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Abstract

4D Lattice Flower Constellations is a new constellation design framework, based on the previous 2D and 3D Lattice theories of
Flower Constellations, that focus on the generation of constellations whose satellites can have different semi-major axis and still present
a constellation structure that is maintained during the dynamic of the system. This situation can arise when dealing with satellites with
very different instruments, or when it is of interest to coordinate two different constellations. In that sense, 4D Lattice Flower Constel-
lations constitutes the most general representation of the Flower Constellation formulation. In addition, the effects of the J 2 perturbation
are taken into account in order to generate distributions that maintain their initial design configuration under this perturbation for longer
periods of time with a low fuel budget. Finally, examples of application are presented, showing the possibilities in satellite constellation
design of this new approach.
� 2020 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Satellites orbiting the Earth provide a great number of
possibilities and include a variety of missions such as Earth
and space observation, telecommunications or global posi-
tioning systems. These possibilities can be increased by the
use of groups of satellites that work cooperatively to
achieve a common mission, that is, a satellite constellation.
The advantages of using satellite constellations are numer-
ous, including the gain in performance of the system as a
whole, or the reduction of the costs associated with the mis-
sion. However, the study of several satellites at the same
time, and more importantly, the relations that appear in
the internal structure of the constellation, increases not
only the complexity of the problem to solve, but also the
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available possibilities in the design of constellation
configurations.

Satellite constellation design has been since its beginning
a complex process due to the lack of established models for
generating and studying satellite constellations under any
situation, leading to the need of performing specific studies
for each particular mission. Fortunately, in the last dec-
ades, several satellite constellation design methodologies
have appeared to minimize this issue. Some very well
known examples of that are Walker Constellations
(Walker, 1984) for circular orbits or the design of Draim
(Draim, 1987) for elliptic orbits, but there are many others
(Ulybyshev, 2008; Lo, 1999; Arnas et al., 2017b).

In 2004, the Flower Constellation Theory (Mortari
et al., 2004; Mortari and Wilkins, 2008; Wilkins and
Mortari, 2008) was presented, including in its formulation
circular and elliptic orbits and containing the former
designs of Walker and Draim as particular cases of this
design methodology. The theory was later improved by
the 2D Lattice (Avendaño et al., 2013) and 3D Lattice
e Flower Constellations, Advances in Space Research, https://doi.org/
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(Davis et al., 2013) theories which simplified the formula-
tion and made the configuration independent of any refer-
ence frame. One of the most important properties of
Lattice Flower Constellations is that the structure gener-
ated in the constellation presents a high number of symme-
tries, meaning that the configuration that each satellite
observes is equivalent to the others of the constellation.
This property makes this methodology of design interesting
for many applications, especially global coverage,
telecommunications and global positioning systems
(Casanova et al., 2014a). Later, Lattice Flower Constella-
tions were generalized with Necklace Flower Constella-
tions(Arnas, 2018; Casanova et al., 2014b; Arnas et al.,
2017a; Arnas et al., 2017c; Arnas et al., 2017d), which
allowed to expand the number of possibilities of design
by defining a fictitious constellation from where a subset
of satellites were selected in such a way that the distribution
properties of uniformity and symmetry were preserved.

In this work, we introduce the 4D Lattice Flower Con-
stellations (4D-LFC) as a general methodology for design-
ing satellite constellations. The most important
particularity of 4D-LFC is that satellites of the constella-
tion are not required to have the same semi-major axis.
Examples of these kind of constellations and their possible
applications can be seen in the designs of Rider (1985) and
Palmerini (1998). This situation allows to generate constel-
lations whose satellites have very different instruments, or
to coordinate completely different constellations. In fact,
4D-LFC can be also regarded as a coordination of different
2D and 3D Lattice Flower Constellations that have differ-
ent semi-major axis but for some reason, they are required
to work cooperatively.

The idea behind 4D-LFC is to define a periodic constel-
lation dynamic in such a way that its resultant configura-
tion presents the highest number of symmetries, both in
time and geometrically, in a similar way as the 2D and
3D Lattice Flower Constellations were defined. That
way, and based on the Lattice Theory, the 4D-LFC are
able to provide all the uniformly distributed constellations
that can be arranged with a given set of satellites (Arnas,
2018).

In this work we proceed as follows. First, a summary of
the previous 2D and 3D Lattice Flower Constellations
methodologies is presented. Second, the 4D Lattice Flower
Constellation theory is introduced, showing also its rela-
tion with the former methodologies. Third, the effects of
the J 2 perturbation are included in the design in order to
maintain the structure of the constellation over longer peri-
ods of time with a low fuel budget. Fourth, a simple exam-
ple of application is presented where we show a possible
use of this methodology for telecommunications and deep
space observation. Finally, an example of application of
this methodology to the design of mega-constellations is
presented.
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2. Preliminaries

2.1. 2D Lattice Flower Constellations

A 2D Lattice Flower Constellation (Avendaño et al.,
2013) (2D-LFC) is described by nine parameters: three
integers and six continuous parameters. The first three
parameters are the number of inertial orbits (No), the num-
ber of satellites per orbit (Nso) and the configuration num-
ber (Nc), which is a parameter that satisfies
Nc 2 f0; . . . ;No � 1g and governs the phasing of the con-
stellation. In particular, the location of the satellites in a
2D-LFC corresponds to a lattice in the (X;M)-space
(Avendaño and Mortari, 2009), that is, a space generated
in the orbital variables right ascension of the ascending
node X and mean anomaly M of all the satellites of the
constellation in a given instant. The (X;M)-space can be
also regarded as a 2D torus (both axes, X and M, are mod-
ulo 2p) where the points represented coincide with the solu-
tions of the following system of equations:

No 0

Nc Nso

� �
DXij

DMij

� �
¼ 2p

i� 1

j� 1

� �
; ð1Þ

where i ¼ f1; � � � ;Nog; j ¼ f1; � � � ;Nsog, and DXij and DMij

represent the satellite distribution in the right ascension of
the ascending node and the mean anomaly with respect to a
reference satellite. Indexes ði; jÞ represent the j-th satellite
on the i-th orbital plane. Note that this system of equations
is derived from the Hermite Normal Form of the lattice,
which is the minimum representation of a lattice in a 2D
distribution (Avendaño et al., 2013).

On the other hand, the other six parameters are the
semi-major axis (a), the eccentricity (e), the inclination
(inc) and the argument of perigee (x) (which are the same
for all the satellites of the constellation), and the longitude
of the ascending node and the initial mean anomaly of the
first satellite of the constellation, that is, X11 and M11 (and
which define a reference for the constellation).

One example of 2D-LFC is Galileo (Casanova et al.,
2014a). This constellation can be represented by the 2D-
LFC formulation using as distribution parameters
No ¼ 3;Nso ¼ 7, and Nc ¼ 2. Fig. 1 shows the ðX;MÞ-
space representation (Avendaño et al., 2013) of the distri-
bution, while Fig. 2 presents the inertial distribution of
the constellation.
2.2. 3D Lattice Flower Constellations

3D Lattice Flower Constellations (Davis et al., 2013)
(3D-LFC) is a satellite constellation design methodology
in which satellites are distributed in several inertial orbits,
where each satellite has in general a different value of its
mean anomaly, argument of perigee and right ascension
e Flower Constellations, Advances in Space Research, https://doi.org/
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Fig. 1. ðX;MÞ-space representation of Galileo constellation.

Fig. 2. Inertial representation of Galileo constellation.
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of the ascending node. In addition, the satellites of the con-
stellation have the same semi-major axis, eccentricity and
inclination. This technique was originally devised for the
design of elliptical constellations at any inclination under
the J 2 perturbation. That way, an additional degree of free-
dom to orbit design is provided compared to the 2D formu-
lation, the argument of perigee and the ability to design
constellations at any inclination. Moreover, as in the case
of 2D Lattice Flower constellations, the distributions pre-
sent symmetric and uniform configurations in their lattices
that are maintained over time.

Following Davis et al. (2013), a 3D Lattice Flower Con-
stellation can be described by the use of the Hermite Nor-
mal Form. In this case, the Hermite Normal Form is
composed by six integers, three in the diagonal of the
matrix and the other three in the inferior part of the matrix.
The integers in the diagonal are the number of orbital
planes of the constellation (No), the number of different
arguments of perigee in each orbital plane (Nx), and the
number of satellites in each orbit (Nso). The other three
parameters are configuration numbers (Nc1 ;Nc2 ;Nc3 )
Please cite this article as: D. Arnas, D. Casanova and E. Tresaco, 4D Lattic
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defined as follows: Nc1 2 f0; . . . ;No � 1g;Nc2 2
f0; . . . ;Nx � 1g and Nc3 2 f0; . . . ;No � 1g.

The expression that summarizes the distribution of the
satellites in a 3D Lattice Flower Constellation is:

No 0 0

Nc3 Nx 0

Nc1 Nc2 Nso

0
B@

1
CA

DXijk

Dxijk

DMijk

0
B@

1
CA ¼ 2p

i� 1

k � 1

j� 1

0
B@

1
CA; ð2Þ

where DXijk is the distribution in the right ascension of the
ascending node of the constellation, Dxijk is the distribu-
tion of the argument of perigee, and DMijk is the distribu-
tion of the mean anomaly, with respect to a reference
satellite of the constellation with parameters X111;x111

and M111. Moreover, the sub-indexes
i ¼ f1; . . . ;Nog; j ¼ f1; . . . ;Nsog, and k ¼ f1; . . . ;Nwg, rep-
resent the position of a satellite in the orbital plane i, with
the argument of perigee k and the mean anomaly j. Note
also that the values of ��ijk;�xijk and �Mijk represent
three angles and thus are defined in the range 0; 2p½ � (show-
ing also a modular behavior).
3. 4D Lattice Flower Constellations

3.1. Motivation

2D-LFC and 3D-LFC focus on the generation of con-
stellations whose satellites have very similar mission
requirements and instruments, and thus, it is possible to
locate satellites in orbits with the same semi-major axis.
However, there are cases in which it is of interest that satel-
lites with very different properties are able to cooperate in
their missions, a situation that is increasing each passing
year in the space industry.

For instance, imagine that we want to perform deep
space observation at a high altitude but, due to satellite
design or orbit geometry, it is not feasible for these satel-
lites to perform a direct communication with their ground
stations. In this case, it is possible to solve this problem by
e Flower Constellations, Advances in Space Research, https://doi.org/

https://doi.org/10.1016/j.asr.2020.04.018
https://doi.org/10.1016/j.asr.2020.04.018


4 D. Arnas et al. / Advances in Space Research xxx (2020) xxx–xxx
locating an auxiliary constellation at a lower altitude whose
mission is to perform the communication between the for-
mer satellites and their ground stations. Under these cir-
cumstances, a proper constellation design should provide
a uniform revisiting time between satellites and a periodic
behavior to ease the control strategy and telecommunica-
tions of this system. These are the properties sought by
4D-LFC.

Another situation where coordination between satel-
lites in different semi-major axes is important is when
dealing with the problem of signal interference between
satellite antennas. In that regard, multiple missions have
experienced this problem in the past and have solved
them by a coordinated control strategy. However, and
due to the increasing number of satellites launched, this
problem is expected to worsen in the following years.
Therefore, it is important to define a constellation design
formulation specially devised to study this coordinated
dynamic. In that sense, 4D-LFC represents a first step
in that regard that focus on the uniform and periodic
satellite distributions.

In essence, 4D-LFC deals with the problem of designing
satellite constellations in different semi-major axes in such a
way that the properties of uniformity, symmetry and peri-
odicity are maintained in the distribution. Particularly, 4D-
LFC can be regarded as the combination of a set of differ-
ent 2D-LFC and 3D-LFC that aim to work under a com-
mon coordinated dynamic.

3.2. Formulation

4D-LFC are based on the idea of performing a uniform
distribution of satellites in four variables: the semi-major
axis (a), the right ascension of the ascending node (X),
the argument of perigee (x) and the mean anomaly (M).
In order to obtain all possible uniform distributions
(Arnas, 2018), it is required to define a lattice distribution
in a 4D space in a similar manner as it was done in the
2D-LFC (Avendaño et al., 2013) and 3D-LFC (Davis
et al., 2013). However, and due to the nature of the new
distribution variable (the semi-major axis) this lattice must
be defined in a slightly different manner. The reasons for
that lay in two properties. First, the semi-major axis (a)
does not have a modular nature unlike the angles mean
anomaly (M), argument of perigee (x) and right ascension
of the ascending node (X). Second, we are seeking constel-
lation structures that are maintained over time, and thus,
we are interested in constellations whose dynamic presents
periodicity.

Therefore, and in order to solve this difficulty, an alter-
native process is followed. First, a 4D space is defined
where each variable (V) in this space ranges in ½0; 1�. This
allows to define a completely uniform distribution using
the Lattice Theory. Second, a transformation of this con-
figuration is performed, leading to an equivalent distribu-
tion based completely on integer positions. In this
equivalent distribution each position in a given dimension
Please cite this article as: D. Arnas, D. Casanova and E. Tresaco, 4D Lattic
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represents one of the possible combinations that the distri-
bution variables a;X;x and M can acquire for each satel-
lite of the constellation. Finally, these positions are
related with the final distribution variables, obtaining the
real constellation configuration. In the following lines this
process is explained in more detail.

The first step in the definition process is to generate a set
of four distribution variables, each one in a different

dimension, in the range ½0; 1� : fV a; V X; V x; V Mg, where
V a is related to the distribution in the semi-major axis,

V X is related to the right ascension of the ascending node,

V x is related to the argument of perigee, and V M is related
to the initial mean anomaly of a satellite of the constella-

tion. It is important to remember that fV a; V X; V x; V Mg
do not represent the real values of the semi-major axis,
the right ascension of the ascending node, the argument
of perigee or the initial mean anomaly. Instead, these vari-
ables define a set of possible values for each orbital param-
eter that are used to generate the real distribution of the
constellation. That way, a 4D lattice can be easily defined
using the Hermite Normal Form:

La 0 0 0

LXa LX 0 0

Lxa LxX Lx 0

LMa LMX LMx LM

0
BBBBBBB@

1
CCCCCCCA

V a
ijkr

V X
ijkr

V x
ijkr

V M
ijkr

0
BBBBBBB@

1
CCCCCCCA

¼

r

i

k

j

0
BBBBBBB@

1
CCCCCCCA
; ð3Þ

where La is the number of different semi-major axes, LX is
the number of orbital planes with a given semi-major axis,
Lx is the number of orbits per plane with a given semi-
major axis, and LM is the number of satellites per orbit.
These parameters determine the size of the constellation.
In particular, the total number of satellites that are gener-
ated is Nsat ¼ LaLXLxLM . On the other hand, the configura-
tion numbers (LXa; Lxa; LMa; LxX; LMX, and LMx) determine
how the relative distribution is shifted within the different
semi-major axes (with LXa; Lxa, and LMa), different orbital
planes (with LMX and LxX), and different orbits (with
LMx). Moreover, and in order to avoid duplicities in the
constellation definition, some constraints must be imposed
(Arnas, 2018). First, the parameters of distribution must be
defined as r ¼ f1; . . . ; Lag; i ¼ f1; . . . ; LXg; k ¼ f1; . . . ; Lxg
and j ¼ f1; . . . ; LMg which name each satellite of the con-
stellation. Second, the configuration numbers must present
these constraints: LXa 2 f0; . . . ; La � 1g; Lxa 2 f0; . . . ;
La � 1g;LxX 2 f0; . . . ;LX � 1g; LMa 2 f0; . . . ;La � 1g;LMX 2
f0; . . . ; LX � 1g and LMx 2 f0; . . . ; Lx � 1g.

Note that as opposed to what happens in 2D-LFC and
3D-LFC, Eq. (3) cannot be used directly to generate the
variables of the satellites of the constellation. Instead, we
have to proceed in a slightly different manner. By expand-
ing Eq. (3), the values of the distribution variables can be
obtained:
e Flower Constellations, Advances in Space Research, https://doi.org/
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V a
ijkr ¼ 1

La
r;

V X
ijkr ¼ 1

LX
i� LXa

LaLX
r;

V x
ijkr ¼ 1

Lx
k � LxX

LxLX
i� 1

Lx
Lxa
La

� LxX
LX

LXa
La

� �
r;

V M
ijkr ¼ 1

LM
j� LMx

LMLx
k � 1

LM
LMX
LX

� LMx
Lx

LxX
LX

� �
i�

1
LM

LMa
La

� LMX
LX

LXa
La

� LMx
Lx

Lxa
La

� LXa
La

LxX
LX

� �� �
r;

ð4Þ

and since, as said before, the distribution variables are sub-
jected to modular arithmetic (modulo 1), Eq. (4) can be
rewritten as:

V a
ijkr ¼ mod 1

La
r; 1

h i
;

V X
ijkr ¼ mod 1

LX
i� LXa

La
r

� �
; 1

h i
;

V x
ijkr ¼ mod 1

Lx
k � LxX

LX
i� Lxa

La
� LxX

LX
LXa
La

� �
r

� �
; 1

h i
;

V M
ijkr ¼ mod 1

LM
j� LMx

Lx
k � LMX

LX
� LMx

Lx
LxX
LX

� �
i

�h
�

LMa
La

� LMX
LX

LXa
La

� LMx
Lx

Lxa
La

� LXa
La

LxX
LX

� �� �
r
�
; 1
i
;

ð5Þ

where, in order to simplify notation, we denote mod½a; b� to
the value of a modulo b. Now, we aim to obtain a set of
distribution variables based on integer numbers, which will
correspond with the different values of a;X;x and M of the
satellites of the constellation. In order to do that, we mul-
tiply the first expression from Eq. (5) by La, the second by
LaLX, the third by LaLXLx, and the fourth by LaLXLxLM ,
leading to the following set of equations:

LaV a
ijkr ¼ mod r; La½ �;

LXLaV X
ijkr ¼ mod Lai� LXar; LXLa½ �;

LxLXLaV x
ijkr ¼ mod LXLak � LxXLai½ �

LxaLX � LxXLXað Þr;LxLXLa�;
LMLxLXLaV M

ijkr ¼ mod LxLXLaj� LMxLXLak½ �
LMXLxLa � LMxLxXLað Þi�
LMaLxLX � LMXLXaLxð �
LMx LxaLX � LXaLxXð ÞÞr; LMLxLXLa�:

ð6Þ

Then, we define a new set of variables

fNa;NX;Nx;NMg which relate to the original one
through these expressions:

Na
ijkr ¼ LaV a

ijkr;

NX
ijkr ¼ LXLaV X

ijkr;

Nx
ijkr ¼ LxLXLaV x

ijkr;

NM
ijkr ¼ LMLxLXLaV M

ijkr;

ð7Þ
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which introduced in Eq. (6), they allow us to obtain:

Na
ijkr ¼ mod r; La½ �;

NX
ijkr ¼ mod Lai� LXar;LXLa½ �;

Nx
ijkr ¼ mod LXLak � LxXLai� LxaLX � LxXLXað Þr;LxLXLa½ �;

NM
ijkr ¼ mod LxLXLaj� LMxLXLak � LMXLxLa � LMxLxXLað Þi½ �

LMaLxLX � LMXLXaLxð �
LMx LxaLX � LXaLxXð ÞÞr; LMLxLXLa�:

ð8Þ
From Eq. (8), it is easy to derive that

fNa;NX;Nx;NMg are integer numbers since there are
the result of sums and multiplications of integer numbers.
We can also derive that these new distribution variables
can only present the values shown in the following
expressions:

Na 2 f1; . . . ; Lag;
NX 2 f1; . . . ; LXLag;
Nx 2 f1; . . . ; LxLXLag;
NM 2 f1; . . . ; LMLxLXLag;

ð9Þ

which define a set of possible values for each different
dimension of the space. This means that we can define
given values of the semi-major axis, the right ascension of
the ascending node, the argument of perigee, and the initial
mean anomaly for the satellites of the constellation to
share. For instance, let LXLa ¼ 4 be the number of different
positions in the right ascension of the ascending node, that
is, the number of different orbital planes of the constella-

tion. If we relate NX ¼ f1; 2; 3; 4g to
DX1 ¼ 0�;DX2 ¼ 30�;DX3 ¼ 90� and DX4 ¼ 180� respec-
tively, we are setting the possible orbital planes in which
the satellites of the constellation can be positioned. As it
can be seen, it is not required to perform a uniform distri-
bution in these variables.

3.3. Complete uniform distribution

In the previous subsection, we introduced a formulation
to perform a uniform distribution over a set of predefined
values of semi-major axis, right ascension of the ascending
node, argument of perigee, and initial mean anomaly.
However, no constraint was imposed in how these prede-
fined values were distributed. Since complete uniform dis-
tributions are of importance for a large number of space
missions, we deal with this particular case in the following
lines. As said previously, the general formulation of 4D-
LFC leads to the expression:

Na
ijkr ¼ mod r; La½ �;

NX
ijkr ¼ mod Lai� LXar;LXLa½ �;

Nx
ijkr ¼ mod LXLak � LxXLai� LxaLX � LxXLXað Þr;LxLXLa½ �;

NM
ijkr ¼ mod LxLXLaj� LMxLXLak � LMXLxLa � LMxLxXLað Þi½ �

LMaLxLX � LMXLXaLxð �
LMx LxaLX � LXaLxXð ÞÞr; LMLxLXLa�;

ð10Þ
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or in a more compact form:

La 0 0 0

LXa LX 0 0

Lxa LxX Lx 0

LMa LMX LMx LM

0
BBBB@

1
CCCCA

Na
ijkrmodðLaÞ

NX
ijkrmodðLXLaÞ

Nx
ijkrmodðLxLXLaÞ

NM
ijkrmodðLMLxLXLaÞ

0
BBBBB@

1
CCCCCA¼

r

i

k

j

0
BBBB@

1
CCCCA;

ð11Þ
where fNa;NX;Nx;NMg must be related with different
values of the real distribution variables a;X;x and M in
order to obtain the final constellation distribution. In gen-
eral, these values can be selected with no restriction. How-
ever, if a completely uniform distribution is required, the
values of X;x and M must be related with the distribution
parameters of the problem in such a way that the possible
values of these angles can present are uniformly dis-
tributed. In particular, and from Eq. (9):

DXijkr ¼ 2p
NX

ijkr

LaLX
;

Dxijkr ¼ 2p
Nx

ijkr

LaLXLx
;

DMijkr ¼ 2p
NM

ijkr

LaLXLxLM
;

ð12Þ

where all these angles are related with one reference satel-
lite (0000) from the constellation. Note that this satellite
distribution provides a configuration that is geometrically
uniform in the same sense as it was presented in the 2D-
LFC and the 3D-LFC.

3.4. Setting the values of the semi-major axes of the

constellation

Although the general methodology presented in the 4D-
LFC formulation allows to generate a large number of dif-
ferent distributions, in most applications it is extremely
interesting that the structure of the constellation presents
some periodic properties, and thus, additional constraints
must be imposed in the semi-major axis in order to obtain
that important characteristic.

Let Np be the number of complete orbits that a satellite
requires in order to complete a closed track in a given
frame of reference, and let Nd be the number of complete
rotations that the frame of reference performs during this
time. For instance, if the selected frame of reference is
the Earth Centered Earth Fixed (ECEF), Np and Nd corre-
spond to the minimum number of orbit revolutions and the
minimum number of days that a satellite requires to repeat
its ground-track. In that respect, it is worth noticing that
even if an orbit does not repeat its ground-track in the
ECEF frame of reference, it is possible to find another
rotating frame of reference in which it does. However, in
order to simplify the exposition and without loss of
generality we will assume that the reference systems in con-
sideration are the inertial and the ECEF frames of refer-
ence. Thus, we can define a period of repetition for each
satellite as:
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T c ¼ NpT ¼ NdT d ; ð13Þ
where T is the orbital period of each satellite and T d is the
rotating period of the reference frame. Additionally, T c is
the shortest time for a satellite to repeat its dynamic in both
reference systems. This means that for any time multiple of
T c that is also true. In other words, let T s ¼ AT c where A is
a natural number, then after a time T s the satellite also
repeats its dynamics in both reference frames.

Therefore, in order to obtain a periodic system, we have
to find a time T s when all the satellites of the constellation
repeat their dynamics at the same time. Let Nr

d and Nr
p be

the number of orbital revolutions and the number of refer-
ence frame complete rotations that each subset of satellites
with denomination r need to perform in order to repeat
their dynamic in both reference systems:

T r
c ¼ Nr

pT
r ¼ Nr

dT d ; ð14Þ
Then, and since the reference frames are the same for all

the satellites of the constellation, T d is common for all the
constellation. This implies that the time T s can be com-
puted as follows:

T s ¼ mcmðN 1
d ;N

2
d ; . . . ;N

r
d ; . . . ;N

La
d ÞT d ; ð15Þ

where mcmðN 1
d ;N

2
d ; . . . ;N

r
d ; . . . ;N

La
d Þ is the minimum com-

mon multiplier of the different Nr
d of the constellation.

On the other hand, the values of Nr
p can be freely chosen,

taking into account that their values will determine the
semi-major axis of the orbits (remember that the period
of the orbits T r is a function of the semi-major axis).

This means that for example, if we have a repeating
ground-track constellation whose satellites have two
different semi-major axes and that satellites repeat their
ground-tracks in the same number of days, that leads to
a dynamic that is repeated in T s ¼ T c ¼ NdT d (since

mcmðN 1
d ;N

2
dÞ ¼ Nd). If instead we have two different repe-

tition periods, T s ¼ mcmðN 1
d ;N

2
dÞT d .
4. Including the J2 perturbation in the formulation

The former formulation considers a Keplerian move-
ment where satellites are only subjected to the main term
of the gravitational potential of the primary body. Another
possible application is in missions where part of the fuel
budget is dedicated to maintain the different dynamics of
the satellites in the constellation within a given mission
boundary. However, there are space missions where it is
of interest to include the oblateness effect of the Earth (J 2

of the gravitational potential) in the design process of the
constellation due to the important effects that this pertur-
bation produces. In particular, the J 2 perturbation gener-
ates a shifting of the orbital planes and a rotation of the
orbits inside their planes. This causes the destruction of
the initial design of the constellation if no orbital maneu-
vers are performed, being the effect more noticeable the clo-
ser satellites are from Earth. For these reasons, we include
e Flower Constellations, Advances in Space Research, https://doi.org/
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in the constellation design proposed the effects of the J 2

perturbation.
The secular variations of the classical elements for a

satellite orbiting the Earth under the J 2 perturbation are
(Vallado, 2001):

_asec ¼ 0; n ¼ ffiffiffiffil
a3

p
1þ 3

4
J 2

R�
að1�e2Þ

� �2

2� 3 sin2ðincÞ� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p	 

;

_esec ¼ 0; _xsec ¼ 3
4
J 2

R�
að1�e2Þ

� �2

n 5 cos2ðincÞ � 1ð Þ;

_isec ¼ 0; _Xsec ¼ � 3
2
J 2

R�
að1�e2Þ

� �2

n cosðincÞ;

ð16Þ

where l and R� are the gravitational constant and the
equatorial radius of the Earth respectively, and n is the
mean motion of the satellite. Thus, there are three secular
variables that change over time: the right ascension of the
ascending node, the argument of perigee and the mean
motion. In order to maintain the configuration as a con-
stellation, we require that all the orbital planes shift at the

same speed ( _Xsec ¼ _Xsec0), that the rotations in the orbital
plane are performed at the same speed ( _xsec ¼ _xsec0), and
that the period of the orbits is congruent with the repeti-
tion period of the whole structure (T s must be the same
for all the satellites of the constellations), that is, there
must exist a time period when the constellation repeats

its dynamic. We denote _Xsec0 and _xsec0 to the constellation
references for the secular variations of the right ascension
of the ascending node and the argument of perigee. On
the other hand, and for a given satellite of the constella-
tion, there exists a relation between the different nodal
periods:

T c ¼ NpT X ¼ Np
2p

nþ _x
¼ NdT XG ¼ Nd

2p

x� � _X
; ð17Þ

where T X is the nodal period of the orbit, and T XG is the
nodal period of Greenwich. Thus, using Eq. (16) and the
former constraints, we obtain:

2p
TXG

Np

Nd
¼ ffiffiffiffil

a3

p
1þ 3

4
J 2

R�
að1�e2Þ

� �2

2� 3 sin2ðincÞ� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

p	 

þ _xsec0;

_xsec0 ¼ 3
4
J 2

R�
að1�e2Þ

� �2
2p
TXG

Np

Nd
5 cos2ðincÞ � 1ð Þ;

_Xsec0 ¼ � 3
2
J 2

R�
að1�e2Þ

� �2
2p
TXG

Np

Nd
cosðincÞ;

ð18Þ

which is a system of three nonlinear equations with three
unknowns (the semi-major axis, the inclination and the
eccentricity) for each different value of Na. From the

expressions of _xsec0 and _Xsec0, we can derive that:

cosðincÞ ¼
� _xsec0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_x2
sec0 þ 5 _X2

sec0

q
5 _Xsec0

; ð19Þ

meaning that all the satellites in the constellation must have
the same inclination (the one of the reference orbit), since

_xsec0 and _Xsec0 are common for the constellation. On the

other hand, from the expression in _Xsec0 we obtain a rela-
tion between the semi-major axis and the eccentricity of
the orbit:
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1� e2 ¼ R�
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3

2

J 2

_Xsec0

2p
T XG

Np

Nd
cosðincÞ

s
; ð20Þ

which can be introduced in the expression of the mean
motion, obtaining a nonlinear equation in the semi-major
axis:

a
3
2 ¼ 2p

T XG

Np

Nd
� _xsec0

� ��1

� ffiffiffi
l

p
1�

_Xsec0

4p
T dNd

Np

2� 3 sin2ðincÞ
cosðincÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 3

2

J 2

_Xsec0

2p
T XG

Np

Nd
cosðincÞ

svuut
2
4

3
5;

ð21Þ
from where the value of the semi-major axis can be
obtained numerically, and then, the value of the eccentric-
ity using Eq. (20).

This means that all satellites of the constellation that
share the same value of Na have the same values of
semi-major axis, inclination and eccentricity. This is effec-
tively generating a 3D Lattice Flower Constellation inside
the 4D configuration. Thus, a 4D Lattice Flower Constel-
lation can also be regarded as a set of 3D Lattice Flower
Constellations that present a given relation in their motions
provided by Eq. (15).

The previous conditions can be relaxed for some mis-
sions. For instance, if we are interested in designing a
sun-synchronous constellation, it is possible to only impose

that _Xsec ¼ _Xsec0 and select the sun-synchronous inclination
for each altitude. This means that the constellation will not
be coordinated in n and x; but, it will maintain the orbital
plane structure over time. In that sense, other design com-
binations are also possible.

Finally, it is important to note that under additional
perturbations, the satellites of the constellation will require
to perform orbital maneuvers in order to maintain the con-
figuration defined (Arnas, 2018; Arnas et al., 2016). This is
more important in a 4D Lattice Flower Constellation since
eccentricity and semi-major axis are in general different for
each satellite of the constellation.
5. Relation with 2D and 3D Lattice Flower Constellations

4D-LFC contains as a subset the former 2D-LFC and
3D-LFC. In order to prove that, we must depart from
the complete uniform distribution presented in Section 3.3
and impose that the distribution only has one semi-major
axis that is shared for all the satellites of the constellation,
that is, we must impose that La ¼ 1. That way, by introduc-
ing these constraints in Eq. (8), we obtain:

Na
ijkr ¼ 1;

DXijkr ¼ 2p mod i;LX½ �
LX

;

Dxijkr ¼ 2p mod LXk�LxXi;LxLX½ �
LXLx

;

DMijkr ¼ 2p mod LxLXj�LMxLXk� LMXLx�LMxLxXð Þi;LMLxLX½ �
LXLxLM

;

ð22Þ
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which can be operated to obtain a simpler expression if we
take into account that angles are module 2p:

Na
ijkr ¼ 1;

DXijkr ¼ 2p i
LX
;

Dxijkr ¼ 2p k
Lx
� LxXi

LXLx

� �
;

DMijkr ¼ 2p j
LM

� LMxk
LxLM

� LMXLx�LMxLxXð Þi
LXLxLM

� �
;

ð23Þ

which is the same expression seen in Eq. (2) for the 3D-
LFC but with the notation introduced in the 4D-LFC. A
similar relation can be established with 2D-LFC by impos-
ing in addition that Lx ¼ 1, that way:

Na
ijkr ¼ 1;

DXijkr ¼ 2p i
LX
;

Dxijkr ¼ 0;

DMijkr ¼ 2p j
LM

� LMXi
LXLM

� �
;

ð24Þ

which represents the same distribution as the one seen in
Eq. (1) for 2D-LFC. This means that, 4D-LFC represent
the mathematical generalization of the former 2D-LFC
and 3D-LFC.

Additionally, if instead of limiting the number of semi-
major axes of the constellation to La ¼ 1 we study a general
distribution where La – 1, it is also possible to observe 2D-
LFC and 3D-LFC inside the resultant distribution. Let r be
the distribution variable that defines a given value of semi-
major axis. Then, we can study all the satellites that share
this semi-major axis and select one of them as the reference
satellite for this subset. That way, we can relate the posi-
tions of this subset of satellites with respect to this reference
satellite using Eq. (8):

Na
ijkr ¼ r;

Xijkr � X000r ¼ 2p i
LX
;

xijkr � x000r ¼ 2p k
Lx
� LxXi

LXLx

� �
;

Mijkr �M000r ¼ 2p j
LM

� LMxk
LxLM

� LMXLx�LMxLxXð Þi
LXLxLM

� �
;

ð25Þ

which it is again a 3D-LFC distribution but with respect to
the reference satellite that we have selected at this semi-
major axis. Therefore, we can conclude that 4D-LFC is
in fact a combination of 2D-LFC and 3D-LFC into a lar-
ger constellation that presents the properties of uniformity,
symmetry and periodicity in its configuration.

6. Simple example of application

In this section an example of 4D-LFC is presented to
show the possibilities of this methodology. In particular,
we propose a satellite constellation based on two subsets
of satellites located at different altitudes (La ¼ 2). The first
subset corresponds to deep space observation satellites,
which will be located at the higher orbit. It is assumed that
these satellites are not able to establish a correct communi-
cation with their ground stations, and thus they require the
Please cite this article as: D. Arnas, D. Casanova and E. Tresaco, 4D Lattic
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assistance of other satellites to accomplish this task. On the
other hand, the second subset is comprised by telecommu-
nication satellites whose mission is to receive the data sent
by the first subset and resend it to their ground stations.

In order to present a clear example, we consider a con-
stellation based on 10 repeating ground track satellites

whose period of repetition is 1 day, that is, N 1
d ¼ N 2

d ¼ 1,
and that are all contained in the same orbital plane. In par-
ticular, we denote with r ¼ 1 to the 5 telecommunication
satellites, which are located in the lower orbit; and with
r ¼ 2 to the 5 deep space observation satellites, which are
positioned in the higher orbit. Note that with this distribu-
tion the constellation has LM ¼ 5 satellites per orbit. These

satellites will repeat their orbital motion in N 1
p ¼ 5 and

N 2
p ¼ 4 orbital revolutions respectively. Moreover, having

all satellites positioned in the same orbital plane implies
that LX ¼ 1. Finally, a circular orbit at the critical inclina-
tion (inc ¼ 63:56o) is considered for the telecommunication
satellites. Finally, we can consider without loss of general-
ity that Lx ¼ 1.

Now, there are two possibilities in order to perform the
nominal design of the constellation. The first one is based
on generating two circular orbits for the constellation
where it will be required to compensate the different drift
of the orbits by orbital maneuvers. The second possibility
is to define a nominal constellation with the formulation
presented in Section 4. In the next sections we present both
approaches to this example of constellation design.
6.1. Design based on circular orbits

The idea of this design is to generate two circular orbits,
one at a higher altitude where the deep space observation
satellites will be located, and another at a lower altitude
containing the telecommunication satellites of the constel-
lation. That way, using Eqs. (17) and (18) the values of
the two different semi-major axes presented in the constel-
lation can be obtained: a1 ¼ 14419:333 km and
a2 ¼ 16732:336 km, which are related to Na

ijk1 ¼ 1 and

Na
ijk2 ¼ 2 respectively. Then, and since the distribution is

only performed in the semi-major axis and the mean anom-
aly of the satellites (argument of perigee and right ascen-
sion of the ascending node are common for the
constellation), Eq. (8) leads to:

Na
ijkr ¼ r;

DXijkr ¼ 0;

Dxijkr ¼ 0;

DMijkr ¼ 2p j
LM

� LMar
LMLa

� �
;

ð26Þ

where LMa ¼ f0; 1g is the combination number, a parame-
ter that allows to shift the satellite distribution between
both orbits. In particular, the only two configurations that
can be obtained using the 4D-LFC formulation are pre-
sented in Figs. 3 and 4 respectively. Note that the selection
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Fig. 3. Satellite configuration with LMa ¼ 0.

Fig. 4. Satellite configuration with LMa ¼ 1.
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of one of these configurations will determine the latitude
above the Earth where the communication between satel-
lites can be established.

Then, and from the distributions presented in Figs. 3
and 4 we are able to select one configuration. For the pur-
pose of this example, the distribution related with LMa ¼ 0
is chosen as the configuration of the constellation. Using
that satellite distribution, the dynamics of the whole con-
stellation can be computed. In that respect, a graphical rep-
resentation of the inertial orbits of the constellation has
been included in Fig. 5.

This distribution allows that given a pair of satellites
(one from the higher orbit and the other from the lower
orbit), a communication link between them can be estab-
lished once per day since this is the number of times that
the satellite in the lower orbit overtakes the other in one
day. This means that each satellite from the higher orbit
has the opportunity to communicate five times a day with
the assistance of the satellites in the lower orbit.
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Finally, it is interesting to study the propellant that the
satellites of this constellation require in order to maintain
the dynamic between the two subsets of satellites under
the effect of the J 2 perturbation. In that regard, it is
assumed that, as a mission requirement, the orbital planes
between both subsets of satellites cannot be farther than
1:5o, that is, DXmax ¼ 1:5o. This constraint allows to define
a maximum relative variation of the distribution from its
nominal definition. This orbit maintenance is performed
using impulsive orbital maneuvers, and in order to dis-
tribute the maintenance effort between all the satellites of
the constellation, we impose that all satellites have to spend
the same Dv during this maneuvers, that is, all the satellites
have to correct their orbits with respect to a reference sec-
ular variation in X defined for the whole constellation.
That way, a maneuver to compensate the differential drift
of the orbital plane must be performed each 28 days,
requiring an impulse of Dv ¼ 130:151 m/s per maneuver
in each satellite of the constellation.
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Fig. 5. Inertial representation of the constellation based on circular orbits.

Fig. 6. Inertial representation of the constellation based on J 2

coordination.
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6.2. Design based on J 2 coordination

In this case, the same basic example is studied but using
the J 2 coordinated dynamic shown in Section 4. That way,
a constellation consisting on a circular orbit at a lower
semi-major axis (containing the telecommunication satel-
lites) and an eccentric orbit at a higher semi-major axis
(where the deep space observation satellites are located)
Please cite this article as: D. Arnas, D. Casanova and E. Tresaco, 4D Lattic
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is generated. In particular, using Eqs. (20) and (21), the
semi-major axes of the constellation are now
a1 ¼ 14419:944 km and a2 ¼ 16732:085 km, while their
eccentricities are e1 ¼ 0:0 and e2 ¼ 0:479.

As in the former example, the distribution can be
defined using Eq. (26) where again two possibilities of dis-
tribution can be generated: LMa ¼ f0; 1g. In this case,
LMa ¼ 0 is chosen since it provides a more beneficial
dynamics and geometry for this problem. Therefore, the
distribution follows an equivalent distribution to the one
presented in Fig. 3. A graphical representation of the con-
stellation orbits can be seen in Fig. 6. As it can be observed,
both orbits have an intersection. This could, in general,
produce a collision avoidance problem for the constella-
tion. However, this problem has been solved by maximiz-
ing the distances between satellites when passing that
intersection point. This was done by selecting a proper
value of the configuration number LMa.

Regarding the possibilities of communication between
both subsets of satellites, we assume that this is only possi-
ble when the deep space observation satellites fly above the
telecommunication satellites, that is, when these satellites
are near their apogee. If that is the case, each deep space
observation satellite is able to communicate a minimum
of two times per day with the telecommunication satellites,
and a maximum of three times per day. If instead, the com-
munication can be established at any point during the
dynamic of the system, each deep space observation satel-
lite can perform this communication five times per day,
the same amount than the former example.

Finally, it is also possible to study the fuel budget
required to maintain this dynamic under the effect of the
J 2 perturbation. However, since the effects of the J 2 pertur-
bation are already included in the nominal definition of the
constellation, both orbits shift at the same rate, and thus,
no additional maneuvers are required to compensate this
effect. In particular, note that the secular values of the orbi-
tal elements of all the satellites of this constellation fulfill
_Xsec ¼ _Xsec0; _xsec ¼ _xsec0 and Eq. (17), and thus, the secular
relative distribution of the constellation is maintained
under the J 2 perturbation.

7. Example of application to mega-constellations

This example will focus on the design of a mega-
constellation, that is, a constellation of satellites comprised
by a large number of spacecrafts. In that respect, we pro-
pose to uniformly distribute 5000 Earth observation satel-
lites at 5 different altitudes between 650 km and 850 km
using the design proposed in this manuscript. In particular,
and since the objective is Earth observation, the orbits of
the constellation will be sun-synchronous and circular.
Moreover, we will also assume that no coordination is per-
formed between satellites at different altitudes in order to
maintain the sun-synchronous property of every orbit no
matter the altitude in which the spacecraft is located.
e Flower Constellations, Advances in Space Research, https://doi.org/
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Table 1
Minimum distances between satellites.

Altitude (km) Inc. (deg) amin (deg) dmin (km)

650 97.980 0.980 120.204
700 98.188 0.977 120.748
750 98.393 0.975 121.283
800 98.603 0.972 121.808
850 98.816 0.970 122.322
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In general, one important property that mega-
constellations have to present is that no satellite conjunc-
tion should appear in the configuration during the nominal
operation of spacecrafts. This allows to drastically reduce
the probability of collision between satellites of the constel-
lation despite the spacecraft density. Therefore, the design
proposed in this example will focus on maximizing the min-
imum distances between spacecrafts. In order to ease this
computation, this work makes use of the expression pro-
vided by Speckman et al. (1990):

qmin ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2ðincÞ þ sin2ðincÞ cosðDXÞ

2

s
sin

DF
2

� �������
������;
ð27Þ

where:

DF ¼ DM � 2 tan�1 � cosðincÞ tan DX
2

� �	 

; ð28Þ

which relates the minimum dimensionless distance
(qmin ¼ dmin=a) between two satellites flying in circular
orbits at the same altitude and inclination (inc), with their
difference in right ascension of the ascending node (DX)
and mean anomaly (DM).

From the initial conditions of this example, La ¼ 5 (5
different altitudes), Lx ¼ 1 and Lxa ¼ LxX ¼ LMx ¼ 0 (or-
bits are circular), and LaLXLxLM ¼ 5000 (the constellation
has exactly 5000 satellites). Note that this also implies that
LXLM ¼ 1000. That way, the satellite distribution can be
defined as:

aijkr ¼ R� þ 600þ 50r ðkmÞ;
DXijkr ¼ 2p i

LX
� LXa

LX
r
La

� �
;

Dxijkr ¼ 0;

DMijkr ¼ 2p j
LM

� LMX
LM

i
LX
� r

La
LMa
LM

� LMX
LM

LXa
LX

� �� �
;

ð29Þ

where we can realize that if the distribution variable r is
fixed, this expression defines a 2D-LFC as seen in Section 5.
Therefore, it is possible to reduce the searching space of
Fig. 7. ðX;MÞ-space representation of o
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solutions. In particular, the only free distribution parame-
ters affecting the minimum distance between satellites are
LX; LM , and LMX; while LXa, and LMa only change the rela-
tive phasing of orbital planes and satellite locations
between orbits at different altitudes.

That way, an exhaustive search of 4D-LFCs has been
performed by varying the distribution parameters LX; LM ,
and LMX, and taking into account that LXLM ¼ 1000 and
LMX 2 f0; . . . ; LX � 1g. The result of this search shows that
constellations with LX ¼ 500; LM ¼ 2, and LMX ¼ 497 pre-
sent the overall larger minimum distance between satellites
under the conditions considered. Fig. 7 shows the ðX;MÞ-
space representation of the constellation for a given alti-
tude. As it can be seen, the distribution is uniform in this
projected representation, having each orbit (vertical lines)
two satellites from the constellation. Moreover, Table 1
shows a summary of the minimum distances ðdminÞ, and
minimum angular distances ðaminÞ, computed as a function
of the altitude of the orbits.

Once LX; LM , and LMX have been selected, LXa, and LMa

remain as free parameters to choose for this problem. Par-
ticularly, if we want that no orbital plane is shared by satel-
lites from different altitudes, for instance to prevent
telecommunication or observation interference between
satellites, then LXa has to be selected such that
gcdðLX; LXaÞ ¼ 1, for example LXa ¼ 2. On the other hand,
LMa controls the phasing of satellites with respect to the
chosen altitude. Since no coordination on the orbital peri-
ods was imposed, this distribution parameter will only con-
trol the sequence in which satellites from different altitudes
ne altitude from the constellation.
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Fig. 8. Inertial representation of one altitude of the constellation.

Fig. 9. Inertial representation of the whole mega-constellation.
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will fly over Earth’s Equator. Therefore, in this example we
choose LMa ¼ 0 for simplicity.

Fig. 8 shows the constellation distribution of one of the
altitudes of the constellation. In here, it can be seen that the
satellites of the constellation form a closed line that has no
self-intersections, which in effect prevents the appearance
of conjunctions in the dynamics as was discussed in Lee
et al. (2015). On the other hand, Fig. 9 presents the whole
constellation. As it can be seen, the selection of the distri-
bution parameter LXa ¼ 2 has allowed to distribute this
closed lines made of satellites evenly in the space, or in
other words, satellites are better distributed around the
Earth.

Note also that the results in number of satellites pre-
sented in this example are within the capacity limits shown
in Arnas et al. (2020) for uniform sun-synchronous constel-
lations. This means that if we increase the number of satel-
lites in the configuration or allow non uniform
distributions, it is still possible to find constellations with
Please cite this article as: D. Arnas, D. Casanova and E. Tresaco, 4D Lattic
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more spacecrafts but that still maintain the same minimum
separation between satellites.

8. Conclusion

This work introduces the 4D Lattice Flower Constella-
tions as a new framework in satellite constellation design.
This methodology is based on the idea of generating con-
stellations whose satellites are located at different semi-
major axes while maintaining a periodic dynamic of the
whole system. That way it is possible to define constella-
tions whose satellites have very different instruments (and
thus different mission requirements) or to coordinate the
dynamic of different satellite constellations. This situations
can arise, for instance, in telecommunications, or in the
interference problem between constellations at a different
altitudes.4D Lattice Flower Constellations is a design
methodology that allows to generate all the possible con-
stellations that are completely uniform with a given num-
ber of satellites. This is based on the idea of generating a
lattice (a uniform distribution of points) in a four dimen-
sional space. This concept was already applied in the 2D
and 3D Lattice Flower Constellations, obtaining good
results for global coverage missions, telecommunication
constellations and global positioning systems. In here, the
4D Lattice Flower Constellations are introduced as a
methodology to coordinate different constellations while
maintaining the characteristic properties of uniformity,
symmetry and periodicity of previous Lattice Flower
Constellations.

Additionally, 4D Lattice Flower Constellations can be
regarded as the mathematical generalization of the former
2D and 3D Lattice Flower Constellations. In fact, 2D and
3D Lattice Flower Constellations can be defined as a par-
ticular case of application of 4D Lattice Flower Constella-
tions. In that respect, it is also interesting to note that
inside the distribution of a 4D Lattice Flower Constella-
tion, it is possible to observe complete 2D and 3D Lattice
Flower Constellations generated by a subset of constella-
tion satellites. This shows that 4D Lattice Flower Constel-
lations can be used as a tool to coordinate the dynamic of
several Lattice Flower Constellations.

Moreover, this manuscript includes the study of the
effects of the J 2 perturbation on 4D Lattice Flower Con-
stellations when a coordinated dynamic between satellites
at different altitudes is required. In particular, we present
a methodology to include the effects of this perturbation
on the nominal design of the constellation. That way, it
is possible to impose that all the orbits of the constellation
shift at the same rate, which allows to maintain the relative
configuration of the constellation under this perturbation
with no additional orbital maneuvers. This methodology
of design allows to reduce the fuel required to maintain
the orbits, however, it limits the freedom of design. For
that reason, this work also includes the study of the fuel
budget required for the constellation when no natural coor-
dination with J 2 is performed.
e Flower Constellations, Advances in Space Research, https://doi.org/
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Finally, it is also important to note that the Necklace
Theory of Flower Constellations can also be applied to
the 4D Lattice Flower Constellations. This will provide a
wider range of possibilities of design for this methodology.
It will also allow, for example, to study the problem of
determining the optimal launching sequence for a constel-
lation in such a way that the incomplete configuration pre-
sents functionality.
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