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Abstract
Quantum key distribution (QKD) protocols allow for information theoretically secure
distribution of (classical) cryptographic key material. However, due to practical lim-
itations the performance of QKD implementations is somewhat restricted. For this
reason, it is crucial to find optimal protocol parameters, while guaranteeing informa-
tion theoretic security. The performance of a QKD implementation is determined by
the tightness of the underlying security analysis. In particular, the security analyses
determines the key-rate, i.e., the amount of cryptographic key material that can be
distributed per time unit. Nowadays, the security analyses of various QKD protocols
are well understood. It is known that optimal protocol parameters, such as the number
of decoy states and their intensities, can be found by solving a nonlinear optimization
problem. The complexity of this optimization problem is typically handled by mak-
ing a number of heuristic assumptions. For instance, the number of decoy states is
restricted to only one or two, with one of the decoy intensities set to a fixed value, and
vacuum states are ignored as they are assumed to contribute only marginally to the
secure key-rate. These assumptions simplify the optimization problem and reduce the
size of search space significantly. However, they also cause the security analysis to be
non-tight, and thereby result in sub-optimal performance. In this work, we follow a
more rigorous approach using both linear and nonlinear programs describing the opti-
mization problem. Our approach, focusing on the decoy-state BB84 protocol, allows
heuristic assumptions to be omitted, and therefore results in a tighter security analysis
with better protocol parameters.We showan improved performance for the decoy-state
BB84 QKD protocol, demonstrating that the heuristic assumptions typically made are
too restrictive. Moreover, our improved optimization frameworks shows that the com-

B Niels M. P. Neumann
niels.neumann@tno.nl

Thomas Attema
thomas.attema@tno.nl

1 CWI, Amsterdam, The Netherlands

2 Mathematical Institute, Leiden University, Leiden, The Netherlands

3 TNO, Cyber Security and Robustness, The Hague, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11128-021-03078-0&domain=pdf
http://orcid.org/0000-0003-2159-8251


154 Page 2 of 26 T. Attema et al.

plexity of the performance optimization problem can also be handled without making
heuristic assumptions, even with limited computational resources available.

Keywords Quantum key distribution · BB84 · Key rates · Decoy states · Nonlinear
optimization

1 Introduction

The goal of a key-distribution protocol is for two parties, Alice and Bob, to agree on a
key k ∈ {0, 1}n over an insecure communication channel, such that even an adversary
Eve with full control over this communication channel can only obtain a negligible
amount of information about this key k. If Alice andBob are capable of communicating
quantum information, they are able to achieve information-theoretic or unconditional
security, i.e., security against adversaries with unlimited computational power.

The use of quantum information to securely distribute symmetric cryptographic
keys was first proposed in 1984 by Bennett and Brassard [1], and today most, if not
all, quantum key distribution (QKD) protocols can be viewed as adaptations of their
original BB84 protocol. Since then, much progress has been made and the first QKD
systems are already commercially available. Thereby, QKD has become one of the
first applications of quantum mechanics at an individual quanta level [2].

The information-theoretic security of the BB84 protocol against the most general
attacks allowed by quantum mechanics was proven in 1996 by Mayers [3]. In general,
however, Mayers’ security notion does not imply that the derived key can securely be
used in other cryptographic protocols [4] and a stronger notion of security following
the universal composability framework is required [5]. Informally, universal security is
provenby comparing the output of the protocol to the output of an ideal key-distribution
protocol, i.e., a perfect key. If these two outputs are indistinguishable, the protocol is
said to be universally secure. Fortunately, QKD protocols that satisfy Mayers’ weaker
notion of security were shown to be universally secure [4].

Practical implementations deviate from the theoretical BB84 protocol, which may
render them insecure. As any realistic quantum channel introduces noise by imper-
fections in the source, channel and detector. These benign losses and errors are
indistinguishable from the ones introduced by an adversary. For this reason, the con-
servative assumption is made that all losses and errors are caused by an adversary.
Mayers’ proof already considered noisy quantum channels, and shows that the BB84
protocol is information-theoretically secure as long as the noise level is below a certain
threshold [3]. In contrast to the ideal BB84 protocol, practical implementations there-
fore require an error correction procedure. An elaborate review of practical quantum
key distribution protocols is given in [6], including different adversary strategies for
practical QKD protocol implementations.

One of these adversary strategies relates to the photon source. Some protocols, such
as the original BB84 protocol, require information to be encoded in single photons.
However, producing single photon pulses is hard in practice. Therefore, typically, the
quantum information is encoded in weak laser pulses, where the number of photons
in each of these laser pulses follows a Poisson distribution with an attunable mean
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μ, called the intensity of the source. As a result, laser pulses can contain multiple
photons, which can be exploited via the photon-number-splitting (PNS) attack [7,8].
For this reason we must assume that all key material derived frommulti-photon pulses
is compromised. Privacy amplification is applied to establish a secret key from such a
partially compromised key.

In general, the performance of a QKD implementation can be quantified by the
key-rate R, indicating the amount of secure key per sent pulse. For the BB84 protocol,
this key-rate depends, apart from the noise and losses, also on the laser source intensity
μ. By carefully choosing this attunable μ, the key-rate can be maximized. In fact, the
protocol does not require the intensity to be fixed throughout the protocol. On the
contrary, it has been shown to be beneficial to randomly vary the intensity μ between
pulses, resulting in the so-called decoy-state BB84 protocol with higher achievable
key-rates [9–11].

This work focuses on the security analysis of the decoy-state BB84 protocol and
the optimization of its protocol parameters. The security analysis is based on the
uncertainty relation for smooth entropies [12]. In [13], the uncertainty relation was
applied to the analysis of the BB84 protocol implemented with a perfect single photon
source. This analysis was extended to the decoy-state BB84 protocol in which weak
pulsed laser sources with attunable intensities are applied [14]. The analysis of [14]
restricts itself to the case where the intensities are randomly varied between three
different levels. The intensities and sample distribution are chosen to optimize the key-
rate that is achieved in a specific set-up. This approach can be generalized to arbitrary
numbers of intensities resulting in a larger parameter search space over which the
key-rate is optimized.

Our main contribution is the formulation of the key-rate optimization problem as
linear and nonlinear programs.Analytical lower bounds on the number ofmulti-photon
states can be found [14,15], as the number of photons is assumed to follow a Poisson
distribution. Whereas in general these lower bounds are non-tight, the linear programs
allow for tight lower bounds, which in turn results in an improved security analysis.
Additionally, the linear programs are used to upper bound the number of single-photon
errors. Constrained nonlinear optimization techniques [16] are then used to optimize
the lower bound on the key-rate.

Due to the larger parameter search space, higher key-rates are found using linear
programs, compared to analytical methods. For that reason, linear programs have been
used before to optimize the key-rate for the BB84 protocol [17] and measurement-
device independent QKD protocols [18]. Both works however still make assumptions,
for instance by only including the first laser intensity instead of all or by fixing the
probabilities for the bases and intensities.

We formalize the approach and do not make such assumptions. Furthermore, we
improve the lower bounds found with the linear programs by including the vacuum
and single photon pulses in a single linear program. This opposed to determining lower
bounds for the two separately, resulting in conservative and sub-optimal estimates.We
furthermore allow for freely varying each of the intensities.

We show that using this formal approach results in an improved obtainable secure
key-rate.We furthermore show the effects of usingmore decoy states and the effects of
increasing the number of sent pulses. First, we explain the BB84 protocol in Sect. 2 and
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discuss the security and robustness of the protocol from a mathematical perspective in
Sect. 3. The same mathematical perspective is used in Sect. 4 to explain how to obtain
secure key-material from a BB84 protocol execution. This section also introduces
finite key-effects. Afterwards, Sect. 5 explains how to optimize the secure key-rate
and how to incorporate the used quantum channel in our model. Results of our model
are presented in Sect. 6 and a conclusion is given in Sect. 7.

2 Decoy-state BB84 protocol

In this section, we recall the decoy-state BB84 QKD protocol. Alice and Bob are
assumed to have access to a (noisy) quantum channel and an authenticated classical
channel. Both channels are insecure and can be fully controlled by the adversary,
however, active attacks on the classical channel are assumed tobe immediately detected
as this channel is authenticated.

In the following, all keys are denoted by an uppercase K and the superscripts refer
to the party Alice a or Bob b and type of key: raw r , sifted s or error-corrected e. The
decoy-state BB84 protocol now goes as follows.

Preparation: Alice generates a raw key by sampling a uniformly random bit string
in Kra ∈ {0, 1}N . Moreover, Alice samples a random basis string X a ∈ {X , Z}N ,
where P(X a

i = X) = pX for all 1 ≤ i ≤ N . For all i she encodes bit Kra
i in basis

X a
i resulting in a sequence of qubits in {|0〉, |1〉, |+〉, |−〉}N .
Communication: For all 1 ≤ i ≤ N , Alice samples an intensityUi from a probabil-

ity distribution PUi |X a
i
conditioned on the chosen basisX a

i ∈ {X , Z}. The distribution
PUi |X a

i
is independent of the index i and for both bases its support lies in a finite set

of intensities {μ0, . . . , μm}. Alice encodes the associated qubit in a laser pulse with
intensity Ui and sends this pulse to Bob over the quantum channel.

Measurement: Bob samples a random basis string X b ∈ {X , Z}N , where P(X b
i =

X) = pX for all 1 ≤ i ≤ N andmeasures pulse i in basisX b
i . If both of Bob’s detectors

register an event, for example in the case of a multi-photon pulse and a measurement
incompatible with Alice’s preparation, Bob randomly selects a measurement outcome
Krb
i ∈ {0, 1}. It can also occur that no detector registers an event, in this case Bob

defines the outcome to be∅. As a result Bob obtains his rawkey Krb ∈ {0, 1,∅}N . Note
that Bob’s sifting probability pbX is equal to that ofAlice paX , i.e., p

a
X = pbX = pX . This

is not required, but it can be shown that for all protocol instantiations with paX �= pbX ,
there exists a protocol instance with paX = pbX with at least the same secure key-rate.

Sifting: Alice and Bob announce their basis choices and Bob announces the pulses
for which no detection event took place. The pulses that were prepared and measured
in the same basis and for which a detection event occurred, are sifted from the raw keys
Kra and Krb and Alice and Bob obtain sifted keys Ksa ∈ {0, 1}ns and Ksb ∈ {0, 1}ns ,
respectively. In addition, we let Ksa

X , Ksb
X ∈ {0, 1}nX be the strings containing the bits

of Ksa and Ksb obtained by preparing and measuring in the X -basis for X ∈ {X , Z}.
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Parameter estimation: Alice announces the chosen intensities U , which allows
Alice and Bob to compute the amount of detection events

nμ j ,X =
∣
∣
∣

{

i : X a
i = X b

i = X ∧Ui = μ j ∧ Krb
i �= ∅

}∣
∣
∣ , (1)

for all intensities μ j and for both bases X ∈ {X , Z}. In addition, Alice and Bob
reveal the parts of the sifted keys Ksa

Z , Ksb
Z ∈ {0, 1}nZ . Using this information they

can compute the amount of errors in the Z -basis

Eμ j ,Z =
∣
∣
∣

{

i : X a
i = X b

i = Z ∧Ui = μ j ∧ (Ksa
Z )i �= (Ksb

Z )i

}∣
∣
∣ , (2)

for all intensitiesμ j . Given these values Alice and Bob determine upper-bounds on the
number of bits in Ksa

X that are associated to multi-photon events and the error-rate e1,Z
for single photon pulses in the Z -basis. From these bounds Alice and Bob determine
the length � of the secret key that can be extracted after the error reconciliation phase.
If � ≤ 0 the protocol aborts. Note that only the Z -events are used to determine �. The
X -events will be used in the error reconciliation and privacy amplification phase to
construct the final key.

Error reconciliation: Errors in the quantum channel can cause the strings Ksa
X and

Ksb
X to be distinct. For this reasonAlice andBob perform an information reconciliation

protocol by which they obtain error-corrected keys Kea, Keb ∈ {0, 1}nX , respectively.
Verification: Alice samples a uniformly random hash function h from a two-

universal family of hash functions Fe : {0, 1}nX → {0, 1}	− log2(εcor)
 [19]. Here
0 ≤ 1 − εcor ≤ 1 is a lower bound on the probability that the protocol is correct,
i.e., that Alice and Bob will obtain identical keys. Alice applies this hash function to
her error-corrected key Kea . She sends the hash-function h and hash-value h(Kea) to
Bob, who then computes h(Keb). If h(Kea) �= h(Keb), the protocol aborts.

Privacy amplification: Alice samples a uniformly random hash function h from a
two-universal familyFp mapping {0, 1}nX to {0, 1}� and announces h to Bob, where �

has been determined in the parameter estimation phase. Both Alice and Bob compute
the secret keys Ka = h(Kea) and Kb = h(Keb), respectively.

3 Correctness and robustness

In this section, we recall two important (security) properties of QKD protocols. A
QKD protocol should be correct and secure against any attack allowed by quantum
mechanics. Moreover, the protocol should only abort with a small probability, i.e., it
should be robust. In this sectionwe formalize the correctness and robustness properties,
following the approach of [20], and show why the decoy-state BB84 protocol admits
these properties. The security of the protocol will be analyzed in Sect. 4.

A QKD protocol is εcor-correct if

P(Ka �= Kb) ≤ εcor, (3)
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for all possible strategies of an adversary. This property is easily seen to be satisfied if
in the verification phaseFe is indeed a family of two-universal hash functionsmapping
{0, 1}nX to {0, 1}	− log2(εcor)
. The hash value reveals

⌈

log2

(
1

εcor

)⌉

≤ log2

(
2

εcor

)

(4)

bits of information to the adversary.
Note that the protocol is allowed to abort, in which case no secure key is exchanged.

We denote this event by Ka = Kb = ⊥. The probability pabort that the protocol aborts
in the absence of an adversary, depends on the error reconciliation protocol that is
applied. For any security parameter δec > 0, there exist error reconciliation protocols
that leak at most

nX (h(eX ) + δec) (5)

bits of information [20], where h is the binary entropy function and eX is the quantum
bit error rate (QBER) of the sifted keys in the X -basis. Moreover,

pabort ≤ P
(

Kea �= Keb
)

≤ 2 exp

( −nXδ2ec

3 log2(5)2

)

, (6)

where the last inequality follows from Corollary 6.3.5 of [20]. To achieve an abort
probability of at most pabort we therefore take

δec(pabort, nX ) =
√

ln

(
2

pabort

)
3 log2(5)2

nX
. (7)

4 Security of the decoy-state BB84 protocol

In this section, we recall the standard (composable) security definitions for QKD
protocols, specifically focusing on the Decoy-State BB84 protocol. In particular, we
derive an expression for the length of a key that can securely be generated by running
this QKD protocol (Sect. 4.1). This expression contains a number of variables that
are unknown to Alice and Bob. In Sect. 4.2, we show how these unknown protocol
variables can be bounded by solving certain linear programs.

4.1 Secure key length

To evaluate the security of the protocol let us consider the joint state of the classical
random variable K := Ka with support K and the adversary’s quantum system

ρK E =
∑

x∈K
P(K = x)|x〉〈x | ⊗ ρx

E , (8)
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where ρx
E is the state of the adversary’s system given that K = x . Ideally, the classical

probability distribution P(K = x) is uniform and the adversary’s state is independent
of K . Hence, the joint state of a perfect key and the adversary’s system is given by

1

|K|
∑

x∈K
|x〉〈x | ⊗ ρE . (9)

A QKD-protocol is now said to be εsec-secure if

1

2

∥
∥
∥
∥
∥
ρK E − 1

|K|
∑

x∈K
|x〉〈x | ⊗ ρE

∥
∥
∥
∥
∥

1

≤ εsec, (10)

where ‖A‖1 = tr
(√

A∗A
)

is the trace norm of the complex matrix A.

If a QKD-protocol is εsec-secure the output cannot be distinguished from that of
a perfect protocol with probability more than εsec [20]. Moreover, this security def-
inition ensures universal composability, i.e., the key K can safely be used in other
cryptographic protocols.

In general, Alice’s bit-string Kea ∈ {0, 1}nX , obtained after the error correction
and verification phase, does not satisfy the above security definition. For this reason
privacy amplification is applied. From the leftover hash lemma [21] it follows that the
QKD protocol is εsec-secure if there exists an ε ≥ 0 such that

� =
⌊

H ε
min(K

ea|E) − 2 log2

(
1

2(εsec − ε)

)⌋

, (11)

where H ε
min(K

ea|E) is the smooth min-entropy of the random variable Kea condi-
tioned on the adversary’s (quantum) information E . The leftover hash lemma thus
gives an expression of the bit-length � of the secure key K in terms of this conditional
smooth entropy.

The error corrected key is obtained from the sifted key after performing the error
correction and verification phase, which both leak some information to the adversary.
If we let Es be the adversary’s (quantum) information after the sifting phase, it follows
from Eqs. (4) and (5) that

H ε
min(K

ea |E) ≥H ε
min

(

Ksa
X |Es) − nX (h(EX ) + δec(pabort, nX )) − log2

(
2

εcor

)

.

(12)

Now observe that the bits of Ksa
X are all derived from vacuum, single-photon or

multi-photon pulses. Hence, we can write

Ksa
X = Ksa

0,X ⊗ Ksa
1,X ⊗ Ksa

m,X , (13)

where Ksa
0,X , K

sa
1,X and Ksa

m,X contain the bits associated to the vacuum, single-photon
and multi-photon pulses, respectively.
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It is impossible for an adversary to obtain information about the bits associated to
vacuum pulses, hence for all ε ≥ 0

H ε
min

(

Ksa
0,X |Es) ≥ Hmin

(

Ksa
0,X |Es) = n0,X , (14)

where n0,X is the number of vacuum pulses that were sent. In contrast, the PNS
attack allows the adversary to obtain all information about the bits associated to multi-
photon pulses. Hence, for all ε ≥ 0 we must lower bound the associated min-entropy
as follows

H ε
min

(

Ksa
m,X |Ksa

0,X E
s) ≥ 0. (15)

Applying the chain rule for smooth min-entropies [22] twice and plugging in
Eqs. (14) and (15), we find that for all ε, ε1, ε4, ε5 ≥ 0 and ε2, ε3 > 0 such that
2ε1 + ε2 + ε3 + 2ε4 + ε5 = ε ≤ 1,

H ε
min

(

Ksa
X |Es) ≥ H ε5

min

(

Ksa
0,X |Es) + H ε1

min

(

Ksa
1,X |Ẽ) + H ε4

min

(

Ksa
m,X |Ksa

0,X E
s)

− log2

⎛

⎝
1

1 −
√

1 − ε22

⎞

⎠ − log2

⎛

⎝
1

1 −
√

1 − ε23

⎞

⎠

≥ n0,X + H ε1
min

(

Ksa
1,X |Ẽ)

− log2

⎛

⎝
1

1 −
√

1 − ε22

⎞

⎠ − log2

⎛

⎝
1

1 −
√

1 − ε23

⎞

⎠

≥ n0,X + H ε1
min

(

Ksa
1,X |Ẽ) − 2 log2

(
2

ε2ε3

)

,

(16)

where Ẽ = Ksa
0,X ⊗ Ksa

m,X ⊗ Es and for the third inequality we use that for all x ≤ 1
it holds that

1 − √
1 − x ≥ x

2
.

See also [14] in which the same lower bound is derived.
Hence, combining Eqs. (11), (12) and (16) gives an achievable secure key-rate in

terms of the smooth min-entropy of the n1,X single-photon pulses in the X -basis con-
ditioned on the quantum system Ẽ . For these pulses we have the following uncertainty
relation [12],

H ε1
min

(

Ksa
1,X |Ẽ) ≥ n1,X − H ε1

max

(

Lsa
1,Z |Lsb

1,Z

)

, (17)

where Lsa
1,Z and Lsb

1,Z are the hypothetical sifted keys that would have been obtained
if Alice and Bob would have prepared and measured the Ksa

1,X -pulses in the Z -basis.
Informally, this uncertainty relation states that either Eve is uncertain about Alice’s
key in the X -basis or Alice and Bob observe a high amount of errors in their Z -events.
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Let eL1,Z be the fraction of errors between Lsa
1,Z and Lsb

1,Z and let e1,Z be the fraction

of errors between Ksa
1,Z and Ksb

1,Z . The total fraction of single-photon errors that would
have been obtained if Alice and Bob had prepared and measured all these pulses in
the Z -basis then equals

etot1,Z = nXeL1,Z + nZe1,Z

nX + nZ
. (18)

The amount of errors nZe1,Z can now be seen to be equal to the number of errors
in a subset of size nZ randomly sampled from a set of size nX + nZ containing
(nX + nZ )etot1,Z errors. Hence, nZe1,Z follows a hypergeometric distribution and

P
(

eL1,Z ≥ e1,Z + δ
)

= P

(

nZe1,Z ≤ nZe
tot
1,Z − nXnZ δ

nX + nZ

)

,

≤ exp

(

−2n2XnZ δ2

(nX + nZ ) (nX + 1)

)

,

(19)

where the inequality follows by applying Serfling’s tail bound of the hypergeometric
distribution [23]. This upper bound is slightly different from that of [13]. If nX ≥ nZ ,
then Eq. (19) gives a tighter upper bound than [13], but the difference between the
two bounds is negligible. By Eq. (19) the event that an adversary correctly guesses the
basis choices is taken into account for example.

If we now take

δ = δ(nX , nZ , ε1) =
√

(nX + nZ )(nX + 1)

2n2XnZ
ln

(
1

ε1

)

, (20)

we find that P
(

eL1,Z ≥ e1,Z + δ
)

≤ ε1. It now follows that

H ε1
max

(

Lsa
1,Z |Lsb

1,Z

) ≤ n1,X h̄
(

e1,Z + δ(nX , nZ , ε1)
)

, (21)

were h̄(p) = h (min (p, 1/2)) for the binary entropy function h (Lemma 3 of [13]).
Note that in the asymptotic limit, i.e., nX , nZ → ∞, the term δ vanishes.

Altogether, we thus find that the QKD protocol is εsec-secure if

� =
⌊

n0,X + n1,X − n1,X h̄
(

e1,Z + δ(nX , nZ , ε1)
)

− nX (h(eX ) + δec (pabort, nX )) − log2

(
2

εcor(ε2ε3(εsec − ε))2

)⌋

,

(22)

for some ε1, ε2, ε3 > 0 and ε = 2ε1 + ε2 + ε3. The values ε, ε2, ε3 can be chosen
to maximize the length � of the secure key. Note that this key-length is conditioned
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on the fact that the protocol does not abort. The expected key rate of the protocol is
therefore given by,

R =1 − pabort
N

⌊

n0,X + n1,X − n1,X h̄
(

e1,Z + δ(nX , nZ , ε1)
)

− nX (h(eX ) + δec (pabort, nX )) − log2

(
2

εcor(ε2ε3(εsec − ε))2

)⌋

,

(23)

4.2 Linear programs to bound the unknown parameters

Some of the parameters, such as the amount of successful detection events nX in the
X -basis, in the key rate expression of Eq. (23) can be observed by Alice and Bob
during the execution of the QKD protocol. However, Alice and Bob remain oblivious
to other parameter values in this expression. For instance, we assume that Alice and
Bob can not distinguish between single and multi-photon events. For this reason, they
can not determine the number of single photon events nX ,1 in the X -basis. To this end,
Alice and Bob resort to upper and lower bounds for these unknown parameter values.
In this section we describe the linear programs that are used to find these bounds.

Let us first consider the different parameters of Eq. (23). The amount of successful
detections nX in the X -basis and the QBER eX can be observed by Alice and Bob. The
QBER eX can be estimated before running the QKD protocol, hence no key material
has to be sacrificed to estimate this value. A different QBER during the QKD protocol,
possibly due to adversarial behavior, will not compromise the security, but merely
influence the abort probability of the protocol. Note that the adversary, controlling
the quantum channel, is always capable of aborting the protocol, i.e., performing a
denial-of-service attack. Since Alice and Bob are unable to determine the amount of
photons per pulse, the variables n0,X , n1,X and e1,X remain unknown. For this reason
the observable quantities nμ j ,X [Eq. (1)] and Eμ j ,Z [Eq. (2)] for all intensities μ j

and both bases X are used to upper bound the error rate e1,Z and to lower bound the
expression n0,X + n1,X − n1,X h̄

(

e1,Z + δ(nX , nZ , ε1)
)

. These bounds result in lower
bounds on the secure key length �.

Let nl,X be the amount of l-photon pulses detected by Bob and prepared and
measured in the X -basis. Then, for 0 ≤ j ≤ m, it holds that the expected number of
X -pulses sent with intensity μ j equals

E

[

nμ j ,X
]

=
∞
∑

l=0

pμ j |l,X nl,X , (24)

where pμ j |l,X is the probability that an l-photon pulse is sent with intensity μ j given
that Alice and Bob chose basis X . Since the amount of photons in a weak laser pulse
follows a Poisson distribution, we find by Bayes’ rule that,

pμ j |l,X = e−μ j μl
j

l!
pμ j |X
pl|X

, (25)
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where pμ j |X is the probability that an X -pulse is sent with intensity μ j and

pl|X =
m

∑

j=0

pμ j |X e−μ j μl
j

l! , (26)

is the probability that an X -pulse consists of l photons [14,15].
In addition, the number of l-photon pulses in the X basis nl,X that result in a

detection event is upper bounded by the number of l-photon pulses Nl,X sent by Alice
and measured by Bob in the X -basis. Note that we use an uppercase N to denote the
amount of pulses sent by Alice and a lowercase n to denote the number of events
detected by Bob. Hence,

nl,X ≤ Nl,X and E
[

Nl,X
] = pl|X NX , (27)

for all l ≥ 0 and for all X ∈ {X , Z}.
Alice and Bob cannot exactly determine the values nl,X , but Eqs. (25) and (27) do

supply them with constraints on these values. The variables nμ j ,X are measured in
the parameter estimation phase. In the asymptotic limit these estimations are equal to
their expected values. Hence, neglecting finite key effects, we can find a lower bound
n∗
1,Z for n1,Z by solving the following linear program over the unknown variables nl,Z

for l ≥ 0.

n∗
1,Z = min n1,Z ,

s.t. ∀ 0 ≤ j ≤ m,∀ l ≥ 0

nμ j ,Z = e−μ j pμ j |Z
∞
∑

l=0

μl
j

l!
nl,Z
pl|Z

,

0 ≤ nl,Z ≤ pl|Z NZ .

(28)

However, in all practical situations the amount of pulses is finite and the finite key
effects cannot be neglected. By Hoeffding’s bounds [24] we find that

P
(∣
∣
∣nμ j ,X − E

[

nμ j ,X
]∣
∣
∣ ≥

√

− ln
(

εHμ j
/2

)

nX /2
)

≤ εHμ j ,X , (29)

for all 0 ≤ j ≤ m, X ∈ {X , Z} and εHμ j
> 0. Since the variables Nl,X are sums of

Bernoulli random variables we can apply Chernoff’s bounds [25]. In this effort, let us
define the following function,

f : Z≥0 × [0, 1] × (0, 1] → R≥0 →, (N , p, ε) �→ − ln(ε)

(

1 +
√

1 − 2pN

ln(ε)

)

.

(30)
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Then by Chernoff’s bound,

P
(

Nl,X ≥ E
[

Nl,X
] + f

(

NX ; pl|X ; εCl,X
)) ≤ εCl,X , (31)

for all l ≥ 0, X ∈ {X , Z} and εCl,Z > 0.
Hence, a lower bound n∗

1,Z of n1,Z , that holds except with probability at most
∑∞

l=0 εCl,Z + ∑m
j=0 εHμ j ,Z

, is given by the linear program of Eq. (32).

n∗
1,Z = min n1,Z ,

s.t. ∀ 0 ≤ j ≤ m,∀ l ≥ 0

nl,z, δμ j ∈ R,

nμ j ,Z + δμ j = e−μ j pμ j |Z
∞
∑

l=0

μl
j

l!
nl,Z
pl|Z

,

m
∑

j=0

δμ j = 0,

0 ≤ nl,Z ≤ min
(

pl|Z NZ + f (NZ ; pl|Z ; εCl,Z ), nZ

)

,

∣
∣δμ j

∣
∣ ≤

√

− ln(εHμ j ,Z
/2)nZ/2.

(32)

Similarly, an upper bound E∗
1,Z , that holds except with probability at most

∑∞
l=0 εCl,Z + ∑m

j=0 εHμ j ,E
, of the number of errors in single-photon Z -pulses E1,Z

is found by solving the linear program of Eq. (33).

E∗
1,Z = max E1,Z

s.t. ∀ 0 ≤ j ≤ m,∀ l ≥ 0

El,z, δμ j ∈ R,

Eμ j ,Z + δμ j = e−μ j pμ j |Z
∞
∑

l=0

μl
j

l!
El,Z

pl|Z
,

m
∑

j=0

δμ j = 0,

0 ≤ El,Z ≤ min
(

pl|Z NZ + f
(

NZ ; pl|Z ; εCl,Z
)

, EZ

)

,

∣
∣δμ j

∣
∣ ≤

√

− ln(εHμ j ,E
/2)EZ/2.

(33)
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It follows that

e1,Z ≤ e∗
1,Z = min

(

E∗
1,Z

n∗
1,Z

,
1

2

)

(34)

except with probability at most

εe =
∞
∑

l=0

εCl,Z +
m

∑

j=0

(

εHμ j ,Z + εHμ j ,E

)

. (35)

Finally, a lower bound n∗
0,1,X of the expression

n0,X + n1,X − n1,X h̄
(

e∗
1,Z + δ(nX , nZ , ε1)

)

, (36)

that holds except with probability at most εX = ∑∞
l=0 εCl,X +∑m

j=0 εHμ j ,X
, is found by

solving the linear program of Eq. (37). The contribution of the vacuum states, n0,X ,
to the secure key-rate can be argued to be marginal. For this reason, the optimization
problem of Eq. (37) is often simplified by ignoring the n0,X component in the objective
function.

n∗
0,1,X = min n0,X + n1,X − n1,Xh(e∗

1,Z + δ(nX , nZ , ε1)),

s.t. ∀ 0 ≤ j ≤ m,∀ l ≥ 0

nl,X , δμ j ∈ R,

nμ j ,X + δμ j = e−μ j pμ j |X
∞
∑

l=0

μl
j

l!
nl,X
pl|X

,

m
∑

j=0

δμ j = 0,

0 ≤ nl,X ≤ min
(

pl|X NX + f
(

NX ; pl|X ; εCl,X
)

, nX

)

,

∣
∣δμ j

∣
∣ ≤

√

− ln(εHμ j ,X
/2)nX/2.

(37)

A detail that has been omitted so far is the fact that these linear programs contain an
infinite number of variables, which can be dealt with by truncating the infinite sums
at M . For the resulting linear programs, with a finite number of variables, we refer to
Appendix B. The same truncation applies to the error terms εX and εe, i.e.,

εX =
M

∑

l=0

εCl,X +
m

∑

j=0

εHμ j ,X ,

εe =
M

∑

l=0

εCl,Z +
m

∑

j=0

(

εHμ j ,Z + εHμ j ,E

)

.

(38)
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In addition, the truncation introduces two additional error probabilities εM,X and εM,Z .
Altogether it follows, from solving the linear programs of Eqs. (54), (55) and (56) in
Appendix B, that the expected key rate equals

R = 1 − pabort
N

⌊(

n∗
0,1,X − nX (h(eX ) + δec (pabort, nX ))

− log2

(
2

εcor(ε2ε3(εsec − ε))2

))⌋

,

(39)

where ε1, ε2, ε3 > 0 are arbitrary values such that ε = 2ε1 + ε2 + ε3 + εe + εX +
εM,X + εM,Z .

5 Key-rate optimization

The previous section describes how to compute the key-rate for a given execution
of the BB84 protocol. Hence, given the protocol parameters, the number of detection
events (Eq. 1) and the number of errors (Eq. 2), the secure key-rate R can be computed
by solving three linear programs.

Next, our objective is to maximize this key rate R by choosing optimal protocol
parameters μ j and pμ j ,X for 1 ≤ j ≤ m and X ∈ {X , Z}. To this end, we model the
quantum channel such that the expected number of detection events and errors can be
computed as function of the protocol parameters. The physical model is the final step
to find the protocol parameter values that optimize secure key-rate R. This optimal
key-rate may be found by using the following nonlinear optimization program:

max R,

s.t. ∀0 ≤ j ≤ m,X ∈ {X , Z}
m

∑

j=0

pμ j ,X + pμ j ,Z = 1,

μ j ≥ 0,

0 ≤ pμ j ,X ≤ 1.

(40)

We obtain the solution of this nonlinear optimization program by applying the con-
strained nonlinear optimization techniques of [16].

5.1 Quantum channel

We consider a QKD system in which Alice encodes qubits in the polarization of
photons and transmits them over a fiber optic cable to Bob. The fiber optic cable is
assumed to have an attenuation ofα dB/km, i.e., a channel efficiency ofηch = 10−αx/10

for distance x km [14]. The channel efficiency equals the fraction of photons that arrive
atBob’s detection apparatus,whichwe assume to be independent of the polarization. In
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addition to photon losses on the channel, losses can occur in Bob’s detection apparatus.
These losses are captured by the detector efficiency ηd. The efficiency of the system
with a quantum channel of length x is therefore given by

ηsys = ηchηd = 10−αx/10ηd. (41)

Bob’s detection apparatus has to be capable of detecting individual photons and
is therefore very sensitive. In fact, the photon detectors might click even when they
are not illuminated. These events are called dark counts and the probability that a
detector clicks without being illuminated is called the dark count probability pdark.
Recall that Bob’s detection apparatus contains two single photon detectors, one for
each measurement outcome. Together with the fact that the number of photons in each
intensity μ j pulse follows a Poisson distribution with mean μ j , we can derive the
following expressing for the gain of μ j -pulses in this quantum channel,

Qμ j = 1 − (1 − pdark)
2e−μ jηsys . (42)

The gain Qμ j indicates the fraction of μ j -pulses that result in a detection event. For a
proper derivation of this expressionwe refer to [14]. From the gain we easily obtain the
expected number of detection events as described in the parameter estimation phase
[Eq. (1)],

nμ j ,X = Npμ j ,X Qμ j . (43)

Recall that N is the total number of pulses that is sent and pμ j ,X is the probability
that Alice chooses basis X and intensity μ j .

To model the errors we assume that they are either caused by optical errors in
the polarization or by dark counts. Optical errors are modeled by assuming that the
polarization of photons is always rotated by an angle 0 ≤ θ ≤ π/4. Hence, when
Alice sends the qubit |0〉, Bob receives qubit cos(θ)|0〉 + sin(θ)|0〉. In practice, the
polarization error is different per pulse and the angle θ represents an upper bound on
the polarization error. Moreover, θ = π/4 results in worst-case behavior, explaining
why θ ranges from 0 to π/4.

Dark counts introduce errors since the associated detection events are independent
of the polarization chosen by Alice. Hence, any dark-count event results in an error
with probability of 1/2. Altogether, the expected number of errors for μ j -pulses in
the X basis is,

Eμ j ,X = Npμ j ,X
2

(

1 + (1 − pdark)
(

e−μ jηsys cos2 θ − e−μ jηsys sin2 θ
)

−(1 − pdark)
2e−μ jηsys

)

. (44)

In this section polarization encoded qubits transmitted over a fiber optic cable
were considered. In practice, qubits transmitted over fiber optic cables are often phase
encoded [26]. In contrast, polarization encoding is mostly used to transmit over free
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space optical communication channels. Considering, these and other quantum chan-
nels requires some (minor) modifications to the physical model.

6 Results

In this section we present the results of our key-rate optimization approach. We start
by comparing the results from our model to the results presented in [14]. Afterwards,
we consider the effects of increasing the number of pulses sent and increasing the
number of intensities used. We denote the number intensity settings by m and number
of pulses sent by N .

Our experiments comprise three regimes. As baseline regime we compare our
approachusing the parameter settings from [14]. Thebaseline considers afinite number
of intensitiesm = 3 and ignores finite key effects N → ∞ as depicted in Fig. 1. Please
note that in contrast to [14], we do not fix any of the used intensity settings. The second
regime considers a finite number of intensity settings (m = 3), and explores the impact
of finite key effects by varying the number of pulses N ∈ {107, 108, 109, 1010, 1011}.
For comparison, we include our result from the baseline regime (where N → ∞)
as depicted in Fig. 2. In the third regime we vary the number of intensity settings,
while discarding finite key effects, i.e., N → ∞. The third regime includes the fully
asymptotic case where both m → ∞ and N → ∞. This is depicted in Fig. 3.

6.1 Baseline

For the baseline regime we adopt the following parameter settings from [14]:

– We fix the dark count probability pdark = 6 × 10−7 and the detector efficiency
ηd = 0.1.

– For the misalignment we take θ = 0.0707, with corresponding probability emis =
5 × 10−3.

We only compare the results for the asymptotic case, because the results for finite
number of pulses are incomparable. In contrast to [14] we fix the number of pulses
sent, while in [14] the post-processing block-size is fixed. To keep the same post-
processing length a higher number of pulses needs to be emitted for larger distances.

Our results for the asymptotic case are shown in Fig. 1. Both the maximum achiev-
able secure key-rate in terms of the loss in decibel (Fig. 1a) and the optimal intensity
settings (Fig. 1b) are presented. The results in [14] are presented as key-rate per dis-
tance in kilometers, however, the two are directly related by an attenuation factor of
0.2 dB/km. In order to compute a lower bound for the secure key rate we apply the LP’s
of Sect. 4.2. However these contain infinite sums and assume finite key sizes. We refer
to Appendix C.1 for the LP formulations that discard finite key effects and truncate the
infinite sums. Note that the optimal intensities vary for different channel distances and
that, in contrast to [14], fixing one of these intensities is sub-optimal. Estimating the
leaked information is relatively easy for low losses, and in that case hardly any decoy
states are required and the most frequent intensity can be chosen relatively high. For
higher losses, more decoy states with higher intensities are required to still obtain a
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(a) (b)

Fig. 1 The maximum achievable secure key-rate using our model compared to the maximum rate using
the model of [14]. We discard finite key-effects and for our model, we also present the optimal intensity
settings per loss

good estimate on the information leaked to an adversary. This explains the behavior
of the three intensities shown.

With our model the maximum achievable key-rate is higher. However, we did not
take into account the after-pulse probability. Depending on the magnitude of this error
source, the results of our model may be closer to those of [14]. It is expected that the
used intensities show a rather smooth evolution with increasing distance, however,
different behavior is seen. This might result from the optimization routine where a
stopping criteria is met too soon, for instance a maximum number of iterations or a
local maxima with zero gradient. This can result in a sub-optimal solution and can be
overcome by more strict stopping criteria. Despite these artifacts, the found key-rate
is higher than obtained in [14]. Furthermore, secure key material can be extracted for
higher losses.

6.2 Finite-key effects

In this regime we consider the effects of increasing the number of sent pulses N on the
key-rate while preserving the baseline settings of Sect. 6.1 including m = 3. As we
include finite key-effects, we have to fix certain cryptographic security parameters.
We want to achieve a certain security of our protocol and we want it to be correct
with high probability. Therefore, we fix the security and correctness parameters as
εsec = εcor = 2−50. Furthermore, we take the abort probability to be pabort = 2−50.
Consequently, we fix εCl,X = εCl,Z = εHμ j ,X

= εHμ j ,X
= εHμ j ,E

= 2−60. This gives upper

bounds for εe ≤ 2−54 and εX ≤ 2−55 and we set ε1 = ε2 = ε3 = 2−55. Combined this
gives ε ≤ 2−52, which matches with our constraint εsec ≥ ε, obtained from Eq. (39).
The linear programs given in Sect. 4.2 bound the number of usable pulses and photon
errors, but contain an infinite number of variables. We refer to Appendix B for the
truncation of the infinite sums of Sect. 4.2.

For the chosen security parameter εsec it is sufficient to upper bound multi photon
pulses to at most 20 photons. Indeed, 20 is a sufficiently large upper bound on the
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number of photons per pulse: Let X be Poisson distributed with rate μ. According to
[27, Corollary 6], the Poisson tail probability may be bounded by

P(X ≥ x | μ = 1) ≤ min

(

e−DKL(μ,x)

2
,

e−DKL(μ,x)

√
2πDKL(μ, x)

)

, for x > μ, (45)

where DKL(μ, x) is the Kullback–Leibler divergence between two Poisson distributed
random variables with respective means μ and x :

DKL(μ, x) = μ − x + x ln

(
x

μ

)

. (46)

Using the bound from Eq. (45), we can show that

P(X ≥ 20 | μ = 1) < 2−63.03 < 2−60. (47)

We consider the key-rate for N = 10i pulses, for i ∈ {7, . . . , 10} and we consider
the limit N → ∞. The results are shown in Fig. 2. The same channel and detector
parameters are used as in the baseline. We observe that with increasing number of
pulses, the expected secure key-rate indeed increases.Note that already for 1010 pulses,
our key-rate estimation approaches the asymptotic key-rate quite well. The shown
figure is the convex hull of the data points. This to account for instabilities in the
optimization. We found that for all considered number of pulses sent, the probability
that a pulse was sent in the Z -basis was less than 6%, independent of chosen intensity
and the loss of the channel. This corresponds with the asymptotic case where the
number of pulses sent in the Z -basis can be assumed to be an arbitrarily small fraction
of the number of pulses.

6.3 Asymptotic key rates for different intensity settings

In this experimental regime we vary the number of intensity settings, form ∈ {2, 3, 4}
while preserving the baseline settings of Sect. 6.1 including N → ∞. We also include
the fully asymptotic regime, where m → ∞, and N → ∞. We refer to Appendix C.2
for the unknownparameter estimation in this fully asymptotic case. Thekey-rate results
are presented in Fig. 3a and b. We observe that while using only two intensities, the
key-rate quickly drops. However, for more than two intensities, the results are very
close to each other. Therefore, we focus on regime for 38 dB up to 40.5 dB loss in
Fig. 3b. Here we observe that with each additional intensity, more key-material can
be extracted. However, we also see that the gains are marginal. Already for three
intensities, losses of up to 39.5 dB can be tolerated, with key-rate ∼ 10−7. Using
more intensity settings gives only a minor increase in the maximum losses tolerated
and a slightly higher key-rate for the same channel lengths. In the limit m → ∞, the
maximum tolerated loss for safely executing the protocol is bounded by 40.1 dB with
a key-rate of about 5 × 10−8.
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Fig. 2 The secure key-rate obtained in terms of the losses of the quantum channel (dB). For a varying
number of pulses

(a) (b)

Fig. 3 The secure key-rate obtained in terms of the loss over the quantum channel (dB) for varying number
of intensities m

7 Conclusion and discussion

In this work, we presented a key-rate optimization approach for the decoy-state BB84
QKDprotocol. Our approach combines several linear and nonlinear programs to derive
tighter protocol parameters and better key-rates, compared to previous approaches
relying on heuristic assumptions.

Our optimization framework allows the complex optimization problem to be solved,
without requiring it to be simplified by means of heuristic assumptions. We compared
our model to that of [14] and show that higher key-rates are attained. Furthermore,
we show the effect of increasing the number of decoy states and we show that using
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three laser intensities is in general sufficient. In this way we validated a heuristic that
is commonly used.

Our work is especially relevant to quantum channels with a significant amount of
noise. In these cases, the effect of choosing sub-optimal protocol parameters is the
largest. Some settings do not even allow any key material to extracted when sub-
optimal protocol parameters are used. In particular, our parameter settings allow for
higher losses to be tolerated.

The analysis of this work focused on the BB84 QKD protocol. However, similar
analyses can also be applied to other QKD protocols, such as for instance BBM92
or measurement-device independent protocols. The model can also be extended to
incorporate more practical disturbances and noise. Furthermore, the model can be
used in practical settings to optimize QKD protocol parameters to obtain higher key-
rates.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Notation

See Table 1.

B Linear programs with finite number of variables

The linear programs given in Sect. 4.2 contain an infinite number of variables. To
reduce the number of variables we truncate the infinite sums at M and upper-bound
the number of pulses containing more than M photons,

mM,X =
∞
∑

l=M+1

nl,X . (48)

Namely note that,

e−μ j pμ j |X
M

∑

l=0

μl
j

l!
nl,X
pl|X

≤ e−μ j pμ j |X
∞
∑

l=0

μl
j

l!
nl,X
pl|X

≤ mM,X

+e−μ j pμ j |X
M

∑

l=0

μl
j

l!
nl,X
pl|X

. (49)
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Table 1 Overview of the most important variables

Variable Domain Description

N Z≥0 Number of pulses sent by Alice

X {X , Z} Basis

U {μ0, . . . , μm } Intensities

n Z≥0 Number of pulses in which Alice and Bob chose

the same basis and Bob registered an detection

E Z≥0 Number of errors

e [0, 1/2] Error rate

μ R≥0 Pulse intensity (mean photon number)

p [0, 1] Probability

� Z≥0 Length of the secret key (in bits)

R [0, 1] Secret key rate

Kr {0, 1}N Raw key

Ks {0, 1}ns Sifted key

Ke {0, 1}nX Error corrected key

K {0, 1}� Secure key

Subscripts are used to condition on events such as basis, intensity or photon number. Superscripts indicate
whether the key is Alice’s (a) or Bob’s (b)

Hence, these inequalities allow us to bound the infinite sum by two finite sums.
Let qM,X be the probability that a X -pulse contains more than M photons, i.e.

qM,X =
m

∑

j=0

pμ j |X e−μ j

∞
∑

l=M+1

μl
j

l! . (50)

For

ΛM,X := qM,X NX + f
(

NX ; qM,X ; εM,X
)

, (51)

it follows, by Chernoff’s bound, that

P
(

mM,X ≥ ΛM,X
) ≤ εM,X , (52)

for all εM,X > 0. Hence solving the linear programs of Eqs. (54), (55) and (56), that
contain a finite number of variables, will allow us to compute the length �∗ of the
secret key,

�∗ := n∗
0,1,X − nX (h(eX ) + δec (pabort, nX )) − log2

(
2

εcor(ε2ε3(εsec − ε))2

)

,

(53)
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for some ε1, ε2, ε3 > 0 and ε = 2ε1 + ε2 + ε3 + εe + εX + εM,X + εM,Z .

n∗
1,Z = min n1,Z ,

s.t. ∀ ≤ j ≤ m,∀ 0 ≤ l ≤ M

nl,Z , δμ j ∈ R,

nμ j ,Z + δμ j ≥ e−μ j pμ j |Z
M

∑

l=0

μl
j

l!
nl,Z
pl|Z

,

nμ j ,Z + δμ j ≤ e−μ j pμ j |Z
M

∑

l=0

μl
j

l!
nl,Z
pl|Z

+ ΛM,Z ,

m
∑

j=0

δμ j = 0,

0 ≤ nl,Z ≤ min
(

pl|Z NZ + f
(

NZ ; pl|Z ; εCl,Z
)

, nZ

)

,

∣
∣δμ j

∣
∣ ≤

√

− ln
(

εHμ j ,Z
/2

)

nZ/2.

(54)

E∗
1,Z = max E1,Z

s.t. ∀ 0 ≤ j ≤ m,∀ 0 ≤ l ≤ M

El,Z , δμ j ∈ R,

Eμ j ,Z + δμ j ≥ e−μ j pμ j |Z
M

∑

l=0

μl
j

l!
El,Z

pl|Z
,

Eμ j ,Z + δμ j ≤ e−μ j pμ j |Z
M

∑

l=0

μl
j

l!
El,Z

pl|Z
+ ΛM,Z ,

m
∑

j=0

δμ j = 0,

0 ≤ El,Z ≤ min
(

pl|Z NZ + f
(

NZ ; pl|Z ; εCl,Z
)

, EZ

)

,

∣
∣δμ j

∣
∣ ≤

√

− ln
(

εHμ j ,e/2
)

EZ/2,

(55)

123



Optimizing the decoy-state BB84 QKD protocol parameters Page 23 of 26 154

n∗
0,1,X = min n0,X + n1,X − n1,Xh(e∗

1,Z + δ(nX , nZ , ε1)),

s.t. ∀ 0 ≤ j ≤ m,∀ 0 ≤ l ≤ M

nl,X , δμ j ∈ R,

nμ j ,X + δμ j ≥ e−μ j pμ j |X
M

∑

l=0

μl
j

l!
nl,X
pl|X

,

nμ j ,X + δμ j ≤ e−μ j pμ j |X
M

∑

l=0

μl
j

l!
nl,X
pl|X

+ ΛM,X ,

m
∑

j=0

δμ j = 0,

0 ≤ nl,X ≤ min
(

pl|Z NX + f
(

NX ; pl|X ; εCl,X
)

, nX

)

,

∣
∣δμ j

∣
∣ ≤

√

− ln
(

εHμ j ,X
/2

)

nX/2.

(56)

C Asymptotic case

In the asymptotic limit, i.e. when N → ∞, the Serfling, Hoeffding and Chernoff terms
vanish and the linear programs simplify significantly. In this section the asymptotic
linear programs are presented. First, the case with a finite amount of decoy states is
presented. Subsequently, we consider the case where the number of decoy intensities
m goes to infinity as well. In this case the linear programs can be omitted entirely.

C.1 Finite number of decoy intensities

Let us first define the yields Yl,X and the gains Qμ j ,X ,

Yl,X := nl,X
pl|X NX

, ∀l ≥ 0,X ∈ {X , Z},

Qμ j ,X := nμ j ,X
pμ j |X NX

, ∀0 ≤ j ≤ m,X ∈ {X , Z}.
(57)

In addition, we define the following variables,

γl,Z := el,ZYl,Z = El,ZYl,Z
nl,Z

= El,Z

pl|Z NZ
, ∀l ≥ 0,

γμ j ,Z := eμ j ,Z Qμ j ,Z = Eμ j ,Z Qμ j ,Z

nμ j ,Z
= Eμ j ,Z

pμ j |Z NZ
, ∀0 ≤ j ≤ m.

(58)

123



154 Page 24 of 26 T. Attema et al.

Substituting the above variables in Eqs. (32), (33) and (37) results in the following

linear programs, where e∗
1,Z := γ ∗

1,Z
Y ∗
1,Z

.

Y ∗
1,Z = min Y1,Z ,

s.t. ∀ 0 ≤ j ≤ m,∀ l ≥ 0

Qμ j ,Z = e−μ j

∞
∑

l=0

μl
j

l! Yl,Z ,

0 ≤ Yl,Z ≤ 1.

(59)

γ ∗
1,Z = max γ1,Z

s.t. ∀ 0 ≤ j ≤ m,∀ l ≥ 0

γμ j ,Z = e−μ j

∞
∑

l=0

μl
j

l! γl,Z ,

0 ≤ γl,Z ≤ 1.

(60)

Y ∗
0,1,X = min p0|XY0,X + p1|XY1,X

(

1 − h(e∗
1,Z )

)

,

s.t. ∀ 0 ≤ j ≤ m,∀ l ≥ 0

Qμ j ,X = e−μ j

∞
∑

l=0

μl
j

l! Yl,X ,

0 ≤ Yl,X ≤ 1.

(61)

Solving these linear programs results in a secure key-rate

R∗ = Y ∗
0,1,X − QXh(eX ). (62)

In linear program 61, we have used the fact that the sifting probability pX can be
taken arbitrarily close to 1.

C.2 Infinite number of decoy intensities

If, in addition, we assume an infinite amount of decoy intensities (i.e. m → ∞) then,
for properly chosen intensities, the linear programs can be shown to posses a single
feasible solution. Hence, Alice and Bob can in this case compute the exact yields and
error rates. The resulting key rate can therefore be computed as follows,

R∗ = p0|XY0,X + p1|XY1,X
(

1 − h(e1,Z )
) − QXh(eX ). (63)
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The sifting probabilities p0|X and p1|X depend on the intensities, which are chosen
to maximize the key rate.
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