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ANGPTL3 gene variants 
in subjects with familial combined 
hyperlipidemia
A. M. Bea1, E. Franco‑Marín1, V. Marco‑Benedí1,2, E. Jarauta1,2, I. Gracia‑Rubio1, 
A. Cenarro1,3*, F. Civeira1,2 & I. Lamiquiz‑Moneo1,2 

Angiopoietin-like 3 (ANGPTL3) plays an important role in lipid metabolism in humans. Loss-of-
function variants in ANGPTL3 cause a monogenic disease named familial combined hypolipidemia. 
However, the potential contribution of ANGPTL3 gene in subjects with familial combined 
hyperlipidemia (FCHL) has not been studied. For that reason, the aim of this work was to investigate 
the potential contribution of ANGPTL3 in the aetiology of FCHL by identifying gain-of-function 
(GOF) genetic variants in the ANGPTL3 gene in FCHL subjects. ANGPTL3 gene was sequenced in 
162 unrelated subjects with severe FCHL and 165 normolipemic controls. Pathogenicity of genetic 
variants was predicted with PredictSNP2 and FruitFly. Frequency of identified variants in FCHL was 
compared with that of normolipemic controls and that described in the 1000 Genomes Project. No 
GOF mutations in ANGPTL3 were present in subjects with FCHL. Four variants were identified in FCHL 
subjects, showing a different frequency from that observed in normolipemic controls: c.607-109T>C, 
c.607-47_607-46delGT, c.835+41C>A and c.*52_*60del. This last variant, c.*52_*60del, is a microRNA 
associated sequence in the 3′UTR of ANGPTL3, and it was present 2.7 times more frequently in 
normolipemic controls than in FCHL subjects. Our research shows that no GOF mutations in ANGPTL3 
were found in a large group of unrelated subjects with FCHL.

Angiopoietin-like 3 (ANGPTL3) is a 70 kDa-secreted (54 kDa before glycosylation) protein, mainly expressed 
in the liver, discovered by Conklin et al. in 19991. ANGPTL3 is an endogenous inhibitor of lipoprotein lipase 
(LPL) and endothelial lipase (EL)2,3. Different studies in families with hypolipemia and in general population 
have reported that loss-of-function (LOF) variants in ANGPTL3 gene are associated with decreased plasma 
levels of triglycerides (TG), low-density lipoprotein cholesterol (LDLc) and high-density lipoprotein choles-
terol (HDLc)4. The N-terminal domain of ANGPTL3 containing residues from 17 to 207 is responsible for the 
increased plasma TG levels in mice. Loss of this region prevents the inhibition of LPL5 and EL3 by ANGPTL3. 
Recently, the inhibition of ANGPTL3 with a human monoclonal antibody against ANGPTL3 (evinacumab) in 
dyslipidemic mice and in healthy volunteers caused a dose-dependent placebo-adjusted reduction in fasting TG 
levels of up to 76% and LDLc levels of up to 23%4. Therefore, ANGPTL3 has been considered a potent modulator 
of TG2 and supports an important role of ANGPTL3 in lipid metabolism in humans.

In addition, new evidence sustains a possible role of ANGPTL3 in the progression of atherosclerosis through 
a lipid-independent mechanism6. Carriers of LOF mutations in ANGPTL3 associated a 34% decrease in cardio-
vascular events7 and ANGPTL3 plasma concentration was associated with arterial wall thickness in humans8. 
Moreover, a decreased expression of ANGPTL3 in apolipoprotein E null (apoE-/-) mice was protective in the 
development of atherosclerosis9.

Familial combined hyperlipidemia (FCHL) is a common and complex inherited disorder of lipid metabo-
lism with important environmental influences10. FCHL is characterized by elevated very low-density lipopro-
tein (VLDL) and/or LDL concentrations, low HDLc levels11, and frequently, reduced LPL activity12. The FCHL 
genetic background is mostly polygenic and associated with the variation in at least 35 different genes, including 
genes related to metabolic disorders such as obesity, peripheral insulin resistance, type 2 diabetes, hyperten-
sion and metabolic syndrome13,14. However, FCHL is a genetically heterogeneous syndrome and monogenic 
and oligogenic cases have been also described15–17. Subjects with FCHL have high predisposition to develop 
premature cardiovascular disease (CVD). Actually, FCHL is the most common genetic lipid abnormality found 
in subjects with premature coronary heart disease18. The FCHL phenotype is quite similar to that observed after 
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ANGPTL3 administration in mice. However, the potential involvement of the ANGPTL3 gene in FCHL has 
not been previously analysed in contrast with the major role of a loss-of-function mutation in ANGPTL3 in the 
opposite situation, familial combined hypolipidemia19,20. Therefore, the aim of this study was to identify gain-of-
function (GOF) genetic variants in ANGPTL3 gene in FCHL subjects and to establish the potential contribution 
of ANGPTL3 in the aetiology of FCHL.

Material and methods
Subjects.  Cases.  A total of 162 unrelated subjects, aged 23 to 82, with the clinical diagnosis of severe FCHL 
from Lipid Unit at Hospital Universitario Miguel Servet, Zaragoza, Spain, were selected for this study. Severe 
FCHL included: LDLc and TG > 90th percentile adjusted for age and sex, apolipoprotein B (apoB) > 150 mg/dL, 
body mass index (BMI) < 27.5 kg/m2 and at least one first-degree family member with mixed hyperlipidemia. 
Clinical exclusion criteria were: secondary causes of hypercholesterolemia including significant overweight or 
obesity (BMI ≥ 27.5 kg/m2), poorly controlled type 2 diabetes (HbA1c > 8%), hemochromatosis, renal disease 
with glomerular filtration rate < 30 mL/min and/or macroalbuminuria, liver disease (alanine transaminase > 3 
times upper normal limit), hypothyroidism (thyroid-stimulating hormone > 6 mIU/L), pregnancy or estrogen 
treatment, autoimmune diseases, treatment with protease inhibitors and alcohol consumption > 30 g per day 
(Fig. 1).

Most of the subjects included in this work had been studied previously to discard severe genetic defects in 
the genes regulating the LPL pathway21. Subjects with LDLR, APOB or  PCSK9 functional mutations causing 
familial hypercholesterolemia (FH) and subjects with dysbetalipoproteinemia and the APOE2/2 genotype were 
excluded from the study. The lipid phenotype of FH and dysbetalipoproteinemia may overlap with FCHL and 
with this approach both genetic hyperlipidemias were ruled out to avoid confusion with FCHL.

Unrelated mixed hyperlipidemia
Triglycerides (TG) > 150 mg/dL
Apolipoprotein B (apoB) > 120 mg/dL

n= 1487

Primary mixed hyperlipidemia
n= 826

FCHL
n= 624

Absence of first degree rela�ves with hyperlipidemia

Exclusion secondary causes: 
Secondary causes of hypercholesterolemia
Overweight or obesity (BMI ≥ 27.5 Kg/m2)
Poorly controlled type 2 diabetes (HbA1c >8%)
Hemochromatosis
Renal disease with glomerular filtra�on rate < 30 mL/min and/or macroalbuminuria
Liver disease (alanine transaminase > 3 �mes upper normal limit)
Hypothyroidism (thyroid-s�mula�ng hormone > 6 mIU/L)
Pregnancy or estrogen treatment
Autoimmune diseases
Treatment with protease inhibitors
Alcohol consump�on >30 grams per day

Absence of muta�ons in LDLR (n=55) or APOB (n=18) genes

Severe FCHL
Apolipoprotein B (apoB) > 150 mg/dL
BMI < 27.5 Kg/m2

n= 162

Figure 1.   Flow chart of subject selection process.
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Controls.  We selected 165 consecutive normolipemic, unrelated subjects, aged 20–79, who underwent a medi-
cal visit at our hospital as control group. Exclusion criteria for control subjects were personal or parental history 
of premature cardiovascular disease (before 55 years in men and 65 years in women) or personal or parental 
dyslipidaemia, current acute illness, or use of drugs that might influence glucose or lipid metabolism.

In all subjects, clinical and analytical variables were registered, including personal and familial risk factors, 
history of cardiovascular disease and intake of drugs affecting intestinal or lipid metabolism.

All experimental protocols were approved by our local ethical committee (Comité Ético de Investigación 
Clínica de Aragón, CEICA, Zaragoza, Spain). Informed consent was obtained from all subjects before participat-
ing in the protocol. Samples from patients included in this study were provided by the Biobank of the Aragon 
Health System (PT17/0015/0039), integrated in the Spanish National Biobanks Network, and they were processed 
following standard operating procedures with the appropriate approval of the Ethics and Scientific Committees.

Biochemical analysis.  Ethylenediaminetetraacetic acid (EDTA) plasma and serum samples were collected 
from all participants after at least 10 h fasting, without lipid-lowering drugs for > 5 weeks, to obtain baseline 
biochemical characteristics. Total cholesterol (TC) and TG measurements were performed with commercially 
available diagnostic kits (Boehringer Mannheim, Germany), in a laboratory participating in a lipid standardi-
sation programme. HDLc was measured directly by an enzymatic reaction using cholesterol oxidase (UniCel 
DxC 800; Beckman Coulter Inc., Brea, California, USA). ApoA1, apoB and lipoprotein(a)22 were determined by 
IMMAGE kinetic immunonephelometry (Beckman Coulter Inc., Brea, California, USA). LDLc was calculated 
using the Friedewald’s formula23. All methods were carried out in accordance with guidelines and regulations of 
Spanish Society of Clinical Biochemistry.

Genetic analysis.  DNA was isolated from EDTA blood samples using the KingFisher Duo Prime System 
(Thermo Fisher Scientific). A previously described protocol for sequencing the exon 4 of APOE gene24 was used 
for disclosing APOE2/2 genotype or functional mutations in exon 4 of the APOE gene in order to rule out car-
rier subjects. Moreover, LDLR, APOB and PCSK9 genes were analysed for functional mutations with Lipochip 
platform (Progenika Grifols, Spain)25 in order to rule out subjects with any pathogenic mutation in these genes.

ANGPTL3 gene (NM_014495.4) was amplified in 7 fragments by polymerase chain reaction with prim-
ers showed in Table 1. Each amplified fragment comprised the corresponding exon and its 5′ and 3′ flanking 
sequences, including intron–exon boundaries. After purification with ExoSap-IT (USB), amplified fragments 
were sequenced by the Sanger method26 using the BigDye 3.1 sequencing kit (Applied Biosystems) in an auto-
mated ABI 3500xL sequencer (Applied Biosystems). DNA sequences were analysed using Variant Reporter 
software (Applied Biosystems).

To evaluate the pathogenicity of new identified genetic variants, we used PredictSNP227. The effect of variants 
in potential splicing sites was predicted with FruitFly28. To compare the frequency of identified variants with 
that of the general population, we compiled the allele frequencies of identified variants from the 1000 Genomes 
Project29 and genome aggregation data base (gnomAD)30. ClinVar database was used for additional informa-
tion about genomic variation and its relationship to human health31. Finally, information about microRNAs 
was obtained from PolymiRTS Database 3.032. All methods were carried out in accordance with guidelines and 
regulations of Spanish Society of Human Genetics.

Statistical analysis.  Analyses were performed using statistical computing software R version 3.5.033. The 
level of significance was set at P < 0.05. The distribution of the variables was analysed by the Shapiro test. Quan-

Table 1.   Primers and conditions used for ANGPTL3 amplification and sequencing. Each amplified fragment 
comprises the corresponding exon and its 5′ and 3′ flanking sequences, including intron–exon boundaries. F 
forward, R reverse.

ANGPTL3 Primer sequence 5′ → 3′ Annealing temperature (°C) Product size (bp)

Fragment 1
F: CCT​TAC​CTT​TTC​TGG​GCA​A

51.5 821
R: AAA​TGC​AAA​TTT​TCA​GTG​TTT​TCA​

Fragment 2
F: GCT​GGG​CTT​TTT​CTT​TTA​ATTG​

51 496
R: CTT​CAG​AGC​CTG​CAA​TTT​T

Fragment 3
F: CCG​ACC​AAT​GTC​TGC​TTT​TT

51 555
R: TCA​AGT​CCA​TAT​TTG​TAT​TTC​TCT​G

Fragment 4
F: TCC​AGA​CTG​GTG​ATA​GAA​CAAG​

53.5 597
R: GGC​AAT​TAA​TGA​ATT​TTG​GCA​TAG​T

Fragment 5
F: TCT​CCT​TTT​CCT​CTA​AAA​TAA​TCT​GAA​

52.5 596
R: TGA​TCA​TTG​TAA​GCC​GTG​G

Fragment 6
F: ATG​CAT​TAT​AGA​AAG​GAT​AAT​CAG​ACT​

52.5 700
R: GAG​GAA​GAT​TAG​AGG​TAA​AAT​ACC​TG

Fragment 7
F: ACC​TCT​AAT​CTT​CCT​CAG​ATT​TTC​

51 599
R: TTT​TGA​TTG​AGA​AAT​GTA​AAC​GGT​A
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titative variables with a normal distribution were expressed as mean ± standard deviation and were analysed by 
the Student t test. Variables with a skewed distribution were expressed as medians and interquartile ranges and 
were analysed with the Mann–Whitney U test. Qualitative variables were expressed as percentages and were 
analysed by the Chi squared test.

Results
Study subjects.  The main clinical and biochemical characteristics of both studied groups (162 FCHL sub-
jects and 165 normolipemic controls) are presented in Table 2. FCHL subjects showed higher predominance of 
males (60.5%) and were significantly older than normolipemic subjects (P = 0.022 and P < 0.001, respectively). 
Compared with normolipemic controls, FCHL subjects had significantly higher values of BMI, TC, TG, LDLc, 
apoB and lipoprotein(a) (P < 0.001, P < 0.001, P < 0.001, P < 0.001, P < 0.001 and P = 0.003, respectively). FCHL 
subjects presented higher prevalence of hypertension, type 2 diabetes and CVD than normolipemic subjects 
(P = 0.009, P = 0.001 and P = 0.016, respectively). The APOE genotype distribution was homogenous between 
both cohorts, being E3/3 genotype the most frequent in both groups, although E3/2 genotype had a lower fre-
quency in FCHL subjects (5.56%) in contrast to normolipemic subjects (15.2%).

ANGPTL3 genetic variants.  Table 3 shows all variants in the ANGPTL3 gene identified in both groups. 
A total of 16 genetic variants, four of them not previously described, were identified by sequencing analysis. 
Only four of them (c.607-109T>C, c.607-47_607-46delGT, c.835+41C>A and c.*52_*60del) presented signifi-
cantly different allele frequency in normolipemic group than in FCHL subjects (P = 0.020, P = 0.031, P = 0.043 
and P < 0.001, respectively). Out of the 16 variants, seven variants were located in the coding region (c.379C>T, 
c.565T>C, c.961T>A, c.1003T>C, c.1028A>G, c.1089T>G and c.1122G>A), and three of them were missense 
variants: p. (Leu127Phe), p.(Tyr321Asn) and p.(His343Arg), but only p.(Leu127Phe) was described as deleterious 
by bioinformatics analysis. The other four variants located in the coding region, p.(Leu189Leu), p.(Leu335Leu), 
p.(Val363Val) and p.(Pro374Pro) were synonymous variants. Seven variants were located in the intronic region, 
c.496-88T>G, c.607-120A>G, c.607-109T>C, c.607-47_607-46delGT, c.835+41C>A, c.1198+111G>A and 
c.1198+140T>C. All of them were described as benign or not splicing change affected by the bioinformatics 
analysis. Nevertheless, three of them, c.607-109T>C, c.607-47_607-46delGT and c.835+41C>A, presented sig-

Table 2.   Clinical and biochemical characteristics in FCHL subjects and normolipemic controls. Quantitative 
continuous variables are expressed as mean ± standard deviation or median [percentile 25–75]. Student’s t or 
Mann–Whitney tests were used to assess differences between two groups. Quantitative categorical variables are 
expressed as n (%) and statistical differences were assessed by Chi-squared.

FCHL subjects n = 162 Normolipemic controls n = 165 p

Men, n (%) 98 (60.5) 78 (47.3) 0.022

Age (years) 50.4 ± 11.4 38.5 ± 14.7 < 0.001

Body Mass Index (kg/m2) 25.6 (24.2–26.5) 23.6 (21.4–26.6) < 0.001

Total Cholesterol (mg/dL) 312 ± 36.1 170 ± 21.0 < 0.001

Triglycerides (mg/dL) 277 (232–373) 64.0 (49.0–93.0) < 0.001

LDL cholesterol (mg/dL) 204 (183–230) 108 (91.8–117) < 0.001

HDL cholesterol (mg/dL) 48.5 ± 12.0 55.7 ± 11.4 0.015

Apolipoprotein A1 (mg/dL) 147 ± 25.0 147 ± 27.4 0.930

Apolipoprotein B (mg/dL) 167 (165–190) 83.0 (72.0–91.0 < 0.001

Lipoprotein(a), (mg/dL) 39.1 (10.3–80.8) 16.2 (7.79–44.5) 0.003

Glucose (mg/dL) 93.0 (86.0–103) 85.0 (80.0–92.0) < 0.001

HbA1c (%) 5.50 (5.30–5.80) 5.20 (5.00–5.40) < 0.001

Type 2 diabetes, n (%) 13 (8.02) 2 (1.21) 0.009

Hypertension, n (%) 30 (18.5) 10 (6.06) 0.001

Cardiovascular disease, n (%) 7 (4.32) 0 0.016

Tobacco, n (%)

Non smoker 51 (31.5) 96 (58.1)

< 0.001Smoker 70 (43.2) 31 (18.8)

Former smoker 40 (24.7) 28 (16.7)

Apolipoprotein E genotype, n (%)

E3/3 113 (69.8) 109 (66.1)

0.035

E3/2 9 (5.56) 25 (15.2)

E2/2 0 0

E3/4 31 (19.1) 25 (15.2)

E4/4 6 (3.70) 2 (1.21)

E2/4 3 4
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nificantly higher allele frequency in FCHL subjects than in the normolipemic group. Finally, two variants were 
located in the 3′UTR, c.*52_*60del and c.*76T>G. One of them, c.*52_*60del, showed significantly higher allele 
frequency in the normolipemic group than in FCHL subjects.

Discussion
We have studied the possible contribution of the gene encoding ANGPTL3 in the aetiology of FCHL. Our 
hypothesis was that some rare gain-of-function variants could have a major effect on the disease or, on the 
contrary, that common variants with minor effect on ANGPTL3 function could be in different frequency with 
respect to the general population. The results of our study do not support the first possibility, since the identi-
fied variants are not predictive of relevant functional changes in the protein. There are no previous ANGPTL3 
sequencing studies looking for GOF mutations in subjects with FCHL. At least 5 different loci have been associ-
ated with rare cases of monogenic FCHL: LDLR16,17, LPL15, APOE34, PCSK935 and APOA536,37, but ANGPTL3 

Table 3.   Frequency and bioinformatics analysis of identified variants in ANGPTL3 in FCHL cases and 
controls. NR not reported, NA not applicable, VUS variant of uncertain significance. a PredictSNP2 uses CADD, 
DANN, FATHMM and Funseq2 as predictors. b FruitFly. New prediction score 0.87 (wild type score 0.89). 
c GnomAD. https://​gnomad.​broad​insti​tute.​org/ d 1000 Genomes Project Consortium, Abecasis GR, Auton A, 
Books LD et al. An integrated map of genetic variation from 1092 human genomes. Nature 2012;491:56–65. 
e Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, 
Voelkerding K, Rehm HL; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the 
interpretation of sequence variants: a joint consensus recommendation of the American College of Medical 
Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015 May;17(5):405–24. 
https://​doi.​org/​10.​1038/​gim.​2015.​30. Epub 2015 Mar 5. PMID: 25741868; PMCID: PMC4544753. f PolymiRTS 
Database 3.0: http://​compb​io.​uthsc.​edu/​miRSNP/ g Tikka A, Metso J, Jauhiainen M. ANGPTL3 serum 
concentration and rare genetic variants in Finnish population. Scand J Clin Lab Invest. 2017;77:601–609.

Variant Location
Nucleotide 
change

Protein 
change

Bioinformatics analysis
Allele frequency in the 
general population Allele frequency in our study

ACMG 
classificatione MicroRNAsf

PredictSNP2a 
(probability) FruitFlyb GnomADc

1000 
Genomes 
Projectd

Normolipemic 
subjects

FCHL 
subjects p

rs72649573 Exon 1 c.379C>T p.
(Leu127Phe)

Deleterious 
(82%) NA 0.00711 0.0020 0.000 0.003 0.313 Benigng NR

– Intron 1 c.496-88T>G NA Neutral (88%)
Not 
splicing 
change

– – 0.000 0.003 0.313 – –

rs111414963 Exon 2 c.565T>C p.
(Leu189Leu) Neutral (88%)

Not 
splicing 
change

0.00025 0.0008 0.003 0.000 0.313 Likely benign NR

rs531071581 Intron 2 c.607-120A>G NA Neutral (88%)
Not 
splicing 
change

0.00013 0.0006 0.000 0.003 0.313 – NR

rs72649576 Intron 2 c.607-109T>C NA Neutral (88%)
Not 
splicing 
change

0.01079 0.0042 0.024 0.003 0.020 – NR

rs72649577 Intron 2 c.607-47_607-
46delGT NA Neutral (88%) NA 0.02222 0.0136 0.022 0.003 0.031 – NR

rs185472483 Intron 3 c.835+41C>A NA –
Not 
splicing 
change

0.00032 0.0006 0.000 0.012 0.043 – NR

rs747725081 Exon 6 c.961T>A p.
(Tyr321Asn) Neutral (88%) NA NR NR 0.000 0.003 0.313 – NR

rs12563308 Exon 6 c.1003T>C p.
(Leu335Leu) Neutral (88%) NA 0.03550 0.0559 0.003 0.003 0.989 VUSg NR

rs199555921 Exon 6 c.1028A>G p.
(His343Arg) Neutral (89%) NA 0.00016 NR 0.003 0.000 0.321 – NR

rs763259225 Exon 6 c.1089T>G p.(Val363Val) Neutral (96%) NA NR NR 0.003 0.000 0.321 – NR

rs145086916 Exon 6 c.1122G>A p.(Pro-
374Pro) Neutral (96%) NA 0.00077 0.0006 0.003 0.000 0.321 – NR

rs72651034 Intron 6 c.1198+111G>A NA –
Not 
splicing 
change

NR NR 0.003 0.003 0.989 – NR

rs908541128 Intron 6 c.1198+140T>C NA –
Not 
splicing 
change

0.000 0.000 0.003 0.000 0.321 – NR

rs34483103 3′UTR​ c.*52_*60del NA – NA 0.33531 0.3484 0.276 0.102 < 0.001 –
hsa-miR-
151a-3p
hsa-miR-7702

– 3′UTR​ c.*76T>G NA – NA – – 0.000 0.003 0.313 – –

https://gnomad.broadinstitute.org/
https://doi.org/10.1038/gim.2015.30
http://compbio.uthsc.edu/miRSNP/
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does not appear to be associated with this form of FCHL nor familial hypercholesterolemia (FH). Although FH 
and FCHL are different phenotypes, there is some degree of overlap between the two entities since they share 
many clinical aspects. Studies in subjects with genetic hypercholesterolemia of unknown origin suggestive of 
FH have also failed to detect causal mutations in ANGPTL3. We have not found any severe mutation neither in 
cases nor in controls in the total of 654 alleles investigated. This leads us to think about how well preserved is 
this gene probably related to the importance of this gene in human metabolism.

These results contrast with the role of ANGPTL3 in the lipid phenotype called familial combined hypolipi-
demia (FHBL2, OMIM #605019)20, in which LOF mutations in ANGPTL3 are responsible of reduced plasma 
levels of TC, TG, VLDL cholesterol, LDLc, apoB, and free fatty acids, just the opposite lipid profile found in 
FCHL. Furthermore, FCHL and familial combined hypolipidemia share abnormal hepatic VLDL secretion 
rates as the main mechanism of the lipid abnormalities, being increased in FCHL38,39 and decreased in familial 
combined hypolipidemia40.

Most cases of FCHL are considered as a complex disease with interaction of polygenes or multiple allele 
relationships with effect on TC, TG and environmental factors, mainly obesity and diets rich in saturated fat. 
ANGPTL3 genetic variation has not been associated with FCHL or mixed hyperlipidemia in genome-wide asso-
ciation studies (GWAS)13,41. Similar conclusions can be drawn from large-scale deep-coverage whole-genome 
sequencing42. Our study cannot rule out that the genetic variation in ANGPTL3 participates in the final pheno-
type of polygenic forms of FCHL. We found four variants with different allele frequency in FCHL subjects and 
in normolipemic controls: c.607-109T>C, c.607-47_607-46delGT, c.835+41C>A and c.*52_*60del. The first 
three are located in intron regions and the in silico analysis does not predict any splicing change with clinical 
significance, so their contribution to FCHL seems unlikely. The variant c.*52_*60del, located in 3′UTR, presented 
statistically significant differences in allelic frequencies between FCHL subjects and normolipemic controls: 0.276 
and 0.102, respectively (P < 0.001). This variant has been previously associated with two microRNAs, hsa-miR-
151a-3p and hsa-miR-7702, modulators of gene expression32. However, this is a very frequent genetic variant in 
the general population and this variation has not been previously associated with cholesterol and triglyceride 
concentrations43,44, so its implication in the FCHL pathogenesis is unlikely, although it should be confirmed in 
future studies.

In summary, no GOF mutations in ANGPTL3 were present in a large group of unrelated subjects with FCHL. 
Our results do not support a substantial role of ANGPTL3 in FCHL.
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