
its content, a synchronization between jt with jt , an update on location βε

[
jt .rt | pε[ref und]

]
with βε〈 〈(X).X〉 〉, and three

reduction steps that result from synchronizations on names rt , ht , and ref und.
30

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
〈|〈P 〉|〉ρ = pρ

[〈|P |〉ε
]

〈|t[P,Q]|〉ρ = t
[〈|P |〉t,ρ

] | rt .
(
extra〈〈t, pt,ρ , pρ〉〉 | pρ [〈|Q |〉ε]

) | t.t〈〈(Y).t[Y] | Tt(Y).ht〉〉
〈|a.P |〉ρ = a.〈|P |〉ρ
〈|a.P |〉ρ = a.〈|P |〉ρ
〈| t.P |〉ρ = t.ht .〈|P |〉ρ

Fig. 14. Translating CA nto S .

8.2.2. Translating CA into S
The translation CA into S , denoted 〈|·|〉ρ , also relies on the key ideas of our encoding �·�ρ . The translation of a protected

block found at path ρ is defined as before:

〈|〈P 〉|〉ρ = pρ

[〈|P |〉ε
]

To translate aborting semantics for a transaction t[P,Q] we use the base sets in Definition 5.1. The set of reserved location
names is kept unchanged and the set of reserved synchronization names is extended such that N r

s = {hx, kx, rx | x ∈ Nt}. We
need some additional auxiliary processes.

The aborting semantics keeps not only top-level protected blocks of a transaction, but also protected blocks from nested
transactions (cf. (19)). To handle this, we define the activation prefixes of a process, which captures the hierarchical struc-
ture of its nested locations. Nested locations arise as a result of a translated transaction with its nested transactions. The
activation prefixes contain the names of the nested locations. These names originate exclusively from its corresponding
transaction name and the names of its nested transactions (i.e., locations on names pρ are not included in the activation
prefixes).

Definition 8.7 (Activation Prefixes). Given a located process l[P], we denote by St(l[P]) the containment structure of process
l[P]: the labeled tree (with root l) in which nodes are labeled with names from Nt such that sub-trees capture nested
locations. The activation prefixes for l[P], denoted Tl(P), are obtained by a post-order search in St(l[P]) in which the visit to
a node labeled li adds prefixes rli .kli .

Example 8.5. Given l[P] with P = l1[l2[pρ [m1]] | m2] | l3[m3 | l4[m4] | l5[m5]], by Definition 8.7 we have the activation pre-
fixes:

Tl(P) = rl2 .kl2 .rl1 .kl1 .rl4 .kl4 .rl5 .kl5 .rl3 .kl3 .rl.kl

A failure signal extracts all nested protected blocks and erases nested locations; our translation does the same with the
corresponding located processes and nested locations. We define the following auxiliary process:

Definition 8.8 (Update prefix for extraction). Let t , l1, and l2 be names. We write extra〈 〈t, l1, l2〉 〉 to stand for the following
(subjective) update prefix:

extra〈〈t, l1, l2〉〉 = t〈〈(Y).t[Y] | ch(t, Y) | outs(l1, l2 , nl(l, Y) , t〈〈†〉〉.kt)〉〉. (24)

The translation 〈|·|〉ρ is defined as follows:

Definition 8.9 (Translation CA into S). Let ρ be a path. We define the translation of compensable processes with aborting
semantics into (subjective) adaptable processes as a tuple (〈|·|〉ρ, ϕ〈|·|〉ρ) where:

(a) The renaming policy ϕ〈|·|〉ρ :Nc −→ P(Na) is defined with

ϕ〈|·|〉ρ (x) =
{ {x} if x ∈ Ns

{x,hx,kx, rx} ∪ {pρ : x ∈ ρ} if x ∈ Nt

(b) The translation 〈|·|〉ρ : C −→ S is as in Fig. 14 and as a homomorphism for other operators.

Consider the translation of t[P,Q]: the presence of a failure signal dynamically changes the structure of a located process
on transaction name (e.g. t) and the number of its nested processes. Therefore, we need first to substitute Y in activation
prefixes Tt(Y) by the content of location t . For the same reason, whenever we need to extract processes located at pt,ρ

we will substitute Y in process outs by the content of the location t . Also, we count the current number of locations pt,ρ
31

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
using function nl(·, ·) (cf. Definition 5.3). As in the translation for C into S , we use the reserved name ht to control the
execution of failure signals.

The following example illustrates the translation.

Example 8.6. Let P = s
[
t[〈a〉 | 〈b〉 | c,d],0

] | t.s (the same as in Example 5.9). By the LTS (cf. Fig. 2), we have:

P
τ−→A s[〈a〉 | 〈b〉 | 〈d〉,0] | s̄

τ−→A 〈a〉 | 〈b〉 | 〈d〉.
We apply the translation 〈|·|〉ρ on P and illustrate its behaviors:

〈|P |〉ε = s
[
t
[

pt,s
[
a
] | pt,s

[
b
] | c

] | rt .
(
extra〈〈t, pt,s, ps〉〉 | ps

[
d
] | t.t〈〈(Y).t[Y] | Tt(Y).ht〉〉

)]
| rs.

(
extra〈〈s, ps, pε〉〉

) | s.s〈〈(Y).s[Y] | Ts(Y).hs〉〉 | t.ht .s.hs

−→2 s
[
t
[

pt,s
[
a
] | pt,s

[
b
] | c

] | rt .
(
extra〈〈t, pt,s, ps〉〉 | ps

[
d
])] | rt .kt .ht | rs.

(
extra〈〈s, ps, pε〉〉

)
| s.s〈〈(Y).s[Y] | Ts(Y).hs〉〉 | ht .s.hs

−→7 s
[

ps
[
a
] | ps

[
b
] | ps

[
d
]] | rs.

(
extra〈〈s, ps, pε〉〉

) | s.s〈〈(Y).s[Y] | Ts(Y).hs〉〉 | s.hs

−→2 s
[

ps
[
a
] | ps

[
b
] | ps

[
d
]] | rs.

(
extra〈〈s, ps, pε〉〉

) | rs.ks.hs | hs

−→8 pε

[
a
] | pε

[
b
] | pε

[
d
]
.

The total number of reduction steps is k = 19. We have 9 steps for location t and 10 steps for location s:

i) the first step is a synchronization on name t;
ii) the second step is the synchronization between t〈 〈(Y).t[Y] | Tt(Y).ht〉 〉 and t

[
pt,s

[
a
] | pt,s

[
b
] | c

]
;

iii) the third step is synchronization on name rt , where rt comes from Tt(pt,s
[
a
] | pt,s

[
b
] | c) = rt .kt ;

iv) now the process extrp〈 〈t, pt,s, ps〉 〉 is released and the fourth step is the synchronization between update prefix
t〈 〈(Y).t[Y] | ch(t, Y) | outs(pt,s, ps , nl(pt,s, Y) , t〈 〈†〉 〉.kt)〉 〉 and location t

[
pt,s

[
a
] | pt,s

[
b
] | c

]
;

v) we get process outs(pt,s, ps , 2 , t〈 〈†〉 〉. jt), which triggers the fifth and sixth reductions: the synchronizations between
pt,s[a] and pt,s[b] and update prefixes pt,s〈 〈(X1, X2).ps[X1] | ps[X2] | t〈 〈†〉 〉. jt〉 〉;

vi) the seventh step is the synchronization between update prefix t〈 〈†〉 〉 and location t[c], where the update prefix deletes
the location together with its content (cf. (11));

vii) the eighth and ninth reduction steps are synchronizations on names kt and ht .

At this point, we have the same reduction steps for location s. We have one more reduction step, though, since in pro-
cess outs(ps, pε , 3 , s〈 〈†〉 〉.ks) we have 3 locations ps[. . .] that have to be relocated to pε[. . .]. Consequently, we have 10
reduction steps for handling location s.

We close this section by illustrating the translation on Example 2.1 (cf. page 4).

Example 8.7. We consider once again the hotel booking scenario. Using compensable processes with aborting semantics we
have that:

Reservation
τ−→A t[pay.invoice,ref und] | pay.(invoice + t.ref und)
τ−→A t[invoice,ref und] | invoice + t.ref und

τ−→A 〈ref und〉 | ref und
τ−→A 〈0〉.

We apply the translation in Definition 8.9 to process Reservation:

〈|Reservation|〉ε = t
[
book.pay.invoice

] | rt .
(
extra〈〈t, pt, pε〉〉 | pε[ref und]

)
| t.t〈〈(Y).t[Y] | Tt(Y).ht〉〉 | book.pay.t.ht .ref und

−→4 t
[
invoice

] | rt .(t〈〈(Y).t[Y] | ch(t, Y)

| outs(pt , nl(pt, Y) , t〈〈†〉〉.kt)〉〉 | pε[ref und]) | rt .kt .ht | ht .ref und

−→2 t
[
invoice

] | outs(pt, pε , 0 , t〈〈†〉〉.kt) | pε[ref und] | kt .ht | ht .ref und

≡ t
[
invoice

] | t〈〈†〉〉.kt | pε[ref und] | kt .ht | ht .ref und

−→4 pε[0] = 〈|0|〉ε.
32

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
The three steps taken at the beginning are explained in all variants of this example (cf. Example 8.4). The fourth step is
the update on location t; the fifth step is a synchronization on name rt ; the sixth step is again an update on the location t;
the seventh step is a synchronization on name kt ; the eighth step deletes location t with its content; the last two steps are
synchronizations on names ht and ref und. Therefore, we get 〈|Reservation|〉ε −→10 pt [0].

8.2.3. Translating Cλ into S
The translation Cλ into S , denoted �·�λ

ρ , extends the key ideas of the encoding �·�ρ . The set of reserved location names N r
l

is unchanged and the set of reserved synchronization names is extended such that N r
s = {hx, mx, kx, ux, vx, ex, gx, fx | x ∈Nt}.

The function for determining the number of locations (cf. Definition 5.3) is extended as follows:

nl(l,inst�λY .R�.P) = nl(l, P). (25)

We will use process outs as defined for �·�ρ (cf. (12)). We need some additional auxiliary processes.

Definition 8.10 (Update prefix for extraction). Let t , l1, and l2 be names. We write extr〈 〈t, l1, l2〉 〉 to stand for the following
(subjective) update prefix:

extr〈〈t, l1, l2〉〉 = t〈〈(Y).
(

t[Y] | ch(t, Y) | outs(l1, l2 , nl(l, Y) , mt .kt .t〈〈†〉〉.ht)
)
〉〉 (26)

The intuition for the process extr〈 〈t, l1, l2〉 〉 is the same as in the translation of C into S with static recovery (cf.
Definition 5.4). The only difference is in the third parameter for process outs , which enables us to have a controlled
execution of adaptable processes, which is important to establish operational correspondence. The prefix t〈 〈†〉 〉 and name ht

have the same roles as in �·�ρ . The differences concern names mt and kt : while name mt ensures that every translation
of compensation Q is updated if the translation of compensation update exists, name kt controls the execution of failure
signals.

Remark 8.8 (Well-formed processes with dynamic recovery). We revisit the notion of well-formed compensable processes, now
with compensation updates. We first present a non well-formed process P1, and its transition:

× P1 = t1[inst�λX .t2[X,a]�.b,c] | t1 | t2
τ−→ t1[b,t2[c,a]] | t1 | t2. (27)

Process P1 has concurrent error notifications (on t1 and t2), and a pair of nested transactions (i.e., (t1, t2)) that is hard
to capture properly in the representation that we shall give in terms of adaptable processes. In contrast, we would like to
consider as well-formed the following process P (where t1 �= t2), and we present its transition:

� P = t1[inst�λX .t2[X,a]�.b,c] | t1.t2
τ−→ t1[b,t2[c,a]] | t1.t2. (28)

For Cλ processes, the relation for well-formed compensable processes (cf. Fig. 3) should be extended with the following
rule:

(W-Inst)

�1;�1 |−−−−−−
γ1;δ1;p1

P �2;�2 |−−−−−−
γ2;δ2;p2

Q �3;�3 |−−−−−−
γ3;δ3;p3

R fλ(P(P),P(Q),P(R)) = (�,�) �s ∩ �t = ∅
�;� |−−−−−−−−−−−−−−−

3⋃
i=1

γi;
3⋃

i=1
δi;

3∨
i=1

pi

t[inst�λX .R�.P,Q]

where

γ1 × (γ2 ∪ γ3) = {(t′, t′′) : t′ ∈ γ1 ∧ t′′ ∈ γ2 ∪ γ3} and {t} × δ = {(t, t′) : t′ ∈ δ} (29)

and P(P) = (�1, �1, γ1, δ1), P(Q) = (�2, �2, γ2, δ2) and P(R) = (�3, �3, γ3, δ3) and

fλ(P(P),P(Q),P(R)) = (�1 ∪ �2 ∪ �3 ∪ (γ1 × (γ2 ∪ γ3)) ,�1 ∪ �2 ∪ �3 ∪ ({t} × (δ1 ∪ δ2 ∪ δ3 ∪ γ1 ∪ γ2 ∪ γ3)))

(30)

Rule (W-Inst) specifies the conditions for t[inst�λX .R�.P,Q] to be well-formed; it relies on the key ideas of the Rule
(W-Trans). Therefore, δ = {t}. The set of pairs of parallel failure signals is the union of the respective sets for P , Q and R
and the set whose elements are pairs of failure signals; in the pair, one element belongs to the set of failure signals of P ,
the second element is from the union of sets of failure signals of Q and R . This extension with γ1 × (γ2 ∪ γ3) is necessary
for t[inst�λX .R�.P,Q], because P may contain protected blocks which will be composed in parallel with R{Q/X} in case
of a failure signal. The set of pairs of nested transactions is obtained from those for P , Q , and R also considering further
pairs as specified by {t} × (δ1 ∪ δ2 ∪ δ3 ∪γ1 ∪γ2 ∪γ3) (cf. (29)). The rule additionally enforces that the sets of parallel failure
33

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�t[P,Q]�λ
ρ = t

[
�P�λ

t,ρ

]
| t.

(
extr〈〈t, pt,ρ , pρ〉〉 | mt .pρ

[
vt〈〈(X).(X | ut[ft .gt .kt])〉〉

])
| vt

[
ut〈〈(Z).(Z | et[�Q �λ

ε] | ft .et〈〈(X).X〉〉.gt)〉〉
]

�inst�λY .R�.P�λ
t,ρ = ut

[
et〈〈(Y).(gt .ut〈〈(Z).(Z | et[�R�λ

ε] | ft .et〈〈(X).X〉〉.gt)〉〉)〉〉.(f t .et[0])
]

| �P�λ
t,ρ

�〈P 〉�λ
ρ = pρ

[
�P�λ

ε

]
�a.P�λ

ρ = a.�P�λ
ρ

�a.P�λ
ρ = a.�P�λ

ρ

�t.P�λ
ρ = t.ht .�P�λ

ρ

�Y �λ
ρ = Y

Fig. 15. Translating Cλ into S .

signals and nested transaction names in the parallel composition are disjoint. For example, for process (28) above we can
derive:

∅; {(t1, t2)} |−−−−−−−−−−−−{t1,t2};{t1};⊥ t1[inst�λX .t2[X,a]�.b,c] | t1.t2.

In contrast, process (27) does not satisfy the predicate, since its sets of pairs of parallel failure signals and nested transaction
names are not disjoint: they are both equal to {(t1, t2)}.

Using these modifications, the translation of Cλ into S extends Definition 5.5 (page 14) as follows:

Definition 8.11 (Translating Cλ into S). Let ρ be a path. We define the translation of compensable processes with dynamic
recovery into (subjective) adaptable processes as a tuple (�·�λ

ρ, ϕ�·�λ
ρ
) where:

(a) The renaming policy

ϕ�·�λ
ρ
(x) =

{ {x} if x ∈ Ns

{x,hx,mx,kx, ux, vx, ex, gx, fx} ∪ {pρ : x ∈ ρ} if x ∈ Nt .

(b) The translation �·�λ
ρ : C −→ S is as in Fig. 15 and as a homomorphism for other operators.

Key elements in Fig. 15 are the translations of t[P,Q] and inst�λY .R�.P1, which are closely related to each other.
Indeed, these translations share location names ut , vt , and et (as well as names ft and gt) in order to account for the
possible replacement of Q in t[P,Q] with R in inst�λY .R�.P1, using updates.

As stated earlier, inst�λX .R�.P produces a new compensation behavior R{Q/X} after an internal transition. The follow-
ing statement formalizes the encoding of process R{Q/X}:

Lemma 8.9. Suppose R is a well-formed compensable process. Then �R{Q/X}�λ
ρ = �R�λ

ρ{�Q �λ
ρ/X}.

Example 8.10. Let us consider the process �t[inst�λX .R�.P1,Q]�λ
ρ . Some intuitions follow:

i) In �inst�λX .R�.P1�
λ
t,ρ we find process �R�λ

ε on location ut , which is composed in parallel with process �P�λ
t,ρ . This

location may synchronize with the update prefix on name ut that is implemented in �t[P,Q]�λ
ρ : such a step would

move �R�λ
ε from location t to location vt , leaving �P�λ

t,ρ in t .

ii) In the translation of t[P,Q], process �Q �λ
ε resides in location et . This location may synchronize with the update

prefix implemented in �inst�λX .R�.P1�
λ
t,ρ , which contains �R�λ

ε : such a step allows us to obtain �R�λ
ρ {�Q �λ

ρ/Y } (cf.
Lemma 8.9).

iii) The translations use synchronizations on ft , et , and gt to preserve operational correspondence.

More concretely, consider the following step (cf. (20)):

P = t[inst�λY .R�.P1,Q] τ−→ t[P1,R{Q/Y }] = P ′.

We then have the following, using S to stand for t.
(
extr〈〈t, pt , pε〉〉 | mt .pε

[
vt〈〈(X).(X | ut[ft .gt .kt])〉〉

])
:

34

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�P�λε = �t[inst�λY .R�.P1,Q]�λε
= t

[
�inst�λY .R�.P1�λt

]
| S | vt

[
ut〈〈(Z).(Z | et[�Q �λε] | ft .et〈〈(X).X〉〉.gt)〉〉

]
= t

[
ut

[
et〈〈(Y).(gt .ut〈〈(Z).(Z | et[�R�λε] | ft .et〈〈(X).X〉〉.gt)〉〉)〉〉.(ft .et[0])

]
| �P1�λt

]
| S

| vt
[
ut〈〈(Z).(Z | et[�Q �λε] | ft .et〈〈(X).X〉〉.gt)〉〉

]
−→ t

[
�P1�λt

]
| S | vt

[
et〈〈(Y).(gt .ut〈〈(Z).(Z | et[�R�λε] | ft .et〈〈(X).X〉〉.gt)〉〉)〉〉.(ft .et[0])

| et[�Q �λε] | ft .et〈〈(X).X〉〉.gt
]

−→ t
[
�P1�λt

]
| S | vt

[
gt .ut〈〈(Z).(Z | et[�R�λε{�Q �λ

ε/Y }] | ft .et〈〈(X).X〉〉.gt)〉〉 | ft .et[0] | ft .et〈〈(X).X〉〉.gt
]

−→3 t
[
�P1�λt

]
| S | vt

[
ut〈〈(Z).(Z | et[�R�λε{�Q �λ

ε/Y }] | ft .et〈〈(X).X〉〉.gt)〉〉
]

= �t[P1,R{Q/Y }]�λε
Therefore, �P�λ

ε −→5 �P ′�λ
ε . As mentioned above, the first and second steps are updates on locations u and et , respec-

tively. The three other steps are: a synchronization on ft , an update on location et , and a synchronization on gt .

9. Related work

Studies on the expressiveness of process calculi have a long history and constitute a vibrant research area. We refer
the reader to [21] for a recent account on modern approaches to formal comparisons between different process calculi. In
this paper, we have followed Gorla’s framework for formalizing encodability and separation results [12]. With respect to
the criteria in [12], our definition of valid encoding (Definition 4.5) presents the following differences. First, to account for
the paths ρ in which transactions reside, we consider a notion of compositionality that is slightly less flexible than Gorla’s.
Second, we rely on a form of operational completeness that, unlike Gorla’s, explicitly describes the number of steps required
to mimic a step in the source language. Finally, we consider a new criterion, called efficiency, which allows us to precisely
compare our two main encodings (Definition 7.1). We do not know of prior works using criteria similar to efficiency.

The closest related works are by Lanese, Vaz, and Ferreira [15] and by Lanese and Zavattaro [16]. The work in [15], al-
ready mentioned in the Introduction, analyzes the expressive power of the compensation calculus focusing on three different
specification mechanisms for compensations: static recovery, parallel recovery, and dynamic recovery. The authors show that
parallel recovery (where the compensation is dynamically built as the parallel composition of compensation elements) can
be compositionally encoded using static recovery; they also show the impossibility of encoding dynamic recovery using
static recovery. The work in [16] sheds further light on the fundamental differences between static and dynamic recovery:
it is shown that termination (i.e., the absence of an infinite computation path starting from a given process) is a decidable
property for processes with static recovery but undecidable for processes with dynamic recovery.

Our expressiveness results complement the findings in [15,16] by implementing static and dynamic recovery in compens-
able processes using the different process framework defined by adaptable processes. In the same line, although slightly less
related, Vaz and Ferreira [24] study criteria for determining when a compensable process is correct and establish that self-
healing compensations are correct. The criteria in [24] are different from the notion of well-formed compensable processes
that we developed to formalize our encodings, for which error notifications are crucial.

Bravetti and Zavattaro [4] compare the expressiveness of variants of Milner’s CCS extended with the interrupt operator of
CSP, the try-catch operator for exception handling, and operators for replication and recursion. Their comparison is based on
the (un)decidability of existential and universal termination problems: the former concerns the existence of one terminating
computation, whereas the latter asks whether all computations terminate. They prove that in CCS with replication there
is no difference between interrupt and try-catch: universal termination is decidable while existential termination is not. In
contrast, in CCS with recursion and try-catch, the universal termination problem becomes undecidable, thus revealing an
expressiveness gap with respect to the language with recursion and interrupt.

10. Concluding remarks

In this paper, we have developed rigorous connections between programming abstractions for compensation handling
(typical of models for services and long-running transactions) and for run-time adaptation. Specifically, we compared from
the point of view of relative expressiveness two related and yet fundamentally different process models: the calculus of
compensable processes [15] and the calculus of adaptable processes [3]. We developed two encodings of compensable
processes (with static compensations under discarding semantics) into adaptable processes with subjective and objective
mobility.

We have shown that our encodings are correct up to five well-established criteria [12]: name invariance, composition-
ality, operational correspondence (divided into soundness and completeness properties), divergence reflection, and success
35

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
sensitiveness. Our encodings not only constitute a non trivial application of two sensible forms of mobility for adaptable
processes; in our view, they also shed light on the (intricate) semantics of compensable processes. We compared our en-
codings from the point of view of efficiency, a comparison criterion formally defined in terms of the number of target steps
required to mimic a source step. In this sense, subjective mobility allows us to encode compensable processes more effi-
ciently than objective mobility. The efficiency gains induced by subjective mobility depend on the number of compensation
actions in the source process.

Our encodings are robust because of the correctness criteria they satisfy, but also because they admit extensions to dif-
ferent variants of compensable processes. Indeed, we have informally discussed how to extend our encoding into subjective
adaptable processes so as to account for compensable processes under preserving and discarding semantics and with dy-
namic compensations. These extensions require targeted modifications that largely preserve the essence of the encoding for
discarding semantics.

Interestingly, our work uncovers an interesting dichotomy: should one appeal to objective or to subjective updates? A
subjective update would appear more “autonomous” than an objective update, because it is determined by a located process
itself, not by its environment. Still, we believe that the choice between objective and subjective updates largely depends on
the application at hand: it is easy to imagine practical scenarios of dynamic reconfiguration for which each form of update
is better suited. Hence, a general specification language should probably include both objective and subjective updates.

In future work, we would like to further study the connection between subjective and objective updates. An initial
insight is the following: subjective updates can represent objective updates, at least in an ad-hoc manner. Consider process
S = C1

[
l[P] | R1

] | C2
[
l{(X).Q }.R2

]
, which, as we have seen, reduces to C1

[
Q {P/X} | R1

] | C2
[

R2
]
. Now consider S ′ , a process

similar to S but with subjective update prefixes:

S ′ = C1
[
l[P] | l1〈〈(X).X〉〉 | R1

] | C2
[
l〈〈(X).l1[Q]〉〉.R2

]
In S ′ , we assume that name l1 does not occur in P , Q , R1, and R2. Using two reductions, S ′ emulates the movement
induced by the reduction step originated in S:

S ′ −→ C1
[
0 | l1〈〈(X).X〉〉 | R1

] | C2
[
l1[Q {P/X}].R2

]
−→ C1

[
Q {P/X} | R1

] | C2
[
0 | R2

]
That is, the update prefix l1〈 〈(X).X〉 〉 serves as an “anchor” to bring the reconfigured process Q {P/X} back to its original
context C1.

Similarly, we can represent subjective updates using objective prefixes. Consider process L = C1
[
l[P] | R1

] |
C2

[
l〈 〈(X).Q 〉 〉.R2

]
, which reduces to C1

[
0 | R1

] | C2
[

Q {P/X} | R2
]
. Now consider process L′:

L′ = C1
[
l[P] | R1

] | C2
[
l{(X).l1{(Y).Q }.0}.R2 | l1[0]]

As in process S ′ , in L′ we assume that name l1 is fresh; also, we assume that P and Q do not contain free occurrences of
variable Y . Process L′ uses two reduction steps to mimic the reduction step originated in L:

L′ −→ C1
[
l1{(Y).Q {P/X}}.0 | R1

] | C2
[

R2 | l1[0]]
−→ C1

[
0 | R1

] | C2
[

R2 | Q {P/X}]
Here, we use location l1[0] to bring the reconfigured process Q {P/X} back to its original context C2.

Crucially, these examples show that the ability of emulating a certain style of process mobility (subjective or objective)
comes at the price of additional reduction steps, which could entail inefficient encodings. This observation reinforces our
claim that a specification language should natively support both forms of update.

Having addressed the encodability of compensable processes into adaptable processes, we plan to consider the reverse
direction, i.e., encodings of adaptable processes into compensable processes. We conjecture that an encoding of adaptable
process into a language with static compensations does not exist: compensation updates inst�λX .Q �.P seem essential to
model an update prefix l{(X).Q }.P —the semantics of both constructs induces process substitutions. Still, even by considering
a language with dynamic compensations, an encoding of adaptable processes is far from obvious, because the semantics of
compensation updates dynamically modifies the behavior of the compensation activity, the inactive part of a transaction.
Formalizing these (non) encodability claims is interesting future work.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.
36

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
Acknowledgements

We are grateful to the anonymous reviewers for their detailed and constructive feedback.
This work was supported by EU COST Action IC1201 (“BETTY”), SFRS#6458932 (“ALADDIN”), MPNTR (“Innovative sci-

entific and artistic research from domain of FTS”), and the Dutch Research Council (NWO) Project No. 016.Vidi.189.046
(Unifying Correctness for Communicating Software).

Appendix A. Omitted proofs and definitions for Section 3

A.1. Proof of Proposition 3.1 (page 7)

Lemma A.1. Let P be a compensable process.

(a) If P a−→ P ′ then P = C[a.P1] and P ′ = C[P1].
(b) If P t−→ P ′ then P = C[t[P1,Q 1]] and P ′ = C[extr(P1) | 〈Q 1〉].
(c) If P x̄−→ P ′ then P = C[x̄.P1] and P ′ = C[P1]

for some context C , names t, a, x and processes P1, Q 1 .

Proof. The proof is by induction on the derivation of P
α−−→ P ′ , in each case. �

We repeat the statement from page 7:

Proposition 3.1. Let P be a compensable process. If P τ−→ P ′ then one of the following holds:

(a) P ≡ E[C[a.P1] | D[a.P2]] and P ′ ≡ E[C[P1] | D[P2]],
(b) P ≡ E[C[t[P1,Q]] | D[t.P2]] and P ′ ≡ E[C[extr(P1) | 〈Q 〉] | D[P2]],
(c) P ≡ C[t[D[t.P1],Q]] and P ′ ≡ C[extr(D[P1]) | 〈Q 〉],

for some contexts C, D, E, processes P1, P2, Q and names a, t.

Proof. The proof proceeds by induction on the inference of P
τ−→ P ′ . We will show that the proposition is true for the

base cases, whereas the inductive step follows directly. By the LTS in Fig. 2, in accordance with the Rules (L-Comm1) and
(L-Rec-In) we have two possible cases as follows:

(a)-(b) By Rule (L-Comm1) we have: P ≡ P ′
1 | P ′

2, P ′
1

x−→ P ′′
1 , P ′

2
x̄−→ P ′′

2 , P ′ ≡ P ′′
1 | P ′′

2 and by Lemma A.1, we conclude that:
(a) P ′

2 ≡ D[ā.P2], P ′′
2 ≡ D[P2], P ′

1 ≡ C[a.P1], and P ′′
1 ≡ C[P1], or

(b) P ′
2 ≡ D[t̄.P2], P ′′

2 ≡ D[P2], P ′
1 ≡ C[t[P1, Q 1]], and P ′′

1 ≡ C[extr(P1) | 〈Q 1〉].
(c) By Rule (L-Rec-In) we have: P ≡ t[P ′

1, Q], P ′
1

t̄−→ R , P ′ ≡ extr(R) | 〈Q 〉 and by Lemma A.1, we conclude that: P ′
1 ≡

D[t.P1] and R ≡ D[P1],

for E[•] = [•] and for some contexts C, D , processes P1, P2, Q 1, P ′
1, P

′
2, P

′′
1, P ′′

2 , Q , and names a, t . �
A.2. Properties of well-formed processes (Definition 3.4)

In the following we are going to prove that well-formed processes always evolve into well-formed processes. Before
giving the statement we show its supporting results.

Lemma A.2 (Inversion lemma). For some �1, �1, γ1, δ1, p1, �2, �2, γ2, δ2, p2 , the following holds:

1) If �; � |−−−−
γ ;δ;p

0 then �, �, γ , δ are empty sets and p =⊥;

2) If �; � |−−−−
γ ;δ;p

t.P then there is γ ′ such that γ = γ ′ ∪ {t} and �; ∅ |−−−−−−
γ ′;∅;⊥ P and � = ∅.

3) If �; � |−−−−
γ ;δ;p

a.P then �; ∅ |−−−−
γ ;∅;⊥ P and � = ∅ and p =⊥;

4) If �; � |−−−−
γ ;δ;p

a.P then �; ∅ |−−−−
γ ;∅;⊥ P and � = ∅, δ = ∅ and γ = ∅;

5) If �; � |−−−−
γ ;δ;p

(νx)P then �; � |−−−−
γ ;δ;p

P ;

6) If �; � |−−−− 〈P 〉 then p = � and �; � |−−−− ′ P for some p′ ∈ {�, ⊥};

γ ;δ;p γ ;δ;p

37

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
7) If �; � |−−−−
γ ;δ;p

!π.P then �′; ∅ |−−−−
γ ;∅;⊥ π.P and � = γ × γ and � = ∅, δ = ∅ and p =⊥;

8) If �; � |−−−−
γ ;δ;p

P | Q then �1; �1 |−−−−−−
γ1;δ1;p1

P and �2; �2 |−−−−−−
γ2;δ2;p2

Q and � = �1 ∪ �2 ∪ (γ1 × γ2) and � = �1 ∪ �2 and

γ = γ1 ∪ γ2 and δ = δ1 ∪ δ2 and p = p2 ∨ p2 and �s ∩ �t = ∅;
9) If �; � |−−−−

γ ;δ;p
t[P,Q] then �1; �1 |−−−−−−

γ1;δ1;p1
P and �2; �2 |−−−−−−

γ2;δ2;p2
Q and � = �1 ∪ �2 ∪ (γ1 × γ2) and � = �1 ∪ �2 ∪ ({t} ×

(δ1 ∪ δ2 ∪ γ1 ∪ γ2)) and γ = γ1 ∪ γ2 and δ = δ1 ∪ δ2 and p = p2 ∨ p2 and �s ∩ �t = ∅.

Proof. The proof follows directly from the auxiliary relation for well-formed compensable processes, cf. Fig. 3. �
In the following we introduce auxiliary statements that are needed for proving that well-formedness of compensable

process is preserved by the rules in Fig. 2.

Lemma A.3. If �; � |−−−−
γ ;δ;p

t[P,Q] then there are �1, δ1 such that �, �1 |−−−−−−
γ ;δ1;� P | 〈Q 〉 and �1 ⊆ �.

Proof. Let �; � |−−−−
γ ;δ;p

t[P,Q].

- By Lemma A.2 it follows �′
1; �′

1 |−−−−−−
γ ′

1;δ′
1;p′

1
P and �′

2; �′
2 |−−−−−−

γ ′
2;δ′

2;p′
2

Q where � = �′
1 ∪ �′

2 ∪ (γ ′
1 × γ ′

2) and � = �′
1 ∪ �′

2 ∪
({t} × (δ′

1 ∪ δ′
2 ∪ γ ′

1 ∪ γ ′
2)) and γ = γ ′

1 ∪ γ ′
2 and p = p′

1 ∨ p′
2 and �s ∩ �t = ∅.

- By formation on Rule (W-Block) we get that �′
2; �′

2 |−−−−−−
γ ′

2;δ′
2;� 〈Q 〉.

- By formation on Rule (W-Par) we get that �, �1 |−−−−−−
γ ;δ1;� P | 〈Q 〉 where �1 = �′

1 ∪ �′
2 and it is clear that �1 ⊆ �.

- It should be noted that for �1 ⊆ �, based on basic properties of set operations from �s ∩ �t = ∅, that it follows
�s ∩ �t

1 = ∅. �
Lemma A.4. If �; � |−−−−

γ ;δ;p
P then there are �1, �1, γ1, δ1 and p1 such that �1, �1 |−−−−−−

γ1;δ1;p1
extr(P) and �1 ⊆ �, �1 ⊆ � and

γ1 ⊆ γ .

Proof. The proof proceeds by induction over the structure of process P . We consider one base case and the three most
interesting cases of the six cases for process P , and they are: parallel composition, protected block and transaction scope.

Base case: The statement holds for P = 0 since extr(0) = 0 and ∅; ∅ |−−−−∅;∅;⊥ 0.

Induction step:

• Case 1: Let P = P ′ | Q ′ and �; � |−−−−
γ ;δ;p

P ′ | Q ′ .
- By Lemma A.2 it follows �′

1; �′
1 |−−−−−−

γ ′
1;δ′

1;p′
1

P ′ and �′
2; �′

2 |−−−−−−
γ ′

2;δ′
2;p′

2
Q ′ , where � = �′

1 ∪ �′
2 ∪ (γ ′

1 × γ ′
2) (cf. (7)), � =

�′
1 ∪ �′

2, δ = δ′
1 ∪ δ′

2 and p = p′
1 ∨ p′

2, and hold that �s ∩ �t = ∅.
- By definition of extraction function (cf. Fig. 1) we get: extr(P ′ | Q ′) = extr(P ′) | extr(Q ′).
- For process P ′ by induction hypothesis there are �′′

1 ⊆ �′
1 and �′′

1 ⊆ �′
1 such that: �′′

1; �′′
1 |−−−−−−−−

γ ′′
1 ;δ′′

1 ;p′′
1

extr(P ′).

- Similarly, for process Q ′ by induction hypothesis there are �′′
2 ⊆ �′

2 and �′′
2 ⊆ �′

2 such that: �′′
2; �′′

2 |−−−−−−−−
γ ′′

2 ;δ′′
2 ;p′′

2
extr(Q ′).

- By formation on Rule (W-Par) we get: �1; �1 |−−−−−−
γ1;δ1;p1

extr(P ′) | extr(Q ′) where �1 = �′′
1 ∪ �′′

2 ∪ (γ ′′
1 × γ ′′

2), �1 =
�′′

1 ∪ �′′
2, δ1 = δ′′

1 ∪ δ′′
2 and p1 = p′′

1 ∨ p′′
2, also holds �s

1 ∩ �t
1 = ∅.

- It is easy to conclude: �1 ⊆ �, �1 ⊆ � and γ1 ⊆ γ .
• Case 2: Let P = 〈P ′〉 and �; � |−−−−

γ ;δ;p
〈P ′〉. By definition of extraction function (cf. Fig. 1) we get: extr(〈P ′〉) = 〈P ′〉.

Therefore, it is easy to be concluded that the statement holds.
• Case 3: Let P = t[P ′,Q ′] and �; � |−−−−

γ ;δ;p
t[P ′,Q ′].

- By Lemma A.2 we get: �′
1; �′

1 |−−−−−−
γ ′

1;δ′
1;p′

1
P ′ and �′

2; �′
2 |−−−−−−

γ ′
2;δ′

2;p′
2

Q ′ , where � = �′
1 ∪ �′

2 ∪ (γ ′
1 × γ ′

2), � = �′
1 ∪ �′

2 ∪
({t} × (δ′

1 ∪ δ′
2 ∪ γ ′

1 ∪ γ ′
2)), δ = δ′

1 ∪ δ′
2 and p = p′

1 ∨ p′
2, also condition �s ∩ �t = ∅ holds.

- By definition of extraction function (cf. Fig. 1) we get extr(P) = 0. Therefore, statement holds directly.

For all other cases for the process P the proof follows directly, because of definition of extraction function. �
Lemma A.5. If �; � |−−−−

γ ;δ;p
P | Q then there are �1, �1, γ1, δ1 and p1 such that �1, �1 |−−−−−−

γ1;δ1;p1
extr(P) | Q and �1 ⊆ �, �1 ⊆ �

and γ1 ⊆ γ .

Proof. Let �; � |−−−− P | Q .

γ ;δ;p

38

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
- By Lemma A.2 we get �′
1; �′

1 |−−−−−−
γ ′

1;δ′
1;p′

1
P and �′

2; �′
2 |−−−−−−

γ ′
2;δ′

2;p′
2

Q where � = �′
1 ∪�′

2 ∪(γ ′
1 ×γ ′

2) (cf. (7)), � = �′
1 ∪�′

2, γ =
γ ′

1 ∪ γ ′
2, δ = δ′

1 ∪ δ′ and p = p′
1 ∨ p′

2 and condition �s ∩ �t = ∅ holds.
- For process P by Lemma A.4 there are �′′

1 ⊆ �′
1 and �′′

1 ⊆ �′ such that: �′′
1; �′′

1 |−−−−−−−−
γ ′′

1 ;δ′′
1 ;p′′

1
extr(P).

- For processes extr(P) and Q by formation on Rule (W-Par) the following holds: �1; �1 |−−−−−−
γ1;δ1;p1

extr(P) | Q where

�1 = �′′
1 ∪ �′

2 ∪ (γ ′′
1 × γ ′

2), �1 = �′′
1 ∪ �′

2, γ1 = γ ′′
1 ∪ γ ′

2, δ1 = δ′′
1 ∪ δ′

2 and p1 = p′′
1 ∨ p′

2 and �s
1 ∩ �t

1 = ∅ holds by basic
properties of set operations. �

We may now prove a soundness result, which ensures that well-formedness is preserved under LTS rules. We repeat the
theorem’s statement at page 9:

Theorem 3.4. If �; � |−−−−
γ ;δ;p

P and P α−→ P ′ then there are �′ ⊆ � and �′ ⊆ � such that �′; �′|−−−−−−
γ ′;δ′;p′ P ′ .

Proof. The proof proceeds by induction on the depth of the derivation P
α−−→ P ′ .

Base cases: In the following we consider four base cases.

• Base case 1: Assume that �; � |−−−−
γ ;δ;p

t.P and if the last applied rule is (L-Out) then t.P
t−→ P . By Lemma A.2 Case 2)

we get �; ∅ |−−−−−−−−
γ ∪{t};δ;⊥ P .

• Base case 2: Assume that �; � |−−−−
γ ;δ;p

a.P and if the last applied rule is (L-Out) then a.P
a−→ P . By Lemma A.2 Case 3)

it holds that �; ∅ |−−−−
γ ;δ;⊥ P .

• Base case 3: Assume that �; � |−−−−
γ ;δ;p

a.P and if the last applied rule is (L-In) then a.P
a−→ P . By Lemma A.2 Case 4) we

have that �; ∅ |−−−−
γ ;δ;⊥ P .

• Base case 4: Assume that �; � |−−−−
γ ;δ;p

t[P,Q] and if the last applied rule is (L-Rec-Out) then t[P,Q] t−→ extr(P) | 〈Q 〉.

- By Lemma A.3 there is �′, �′, γ ′, δ′ and p′ such that �′ ⊆ � and the following holds: �′; �′ |−−−−−−
γ ′;δ′;p′ P | 〈Q 〉.

- By Lemma A.4 and Lemma A.5 we finally get: �′
1; �′

1 |−−−−−−
γ ′

1;δ′
1;p′

1
extr(P) | 〈Q 〉 where �′

1 ⊆ �, �′
1 ⊆ � and γ ′

1 ⊆ γ .

Induction step:

• Case 1: Assume that �; � |−−−−
γ ;δ;p

P1 | Q and if the last applied rule is (L-Par1) then P1
α−−→ P ′

1 and P1 | Q
α−−→ P ′

1 | Q .

- By Lemma A.2 Case 2) the following holds: �1; �1 |−−−−−−
γ1;δ1;p1

P1 and �2; �2 |−−−−−−
γ2;δ2;p2

Q such that � = �1 ∪ �2 ∪ (γ1 ×
γ2) (cf. (7)), � = �1 ∪ �2, γ = γ1 ∪ γ2, δ = δ1 ∪ δ2 and p = p1 ∨ p2 and condition �s ∩ �t = ∅ holds.

- By induction hypothesis there are �′
1 ⊆ �1 and �′

1 ⊂ �1, such that �′
1; �′

1 |−−−−−−
γ ′

1;δ′
1;p′

1
P ′ .

- We get that condition (�′
1 ∪ �2)

t ∩ (�′
1 ∪ �2 ∪ (γ ′

1 × γ2))
s = ∅ holds based on basic properties of set operations.

- For processes P ′
1 and Q by formation on Rule (W-Par) we get: �′; �′ |−−−−−−

γ ′;δ′;p′ P ′
1 | Q where �′ = �′

1 ∪ �2 ∪ (γ ′
1 ×

γ2), � = �′
1 ∪ �2, γ = γ ′

1 ∪ γ2, δ = δ′
1 ∪ δ2 and p = p′

1 ∨ p2.

• Case 2: Assume that �; � |−−−−
γ ;δ;p

P | Q and if the last applied rule is (L-Comm1) then P
x−→ P ′ and Q

x−→ Q ′ and

P | Q
τ−−→ P ′ | Q ′ .

- By Lemma A.2 Case 2) the following holds: �1; �1 |−−−−−−
γ1;δ1;p1

P and �2; �2 |−−−−−−
γ2;δ2;p2

Q such that � = �1 ∪ �2 ∪ (γ1 ×
γ2), � = �1 ∪ �2, γ = γ1 ∪ γ2, δ = δ1 ∪ δ2 and p = p1 ∨ p2 and condition �s ∩ �t = ∅ holds.

- For process P ′ by induction hypothesis there are �′
1 ⊆ �1 and �′

1 ⊂ �1, such that �′
1; �′

1 |−−−−−−
γ ′

1;δ′
1;p′

1
P ′ .

- For process Q ′ by induction hypothesis there are �′
2 ⊆ �2 and �′

2 ⊂ �2, such that �′
2; �′

2 |−−−−−−
γ ′

2;δ′
2;p′

2
Q ′ .

- We get that condition (�′
1 ∪ �′

2)
t ∩ (�′

1 ∪ �′
2 ∪ (γ ′

1 × γ ′
2))

s = ∅ holds based on basic properties of set operations.
- For processes P ′ and Q ′ by formation on Rule (W-Par) we get: �′; �′ |−−−−−−

γ ′;δ′;p′ P ′ | Q ′ where �′ = �′
1 ∪ �′

2 ∪ (γ ′
1 ×

γ ′
2), � = �′

1 ∪ �′
2, γ = γ ′

1 ∪ γ ′
2, δ = δ′

1 ∪ δ′
2 and p = p′

1 ∨ p′
2.

• Case 3: Assume that γ ×γ ; � |−−−−
γ ;δ;p

!π.P and if the last applied rule is (L-Rep) then π.P
α−−→ P ′ and !π.P

α−−→ P ′ | !π.P .

- By Lemma A.2 we get �′; ∅ |−−−−
γ ;∅;⊥ π.P and � = ∅.

- By induction hypothesis there is �′
1 ⊆ �′ such that �′

1; ∅ |−−−−−−′ ′ ′ P ′ .

γ ;δ ;p

39

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
- For processes !π.P and P ′ by formation on Rule (W-Par) we get: �1; �1 |−−−−−−
γ1;δ1;p1

P ′ | !π.P such that �1 = �′
1 ∪ (γ ×

γ1), �1 = ∅, γ1 = γ ∪γ ′, δ1 = δ ∪δ′ and p1 = p ∨ p′ . Condition �s
1 ∩�t

1 = ∅ holds by basic properties of set operations.

• Case 4: Assume that �; � |−−−−
γ ;δ;p

t[P,Q] and if the last applied rule is (L-Rec-In) then P
t−→ P ′ and t[P,Q] τ−−→

extr(P ′) | 〈Q 〉.
- Using assumption and by Lemma A.2 we get that for process P the following holds: �1; �1 |−−−−−−

γ1;δ1;p1
P for some

�1, �1, γ1, δ1, p1.
- By induction hypothesis there are �′

1 ⊆ �1, �′
1 ⊆ �1 such that �′

1; �′
1 |−−−−−−

γ ′
1;δ′

1;p′
1

P ′ .
- For transaction t[P,Q] by Lemma A.3 there are �′ ⊆ � and �′; �′ |−−−−−−

γ ′;δ′;p′ P | 〈Q 〉.

- For process P ′ by formation on Rule (W-Par) and by set operations’ properties the following holds:
�2; �2 |−−−−−−

γ2;δ2;p2
P ′ | 〈Q 〉.

- Applying Lemma A.4 on process extr(P ′) and Applying Lemma A.5 we finally get: �′
2; �′

2 |−−−−−−
γ ′

2;δ′
2;p′

2
extr(P ′) | 〈Q 〉 where

�′
2 ⊆ �2, �′

2 ⊆ �2 and γ ′
2 ⊆ γ2.

• Case 5: Assume that �; � |−−−−
γ ;{t};p

t[P,Q] and if the last applied rule is (L-Scope-Out) then P
α−−→ P ′ and t[P,Q] α−−→

t[P ′,Q].
- By Lemma A.2 we get: �1; �1 |−−−−−−

γ1;δ1;p1
P and �2; �2 |−−−−−−

γ2;δ2;p2
Q and � = �1 ∪ �2 ∪ (γ1 × γ2), � = �1 ∪ �2 ∪ ({t} ×

(δ1 ∪ δ2 ∪ γ1 ∪ γ2)), γ = γ1 ∪ γ2, δ = {t} and p = p1 ∨ p2, also condition �s ∩ �t = ∅ holds.
- By inductive hypothesis there are �′

1 ⊆ �1, �′
1 ⊆ �1 and δ′

1, γ
′

1, p
′
1 such that �′

1; �′
1 |−−−−−−

γ ′
1;δ′

1;p′
1

P ′ .
- Based on set operations’ properties for � = �′

1 ∪ �2 ∪ (γ1 × γ2) and � = �′
1 ∪ �2 ∪ ({t} × (δ1 ∪ δ2 ∪ γ1 ∪ γ2)) the

condition �s ∩ �t = ∅ holds too.
- For process Q and obtained process P ′ by formation on Rule (W-Trans) we get: �′; �′ |−−−−−−

γ ′;{t};p′ t[P ′,Q], where
�′ = �′

1 ∪ �2 ∪ (γ ′
1 × γ2), �′ = �′

1 ∪ �2 ∪ ({t} × (δ1 ∪ δ2 ∪ γ1 ∪ γ2)), γ = γ ′
1 ∪ γ2, δ = {t} and p = p′

1 ∨ p2.

• Case 6: Assume that �; � |−−−−
γ ;δ;p

(νx)P and if the last applied rule is (L-Res) then P
α−−→ P ′ and (νx)P

α−−→ (νx)P ′ .
- By Lemma A.2 we get: �; � |−−−−

γ ;δ;p
P .

- By inductive hypothesis there are �′ ⊆ �, �′ ⊆ �, γ ′, δ′, p′ such that �′; �′ |−−−−−−
γ ′;δ′;p′ P ′ .

- For process P ′ by formating on Rule (W-Res) the following holds: �′; �′ |−−−−−−
γ ′;δ′;p′ (νx)P ′ .

• Case 7: Assume that �; � |−−−−
γ ;δ;� 〈P 〉 and if the last applied rule is (L-Block) then P

α−−→ P ′ and 〈P 〉 α−−→ 〈P ′〉.

- By Lemma A.2 we get: �; � |−−−−
γ ;δ;p

P .

- By inductive hypothesis there are �′ ⊆ �, �′ ⊆ �, γ ′, δ′, p′ such that �′; �′ |−−−−−−
γ ′;δ′;p′ P ′ .

- For process P ′ by formating on Rule (W-Block) the following holds: �′; �′ |−−−−−−
γ ′;δ′;p′ 〈P 〉′ . �

In the following, we provide proofs that both encodings are valid, i.e. we prove that compositionality, name invariance
operational correspondence, divergence reflection and success sensitiveness are satisfied. We separate these results into two
sections, one section for results related to the encoding of C into S and the other one for the encoding of C into O.

Appendix B. Results related to encoding of C into S (§ 5)

B.1. Proof of compositionality results: Theorem 5.3

We repeat the statement in page 16:

Theorem 5.3 (Compositionality for �·�ρ). Let ρ be an arbitrary path. For every process operator in C and for all well-formed compens-
able processes P and Q it holds that:

�〈P 〉�ρ = C〈〉,ρ [�P�ε] �t[P,Q]�ρ = Ct[,],ρ
[
�P�t,ρ , �Q �ε

]
�P | Q �ρ = C |

[
�P�ρ, �Q �ρ

]
�a.P�ρ = Ca.

[
�P�ρ

]
�t.P�ρ = Ct.

[
�P�ρ

]
�(νx)P)�ρ = C(νx)

[
�P�ρ

]
�a.P�ρ = Ca.

[
�P�ρ

]
�!π.P�ρ = C!π.

[
�P�ρ

]
Proof. Follows directly from the definition of contexts (Definition 5.6) and from the definition of �·�ρ : C −→ S (Fig. 6).
Indeed, for all operators and all well-formed compensable processes P and Q we have:

�P | Q �ρ = C |
[
�P�ρ, �Q �ρ

] = �P�ρ | �Q �ρ

�t[P,Q]�ρ = Ct[,],ρ
[
�P�t,ρ , �Q �ε

] = t
[
�P�t,ρ

] | t.
(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε]

)

40

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�〈P 〉�ρ = C〈〉,ρ [�P�ε] = pρ

[
�P�ε

]
�a.P�ρ = Ca.

[
�P�ρ

] = a.�P�ρ

�a.P�ρ = Ca.

[
�P�ρ

] = a.�P�ρ

�t.P�ρ = Ct.

[
�P�ρ

] = t.ht .�P�ρ

�(νx)P)�ρ = C(νx)
[
�P�ρ

] = (νx)�P�ρ

�!π.P�ρ = C!π.

[
�π.P�ρ

] =!�π.P�ρ. �
B.2. Proof of name invariance results: Theorem 5.4

We repeat the statement in page 16:

Theorem 5.4 (Name invariance for �·�ρ). For every well-formed compensable process P and valid substitution σ : Nc → Nc there is
a σ ′ :Na −→ Na such that:

(i) for every x ∈ Nc : ϕ�·�σ (ρ)
(σ (x)) = {σ ′(y) : y ∈ ϕ�·�ρ

(x)} and (ii) �σ(P)�σ (ρ) = σ ′(�P�ρ).

Proof. We define the substitution σ ′ as follows:

σ ′(x) =
⎧⎨
⎩

σ(x) if x = a or x = t
hσ (t) if x = ht

pσ (ρ) if x = pρ.

(B.1)

Now we provide proofs for (i) and (ii):

(i) Since Nc =Nt ∪Ns , we consider two sub-cases for x:
• if x ∈Ns then it follows that:

{σ ′(y) : y ∈ ϕ�·�ρ
(x)} = {σ ′(y) : y ∈ {x}} = {σ ′(x)} = {σ(x)} = ϕ�·�ρ

(σ (x)).
• if x ∈Nt then:

- by Definition 5.5: ϕ�·�σ(ρ)
(σ (x)) = {σ(x), hσ(x)} ∪ {pσ(ρ) : σ(x) ∈ σ(ρ)}

- by definition of σ ′:
{σ(x), hσ(x)} ∪ {pσ(ρ) : σ(x) ∈ σ(ρ)} = {σ ′(x), σ ′(hx)} ∪ {σ ′(pρ) : σ ′(x) ∈ σ ′(ρ)} = {σ ′(y) : y ∈ {x, hx}} ∪ {σ ′(y) : y ∈
{pρ : σ(x) ∈ σ(ρ)}} = {σ ′(y) : y ∈ ϕ�·�ρ

(x)}.
(ii) The proof proceeds by structural induction on P . In the following, given a name x, a path ρ , and process P , we write

σ x, σρ , and σ P to stand for σ(x), σ(ρ), and σ(P), respectively.
Base case: The statement holds for P = 0: �σ(0)�σρ = σ ′(�0�ρ

) ⇔ 0 = 0.
Inductive step: There are six cases, but we content ourselves by showing the following three cases: transaction scope,
protected block, and input/output prefix. The proof for all the other cases proceeds similarly.
• Case 1: Assume that P = t[P1,Q 1]. We first apply the substitution σ on process P :

�σ(t[P1,Q 1])�σρ = �σ t[σ(P1),σ(Q 1)]�σρ.

By expanding the definition of the translation in Definition 5.5, we have:

�σ(t[P1,Q 1])�σρ = σ t
[
�σ(P1)�σ t,σρ

] | σ t.
(
extr〈〈σ t, pσ t,σρ, pσρ〉〉 | pσρ [�σ(Q 1)�ε]

)
By induction hypothesis it follows:

�σ(t[P1,Q 1])�σρ = σ t
[
σ ′ (�P1�t,ρ

)] | σ t.
(
extr〈〈σ t, pσ t,σρ, pσρ〉〉 | pσρ [σ ′ (�Q 1�ε

)]) (B.2)

On the other side, when we apply definition of substitution σ ′ on �P�ρ the following holds:

σ ′ (�t[P1,Q 1]�ρ
) = σ ′ (t

[
�P1�t,ρ

] | t.
(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q 1�ε]

))
= σ ′t

[
σ ′ (�P1�t,ρ

)] | σ ′t.(extr〈〈σ ′t, pσ ′t,σ ′ρ, pσ ′ρ〉〉 | pσ ′ρ [σ ′ (�Q 1�ε
)]). (B.3)

Given that it is valid σ ′(t) = σ(t) (cf. (B.1)), it is easy to conclude that (B.2) is equal to (B.3).
• Case 2: Assume that P = 〈P1〉. We apply substitution σ on process P :

�σ(〈P1〉)�σρ = �〈σ(P1)〉�σρ

By Definition 5.5, �σ(〈P1〉)�σρ = pσρ

[
�σ(P1)�ε

]
, and by induction hypothesis:
41

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�σ(〈P1〉)�σρ = pσρ

[
σ ′(�P1�ε)

]
. (B.4)

On the other side, when we apply substitution σ ′ on �P�ρ the following holds:

σ ′(�〈P1〉�ρ) = σ ′(pρ

[
�P1�ε

]
) = pσ ′ρ

[
σ ′(�P1�ε)

]
. (B.5)

Based on definition of the function σ ′ , i.e. σ ′(pρ) = pσ(ρ) and σ ′(t) = σ(t) (cf. (B.1)), it is easy to conclude that (B.4)
is equal to (B.5).

• Case 3: Here we distinguish two sub-cases. In the first sub-case we consider input on name a ∈ Ns (proof follows
similarly for output). In the second sub-case we consider that the output message is an error notification on name
t ∈Nt .
• Case 3a: Assume that P = a.P1. We apply substitution σ on process P :

�σ(a.P1)�σρ = �σa.σ (P1)�σρ.

Next, we apply Definition 5.5: �σ(a.P1)�σρ = σa.�σ(P1)�σρ . By induction hypothesis it follows:

�σ(a.P1)�σρ = σa.σ ′(�P1�ρ). (B.6)

We now apply substitution σ ′ on �P�ρ :

σ ′(�(a.P1)�ρ) = σ ′(a.�P1�ρ) = σ ′a.σ ′(�P1�ρ). (B.7)

By definition of σ ′ (cf. (B.1)), σ ′(a) = σ(a) and so we conclude that (B.6) is equal to (B.7).
• Case 3b: Assume that P = t.P1. We apply substitution σ on process P :

�σ(t.P1)�σρ = �σ t.σ (P1)�σρ.

Next, we apply Definition 5.5: �σ(t.P1)�σρ = σ t.hσ t .�σ(P1)�σρ . By induction hypothesis:

�σ(t.P1)�σρ = σ t.hσ t .σ
′(�P1�ρ). (B.8)

We apply substitution σ ′ on �P�ρ :

σ ′(�(t.P1)�ρ) = σ ′(t.ht .�P1�ρ) = σ ′t.hσ ′t .σ
′(�P1�ρ). (B.9)

By definition of σ ′ (cf. (B.1)), σ ′(a) = σ(a) and so we conclude that (B.8) is equal to (B.9). �
B.3. Proof of operational correspondence results: Theorem 5.8

We now shall prove that the translation �·�ρ satisfies operational correspondence (completeness and soundness). The
statement and its proof are presented in Appendix B.3.4 (page 54). We first present an overview to the proof and some
auxiliary results.

B.3.1. A roadmap for the proofs
Part (1) of Theorem 5.8 is completeness, i.e.,

If P −→ P ′ then �P�ε −→k �P ′�ε

where k ≥ 1 is given precisely by our statement. This property ensures that our translation faithfully simulates the behavior
of compensable processes. The proof is by induction on the derivation of P −→ P ′ and uses:

• Definition 5.5 (page 14), i.e., the definition of �·�ρ ;
• Proposition 3.1 (page 7) for three base cases; as key to proving the operational correspondence.
• Lemma B.1 (page 43), which maps evaluation contexts in C into evaluation contexts of S;
• Lemma B.6 (page 45), which shows that ch(t, �P�ρ) = 0 for all �P�ρ . Its proof uses two auxiliary properties of translated

terms: Lemma B.2 (page 44) and Lemma B.5 (page 45);
• Definition B.2 and Definition B.3 (page 46 and page 49). These definitions formalize the intermediate processes that

appear during derivation.

Part (2) of Theorem 5.8 is soundness, i.e.,

If �P�ε −→n R then there is P ′ such that P −→∗ P ′ and R −→∗ �P ′�ε
42

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
This property ensures that target terms never exhibit behavior that can not be attributed to some compensable process.
As usual, proving soundness is more challenging than proving completeness. Our proof is by induction on n, i.e., the length
of the reduction �P�ρ −→n R . We rely on several auxiliary results:

• Lemma B.10 (page 50) is about the shape of process R , and also ensures that there is a process P ′ with an appropriate
shape. The proof proceeds by induction on n. The base case uses Lemma B.4 (page 44); in the inductive step, we exploit
that the target term R1 has a specific shape, which is in turn ensured by Lemma B.8 (page 46) and Lemma B.9 (page 49);

• To prove Lemma B.4 we use Lemma B.2, Corollary B.3 (page 44) and Definition 5.5;
• In the statement of Lemma B.8 and Lemma B.9 we use the definition of intermediate processes given by Definition B.2

and Definition B.3, respectively. The proofs proceed by case analysis for the step R −→ R ′ , using Lemma B.7;
• Lemma B.11 (page 54) ensures that the adaptable process obtained thanks to Lemma B.8 and Lemma B.9 can evolve

until reaching a process that corresponds to the translation of a compensable process.

Using these guidelines as a proof sketch, we now introduce all the ingredients of the proof in full detail.
The same road map, with modified definitions, lemmas, and theorems for translation �·�oρ , will be used also for the proof

of operational correspondence for the translation with the objective update, i.e., Theorem 6.5.

B.3.2. Auxiliary results for completeness
To simplify proofs of correctness, we start by defining a mapping of evaluation contexts for compensable processes (cf.

Definition 3.3) into evaluation contexts for adaptable processes (cf. Definition 3.6):

Definition B.1. Let ρ be a path. We define the following mapping �·�ρ from evaluation contexts of compensable processes
into evaluation contexts of adaptable processes:

�[•]�ρ = [•] �〈C[•]〉�ρ = pρ [�C[•]�ε] �C[•] | P�ρ = �C[•]�ρ | �P�ρ �(νx)C[•]�ρ = (νx)�C[•]�ρ
�t[C[•],Q]�ρ = t

[
�C[•]�t,ρ

] | t.
(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε]

)
Lemma B.1. Let P be a well-formed compensable process, C[•] an evaluation context, ρ an arbitrary path, and ρ ′ the path to the hole
in C[•]. Then, �C[P]�ρ = �C[•]�ρ [�P�ρ ′].

Proof. The proof proceeds by induction on the structure of C[•].
Base cases: Assume that C[•] = [•] then C[P] = P , and �C[P]�ρ = �P�ρ .
Inductive step: There are four cases to consider. They all proceed by Definition 5.5, Definition B.1, and the inductive

hypothesis:

• Case 1: Assume that C[•] = 〈C1[•]〉 then C[P] = 〈C1[P]〉.

�C[P]�ρ = �〈C1[P]〉�ρ Def.= pρ [�C1[P]�ε] I.H.= pρ [�C1[•]�ε[�P�ρ ′]] = pρ [�C1[•]�ε]
][

�P�ρ ′
]

Def.= �C[•]�ρ
[
�P�ρ ′

]
• Case 2: Assume that C[•] = C1[•] | Q then C[P] = C1[P] | Q .

�C[P]�ρ = �C1[P] | Q �ρ
Def.= �C1[P]�ρ | �Q �ρ

I.H.= �C1[•]�ρ [�P�ρ ′] | �Q �ρ

= �C1[•] | Q �ρ [�P�ρ ′ = �C[•]�ρ
[
�P�ρ ′

]
• Case 3: Assume that C[•] = t[C1[•],Q] then C[P] = t[C1[P],Q].

�C[P]�ρ = �t[C1[P],Q]�ρ Def.= t
[
�C1[P]�t,ρ

] | t.
(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε]

)
I.H.= t

[
�C1[•]�t,ρ [�P�ρ ′]] | t.

(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε]

)
= (

t
[
�C1[•]�t,ρ

] | t.
(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε]

))[
�P�ρ ′

]
= �C[•]�ρ

[
�P�ρ ′

]
• Case 4: Assume that C[•] = (νx)C1[•] then C[P] = (νx)C1[P].

�C[P]�ρ = �(νx)C1[P]�ρ Def.= (νx)�C1[P]�ρ I.H.= (νx)�C1[•]�ρ [�P�ρ ′] = �C[•]�ρ
[
�P�ρ ′

]
. �
43

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
B.3.3. Auxiliary results for soundness
For the proof of soundness, we will need the converse of Lemma B.1, which is stated by the following two results.

Lemma B.2. Let P be a well-formed compensable process and ρ a path. If �P�ρ ≡ C[P ′] then there are C1[•] and P1 such that
C[•] = �C1[•]�ρ and P ′ = �P1�ρ ′ , where ρ ′ is the path to the hole in C1[•].

Proof. The proof is by induction on structure of context C[•].
Base case: If C[•] = [•] and �P�ρ = P ′ then it follows directly that C1[•] = [•] and P1 = P .
Inductive step:

• Case 1: C[•] = l[C ′[•]] and �P�ρ ≡ l[C ′[P ′]].
By Definition 5.5, we have that l = pρ and there is P ′

1 such that �P ′
1�ρ = C ′[P ′]. By the induction hypothesis, there are

C ′
1[•] and P1 such that C ′[•] = �C ′

1[•]�ρ and P ′ = �P1�ρ ′ , where ρ ′ is the path to the hole in C ′
1[•]. By Definition B.1,

C[•] = pρ [�C ′
1[•]�ρ] = �〈C ′

1[•]〉�ρ , and hence C1[•] = 〈C ′
1[•]〉.

• Case 2: C[•] = (νx)C ′[•] and �P�ρ ≡ (νx)C ′[P ′].
By Definition 5.5, there is P ′

1 such that �P ′
1�ρ = C ′[P ′]. By induction hypothesis, there are C ′

1[•] and P1 such that
C ′[•] = �C ′

1[•]�ρ and P ′ = �P1�ρ ′ , where ρ ′ is the path to the hole in C ′
1[•]. Now, we have that C[•] = (νx)�C ′

1[•]�ρ =
�(νx)C ′

1[•]�ρ and hence C1[•] = (νx)C ′
1[•].

• Case 3: C[•] = C ′[•] | Q and �P�ρ ≡ C ′[P ′] | Q .
By Definition 5.5, we have two possibilities:
(i) If Q = t.

(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q ′�ε]

)
and C ′[P ′] ≡ t[�P ′

1�t,ρ] for some t, P ′
1, Q

′ , then �P ′
1�t,ρ = C ′

1[P ′] for some
C ′

1, P
′ . By induction hypothesis, there are C ′′

1 [•] and P1 such that C ′
1[•] = �C ′′

1�ρ and P ′ = �P1�ρ ′ , where ρ ′ is the
path to the hole in C ′′

1 [•]. We complete the proof by choosing C1[•] = t[C ′′
1 [•],Q ′] and P ′ = �P1�t,ρ ′ .

(ii) If C ′[P ′] = �Q 1�ρ and Q = �Q 2�ρ for some Q 1, Q 2, then, by induction hypothesis, there are C ′
1[•] and P1 such that

C ′[•] = �C ′
1[•]�ρ and P ′ = �P1�ρ ′ , where ρ ′ is the path to the hole in C ′

1[•]. In this case, C1[•] = C ′
1[•] | Q 2. �

As a direct consequence of Case 3 in the previous proof, we can identify two possibilities for a process that is obtained
via our translation and equals to a parallel composition of processes.

Corollary B.3. Let P be a well-formed compensable process and ρ a path.
If �P�ρ ≡ C[P ′] | D[Q ′] then either:

(i) there are C1[•], D1[•], P1 , and Q 1 such that
- C[•] = �C1[•]�ρ
- D[•] = �D1[•]�ρ
- P ′ = �P1�ρ ′ and Q ′ = �Q 1�ρ ′′ , where ρ ′ and ρ ′′ are paths to holes in C[•] and D[•], respectively.

(ii) there are C1[•], Q , t such that Q ′ ≡ t.
(
extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε]

)
, D[•] = [•], and C[•] = t[C1[•]].

The proof of soundness proceeds by induction on n. The base case uses the following lemma. In cases (b) and (c), we use
a process of the form I(1)

t (�P�t,ρ ′′ , �Q �ε), where t is a name and “1” intuitively denotes the first intermediate process in the
translation. In fact, processes of the form I(p)

t (�P�t,ρ ′′ , �Q �ε), with p ≥ 1, to be introduced in Fig. B.17, will be important in
the proof of soundness.

Lemma B.4. Suppose �P�ρ −→ R. Then one of the following holds for P and R:

a) P ≡ E[C[a.P1] | D[a.P2]] and R ≡ �E�ρ
[
�C�ρ1 [�P1�ρ ′] | �D�ρ1 [�P2�ρ ′′]

]
or

b) P ≡ E
[

C[t.P1] | D[t[P2,Q]]] and R ≡ �E�ρ
[
�C�ρ1 [ht .�P1�ρ ′] | �D�ρ1 [I(1)

t (�P2�t,ρ ′′ , �Q �ε)]
]

where I(1)
t (�P2�t,ρ ′′ , �Q �ε) = t

[
�P2�t,ρ ′′

] | extr〈 〈t, pt,ρ ′′ , pρ ′′ 〉 〉 | pρ ′′ [�Q �ε] or

c) P ≡ E[u[C[u.P1],Q]] and R ≡ �E�ρ
[

O (1)
u (�C�u,ρ1 [hu .�P1�ρ ′], �Q �ε)

]
where O (1)

u (�C�u,ρ1 [hu .�P1�ρ ′], �Q �ε) = u
[
�C�u,ρ1 [hu .�P1�ρ ′]] | extr〈 〈t, pu,ρ1 , pρ1 〉 〉 | pρ [�Q �ε],

for some contexts C, D, E and processes P1, P2, Q . Also, paths ρ , ρ ′ , and ρ ′′ are paths to holes in contexts E[•], C[•], and D[•],
respectively.

Proof. The proof is by induction on the reduction �P�ρ −→ R . There are three base cases, which can be obtained by
applying Rule (R-In-Out)) with x = a or x = t .

a) �P�ρ = E ′[C ′[a.P ′] | D ′[a.P ′]] −→ E ′[C ′[P ′] | D ′[P ′]] = R:
1 2 1 2

44

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�P�ρ = �E�ρ [�S�ρ1], �S�ρ1 = C ′[a.P ′
1] | D ′[a.P ′

2] (by Lemma B.2)
= �E�ρ [�C�ρ1 [�S1�ρ ′] | �D�ρ1 [�S2�ρ ′′]], �S1�ρ ′ = a.P ′

1, �S2�ρ ′′ = a.P ′
2 (by Corollary B.3)

= �E�ρ [�C�ρ1 [a.�P1�ρ ′] | �D�ρ1 [a.�P2�ρ ′′]], �P1�ρ ′ = P ′
1, �P2�ρ ′′ = P ′

2 (by Definition 5.5)
= �E�ρ [�C�ρ1 [�a.P1�ρ ′] | �D�ρ1 [�a.P2�ρ ′′]] (by Definition 5.5)
= �E[C[a.P1] | D[a.P2]]�ρ (by Lemma B.1)

where �D�ρ1 [•] = D ′[•], �C[•]�ρ1 = C ′[•], and ρ1, ρ ′ and ρ ′′ are paths to holes in E[•], C[•] and D[•], respectively.
b) �P�ρ = E ′[C ′[t.P ′

1] | D ′[t.P ′
2]] −→ E ′[C ′[P ′

1] | D ′[P ′
2]] = R and D ′[•] �= [•]:

By Lemma B.2, Corollary B.3 and Definition 5.5, we get the following derivation:
�P�ρ = �E�ρ [�S�ρ1], �S�ρ1 = C ′[t.P ′

1] | D ′′[t[P ′′
2] | t.P ′

2]= �E�ρ [�C�ρ1 [�S1�ρ ′] | �D�ρ1 [�S2�ρ ′′]], �S1�ρ ′ = t.P ′
1, �S2�ρ ′′ = t[P ′′

2] | t.P ′
2

= �E�ρ [�C�ρ1 [t.ht .�P1�ρ ′] | �D�ρ1 [t[�P2�ρ ′′] ht .�P1�ρ ′ = P ′
1, �P2�ρ ′′ = P ′′

2 ,
| t.

(
extr〈〈t, pt,ρ ′′ , pρ ′′ 〉〉 | pρ ′′ [�Q �ε]

)], extr〈〈t, pt,ρ ′′ , pρ ′′ 〉〉 | pρ ′′ [�Q �ε] = P ′
2= �E�ρ [�C�ρ1 [�t.P1�ρ ′] | �D�ρ1 [�t[P2,Q]�ρ ′′]]

= �E[C[t.P1] | D[t[P2,Q]]]�ρ
where �D�ρ1 [•] = D ′′[•], �C[•]�ρ1 = C ′[•], and ρ1, ρ ′ , ρ ′′ are paths to holes in E[•], C[•], D[•], respectively.

c) �P�ρ = E ′[C ′[u.P ′
1] | D ′[u.P ′

2]] −→ E ′[C ′[P ′
1] | D ′[P ′

2]] = R and D ′[•] = [•] and C ′[•] = t[C ′′[•]]:
By Lemma B.2, Corollary B.3 and Definition 5.5, we get the following derivation:

�P�ρ = E ′[u[C ′′[u.P ′
1]] | u.P ′

2]= �E�ρ [�S�ρ1], �S�ρ1 = u[C ′′[u.P ′
1]] | u.P ′

2= �E�ρ [u[�P ′′
1�u,ρ1] �P ′′

1�u,ρ1 = C ′′[u.P ′
1]| u.

(
extr〈〈u, pu,ρ1 , pρ1 〉〉 | pρ1 [�Q �ε]

)], extr〈〈t, pu,ρ1 , pρ1 〉〉 | pρ1 [�Q �ε] = P ′
2= �E�ρ [u[�C�u,ρ1 [�u.P1�ρ ′]] | u.

(
extr〈〈u, pu,ρ1 , pρ1 〉〉 | pρ1 [�Q �ε]

)]
= �E[u[C[t.P1],Q]]�ρ .

where �C[•]�t,ρ1 = C ′′[•] and ρ1 and ρ ′ are paths to holes in E[•] and C[•].
Note that since we analyze only one (first) reduction step, i.e. �P�ρ −→ R , the case of a reduction derived by Rule (R-

Sub-Upd) is excluded by definition of translation.
Finally, the inductive step considers cases when the last step was derived by Rule (R-Str). In that way, we get case with

“≡” instead of “=” in the three base cases. �
Starting from an adaptable process P that results from our translation, we single out those processes that P reduces

to but that do not correspond to the translation of any compensable process. Such processes always appear after a syn-
chronization on some name t and before synchronization on the reserved name ht . We will first consider computations of
a process that results from translating the parallel composition of a transaction and its failure signal (possibly with some
continuation). Recall that function ch(t, R) (cf. Definition 5.3) checks whether R is structurally equivalent to a process of
the form C[ht .S], for some context C[•] and process S: if this is not the case, then ch(t, R) = 0. In a process obtained from
our translation, process ht .S always occurs within a process of the form t.ht .S (cf. Fig. 6), directly implying that any process
�P�ρ cannot be congruent with C[ht .S]. This is stated by the following lemma.

Lemma B.5. Let P be a well-formed compensable process. If �P�ρ=π.Q then π = a or π = ā or π = t̄ , for some a ∈Ns and t ∈Nt .

Proof. Follows directly from definition of the translation (cf. Definition 5.5). �
Lemma B.6. Let P be a well-formed compensable process, t a transaction name, and ρ a path. Then, it holds that ch(t, �P�ρ) = 0.

Proof. By contradiction. Suppose, for the sake of contradiction, that ch(t, �P�ρ) = ht .0. Then, �P�ρ ≡ C[ht .S]. By Lemma B.2,
there are C1[•] and Q such that �C1[•]�ρ = C[•] and �Q �ρ ′ = ht .S , where ρ ′ is the path to [•] in C1[•]. But this contradicts
Lemma B.5: it is not possible that �Q �ρ ′ = ht .S since, necessarily, ht is a reserved name in N r

s ; by Definition 5.2, N r
s ∩Nt =

∅ and N r
s ∩Ns = ∅. �

In studying the processes that are obtained by translating the parallel composition of a transaction and its (externally
triggered) failure signal (and its computation), we come to the lemmas that identify processes that are created before a
synchronization on ht .

Lemma B.7. If �E�ρ [P] | Q ≡ C[S] where S = π.R or S = � then there exist contexts E ′, E ′′ , and E ′′′ such that:

1. �E[•]�ρ = �E ′[•]�ρ | �E ′′�ρ [S] and for S = π.R it holds π ∈ {x, x}, or
2. P ≡ E ′′′[S], or
3. Q ≡ E ′′′[S].

Proof. The proof proceeds by induction on the structure of context C . �

45

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
m > 0

m = 0

�t[P,Q]�ρ | �t�ρ ′

I(1)
t I(2)

t I(3)
t

I(1)
t I(2)

t
. . . I(m+2)

t I(m+3)
t

�extr(P) | 〈Q 〉�ρ

Fig. B.16. Process I(p)
t .

(p) I(p)
t (�P�t,ρ , �Q �ε) for nl(pt,ρ , �P�t,ρ) = 0

(1) t
[
�P�t,ρ

] | extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε] ≡ t
[
�P�t,ρ

] | t〈〈(Y).t[Y] | ch(t, Y) | t〈〈†〉〉.ht〉〉 | pρ [�Q �ε]
(2) t

[
�P�t,ρ

] | t〈〈†〉〉.ht | pρ [�Q �ε]
(3) ht | pρ [�Q �ε]

(p) I(p)
t (�P�t,ρ , �Q �ε) for nl(pt,ρ , �P�t,ρ) > 0

(1) t
[
�P�t,ρ

] | extr〈〈t, pt,ρ , pρ〉〉 | pρ [�Q �ε]
≡ t

[
�P�t,ρ

] | t〈〈(Y).t[Y] | ch(t, Y) | outs(pt,ρ , pρ , nl(pt,ρ , Y) , t〈〈†〉〉.ht)〉〉 | pρ [�Q �ε]

(j + 2) t
[
�P�t,ρ

] | pt,ρ〈〈(X1, . . . , Xm− j).
(m− j∏

k=1
pρ [Xk] | t〈〈†〉〉.ht

)〉〉 |
j∏

k=1
pρ [�P ′

k�ε] | pρ [�Q t�ε]
0 ≤ j ≤ m − 1

(m + 2) t
[
�P ′�t,ρ

] |
m∏

k=1
pρ [�P ′

k�ε] | t〈〈†〉〉.ht | pρ [�Q �ε]

(m + 3)
m∏

k=1
pρ [�P ′

k�ε] | ht | pρ [�Q �ε]

Fig. B.17. Process I(p)
t (�P�t,ρ ,�Q �ε) with p ≥ 1.

The following definition formalizes all possible forms for the process I(p)
t (�P�t,ρ , �Q �ε). Recall that function nl(l, P),

defined in Definition 5.3 (1), returns the number of locations l in process P .

Definition B.2. Let P , Q be well-formed compensable processes. Given a name t , a path ρ , and p ≥ 1, we define the
intermediate processes I(p)

t (�P�t,ρ , �Q �ε) (Fig. B.17) depending on m = nl(pt,ρ , �P�t,ρ):

1. if m = 0 then p ∈ {1, 2, 3};

2. otherwise, if m > 0 then �P�t,ρ =
m∏

k=1
pt,ρ [�P ′

k�ε] | S and p ∈ {1, . . . , m + 3}.

Fig. B.16 illustrates how intermediate processes relate to the encoding of well-formed compensable processes.

Lemma B.8. Let P1 be a well-formed compensable process such that

• �P1�ε ≡ �E�ε
[
�G�ρ

[
�C�ρ ′

[
�t[Pt,Q t]�ρ ′′

] | �D�ρ ′
[
�t.St�ρ ′′′

] | M1
] | M2

] | M3 and

• �P1�ε −→n−1 R ≡ �E1�ε
[
�G1�ρ

[
�C1�ρ ′

[
I(p)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε)

]
| �D1�ρ ′

[
ht .�St�ρ ′′′

] | M ′
1

]
| M ′

2

]
| M ′

3 ,

where I(p)
t (�Pt�t,ρ ′′ , �Q t�ε) in R is as in Definition B.2.

If R −→ R ′ then either

I) R ′ ≡ �E1�ε
[
�G1�ρ

[
�C1�ρ ′

[
I(p+1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε)

]
| �D1�ρ ′

[
ht .�St�ρ ′′′

] | M ′
1

]
| M ′

2

]
| M ′

3 or

II) R ′ ≡ �E2�ε
[
�G2�ρ

[
�C2�ρ ′

[
I(p)
t (�P ′′

t �t,ρ ′′ , �Q ′′
t �ε)

]
| �D2�ρ ′

[
ht .�St�ρ ′′′

] | M ′′
1

]
| M ′′

2

]
| M ′′

3 ,

where

• n > 1;
• ρ is the path to holes in �E[•]�ε and �Ek[•]�ε and k ∈ {1, 2};
46

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
• ρ ′ is the path to holes in �G[•]�ρ , and �Gk[•]�ρ and k ∈ {1, 2};
• ρ ′′ is the path to the hole in �C[•]�ρ ′ and �Ck[•]�ρ ′ and k ∈ {1, 2};
• ρ ′′′ is the path to hole in �D[•]�ρ ′ and �Dk[•]�ρ ′ and k ∈ {1, 2}.

Proof. It is important to notice that the path to I p
t (�Pt�t,ρ ′′ , �Q t�ε) in R is the same as the path to �t[P ′

t,Q ′
t]�ρ ′′ in �P1�ε .

This means that we will identify all possible transformations of �t[Pt ,Q t]�ρ ′′ that can appear during computations of �P1�ε ,
before the synchronization on ht . By Definition 5.5, we get:

�P1�ε ≡�E�ε
[
�G�ρ

[
�C�ρ ′

[
t
[
�Pt�t,ρ ′′

] | t.
(
extr〈〈t, pt,ρ ′′ , pρ ′′ 〉〉 | pρ ′′ [�Q t�ε]

)]
| �D�ρ ′

[
t.ht .�St�ρ ′′′

] | M1
] | M2

] | M3
(B.10)

We continue with the proof by case analysis for the step, R −→ R ′ , that can be realized. The analysis depends on the shape
I(p)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε). Hence, there are multiple cases, for p ∈ {1, . . . , m + 3} and m ≥ 0. We detail only one case, namely

p = 1; all other cases proceed similarly.
If p = 1 then

R ≡ �E1�ε

[
�G1�ρ

[
�C1�ρ ′

[
I(1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε)

]
| �D1�ρ ′

[
ht .�St�ρ ′′′

] | M ′
1

]
| M ′

2

]
| M ′

3. (B.11)

In the analysis, we will use the following representation of process R:

R ≡ �E1�ρ [P ′] | M ′
3 where

P ′ ≡ �G1�ρ

[
�C1�ρ ′

[
I(1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε)

]
| �D1�ρ ′

[
ht .�St�ρ ′′′

] | M ′
1

]
| M ′

2

(B.12)

For R −→ R ′ we analyze the following two sub-cases, based on the rules from reduction semantics for adaptable processes:
Rule (R-In-Out) and Rule (R-Sub-Upd) (cf. Fig. 4).

A) By using Rule (R-In-Out): R ≡ E
[

C
[
x.P

] | D
[
x.Q

]] −→ E
[

C
[

P
] | D

[
Q

]] ≡ R ′ . Therefore, we have:

R ≡ E ′[x.Q] where E ′[•] = E[C[x.P] | D[•]] and

R ≡ E ′′[x.P] where E ′′[•] = E[C[•] | D[x.Q]].
In (B.12), based on Lemma B.7 for R ≡ E ′[x.Q], the following holds:

(i) �E1[•]�ρ = �E ′
1[•]�ρ | �E ′′

1�ρ [x.Q], or
(ii) P ′ = E ′′′[x.Q], or

(iii) M ′
3 = E ′′′[x.Q].

In the following, we present detail analysis only for case (i). Proofs of cases (ii) and (iii) follow in a similar way, i.e.,
with the case analysis that is result of applying Lemma B.7.
Therefore, if (i) holds then R ≡ �E1�ρ [P ′] | M ′

3 = �E ′
1�ρ [P ′] | �E ′′

1�ρ [x.Q] | M ′
3. For R ≡ E ′′[x.P] the following holds based

on Lemma B.7:
(a) �E ′

1[•]�ρ = �E ′
2[•]�ρ | �E ′′

2�ρ [x.P], or
(b) P ′ = E ′′′

2 [x.P] or
(c) M ′

3 | �E ′′
1�ρ [x.P] = E ′′′

2 [x.P].
In the following we analyze the sub-cases. It should be noted that in all sub-cases, the obtained process R ′ corresponds
to the case II) from the statement:
(a) R ≡ �E ′

2[P ′]�ρ | �E ′′
2�ρ [x.P] | �E ′′

1�ρ [x.Q] | M ′
3 −→ �E ′

2[P ′]�ρ | �E ′′
2�ρ [P] | �E ′′

1�ρ [Q] | M ′
3 ≡ R ′ , or

(b) R ≡ �E1�ρ [E ′′
2[x.P]] | E ′′

1[x.Q] | M ′
3 −→ �E1�ρ [E ′′

2[P]] | E ′′
1[Q] | M ′

3 ≡ R ′ , or
(c) we distinguish two cases based on Lemma B.7:

• M ′
3 ≡ Eiv

1 [x.P] and it follows

R ≡ �E ′
1�ρ [P ′] | �E ′′

1�ρ [x.Q] | Eiv
1 [x.P] −→ �E ′

1�ρ [P ′] | �E ′′
1�ρ [Q] | Eiv

1 [P] ≡ R ′, or

• �E ′′
1�ρ [•] = �Eiv

1 [•]�ρ | �E v
1�ρ [x.P] and it follows:

R ≡ �Eiv
1 �ρ [P ′] | E v

1 [x.P] | | E ′′
1[x.Q] | M ′

3 −→ �Eiv
1 �ρ [P ′] | E v

1 [P] | | E ′′
1[Q] | M ′

3 ≡ R ′.

B) By using Rule (R-Sub-Upd):

R ≡ E
[

C
[
l[P]] | D

[
l〈〈(X).Q 〉〉.S]] −→ E

[
C
[
0
] | D

[
Q {P/X} | S

]] ≡ R ′.

Therefore, we have that R ≡ E ′[l〈 〈(X).Q 〉 〉.S] such that E ′[•] = E[C[l[P]] | D[•]]. In (B.12), based on Lemma B.7, the
following holds:
47

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(i) M ′
3 ≡ E ′′′[l〈 〈(X).Q 〉 〉.S], or

(ii) P ′ ≡ E ′′′[l〈 〈(X).Q 〉 〉.S].
By Definition 5.5, for every process P1 a location name in �P1�ε is either a transaction name or a reserved name ps,ρ

for some s, ρ . Therefore, if interaction on them exists then they should be part of some process I(p)
s (�P ′

s�s,ρ , �Q ′
s�ε), i.e.,

I(1)
s (�P ′

s�s,ρ , �Q ′
s�ε) ≡ s

[
�P ′

s�s,ρ ′′
] | s〈〈(Y).s[Y] | ch(s, Y) | outs(ps,ρ ′′ , pρ ′′ , nl(ps,ρ ′′ , Y) , s〈〈†〉〉.hs)〉〉

| pρ ′ [�Q ′
s�ε]

(cf. Fig. B.17 for the other forms). This directly provides that process in the form s[P] (i.e., ps,ρ [P]) and update
s〈 〈(X).Q 〉 〉.S (i.e., ps,ρ〈 〈(X).Q 〉 〉.S) have to be in parallel composition.
In the following, we analyze cases (i) and (ii). It should be noted that in all obtained cases and sub-cases, except sub-
case (2.2.2) below, we have that process R ′ corresponds to the case I) from the statement. Process R ′ obtained in (2.2.2)
corresponds to the case II).
(1) If (i) holds, then R ≡ �E1�ρ [P ′] | E ′′′[l〈 〈(X).Q 〉 〉.S], cf. (B.12). In the following we analyze where location l[P] can

occur. We have the following cases:
- E ′′′[•] = E ′′′

1 [•] | l[P] and for this case it follows that:

R ′ ≡�E1�ε
[

P ′] | M ′′
3 where M ′′

3 = E ′′′
1 [Q {P/X} | S] | 0, or

- �E1�ρ [•] ≡ E2[•] | l[P] | M ′
3

R ′ ≡�E2�ε
[

P ′] | M ′′
3 where M ′′

3 = 0 | E ′′′[Q {P/X} | S].
(2) If (ii) holds then

E ′′′[l〈〈(X).Q 〉〉.R] ≡ �G1�ρ

[
�C1�ρ ′

[
I(1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε)

]
| �D1�ρ ′

[
ht .�St�ρ ′′′

] | M ′
1

]
| M ′

2.

In the following analysis we consider two sub-cases:
(2.1) By exploiting (i) it holds that �G1�ρ [P ′′] | M ′

2 where

P ′′ ≡ �C1�ρ ′
[

I(1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε)

]
| �D1�ρ ′

[
ht .�St�ρ ′′′

] | M ′
1 and

M ′
2 ≡ E ′′′

1 [l〈〈(X).Q ′〉〉.R ′.

We have that E ′′′[•] = E ′′′
1 [•] | l[P] and for this case the following holds:

R ′ ≡�E1�ε
[
�G1�ρ

[
P ′′] | M ′′

2

] | M ′
3.

(2.2) By exploiting case (ii) it holds that �G1�ρ [P ′′] | M ′
2

P ′′ ≡ E ′′′[l〈〈(X).Q 〉〉.R] ≡ �C1�ρ ′
[

I(1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε)

]
| �D1�ρ ′

[
ht .�St�ρ ′′′

] | M ′
1.

We consider the following two sub-cases:
(2.2.1) By exploiting case (i) it holds �C1�ρ [P ′′′] | M ′

1 for

P ′′′ ≡ �C1�ρ ′
[

I(1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε)

]
| �D1�ρ ′

[
ht .�St�ρ ′′′

]
M ′

1 ≡ E ′′′
1 [l〈〈(X).Q ′〉〉.S].

We have that E ′′′[•] = E ′′′
1 [•] | l[P] then the following holds:

R ′ ≡�E1�ε
[
�G1�ρ

[
P ′′′ | M ′′

1

] | M ′
2

] | M ′
3.

(2.2.2) By exploiting case (ii) it holds �C1�ρ [P ′′′] | Q ′′′ for

P ′′′ ≡ E ′′′[l〈〈(X).Q 〉〉.R] ≡ I(1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε) and

Q ′′′ ≡ �D1�ρ ′
[
ht .�St�ρ ′′′

] | M ′
1,

and follows directly that

I(1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε) −→ I(2)

t (�P ′
t�t,ρ ′′ , �Q ′

t�ε) for nl(pt,ρ ′′ , �Pt�t,ρ ′′) > 0, or

I(1)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε) −→ I(2)

t (�P ′
t�t,ρ ′′ , �Q ′

t�ε) for nl(pt,ρ ′′ , �Pt�t,ρ ′′) = 0.

Therefore, process R ′ is as presented in the following, where I(2)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε has an appropriate

form, that is described above:
48

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(q) O (q)
u (�F �ρ [hu .�P�ρ ′], �Q �ε), nl(pu,ρ , �F �ρ [hu .�P�ρ ′]) = 0

(1) u
[
�F �ρ [hu .�P�ρ ′]] | extr〈〈u, pu,ρ , pρ〉〉 | pρ [�Q �ε]

≡ u
[
�F �ρ [hu .�P�ρ ′]] | u〈〈(Y).u[Y] | ch(u, Y) | u〈〈†〉〉.hu〉〉 | pρ [�Q �ε]

(2) u
[
�F �ρ [hu .�P�ρ ′]] | hu | u〈〈†〉〉.hu | pρ [�Q �ε]

(3) hu | hu | pρ [�Q �ε]
(4) pρ [�Q �ε]

(q) O (q)
u (�F �ρ [hu .�P�ρ ′], �Q �ε), nl(pu,ρ , �F �ρ [hu .�P�ρ ′]) > 0

(1) u
[
�F �ρ [hu .�P�ρ ′]] | extr〈〈u, pu,ρ , pρ〉〉 | pρ [�Q �ε]

≡ u
[
�F �ρ [hu .�P�ρ ′]] | u〈〈(Y).u[Y] | ch(u, Y) | outs(pu,ρ , pρ , nl(pu,ρ , Y) , u〈〈†〉〉.hu)〉〉 | pρ [�Q �ε]

(j + 2) u
[
�F �ρ [hu .�P�ρ ′]] | hu | pu,ρ〈〈(X1, . . . , Xm− j).

(m− j∏
k=1

pρ [Xk] | u〈〈†〉〉.hu
)〉〉 |

j∏
k=1

pρ [�P ′
k�ε] | pρ [�Q �ε]

0 ≤ j ≤ m − 1

(m + 2) u
[
�F ′�ρ [hu .�P�ρ ′]] |

m∏
k=1

pρ [�P ′
k�ε] | hu | pρ [�Q �ε] | u〈〈†〉〉.hu

(m + 3)
m∏

k=1
pρ [�P ′

k�ε] | hu | pρ [�Q �ε] | hu

(m + 4)
m∏

k=1
pρ [�P ′

k�ε] | pρ [�Q �ε]

Fig. B.18. Process O (q)
u (�F�ρ [hu .�P�ρ ′],�Q �ε) with q ≥ 1.

R ′ ≡�E1�ε

[
�G1�ρ

[
�C1�ρ ′

[
I(2)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε

]
| �D1�ρ ′

[
ht .�St�ρ ′′′

] | M ′
1

]
| M ′

2

]
| M ′

3. �
(B.13)

The following lemma formalizes all possible forms for the process O (q)
u (�F �ρ ′′ [hu .�Pu�ρ ′′′], �Q ′

u�ε) for m ≥ 0 and q ∈
{1, . . . , m + 4}.

Definition B.3. Let P , Q be well-formed compensable processes. Given a name u, paths ρ, ρ ′ , and q ≥ 1, we define the
intermediate processes O (q)

u (�F �ρ [hu .�P�ρ ′], �Q �ε) (Fig. B.18) depending on m = nl(pu,ρ , �F �ρ [hu .�P�ρ ′]):

1. for m = 0 we have q ∈ {1, 2, 3, 4}, and

2. for m > 0 and �F �ρ [hu .�P�ρ ′] =
m∏

k=1
pu,ρ [�P ′

k�ε] | S we have q ∈ {1, . . . , m + 4}.

We now continue with the analysis of adaptable processes that can be obtained starting from the translation of a trans-
action that contains failure signal in its body, which is triggered internally.

Lemma B.9. Let P1 be a well-formed compensable process such that

• �P1�ε ≡ �E�ε
[
�G�ρ

[
�L�ρ ′

[
�u[F [u.Pu],Q u]�ρ ′′

] | M1
] | M2

] | M3 , and

• �P1�ε −→n−1 R ≡ �E1�ε
[
�G1�ρ

[
�L1�ρ ′

[
O (q)

u (�F1�ρ ′′ [hu .�Pu�t,ρ ′′′], �Q ′
u�ε)

]
| M ′

1

]
| M ′

1

]
| M ′

3 ,

where O (q)
u (�F �ρ ′′ [hu .�Pu�t,ρ ′′′], �Q u�ε) in R is a process from Definition B.3.

If R −→ R ′ then either

I) R ′ ≡ �E1�ε
[
�G1�ρ

[
�L1�ρ ′

[
O (q+1)

u (�F1�ρ ′′ [hu .�Pu�t,ρ ′′′], �Q ′
u�ε)

]
| M ′

1

]
| M ′

2

]
| M ′

3 , or

II) R ′ ≡ �E2�ε
[
�G2�ρ

[
�L2�ρ ′

[
O (q)

u (�F2�ρ ′′ [hu .�Pu�t,ρ ′′′], �Q ′′
u �ε)

]
| M ′′

1

]
| M ′′

2

]
| M ′′

3 ,

where:

• n > 1;
49

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�P�ε

�P ′�ε

R

∗

n

Fig. B.19. Diagram of Lemma B.10.

• ρ is the path to hole in �E�ε [•];
• ρ ′ is the path to hole in �G�ρ [•] and �Gk�ρ [•] and k ∈ {1, 2};
• ρ ′′ is the path to the hole in �L�ρ ′ [•]; �Lk�ρ ′ [•] and k ∈ {1, 2};
• ρ ′′′ is the path to the hole in �F �ρ ′′ [•] and �Fk�ρ ′ [•] and k ∈ {1, 2}.

Proof. By Definition 5.5, we get:

�P1�ε ≡ �E�ε
[
�G�ρ

[
�L�ρ ′

[
u
[
�F �ρ ′′ [u.hu.�Pu�ρ ′′′]] | u.(extr〈〈u, pu,ρ ′′ , pρ ′′ 〉〉 | pρ ′′ [�Q u�ε])

] | M1
] | M2

] | M3

and the proof continues by case analysis for the step, R −→ R ′ , that can be realized. The proof follows the same idea that
is presented for the proof of Lemma B.8. �

The following lemma is crucial for the proof of soundness and it is illustrated in Fig. B.19. Also, we will use the following
abbreviations, where we use i, c, k, w as indexes of t, u and F :

I(p)
ti,k,w

= I(p)
ti,k,w

(�P ′
ti,k,w

�t,ρ ′′ , �Q ′
ti,k,w

�ε),

O (q)
uc,k,w

= O (q)
uc,k,w

(�Fc,k,w�ρ ′′ [huc,k,w .�Puc,k,w �ρ ′′′], �Q ′
uc,k,w

�ε).

Lemma B.10. Let I(p)
ti,k,w

and O (q)
uc,k,w

be processes from Definition B.2 and Definition B.3, respectively. If �P�ε −→n R, with n ≥ 1, then

1)

R ≡
z∏

w=1

�E w�ε

[sw∏
k=1

�Gk,w�ρw

[lk∏
i=1

�Ci,k,w�ρ ′
k,w

[
I(p)
ti,k,w

] |
rk∏

j=1

�D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

]

|
mk∏

c=1

�Lc,k,w�ρ ′
k,w

[
O (q)

uc,k,w

]]] (B.14)

and P −→∗ P ′ , where P ′ is of the following form:

2)

P ′ ≡
z∏

w=1

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
ti,k,w [Pti,k,w ,Q ti,k,w]] |

rk∏
j=1

D j,k,w
[
t j,k,w .St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
uc,k,w [Fc,k,w [uc,k,w .Puc,k,w],Q uc,k,w]]],

(B.15)

for some E w [•], Gk,w [•], Ci,k,w [•], D j,k,w [•], and Lc,k,w [•] where w ∈ {1, . . . , z}, k ∈ {1, . . . , sw}, i ∈ {1, . . . , lk}, j ∈ {1, . . . , rk}, and
c ∈ { j, . . . , mk}.

Proof. The proof proceeds by induction on n.
Base case: Assume that n = 1, i.e. �P�ε −→ R . By application of Lemma B.4 there are three possible cases:

a) P ≡ E ′[C ′[a.P1] | D ′[a.P2]] and R ≡ �E ′�ε
[
�C ′�ρ [�P1�ρ ′] | �D ′�ρ [�P2�ρ ′′]

]
.

In this case we have: z = 1 and s1 = 0 and it holds E1[•] = [•] | E ′[C ′[a.P1] | D ′[a.P2]
]

and P = P ′ .
50

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
b) P ≡ E ′
[

C ′[t[P2,Q]] | D ′[t.P1]] and

R ≡ �E ′�ε
[
�C ′�ρ [t[�P ′

2�t,ρ ′
] | extr〈〈t, pt,ρ ′ , pρ ′ 〉〉 | pρ ′ [�Q ′�ε]] | �D ′�ρ [ht .�P1�ρ ′′]

]
.

In this case we have: z = 1, s1 = 1, l1 = 1, r1 = 1 and m1 = 0. Therefore, the following holds: E1[•] = [•], G1,1[•] = E ′[•]
C1,1,1[•] = C ′[•], D1,1,1[•] = D ′[•], Pt1,1,1 = P2, Q t1,1,1 = Q , St1,1,1 = P1 and I(1)

t1,1,1
≡ t

[
�P ′

2�t,ρ ′
] | extr〈 〈t, pt,ρ ′ , pρ ′ 〉 〉 |

pρ ′ [�Q ′�ε] and P = P ′ .
c) P ≡ C ′[u[D ′[u.P1],Q]] and R ≡ �C ′�ε

[
u
[
�D ′�u,ρ [hu .�P1�ρ ′]] | extr〈 〈u, pu,ρ ′ , pρ ′ 〉 〉 | pρ ′ [�Q ′�ε]

]
.

In this case we have: z = 1, s1 = 1, l1 = 0, r1 = 0 and m1 = 1. Therefore, the following holds: E1[•] = [•], G1,1[•] =
C ′[•], L1,1,1[•] = D ′[•], Pu1,1,1 = P1, Q u1,1,1 = Q and

I(1)
u1,1,1 ≡ u

[
�D ′�u,ρ [hu .�P1�ρ ′]] | extr〈〈u, pu,ρ ′ , pρ ′ 〉〉 | pρ ′ [�Q ′�ε] and P = P ′.

Inductive hypothesis: Assume that the statement holds for n − 1 reduction steps, i.e., if �P�ε −→n−1 R1 then the statement
holds.

Inductive step: We consider that �P�ε −→n−1 R1 −→ R . We know, by inductive hypothesis:

1) R1 has the following form:

R1 ≡
z∏

w=1

�E w�ε

[sw∏
k=1

�Gk,w�ρw

[lk∏
i=1

�Ci,k,w�ρ ′
k,w

[
I(p)
ti,k,w

] |
rk∏

j=1

�D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

]

|
mk∏

c=1

�Lc,k,w�ρ ′
k,w

[
O (q)

uc,k,w

]]]
,

2) P −→∗ P ′′ such that P ′′ has the following form:

P ′′ ≡
z∏

w=1

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
ti,k,w [Pti,k,w ,Q ti,k,w]] |

rk∏
j=1

D j,k,w
[
t j,k,w .St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
uc,k,w [Fc,k,w [uc,k,w .Puc,k,w],Q uc,k,w]]].

We continue with the proof by case analysis for the last step, R1 −→ R , that can be realized. In the following we consider
six interesting cases.

(1) Let I(1)
t be a process that has the form as presented in Definition B.2 where t = t1,1,1, G1[•] = G1,1[•], C1[•] =

C1,1,1[•], D1[•] = D1,1,1[•] and

R1 ≡ �E1�ε
[
�G1,1�ρ1

[
�C1,1,1�ρ1,1

[
I(1)
t1,1,1

(�P ′
t1,1,1

�t,ρ ′′ , �Q ′
t1,1,1

�ε)
] | �D1,1,1�ρ1,1

[
ht1,1,1 .�St1,1,1�ρ ′′

1,1

]
| M ′

1

] | M ′
2

] | M ′
3.

According to the Lemma B.8, it follows that R1 −→ R such that R has the form

I)

R ≡�E1�ε
[
�G1,1�ρ

[
�C1,1,1�ρ ′

[
I(2)
t1,1,1

(�P ′
t1,1,1

�t1,1,1,ρ ′′ , �Q ′
t1,1,1

�ε)
] | �D1�ρ ′

[
ht1,1,1 .�St1,1,1�ρ ′′′

]
| M ′

1

] | M ′
2

] | M ′
3,or

II)
R ≡ �E ′

1�ε
[
�G ′

1,1�ρ
[
�C ′

1,1,1�ρ ′
[
I(1)
t1,1,1

(�P ′′
t1,1,1

�t1,1,1,ρ ′′ , �Q ′′
t1,1,1

�ε)
] | �D ′

1,1,1�ρ ′
[
ht1,1,1 .�St1,1,1�ρ ′′′

]
| M ′′

1

] | M ′′
2

] | M ′′
3 .

(B.16)

Here we comment case II), while case I) follows the idea that is given in case a) from Base case.
In case when we get the form II) it directly follows that P ′′ = P ′ .
Similarly, for all I(1)

t (�P ′
t�t,ρ ′′ , �Q ′

t�ε) with t ∈ {t2,1,1, . . . , tlsz sz z}.

Similarly, for cases I(p)
t (�P ′

t �t1,1,1,ρ ′′ , �Q ′
t �ε) where p ∈ {2, 4, . . . , m + 3}.
1,1,1 1,1,1 1,1,1

51

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(2) Let O (1)
u be a process that has a form as presented in Definition B.3, where u = u1,1,1, G1[•] = G1,1[•], L1[•] =

L1,1,1[•], F1[•] = F1,1,1[•] and

R1 ≡ �E1�ε

[
�G1,1�ρ1

[
�L1,1,1�ρ ′

1,1

[
O (1)

u1,1,1(�F1,1,1�ρ ′′ [hu1,1,1 .�Pu1,1,1�u1,1,1,ρ ′′′], �Q ′
u1,1,1

�ε)
]

| M ′
1

]
| M ′

2

]
| M ′

3.

According to the Lemma B.9, it follows that R1 −→ R such that R has the form

I) R ≡ �E1�ε
[
�G1,1�ρ

[
�L1,1,1�ρ ′

[
O (2)

u (�F1,1,1�ρ ′′ [hu1,1,1 .�Pu1,1,1�t,ρ ′′′], �Q ′
u1,1,1

�ε)
]

| M ′
1

]
| M ′

2

]
| M ′

3, or

II)

R ≡ �E ′
1�ε

[
�G ′

1,1�ρ

[
�L′

1,1,1�ρ ′
[

O (1)
u1,1,1(�F ′

1,1,1�ρ ′′ [hu .�Pu1,1,1�u1,1,1,ρ ′′′], �Q ′′
u1,1,1

�ε)
]

| M ′′
1

]
| M ′′

2

]
| M ′′

3 .

(B.17)

Here we comment on the case II), while case I) follows the idea that is given in case a) from the base case.
In case when we get the form II) it directly follows that P ′′ = P ′ .
Similarly, for all O (1)

u (�F �ρ ′′ [hu .�Pu�t,ρ ′′′], �Q ′
u�ε) with u ∈ {u2,1,1, . . . , umsz ,sz,z}.

Similarly, for cases O (q)
u (�F �ρ ′′ [hu .�Pu�t,ρ ′′′], �Q ′

u�ε) where q ∈ {2, 4, . . . , m + 4}.

(3) Let I(3)
t be a process that has the form as presented in Definition B.2, where t = t1,1,1, G1[•] = G1,1[•], C1[•] =

C1,1,1[•], D1[•] = D1,1,1[•] and

R1 ≡ �E1�ε

[
�G1,1�ρ1

[
�C1,1,1�ρ1,1

[
ht1,1,1 | pρ ′

1,1
[�Q ′

t1,1,1
�ε]

]
| �D1,1,1�ρ1,1

[
ht1,1,1 .�St1,1,1�ρ ′′

1,1

] | M ′
1

] | M ′
2

]
| M ′

3.

According to the Lemma B.8, it follows that we can derive R1 −→ R such that R has the form of (B.16) or

R ≡ �E1�ε

[
�G1,1�ρ1

[
�C1,1,1�ρ1,1

[
pρ ′

1,1
[�Q ′

t1,1,1
�ε]

] | �D1,1,1�ρ1,1

[
�St1,1,1�ρ ′′

1,1

] | M ′
1

] | M ′
2

]
| M ′

3. (B.18)

In case when we get the form (B.18) it holds that P ′′ −→ P ′ where:

P ′ ≡ E1

[
G1,1

[
C1,1,1[〈Q ′

t1,1,1
〉] | D1,1,1[St1,1,1] | M ′

1

] | M ′
2

]
| M ′

3

≡E1

[
G1,1

[l1∏
i=2

C ′
i,1,1

[
ti,1,1[Pti,1,1,Q ti,1,1]

] |
r1∏

j=2

D ′
j,1,1

[
t j,1,1.St j,1,1

]

|
m1∏
c=1

Lc,1,1
[
uc,1,1[Fc,1,1[uc,1,1.Puc,1,1],Q uc,1,1]

]]

|
z∏

w=2

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
ti,k,w [Pti,k,w ,Q ti,k,w]] |

rk∏
j=1

D j,k,w
[
t j,k,w .St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
uc,k,w [Fc,k,w [uc,k,w .Puc,k,w],Q uc,k,w]]],

such that:
- C ′

2,1,1[•] = C2,1,1[•] | N , where N = C1,1,1[〈Q ′
t1,1,1

〉] and C ′
i,1,1[•] = Ci,1,1[•] for i ∈ {3, . . . , l1}, and

- D ′
2,1,1[•] = D2,1,1[•] | N1, where N1 = D1,1,1[St1,1,1] and D ′

i,1,1[•] = Di,1,1[•] for i ∈ {3, . . . , l1}.

Similarly, for all I(3)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε) with t ∈ {t2,1,1, . . . , tlsz sz z}.

Similarly, for I(m+3)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε) in Definition B.2.

(4) O (3)
u is a process that has a form as presented in Definition B.3, where u = u1,1,1, G1[•] = G1,1[•], L1[•] =

L1,1,1[•], F1[•] = F1,1,1[•] and

R1 ≡ �E1�ε

[
�G1,1�ρ1

[
�L1,1,1�ρ ′

1,1

[
hu1,1,1 | hu1,1,1 | pρ ′′ [�Q ′

u1,1,1
�ε]

]
| M ′

1

]
| M ′

2

]
| M ′

3.

According to the proof of Lemma B.9, it follows that and R1 −→ R such that R has the form (B.17) or

R1 ≡ �E1�ε

[
�G1,1�ρ1

[
�L1,1,1�ρ ′

1,1

[
pρ ′′ [�Q ′

u1,1,1
�ε]

]
| M ′

1

]
| M ′

2

]
| M ′

3. (B.19)

In case when we get the form (B.19) it holds P ′′ −→ P ′ where
52

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
P ′ ≡ E1

[
G1,1

[
L1,1,1[〈Q ′

u1,1,1
〉] | M ′

1

] | M ′
2

]
| M ′

3

≡E1

[
G1,1

[l1∏
i=1

Ci,1,1
[
ti,1,1[Pti,1,1,Q ti,1,1]

] |
r1∏

j=1

D j,1,1
[
t j,1,1.St j,1,1

]

|
m1∏
c=2

L′
c,1,1

[
uc,1,1[Fc,1,1[uc,1,1.Puc,1,1],Q uc,1,1]

]]

|
z∏

w=2

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
ti,k,w [Pti,k,w ,Q ti,k,w]] |

rk∏
j=1

D j,k,w
[
t j,k,w .St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
uc,k,w [Fc,k,w [uc,k,w .Puc,k,w],Q uc,k,w]]],

such that L′
2,1,1[•] = L2,1,1[•] | N , where N = L1,1,1[〈Q ′

u1,1,1
〉] and L′

i,1,1[•] = Li,1,1[•] for i ∈ {3, . . . , m1}.

Similarly, for all O (3)
u (�F �ρ ′′ [hu .�Pu�t,ρ ′′′], �Q ′

u�ε) with u ∈ {u2,1,1, . . . , umsz sz z}.

Similarly, for case of O (m+3)
u (�F �ρ ′′ [hu .�Pu�t,ρ ′′′], �Q ′

u�ε) in Definition B.3.
(5) In this case let us consider the following context:

G1,1[•] = G ′
1,1[•] | C(l1+1)1,1[t(l1+1)1,1[Pt(l1+1)1,1,Q t(lk+1)1,1]] | D(r1+1)1,1[t(r1+1)1,1.St(r1+1)1,1]. (B.20)

Therefore, the following holds:

R1 ≡�E1�ε

[
�G1,1�ρ1

[lk∏
i=1

�Ci,1,1�ρ ′
1,1

[
I(p)
ti,1,1

] |
rk∏

j=1

�D j,1,1�ρ ′
1,1

[
ht j,1,1 .�St j,1,1�ρ ′′

1,1

] | M ′
1

] | M ′
2

]
| M ′

3

≡�E1�ε

[
�G ′

1,1�ρ1

[lk∏
i=1

�Ci,1,1�ρ ′
1,1

[
I(p)
ti,1,1

] |
rk∏

j=1

�D j,1,1�ρ ′
1,1

[
ht j,1,1 .�St j,1,1�ρ ′′

1,1

]
| �C(l1+1)1,1�ρ ′

1,1
[t(l1+1)1,1

[
�P�t(l1+1)1,1,ρ ′′

1,1

] | t(l1+1)1,1.(extr〈〈t(l1+1)1,1, pt(l1+1)1,1,ρ ′′
1,1

, pρ ′′
1,1

〉〉 | pρ ′′
1,1

[�Q �ε])]
| �D(r1+1)1,1�ρ ′

1,1
[t(r1+1)1,1.ht(r1+1)1,1 .�St(r1+1)1,1�ρ ′′

1,1
] | M ′

1

] | M ′
2

]
| M ′

3.

For process R , which is obtained from R1 −→ R , one possible reduction is caused by synchronization on name input
t(r1+1)1,1, as presented in the following:

R ≡ �E1�ε

[
�G ′

1,1�ρ1

[lk∏
i=1

�Ci,1,1�ρ ′
1,1

[
I(p)
ti,1,1

] |
rk∏

j=1

�D j,1,1�ρ ′
1,1

[
ht j,1,1 .�St j,1,1�ρ ′′

1,1

]
| �C(l1+1)1,1�ρ ′

1,1
[I(1)

t(l1+1)1,1
] | �D(r1+1)1,1�ρ ′

1,1
[ht(r1+1)1,1 .�St(r1+1)1,1�ρ ′′

1,1
] | M ′

1

] | M ′
2

]
| M ′

3,

(B.21)

where I(1)
t(l1+1)1,1

= t(l1+1)1,1
[
�Pt(l1+1)1,1�t(l1+1)1,1,ρ ′′

1,1

] | extr〈 〈t(l1+1)1,1, pt(l1+1)1,1,ρ ′′
1,1

, pρ ′′
1,1

〉 〉 | pρ ′′
1,1

[�Q t(l1+1)1,1�ε].
In case when we get (B.21) it follows that P ′′ = P ′ .
It should be noted that here we considered one particular case. Precisely, we consider scenario where for transac-
tion t(l1+1)1,1[Pt(l1+1)1,1,Q t(l1+1)1,1] error notification comes from context D(r1+1)1,1[•], but that is not the only possible
case. For the other cases, when the error notification t(l1+1)1,1 comes from some other context, i.e. from D j,1,1[•], j ∈
{1, . . . , r1} or Ci,1,1[•], i ∈ {1, . . . , l1} or G ′

1,1[•] or E1[•], discussion follows similarly.
(6) In this case let us consider that:

G1,1[•] = G ′
1,1[•] | L(m1+1),1,1

[
u(m1+1),1,1[F(mk+1)1,1[u(m1+1),1,1.Pu(m1+1),1,1],Q u(m1+1),1,1]

]
(B.22)

Therefore, the following holds:

R1 ≡ �E1�ε

[
�G ′

1,1�ρ1

[mk∏
c=1

�Lc,1,1�ρ ′
1,1

[
I(q)
uc,1,1

]
| �L(m1+1),1,1�ρ ′

1,1

[
u(m1+1),1,1[�F(mk+1),1,1�ρ ′′

1,1
[u(mk+1),1,1.hu(m1+1),1,1 .�Pu(m1+1),1,1�ρ ′′

1,1
]]

| u(m1+1),1,1.(extr〈〈u(m1+1),1,1, pu(m1+1),1,1,ρ ′′
1,1

, pρ ′′
1,1

〉〉 | pρ ′′
1,1

[�Q u(m1+1),1,1�ε]) | M ′
1

] | M ′
2

]
| M ′

3

53

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
For process R , which is obtained form R1 −→ R , one possible reduction is caused by a synchronization on name
u(m1+1),1,1, as presented in the following:

R ≡ �E1�ε

[
�G ′

1,1�ρ1

[mk∏
c=1

�Lc,1,1�ρ ′
1,1

[
O (q)

uc,1,1

] | �L(m1+1),1,1�ρ ′
1,1

[
O (1)

u(m1+1),1,1 | M ′
1

] | M ′
2

]
| M ′

3, (B.23)

where

O (1)
u(m1+1),1,1 = u(m1+1),1,1[�F(m1+1),1,1�ρ ′′

1,1
[hu(m1+1),1,1 .�Pu(m1+1),1,1�ρ ′′

1,1
]]

| extr〈〈u(m1+1),1,1, pu(m1+1),1,1,ρ ′′
1,1

, pρ ′′
1,1

〉〉 | pρ ′′
1,1

[�Q u(m1+1),1,1�ε].

In case when we get (B.23) it follows that P ′′ = P ′ . �
Lemma B.11. Let processes I(p)

t (�P ′
t�t,ρ ′′ , �Q ′

t�ε) and O (q)
u (�F �ρ ′′ [hu .�Pu�ρ ′′′], �Q ′

u�ε) be defined as in Definition B.2 and Defini-
tion B.3. For any contexts C , D, and L the following holds:

C
[
I(p)
t (�P ′

t�t,ρ ′′ , �Q ′
t�ε)

] | D
[
ht .�St�ρ

] −→∗ C
[
�extr(P ′

t)�ρ ′ | �〈Q ′
t 〉�ρ ′

] | D
[
�St�ρ

]
and (B.24)

L
[

O (q)
u (�F �ρ ′′ [hu .�Pu�ρ ′′′], �Q ′

u�ε)
] −→∗ L

[
�extr(F1[Pu])�ρ ′ | �〈Q ′

u〉�ρ ′
]

(B.25)

Proof. The proof proceeds directly by application of the reduction rules from Fig. 4. �
B.3.4. Operational correspondence

We repeat the statement at page 17:

Theorem 5.8 (Operational correspondence for �·�ε). Let P be a well-formed process in C .

(1) If P −→ P ′ then �P�ε −→k �P ′�ε where for
a) P ≡ E[C[a.P1] | D[a.P2]] and P ′ ≡ E[C[P1] | D[P2]] it follows k = 1,
b) P ≡ E[C[t[P1,Q]] | D[t.P2]] and P ′ ≡ E[C[extr(P1) | 〈Q 〉] | D[P2]] it follows k = 4 + pb(P1),
c) P ≡ C[u[D[u.P1],Q]] and P ′ ≡ C[extr(D[P1]) | 〈Q 〉], it follows k = 4 + pb(D[P1]),
for some contexts C , D, E, processes P1, Q , P2 and names t, u.

(2) If �P�ε −→n R with n > 0 then there is P ′ such that P −→∗ P ′ and R −→∗ �P ′�ε .

Proof. We consider completeness and soundness (Parts (1) and (2)) separately.

(1) Part (1) – Completeness: The proof proceeds by induction on the derivation of P −→ P ′ . We consider three base cases,
corresponding to cases a), b) and c) of Proposition 3.1 (page 7). In all cases, we use Definition 5.5 and Lemma B.1
(page 43).
a) This case concerns an input-output synchronization on a name a ∈ Ns . Therefore, we observe that P ≡ E[C[a.P1] |

D[a.P2]] and P ′ ≡ E[C[P1] | D[P2]], and we have the following derivation:

�P�ε ≡ �E
[
C[a.P1] | D[a.P2]

]
�ε

= �E�ε
[
�C[a.P1] | D[a.P2]�ρ

]
= �E�ε[�C�ρ [�a.P1�ρ ′] | �D�ρ [�a.P2�ρ ′′]]
= �E�ε

[
�C�ρ [a.�P1�ρ ′] | �D�ρ [a.�P2�ρ ′′]]

−→ �E�ε
[
�C�ρ [�P1�ρ ′] | �D�ρ [�P2�ρ ′′]]

= �E�ε
[
�C[P1] | D[P2]�ρ

]
= �E

[
C[P1] | D[P2]

]
�ε

≡ �P ′�ε

(B.26)

Therefore, the thesis holds with k = 1.
b) This case concerns a synchronization due to an external error notification for a transaction scope. We consider P ≡

E[C[t[P1,Q]] | D[t.P2]], with m = pb(P1), and P ′ ≡ E[C[extr(P1) | 〈Q 〉] | D[P2]]. We have the following derivation:
54

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�P�ε ≡ �E[C[t[P1,Q]] | D[t.P2]]�ε
= �E�ε

[
�C[t[P1,Q]]�ρ | �D[t.P2]�ρ

]
= �E�ε

[
�C�ρ [�t[P1,Q]�ρ ′] | �D�ρ [�t.P2�ρ ′′]

]
= �E�ε

[
�C�ρ

[
t
[
�P1�t,ρ ′

] | t.
(
extr〈〈t, pt,ρ ′ , pρ ′ 〉〉 | pρ ′ [�Q �ε]

)]
| �D�ρ [t.ht .�P2�ρ ′′]]

−→ �E�ε

[
�C�ρ

[
I(1)
t (�P1�t,ρ ′ , �Q �ε)

] | �D�ρ [ht .�P2�ρ ′′]
]

−→m+2 �E�ε

[
�C�ρ

[[
I(m+3)
t (�P1�t,ρ ′ , �Q �ε)

] | �D�ρ
[
ht .�P2�ρ ′′

]]
−→ �E�ε

[
�C�ρ

[
�extr(P1) | 〈Q 〉�ρ ′

] | �D�ρ
[
�P2�ρ ′′

]]
= �E�ε

[
�C[extr(P1) | 〈Q 〉]�ρ | �D[P2]�ρ

]
= �E[C[extr(P1) | 〈Q 〉] | D[P2]]�ε
≡ �P ′�ε

Since we have that the error notification is external, in extr〈 〈t, pt,ρ ′ , pρ ′ 〉 〉 (cf. Eq. (13)) we get that ch(t, �P1�ρ) = 0.
(cf. Lemma B.6 for more details). The order/nature of these reduction steps is as follows:
i) The first synchronization concerns t and t .

ii) The following m + 2 synchronizations can be explained as follows:
- First, we have a process relocation through the update of location t , as enforced by the definition of process
extr. Process I(1)

t (�P1�t,ρ ′ , �Q �ε) is as in Definition B.2 (Fig. B.17); as shown in Fig. B.16, there are two possi-
bilities for reduction, depending on m.

- Subsequently, thanks to process

outs(pt,ρ ′ , pρ ′ , nl(pt,ρ ′ , �P1�t,ρ ′) , t〈〈†〉〉.ht)

we have m reduction steps that relocate processes on location pt,ρ ′ to location pρ ′ , as also shown in Fig. B.16.
- The final reduction corresponds to the erasure of the location t with all its contents, obtained by updating prefix

t〈 〈†〉 〉.
iii) Finally, we have a synchronization between ht and ht , which serves to signal that all synchronizations related to

location t have been completed.
Therefore, we can conclude that for �P�ε −→k �P ′�ε such that k = 4 + m.

c) This case concerns a synchronization due to an internal error notification (i.e., the error comes from the default
activity of transaction). Here we have P ≡ C[t[D[u.P1],Q]], with m = pb(D[P1]), and P ′ ≡ C[extr(D[P1]) | 〈Q 〉].
Then we have the following derivation:

�P�ε ≡ �C
[
u[D[u.P1],Q]]�ε

= �C�ε
[
�u[D[u.P1],Q]�ρ

]
= �C�ε

[
u
[
�D[u.P1]�u,ρ

] | u.
(
extr〈〈t, pu,ρ , pρ〉〉 | pρ [�Q �ε]

)]]]
= �C�ε

[
u
[
�D�u,ρ [u.hu .�P1�ρ ′]] | u.(extr〈〈u, pu,ρ , pρ〉〉 | pρ [�Q �ε])

]
−→ �C�ε

[
O (1)

u (�D�u,ρ [hu .�P1�ρ ′], �Q �ε)
]

−→m+2 �C�ε
[

O (m+3)
u (�D�u,ρ [hu .�P1�ρ ′], �Q �ε)

]
−→ �C�ε

[
O (m+4)

u (�D�u,ρ [hu .�P1�ρ ′], �Q �ε)
]

= �C�ε
[
�extr(D[P1])�ρ | pρ [�Q �ε]

]
= �C

[
extr(D[P1]) | 〈Q 〉]�ε

≡ �P ′�ε
Process O (q)

u (�D�u,ρ [hu .�P1�ρ ′], �Q �ε), where q ∈ {1, . . . , m + 4}, is as in Definition B.3. It should be noted that the
location on name u and its content will be erased before interaction on name hu and hu (cf. Fig. B.18 for q = (m + 2)

and q = (m + 3)). Therefore, in this case, the role of function ch(u, ·) is central: indeed, ch(u, �D�u,ρ

[
hu .�P1�ρ ′

]
)

provides the input hu which is necessary to achieve operational correspondence.
The order/nature/number of reduction steps can be explained as in Case b) above. We can then conclude that
�P�ε −→k �P ′�ε such that k = 4 + m.

(2) Part (2) – Soundness: Given �P�ε −→n R , by Lemma B.10, process R has the following form:

R ≡
z∏

w=1

�E w�ε

[sw∏
k=1

�Gk,w�ρw

[lk∏
i=1

�Ci,k,w�ρ ′
k,w

[
I(p)
ti,k,w

] |
rk∏

j=1

�D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

]

|
mk∏

c=1

�Lc,k,w�ρ ′
k,w

[
O (q)

uc,k,w

]]]
.

55

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�P�ε

�P ′′�ε

R

�P ′�ε

∗

n

∗
∗

Fig. B.20. Diagram of the proof of soundness for �·�ε .

Also by Lemma B.10, we have P −→∗ P ′′ where

P ′′ ≡
z∏

w=1

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
ti,k,w [Pti,k,w ,Q ti,k,w]] |

rk∏
j=1

D j,k,w
[
t j,k,w .St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
uc,k,w [Fc,k,w [uc,k,w .Puc,k,w],Q uc,k,w]]],

where by successive application of completeness it follows that �P�ε −→∗ �P ′′�ε .
By Lemma B.11, i.e., by lk successive applications of (B.24) and mk successive applications of (B.25) on process R , it
follows that:

R −→∗
z∏

w=1

�E w�ε

[sw∏
k=1

�Gk,w�ρw

[lk∏
i=1

�Ci,k,w�ρ ′
k,w

[
�extr(P ′

ti,k,w
)�ρ ′′

k,w
| �〈Q ′

ti,k,w
〉�ρ ′′

k,w

]

|
rk∏

j=1

�D j,k,w�ρ ′
k,w

[
�St j,k,w �ρ ′′

k,w

] |
mk∏

c=1

�Lc,k,w�ρ ′
k,w

[
�extr(Fc,k,w [Puc,k,w])�ρ ′′

k,w
| �〈Q ′

uc,k,w
〉�ρ ′′

k,w

]]]

≡ �

z∏
w=1

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
extr(P ′

ti,k,w
) | 〈Q ′

ti,k,w
〉] |

rk∏
j=1

D j,k,w
[

St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
extr(Fc,k,w [Puc,k,w]) | 〈Q ′

uc,k,w
〉]]]�ε

≡ �P ′�ε.

Therefore, it follows that

P ′ ≡
z∏

w=1

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
extr(P ′

ti,k,w
) | 〈Q ′

ti,k,w
〉] |

rk∏
j=1

D j,k,w
[

St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
extr(Fc,k,w [Puc,k,w]) | 〈Q ′

uc,k,w
〉]]].

Also, by Proposition 3.1, i.e., by lk successive applications of case b) and mk successive applications of case c) on process
P ′′ , it follows that P ′′ −→∗ P ′ .
By successive application of (B.3.4) – Completeness on the derivation P ′′ −→∗ P ′ it follows that �P ′′�ε −→∗ �P ′�ε . The
proof scheme is shown in Fig. B.20. �

Example B.12. The example presented in Fig. B.21 illustrates the proof of soundness (Fig. B.20).
56

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
�P�ε = �t[〈a | a〉,0] | t | u[u,0]�ε
= t

[
pt,ε[a | a]] | t.

(
extr〈〈t, pt,ε , pε〉〉 | pε[0]) | t.ht

| u
[
u.hu

] | u.
(
extr〈〈u, pu,ε , pε〉〉 | pε[0])

I(1)
t | ht | u

[
u.hu

] | u.
(
extr〈〈u, pu,ε , pε〉〉 | pε[0])(

I(1)
t ≡ t

[
pt,ε[a | a]] | extr〈〈t, pt,ε , pε〉〉 | pε[0]

)
�〈a | a〉 | 〈0〉 | u[u,0]�ε

I(1)
t | ht | O (1)

u(
O (1)

u ≡ u
[
hu

] | extr〈〈u, pu,ε pε〉〉 | pε[0]
)

I ′ (1)
t | ht | O (1)

u(
I ′ (1)
t ≡ t

[
pt,ε[0 | 0]] | extr〈〈t, pt,ε , pε〉〉 | pε[0]

)

R = pε[0 | 0] | pε[0] | O (1)
u

�P ′′�ε = �〈a | a〉 | 〈0〉 | 〈0〉�ε

�P ′�ε = �〈0 | 0〉 | 〈0〉 | 〈0〉�ε*
*

*

*

3

Fig. B.21. Example for operational soundness.

B.4. Proof of divergence reflection results: Theorem 5.12

In this section we shall prove that divergence reflection holds for the translation �·�ρ . The proof relies on the following
lemma, which was given in page 20:

Lemma 5.11. Let {Ri}i≥0 be a sequence of adaptable processes such that Ri −→ Ri+1 , with R0 = �P0�ρ , for some compensable process
P0 and path ρ . Then for every i ≥ 1 there is Pi such that

(i) Ri −→∗ �Pi�ρ ,
(ii) Pi−1 = Pi or Pi−1 −→ Pi , and

(iii) Ri �≡ Ri+1 �≡ . . . �≡ Ri+m and Pi = Pi+1 = . . . = Pi+m imply m ≤ 4 + npb(P0).

Proof. The proof for (i) and (ii) proceeds by induction on i.
Base case: Assume that i = 1. By the proof of Lemma B.10, i.e. its Base case, we have three cases:

a) P0 ≡ E[C[a.P ′
1] | D[a.P2]] and R1 ≡ �E�ε

[
�C�ρ [�P ′

1�ρ ′] | �D�ρ [�P2�ρ ′′]
]

= �P1�ρ , it follows P0 −→ P1 (cf. Proposi-

tion 3.1 (a)).

b) P0 ≡ E
[

C[t[P2,Q]] | D[t.P ′
1]] and

R1 ≡ �E�ε
[
�C�ρ [t[�P ′

2�t,ρ ′
] | extr〈 〈t, pt,ρ ′ , pρ ′ 〉 〉 | pρ ′ [�Q ′�ε]] | �D�ρ [ht .�P ′

1�ρ ′′]
]

. There is P1 such that by Lemma B.11

(B.24) it follows R1 −→∗ �P1�ρ . Also, it follows P0 −→ P1 (cf. Proposition 3.1 (b)).

c) P0 ≡ C[u[D[u.P ′
1],Q]] and R1 ≡ �C�ε

[
u
[
�D�u,ρ [hu .�P ′

1�ρ ′]] | extr〈 〈u, pu,ρ ′ , pρ ′ 〉 〉 | pρ ′ [�Q ′�ε]
]

. There is P1 such that
by Lemma B.11 (B.25) it follows R1 −→∗ �P1�ρ . Also, it follows P0 −→ P1 (cf. Proposition 3.1 (c)).

Inductive step: By inductive hypothesis, there are processes P1, . . . , Pi−1, Pi such that Ri−1 −→∗ �Pi−1�ρ and either Pi−1 =
Pi or Pi−1 −→ Pi . Let us now consider Ri −→ Ri+1 (i.e., �P0�ρ −→i Ri −→ Ri+1). By the proof of Lemma B.10, i.e., its
Inductive step, we get that there is Pi+1 such that either Pi = Pi+1 or Pi −→ Pi+1 (cf. for example (B.16) and (B.18)). By
Lemma B.11 it follows Ri+1 −→∗ �Pi+1�ρ .

Now, we are going to prove the last assertion in the statement. In the following, we give guidelines on how to obtain
the proof since it follows from (the proof) of Lemma B.10:
57

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(1) The form of process Ri is given with (B.14), and process Pi has a form given with (B.15).
(2) In the proof, its Inductive step, we consider only cases such that Ri �≡ Ri+1 and Pi = Pi+1. Therefore, we consider

the cases in which intermediate processes I(p)
ti,k,w

and O (q)
uc,k,w

inside process Ri (cf. Definition B.2 and Definition B.3,
respectively) have been changed.

(3) From Fig. B.17 and Fig. B.18 we obtain the form and the number of all intermediate processes. We remind the reader that
the number of intermediate processes directly depends on the number of protected blocks in the observed transaction,
more precisely in its compensation activity (cf. for example Fig. B.16).

(4) We conclude, for each l ∈ {1, . . . , m} it follows that m is at most 4 + npb(P0), i.e., m = 4 + pb(Q ′) ≤ 4 + npb(P0), for
some Q ′ that appears in P0. �

B.5. Proof of success sensitiveness results: Theorem 5.13

Here we shall prove that success sensitiveness holds for the translation �·�ρ . The first part of the statement

P ⇓ implies �P�ρ ⇓
follows directly from operational completeness (Theorem 5.8(1)) and Lemma B.1. The proof for the opposite direction

�P�ρ ⇓ implies P ⇓
is derived through the following steps:

• By Definition 5.10, if �P�ρ ⇓ then �P�ρ −→k R and R = C[�] for some context C[•].
• By Lemma B.10, we conclude that process R has the form given in (B.14).
• Assuming that R = C[�], we identify all possible positions of � in the form (B.14). For that purpose, we introduce some

auxiliary lemmas:
– By Lemma B.7, either � appears at top level of some context (in parallel), in a form �C ′[�]�ρ , or it is nested inside

some locations. There are four additional nested places that we consider separately and list in the following items.
– Lemma B.13 considers the case with I(p)

t (�P1�t,ρ , �Q 1�ε) = C ′′[�] and nl(pt,ρ , �P1�t,ρ) = 0 and p ∈ {1, 2, 3}, where
I(p)
t (�P1�t,ρ , �Q 1�ε) is given in Fig. B.17.

– Lemma B.14 considers the case with I(p)
t (�P1�t,ρ , �Q 1�ε) = C ′′[�] and nl(pt,ρ , �P1�t,ρ) = m > 0 and p ∈ {1, 2, . . . ,

m + 3}, where I(p)
t (�P1�t,ρ , �Q �ε) is given in Fig. B.17.

– Lemma B.15 considers the case with O (q)
u (�F �ρ [hu .�P1�ρ ′], �Q 1�ε) = C ′′[�] and nl(pu,ρ , �F �ρ [hu .�P1�ρ ′]) = 0 and

p ∈ {1, 2, 3, 4}, where O (q)
u (�F �ρ [hu .�P2�ρ ′], �Q 1�ε) is given in Fig. B.18.

– Lemma B.16 considers the case with O (q)
u (�F �ρ [hu .�P1�ρ ′], �Q 1�ε) = C ′′[�] and nl(pu,ρ , �F �ρ [hu .�P1�ρ ′]) = m > 0

and p ∈ {1, . . . , m + 4}, where O (q)
u (�F �ρ [hu .�P2�ρ ′], �Q 1�ε) is given in Fig. B.18.

• Finally, after identifying the place of �, using (B.15) of Lemma B.10, we get the proof.

We proceed to introduce the auxiliary lemmas that consider nested appearances of �.

Lemma B.13. Let t be a name, ρ a path, and P , Q well-formed compensable processes such that nl(pt,ρ , �P�t,ρ) = 0. If
I(p)
t (�P�t,ρ , �Q �ε) = C[�], for p ∈ {1, 2, 3} and some context C[•], then

(i) either �P�t,ρ = C1[�],
(ii) or �Q �ε = C1[�]

for some context C1[•].

Proof. There are three possible forms of I(p)
t (�P�t,ρ , �Q �ε), given in the first three rows of Fig. B.17.

• p ∈ {1, 2}: If t
[
�P�t,ρ

] | R | pρ [�Q �ε] = C[�] and (R ≡ t{(Y).t[Y] | ch(t, Y) | t{†}.ht} or R = t{†}.ht), by Definition 3.6, we
have the following two possibilities:
(i) C[•] = t

[
C1[•]] | R | pρ [�Q �ε] and C1[�] = �P�t,ρ , or

(ii) C[•] = t
[
�P�t,ρ

] | R | pρ [C1[•]] and C1[�] = �Q �ε .

• p = 3: If ht | pρ [�Q �ε] = C[�], by Definition 3.6, C[•] = ht | pρ [C1[•]] and therefore C1[�] = �Q �ε . �
Lemma B.14. Let t be a name, ρ a path, and P , Q well-formed compensable processes such that �P�t,ρ =

m∏
k=1

pt,ρ [�P ′
k�ε] | S with

nl(pt,ρ , �P�t,ρ) = m. If I(p)
t (�P�t,ρ , �Q �ε) = C[�], for p ∈ {1, . . . , m + 3} and some context C[•], then
58

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(i) �P ′
k�ε = C1[�], or

(ii) �Q �ε = C1[�], or
(iii) S = C1[�]

for some context C1[•] and k ∈ {1, . . . , m}.

Proof. The proof is similar to the proof of Lemma B.13 and follows directly from Definition 3.6, and Fig. B.17. �
Lemma B.15. Let u be a name, ρ a path, and P , Q well-formed compensable processes such that nl(pu,ρ , �F �ρ [hu .�P�ρ ′]) = 0. If
O (q)

u (�F �ρ [hu .�P�ρ ′], �Q �ε) = C[�], for p ∈ {1, 2, 3, 4} and some context C[•], then

(i) either �F �ρ [hu .�P�ρ ′] = C1[�],
(ii) or �Q �ε = C1[�]

for some context C1[•].

Proof. The proof is similar to the proof of Lemma B.13 and follows directly from Definition 3.6, and Fig. B.18. �
Lemma B.16. Let u be a name, ρ a path, and P , Q well-formed compensable processes such that �F �ρ[hu .�P�ρ ′] =

m∏
k=1

pu,ρ [�P ′
k�ε] | S

with nl(pu,ρ , �F �ρ [hu .�P�ρ ′]) = m. If O (q)
u (�F �ρ [hu .�P�ρ ′], �Q �ε) = C[�], for p ∈ {1, . . . , m + 4} and some context C[•], then

(i) �F �ρ [hu .�P�ρ ′] = C1[�], or
(ii) �Q �ε = C1[�], or

(iii) �P ′
k�ε = C1[�],

for some context C1[•] and k ∈ {1, . . . , m + 4}.

Proof. Similar to the proof of Lemma B.13 and follows directly from Definition 3.6 and Fig. B.18. �
Now we repeat the statement at page 20:

Theorem 5.13 (Success sensitiveness for �·�ρ). Let P be a well-formed compensable process and ρ an arbitrary path. Then P ⇓ if and
only if �P�ρ ⇓.

Proof. (⇒) Let P ⇓, i.e., P −→∗ P ′ and P ′ = C[�]. By Theorem 5.8 (B.3.4) – Completeness we have that �P�ρ −→k �P ′�ρ =
�C[�]�ρ . By Convention 5.7 and Lemma B.1 it follows:

�C�ρ [�] = �C[•]�ρ [���ρ ′],
where ρ ′ is a path to hole in context C[•]. By ���ρ = � we have that �P�ρ −→k �C[•]�ρ [�]. This implies that �P�ρ ⇓.

(⇐) Conversely, let �P�ρ ⇓, i.e., �P�ρ −→k R and R ≡ C[�]. By Lemma B.10 it follows:

C[�] ≡
z∏

w=1

�E w�ε

[sw∏
k=1

�Gk,w�ρw

[lk∏
i=1

�Ci,k,w�ρ ′
k,w

[
I(p)
ti,k,w

] |
rk∏

j=1

�D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

]

|
mk∏

c=1

�Lc,k,w�ρ ′
k,w

[
O (q)

uc,k,w

]]] (B.27)

By Lemma B.7, Lemma B.13, Lemma B.14, Lemma B.15, and Lemma B.16 we analyze all possible places where � occurs in
(B.27). By Lemma B.7,

(1) either

C[�] ≡ �E ′′�ε[�] |
z∏

w=1

�E ′
w�ε

[sw∏
k=1

�Gk,w�ρw

[lk∏
i=1

�Ci,k,w�ρ ′
k,w

[
I(p)
ti,k,w

] |
rk∏

j=1

�D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

]

|
mk∏

c=1

�Lc,k,w�ρ ′
k,w

[
O (q)

uc,k,w

]]

(B.28)

59

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(2) or, there are ω ∈ {1, . . . , z} and C1[•] such that

C1[�] ≡
sw∏

k=1

�Gk,w�ρw

[lk∏
i=1

�Ci,k,w�ρ ′
k,w

[
I(p)
ti,k,w

] |
rk∏

j=1

�D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

]

|
mk∏

c=1

�Lc,k,w�ρ ′
k,w

[
O (q)

uc,k,w

]]] (B.29)

By Lemma B.7,
(2.1) either

C1[�] ≡ �G ′′
w�ρw [�] |

sw∏
k=1

�G ′
k,w�ρw

[lk∏
i=1

�Ci,k,w�ρ ′
k,w

[
I(p)
ti,k,w

] |
rk∏

j=1

�D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

]

|
mk∏

c=1

�Lc,k,w�ρ ′
k,w

[
O (q)

uc,k,w

]]] (B.30)

(2.2) or, there are C2[•] and k ∈ {1, . . . , sω} such that one of the following three cases holds:
(2.2.1) C2[�] ≡ �Ci,k,w�ρ ′

k,w

[
I(p)
ti,k,w

]
:

(2.2.1.1) either C2[�] ≡ �C ′′
i,k,w�ρ ′

k,w
[�] |

lk∏
i=1

�C ′
i,k,w�ρ ′

k,w

[
I(p)
ti,k,w

]
(2.2.1.2) or, there are C3[•] and i ∈ {1, . . . , lk} such that

C3[�] = I(p)
ti,k,w

(�P ′
ti,k,w

�t,ρ ′′ , �Q ′
ti,k,w

�ε).
Assume that nl(pt,ρ ′′ , �P ′

ti,k,w
�t,ρ ′′) = 0 and p ∈ {1, 2, 3} (other cases are similar). By Lemma B.14,

(2.2.1.2.1) �P ′
ti,k,w

�t,ρ ′′ = C4[�], or
(2.2.1.2.2) �Q �ε = C4[�]
for some C4[•].

(2.2.2) C2[�] ≡ �D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

]
: By Lemma B.7,

�D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

] = �D ′
j,k,w�ρ ′

k,w

[
�

] | �D j,k,w�ρ ′
k,w

[
ht j,k,w .�St j,k,w �ρ ′′

k,w

]
.

(2.2.3) C2[�] ≡ �Lc,k,w�ρ ′
k,w

[
O (q)

uc,k,w

]
:

(2.2.3.1) either C2[�] ≡ �L′
c,k,w�ρ ′

k,w

[
�

] | �L′′
c,k,w�ρ ′

k,w

[
O (q)

uc,k,w

]
(2.2.3.2) or, there are C4[•] and c ∈ {1, . . . , mk} such that

C4[�] = O (q)
uc,k,w

(�Fc,k,w�ρ ′′ [huc,k,w .�Puc,k,w �ρ ′′′], �Q ′
uc,k,w

�ε).
Assume that nl(uc,k,w , ρ ′′′, �Fc,k,w�ρ ′′ [huc,k,w .�Puc,k,w �ρ ′′′])) = 0 and q ∈ {1, 2, 3, 4} (other cases are
similar). By Lemma B.15,
(2.2.3.2.1) either �Fc,k,w�ρ ′′ [huc,k,w .�Puc,k,w �ρ ′′′] = C5[�]
(2.2.3.2.2) or, �Q ′

uc,k,w
�ε) = C5[�]

for some C5[•].

In all the cases listed above, it follows directly by Lemma B.10 that P ⇓ since

P ≡
z∏

w=1

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
ti,k,w [Pti,k,w ,Q ti,k,w]] |

rk∏
j=1

D j,k,w
[
t j,k,w .St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
uc,k,w [Fc,k,w [uc,k,w .Puc,k,w],Q uc,k,w]]].

(B.31)

Other cases are similar. �
Appendix C. Results related to encoding of C into O

C.1. Proof of operational correspondence results: Theorem 6.5

In this section we shall prove that operational correspondence (completeness and soundness) holds for the translation
�·�oρ . Most of the lemmas, definitions, and theorems we have introduced to prove the operational correspondence for the
60

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(p) I(p)
t (�P�ot,ρ , �Q �oε) for nl(pt,ρ , �P�ot,ρ) = 0

(1) t
[
�P�ot,ρ

] | extr{t, pt,ρ , pρ} | pρ [�Q �oε] ≡ t
[
�P�ot,ρ

] | t{(Y).t[Y] | ch(t, Y) | t{†}.ht} | pρ [�Q �oε]
(2) t

[
�P�ot,ρ

] | t{†}.ht | pρ [�Q �oε]
(3) ht | pρ [�Q �oε]

(p) I(p)
t (�P�ot,ρ , �Q �oε) for nl(pt,ρ , �P�ot,ρ) > 0

(1) t
[
�P�ot,ρ

] | extr{t, pt,ρ , pρ} | pρ [�Q �oε]
≡ t

[
�P�ot,ρ

] | t{(Y).t[Y] | ch(t, Y) | outo(t, pt,ρ , pρ , nl(pt,ρ , Y) , t{†}.ht)} | pρ [�Q �oε]
(2) t

[
�P�ot,ρ

] | pt,ρ{(X1, . . . , Xm).zt{(Z).
(m∏

k=1
pρ [Xk] | t{†}.ht

)}}.zt[0] | pρ [�Q t�
o
ε]

(j + 2) t
[
�P�ot,ρ | pt,ρ{(X1, . . . , Xm− j).zt{(Z).

(m− j∏
k=1

pρ [Xk] | t{†}.ht
) |

j∏
k=1

pρ [�P ′
k�
o
ε]}}] | zt[0] | pρ [�Q t�

o
ε]

1 ≤ j ≤ m − 1

(m + 2) t
[
�P ′�ot,ρ | zt{(Z).

m∏
k=1

pρ [�P ′
k�
o
ε] | t{†}.ht}

] | zt [0] | pρ [�Q �oε]

(m + 3) t
[
�P ′�ot,ρ

] |
m∏

k=1
pρ [�P ′

k�
o
ε] | t{†}.ht | pρ [�Q �oε]

(m + 4)
m∏

k=1
pρ [�P ′

k�
o
ε] | ht | pρ [�Q �oε]

Fig. C.22. Process I(p)
t (�P�ot,ρ ,�Q �oε) with p ≥ 1.

translation with subjective update (Theorem 5.8), can be easily adapted for the translation with objective update. Therefore,
we will re-use the following statements for �·�oρ , assuming the expected modifications:

• Definition B.1 (page 43) and Lemma B.1 (page 43), that are related with a mapping of evaluation contexts for C into
evaluation contexts of S;

• Lemma B.2 (page 44) and Corollary B.3 (page 44), are the converse of Lemma B.1,
• Lemma B.6 (page 45), shows that ch(t, �P�oρ) = 0 for all �P�oρ and use Lemma B.5 (page 45), for the proof.
• Lemma B.7 (page 45), identifies processes that are created before a synchronization on ht .

We first present an overview of the auxiliary results (and proofs) that are different from those presented in B.3. The follow-
ing definition formalizes all possible forms for the process I(p)

t (�P�ot,ρ , �Q �oε).

Definition C.1. Let P , Q be well-formed compensable processes. Given a name t , a path ρ , and p ≥ 1, we define the inter-
mediate processes I(p)

t (�P�ot,ρ , �Q �oε) (Fig. C.22) depending on m = nl(pt,ρ , �P�ot,ρ):

1. if m = 0 then p ∈ {1, 2, 3};

2. otherwise, if m > 0 then �P�ot,ρ =
m∏

k=1
pt,ρ [�P ′

k�
o
ε] | S and p ∈ {1, . . . , m + 4}.

The following lemma formalizes all possible forms for the process O (q)
u (�F �oρ ′′ [hu .�Pu�oρ ′′′], �Q ′

u�ε).

Definition C.2. Let P , Q be well-formed compensable processes. Given a name u, paths ρ, ρ ′ , and q ≥ 1, we define the
intermediate processes O (q)

u (�F �oρ [hu .�P�oρ ′], �Q �oε) (Fig. C.23) depending on m = nl(pu,ρ , �F �oρ [hu .�P�oρ ′]):

1. for m = 0 we have q ∈ {1, 2, 3, 4}, and

2. for m > 0 and �F �oρ [hu .�P�oρ ′] =
m∏

k=1
pu,ρ [�P ′

k�
o
ε] | S we have q ∈ {1, . . . , m + 5}.

The following lemmas, which we established for the translation with subjective update �·�ρ , hold also for translation
with objective update �·�oρ ; the difference is that they use Definition C.1 and Definition C.2 instead of Definition B.2 and
Definition B.3, respectively:
61

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(q) O (q)
u (�F �oρ [hu .�P�oρ ′], �Q �oε), nl(pu,ρ , �F �oρ [hu .�P�oρ ′]) = 0

(1) u
[
�F �oρ [hu .�P�oρ ′]

] | extr{u, pu,ρ , pρ} | pρ [�Q �oε]
≡ u

[
�F �oρ [hu .�P�oρ ′]

] | u{(Y).u[Y] | ch(u, Y) | u{†}.hu} | pρ [�Q �oε]
(2) u

[
�F �oρ [hu .�P�oρ ′]

] | hu | u{†}.hu | pρ [�Q �oε]
(3) hu | hu | pρ [�Q �oε]
(4) pρ [�Q �oε]

(q) O (q)
u (�F �oρ [hu .�P�oρ ′], �Q �oε), nl(pu,ρ , �F �oρ [hu .�P�oρ ′]) > 0

(1) u
[
�F �oρ [hu .�P�oρ ′]

] | extr{u, pu,ρ , pρ} | pρ [�Q �oε]
≡ u

[
�F �oρ [hu .�P�oρ ′]

] | u{(Y).u[Y] | ch(u, Y) | outo(u, pu,ρ , pρ , nl(pu,ρ , Y) , u{†}.hu)} | pρ [�Q �oε]
(2) u

[
�F �oρ [hu .�P�oρ ′]

] | hu | pu,ρ{(X1, . . . , Xm).zu{(Z).
(m∏

k=1
pρ [Xk] | u〈〈†〉〉.hu

)}}.zu[0] | pρ [�Q �oε]
(j + 2)

1 ≤ j ≤ m − 1 u
[
�F �oρ [hu .�P�oρ ′] | pu,ρ{(X1, . . . , Xm− j).zu{(Z).

(m− j∏
k=1

pρ [Xk] | u〈〈†〉〉.hu
) |

j∏
k=1

pρ [�P ′
k�
o
ε]}}]

| hu | zu[0] | pρ [�Q �oε]

(m + 2) u
[
�F �oρ [hu .�P�oρ ′] | zu{(Z).

(m− j∏
k=1

pρ [Xk] | u〈〈†〉〉.hu
)}] | hu | zu[0] |

j∏
k=1

pρ [�P ′
k�
o
ε] | pρ [�Q �oε]

(m + 3) u
[
�F ′�oρ [hu .�P�oρ ′]

] |
m∏

k=1
pρ [�P ′

k�
o
ε] | hu | pρ [�Q �oε] | u{†}.hu

(m + 4)
m∏

k=1
pρ [�P ′

k�
o
ε] | hu | pρ [�Q �oε] | hu

(m + 5)
m∏

k=1
pρ [�P ′

k�
o
ε] | pρ [�Q �oε]

Fig. C.23. Process O (q)
u (�F�oρ [hu .�P�oρ ′],�Q �oε) with q ≥ 1.

• Lemma B.10 (page 50), is about the shape of process R in �P�ε −→n R , and also ensures that there is a process P ′ with
an appropriate shape. The proof proceeds by induction on n.

• Lemma B.4 (page 44), is used as the base case in the proof of Lemma B.10;
• Lemma B.8 (page 46) and Lemma B.9 (page 49) are used in the inductive step of the proof of Lemma B.10.
• Lemma B.11 (page 54), ensures that the adaptable process obtained thanks to Lemma B.8 and Lemma B.9 can evolve

until reaching a process that corresponds to the translation of a compensable process.

C.1.1. Operational correspondence
In the following we repeat statement at page 23.

Theorem 6.5 (Operational correspondence for �·�oε). Let P be a well-formed process in C .

(1) If P −→ P ′ then �P�oε −→k �P ′�oε where for
a) P ≡ E[C[a.P1] | D[a.P2]] and P ′ ≡ E[C[P1] | D[P2]] it follows that k = 1.
b) P ≡ E[C[t[P1,Q]] | D[t.P2]] and P ′ ≡ E[C[extr(P1) | 〈Q 〉] | D[P2]] it follows k = 4 + pb(P1) + Z(P1),
c) P ≡ C[u[D[u.P1],Q]] and P ′ ≡ C[extr(D[P1]) | 〈Q 〉], it follows k = 4 + pb(D[P1]) + Z(D[P1]).
for some contexts C , D, E, processes P1, Q , P2 and names t, u.

(2) If �P�oε −→n R with n > 0 then there is P ′ such that P −→∗ P ′ and R −→∗ �P ′�oε .

Proof. We consider completeness and soundness (Parts (1) and (2)) separately.

(1) Part (1) – Completeness: The proof proceeds by induction on the derivation of P −→ P ′ . We have three base cases,
corresponding to cases a), b) and c) of Proposition 3.1 (page 7). Also, we prove all cases by using Definition 6.2 and
Lemma B.1.
a) This case corresponds to an input-output synchronization, such that a ∈ Ns . Therefore, we observe that P ≡

E[C[a.P1] | D[a.P2]] and P ′ ≡ E[C[P1] | D[P2]]. The derivation that corresponds to this case is as the derivation
62

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
presented in Part (1) – Completeness case (a) for translation with subjective update (cf. derivation (B.26)). Therefore,
the thesis holds with k = 1.

b) This case corresponds to a synchronization due to an external error notification for a transaction scope. Therefore, for
this case we consider that P ≡ E[C[t[P1,Q]] | D[t.P2]] and P ′ ≡ E[C[extr(P1) | 〈Q 〉] | D[P2]]. We will consider two
sub-cases depending on whether process P1 contains or not protected blocks. Below, we will use that m = pb(P1).
(i) In this sub-case m = 0. Therefore, we have the following derivation:

�P�oε ≡�E[C[t[P1,Q]] | D[t.P2]]�oε
=�E�oε

[
�C[t[P1,Q]]�oρ | �D[t.P2]�oρ

]
=�E�oε

[
�C�oρ [�t[P1,Q]�oρ ′] | �D�oρ [�t.P2�oρ ′′]

]
=�E�oε

[
�C�oρ [t[�P1�ot,ρ ′

] | t.
(
extr{t, pt,ρ ′ , pρ ′ } | pρ ′ [�Q �oε])] | �D�oρ [t.ht .�P2�oρ ′′]

]
−→�E�oε

[
�C�oρ

[
I(1)
t (�P1�ot,ρ ′ , �Q �oε)

]
| �D�oρ [ht .�P2�oρ ′′]

]
−→2�E�oε

[
�C�oρ

[
I(3)
t (�P1�ot,ρ ′ , �Q �oε)

]
| �D�oρ

[
ht .�P2�oρ ′′

]]
−→�E�oε

[
�C�oρ

[
�〈Q 〉�oρ ′

] | �D�oρ
[
�P2�oρ ′′

]]
=�E�oε

[
�C[〈Q 〉]�oρ | �D[P2]�oρ

]
=�E[C[〈Q 〉] | D[P2]]�oε
≡�P ′�oε

Thus, the number of reduction steps is k = 4. Notice that here −→2 tells us that there have been two reduction
steps: the first one is an update on location name t; the second reduction step “kills” with t{†} both the location
t and the process it hosts.

(ii) In this sub-case we consider m > 0, i.e., this is when there is at least one protected block in the default activity
P1. We have the following derivation:

�P�oε ≡ �E[C[t[P1,Q]] | D[t.P2]]�oε
= �E�oε

[
�C[t[P1,Q]]�oρ | �D[t.P2]�oρ

]
= �E�oε

[
�C�oρ [�t[P1,Q]�oρ ′] | �D�oρ [�t.P2�oρ ′′]

]
= �E�oε

[
�C�oρ [t[�P1�ot,ρ ′

] | t.
(
extr{t, pt,ρ ′ , pρ ′ } | pρ ′ [�Q �oε])] | �D�oρ [t.ht .�P2�oρ ′′]

]
−→ �E�oε

[
�C�oρ

[
I(1)
t (�P1�ot,ρ ′ , �Q �oε)

] | �D�oρ [ht .�P2�oρ ′′]
]

−→m+3 �E�oε

[
�C�oρ

[
I(m+4)
t (�P1�ot,ρ ′ , �Q �oε)

]
| �D�oρ

[
ht .�P2�oρ ′′

]]
−→ �E�oε

[
�C�oρ

[
�extr(P1)�

o
ρ ′ | pρ ′ [�Q �oε]

]
| �D�oρ

[
�P2�oρ ′′

]]
= �E�oε

[
�C[extr(P1) | 〈Q 〉]�oρ | �D[P2]�oρ

]
= �E[C[extr(P1) | 〈Q 〉] | D[P2]]�oε≡ �P ′�oε

Therefore, k = 4 + m + Z(P1) = 5 + m, where:
- 4 steps are as described in Section B.3 and under a semantics with objective update, after m updates, processes

located at pt,ρ ′ will stay at location t , and
- Z(P1) gives 1 more step; as we explained in the main part of the paper, to avoid leaving such processes in the

wrong location, the translation in [9] use an (objective) update on auxiliary location zt , so to take them out of
t once m updates on pt,ρ ′ have been executed. This additional synchronization step on name zt is the key to
the efficiency gains when moving from objective to subjective updates (cf. Definition 6.3, page 23).

c) In this case we consider that error notification arrives from the default activity of transaction; the error notification
is internal. Again, according to Proposition 3.1 we consider the following case. Let P ≡ C[u[D[u.P1],Q]] and P ′ ≡
C[extr(D[P1]) | 〈Q 〉]. Letting m = pb(D[P1]), we consider two sub-cases: the first case is when m = 0 and the second
is when m > 0:
63

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
(i) If m = 0 then there is the following derivation:

�P�oε ≡ �C[u[D[u.P1],Q]�oε= �C�oε [�u[D[u.P1],Q]�oρ]
= �C�oε [u[

�D[u.P1]�ou,ρ

] | u.
(
extr{u, pu,ρ , pρ} | pρ [�Q �oε])]]]

= �C�oε [u[
�D�ou,ρ [u.hu.�P1�oρ ′]

] | u.(extr{u, pu,ρ , pρ} | pρ [�Q �oε])]
−→ �C�oε

[
O (1)

u (�D�oρ [hu .�P1�oρ ′], �Q �oε)
]

−→3 �C�oε
[

O (4)
u (�D�oρ [hu .�P1�oρ ′], �Q �oε)

]
≡ �P ′�oε

Therefore, the number of reduction steps is k = 4.
(ii) If m > 0 then there is the following derivation:

�P�oε ≡ �C[u[D[u.P1],Q]�oε= �C�oε [�u[D[u.P1],Q]�oρ]
= �C�oε [u[

�D[u.P1]�ou,ρ

] | u.
(
extr{u, pu,ρ , pρ} | pρ [�Q �oε])]]]

= �C�oε [u[
�D�ou,ρ [u.hu .�P1�oρ ′]

] | u.(extr{u, pu,ρ , pρ} | pρ [�Q �oε])]
−→ �C�oε

[
O (1)

u (�D�oρ [hu .�P1�oρ ′], �Q �oε)
]

−→m+3 �C�oε

[
O (m+4)

u (�D�oρ [hu .�P1�oρ ′], �Q �oε)
]

−→ �C�oε

[
O (m+5)

u (�D�oρ [hu .�P1�oρ ′], �Q �oε)
]

= �C�oε

[
�extr(D[P1])�oρ | pρ [�Q �oε]

]
= �C[extr(D[P1]) | 〈Q 〉�oε≡ �P ′�oε

Therefore, the number of reduction steps is k = 4 + m + Z(D[P1]) = 5 + m.
(2) Part (2) – Soundness: The proof for soundness follows the approach described in detail for encoding with subjective

update (cf. proof for soundness B.20). Therefore, given �P�oε −→n R , by Lemma B.10 (which also applies to �·�oρ), process
R has the following form:

R ≡
z∏

w=1

�E w�oε

[sw∏
k=1

�Gk,w�oρw

[lk∏
i=1

�Ci,k,w�o
ρ ′

k,w

[
I(p)
ti,k,w

] |
rk∏

j=1

�D j,k,w�o
ρ ′

k,w

[
ht j,k,w .�St j,k,w �o

ρ ′′
k,w

]

|
mk∏

c=1

�Lc,k,w�o
ρ ′

k,w

[
O (q)

uc,k,w

]]]
,

where I(p)
ti,k,w

and O (q)
uc,k,w

are processes from Fig. C.22 and Fig. C.23, respectively.
By Lemma B.10, we have P −→∗ P ′′ such that

P ′′ ≡
z∏

w=1

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
ti,k,w [Pti,k,w ,Q ti,k,w]] |

rk∏
j=1

D j,k,w
[
t j,k,w .St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
uc,k,w [Fc,k,w [uc,k,w .Puc,k,w],Q uc,k,w]]],

where by successive application of completeness it follows that �P�oε −→∗ �P ′′�oε .
By Lemma B.11 (which also applies to �·�oρ), i.e., by lk successive applications of (B.24) and mk successive applications
of (B.25) on process R , it follows that

R −→∗
z∏

w=1

�E w�oε

[sw∏
k=1

�Gk,w�oρw

[lk∏
i=1

�Ci,k,w�o
ρ ′

k,w

[
�extr(P ′

ti,k,w
)�o

ρ ′′
k,w

| �〈Q ′
ti,k,w

〉�o
ρ ′′

k,w

]

|
rk∏

j=1

�D j,k,w�o
ρ ′

k,w

[
�St j,k,w �o

ρ ′′
k,w

] |
mk∏

c=1

�Lc,k,w�o
ρ ′

k,w

[
�extr(Fc,k,w [Puc,k,w])�o

ρ ′′
k,w

| �〈Q ′
uc,k,w

〉�o
ρ ′′

k,w

]]]

≡ �

z∏
w=1

E w

[sw∏
Gk,w

[lk∏
Ci,k,w

[
extr(P ′

ti,k,w
) | 〈Q ′

ti,k,w
〉] |

rk∏
D j,k,w

[
St j,k,w

]

k=1 i=1 j=1

64

J. Dedeić, J. Pantović and J.A. Pérez Journal of Logical and Algebraic Methods in Programming 121 (2021) 100675
|
mk∏

c=1

Lc,k,w
[
extr(Fc,k,w [Puc,k,w]) | 〈Q ′

uc,k,w
〉]]]�oε

≡ �P ′�oε .

Therefore, it follows that

P ′ ≡
z∏

w=1

E w

[sw∏
k=1

Gk,w
[lk∏

i=1

Ci,k,w
[
extr(P ′

ti,k,w
) | 〈Q ′

ti,k,w
〉] |

rk∏
j=1

D j,k,w
[

St j,k,w

]

|
mk∏

c=1

Lc,k,w
[
extr(Fc,k,w [Puc,k,w]) | 〈Q ′

uc,k,w
〉]]].

By Proposition 3.1, i.e., by lk successive applications of case b) and mk successive applications of case c) on process P ′′ ,
it follows that P ′′ −→∗ P ′ .
By successive application of (C.1.1) – Completeness on the derivation P ′′ −→∗ P ′ it follows that �P ′′�oε −→∗ �P ′�oε . �

References

[1] S. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M.G. Ford, Y. Goland, A. Guzar, N. Kartha, C.K. Liu, R. Khalaf, D. König, M. Marin, V. Mehta,
S. Thatte, D. Rijn, P. Yendluri, A. Yiu, Web services business process execution language version 2.0 (oasis standard). 2007.

[2] L. Bocchi, C. Laneve, G. Zavattaro, A calculus for long-running transactions, in: Proc. of FMOODS 2003, in: LNCS, vol. 2884, Springer, 2003, pp. 124–138.
[3] M. Bravetti, C.D. Giusto, J.A. Pérez, G. Zavattaro, Adaptable processes, Log. Methods Comput. Sci. 8 (4) (2012).
[4] M. Bravetti, G. Zavattaro, On the expressive power of process interruption and compensation, Math. Struct. Comput. Sci. 19 (3) (2009) 565–599.
[5] M.J. Butler, C. Ferreira, M.Y. Ng, Precise modelling of compensating business transactions and its application to BPEL, J. Univers. Comput. Sci. 11 (5)

(2005) 712–743.
[6] L. Caires, C. Ferreira, H.T. Vieira, A process calculus analysis of compensations, in: Proc. of TGC 2008, in: LNCS, vol. 5474, Springer, 2009, pp. 87–103.
[7] L. Cardelli, A.D. Gordon, Mobile ambients, Theor. Comput. Sci. 240 (1) (2000) 177–213.
[8] G. Castagna, J. Vitek, F.Z. Nardelli, The seal calculus, Inf. Comput. 201 (1) (2005) 1–54.
[9] J. Dedeic, J. Pantovic, J.A. Pérez, On compensation primitives as adaptable processes, in: EXPRESS/SOS 2015, in: EPTCS, vol. 190, 2015, pp. 16–30.

[10] J. Dedeić, J. Pantović, J.A. Pérez, Efficient compensation handling via subjective updates, in: Proceedings of the Symposium on Applied Computing, SAC
’17, New York, NY, USA, ACM, 2017, pp. 51–58.

[11] C. Ferreira, I. Lanese, A. Ravara, H.T. Vieira, G. Zavattaro, Advanced mechanisms for service combination and transactions, in: Results of SENSORIA, in:
LNCS, vol. 6582, Springer, 2011, pp. 302–325.

[12] D. Gorla, Towards a unified approach to encodability and separation results for process calculi, Inf. Comput. 208 (9) (2010) 1031–1053.
[13] T.T. Hildebrandt, J.C. Godskesen, M. Bundgaard, Bisimulation congruences for Homer - a calculus of higher-order mobile embedded resources, Technical

Report TR-2004-52, IT University, 2004.
[14] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, 1985.
[15] I. Lanese, C. Vaz, C. Ferreira, On the expressive power of primitives for compensation handling, in: Proc. of ESOP 2010, in: LNCS, vol. 6012, Springer,

2010, pp. 366–386.
[16] I. Lanese, G. Zavattaro, Decidability results for dynamic installation of compensation handlers, in: Coordination, in: LNCS, vol. 7890, Springer, 2013,

pp. 136–150.
[17] C. Laneve, G. Zavattaro, Foundations of web transactions, in: Proc. of FOSSACS 2005, in: LNCS, vol. 3441, Springer, 2005, pp. 282–298.
[18] R. Milner, Communication and Concurrency, PHI Series in Computer Science, Prentice-Hall, 1989.
[19] R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, I, Inf. Comput. 100 (1) (1992) 1–40.
[20] J. Parrow, Expressiveness of process algebras, in: Proceedings of the LIX Colloquium on Emerging Trends in Concurrency Theory, LIX 2006, in: Electronic

Notes in Theoretical Computer Science, vol. 209, 2008, pp. 173–186.
[21] K. Peters, Comparing process calculi using encodings, in: J.A. Pérez, J. Rot (Eds.), Proceedings Combined 26th International Workshop on Expressiveness

in Concurrency and 16th Workshop on Structural Operational Semantics, EXPRESS/SOS 2019, Amsterdam, The Netherlands, 26th August 2019, in:
EPTCS, vol. 300, 2019, pp. 19–38.

[22] D. Sangiorgi, Expressing mobility in process algebras: first-order and higher order paradigms, PhD thesis, University of Edinburgh, 1992.
[23] A. Schmitt, J. Stefani, The Kell calculus: a family of higher-order distributed process calculi, in: C. Priami, P. Quaglia (Eds.), Global Computing, IST/FET

International Workshop, GC 2004, Rovereto, Italy, March 9–12, 2004, Revised Selected Papers, in: Lecture Notes in Computer Science, vol. 3267, Springer,
2004, pp. 146–178.

[24] C. Vaz, C. Ferreira, On the analysis of compensation correctness, J. Log. Algebraic Program. 81 (5) (2012) 585–605.
65

http://refhub.elsevier.com/S2352-2208(21)00038-9/bibEF5BF76EFB645B5FEF99F5554AE592FCs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibC916BC875720B13A3CF679A660789D0Cs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibC3F16C9D622C3BEFFF43872B5208A238s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib03AB62EC238D5F595EE8F9C7C319E513s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib03AB62EC238D5F595EE8F9C7C319E513s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibFAABA4985C47CA7011C596EA6D0F5979s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib7BF3832A3192F9DF260418A5952C63F0s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibA759E7B4951D8DCB437E4BAB45FBA2B9s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibA7D8A52075DDCB9718E1EC55D14C79D9s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib258B28CD657E66477AD8C14F5F31D4C1s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib258B28CD657E66477AD8C14F5F31D4C1s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibC0EB1C23906699F8123E5FF5CB586D0Ds1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibC0EB1C23906699F8123E5FF5CB586D0Ds1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib652C41129AA16A137EB2B9156BD50F6Es1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib8FC4545B7F5E55ADB9C2C30A4764C22Es1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib8FC4545B7F5E55ADB9C2C30A4764C22Es1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib888D943FA64AABE90EAF30ABB1CB4F3Bs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib79C5F7906A303E715C8ACCEEE4CAF0DEs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib79C5F7906A303E715C8ACCEEE4CAF0DEs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib84E9145910E2A613D7D1BA04EA2E1779s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib84E9145910E2A613D7D1BA04EA2E1779s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibC3FC6CDB5D1A5ACFA178358C2E568E3Fs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib9D399E2952F67D45622F372336B2108As1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibB16B7D95AE4A74A76D2D82C2919F0230s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib145CD2812C0D8FD2DF69ACFC067A6374s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib145CD2812C0D8FD2DF69ACFC067A6374s1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibCF828F4CA284559EE89C837822B1924Fs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibCF828F4CA284559EE89C837822B1924Fs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibCF828F4CA284559EE89C837822B1924Fs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bibEF64810D7857A991F206FBD1CEAFBCAAs1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib8DEBFCDAFDFFFAD93FC78DBFEFECD42As1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib8DEBFCDAFDFFFAD93FC78DBFEFECD42As1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib8DEBFCDAFDFFFAD93FC78DBFEFECD42As1
http://refhub.elsevier.com/S2352-2208(21)00038-9/bib851C5DEFD424BD375D9582A716A8666Fs1

	On primitives for compensation handling as adaptable processes
	1 Introduction
	2 Compensable and adaptable processes, by example
	2.1 Compensable processes
	2.2 Adaptable processes

	3 The calculi
	3.1 Compensable processes
	3.2 Well-formed compensable processes
	3.3 Adaptable processes

	4 The notion of encoding
	5 Encoding C into S: the case of subjective update
	5.1 Preliminaries
	5.2 The translation, informally
	5.3 The translation, formally
	5.4 Translation correctness
	5.4.1 Structural criteria
	5.4.2 Semantic criteria

	6 Encoding C into O: the case of objective update
	6.1 The translation, informally
	6.2 The translation, formally
	6.3 Translation correctness
	6.3.1 Structural criteria
	6.3.2 Semantic criteria

	7 Comparing subjective vs objective updates
	8 Extensions
	8.1 Extensions to compensable processes
	8.2 Extensions to our (efficient) encoding
	8.2.1 Translating CP into S
	8.2.2 Translating CA into S
	8.2.3 Translating Cλ into S

	9 Related work
	10 Concluding remarks
	Declaration of competing interest
	Acknowledgements
	Appendix A Omitted proofs and definitions for Section 3
	A.1 Proof of Proposition 3.1 (page 7)
	A.2 Properties of well-formed processes (Definition 3.4)

	Appendix B Results related to encoding of C into S (§ 5)
	B.1 Proof of compositionality results: Theorem 5.3
	B.2 Proof of name invariance results: Theorem 5.4
	B.3 Proof of operational correspondence results: Theorem 5.8
	B.3.1 A roadmap for the proofs
	B.3.2 Auxiliary results for completeness
	B.3.3 Auxiliary results for soundness
	B.3.4 Operational correspondence

	B.4 Proof of divergence reflection results: Theorem 5.12
	B.5 Proof of success sensitiveness results: Theorem 5.13

	Appendix C Results related to encoding of C into O
	C.1 Proof of operational correspondence results: Theorem 6.5
	C.1.1 Operational correspondence

	References

