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Abstract 

Dislocation after total hip arthroplasty (THA) remains a major issue and an important post-

surgical complication. Impingement and subsequent dislocation are influenced by the 

design (head size) and position (anteversion and abduction angles) of the acetabulum and 

different movements of the patient, with external extension and internal f lexion the most 

critical movements. The aim of this study is to develop a computational tool based on a 

three-dimensional (3D) parametric finite element (FE) model and an artificial neural 

network (ANN) to assist clinicians in identifying the optimal prosthesis design and position 

of the acetabular cup to reduce the probability of impingement and dislocation. A 3D 

parametric model of a THA was used. The model parameters were the f emoral head size 

and the acetabulum abduction and anteversion angles. Simulations run with this parametric 

model were used to train an ANN, which predicts the range of movement (ROM) before 

impingement and dislocation. This study recreates different configurations and obtains 

absolute errors lower than 5.5º between the ROM obtained from the FE simulations and the 

ANN predictions. The ROM is also predicted for patients who had already suffered 

dislocation after THA, and the computational predictions confirm the patient’s dislocations. 

Summarizing, the combination of a 3D parametric FE model of a THA and an ANN is a 

useful computational tool to predict the ROM allowed for different designs of prosthesis 

heads. 
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1. Introduction 

Dislocation is a significant concern in total hip arthroplasty (THA) (Miki et al., 2013). 

Bozic et al. (2009) previously reported that instability had surpassed mechanical aseptic 

loosening as the most common cause of revision surgery. A patient who undergoes hip 

dislocations has reduced mobility, which directly affects the quality of life and increases the 

costs to the health system (Brown and Callaghan, 2008). Management of THA instability  

remains a surgical challenge and represents a multifactorial problem that includes the 

patient condition, surgical technique, implant component design and orientation, bone 

quality, and surrounding soft tissues (Brown and Callaghan, 2008; Barrack, 2003; Padgett 

and Warashina, 2004; Lawton and Morrey, 2004; Tanino et al, 2007; Kim et al., 2009; 

Fessy et al., 2017; Guo et al., 2017). Guo et al. (2017) remarked that many risk factors were 

identified for the dislocation following revision THA and that these factors were still 

undergoing controversial. 

Many biomechanical studies based on the finite element (FE) method have evaluated the 

dislocation stability of different implant designs (Scifert et al., 1998; Nadzadi et al. ,  2003; 

Kluess et al., 2007; Elkins et al., 2011, 2012, 2015, Ezquerra et al., 2017; Terrier e al., 

2017; Gao et al., 2018; Chi et al., 2018). All previous studies showed an added value with 

respect to a rigid body dynamics analysis. Elkins et al. (2012) performed a dynamic FE 

analysis to clarify the different consequences of bone-on-bone versus implant femoral neck 

and acetabular cup impingement (hardware impingement), and they concluded that bone-

on-bone impingement was less prone to dislocation than hardware impingement. Large 

head diameters have been shown to prevent dislocation (Kluess et al., 2007; Ezquerra et al., 

2017). Sciffert et al. (1998) described the relationship between range of movement (ROM) 



 
 

and dislocation and showed that increasing the femoral head size increased the ROM. 

Terrier et al. (2017) performed a FE biomechanical analysis to compare a standard implant, 

a constraint implant and a dual mobility implant. Compared with the standard and constant 

implants, the dual mobility implants showed excellent performance in extending the ROM 

(Terrier et al., 2017; Gao et al., 2018). Several previous works established a “safe zone” 

with an optimal implant position and head size that reduced the risk of dislocation (Kluess 

et al., 2007; Elkins et al., 2015; Ezquerra et al., 2017; ). Although, different reviews on this 

topic claimed that the establishment of a “safe zone” was not enough to prevent THA 

dislocation (Seagrave et al., 2017; Murphy et al., 2018; Tezuda et al., 2019). 

Many different approaches can be tested using the FE method. Although FE analyses 

present the disadvantage of high computational cost, when a real-time response is required. 

The main objective of this work is to use a machine learning technique, artificial neural 

network (ANN) to rapidly and effectively predict the impingement and dislocation of THA. 

ANNs have been previously been used to predict atheroma plaque rupture (Cilla et al., 

2012); femur (Garijo et al., 2014) and tibia (Garijo et al., 2017) loads; and damage 

accumulation in cancellous bone (Hambli, 2011). Therefore, the ultimate goal of this work 

is to develop a real-time computational tool to predict the ROM allowed after THA before 

impingement and dislocation. The tool will quantify the risk of dislocation for certain 

positions of the acetabular cup and for various designs of the prosthetic head. The 

methodology used to create this computational tool combines a 3D parametric FE model of  

the THA (Ezquerra et al. 2017) and a machine learning technique (ANN). 

To the best of the authors’ knowledge, this is the first publication focused on this type of 

analysis. A parametric tool based on machine learning techniques that is used to predict the 

ROM after THA has not been previously conducted. The tool may provide to the clinicians 



 
 

with optimal prosthesis design and acetabular cup position to reduce post-op risk of 

dislocation. Additionally, the tool may allow to compare different position alternatives 

prior to the surgery process showing results of the suitability of each position considered by 

the surgeon. 

 

2. Material and Methods 

2.1 3D Parametric Finite Element Model 

A parametric FE model of a hip prosthesis was previously developed (Ezquerra et al., 2017) 

to simulate impingement and dislocation for different femoral head sizes, acetabulum 

abduction (α) and anteversion (β) angles (Fig. 1). Impingement is the instant when the 

acetabulum and the femoral bone get in contact and the dislocation is produced when the 

femoral head gets out of its position inside the acetabulum. 

The FE model was developed with Abaqus CAE v6.16 (Dassault Systèmes Simulia Corp.,  

Suresnes, France) and consisted of two parts: the acetabulum and the femoral head and 

stem. The dimensions and geometry of the implant were obtained from a standard 37.5 

mm-offset Exeter® cemented prosthesis (Stryker Ltd., Newbury, United Kingdom) with a 

collarless, smooth, polished and tapered stem (Choy et al., 2013). The acetabulum was 

modelled as a deformable solid with material properties that correspond to ultra-high-

molecular-weight polyethylene (UHMWPE) (elastic modulus (E) of 940 MPa, Poisson’s 

ratio of µ=0.3 and yield strength of 26.26 MPa to simulate the plastic properties of 

polyethylene) (Kluess et al., 2007; Ezquerra et al., 2017; Voigt et al., 2007). Due to the 

stiffness differences between the metal components of the femoral head and stem and the 

polyethylene of the acetabulum, the femoral head and stem were modelled as rigid parts 



 
 

and their deformations were not considered. The mesh size was approximately 1.5 mm. A 

sensibility analysis was conducted by Ezquerra et al. (2017). Bone and soft tissue were not 

considered in the simulation.  

A tangential isotropic contact model was defined between the femoral head and neck 

(master surfaces) and the inner hemisphere of the acetabulum component and the outer ring 

(slave surface). A friction coefficient of 0.038 was defined (Pedersen et al., 2005; Ezquerra 

et al., 2017). 

Two types of movements were simulated until impingement and dislocation of the 

components occurred (Fig. 1): external extension (EE) and internal flexion (IF). EE 

corresponds to the standing position of the patient with an external rotation of the hip joint,  

whereas IF represents the seated position of the patient with an internal rotation of  the hip 

joint (typical leg crossing manoeuvre) (Nadzadi et al., 2003). 

The nodes of the external acetabulum component were fixed to simulate its complete 

fixation. All rotations were applied with respect to the reference point in the centre of  the 

head (Fig. 1). The reader is referred to Ezquerra et al. (2017) for further details. 

2.2 Source Data 

Using the parametric FE model (section 2.1) different simulations were run. The inputs f or 

each simulation were the femoral head sizes (22, 28, 32, 36 and 44 mm), acetabulum 

abduction angles (α) (20, 30, 40, 50, 60 and 70°) and acetabular anteversion angles (β) (0 , 

5, 10, 20, 30 and 40°) (Fig. 1). Therefore, 216 simulations were run for each type of 

movement (EE and IF). From each simulation, we obtained the maximum ROM allowed 

before impingement or dislocation.  



 
 

2.3 Artificial Neural Network 

ANNs are mathematical algorithms based on brain functioning that try to mimic the 

behaviour of the neurons (McCulloch and Pitts, 1943). A particular ANN is the multilayer 

perceptron (MLP). The main structure of the MLP includes an input layer, a hidden layer 

and an output layer (Fig. 2). Each one of these layers consists of a set of basic units called 

neurons.  

ANNs also include a training algorithm that adjusts the weights and other parameters based 

on the input and output data provided to the network as well as the values that the network 

predicts (Fig. 2). A commonly used training algorithm in the MLP is the back-propagation 

algorithm (Bishop, 1995), which was chosen for training our network. The back-

propagation algorithm uses supervised learning, which means that we provide the algorithm 

with examples of the inputs and outputs that we want the network to compute, and then the 

error (the difference between actual and expected results) is calculated. The main goal of  

the back-propagation algorithm is to minimize this error. The training begins with random 

weights, and the goal is to adjust them so that the error will be minimal.  

The size of the input layer was determined by the number of input variables considered 

(Fig. 2). These input variables were the femoral head size, abduction angle (α) and 

anteversion angle (β) (section 2.2), which resulted in a three-neuron layer. The hidden layer 

was analysed and defined independently for each case. The output layer consisted of a 

single neuron that determined the maximum angle of the movement predicted, which is 

what delimits the ROM of the hip joint (section 2.2). 

Several input connections along with the corresponding weights regulate the input signal 

intensities. An activation function that focuses on the input signals is needed. Additionally, 



 
 

a transfer function should be chosen for the output of the neuron as a function of the input 

signals. ANNs can be configured with different transfer functions on each layer to generate 

their outputs. Laudani et al. (2015) performed a comprehensive review on the problem of 

choosing a suitable function for the hidden layer. Among the different transfer f unctions, 

the most usual transfer functions are logistic sigmoid (logsig), tangent sigmoid (tansig) and 

linear (purelin) (Fig. 3). These functions as well as a and n as the output and the input data, 

respectively, are explained below. 

- The logistic sigmoid (logsig) generates an output between 0 and 1 according to 

equation 1, and input data range from negative to positive values. 

𝑎𝑎 = 1
1+𝑒𝑒−𝑛𝑛

                                           (1) 

- The tangent sigmoid (tansig), which is an alternative to logsig in multilayer 

networks, generates an output between -1 and 1 (2). 

𝑎𝑎 = 𝑒𝑒𝑛𝑛−𝑒𝑒−𝑛𝑛

𝑒𝑒𝑛𝑛+𝑒𝑒−𝑛𝑛
                                    (2) 

- The linear transfer function (purelin) generates an output with a correlation of 𝑎𝑎 =

𝑛𝑛. 

A 10-fold cross-validation process was implemented to minimize the influence of the test 

set selection. In this paper, we randomly divided the data into two groups: 90% of the data 

were used to train the model and 10% of the data were used to test the model (Garijo et al. ,  

2014). 

Four independent ANNs were configured for impingement (i.e., the first collision between 

the acetabulum and femoral head/neck) and the dislocation (maximum ROM allowed) of  

the EE and IF movements. Different combinations of the previously defined transfer 



 
 

functions were tested to find the optimal configuration for each ANN (section 2.4.1). The 

ANNs were implemented in MATLAB R2018b (MathWorks, Massachusetts, USA). 

 

2.4 Method Performance and Validation 

To choose the best ANN configurations (transfer functions-section 2.3) and then validate 

our proposed ANNs, different analyses were performed. 

 

2.4.1 ANN performance and transfer function selection 

The optimal configuration for each ANN was determined through an analysis of the 

performances of different transfer functions (Fig. 3) and a different number of neurons in  

the hidden layer (between 2 and 70 neurons) (Fig. 2). For this section, the results of the 216 

simulations for each type of movement (EE and IF) (section 2.2) were used.  

 The configuration for each case was selected based on the absolute error (AE) (3), the 

correlation coefficient (RSQ) (4) and the time required to complete the training (Garijo  et 

al., 2014). Five independent analyses were performed for each option. These repetitions 

ensure the stability of the selected configuration (standard deviation).   

𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴�𝜃𝜃� − 𝜃𝜃�                                          (3)    

 

 𝑅𝑅𝐴𝐴𝑅𝑅 = 𝜎𝜎𝜃𝜃�𝜃𝜃
𝜎𝜎𝜃𝜃�𝜎𝜎𝜃𝜃

                                                               (4) 

Where 𝜃𝜃� is the predicted ROM, 𝜃𝜃 is the real ROM, 𝜎𝜎𝜃𝜃�𝜃𝜃 is the covariance, and 𝜎𝜎𝜃𝜃�  and 𝜎𝜎𝜃𝜃 

are the standard deviations. Results obtained for each configuration were summarized in  

section 3.1. 



 
 

2.4.2 Validation 1: Parametric FE cases 

Once the ANNs were configured, how accurate were ANN predictions compare with the 

values obtained in FE simulations was measured. From the work of Ezquerra et al. (2017), 

different combinations (23 cases) of femoral head sizes (28, 32 and 35 mm), acetabulum 

abduction angles (α) (25, 40 and 60°) and acetabular anteversion angles (β) (0, 15, 25°) 

were considered. These input value combinations were different from the source data 

(section 2.2) used to train the ANNs. Results obtained were summarized in Section 3.2. 

Additionally, a paired sample T-test was performed for each analysed case to verify the 

ANN prediction with respect to the FE simulation results. The statistics (p-value and 

Pearson correlation coefficient) were calculated using the data analysis module in Excel 

(Microsoft Corporation, Washington, USA). 

2.4.3 Validation 2: Patient-specific cases 

After the computational validation with FE data, ANNs were also used to predict the ROM 

before impingement and dislocation in 5 patients who already had suffered hip dislocation 

after THA. The data for these 5 patients is shown in Table 1. The abduction and anteversion 

angles were measured from their corresponding computed tomography (CT) scans after the 

THA surgical procedure, where the position of the prosthesis was analysed.  

3. Results 

3.1 ANN performance and transfer function selection 

Based on an analysis of the different possible combinations of transfer f unctions and the 

number of neurons in the hidden layer (section 2.4.1), the final configuration for each of the 

ANNs was established (Table 2). The time required for completing the training and testing 



 
 

of each ANN is also indicated in Table 2. The absolute error of the selected combinations 

was lower than 6.5º, and the RSQ was close to 1 for all combinations. The mean time 

required for their training was less than 30 seconds. 

3.2 Validation 1: Parametric FE cases 

Results from the parametric FE model simulations (Ezquerra et al., 2017) and the ANN 

predictions (section 2.4.2) were detailed in Table 3. A summary was showed in Table 4. 

The mean error obtained for the ANNs was lower than 5.5º (Table 4), and the approximated 

maximum standard deviation was 5º. 

The statistics show a significant difference (p<0.05 – Table 4) for both the impingement 

and luxation IF cases; nevertheless, considering the mean error and the standard deviation 

for these cases, the stability of the tool predictions can be assured (Table 4). The EE cases 

had a slightly higher standard deviation but significant differences were not observed 

(p>0.05), which implies a good correlation between the simulated ROM and the ANNs 

prediction. 

 

3.3 Validation 2: Patient-specific Cases 

Based on previously developed ANNs, the predicted ROMs for the 5 patients (Table 1) are 

presented in Table 5. Considering that all patients had already suffered hip prosthesis 

dislocation before the study development, the ROM limitation of each patient was 

determined by the lowest value obtained between the EE and IF results. Impingement of 

PS3 was predicted for an ROM of 33.74° and dislocation was predicted for an ROM of 

43.64° under EE. PS1, 2, 4 and 5 predicted impingement and dislocation for IF (Table 5). 



 
 

4. Discussion 

The results show that using a 3D parametric FE model with an ANN represents a powerful 

tool for estimating the ROM after THA under different prosthesis designs (head size and 

acetabular cup orientation) and for different clinical manoeuvre.  

The ANN performance AEs (for training and testing) were lower than 6.5º (Table 2). A 

comparison of the ANN estimations with the results of previous FE simulations (Ezquerra 

et al., 2017) showed that the calculated AEs were less than 5.5º (Table 3 and 4). Several 

experimental and clinical studies have analysed the ROM after THA under different 

manoeuvres. Kouyoumdjian et al. (2012) determined that the standard ROM for EE could 

be set to 37.9±8.4°. Our computational tool estimated that a ROM of 33.74° f or PS3 was 

predictive of impingement, and this result could justify why PS3 suffered THA dislocation. 

A ROM of 37.9° was not observed (Kouyoumdjian et al., 2012). Nadzadi et al. (2003) 

determined that the standard ROM for IF could be set to approximately 50°. Therefore, our 

computational tool for the other patients (PS1, 2, 4 and 5) estimated an ROM lower than 

50° for impingement and subsequent dislocation (see Table 5). These results justified the 

utility of the proposed computational tool.  

In previous studies, Ezquerra et al. (2017) found a “safe zone” when the acetabulum 

component was placed at a 40-60° abduction angle and a 15-25° anteversion angle. These 

values were similar to those reported by Kluess et al. (2007) (45° abduction and 15-30° 

anteversion), Pedersen et al. (2005) (at least 40° abduction and 10° anteversion), 

Lewinneck et al. (1978) (40°±10 abduction and 15°±10 anteversion) ,Biedermann et al. 

(2005) (45°±10 abduction and 15°±10 anteversion) or Reina et al. (2017) (40-50° abduction 

and 15-30° anteversion). Fessy et al. (2017) found evidence that implanting the cup in  30° 



 
 

to 50° inclination has a major impact on preventing dislocation. The position of the 

acetabulum component in the 5 patients analysed (Table 1) showed that the prosthesis was 

placed between the values of this predefined “safe zone” only in the case of PS1. Seagrave 

et al. (2017) performed a systematic reviewed to describe the different methods for 

measuring cup placement, target zones for cup positioning and the association between cup 

positioning and dislocation following primary THA. They concluded that the establishment 

of a safe zone based on the cup positioning and orientation was not enough to prevent THA 

dislocation (Seagrave et al., 2017; Murphy et al., 2018; Tezuda et al., 2019). Additionally, 

Tezuda et al. (2019) established that standard “safe zones” were outside the functional safe 

zone, identifying a potential reason hips dislocate despite leaving “safe zone” cup angles. 

Therefore, our computational tool could be a complementary tool to traditional “safe zone” 

theories. PS1 could be one of this “safe zone” failures. 

The proposed computational tool based on an ANN trained and tested with data obtained 

from FE simulations has the potential for use in predicting the ROM in real patients with an 

error lower than 5.5º, which may help clinicians when identifying the most suitable position 

of the prosthesis prior to the surgical intervention. Easiness for ANNs training and low time 

required for obtaining results allow the revision of multiple options (design and cup 

orientations) with low computational cost, which could lead to a light implementation 

within minimum technical requirements.  

Although the results obtained in this work were quite promising, the computational tool is 

based on several simplifications. The evaluation of more patient-specific cases could help 

to improve the accuracy of the tool and its validation. Additionally, acetabular polyethylene 

wear was not considered in the simulations, because instability created by prosthesis 

deterioration was not the main goal in this initial study but the direct consequences of the 



 
 

movement that a patient can carry out. In the future, acetabular polyethylene wear could be 

simulated by incorporating a formulation based on the Archard wear law (Kruger et al., 

2014). Elkins et al. (2015) incorporated in their simulations the capsule’s contribution to 

THA stability. In our study, this factor was neglected. A parametric model that considers 

the capsule could be implemented and its parameters could be incorporated in  the ANNs. 

Another limitation was the neglect of bone-on-bone impingement (Elkins et al., 2015), 

although impingement between the implant femoral neck and the acetabular cup remains 

the most common dislocation failure (Elkins et al., 2015). This study has not considered 

pelvic tilt factor, which relevance could be analysed and considered as a parameter for 

future developments of the predictive tool (Murphy et al., 2018; Hsu et al., 2019). Finally , 

the outer acetabulum component had a constant size (52 mm), and this consistency could be 

easily incorporated in a future parametric model and then into the computational tool based 

on the ANN. 

Despite these limitations, the combination of a 3D parametric FE model of a THA and an 

ANN is a useful computational tool to predict the ROM allowed for different designs of 

prosthesis heads. Using these kind of methodologies, complex process can be simplified 

through ANNs configurations achieving low errors in the prediction. Clinically, the 

computational tool will allow the analysis of different alternatives for the prosthesis 

placement prior to the surgery. This methodology could be implemented in clinical practice 

to avoid time-consuming 3D FE analyses and it could be a complementary tool to well-

defined “safe zones” previously established.  
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Table 1. Patient-Specific data included for the ANN final validation. F=Female; M=Male; 

α=abduction angle; β=anteversion angle. 

 
  Patient Age (yr) Gender Weight (kg) Head Size (mm) α (°) β (°) 

PS1 86 M 70 28 46,69 18,99 
PS2 91 F 60 28 38,8 20,81 
PS3 66 F 86 32 62 42 
PS4 72 F 95 32 31,77 22 
PS5 80 M 96 32 48,59 0 



 
 

Table 2. Summary of the absolute error (AE) and the correlation coefficient (RSQ) of  the 

different ANNs (EE=External extension; IF=Internal flexion; Imp=Impingement; 

Dis=Dislocation; and 𝜎𝜎=Standard deviation). 

 
 
  

Case EE Imp EE Dis IF Imp IF Dis 
Hidden Layer Transfer Function tansig logsig tansig tansig 
Hidden Layer Neurons 3 8 7 9 
OL Transfer Function logsig purelin purelin tansig 
AE (°) 4,57 6,12 3,67 4,41 
σ (AE) (º) 4,733 6,043 2,907 2,576 
RSQ 0,930 0,823 0,946 0,900 
σ (RSQ) 0,043 0,101 0,031 0,031 
Time (s) 8,69 25,61 24,70 26,89 
σ (Time) 0,66 1,23 1,33 3,46 



 
 

Table 3. Results Obtained for the 23 Finite Element Simulated Validation 

Cases. 𝛼𝛼=Abduction angle; 𝛽𝛽=Anteversion angle; AE=Absolute error; 𝜎𝜎=Standard 

deviation; EE=External extension; IF=Internal flexion; Imp=Impingement; and 

Dis=Dislocation.      

 

 

 

    EE Imp EE Dis IF Imp IF Dis 

Case 
Head 
Size  
(mm) 

α 
(º) 

β 
(º) 

Real 
ROM 

(º) 

Pred. 
ROM 

(º) 

AE 
(º) 

Real 
ROM 

(º) 

Pred. 
ROM 

(º) 

AE 
(º) 

Real 
ROM 

(º) 

Pred. 
ROM 

(º) 

AE 
(º) 

Real 
ROM 

(º) 

Pred. 
ROM 

(º) 

AE 
(º) 

1 28 60 25 86,40 77,80 8,60 92,45 96,38 3,93 18,00 22,90 4,90 54,00 61,59 7,59 

2 28 25 0 61,20 62,15 0,95 96,21 103,51 7,30 19,80 28,04 8,24 0,00 1,70 1,70 

3 36 25 25 93,60 81,48 12,12 78,70 64,22 14,47 0,00 1,52 1,52 21,78 26,81 5,03 

4 28 25 15 54,00 56,33 2,33 77,94 75,75 2,19 0,00 0,00 0,00 24,34 17,44 6,89 

5 28 25 25 145,12 152,67 7,56 62,66 62,93 0,27 37,80 42,10 4,30 26,57 25,18 1,39 

6 28 40 25 86,40 85,67 0,73 91,71 83,27 8,44 41,40 45,83 4,43 35,78 40,88 5,09 

7 36 40 15 100,80 100,64 0,16 97,27 103,18 5,90 9,00 8,93 0,07 30,60 34,80 4,20 

8 36 25 15 59,85 63,89 4,04 97,27 83,09 14,18 0,00 0,00 0,00 23,42 19,63 3,79 

9 36 25 0 96,21 92,88 3,33 76,43 76,46 0,03 45,00 48,36 3,36 0,00 3,85 3,85 

10 32 60 25 64,80 66,63 1,83 94,63 84,52 10,10 3,60 11,32 7,72 53,96 62,63 8,67 

11 32 25 0 70,20 67,04 3,16 68,51 68,52 0,02 44,33 54,58 10,25 0,00 4,01 4,01 

12 36 40 25 68,40 68,05 0,35 65,63 64,56 1,07 12,60 19,20 6,60 36,00 42,18 6,18 

13 32 40 15 73,13 70,14 2,99 128,72 148,06 19,34 30,60 32,13 1,53 33,28 34,93 1,64 

14 36 60 25 77,40 78,79 1,39 113,67 115,70 2,03 9,00 8,64 0,36 59,74 62,16 2,41 

15 28 60 15 81,00 73,95 7,05 101,90 103,96 2,06 18,00 15,95 2,05 48,11 54,04 5,93 

16 28 45 0 54,00 53,89 0,11 74,09 69,08 5,01 3,60 5,72 2,12 25,34 22,27 3,07 

17 32 25 25 128,72 143,12 14,40 69,03 75,01 5,98 30,60 35,64 5,04 25,96 26,69 0,73 

18 32 60 15 54,00 50,82 3,18 145,12 149,05 3,93 21,60 26,16 4,56 51,39 55,42 4,03 

19 32 40 25 59,40 62,54 3,14 145,35 141,16 4,19 18,00 12,59 5,41 38,93 42,26 3,33 

20 36 60 15 57,94 56,99 0,96 61,02 63,78 2,76 55,80 57,34 1,54 51,53 54,85 3,32 

21 28 40 15 68,40 58,35 10,05 64,30 61,95 2,35 14,40 18,91 4,51 35,69 33,09 2,60 

22 28 35 0 117,00 132,77 15,77 65,70 66,37 0,67 0,00 0,00 0,00 0,00 11,83 11,83 

23 32 25 15 91,80 92,18 0,38 69,32 66,48 2,83 45,00 50,83 5,83 23,58 19,49 4,09 
Mean 
AE      4,55   5,18   3,67   4,41 

𝜎𝜎      4,71   5,11   2,91   2,58 



 
 

Table 4. Summary of the results and statistics obtained for the 1st validation with 23 

computational cases (EE=External extension; IF=Internal flexion; Imp=Impingement; 

Dis=Dislocation; and σ=Standard deviation). 

 
 
 
 
 

 

 

  

Case Mean AE (º) σ (AE) (º) p-value Pearson Correlation Coefficient 

EE Imp 4,547 4,714 0,9750 0,9770 
EE Dis 5,177 5,112 0,7665 0,9661 
IF Imp 3,667 2,906 0,0007 0,9834 
IF Dis 4,408 2,576 0,0141 0,9726 



 
 

Table 5. Predicted ROM for each patient-specific analysis. Luxation is observed in external 

extension for patient 3 and in internal flexion for the other 4 cases (EE=External extension; 

IF=Internal flexion; Imp=Impingement; and Dis=Dislocation). 

 
  EE Imp EE Dis IF Imp IF Dis 

Patient Angle (º) Angle (º) Angle (º) Angle (º) 

PS1 65,71 74,44 30,30 43,54 
PS2 65,18 72,35 22,97 36,65 
PS3 33,74 43,64 65,89 71,23 
PS4 68,25 73,42 20,40 31,79 
PS5 92,91 100,09 15,38 27,89 
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