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Abstract: Hybrid linear—dendritic block copolymers (LDBCs) having dendrons with a precise num-
ber of peripheral groups that are able to supramolecular bind functional moieties are challenging
materials as versatile polymeric platforms for the preparation of functional polymeric nanocarriers.
PEG-b-dxDAP LDBCs that are based on polyethylene glycol (PEG) as hydrophilic blocks and
dendrons derived from bis-MPA having 2,6-diacylaminopyridine (DAP) units have been efficiently
synthesized by the click coupling of preformed blocks, as was demonstrated by spectroscopic tech-
niques and mass spectrometry. Self-assembly ability was first checked by nanoprecipitation. A
reproducible and fast synthesis of aggregates was accomplished by microfluidics optimizing the
total flow rate and phase ratio to achieve spherical micelles and/or vesicles depending on dendron
generation and experimental parameters. The morphology and size of the self-assemblies were
studied by TEM, Cryogenic Transmission Electron Microscopy (cryo-TEM), and Dynamic Light
Scattering (DLS). The cytotoxicity of aggregates synthesized by microfluidics and the influence
on apoptosis and cell cycle evaluation was studied on four cell lines. The self-assemblies are not
cytotoxic at doses below 0.4 mg mL~!. Supramolecular functionalization using thymine derivatives
was explored for reversibly cross-linking the hydrophobic blocks. The results open new possibilities
for their use as drug nanocarriers with a dynamic cross-linking to improve nanocarrier stability but
without hindering disassembly to release molecular cargoes.

Keywords: linear-dendritic block copolymers; self-assembly; polymeric nanocarriers; microfluidics

1. Introduction

The self-assembly ability of block copolymers (BCs) either in bulk or in solution has
been widely explored to produce nanomaterials of interest because of the capability of
chemically connected dissimilar polymers to phase segregate into self-organized structures
of nanometric dimensions [1]. If the constituent blocks differ in regard to the solubility in a
given solvent, as in the case of amphiphilic BCs in water, phase segregation occurs, resulting
in self-assemblies whose morphology and size mainly depend on their macromolecular
chemical structure, their hydrophilic/hydrophobic ratio, or the experimental assembly
methodology followed [2]. Polymeric micelles, mainly spherical ones, and polymersomes
have received particular attention as nanocarriers of active molecules. In comparison to
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low molecular weight amphiphiles, BC self-assemblies have higher stability and chemical
tunability that can provide these polymeric nanocarriers with several functions such as
stimuli-response, active targeting, or labeling, amongst others [3].

On the other hand, the emergence of dendritic macromolecules has opened new possi-
bilities for designing materials of interest in nanobiomedicine [4]. Applications are mainly
associated to the monodisperse, highly branched, and regular structure of dendrimers able
to encapsulate molecules into the inner cavities of these macromolecules. They also have
a high and well-defined number of peripheral end groups in which functionality such as
drug conjugation, fluorescent probes, or DNA-binding groups, amongst others, can be
incorporated. Furthermore, the particular physicochemical and self-assembly properties of
this type of macromolecular architecture also offer potential applications as nanoreactors,
in electronics and energy harvesting among other applications [5].

Hybrid linear—dendritic block copolymers (LDBCs), which contain two chemically
connected blocks of different chain topology, may offer synergistic properties by combining
the processability and easier preparation of linear polymers with the advantages of the
regular branched structure of dendrons. From the point of view of the synthesis, different
approaches have been exploited to prepare LDBCs in a precise manner [6]. LDBCs can
be accomplished by a sequential synthesis of the blocks, using either a linear-chain first
or a dendron-first approach, or by the separate synthesis of the linear and dendronized
blocks and their final coupling. This coupling strategy is particularly attractive because
it allows a better control over the length and dispersity of the blocks but requires very
efficient reactions with a high tolerance to the presence of functional groups. In fact,
LDBCs are usually synthesized by click chemistry reactions between preformed blocks
having complementary reactive groups [7], i.e., an ending group in a linear block and the
complementary one in the focal point of a preformed dendron [8,9].

The functionalization, response ability of LDBCs, and their applications in materi-
als science were recently reviewed by Blasco et al. [10]. The manifest versatility of this
architecture has lately been exploited by Malkoch and coworkers for the preparation of
functional porous membranes using a series of 2,2-bis(hydroxymethyl)propionic acid (bis-
MPA)-based dendrons [11,12]. Gitsov and coworkers have also described porous films and
solution aggregates with an adjustable morphology, e.g., by Pd complexation, showing
their potential applications as catalysts [13,14].

Nevertheless, most of the reported applications of functional LDBCs have been ad-
dressed to the nanobiomedicine field [15,16] and in particular to the preparation of aque-
ous self-assemblies [17]. LDBC self-assemblies exhibit high potential as nanocarriers of
bioactive substances for drug and gene delivery as one of the most representative ap-
plications [18]. The adequate design of the block components and the selection of the
experimental self-assembly conditions facilitate the control over the morphology and per-
formance of the nanocarriers, as well as over their stability and dimensions, which are
of crucial importance for their use in macromolecular therapeutics [19]. The effect of the
dendritic macromolecular architecture on the self-assembly of LDBCs [20] has recently been
theoretically examined [21]. In the case of amphiphilic LDBCs with hydrophobic dendrons,
the dendron generation has a strong influence on the micelle morphology [22]. This fact
was also earlier described in a series of LDBCs consisting of polyethylene glycol (PEG)
and bis-MPA-derived dendrons with peripheral light responsive moieties synthesized
in our labs [23,24]. They have been investigated as promoters of LDBC self-assembled
nanocontainers exhibiting a light-controlled release of molecular payloads [25].

Since bis-MPA has widely demonstrated its synthetic versatility for the preparation
of biocompatible and biodegradable peripherally functionalized dendrons [26], many of
the examples in the literature have been focused on amphiphilic LDBCs consisting of a
hydrophilic PEG segment linked to a hydrophobic bis-MPA based dendron. Recently,
Malkoch and coworkers have described LDBCs consisting of a fluorescent-labeled PEG
linked to a bis-MPA dendron with peripheral cholesterol units that exhibit improved drug-
loading capacity and therapeutic efficacy [27]. Ambade and coworkers have described
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the preparation of smart LDBCs by click coupling PEG to dendrons incorporating photo-
and pH-cleavable groups at the junction between the blocks as a strategy to enhance the
stimulated release of doxorubicin (DOX) encapsulated in the micelles [28]. In a similar way,
Sierra and coworkers have described plitidepsin nanocarriers [29]. Grayson and coworkers
have also explored different branched macromolecular architectures based on PEG and
bis-MPA dendrons with fatty acid chains at the periphery as nanocarriers for transdermal
drug delivery [30,31]. In addition to bis-MPA based dendrons, relevant examples can
be found with other dendrons, e.g., Amir and coworkers have studied the self-assembly
properties of LDBCs with PEG and dendrons prepared by thiol-ene reaction with enzyme-
responsive peripheral groups [32,33]. In the field of RNA therapeutics, Siegwart and
coworkers have described a series of PEG-containing LDBCs to optimize the in vitro and
in vivo siRNA delivery based on dendrimer-lipid nanoparticles as carriers [34,35]. From
the described examples, it is clear that PEG has been mostly used as a linear block for
the preparation of amphiphilic LDBCs [15] due to its biocompatibility and properties as a
stealth coating polymer for biomedical applications [36,37]. However, alternatives such
as poly[N-(2-hydroxyethyl-L-glutamine)] [38] or poly(N-vinylpyrrolidone) [39] have also
been investigated for this purpose.

In a previous work, we described the performance of a series of amphiphilic linear—
linear block copolymers based on PEG and a hydrophobic polymethacrylate chain con-
taining side 2,6-diacylaminopyridine (DAP) units. These BCs easily self-assemble into
stable and non-cytotoxic micelles sensitive to pH that are able to encapsulate hydropho-
bic drugs, as demonstrated with camptothecin [40]. DAP, a nucleobase analog, can also
interact with complementary thymine, which envisages the possibility of functionalizing
the DAP-containing block by H-bond recognition. Using this supramolecular approach
for post-polymerization functionalization, nanocarriers with light responsiveness were
provided [41]. In the present work, we report on a new series of LDBCs based on PEG and
a bis-MPA dendron having peripheral DAP units. The LDBCs, coded as PEGyy-b-dxDAP
(where x is the number of peripheral DAP moieties), have been synthesized by clicking
two performed blocks and using the first four generations of bis-sMPA dendrons (G =1, 2,
3, or 4) with x = 2, 4, 8, or 16 DAP units, respectively (Scheme 1). Together with their char-
acterization, the self-assembly properties of the LDBCs using two different methodologies,
nanoprecipitation [42-45] and microfluidics, are described. Microfludics provide controlled
reaction conditions and then an excellent control on the assembly of organic nanomaterials
due to their remarkable heat and mass transfer enhancement [46]. In addition, microflu-
idics offers a reproducible and continuous operation, and it is also possible to adapt the
production throughput by increasing the number of microfluidic units. The morphology
and size of the self-assemblies have been determined by Transmission Electron Microscopy
(TEM) and Dynamic Light Scattering (DLS), and their cytotoxicity has been evaluated in
different cell lines. Furthermore, the supramolecular cross-linking of the self-assemblies
has been tentatively explored by using cross-linkers containing several thymine units able
to be H-bonded to the peripheral DAP moieties as a means to demonstrate the versatility
of DAP units on providing functionality in a dynamic way.
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Scheme 1. Synthesis of PEGyy-b-dxDAP (x =2, 4, 8, or 16) linear-dendritic block copolymers (LDBCs)
by copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction (G = dendron generation.
Number of peripheral ending groups = 26). PEGy: Polyethylenglycol monomethyl ether.

2. Materials and Methods
2.1. General Synthetic Procedures
2.1.1. Materials

The synthesis of the dendrons N3-dxDAP, where x represents the number of pe-
ripheral DAP units, is outlined in Scheme 2; Scheme 3, and the synthesis of thymine
cross-linkers is outlined in Scheme 4. Compounds (1)-(5) were synthesized according to
previously reported procedures [47-49]. Polyethylenglycol monomethyl ether (PEG,,—OH)
was purchased from Sigma Aldrich (Sigma Aldrich Gmbh, Steinheim, Germany) and used
as received (according to certificate of analysis, batch 1257344: M, = 1678 g mol~1, D =121;
according to MALDI-TOF mass spectrometry: My, = 1948.0 g mol~! corresponding to
the more intense m/z peak) (Figure S1). Palladium on carbon (Pd/C) (10 wt% loading,
matrix-activated carbon support) catalyst was purchased from Sigma Aldrich. Tris[(1-
benzyl-1H-1,2,3-triazol-4-yl)methyl]Jamine (TBTA) was purchased from ACROS Organics
(Thermo Fisher Scientific, Geel, Belgium). The azide-functionalized Merrifield’s resin was
prepared from Merrifield’s resin cross-linked with 1% divinylbenzene (200-400 mesh)
(0.8-1.3 mmol g~ 1) (TCI Europe N.V., Zwijndrecht, Belgium) according to the literature
procedure [50]. Other reagents were purchased from Sigma Aldrich and used as received.
Fourier Transformed Infrared Spectroscopy (FTIR) and 1H NMR spectra are collected at
the Supporting Information (Figures 52-535).
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Scheme 2. Synthesis of first-generation dendron, N3-d2DAP.
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2.1.2. Synthesis of N3-d2COOH and Bn-d2COOH

N3-d2COOH and Bn-d2COOH were synthesized according to the following general
procedure: Triethylamine (36.0 mol) was dropwise added to a solution of the selected
dihydroxyl compound (6.0 mol) and succinic anhydride (36.0 mol) in dry dichloromethane
(DCM) (25 mL) under Ar atmosphere. After stirring overnight at room temperature, the
reaction crude was diluted with DCM and washed with 1 M HCl (aq) and water, dried over
anhydrous MgSOy, and concentrated under vacuum. The resulting oil was diluted with
diethyl ether and cooled at 0 °C for 3 h. Solid impurities were removed upon filtration,
and the solvent evaporated under vacuum. The isolated yellow oil was purified by flash
column chromatography on silica gel.

N3-d2COOH was obtained as described above from 6-azidohexyl 2,2-di(hydroxymethyl)
propanoate (1). The resulting yellow oil was purified by flash column chromatography
eluting with ethyl acetate (EtOAc)/hexane (1:1) and gradually increasing the polarity to
pure EtOAc. N3-d2COOH was obtained as a colorless viscous oil. Yield: 74%.

FTIR (KBr), v (cm™): 3566, 2099, 1740.

'H NMR (400 MHz, CDCl3) & (ppm): 4.32 (d, ] = 11.0 Hz, 1H), 4.20 (d, ] = 11.0 Hz, 1H),
413 (t, | = 6.6 Hz, 1H), 3.28 (t, ] = 6.8 Hz, 1H), 2.72-2.57 (m, 4H), 1.70-1.56 (m, 2H),
1.46-1.32 (m, 2H), 1.24 (s, 2H).

Bn-d2COOH was obtained from benzyl 2,2-di(hydroxymethyl)propanoate (3). The
recovered oil was purified by flash column chromatography using first EtOAc/hexane
(3:7) as eluent and gradually increasing polarity to EtOAc/hexane (6:4). Bn-d2COOH was
obtained as a colorless viscous oil. Yield: 84%.

FTIR (ATR), v (cm™): 3441, 1714.

'H NMR (400 MHz, CDCl3) § (ppm) 9.41 (s, 2H), 7.38-7.28 (m, 5H), 5.15 (s, 2H),
4.29 (d, ] =11.2 Hz, 2H), 4.21 (d, ] = 11.2, 2H), 2.61-2.51 (m, 8H), 1.24 (s, 3H).

13C NMR (100 MHz, CDCl3) & (ppm): 177.9,172.7,171.7,135.7,128.7, 128.5, 128.3, 67.0,
65.6,46.4,28.9, 28.8, 18.0.

MS (HR-ESI*, m/z): calculated: 424.1; found: 447.1 [M + Na]*.
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2.1.3. Synthesis of DAP Functionalized Dendrons N3-dxDAP and Their Precursors

Synthesis was based on the following general esterification or amidation synthetic pro-
cedure. A solution of the selected acid (2.0 mol), the selected alcohol or amine (2.2 mol), and
4-(dimethylamino)pyridinium 4-toluenesulfonate (DPTS) (0.8 mol) in dry DCM
(10-20 mL) was prepared under Ar atmosphere. The solution was cooled to 0 °C and
N,N’-dicyclohexylcarbodiimide (DCC) (1.5 mol) was added. The mixture was stirred first
at 0 °C for 1 h and then at room temperature for 48-72 h. The solid was filtered off, and
the solvent was removed under vacuum. The crude product was purified by flash column
chromatography on silica gel.

Synthesis of DAP Precursors HOOC-dxDAP

Synthesis of Bn-d2DAP. The compound was obtained according to the general amida-
tion procedure described above from Bn-d2COOH and 2-amino-6-propanoylamidopyridine
(2). The crude product was purified by flash column chromatography using EtOAc/hexane
(6:4) as eluent first and then gradually increasing the polarity to EtOAc/hexane (9:1) to
yield the target compound as a white solid. Yield: 86%.

FTIR (ATR), v (cm™): 3303, 1732, 1678, 1583, 1510, 1442, 1290, 1242, 1149.

H NMR (400 MHz, CDCl3) & (ppm) 8.18 (s, 2H), 8.03 (s, 2H), 7.89 (d, | = 7.9 Hz, 2H),
7.79 (s, 2H), 7.64 (t, | = 8.1 Hz, 2H), 7.37-7.27 (m, 5H), 5.13 (s, 2H), 4.33 (d, | = 11.1 Hz, 2H),
424 (d, ] = 11.1 Hz, 2H), 2.72-2.50 (m, 8H), 2.37 (q, | = 7.5 Hz, 4H), 1.23 (s, 3H),
1.20 (t, ] = 7.6 Hz, 6H).

13C NMR (100 MHz, CDCl3) § (ppm): 172.7, 172.6, 172.4, 170.1, 149.9, 149.5, 140.9,
135.6,128.8, 128.6, 128.3, 109.8, 109.6, 67.1, 65.4, 46.5, 33.4, 32.0, 30.8,29.2, 25.4, 24.8, 18.1, 9.5.

MS (HR-ESI*, m/z): calculated: 718.3; found: 719.3 [M + H]*, 741.3 [M + Na]®.

Synthesis of HOOC-d2DAP. Carbon-supported palladium catalyst (0.770 g) was
added to a solution of Bn-d2DAP (7.70 g, 10.7 mmol) in EtOAc (150 mL). The flask was
evacuated from air and filled with hydrogen. After stirring for 24 h at room temperature,
the catalyst was filtered off using Celite® and carefully washed with EtOAc. The collected
organic extracts were combined and evaporated, and the product was obtained as a white
solid. Yield: 93%.

FTIR (KBr), v (cm™1): 3492, 3292, 1728, 1680, 1583, 1518, 1444, 1290, 1242, 1149.

'H NMR (400 MHz, CDCl3) & (ppm) 8.70 (s, 2H), 8.41 (s, 2H), 7.75-7.61 (m, 4H),
749 (t,] = 8.1 Hz, 2H), 4.32 (d, ] = 11.0 Hz, 2H), 4.20 (d, ] = 11.1 Hz, 2H), 2.71-2.59 (m, 8H),
2.34(q,] =7.5Hz, 4H), 1.20 (s, 3H), 1.13 (t, ] = 7.5 Hz, 6H).

13C NMR (100 MHz, CDCl3) & (ppm): 177.5, 172.9, 172.5, 170.4, 149.7, 149.2, 141.5,
110.2,109.7, 65.9, 46.6, 31.9, 30.7, 29.3, 17.9, 9.4.

MS (HR-ESI*, m/z): calculated: 628.3; found: 629.3 [M + H]*, 651.2 [M + Na]®.

Synthesis of Bn-d4DAP. The compound was obtained according to the general ester-
ification procedure described above from benzyl 2,2-di(hydroxymethyl)propanoate (3) and
HOOC-d2DAP. The crude product was purified by flash column chromatography using
EtOAc/DCM (7:3) as eluent and gradually increasing polarity to EtOAc. Bn-d4DAP was
obtained as a white solid. Yield: 82%.

FTIR (ATR), v (cm™): 3282, 1734, 1678, 1583, 1508, 1444, 1288, 1243, 1147.

'H NMR (400 MHz, CDCl3) & (ppm) 8.38 (s, 4H), 8.27 (s, 4H), 7.88-7.78 (m, 8H),
7.61(t, ] =8.1 Hz, 4H), 7.36-7.28 (m, 5H), 5.15 (s, 2H), 4.23-4.13 (m, 12H), 2.71-2.61 (m, 16H),
2.37(q,] =74 Hz, 8H), 1.23 (s, 3H), 1.18 (t, | = 7.5 Hz, 12H), 1.13 (s, 6H).

13C NMR (100 MHz, CDCl3) § (ppm): 173.0,172.4,172.3,172.2,170.4,149.9, 149.5, 140.9,
135.3,128.9, 128.8, 128.5, 109.9, 109.5, 67.4, 65.5, 46.7, 46.5, 31.9, 30.7, 29.2, 17.9, 17.8, 9.5.

MS (HR-ESI*, m/z): calculated: 1444.6; found: 1445.6 [M + H]*, 1467.6 [M + Na]*.

Synthesis of HOOC-d4DAP. This compound was synthesized following the proce-
dure described for HOOC-d2DAP using carbon-supported palladium catalyst (10%) (0.5 g)
and Bn-d4DAP (4.85 g, 3.3 mmol) in EtOAc (70 mL). The crude product was purified by
flash column chromatography on silica gel eluted using EtOAc to yield the target acid as a
white solid. Yield: 85%.
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FTIR (KBr), v (cm™): 3546, 3316, 1734, 1690, 1586, 1521, 1447, 1290, 1240, 1149.

1H NMR (400 MHz, CDCl3) & (ppm) 8.60 (s, 4H), 8.42 (s, 4H), 7.88-7.75 (m, 8H),
7.62 (t, ] = 7.8 Hz, 4H), 4.25-4.18 (m, 12H), 2.70-2.62 (m, 16H), 2.39 (q, ] = 7.6 Hz, 8H),
1.25-1.16 (m, 21H).

13C NMR (100 MHz, CDCl3) § (ppm): 175.8, 173.1, 172.6, 170.6, 150.0, 149.5, 140.9,
110.1, 109.6, 66.7, 65.9, 46.6, 31.8, 30.6, 29.1, 17.9, 9.5.

MS (HR-ESI*, m/z): calculated: 1354.5; found: 1355.5 [M + H]*, 1377.5 [M + Na]*.

Synthesis of N3-dxDAP

Synthesis of N3-d2DAP. The compound was obtained following the described gen-
eral amidation procedure from N3-d2COOH and 2-amino-6-propionylamidopyridine (2).
The crude product was purified by flash column chromatography on silica gel using
EtOAc/hexane (6:4) as eluent and gradually increasing polarity to EtOAc/hexane (9:1).
N3-d2DAP was isolated as a white solid. Yield: 56%.

FTIR (ATR), v (cm): 3292, 2096, 1733, 1676, 1583, 1508, 1444, 1288, 1242, 1147.

'H NMR (400 MHz, CDCI3) § (ppm) 8.21 (s, 2H), 8.04 (s, 2H), 7.95-7.72 (m, 4H),
7.66 (t, ] =8 Hz, 2H),4.33 (d, ] =11.1 Hz, 2H),4.22 (d,] = 11.1 Hz, 2H), 4.09 (t, | = 6.6 Hz, 2H),
3.26 (t, | = 6.8 Hz, 2H), 2.78-2.51 (m, 8H), 2.39 (q, | = 8 Hz, 4H), 1.66-1.54 (m, 4H),
1.43-1.30 (m, 4H), 1.25-1.18 (m, 9H).

13C NMR (100 MHz, CDCl3) § (ppm): 172.7, 172.6, 172.3, 170.0, 149.6, 149.3, 140.8,
109.6,109.4, 65.2, 51.3, 46.3, 31.9, 30.6, 29.0, 28.7, 28.3, 26.3, 25.4, 18.1, 9.3.

MS (HR-ESI*, m/z): calculated: 753.8; found: 754.3 [M + H]*, 776.3 [M + Na]®.

Synthesis of N3-d4DAP. The compound was obtained according to the general esteri-
fication procedure described above, from 6-azidohexyl 2,2-di(hydroxymethyl)propanoate
(1) and HOOC-d2DAP. The isolated crude product was purified by flash column chro-
matography using EtOAc/DCM (7:3) as eluent and gradually increasing polarity to EtOAc.
The target compound was obtained as a white solid. Yield: 85%.

FTIR (ATR), v (cm): 3294, 2098, 1734, 1681, 1583, 1508, 1442, 1288, 1240, 1151.

'H NMR (400 MHz, CDCl3) & (ppm) 8.37 (s, 4H), 8.27 (s, 4H), 7.89-7.78 (m, 8H),
7.62 (t, ] =8.1 Hz, 4H), 4.28-4.17 (m, 12H), 4.10 (t, ] = 6.7 Hz, 2H), 3.26 (t, | = 6.8 Hz, 2H),
2.75-2.61 (m, 16H), 2.38 (q, | = 7.5 Hz, 8H), 1.67-1.55 (m, 4H), 1.41-1.33 (m, 4H),
1.21-1.17 (m, 21H).

13C NMR (100 MHz, CDCl3) & (ppm): 172.9,172.5,172.4,172.3,170.3,149.9, 149.5, 140.8,
109.9, 109.5, 65.6, 65.5, 51.4, 46.6, 46.5, 31.9, 30.7, 29.2, 28.8, 28.5, 26.5, 25.6, 18.0, 17.8, 9.5.

MS (MALDIY, dithranol, m/z): calculated: 1479.6; found: 1480.9 [M + H]*.

Synthesis of N3-d8SDAP. This compound was synthesized following the general
esterification procedure described above from compound (4) and HOOC-d2DAP. The
crude product was purified by flash column chromatography with EtOAc as eluent and
gradually increasing polarity to EtOAc/methanol (97:3) to yield the required compound as
a white solid. Yield: 30%.

FTIR (ATR), v (cm): 3294, 2100, 1736, 1678, 1583, 1508, 1446, 1288, 1243, 1147.

'H NMR (400 MHz, CDCl3) § (ppm) 8.48 (s, 8H), 8.37 (s, 8H), 7.81-7.70 (m, 16H),
7.53 (t,] = 8.1 Hz, 8H), 4.18-4.10 (m, 28H), 4.02 (t, ] = 6.8 Hz, 2H), 3.19 (t, ] = 6.8 Hz, 2H),
2.70-2.51 (m, 32H), 2.30 (q, | = 7.4 Hz, 16H), 1.59-1.49 (m, 4H), 1.32-1.28 (m, 4H), 1.18-1.08
(m, 45H).

13C NMR (100 MHz, CDCl3) & (ppm): 173.1, 172.6, 172.3, 171.8, 170.5, 150.1, 149.6,
140.8,110.0, 109.5, 66.2, 65.7, 65.5, 65.4, 51.4, 46.7, 46.6, 46.5, 31.8, 30.6, 29.8, 29.1, 28.8, 28.5,
26.4,25.6,17.9,17.7,17.6,9.5.

MS (MALDIY, dithranol, m/z): calculated: 2933.2; found: 2933.6 [M]*.

Synthesis of N3-d16DAP. This compound was synthesized following the general
esterification procedure from compound (4) and HOOC-d4DAP. The crude product was
purified by flash column chromatography with EtOAc/methanol (99:1) eluent and grad-
ually increasing polarity to EtOAc/methanol (9:1) to yield the requested compound as a
white solid. Yield: 25%.
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FTIR (ATR), v (cm™): 3294, 2096, 1734, 1680, 1583, 1512, 1444, 1290, 1242, 1149.

'H NMR (400 MHz, CDCl3) & (ppm) 8.63 (s, 16H), 8.52 (s, 16H), 7.86-7.75 (m, 32H),
7.58 (t, ] = 8.0 Hz, 16H), 4.28-4.15 (m, 60H), 4.08 (t, ] = 6.8 Hz, 2H), 3.25 (t, ] = 6.8 Hz, 2H),
2.70-2.64 (m, 64H), 2.35 (q, | = 7.2 Hz, 32H), 1.62-1.53 (m, 4H), 1.37-1.33 (m, 4H), 1.25-1.14
(m, 93H).

13C NMR (100 MHz, CDCl3) & (ppm): 173.3, 172.6, 172.3, 171.8, 171.7, 170.6, 150.1,
149.6, 140.8, 110.0, 109.5, 65.9, 65.5, 65.4, 51.4, 46.8, 46.7, 46.6, 31.7, 30.5, 29.8, 29.1, 28.8, 28.5,
26.4,25.5,17.9,17.7,17.5,9.5.

MS (MALDI*, dithranol, m/z): calculated: 5839.3; found: 5830.2 [M]*, 5855.7 [M + Na]™.

2.1.4. Synthesis of PEGy-Alky

Polyethylenglycol monomethyl ether (PEGy-OH) (4.33 g, 2.2 mmol), 4-pentyonic
acid (0.29 g, 2.9 mmol) and DPTS (0.38 g, 1.3 mmol) were dissolved in dry DCM (25 mL)
under Ar atmosphere. After the solution was cooled to 0 °C, DCC (0.59 g, 2.9 mmol) was
added. The solution was stirred for 1 h at 0 °C and then at room temperature for 48 h.
The formed solid was filtered off and the solvent was removed under vacuum. The crude
product was precipitated from a large volume of cold diethyl ether. Then, the solid was
recovered by filtration and dried under vacuum. The target compound was obtained as a
white powder. Yield: 85%.

FTIR (ATR), v (cm™): 2164, 1736, 1097.

'H NMR (400 MHz, CDCl3) & (ppm): 4.25(t, ] = 4.6 Hz, 2H), 3.90-3.42 (m, 180 H), 3.37
(s, 3H), 2.61-2.55 (m, 2H), 2.53-2.47 (m, 2H), 1.98 (t, ] = 2.6 Hz, 1H).

MS (MALDI", dithranol, m/z): found: 1983.9 [M]* (Corresponding to the most intense
m/zpeak).

2.1.5. General Synthetic Procedure for the Synthesis of the LDBCs PEGy-b-dxDAP

The dendron block N3-dxDAP (1.0 mol) and the linear alkyne-functionalized PEG
(PEGyk-Alky) (1.2 mol) were placed into a Schlenk tube with distilled
N,N-dimethylformamide (DMF) (15 mL). The flask was degassed by three freeze-pump-
thaw cycles and flushed with Ar, and then maintained under Ar atmosphere at 45 °C. A
second Schlenk tube, containing CuSO4-5H,0 (0.1 mol), L-ascorbate (0.2 mol), and TBTA
(0.1 mol) in distilled DMF (5 mL), was also degassed by three freeze—-pump-thaw cycles and
flushed with Ar, and then maintained under Ar atmosphere at 45 °C until the color solution
changed from blue to yellow. Then, the content was transferred using a cannula to the ini-
tial solution of the azide (N3-dxDAP) and alkyne (PEGyy-Alky) compounds. The reaction
was stirred at 45 °C and monitored by thin layer chromatography (TLC). Once the reaction
was completed, an excess of PEGy-Alky was removed by adding azide-functionalized
Merrifield’s resin, and the reaction mixture was additionally stirred for 24 h. Merrifield’s
resin was filtered off, and the collected solution was diluted with DCM washed with a
KCN aqueous solution (15 mg of KCN /100 mL of water) to remove copper and then with
brine, dried over anhydrous MgSQOj, and concentrated under vacuum. The resulting crude
product was precipitated from a large volume of cold diethyl ether.

Synthesis of PEG,-b-d2DAP. The compound was obtained according to the general
synthetic procedure described above, from N3-d2DAP. The product was obtained as a
white powder. Yield: 35%.

FTIR (ATR), v (cm™): 3288, 1736, 1695, 1585, 1516, 1446, 1101.

'H NMR (400 MHz, CDCl3) § (ppm): 8.30 (s, 2H), 8.08 (s, 2H), 7.97-7.72 (m, 4H), 7.66
(t, ] = 8.0 Hz, 2H), 7.39 (s, 1H), 4.42-4.15 (m, 8H), 4.07 (t, ] = 6.4 Hz, 2H), 3.88-3.42 (m, 183H)
3.37 (s, 3H), 3.04 (t, ] = 7.0 Hz, 2H), 2.84-2.54 (m, 10H), 2.40 (q, | = 7.4 Hz, 4H), 1.89-1.81 (m,
2H), 1.67-1.51 (m, 2H), 1.41-1.12 (m, 13H).

MS (MALDIY, dithranol, m/z): calculated: 2737.2; found: 2737.9 [M]*.

Synthesis of PEG,y-b-d4DAP. The compound was obtained according to the general
synthetic procedure described above, from N3-d4DAP. The product was obtained as a
white powder. Yield: 71%.
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FTIR (ATR), v (cm!): 3284, 1736, 1695, 1585, 1518, 1446, 1101.

'H NMR (400 MHz, CDCl3) & (ppm) 8.50 (s, 4H), 8.32 (s, 4H), 7.97-7.71 (m, 8H), 7.62 (t,
] = 8.1 Hz, 4H), 7.37 (s, 1H), 4.32-4.15 (m, 16H), 4.07 (t, | = 6.6 Hz, 2H), 3.73-3.57 (m, 190H),
3.37 (s, 3H), 3.05 (t, ] = 7.3 Hz, 2H), 2.82-2.56 (m, 18H), 2.39 (q, ] = 7.5 Hz, 8H), 1.90-1.81 (m,
2H), 1.66-1.56 (m, 2H), 1.38-1.26 (m, 4H), 1.23-1.13 (m, 21H).

MS (MALDIY, dithranol, m/z): calculated: 3463.8; found: 3509.8 [M]*.

Synthesis of PEGy-b-d8SDAP. The compound was obtained according to the general
synthetic procedure described above, from N3-d8DAP. The product was obtained as a
colorless viscous oil. Yield: 45%.

FTIR (ATR), v (cm™): 3275, 1736, 1691, 1585, 1519, 1444, 1112.

'H NMR (400 MHz, CDCl3) & (ppm) 8.62 (s, 8H), 8.47 (s, 8H), 7.93-7.73 (m, 16H), 7.59
(t, ] = 8.1 Hz, 8H), 7.37 (s, 1H), 4.28-4.15 (m, 32H), 4.06 (t, ] = 6.6 Hz, 2H), 3.70-3.55 (m,
196H), 3.37 (s, 3H), 3.04 (t, ] = 7.2 Hz, 2H), 2.80-2.58 (m, 34H), 2.36 (q, ] = 7.4 Hz, 16H),
1.87-1.82 (m, 2H), 1.62-1.56 (m, 2H), 1.34-1.29 (m, 4H), 1.23-1.14 (m, 45H).

MS (MALDIY, dithranol, m/z): calculated: 4917.5; found: 4919.8 [M]*.

Synthesis of PEG,y-b-d16DAP. The compound was obtained according to the general
synthetic procedure described above, from N3-d16DAP. The product was obtained as a
colorless viscous oil. Yield: 39%.

FTIR (ATR), v (cm™): 3298, 1736, 1691, 1585, 1516, 1444, 1149.

'H NMR (400 MHz, CDCl3) & (ppm) 8.70 (s, 16H), 8.56 (s, 16H), 7.92-7.66 (m, 32H),
7.57 (t, ] = 8.0 Hz, 16H), 7.37 (s, 1H), 4.29-4.08 (m, 66H), 3.65-3.56 (m, 180H), 3.37 (s, 3H),
3.04 (t, ] = 7.1 Hz, 2H), 2.78-2.64 (m, 66H), 2.35 (q, ] = 7.2 Hz, 32H), 1.89-1.81 (m, 2H),
1.62-1.56 (m, 2H), 1.31-1.13 (m, 100H).

MS (MALDIY, dithranol, m/z): calculated: 7814.1; found: 7720.9 [M]*.

2.1.6. Synthesis of the Thymine Based Cross-Linkers

Synthesis of thym-Cq,-thym. A suspension of 1,12-dibromodecane (2.59 g, 7.90 mmol),
thymine (4.85 g, 38.44 mmol), and anhydrous NayCOj3 (5.72g, 53.97mmol) in DMF (120 mL)
was stirred for 40 h at 80 °C, while the reaction progress was monitored by TLC. The solid
was filtered off and thoroughly washed with EtOAc. The combined filtrates were diluted
with EtOAc (300 mL) and washed with water (3 x 75 mL) and brine (3 x75 mL), dried
over anhydrous MgSOy,, and evaporated. A mixture of 1- and 3-substituted thymines was
obtained that was purified firstly by flash column chromatography on silica gel using DCM
as eluent, gradually increasing the polarity to DCM/methanol (9:1), and then by flash
column chromatography on neutral alumina with DCM as eluent, gradually increasing the
polarity to DCM/methanol (92:8). Yield: 28%

FTIR (ATR), v (cm™): 3155, 3033, 2931, 2858, 1687, 1651, 1479.

'H NMR (400 MHz, CDCl3) § (ppm): 9.54 (s, 2H), 6.97 (d, ] = 1.2 Hz, 2H), 3.71-3.64
(m, 4H), 191 (d, ] =1.0 Hz, 6 H), 1.70-1.59 (m, 4H), 1.26 (d, ] = 21.0 Hz, 16H).

13C NMR (100 MHz, CDCl3) § (ppm): 164.5, 151.1, 140.5, 110.7, 48.6, 29.5, 29.2,
26.5,12.5.

MS (HR-ESI*, m/z): calculated: 418.26; found: 419.27 [M + H]*, 441.25 [M + Na]*.

Synthesis of (thym-Cg)s-O. 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide
hydrochloride (EDC) (2.34 g, 12.29 mmol) was added to a solution of 6-(5-methyl-2,4-dioxo-
3,4-dihydro-2H-pyrimidin-1-yl)hexanoic acid (5) (2.81 g, 11.69 mmol), pentaerythritol
(0.29 g, 2.12 mmol), and DPTS (0.90 g, 3.06 mmol) in dry DCM (25 mL) under Ar atmo-
sphere and cooled in a salt-ice bath. After 30 min, the salt-ice bath was removed, and
the reaction was stirred for additional 96 h while progress was followed by TLC. The
reaction was diluted with DCM (150 mL), and the resulting organic solution was washed
with distilled water (3 x 40 mL) and brine (2x40 mL), dried over anhydrous MgSQy, and
evaporated. The obtained residue was purified by flash column chromatography on sil-
ica gel using DCM as eluent and gradually increasing polarity to DCM/methanol (9:1).
Yield: 83%

FTIR (ATR), v (cm™): 3500, 3184, 3061, 2955, 2868, 1716, 1666, 1471, 1363, 1250, 1221.
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TH NMR (400 MHz, CDCl3) & (ppm): 9.61 (s, 4H), 7.02 (d, | = 1.2Hz, 4H), 4.10 (s,
8H), 3.70 (t, ] = 7.2Hz, 8H), 2.33 (t, | = 7.3Hz, 8H), 1.91 (d, | = 1.1 Hz, 12H), 1.66 (m, 16H),
1.40-1.28 (m, 8H).

13C NMR (100 MHz, CDCl3) & (ppm): 173.00, 164.63, 151.25, 140.56, 110.84, 62.26,
48.20, 42.14, 33.82, 28.83, 25.83, 24.36, 12.47.

MS (HR-ESI*, m/z): calculated: 1024.47; found: 1047.47 [M + Na]™*.

2.2. Preparation of Self-Assemblies in Water
2.2.1. Preparation of Self-Assemblies by Nanoprecipitation

Milli-Q® water was gradually added to a solution of 5 mg mL~! of the corresponding
LDBC, PEG,-b-dxDAP, in THF (HPLC grade). The self-assembly process was followed
by turbidimetry, recording the decrease of transmitted light intensity at 650 nm due to
aggregation and the subsequent scattering upon water addition. When a constant value
was reached, the suspension was dialyzed against a large volume of Milli-Q® water to
remove THF, using a Spectra/Por® dialysis membrane (MWCO 1 kDa) (Repligen Europe
B.V,, Breda, The Netherlands) for 4 days (water was periodically refreshed).

2.2.2. Preparation of Self-Assemblies by Microfluidic Technology

A solution of 5 mg mL~! of PEGy-b-dxDAP in THF (HPLC grade) was filtered
through a 0.2 um PTFE filter. This organic solution and Milli-Q® water were fed into a
passive micromixer using two syringe pumps Harvard Apparatus PHD Ultra CP 4400
(Harvard Apparatus, Holliston, MA, USA), one for each solution. The micromixer em-
ployed was a commerecial slit interdigital microstructured mixer from IMM (Institut fiir
Mikrotechnik Mainz GmbH, Germany) interfaced with 0.76 mm internal diameter PTFE
tubing. This micromixer, which has a volume of 8 uL, was designed for dividing the
inlet streams into 15 channels of 40 um that were merged at the outlet, achieving instant
mixing [51]. Injection flow rates of each solution were adjusted to collect suspensions
with different aqueous/organic solution ratios at a total flow value of 10 mL min~! and a
mixing time of just 48 milliseconds. Samples were collected after waiting several seconds
to reach the micromixer’s steady state. Then, they were dialyzed against Milli-Q® water, to
remove THEF, using a Spectra/ Por® dialysis membrane (MWCO 1 kDa) for 4 days (water
was periodically refreshed). The synthesis of these nanomaterials has been performed by
the Synthesis of Nanoparticles Unit of the ICTS “NANBIOSIS”.

2.2.3. Determination of the Critical Aggregation Concentration (CAC)

Critical aggregation concentration (CAC) was determined by fluorescence spectroscopy
employing Nile Red as probe. First, 100 uL of a Nile Red solution in DCM (6.0 x 10-¢ M)
was added into a series of flasks, and then, the solvent was evaporated. Afterwards, water
suspensions of self-assemblies were added to each flask with concentrations ranging from
1.0 x 10~* to 1.0 mg mL~!. The resulting solutions were stirred overnight at room temper-
ature to reach equilibrium before fluorescence was measured. The emission spectra of Nile
Red were recorded from 560 to 700 nm while exciting at 550 nm, and maximum emission
at different concentrations was represented. CAC was calculated as the intersection of the
tangents of the Nile Red emission increase with the extrapolated baseline (onset value).

2.2.4. Preparation of Rhodamine B-Loaded Vesicles

Rhodamine B-loaded vesicles were prepared by nanoprecipitation by adding to the
LDBCs solution in THF (5 mg mL~!) a solution of Rhodamine B in Milli-Q® water. The
amount of Rhodamine B was adjusted to add an average of 5 molecules of Rhodamine B
per molecule of polymer. Once vesicles were formed, the suspension was dialyzed against
water to remove non-encapsulated Rhodamine B.
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2.3. Characterization Techniques and Instrumentation

Fourier Transformed Infrared Spectroscopy (FTIR) was applied using a Bruker Vertex
70 spectrophotometer (Bruker, Ettlingen, Germany) having an ATR Golden Gate accessory™
(Specac Ltd., Orpington, Kent, UK). Solution NMR experiments were carried out on a
Bruker AV-400 spectrometer (Bruker, Billerica, MA, USA) operating at 400 MHz for IH and
100 MHz for 13C, using standard pulse sequences. Chemical shifts are given in ppm relative
to TMS, and the solvent residual peak was used as an internal reference. MALDI-TOF
MS was performed on an Autoflex mass spectrometer (Bruker, Billerica, MA, USA). Gel
Permeation Chromatography (GPC) was performed using a Water Alliance 2695 liquid
chromatography system with a Waters 2424 evaporation light scattering detector and a
Waters 2998 PDA detector (Waters, Milford, MA, USA), using two PLgel 5um MIXED-C
Agilent columns (7.5 x 300 mm) and THF (HPLC grade) as eluent (flow 1 mL min~1).
Calibration was made with polymethacrylate (PMMA) narrow molecular weight standards.

Thermogravimetric analysis (TGA) was performed using a Q5000 module from TA
Instruments (TA Instruments, New Castle, DE, USA) at a heating rate of 10 °C min~! under
nitrogen atmosphere. Decomposition temperature (Tonset) Was given as the onset of the
peak recorded at the first derivative of the mass loss. Differential Scanning Calorimetry
(DSC) was carried out to determine thermal transitions using a Q2000 calorimeter from TA
Instruments on powdered samples (2-5 mg) sealed in aluminium pans. Glass transition
temperatures (Tg) were determined at the half-height of the baseline jump, and melting
temperatures (Tm) were read at the maximum of the corresponding peaks.

Ultraviolet-visible (UV-vis) spectra were recorded on a Varian CaryBio 100 UV-vis
spectrophotometer (Agilent, Santa Clara, CA, USA). Fluorescence measurements were
performed using a Perkin Elmer LS 50B fluorescence spectrophotometer (PE Corporation,
Waltham, MA, USA).

Dynamic Light Scattering (DLS) measurements were carried out in a Malvern In-
strument Nano Zs (Malvern, Worcestershire, UK) using a He-Ne laser with a 633 nm
wavelength and a detector angle of 173° at 25 °C. The self-assemblies were measured at ap-
proximately 0.1 mg mL~! concentration, and hydrodynamic diameters (D},) were given as
an average of three measurements on each sample to ensure reproducibility. Transmission
Electron Microscopy (TEM) and Cryogenic Transmission Electron Microscopy (cryo-TEM)
analysis were developed in a FEI Tecnai T20 microscope (FEI Company, Waltham, MA,
USA), operating at 200 kV. In the case of TEM, samples were prepared placing a droplet
of self-assemblies’ dispersion on a continuous carbon film-copper grid, and the excess
was removed by capillarity using filter paper. Then, samples were stained with uranyl
acetate (1% aqueous solution), removing the excess again by capillarity using filter paper.
The grids were dried overnight under vacuum. For cryo-TEM, Holey carbon film-copper
grids previously ionized using a plasma cleaner were employed. A droplet was placed
onto the grid, and sample vitrification was automatically processed using FEI Vitrobot (FEI
Company, Waltham, MA, USA) and performed in liquid ethane. Samples were maintained
under liquid nitrogen with a Gatan TEM cryo-holder (FEI Company) and observed op-
erating at 80 kV. Fluorescence vesicles were observed with an Olympus FV10i confocal
scanning microscope (Olympus, Tokyo, Japan). Samples were prepared placing a droplet of
self-assemblies’ dispersion onto an Ibidi® p-dish 35 mm (Ibidi Inc., Gréfelfing, Germany),
and a cover slip was placed on top of the sample.

2.4. Cell Culture

The cytocompatibility of the self-assemblies was assessed at different levels regarding
cell metabolism, cell membrane (induction of apoptosis and/or necrosis), and cell nucleus
(distribution of cell cycle phases). These studies were performed by using THP1 human
macrophages (obtained from the American Type Culture Collection, US), human dermal
fibroblasts (purchased from Lonza, Belgium), and mouse mesenchymal stem cells (mMSCs)
and human glioblastoma cells (U251MG) (both kindly gifted by Dr. Pilar Martin-Duque).
Macrophages were obtained by the in vitro differentiation of monocytes through the addi-
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tion of 1 pM phorbol 12-mystirate 13-acetate (Sigma Aldrich, St. Louis, MO, USA) to the
cell culture medium. Fibroblasts and U251MG cells were grown in DMEM high glucose
(DMEM w /stable Glutamine; Biowest, France) supplemented with 10% fetal bovine serum
(Gibco, UK) and 1% penicillin-streptomycin—amphotericin B (Biowest, France). mMSCs
were cultured in DMEM-F12 (Biowest, France) containing 1% glutamine (Biowest, France),
10% fetal bovine serum (Gibco, UK), and 1% penicillin— streptomycin-amphotericin B
(Biowest, France). All cell types were grown at 37 °C and 5% CO,, except for mMSCs
which were cultured in hypoxia (3% O5).

2.5. Cytotoxicity Assays

The effect of self-assemblies in cell metabolism was determined by the Blue Cell
Viability assay (Abnova, Taiwan), which is based on the reduction of a dye to a fluorescent
compound mediated by metabolically active cells. For that purpose, cells were incubated
with self-assemblies (0.01-0.4 mg mL~1) for 24 h. Then, the reagent was added (10%) and
incubated for 4 h. After that, fluorescence was read at 535/590 nm (ex/em) in a Multi-
mode Synergy HT Microplate Reader (Biotek, US). Cell viability was determined by the
interpolation of the emission data obtained from the treated samples and the control ones,
which were assigned with 100% viability.

2.6. Evaluation of Early and Late Cell Apoptosis and/or Necrosis

The effect of self-assemblies on the cell membrane was determined by a quantitative
analysis of cell apoptosis and necrosis by flow cytometry. Cells were incubated with the
different samples at the subcytotoxic concentration obtained from the Blue Cell Viability
assay for 24 h. Then, cells were harvested in PBS and double stained with annexin V-FITC
and propidium iodide. Briefly, cell suspensions were stained with annexin V-FITC, treated
with a solution composed of annexin V-FITC, propidium iodide, and annexin V binding
buffer, to be finally incubated with the binding buffer for 15 min before the analysis of the
samples in a FACSARIA BD equipment, using the FACSARIA BD software (Cell Separation
and Cytometry Unit, CIBA, Spain) to calculate the percentages of alive, apoptotic, and
necrotic cells. Control samples were also evaluated as reference.

2.7. Study of Cell Cycle

The effect of self-assemblies on cell cycle and DNA was determined by analyzing
the distribution of cell cycle phases by flow cytometry. As described above, cells were
incubated with the different samples at the subcytotoxic concentration for 24 h and then,
they were collected in PBS and fixed with 70% ice-cold ethanol. After 24 h of incubation at
4 °C, DNA staining was performed by adding RNAase A and propidium iodide. Samples
were analyzed in a FACSARRAY BD equipment with the MODIFIT 3.0 Verity software (Cell
Separation and Cytometry Unit, CIBA, Spain), and control samples were also evaluated.

3. Results and Discussion
3.1. Synthesis and Characterization of the Amphiphilic Linear-Dendritic Block Copolymers

Amphiphilic LDBCs were denoted as PEG,y-b-dxDAP where 2k represents the ap-
proximate average molar mass of the PEG block (according to MALDI-TOF MS) (Figure S1)
and x accounts for the number of peripheral groups (x =2, 4, 8, or 16) at the dendritic block.
The LDBCs were obtained by click coupling of the blocks using the copper(I)-catalyzed
azide-alkyne cycloaddition (CuAAC) reaction (Scheme 1). Therefore, the hydrophilic
poly(ethylene glycol) monomethyl ether block with a terminal alkyne group (PEGy,-Alky)
was coupled to the first four generations of hydrophobic dendrons derived from bis-MPA
monomer, which were functionalized with 2,6-diaminopyridine units at the periphery and
having a 6-azidohexyl group at the focal point (N3-dxDAP).

The synthesis of the first-generation dendron N3-d2DAP is outlined in Scheme 2. The
dendron incorporates the DAP units into 6-azidohexyl 2,2-di(hydroxymethyl)propanoate
(1) through a succinic connector. The syntheses of the second (N3-d4DAP), third (N3-



Polymers 2021, 13, 684

14 of 27

d8DAP), and fourth (N3-d16DAP) generation dendrons are shown in Scheme 3 according
to a double-exponential dendrimeric growth [52]. In general, dendrons were prepared by
esterification reaction of the peripheral hydroxyl groups of a bis-MPA wedge having and an
azido focal group with the carboxylic focal group of a bis-MPA wedge with peripheral DAP
units. Thus, the reaction of bissMPA decorated with two DAP units (HOOC-d2DAP), with
either compound (1) or compound (4), yielded N3-d4DAP, or N3-d8DAP, respectively.
Likewise, the reaction of HOOC-d4DAP, which was obtained from HOOC-d2DAP and
benzyl 2,2-di(hydroxymethyl)propanoate (3), with compound (4) afforded N3-d16DAP.
All the compounds were characterized by 'H-NMR, 1*C-NMR, and FTIR.

The coupling of both blocks, PEGy,-Alky and N3-dxDAP, was accomplished by
CuAAC in DMF using CuSOy as catalyst, L-ascorbate as reducing agent, and TBTA as
stabilizing ligand, and a slight excess of the PEG block that was easily removed using
an azide-functionalized Merryfield resin. The complete coupling with absence of non-
coupled segments was assessed by MALDI-TOF MS and GPC (Figures S36-540). Details
of calculated molar masses, dispersity, and hydrophobic/hydrophilic ratios are given in
Table 1.

Table 1. Molar mass, dispersity, and hydrophobic/hydrophilic ratio of the synthesized LDBCs.

Block Copolymer Nfgn;(()clzillc.) gxr(‘)lb,l Mg“ ;g?EC) D¢ Hydrophobic/Hydrophilic Ratio 4
PEG;i-b-d2DAP 2737.2 2737.9 4252 1.01 28/72
PEG;i-b-d4DAP 3463.8 3509.8 4434 1.03 43/57
PEG;i-b-dSDAP 4917.5 4919.8 5427 1.02 60/40

PEG;y-b-d16DAP 7814.1 7720.9 6813 1.01 75/25

@ Theoretical number average molar mass (Mn) calculated as the sum of the molar mass of polyethylene glycol (PEG) block
(Mn = 1983.9 g mol—1, determined by MALDI-TOF and corresponding to the more intense m/z peak) and the molar mass of the monodis-
perse dendritic block. ® Mn determined by MALDI-TOF corresponding to the more intense m/z peak. ¢ Relative Mn and dispersity (D)
determined by Gel Permeation Chromatography (GPC) using THF (1 mL min—1) and polymethacrylate (PMMA) standards calibration.
d Approximate hydrophobic/hydrophilic weight percentage ratio calculated from Mn (calc.), considering the dendritic block as the
hydrophobic part and the linear block (PEG) as the hydrophilic part.

Thermal stability of PEGy-b-dxDAP, as well as of N3-dxDAP precursors, was deter-
mined by TGA using powdered samples. All the samples exhibited a good thermal stabil-
ity with the onset of decomposition associated to mass loss at approximately 240-260 °C
(Table 2). PEG-b-dxDAP thermal stability was slightly higher than that of the correspond-
ing N3-dxDAP.

Thermal transitions were evaluated by DSC between -50 and 150 °C, and the relevant
parameters are gathered in Table 2. Neat PEG,y-OH has been described as a semicrystalline
polymer with a melting temperature close to 50 °C [53]. Dendrons N3-dxDAP were of
amorphous nature with only a glass transition (Tg) on DSC scans whose value, calculated
from a second heating scan, increased with the dendron generation from 19 °C (for N3-
d2DAP) to 73 °C (for N3-d16DAP) (Figure 541). PEG,y-b-dxDAP LDBCs were obtained
as semicrystalline materials having endothermic transitions at temperatures of about 40 °C,
likely corresponding to melting of the PEG block. No other transitions associated, such as
the Tg of the dendronized blocks, were observed on the corresponding first heating scans.
On cooling, the tendency of the melted LDBCs to crystallize decreased upon increasing
the dendron generation. PEG,y-b-d2DAP and PEGy-b-d4DAP underwent a cold crystal-
lization process and subsequent melting of the crystalline fraction at approximately 40 °C
as the only discernible thermal transitions on heating. However, for PEG,y-b-d8DAP and
PEG,-b-d16DAP, crystallization was largely suppressed, and only a glass transition was
clearly observed at about —10 °C for both LDBCs, which might indicate at least partial
miscibility between both polymeric blocks. Partial miscibility has also been observed for
linear BC analogues of PEG and a polymethacrylate with DAP side units [40] (Figure S42).
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Table 2. Thermal properties of dendrons and linear—dendritic block copolymers (LDBCs).

Sample Tonset (°C) ? Tg (°C) b Tm (°C) €
N3-d2DAP 253 19 -
N3-d4DAP 238 30 -
N3-dSDAP 249 71 -
N3-d16DAP 253 73 -

PEG,y-b-d2DAP 262 - 434
PEG;-b-d4DAP 241 - 41¢
PEG,,-b-d8DAP 263 —14 -
PEG,-b-d16DAP 256 —-11 -f

¢ Decomposition temperature determined by thermogravimetric analysis (TGA) given as the onset of the peak
recorded at the first derivative of the mass loss curve. ® Glass transition temperature calculated at the half height
of the baseline jump on the second heating scan at 10 °C min~!. ¢ Melting temperature given at the maximum of
the peak on the second heating scan at 10 °C min~!. ¢ Polymer partially crystallizes during the cooling process at
0 °C. On heating, cold crystallization is observed at -30 °C. ¢ Cold crystallization process at -10 °C. f Melting of a
small crystalline fraction at 44 °C was observed.

3.2. Self-Assembly of the Linear—Dendritic Amphiphilic BCs in Water by Nanoprecipitation

Polymeric self-assemblies” suspensions in water were prepared by gradually adding
water into THF solutions of the LDBCs while monitoring changes on the light transmittance,
as these changes are associated to the formation of the self-assemblies (Figure S43) [54].
Once the turbidity reached a stable value, the resulting dispersion was dialyzed against wa-
ter to remove the organic solvent. The morphological characteristics of the self-assemblies
were evaluated by TEM while their size, associated to the hydrodynamic volume (Dy,), was
determined by DLS (Figure 1 and Figure 544).

——PEG-b-416DAP)
$1% | |a—PEG-b-d8DAP
| I\ | |-e—=PEG-bdeDAP

Size (nm)

Figure 1. TEM images of (a) PEG,y-b-d4DAP, (b) PEG,-b-d8DAP, and (c) PEG;,-b-d16DAP self-assemblies prepared
by nanoprecipitation. (d) Cryogenic Transmission Electron Microscopy (Cryo-TEM) image of PEG,-b-d16DAP vesicles.
(e) Fluorescence microscopy image of the water suspension of PEG;,-b-d16DAP vesicles with encapsulated Rhodamine B.
(f) Number particle size distributions recorded by Dynamic Light Scattering (DLS) of LDBCs self-assemblies prepared by
nanoprecipitation.
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Inspection of PEGyy-b-d2DAP dispersions revealed that this LDBC did not form stable
self-assemblies and, for this reason, it was excluded from any further study. PEG,y-b-d4DAP
showed self-assembled structures without a clearly defined morphology (Figure 1a). The
mean average hydrodynamic diameter (Dy,) of 63 £ 25 nm as determined by DLS and
a small population having larger sizes was also observable when representing the size
distribution by intensity (Figure 544). The presence of this second size distribution and
the large differences between the Dy, and sizes inferred from the TEM images might be
related to micellar aggregation. For PEG,y-b-d8DAP, better defined spherical micelles
were observable in TEM images (Figure 1b) with Dy, values of 14 4= 5 nm. Even though
in this case, Dy, was consistent with the TEM images, a small population having larger
sizes was again observable by DLS when representing the size distribution by intensity
that could also stem from some extent of micellar aggregation (Figure S44).

According to TEM images, PEG,-b-d16DAP formed self-assemblies with very dis-
similar sizes and an apparent vesical morphology (Figure 1c). In order to assess the
morphology, the PEGy-b-d16DAP self-assemblies dispersion was also inspected by cryo-
TEM (Figure 1d). Spherical unilamellar vesicles with diameters in the range 50245 nm
and a membrane thickness of 8.9 £ 1.1 nm were observed. This thickness is comparable to
other reported vesicles and fits well with a bilayer arrangement of the hydrophobic den-
drons at the inner part of the vesicle membrane [23,25]. To further reassert the formation
of PEG,-b-d16DAP vesicles, loading experiments were performed using the fluorescent
probe Rhodamine B because, as being a hydrophilic molecule, it should be entrapped inside
the internal aqueous lumen of these vesicles. PEG,y-b-d16DAP self-assemblies formed in
the presence of Rhodamine B were examined by confocal fluorescence microscopy where
fluorescence dots in a dark background were observed that correspond to clusters of vesi-
cles loaded with the probe (Figure 1le). For PEG,-b-d16DAP, apparent Dy, determined by
DLS was 79 + 36 nm.

The CAC of PEGyi-b-dxDAP was determined by fluorescence spectroscopy using
Nile Red as a polarity sensitive probe (Figure 545) [25]. CAC values were 117, 41, and
25 ug mL ™!, for PEGy-b-d4DAP, PEG,-b-dSDAP, and PEGy;-b-d16DAP respectively,
which are in accordance with reported values for amphiphilic linear and linear-dendritic
BCs of similar hydrophobic/hydrophilic ratios [25,55-57]. The thermodynamic stability
of the self-assembly usually correlates with CAC, being higher as the CAC lowers. In
this case, CAC decreases upon increasing the dendron generation, i.e., on increasing the
hydrophobic content of the LDBC. In particular, the significant differences between PEGy-
b-d4DAP (117 pg mL™1) and PEGy-b-d8DAP (41 ug mL~1), both of them apparently
forming micelles, agrees with the greater facility of PEG-b-d8DAP to self-assemble in
water inferred by TEM and DLS.

3.3. Self-Assembly of the Linear—Dendritic Amphiphilic BCs in Water by Microfluidics

Once we verified the self-assembly ability of these LDBCs, the preparation of poly-
meric nanoparticles was accomplished by microfluidics as a very reproducible, fast, and
scalable methodology for preparing polymeric self-assemblies in a continuous manner.
Due to their small dimensions, microreactors provide better control in the preparation
of nanoparticles because mass and heat transport processes are fast and predictable, and
heating and mixing are also uniform and controlled. Other additional advantages of this
technology are the high reproducibility that allows an easy scale-up by increasing the num-
ber of microreactors, and the possibility of tuning the size and the shape of nanoparticles,
due to a better control of the experimental parameters [58-60].

For that purpose, a solution of PEG,y-b-dxDAP (with x = 4, 8, and 16) in THF was
instantaneously mixed with Milli-Q® water, using a commercial slit interdigital microstruc-
tured mixer. Both solutions were fed in continuous and non-pulsed flow into the mi-
cromixer using two syringe pumps. The total flow rate and phase ratio values were modi-
fied to optimize the process. Consequently, dispersions with different aqueous/organic



Polymers 2021, 13, 684 17 of 27

solution phase ratios (Table 3) were collected at a total flow rate finally fixed at 10 mL min~!.

All the samples were dialyzed against water after being collected in order to remove THE.

Table 3. Experimental preparation conditions of LDBCs self-assemblies by microfluidics: phase ratio values (aqueous
solution/organic solution percentage) used with a flow rate fixed at 10 mL min~! and final polymer concentration.

Experimental Conditions Aqueous/Organic Solution Phase Ratio ? Polymer Concentration (mg mL—1) P
A 60/40 2.00
B 70/30 1.50
C 80/20 1.00
D 90/10 0.50
E 95/5 0.25

2 Ratio between Milli-Q® water and a 5 mg mL~! THF solution of each LDBC fed into the micromixer. ° Polymer concentration in the
self-assemblies dispersions collected at the micromixer outlet.

In the tested conditions, PEGyy-b-d4DAP self-assembled into spherical micelles with
diameters ranging from 15 to 30 nm, according TEM images (Figure 2). As can be seen
in Figure 3, in general, DLS measurements showed a substantial effect of microfludics
experimental phase ratios on Dy, with the size of micelles increasing when decreasing the
water phase ratio, except for the sample obtained using a higher water phase ratio (E),
which exhibited two size distributions in number recorded by DLS. In addition, in terms of
size, a disparity was generally observed between TEM and DLS mainly for low water phase
ratios (A-B). These irregularities might presumably be a consequence of some micellar
aggregation associated to a lower stability of PEGyy-b-d4DAP micelles, as hypothesized
for the corresponding self-assemblies prepared by nanoprecipitation.

PEG,,-b-d4DAP PEG,,-b-d8DAP PEG,-b-d16DAP

Figure 2. TEM images of PEGyy-b-dxDAP self-assemblies prepared by microfluidics at different experimental conditions
(aqueous/organic phase ratio) according to Table 3: (A) (60/40); (B) (70/30); (C) (80/20); (D) (90/10); and (E) (95/5).
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Figure 3. Number size distributions recorded by DLS of PEG,y-b-dxDAP self-assemblies prepared by microfluidics at
different experimental conditions (aqueous/organic phase ratio) according to Table 3: A (60/40), B (70/30), C (80/20), D
(90/10), and E (95/5): (a) PEGyy-b-d4DAP, (b) PEG,-b-d8DAP and (c) PEG,y-b-d16DAP.

PEG-b-d8DAP self-assembled forming dispersions of uniform spherical micelles in
all conditions. Average Dy, values were about 15 + 5 nm, which was in good concordance
with TEM, slightly increasing on increasing the water phase ratio (Figure 3). For PEGyy-
b-d16DAP, a transition from vesicles to micelles was observed on increasing the water
ratio (Figure 2). Using 60-80% water (A-C conditions), PEG,y-b-d16DAP self-assembled
into vesicles of polydisperse sizes, as observed in TEM images (Figure 2), with average Dy,



Polymers 2021, 13, 684

19 of 27

% Cell viability

(a)

100

=3
=]

-3
=]
1

N
o

20

values decreasing from 80 to 50 (£ 35) nm upon increasing the water content (Figure 3).
However, spherical micelles were formed at higher water contents (90-95%) having Dy,
values of 30 &+ 13 and 24 + 9 nm for D and E conditions, respectively. For D conditions,
micelles coexisted with small vesicles, and some micellar aggregation was also detectable.
For E conditions, only well-defined spherical micelles were formed with sizes matching
well with DLS measurements. Thus, when using microfluidics, tuning the water phase
ratio enables control over very distinct morphologies.

Therefore, the use of microfluidics allows a good control over the mixing conditions,
a high nanocarrier production rate (ranging from 550 to 725 mg h™!), and assures ho-
mogenous self-assembly in water for PEG,y-b-d8SDAP or control over the morphology for
PEG-b-d16DAP.

3.4. Cell Viability, Apoptosis, and Cell Cycle Evaluation

The cytotoxicity of PEGy-b-dxDAP self-assemblies prepared by microfluidics em-
ploying A conditions, since it allowed obtaining the most concentrated samples (see
Table 3), was studied in four cell lines (U251MG, human macrophages, human dermal
fibroblasts, and mMSCs). Aqueous suspensions of PEGy-b-d4DAP, PEG,-b-dSDAP,
and PEGy-b-d16DAP self-assemblies (obtained by microfluids, experimental conditions
A, Table 3) were assayed at different polymer concentrations that were adjusted from 0.025
to 0.4 mg mL~!. The results of cell viability estimated by the cell metabolism assay are
represented in Figure 4. These results showed that cell viability is high (> 70%) for all the
samples and all the concentrations assayed. Taking into account these results and the rec-
ommendations of the ISO 10993-5 [61], 0.4 mg mL~!, the maximum concentration assayed,
was considered as the subcytotoxic concentration for further studies, as this concentration
displayed viability percentages >70% in all the cell lines evaluated.
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Figure 4. Cell viability of self-assemblies dispersion of LDBCs prepared by microfluidics (A, Table 3) adjusted at different
polymer concentrations: (a) PEGyy-b-d4DAP, (b) PEGy-b-dSDAP, and (c) PEG,y-b-d16DAP in the four cell lines assayed
after 24 h. Red lines correspond to 70% cell viability, which is the minimum recommended for considering a subcytotoxic
concentration according to ISO 10993-5 [61].
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Even though nanoparticles do not show cytotoxicity at the doses tested, they could
disrupt cell cycle steps and cause DNA damage or apoptosis. Consequently, in order to
know the effects of these nanoparticles on the cell membrane and nuclei, cell apoptosis
and cell cycle studies were performed by flow cytometry. The results obtained from
cell apoptosis studies, in order to know the potential cell membrane effects caused by
PEG;i-b-dxDAP self-assemblies at a concentration of 0.4 mg mL~1, are represented in
Figure 5. As it is shown, no remarkable changes compared to the control samples (non-
treated cells) for any cell line were observed. In general, viability values were equal
or higher than the ones determined in control assays. For macrophages, U251MG, and
fibroblasts, necrosis percentages slightly decreased, and we observed a slight rise in the
levels of apoptosis for macrophages, mMSCs, and fibroblasts when testing the PEGyy-b-
d4DAP sample. Regardless, according to the recommendations indicated above of the
ISO 10993-5 [61], PEGy-b-dxDAP self-assemblies showed appropriate cytocompatibility
for biomedical applications since their cytotoxic effect was always lower than 30% at the
doses tested.
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Figure 5. Distribution of early and late apoptotic, alive, and necrotic cells (percentage of cells, %)
after treatment for 24 h with PEGy-b-dxDAP aggregates obtained by microfluidics (A, Table 3) and
with a polymer concentration adjusted at 0.4 mg mL ™.

Cell cycle results are depicted in Figure 6. For fibroblasts, not remarkable changes
compared to control cells were observed. A slight increase in the G2 phase (<17%), together
with a countervailing decrease in S and G1 phases, was observed for macrophages, which
could indicate that PEG,-b-dxDAP self-assemblies could induce cell cycle arrest in the G2
phase. In the case of mMSCs, the PEG,y-b-d4DAP sample caused a slight rise in the levels
of G2 and S phases together with a decrease in the G1 phase (<25%). For U251MG, a slight
decrease in the G2 phase (<17%), with a concomitant increase in S and G1 population, was
observed. Anyway, changes compared to control cells depended on each cell line, but they
were negligible.
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Figure 6. Cell cycle population distribution (percentage of cells, %) after treatment for 24 h with
PEG-b-dxDAP aggregates obtained by microfluidics (A, Table 3) and with a polymer concentration
adjusted to 0.4 mg mL~!.

3.5. Supramolecular Cross-Linking

The main structural feature of these LDBCs is the presence of DAP units at the periph-
ery of the dendronized block and the ability of these units for the molecular recognition
of complementary thymine units through highly specific three H-bonding interactions.
Thus, these LDBCs could be used as a basic platform on which to incorporate function-
ality by supramolecular chemistry that is, in principle, simpler, more versatile, and less
synthetically demanding than covalent chemistry.

One of the concerns about polymeric nanocarriers is the possibility of their prema-
ture destabilization in highly diluted physiological media. The integrity of BCs-based
nanocarriers can be preserved by cross-linking either the hydrophobic core (or the inner
membrane of polymersomes) or the hydrophilic crown of the self-assemblies [62]. Cross-
linking strategies commonly rely on non-reversible covalent bonding [63], but the release
of entrapped cargoes might be hindered, reducing any therapeutic effect. Alternatively,
reversible or dynamic covalent bonds have been also used [64]. Likewise, non-covalent
approaches coming from the supramolecular chemistry have been considered as an option
to reduce the shortcoming of covalent cross-linking [65]. Amongst them, the less explored
supramolecular cross-linking by hydrogen bonding might improve the stability of the
polymeric nanocarriers without hampering the cargoes release, as this dynamic interac-
tion can be reversibly broken and reconstituted. In this context, we have explored the
potential versatility of PEGyy-b-dxDAP LDBCs by using the periphery of the dendrons
for dynamic cross-linking using complementary thymine based cross-linkers. As a first
proof of concept, we have prepared several H-bond cross-linked polymers from PEG -
b-dxDAP and thymine-based cross-linkers (Scheme S1), and we evaluated whether it is
possible to obtain stable aqueous self-assemblies. The effect of H-bond cross-linking on the
self-assembly ability was evaluated using PEGyy-b-d8DAP and PEG-b-d16DAP as they
yielded stable aggregates.
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Two hydrophobic cross-linkers with either two (thym-Cjz-thym) or four ((thym-Cg)4-
O) thymine units were synthesized (Scheme 4). Thym-Cqz-thym was synthesized by the
reaction of thymine with 1,12-dibromododecane, while (Thym-Cg)4-O was synthesized
by the reaction of pentaerythritol with 6-(5-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-
yl)hexanoic acid (5), which was prepared as previously [49]. These compounds were fully
characterized by IH-NMR, 3C-NMR, FTIR, and high-resolution electrospray ionization
mass spectrometry HR-ESI MS (Figure 546). It was checked that none of the cross-linkers
were able to form stable self-assemblies in water; in fact, a precipitate was formed by the
slow addition of water to THF solutions of these thymine derivatives (under the same
experimental conditions used on the nanoprecipitation experiments of LDBCs). Once we
checked the thymine derivatives, we prepared supramolecular LDBCs by dissolving the
corresponding amounts of PEGyy-b-dSDAP or PEGy-b-d16DAP, and thym-Cq,-thym or
(thym-Cg¢)4-O, in THF to have a 1:1 DAP/thymine molar ratio, and the preparation of
self-assemblies from these supramolecular LDBCs-thymine derivatives was approached
by nanoprecipitation (Figure S47). In all cases, stable self-assemblies dispersions were
obtained, and no evidence of a macroscopic precipitate of any of the components was
observed; i.e., thymine derivatives do not precipitate under these experimental condi-
tions and were incorporated onto the self-assemblies. Their morphology and size were
investigated by TEM, cryo-TEM, and DLS, and CAC was also calculated.

TEM and cryo-TEM images revealed that PEGyy-b-d8DAP-thym-Cqp-thym and
PEG-b-d8DAP-(thym-Ce);4-O self-assembled, forming spherical micelles with diame-
ters about 16 nm according TEM. Small vesicles were formed in both cases with diameters
between 30 and 75 nm and membrane thicknesses of 9.3 + 1.7 nm and 10.5 & 1.8 nm for
PEG;-b-d8DAP-thym-Cy;-thym and PEGy-b-d8DAP-(thym-Cg)4-O according to cryo-
TEM (Figure 7a—-d). Size distribution curves registered by DLS revealed that appar-
ent Dy, values of cross-linked self-assemblies, 21 + 7 nm and 31 + 14 nm for PEGy-
b-d8DAP-thym-Cqp-thym and PEGy-b-d8DAP-(thym-Ce)4-O respectively, were higher
than that of PEGy-b-d8DAP, 14 £+ 5 nm (Figure 8), although the contribution of both
morphologies (micelles and vesicles) to DLS measurements did not allow a proper com-
parison of Dy, values. CAC values were significantly lower for PEGyy-b-d8DAP-thym-Cj,-
thym and PEGy-b-d8DAP-(thym-Cg)4-O than for the parent PEGy-b-d8DAP, 22 and
16 pg mL~! vs. 41 ug mL ™1, respectively (Figure S48). The transition in morphology from
micelles to vesicles could be explained by considering the increase on the hydrophobic-
to-hydrophilic balance due to the incorporation of cross-linkers. In addition, the decrease
of CAC values when cross-linkers are incorporated suggests a greater thermodynamic
stability of self-assemblies.

When observed by TEM and cryo-TEM, PEGyy-b-d16DAP-thym-Cjp-thym and
PEG-b-d16DAP-(thym-Cg)4-O self-assembled, mainly forming polymeric vesicles, as the
parent PEGyi-b-d16DAP. The membrane thickness measured by cryo-TEM was
12.4 + 1.7 nm for PEGyy-b-d16DAP-thym-Cqp-thym and 14.8 £+ 1.3 nm for PEGyy-b-
d16DAP-(thym-Cg)4-O (Figure 7e-g), which were higher values than that the estimated
for PEGyy-b-d16DAP. Some spherical micelles were also observed with diameters of
approximately 20-25 nm, according to TEM estimations. Apparent D, values deter-
mined by DLS were 91 £ 37 and 83 =+ 39 nm for PEGyy-b-d16DAP-thym-Cj,-thym and
PEGy-b-d16DAP-(thym-Cg)4-O, respectively, which were only slightly higher than for
PEGyi-b-d16DAP (Dy, = 79 + 36 nm) (Figure 8). Accordingly, CAC values for PEGy-b-
d16DAP-thym-Cj,-thym and PEGy-b-d16DAP-(thym-Cg)4-O were 35 and 28 ug mL~1
(Figure S48). These values were slightly above that retrieved for PEGy-b-d16DAP
(25 ug mLfl). The slight increase in the size of the vesicles and, mainly, the increase
in the thickness of the membrane are evidence of the inclusion of supramolecular cross-
linkers in the hydrophobic internal part of the membrane of these vesicle self-assemblies.
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Figure 7. TEM images of (a) PEGyy-b-d8SDAP-thym-Cyp-thym, (c¢) PEGyy-b-d8DAP:(thym-Cg)s-O, (e) PEGyy-b-
d16DAP-thym-Ci,-thym, and (g) PEGyy-b-d16DAP-(thym-Cg)4-O; and cryo-TEM images of (b) PEG;-b-d8DAP-thym-Ci,-
thym, (d) PEG-b-d8DAP-(thym-Cg)4-O, (f) PEGy-b-d16DAP-thym-Cyp-thym and (h) PEGyy-b-d16DAP-(thym-Cg)4-O
self-assemblies (yellow arrows indicate vesicles and green arrows indicate micelles).

—a— PEG2k-b-d8DAP
@ —e— PEG2k-b-d8DAP:thym-C12-thym

—+— PEG2k-b-d8DAP- (thym-C6)4-O
1.0+
o8
R
w
g 0.6
£ ]
=3
c
804
N
©
13
S 0.2
z
0.0 4 etttk
10 100
Size (nm)
(b) —e— PEG2k-b-d16DAP
—e— PEG2k-b-d16DAP-thym-C12-thym
—v— PEG2k-b-d16DAP: (thym-C6)4-O
1.0
T os
2
23
E 0.6
el
3
c
E 04
©
£
S 0.2
z
0.0 *o <
10 100
Size (nm)

Figure 8. Number size distributions recorded by the DLS of supramolecular cross-linked LDBCs self-
assemblies prepared by nanoprecipitation from either PEGy-b-d8DAP (a) or PEGy-b-d16DAP (b)
and two thymine crosslinkers, either thym-Cq,-thym or ((thym-Cg)4-O. The DLS of PEGy-b-dSDAP
and PEGyy-b-d16DAP self-assemblies (without incorporation of the supramolecular crosslinkers)
are also included as reference.
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Comparing both cross-linkers, the morphology of the self-assemblies is similar but
CAC values are lower for self-assemblies cross-linked with (thym-Cg)4-O, which suggests a
comparative higher thermodynamic stability associated to a more efficient supramolecular
cross-linking.

4. Conclusions

A series of amphiphilic LDBCs have been synthesized by the CuAAC coupling of
a linear PEG block and the first fourth generations of dendrons derived from bis-MPA
functionalized with 2,6-diaminopyridine (DAP) units at the periphery. A synthetic route
for these dendrons has been developed based on a double exponential growth convergent
approach. Their ability to self-assemble in water has been evaluated and depends on the
dendron generation. Low dendron generations do not form stable self-assemblies, but
for PEG,-b-d8DAP and PEGy-b-d16DAP, stable self-assemblies were obtained whose
morphology depends on the generation and the self-assembly preparation technique. By
nanoprecipitation, PEGy-b-d8SDAP and PEGy,-b-d16DAP yielded spherical micelles and
vesicles, respectively. Self-assemblies have also been efficiently prepared by microfluidics
as an alternative scalable and high throughput (725 mg h~!) methodology with a con-
trolled and ultra-fast homogeneous mixing of fluids. The self-assembly study assisted
by microfluidics has shown that the morphology and size of assemblies not only depend
on the LDBC chemical structure but also on the water flow rate at a fixed mixing time
as small as 48 milliseconds. In vitro cytotoxicity, metabolism, and cell cycle studies have
been carried out concluding that these PEGi-b-dxDAP self-assemblies are not cytotoxic
at doses below 0.4 mg mL~!, opening new avenues for their use as drug delivery carriers.

The DAP ability of supramolecular functionalization was explored by incorporat-
ing thymine derivatives (thym-Cy,-thym and (thym-Cg)4-O) as hydrogen bonding cross-
linkers that were efficiently incorporated into the self-assemblies obtained in aqueous
media. The supramolecular modification of these materials opens possibilities to the stabi-
lization and functionalization of these assemblies based on the molecular recognition by
H-bonding. Furthermore, the dynamic nature of the cross-links and their response to chem-
ical stimuli as pH allow a faster and stimulated delivery than cross-linked nanocarriers
based on covalent crosslinks.
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pared by nanoprecipitation. Figure S45: Fluorescence emission of Nile Red at 620 nm (Aexc = 550 nm)
versus (a) PEGy-b-d4DAP, (b) PEG,-b-d8DAP and (c) PEGy-b-d16DAP concentration. CAC was
determined from the intersection of the two extrapolated lines. Scheme S1: Supramolecular recogni-
tion through a triple H-bond between DAP units (blue) linked at the periphery of dendron block of
PEG2k-b-dxDAP and thymine moieties (black) of the crosslinkers. Figure S46: HR-ESI spectra of (a)
thym-Cyp-thym and (b) (thym-Cg)4-O. Figure S47: Turbidity curves of supramolecular cross-linked
LDBCs of PEGy-b-d8DAP (left) and PEGy-b-d16DAP (right). Figure S48: Fluorescence emission
of Nile Red at 620 nm (Aexc = 550 nm) versus (a) PEG2k-b-d8DAP-thym-C12-thym, (b) PEG2k-b-
d8DAP-(thym-C6)4-O, (c) PEG2k-b-d16DAP-thym-C12-thym and PEG2k-b-d16DAP-(thym-C6)4-O
concentration. CAC was determined from the intersection of the two extrapolated lines.
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