DR. MARIA APARICIO (Orcid ID : 0000-0002-1604-7562)

Article type : Review Article

Paediatricians provide higher quality care to children and adolescents in primary care: a systematic review

SHORT TITLE: Caring for children in primary care

AUTHORS:

Aparicio Rodrigo, María. MD, PhD. Associate Professor of Paediatrics. Complutense University of Madrid. Primary paediatrician. Madrid Health Service. Madrid. Spain

Ruiz Canela, Juan. MD. Primary care paediatrician. Andalucía Health Service. Sevilla. Spain

Buñuel Álvarez, Jose Cristóbal. MD. Primary care paediatrician. Aragon Health Service. Zaragoza. Spain

García Vera, César. MD. Primary care paediatrician. Aragon Health Service. Zaragoza. Spain

Esparza Olcina, Maria Jesús. MD. Primary care paediatrician. Madrid Health Service. Madrid. Spain

Barroso Espadero, Domingo. MD. Primary care paediatrician. Extremadura Health Service. Cáceres. Spain

González Rodríguez, Paz. MD. Primary care paediatrician. Madrid Health Service. Madrid. Spain

Juanes Toledo, Blanca. MD. Primary care paediatrician. Madrid Health Service. Madrid. Spain

Martínez Rubio, Victoria. MD. Primary care paediatrician. Madrid Health Service. Madrid. Spain

Ortega Páez, Eduardo. MD. Primary care paediatrician. Andalucía Health Service. Granada. Spain

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> 10.1111/APA.15324

Correspondence author: María Aparicio Rodrigo, Centro de Salud Entrevías, C/ Pedroches 3, 28053 Madrid, Spain.

Telephone. No +(34) 699752787

Email: marapa04@ucm.es

ABSTRACT

Paediatricians provide higher quality care to children and adolescents in primary care: a systematic review

Aim: The number of primary care paediatricians is decreasing in Europe without a justifiable reason. We aimed to compare the clinical practice of paediatricians and family doctors attending children and adolescents in primary care

Methods: MEDLINE, EMBASE, CENTRAL, TRIP and Google Scholar were searched from 12/2008 to 2/2018. No language or study design restrictions were applied. Three reviewers assessed eligibility of the studies. Seven pairs of reviewers performed the data extraction and assessed the methodological quality independently. Discrepancies were resolved by consensus.

Results: 54, out of 1150 studies preselected, were included. We found that paediatricians show more appropriate pharmacology prescription patterns for the illness being treated; achieve higher vaccination rates and have better knowledge of vaccines and fewer doubts about vaccine safety; their knowledge and implementation of different screening tests are better; prescribe psychoactive drugs more cautiously and more in line with current practice guidelines; their evaluation and treatment of obesity and lipid disorders follow criteria more consistently with current clinical practice guidelines; perform fewer diagnostic test, show a more suitable use of the test and request fewer referrals to specialists.

Conclusion: according to published data, in developed countries, paediatricians provide higher quality care to children than family doctors.

Key words: ambulatory care, family practice, paediatricians, physicians, family, primary healthcare.

Word count: 200

KEY NOTES

•The number of primary care paediatricians is decreasing in Europe without a clear response from the health authorities

•Paediatricians, irrespective of their place of work or the type of research study in question, are more effective than family doctors at addressing problems related to children in primary care

•A shift from a system of paediatricians to family doctors may lead to a decline in the quality of medical care provided to children

List of abbreviations

Odds ratio (OR) 95% confidence intervals (95% CI)

INTRODUCTION

For a number of years some European countries have been questioning which medical professional should care for children in primary care (1). Health authorities often consider children and adolescents to be an essentially healthy part of the population. And they are typically not a priority for health policy.

According to recent data (2), the number of paediatricians in Europe has been falling. This study shows that, in primary care, family doctors are replacing paediatricians. The fall in the number of paediatricians in Europe is not a surprise, having already been identified by Van Esso (3) in 2010 and Katz (4) in 1999.

Children's medical attention has been left in the hands of professionals with an average paediatric training of four months (3), with shorter periods or even no formal training in some countries. It has been justified for political and, or economic reasons although many indicators demonstrate that it results in worse outcomes (5,6).

In 2011 the Primary Care Spanish Paediatric Association, aware of the need to gather data highlighting the work of paediatricians in primary care, asked the Group of Evidence-based Paediatrics to carry out a systematic review comparing the work of paediatricians in primary care with that of other professionals. The findings (7) showed that paediatricians prescribed fewer antibiotics for viral infections; were more likely to adhere to clinical practice guidelines in cases of fever and attention deficit hyperactivity disorder; dealt more effectively with other common childhood illnesses (like asthma or otitis media); and achieved higher vaccination rates. The Primary Care Spanish Paediatric Association considered an update to the 2011 systematic review to be necessary.

MATERIAL AND METHODS

Eligibility criteria

Studies of any type of design were considered if they compared the clinical practice of paediatricians and family doctors, excluding letters to the editor or editorials. The participants were paediatricians and family doctors who attend children in primary care or hospital emergency departments.

Search strategy

We searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials (CENTRAL), TRIP Database and Google Scholar from December 2008 to February 2018. There was no publication language nor any other restriction applied. Table S1 shows the descriptors used. The Spanish equivalents to the search terms were also used to retrieve additional publications in Google Scholar. We reviewed the references to obtain additional relevant articles.

Data extraction and evaluation of methodological quality

Three reviewers (JCB, JRC,MAR) independently assessed eligibility of the studies identified by examining titles and abstracts. For those eligible studies, the full paper was obtained. Disagreements on eligibility were resolved by consensus. The selection process is shown in Figure 1. The selected studies were distributed to seven pairs or reviewers. Each of the reviewers independently extracted the data and assessed the methodological quality with the tool "OSTEBA; Critical Appraisal Cards" (OSTEBA, Basque Office for Health Technology Assessment, Bilbao, Spain). This program evaluates according to three quality levels: low, medium and high, with the evaluation based on six items: clearly defined research question, appropriate methodology, results description, conclusions taking into account the limitations of the study, conflicts of interests and external validity. Any disagreement was resolved by consensus. If this was not possible three of the authors(JCB, JRC,MAR) made the final decision.

Statistical analysis

Whenever possible Odds ratio (OR) for cohort studies and Prevalence ratio in cross sectional studies were calculated, if not provided, with 95% confidence intervals (95% CI).

Results of the studies were combined when possible with a global combined estimator (OR), using the inverse variance method, and applying either a fixed effects model, or a random effects model, depending on the presence or not of statistical heterogeneity (estimated with Cochrane's Q test; and with I2). Publication bias was evaluated by the Begg method.

RESULTS

We included 54 studies : one before-and-after study, 15 cohort studies and 38 cross-sectional studies.

Antibiotic use in respiratory tract infections

We included eight retrospective cohort studies (Table 1). Heterogeneity did not allow a metaanalysis to be performed. In five articles (8-12) antibiotic prescription was more appropriate by paediatricians. In two of them (13,14) there were no differences. In the final study, family doctors made better prescriptions (15).

Otitis media management

We included three studies: one cross-sectional survey (16) and two cohort studies (17,-18) (Table 2). All the studies found that paediatricians' prescription for acute otitis media adhere better to guidelines than family doctors' did.

Asthma management

We included three studies: two cross-sectional studies (19,20) and one retrospective cohort study (21) (Table 3). In all but one (21) family doctors got better results.

Management of psychiatric disorders

We selected two studies (Table 4): one cross-sectional study (22) which evaluated the specific skills for the management of psychiatric conditions among primary care professionals in a setting with a lack of specialists in psychiatry. Paediatricians and family doctors performed similarly. The other one (23) was a retrospective cohort study designed to investigate a previously discovered increase of prescription rates of psychotropic drugs in patients younger than 18 years of age. In this case, paediatricians performed more in accordance with guidelines than did family doctors.

Immunizations

We selected 19 papers: 18 cross-sectional studies and one cohorts study (Table 5). Six of the studies considered the human papillomavirus vaccine (24-29) and all were based in the USA. In four, paediatricians did better than family doctors did. In two of them there were no differences. Two cross-sectional studies analysed the attitudes towards the flu vaccine (30,31) in at-risk children. One found better results for paediatricians in children with asthma. The other found no differences. A further paper (32) studied the attitude towards vaccines of paediatricians and family doctors.

Paediatricians recommended all vaccinations more frequently. In two cross-sectional studies (33,34) analysing practices related to rotavirus vaccine in the USA, paediatricians did better than family doctors did. Kempe et al (35) analysed in 2010 the compliance of the regulations on type B Haemophilus Influenzae vaccination in the USA in shortage periods. Paediatricians were more often familiar with the recommendations in these circumstances. Tolaymat et al (36)studied the knowledge of vaccination guidelines for children with inflammatory bowel illness and

immunosuppressant treatment. Paediatricians more frequently identified vaccines that should not be given to these patients.

The studies on vaccination in Europe relating to MMV, pertussis and pneumococcal vaccines (37); hepatitis B vaccine (38) and meningitis B vaccine (39), favoured paediatricians.

Two studies (40, 41), analysing the influence of the specialty of the physician on vaccination refusal in the USA, found mixed results.

Finally, one study (42) analysing the completion of vaccination charts in 2017 found that paediatricians did better than family doctors.

Cardiovascular risk

The attitude of paediatricians and family doctors towards cardiovascular risk in childhood, was evaluated in five studies (diagnosis and prevention of overweight and obesity [43-45], sudden cardiac death screening in athletes [46], lipid alteration [47]). Four showed results in favour of paediatricians and one found similar results in paediatricians and family doctors (Table 6).

Other preventive activities

The provision of preventive healthcare services, other than vaccination, was assessed in eight studies (48-55). All of them were cross-sectional studies of low quality. In all but one the results favoured paediatricians (Table7).

Diagnostic tests

We found five studies performing comparison in this field (56-60). One was a retrospective cohort study; the other four were cross-sectional studies (Table 8). Paediatricians showed better results than family doctors in all of them.

DISCUSSION

The results of this review show that paediatricians, irrespective of their place of work or the type of research study in question, are more effective than family doctors at addressing problems related to children in primary care. Our findings are consistent with those studies published prior to 2008 and summarized in the previous systematic review (7).

Recent studies on antibiotic treatment have been included in this review. These showed that, except in a few specific cases, paediatricians more frequently prescribe antibiotics in line with clinical practice guidelines and more appropriate for child infectious diseases than family doctors do. Only one study (15) found that family doctors' prescription of antibiotics was better than that

of paediatricians. This study was carried out in one paediatrician's office, who attended 530 children, and compared with seven family doctors' practices, who were also university professors and who covered 436 children in total. The age ranges treated by each professional were not specified. The authors of the study noted that their findings might not be representative, given the high level of expertise of the university professors. This specific study noted that the paediatricians referred four to five times more children to specialists and hospitals in comparison to the family doctors. Two other studies found no differences in the prescription of antibiotics. Overall, the data are similar to the previous systematic review (7), where the meta-analysis showed a 1 to 1.8 times greater likelihood of primary care non-paediatric doctors, prescribing antibiotics for respiratory tract infections of likely viral aetiology when compared with paediatricians .

These findings are more significant than they might appear. Incorrect use of antibiotics, frequently due to prescriptions for viral infections, exponentially increases the risk of bacterial resistance, iatrogenic harm and cost.

There were only three new studies on the treatment of otitis media. All three showed more appropriate antibiotics prescribing practices by paediatricians. The previous systematic review (7) covered a higher number of publications on this subject (12 in total). Seven of these analysed the adherence to clinical practice guidelines or expert consensus. All of the studies except one found that paediatricians adhered more frequently to clinical practice guidelines. The five other studies compared clinical practices without using a standard for comparison. Except for a case-control study, of medium quality, which found no differences between paediatricians and family doctors when analysing diagnostic certainty for otitis with tympanocentesis, all the other studies found better antibiotics prescribing practices by paediatricians and a higher number of referrals to the otolaryngology specialists by family doctors.

Three studies on asthma were considered. One of them found that family doctors were more sensitive to economic factors. Another one found a higher use of spirometry by family doctors. The third analysed the treatment of childhood asthma and found a higher use of short-term oral corticosteroids treatment (following the current guidelines) by paediatricians, although this practice was not linked to lower levels of hospitalization. There were no data to assess the adequacy of the practice in this particular study, which was an analysis of a medical database. In the previous systematic review (7) aspects that have not been addressed again in this update were analysed: prescription of antibiotics for asthma, which was higher among family doctors, and other drugs prescribed for asthma, which was similar between paediatricians and family

doctors. Also included a cross-sectional study carried out in the USA which found that family doctors used spirometry more frequently (whereas paediatricians used peak-flow meters more often), in line with our results.

The present review covered two articles on the treatment of psychiatric illness. One of these studies (22) found that paediatricians were more confident managing attention deficit hyperactivity disorder whereas family doctors felt more confident with anxiety and depression. However, the response rates were very low. The authors themselves cast doubt on whether the results were representative while other factors were not controlled, like the use of psychotherapy. The second study (23), analysed the prescribing of antipsychotic drugs and found an increase among older children (12-18 years old) when treated by family doctors and psychiatrists, mainly using second generation antipsychotic drugs and against the recommendations of clinical practice guidelines. The study did not specify the number of children according to age treated by each professional or other details that would have allowed us to carry out a more detailed analysis of this prescribing practice. The previous systematic review (7) covered three crosssectional studies carried out by the same authors. Two of these analysed the adherence to clinical practice guidelines on hyperactivity disorder of the American Academy of Pediatrics and found better results for paediatricians. In the third study, the authors assessed prescribing of antipsychotics in primary care settings in the USA. They found that family doctors had a higher probability of prescribing selective serotonin re-uptake inhibitors, irrespective of the diagnosis, which coincides with our findings.

The largest number of articles covered by this systematic review relate to vaccination. Six of the articles covered the human papillomavirus vaccination. Most of the studies (four out of six), including the only cohort study, found that paediatricians recommended the human papillomavirus vaccination more often and achived better vaccination coverages. The cohort study found that paediatricians obtained 1.5 times higher rate of vaccinations than family doctors. Only two studies, and with much lower response rates (41%), found no differences between paediatricians and family doctors.

In another study (32) the general attitude towards vaccines was assessed. Paediatricians recommended all vaccines more frequently. The main reason why children were not vaccinated was due to doubts about the safety of vaccines. Two other studies on the rotavirus vaccine found that paediatricians recommended the vaccine more frequently, had a better understanding of it and fewer doubts about its safety.

Paediatricians typically have a more extensive knowledge of vaccines regulation, as shown in the studies on Haemophilus Influenzae vaccination during a period of vaccine shortage (35), or on the vaccination of children receiving immunosuppressive therapy (36).

Only three of the 19 studies on vaccinations were carried out in Europe (France); the rest were undertaken in the USA. The results, however, were consistent. The French studies found a stricter adherence to immunization schedules by paediatricians, who also recommended vaccines more often, vaccinated more and were more knowledgeable on vaccines.

There were only two studies that analysed the rejection of vaccination. They compared the requests for signed authorization forms – a practice recommended by some guidelines – that were higher among paediatricians, and the exclusion from medical practices of those families which refuse vaccination. This practice is not recommended by paediatric associations and was more common among paediatricians. There was no data on this topic in the previous systematic review (7).

The use of anti-flu vaccinations for high-risk patients was analysed in two studies. One found that paediatricians vaccinated children with intermittent asthma four times more often, and children with severe asthma fourteen times more often than family doctors did. The other study identified no differences between anti-flu vaccination rates of healthy and high-risk children when treated by family doctors or paediatricians .

Another study analysed the use of vaccination records. Family doctors were less aware of vaccination records and used them less.

The findings of this systematic review are aligned with those of the previous one (7), which also covered a high number of studies. Doubts about vaccine safety is of concern as health professionals have the greatest influence on families deciding whether to vaccinate their children (61).

Childhood obesity is currently an important global health issue. The studies covered showed that paediatricians made assessments and recommended treatments of childhood obesity according to clinical practice guidelines. There were no available studies regarding the results of these practices. These findings are in line with those from the previous systematic review (7).

Only one of the studies analysed the attitudes towards lipid disorders. Paediatricians followed clinical practice guidelines more frequently, offering better management and treatment for these disorders, coinciding with the previous systematic review (7).

Paediatricians handle screening programs in a more appropriate way than family doctors, as shown in the selected studies on the management of tests to assess the psychomotor development and neurodevelopmental disorders (paediatricians use them more, interpret them better, produce reports on them more often and make more referrals to early intervention services). Concerning the "new-born screening metabolic test", a study (51) in Canada showed how family doctors acknowledge their lack of training, whereas paediatricians are two to three times more likely to know about it, how to interpret its results and how to inform families. Similarly, paediatricians have more knowledge on other preventive activities, such as oral health programs, understanding of popular games among adolescents-and are more aware of child protection policies. These results are consistent with those of the earlier systematic review (7), which found that, the younger the child, the more likely paediatricians were to carry out preventive activities than were family doctors.

Paediatricians used the streptococcal test more frequently and prescribed fewer antibiotics for acute pharyngitis. Paediatricians were more often aware of the recommendations for the treatment and management of neonatal hyperbilirubinemia. Paediatricians were also more likely to diagnose suspected celiac disease based on gastrointestinal and general symptoms and were more knowledgeable of the diagnosis criteria for bronchiolitis. Similarly, paediatricians made earlier diagnoses of acute lymphoblastic leukaemia. Again, this coincides with the previous systematic review (7), which also found better use of the streptococcal test and other diagnostic tests and fewer requests for them, in general, from paediatricians.

This systematic review had several limitations. Most of the studies have an observational crosssectional design and were carried out through self-completion questionnaires, with a very variable (and sometimes low) number of responses. This can lead to patient selection bias. Others were retrospective cohort studies, whose results were collated from large healthcare databases with limited detailed records, insufficient for a more thorough analysis. Both types of studies are rated as low quality of evidence according to the Grading of Recommendations, Assessment, Development and Evaluation system (GRADE) system. The outcomes selected by the studies have a very different degree of interest. A further limitation was the low rate of responses in some of the articles. The individual quality of the studies was evaluated using the critical assessment forms from the Osteba platform; however, there are no internationally recognized tools to evaluate the quality of cross-sectional studies. In addition, for some of the studies, the comparison between the practice of family doctors and paediatricians was not the focus. Nonetheless, the number of studies is high, and the consistency of their results could compensate (partly) for lack of quality. A meta-analysis was not possibly due to the lack of homogeneity among the studies. For the same reason it was also not possible to add new studies to the meta-analysis of the previous systematic review.

In summary, this systematic review shows how paediatricians manage the processes related to child health in a more appropriate way than family doctors, and the results of studies published between 2008 and 2018 are similar to those published before 2008. This suggests that, despite the low quality of the studies, the results are not due to chance, but rather the consequence of better training and preparation on the part of paediatricians for the task of managing child health.

As Van Esso (3) described, in Europe there are three models for the care of infants and children's health: only by paediatricians, by a mixture of paediatricians and family doctors and only by family doctors. Despite the results and conclusions published by Katz in 2002 (4) – which showed that the risk of child mortality is lower when paediatricians in primary care are responsible for treating children outside hospital – Van Esso observes how there is a growing tendency for children to be treated by family doctors. Moreover, this is despite the poor outcomes in child health which have been observed in the UK (5,6,62,63), the country which best represents the model of exclusively family doctors in primary care.

In Europe overall, there is not now clear support for the role of paediatricians in the treatment of children in primary care. This fall in support for paediatricians has a number of causes, as Ehrlich set out in a recent publication (2). Twelve of the 40 countries that participated in the study recognized that they are assessing which specialist is best placed to attend to the paediatric population in primary care: family doctors or paediatricians. The reasons given for the change are economic (nine countries out of 12); political (six of 12); professional standing (four of 12); historical (two of 12) and geographical (one of 12). Notably, none of the countries referred to infant health outcomes.

Governments include economics as a reason for change from a system of paediatricians in primary care to family doctors. There is, however, no study supporting this approach. In this systematic review, despite an active search, we have not found any studies which consider the economic outcomes according to the medical professional responsible for paediatric care. The only data available on this issue are those of the study carried out in the Italian region of Molise (64). The findings were such that had paediatricians treated all of the children, the savings would have been of 6.5m in three years. The findings of this study were presented in a conference in Italy but were not published.

Up until now there have been only limited indicators of child health (neonatal mortality rate, the infant mortality rate, the mortality rate for children under five, delayed development,

malnourishment), and this has made it difficult to quantify other aspects of paediatric care for effective comparisons (as antibiotic prescription, vaccinations or adherence to clinical practice guidelines). Recently the first study of paediatric indicators has been published (65). We hope that these indicators will facilitate these comparisons in the future.

Given the lack of indicators, the quality of paediatric care can be evaluated indirectly by assessing the training of the medical professionals providing it. According to the findings of Ehrlich (2), the duration of the training period for paediatricians in Europe lasts between two and six years with an average of four or five years in the majority of countries. In 50% of the countries, paediatricians have specific training in paediatrics in primary care. On the other hand, the training in paediatrics of family doctors, according to Van Esso (3), lasts for three to six months with an average of four months. In some countries, such as the UK, there is no particular paediatric training for family doctors.

The shift in primary care for infants and children from a system run by paediatricians to one run by family doctors is not based on any research, whether clinical or economic. The logical conclusion that a better-trained specialist offers better care is supported by the published studies highlighted in this review. This indicates that a shift from a system of paediatricians to family doctors may lead to a decline in the quality of medical care provided to children. Children's health is particularly important because it ensures improved health in adulthood (66); this in return reduces healthcare costs and improves the overall quality of life of the population.

CONCLUSION

The main conclusion of our review is that, according to published data, in developed countries paediatricians provide higher quality care to children than do family doctors. That is: paediatricians' pharmacology prescription pattern is more appropriate for the illnesses being treated; paediatricians make less frequent inadequate use of medication (both antibiotics and other medication like psychoactive drugs); they achieve higher vaccination rates and have better knowledge of vaccines and less doubts about vaccine safety; their knowledge and implementation of different screening tests is better; they prescribe psychoactive drugs more cautiously and more in line with clinical practice guidelines; their evaluation and treatment of obesity and lipid disorders follows criteria more consistent with current clinical practice guidelines; they make fewer and more suitable use of diagnostic tests and they make fewer referrals to specialists.

We would like to call upon healthcare authorities to prioritize child health and to set out a strategy to ensure not only adequate replacement of current paediatricians but also sufficient specialist professionals to provide proper paediatric primary care (67).

ACKNOWLEDGEMENTS

The authors would like to thank Dr Carlos Ochoa, MD, for the methodological advice and Dr. Pilar Aizpurua Galdeano, Dr. Mercedes Fernández Rodríguez, Dr. Gloria Orejón de Luna, Dr. Ana Díaz Cirujano, Dr Enrique Rodríguez-Salinas, Dr Pedro Martín Muñoz, Dr Leonidas Perdikidis Olivieri for data extraction and evaluation of methodological quality

FINANCE

This study did not receive any specific funding.

CONFLICT OF INTEREST

The authors have no conflict of interest to declare

Accepted

REFERENCES

- Ehrich J, Namazova-Baranova L, Pettoello-Mantovani M. Introduction to "Diversity of Child Health Care in Europe: a study of the European Paediatric Association/Union of National European Paediatric Societies and Associations." J Pediatr 2016; 177S:S1–10.
- 2. Ehrich JHH, Tenore A, del Torso S, Pettoello-Mantovani M, Lenton S, Grossman Z. Diversity of pediatric workforce and education in 2012 in Europe: a need for unifying concepts or accepting enjoyable differences? J Pediatr 2015; 167:471-476.e4.
- van Esso D, del Torso S, Hadjipanayis A, Biver A, Jaeger-Roman E, Wettergren B, et al.
 Paediatric primary care in Europe: variation between countries. Arch Dis Child 2010; 95:791– 5.
- 4. Katz M, Rubino A, Collier J, Rosen J, Ehrich JHH. Demography of pediatric primary care in Europe: delivery of care and training. Pediatrics 2002; 109:788–96.
- 5. Horton R. Offline: The UK's child health emergency. Lancet 2018; 392:106.
- Wolfe I, Thompson M, Gill P, Tamburlini G, Blair M, van den Bruel A, et al. Health services for
 children in western Europe. Lancet 2013; 381:1224–34.
- 7. Buñuel Alvarez C, Garcia Vera C, Gonzalez Rodriguez P, Aparicio Rodrigo M, Barroso
 Espadero D, Cortés Marina R. What medical professional is the most adequate, in developed countries, to provide health care to children in primary care? Systematic review. Rev Pediatría Aten Primaria 2010; 12:s9-72.
- 8. Clavenna A, Sequi M, Bonati M. Differences in the drug prescriptions to children by Italian paediatricians and general practitioners. Eur J Clin Pharmacol 2010; 66:519–24.
- Pulcini C, Lions C, Ventelou B, Verger P. Indicators show differences in antibiotic use between general practitioners and paediatricians. Eur J Clin Microbiol Infect Dis 2013; 32:929–35.
- 10. Sellam A, Chahwakilian P, Cohen R, Béchet S, Vie Le Sage F, Lévy C. [Impact of guidelines on ambulatory pediatric antibiotic prescriptions]. Arch Pediatr 2015; 22:595–601.
- 11. Watson JR, Wang L, Klima J, Moore-Clingenpeel M, Gleeson S, Kelleher K, et al. Healthcare claims data: an underutilized tool for pediatric outpatient antimicrobial stewardship. Clin Infect Dis 2017; 64:1479–85.
- 12. Fleming-Dutra KE, Demirjian A, Bartoces M, Roberts RM, Taylor TH, Hicks LA. Variations in antibiotic and azithromycin prescribing for children by geography and specialty-United States, 2013. Pediatr Infect Dis J 2018; 37:52–8.

- 13. Blommaert A, Coenen S, Gielen B, Goossens H, Hens N, Beutels P. Patient and prescriber
 determinants for the choice between amoxicillin and broader-spectrum antibiotics: a
 nationwide prescription-level analysis. J Antimicrob Chemother 2013; 68:2383–92.
- 14. Urkin J, Allenbogen M, Friger M, Vinker S, Reuveni H, Elahayani A. Acute pharyngitis: low adherence to guidelines highlights need for greater flexibility in managing paediatric cases. Acta Paediatr 2013; 102:1075–80.
- 15. Stojanović-Spehar S, Blazeković-Milaković S, Bergman-Marković B, Vrca-Botica M,
 Matijasević I. Prescribing antibiotics to preschool children in primary health care in Croatia.
 Coll Antropol 2008; 32:125–30.
- 16. Ganga-Zandzou PS, Fermantel A, Robic C, Pouessel G, Pierre M-H, Bourgois B, et al.
 [Assessment of the management of acute otitis media in children by family practitioners in the North of France]. Presse Med 2009; 38:1730–7.
- 17. Grossman Z, Silverman BG, Miron D. Physician specialty is associated with adherence to treatment guidelines for acute otitis media in children. Acta Paediatr 2013; 102:e29-33.
- Shviro-Roseman N, Reuveni H, Gazala E, Leibovitz E. Adherence to acute otitis media treatment guidelines among primary health care providers in Israel. Braz J Infect Dis 2014; 18:355–9.
- 19. Patel MR, Coffman JM, Tseng C-W, Clark NM, Cabana MD. Physician communication regarding cost when prescribing asthma medication to children. Clin Pediatr (Phila) 2009; 48:493–8.
- 20. Dombkowski KJ, Hassan F, Wasilevich EA, Clark SJ. Spirometry use among pediatric primary care physicians. Pediatrics 2010; 126:682–7.
- 21. Farber HJ, Silveira EA, Vicere DR, Kothari VD, Giardino AP. Oral corticosteroid prescribing for children with asthma in a medicaid managed care program. Pediatrics 2017; 139.
- 22. Fremont WP, Nastasi R, Newman N, Roizen NJ. Comfort level of pediatricians and family medicine physicians diagnosing and treating child and adolescent psychiatric disorders. Int J Psychiatry Med 2008; 38:153–68.
- 23. Ronsley R, Scott D, Warburton WP, Hamdi RD, Louie DC, Davidson J, et al. A populationbased study of antipsychotic prescription trends in children and adolescents in British Columbia, from 1996 to 2011. Can J Psychiatry 2013; 58:361–9.
- 24. Daley MF, Crane LA, Markowitz LE, Black SR, Beaty BL, Barrow J, et al. Human papillomavirus vaccination practices: a survey of US physicians 18 months after licensure. Pediatrics 2010; 126:425–33.

- 25. Vadaparampil ST, Kahn JA, Salmon D, Lee J-H, Quinn GP, Roetzheim R, et al. Missed clinical opportunities: provider recommendations for HPV vaccination for 11-12 year old girls are limited. Vaccine 2011; 29:8634–41.
- 26. Kulczycki A, Qu H, Shewchuk R. Primary Care Physicians' Adherence to Guidelines and their likelihood to prescribe the human papillomavirus vaccine for 11- and 12-year-old girls.
 Womens Health Issues 2016; 26:34–9.
- 27. Allison MA, Hurley LP, Markowitz L, Crane LA, Brtnikova M, Beaty BL, et al. Primary care physicians' perspectives about HPV vaccine. Pediatrics 2016; 137:e20152488.
- Finney Rutten LJ, St Sauver JL, Beebe TJ, Wilson PM, Jacobson DJ, Fan C, et al. Association of both consistency and strength of self-reported clinician recommendation for HPV vaccination and HPV vaccine uptake among 11- to 12-year-old children. Vaccine 2017; 35:6122–8.
- 29. Wilbur MB, Clarke M, Chou B, Phelan-Emrick D. Variations in HPV vaccination rates of adolescent and young adult females by provider specialty. Ginecologic oncology 2016; 141:2–208.
- Dombkowski KJ, Leung SW, Clark SJ. Physician perspectives regarding annual influenza vaccination among children with asthma. Ambul Pediatr 2008; 8:294–9.
- 31. Toback SL, Rothstein E, Bhatt P, Carr W, Ambrose CS. In-office influenza vaccination by US pediatric providers varies greatly and is higher among smaller offices. Clin Pediatr (Phila) 2012; 51:551–9.
- 32. Gust D, Weber D, Weintraub E, Kennedy A, Soud F, Burns A. Physicians who do and do not recommend children get all vaccinations. J Health Commun 2008; 13:573–82.
- 33. Kempe A, Patel MM, Daley MF, Crane LA, Beaty B, Stokley S, et al. Adoption of rotavirus vaccination by pediatricians and family medicine physicians in the United States. Pediatrics 2009; 124:e809-816.
- 34. O'Leary ST, Parashar UD, Crane LA, Allison MA, Stokley S, Beaty BL, et al. Adoption of rotavirus vaccine by U.S. physicians: progress and challenges. Am J Prev Med 2013; 44:56–62.
- 35. Kempe A, Babbel C, Wallace GS, Stokley S, Daley MF, Crane LA, et al. Knowledge of interim recommendations and use of Hib vaccine during vaccine shortages. Pediatrics 2010; 125:914–20.
- 36. Tolaymat N, Lenhart C. Vaccination practice for pediatric inflammatory disease patients receiving immuno-suppressive therapy. The Am Jour Gastroenterol 2013; 108 supl1:s622.

- 37. Pruvost I, Lowingerova-Fauvet S, Debacker P, Dervaux B, Dubos F, Martinot A. [Assessment of primary care physicians' adherence to the national childhood vaccination schedule]. Arch Pediatr 2012; 19:248–53.
- 38. Vié le Sage F, Gaudelus J, Lert F, Dufour V, Texier N, Pouriel M, et al. Public health impact of Infanrix hexaTM (DTPa-HBV-IPV/Hib) reimbursement: a study programme in France. Part 2: evolution of the acceptability of infants' vaccination against hepatitis B in general and pediatric practices the PRALINE study. Rev Epidemiol Sante Publique 2016; 64:185–94.
- 39. Levy C, Bechet S, Cohen R. [Implementation of meningococcal B vaccination (Bexsero®) in
 France: physicians' perceptions and experiences of a few months after marketing approval].
 Arch Pediatr 2016; 23:27–33.
- 40. Kempe A, Daley MF, McCauley MM, Crane LA, Suh CA, Kennedy AM, et al. Prevalence of parental concerns about childhood vaccines: the experience of primary care physicians. Am J Prev Med 2011; 40:548–55.
- 41. O'Leary ST, Allison MA, Fisher A, Crane L, Beaty B, Hurley L, et al. Characteristics of physicians who dismiss families for refusing vaccines. Pediatrics 2015; 136:1103–11.
- 42. Kempe A, Hurley LP, Cardemil CV, Allison MA, Crane LA, Brtnikova M, et al. Use of immunization information systems in primary Care. Am J Prev Med 2017; 52:173–82.
- 43. He M, Piché L, Clarson CL, Callaghan C, Harris SB. Childhood overweight and obesity management: a national perspective of primary health care providers' views, practices, perceived barriers and needs. Paediatr Child Health 2010; 15:419–26.
- 44. Huang TT-K, Borowski LA, Liu B, Galuska DA, Ballard-Barbash R, Yanovski SZ, et al. Pediatricians' and family physicians' weight-related care of children in the U.S. Am J Prev Med 2011; 41:24–32.
- 45. Harkins PJ, Lundgren JD, Spresser CD, Hampl SE. Childhood obesity: survey of physician assessment and treatment practices. Child Obes 2012; 8:155–61.
- 46. Madsen NL, Drezner JA, Salerno JC. Sudden cardiac death screening in adolescent athletes: an evaluation of compliance with national guidelines. Br J Sports Med 2013; 47:172–7.
- 47. Dixon DB, Kornblum AP, Steffen LM, Zhou X, Steinberger J. Implementation of lipid screening guidelines in children by primary pediatric providers. J Pediatr 2014; 164:572–6.
- 48. McClave JL, Russell PJ, Lyren A, O'Riordan MA, Bass NE. The choking game: physician perspectives. Pediatrics 2010; 125:82–7.
- 49. Herndon JB, Tomar SL, Lossius MN, Catalanotto FA. Preventive oral health care in early childhood: knowledge, confidence, and practices of pediatricians and family physicians in Florida. J Pediatr 2010; 157:1018-1024.e1-2.

- 50. Burney M, Schunk K, Oundjian NJ, Younge RG, McCord M, Green NS. Incomplete follow-up of hemoglobinopathy carriers identified by newborn screening despite reporting in electronic medical records. J Natl Med Assoc 2011; 103:852–6.
- 51. Hayeems RZ, Miller FA, Carroll JC, Little J, Allanson J, Bytautas JP, et al. Primary care role in expanded newborn screening: After the heel prick test. Can Fam Physician 2013; 59:861–8.
- 52. Vyas KS, Brancato C, Soares NS. WHO growth chart awareness among clinicians in Kentucky. South Med J 2013; 106:495–9.
- 53. Knutson S, Kelleman MS, Kochilas L. Implementation of developmental screening guidelines for children with congenital heart disease. J Pediatr 2016; 176:135-141.e2.
- 54. Ayou C, Gauducheau E, Arrieta A, Roussey M, Marichal M, Vabres N, et al. [Child protection: pediatricians' knowledge and practices in Brittany]. Arch Pediatr 2018; 25:207–12.
- 55. Moore C, Zamora I, Patel Gera M, Williams ME. Developmental screening and referrals:
 assessing the influence of provider specialty, training, and interagency communication. Clin Pediatr (Phila) 2017; 56:1040–7.
- 56. Park M, Hue V, Dubos F, Lagrée M, Pruvost I, Martinot A. [Reasons for low usage of strep A rapid antigen detection tests for pharyngitis in private medical practice]. Arch Pediatr 2013; 20:1083–8.
- 57. Mateo PC, Lee K-S, Barozzino M, Sgro M. Management of neonatal jaundice varies by practitioner type. Can Fam Physician 2013; 59:e379-386.
- 58. Pham BN, Musset L, Chyderiotis G, Olsson NO, Fabien N. Celiac disease diagnosis: impact of guidelines on medical prescription in France. J Dig Dis 2014; 15:435–43.
- 59. Lee JM, Eason A, Nelson C, Kazzi NG, Cowan AE, Tarini BA. Screening practices for identifying type 2 diabetes in adolescents. J Adolesc Health 2014; 54:139–43.
- 60. Gupta S, Gibson P, Pole JD, Sutradhar R, Sung L, Guttmann A. Predictors of diagnostic interval and associations with outcome in acute lymphoblastic leukemia. Pediatr Blood Cancer 2015; 62:957–63.
- 61. Simone B, Carrillo-Santisteve P, Lopalco PL. Healthcare workers' role in keeping MMR vaccination uptake high in Europe: a review of evidence. Eurosurveillance 2012; 17:20206.
- 62. Wolfe I, Cass H, Thompson MJ, Craft A, Peile E, Wiegersma PA, et al. Improving child health services in the UK: insights from Europe and their implications for the NHS reforms. BMJ 2011; 342:d1277.
- Wolfe I, Donkin A, Marmot M, Macfarlane A, Cass H, Viner R. UK child survival in a European context: recommendations for a national Countdown Collaboration. Arch Dis Child 2015; 100:907–14.

- 64. Tomasik T. Back to red: allowing specialists to provide primary care would be a step backward for Poland. BMJ 2014; 348:g3030.
- 65. Ewald DA, Huss G, Auras S, Caceres JR-C, Hadjipanayis A, Geraedts M. Development of a core set of quality indicators for paediatric primary care practices in Europe, COSI-PPC-EU. Eur J Pediatr 2018; 177:921–33.
- 66. Halfon N, Larson K, Lu M, Tullis E, Russ S. Lifecourse health development: past, present and future. Matern Child Health J 2014; 18:344–65.
- 67. Ehrich J, Burla L, Sanz AC, Crushell E, Cullu F, Fruth J, et al. As Few Pediatricians as Possible and as Many Pediatricians as Necessary? J Pediatr 2018; 202:338-339.e1.

Author/year publication/ country	Design/quality	Participants	Comparison	Outcome variable	Results* (OR or PR [95%CI])	Resul favou
Stojanovic.15	Retrospective Cohort study.	Clinical registers of	Factors related to ATB	Logistic regression (OR PED vs FD):		FD
2008	Medical records.	964 children from 1 to	prescription	1. More ATB prescription	1.3 [1.0 - 1.6]	
(Croatia)	Medium quality	6 years (530 attended		2 Referral to specialist	4.1 [1.2 - 13.8]	
		by one PEDs and 434		3. Referral for treatment	4.2 [1.2 - 14.9]	
		attended by 6 FDs)		4. Hospital referral	5.5 [1.4 - 21.7]	
		during 2004		5. Other prescriptions	1.8 [1.4 - 2.3]	
Clavena ⁸ 2010	Retrospective Cohort study.	Clinical registers of	Drugs prescription.	OR PED vs FD		PED o
(Italy)	Medical records.	548,922 children from		1Drugs prescription(adjusted OR)	0.86 [0.85 - 0.87]	simila
	Medium quality	6 to 13 years		2ATB prescription	1 [0.99 - 1.01].	
				3ATB type: - penicillin	1.54 [1.33 - 1.78]	
				- macrolides	0.81 [0.69 - 0.94]	
				-cephalosporins	0.76 [0.65 - 0.89]	
Blommaert ¹³	Retrospective Cohorts study	Two cohorts: children	Factors related to	Influence of type of health care provider		PED ar
2013	IMA (Inter Mutualist Agency)	1-5 years and adults	amoxicillin prescription	(OR PED vs FD) multivariate analysis		FD
(Belgium)	clinical registers	30-60 years	instead of amoxiclav	1. Brussels (minimum and maximum	Min2a: OR 2.38(95%CI1.59 - 3.56)	
	Medium quality			prescription age)	Max1a: OR2.58(95%CI1.71 - 3.87)	
				2 Flemish	Min5a: OR 1.08(95%CI0.78 - 1.51)	
					Max3a: OR1.2(95%CI0.91 - 1.59)	
				3 Wallonia	Better prescription by FD (no data)	
				4Overall prescription children 1year	0.835 (95%CI:0.68 - 1.02)	
				Overall prescription children 2 years	0.852 (95%CI:0.68 - 1.05)	
				Overall prescription children 3 years	0.758 (95%CI:0.62 - 0.93)	
				Overall prescription children 4 years	0.721 (95%CI:0.58 - 0.90)	
				Overall prescription children 5 years	0.690 (95%CI:0.54 - 0.88)	

Pulcini ⁹ 2013	Retrospective Cohorts study	4921 FDs and 301	ATB prescription for	Median [interquartile 50] of the prevalence	FD 43.3% [27 - 63.5] PED 28%	PEDs
(France)	Medical records	PEDs (31,.965	children under 16 years of	rate of antibiotic treatment	[16.2 - 45.6] (P<0.001)	
	High quality	children)	age	-FD vs PED ATB prescription (adjusted		
				econometric model)	FD 54% more ATB than PED	
				-Type of ATB (adjusted econometric model	FD 54% more penicillin than PED	
					FD141% more macrolides than PED	
					PED more amoxiclav (18% vs 12%) ^ß	
Urkin ^{¹₄} 2013	Retrospective Cohort study.	87 PEDs. 11FDs and	Acute pharyngotonsillitis:	1Perform a throat cultures in the first	PED>FD (p<0.001)	PED more
(Israel)	Medical records.	27GPs (19,865	culture and early ATB	consultation.	FD>GP (p<0.001)	throat
	Medium quality	children)	prescription in children 0-	Logistic regression (OR)	0.29 [0.26 - 0.33]	culture
			18years	2 Early ATB prescription(OR)	PED vs FD: 0.87 [0.77 – 1]	GP fewe
					PED vs GP:1.42 [1.29 - 1.56]	ATB
Sellam ¹⁰ 2015	Retrospective Cohort study.	Survey of 27 PEDs	ATB prescription	- ATB prescription (%) *		PED
(France)	Medical records.	from an infectious		PEDinfec (54,212 visits)	10.7%	
	Medium quality	group and comparison		PED (no data on visits)	12%	(7)
		with PEDs and GP		GP (no data on visits)	21%*	
		records from the		- ATB type for OMA treatment:		
		French Health System		Amoxicillin (PEDinfec; PED; GP)	72.3% vs 44% vs 15%	
				Amoxiclav (PEDinfec; PED; GP)	19.3% vs 33% vs 20%	
				Cephalosporin (PEDinfec; PED; GP)	6.4% vs 22 % vs 59%	
				- Type of ATB prescribed (PEDinfec;		
Watson ¹¹ 2017	Retrospective Cohort study.	255.291 ATB	Factors related to ATB	-OR standardized ATB prescription rate		PED
(USA)	Medical records.	prescription	prescription	(PED vs FD) (multivariable logistic	0.49 [0.48 - 0.51]	
	Medium quality			regression)		
Fleming ¹² 2018.	Retrospective Cohort study.	Children below 19	ATB and azithromycin	PR azithromycin adjusted prescription		PED
(USA)	Medical records.	years	prescription	(PED vs FD)		
	High quality			0-2 years	0.56 [0.55 - 0.56]	
				3-9 years	0.71 [0.71 - 0.71]	
				10-19years	0.85 [0.85 - 0.85]	

PED: paediatricians; FD: family doctors; GP: general practitioners; PEDinfec: infectiology Paediatricians ATB: antibiotics: Amoxicillin-Ac clavulanic: amoxiclav (ß) following the indications of the French guides (+) OR cannot be calculated due to lack of data (*) <1 favours' FD/GP; >1 favours PEDs (**):p<0,001

Author/year of publication/ country	Design/quality	Participants	Comparison	Outcome variable	Results* (OR or PR [95%Cl])	Results favour
Ganga- Zandzou ¹⁶ 2009	Cross-sectional	Survey of 129 FDs and 46 PEDs	Adherence to CPG in management of	Adherence to CPG (PR PEDs vs FD)	2.36 [1.45 - 3.82]	PED Little
(France)	Study Professional phone survey	(rr: 64.5% FD and 67.6% PED)	AOM	>2years: observation, ATB type, dosage, length of treatment <2years: ATB type, dosage,	n.s	difference
	Low quality			length of treatment	n.s	
				Prescription ATB recommended in case of allergy:	1.19 [1.01 - 3.72]	
				Penicillin Beta-lactams	2.93 [1.62 - 5.27] 1.24 [0.75 - 2.03]	
Grossman ¹⁷	Retrospective	292,896 children diagnosed with	Early ATB treatment	Early ATB treatment (%patients) ⁺ (variation during study period)		PED
2012	Cohort study.	AOM and treated with ATB by	of AOM (in the 3	otolaryngologist	-11% (47% to 36%)**	
(Israel)	Medical records.	PED (72.3%). FD/GP (14.1%)	days of the	PED	- 4% (46% to 42%)**	
	Medium quality	and otolaryngologist (12.7%) (2002-2009)	beginning) according to medical specialty	FD/GP	+7% (43% to 50%)**	
Shviro-Rosema ¹⁸	Retrospective	597 children diagnosed with	Adherence to CPG in	1. Amoxicillin (OR)		Same AT
2014	Cohort study.	AOM and treated with ATB by 38	management of	-PED vs PEDres**	0.57 [0.26-1.24]	choice.
(Israel)	Medical records.	FD, 12 PED and 7 GP	AOM	-PED vs FD	0.51 [0.25-1.07]	Better PE
	Medium quality	(participation rate 86.7%)		-PED vs GP	0.72 [0.27-1.93]	and PEDr
				2. Dosage appropriate to weight and CPG		than GP a
				-PED+ PEDres [#] vs MF	3.13 [1.98 a 4.95]	FD in
				-PED+ PEDres vs MG	6.88 [3.66 a 12.93]	dosage

FD: family doctors; PED: paediatricians; GP: general practitioner; PEDres: residents of paediatrics; rr: response rate; ATB: antibiotics; AOM: acute otitis media; CPG Clinical practice guidance: OR Odds ratio

PR: Prevalence Ratio; n.s: no significant differences (*) <1 favours' FD/GP; >1 favours PEDs (**):p<0,001 (*) OR cannot be calculated with available data; (**) listed in column FD/GP; (#):listed in column PED

Author/year of	Design/quality	Participants	Comparison	Outcome variable	Results*	Results
publication/					(OR or	favour
country					PR[95%CI])	
Patel ¹⁹ 2009	Cross-sectional study Professional mail	Survey of 86 FD	Ask about cost of	OR (PED vs FD)		FD
(USA)	survey	and 149 PED (rr:	asthma treatment	Ask about cost of asthma treatment	0.71 [0.57 - 0.86]	
	Medium quality	49%)				
Dombkowski ²⁰ 2010	Cross-sectional study Professional	360 surveys of	Use of spirometry in	PR (PED vs FD)		FD
(USA)	survey	150 FD and 210	children with asthma	Use of spirometry	0.50 [0.41 - 0.61] [#]	
	Medium quality	PED (rr: 50%)		Comfortable in interpreting spirometry results	0.60 [0.48 - 0.75]	
Farber ²¹ 2017	Retrospective Cohorts study	327,303 children	Prescription rates of	Short courses of oral corticosteroid prescription (one or more) $^{+}$	42.1-44.2%	PED
(USA)	MEDICAID (Inter Mutualistic Agency)	(1 to 18 years)	short courses of oral	PED vs FD/GP/IM	41-42% vs 46-47%**	
	and CHIP (Children Heath Insurance	diagnosed with	corticosteroids.	Asthma emergency department visits/		
	Program) clinical registers	asthma between		hospitalization rates as a function of the corticoid courses	n.s	
	Medium quality	2011-2016				

FD: family doctors; PED: paediatricians; GP: general practitioner: IM: internal medicine physician rr: response rate; PR: prevalence ratio; n.s. non-significant differences (*) <1 favour FD/GP; >1 favour PED (**):p<0,01

(#)Adjusted OR in a logistic regression model with PEDs as reference: 7.6 [3.7-15.4] (*) OR cannot be calculated with available data

Author/year of	Design/quality	Participan	Comparison	Outcome variable	Results*	Results favou
publication/		ts			(OR or PR[95%CI])	
country						
Fremont ²² 2008	Cross-sectional	240 PED/	Diagnosis and treatment of psychiatric	PR (PED vs FD)		Similar
(USA)	study Professional	243 FD (rr:	disorders in children	ADHD	1.92[1.20 - 3.07]# ¹	
	mail survey	38%)		- Comfortable in diagnosing	2.20[1.39 - 3.45]# ²	PEDs better for
	Low quality			- Comfortable in prescribing medication		ADHD medicatio
				ANXIETY AND DEPRESSION:	0.54[0.41 - 0.71]# ³	FD better for
				- Comfortable in diagnosing		anxiety and
				- Comfortable in prescribing medication:	0.63[0.44 - 0.89]#4	depression
				Antidepressant medications	1.07[0.72 - 1.58]# ⁴	medication
				Anxiolytic medications		
Ronsley ²³ 2013	Retrospective	PED. FD y	Prescription of antipsychotics in children	Antipsychotic prescription rate change ⁺	Increase 3.8 fold	PED
(Canadá)	Cohorts study	psychiatrists	under 18 years	Second generation antipsychotic change⁺	Increase 18.1 fold	
	Clinical registers			Prescription change for age and sex:		
	(1996-2011)			-1° males 13-18 years	Increase 4.4 fold	
	Medium quality			-2° females 13-18 years	Increase 3.8 fold	
				-3° males 6-12 years	Increase 3.7 fold	
				Prescription in 2010/11 (in 1996-97) according to specialist $^{\scriptscriptstyle +}$		
				-Children 0-5years (PED/GP/Psychiatrist)	46.8%/22.4%/14.1%	
				-Children 5-11years (PED/GP/Psychiatrist)	14.9%/27.8%/29.1%	
				-Children 13-18years (PED/GP/Psychiatrist)	9.5%/38.8%/39.1%	

#Study authors calculated Adjusted OR: #¹3.05[1.40-6.63]; #²4.16[1.96-8.84]; #³0.28[0.14-0.57]; #⁴(antidepressants and anxiolytics as a whole)0.44[0.22-0.87] (+) OR cannot be calculated with available data

Author/year publication/ country	Design/quality	Participants	Comparison	Outcome variable	Results* (OR or PR [95%Cl])	Results favour
Dombkowski ³⁰	Cross-sectional study. Professional	175 PED and 145 FD	Flu vaccination in children	Adjusted OR (PED vs FD)		PED
2008 (USA)	survey. Low quality	(rr: 67%)	with asthma	Flu vaccination of children with persistent asthma Vaccination of children with intermittent asthma	14.4 (no data CI)*** 3.62 [1.72 - 7.60]	
Gust ³² 2008 (USA)	Cross-sectional study Professional online survey Medium quality	250 PED and 484 FD (rr:65%)	Attitude towards vaccine recommendations	PR (PED vs FD) Recommend all immunizations Adjusted OR multivariate analysis: variables associated with no recommend immunization (PED vs FP)	2.46 [1.45 - 4.19] 0.34 [0.17 -0.71]	PED
Kempe ³³ 2009 (USA)	Cross-sectional study Professional online survey High quality	360 PED and 263 FD	Rotavirus Vaccination at PED and FD clinics	PR (PED vs FD) Routinely offering the vaccine Do not offer RV RV offered but not routinely Knowledge of 1st dose dosage Knowledge of 3rd dose dosage RV security doubts Doubts about over-vaccination Economic barriers	2.65 [2.10 - 3.57] 0.39 [0.30 - 0.51] 0.38 [0.22 - 0.64] 2.01 [1.72 - 2.36] 1.67 [1.45 - 1.93] 0.51 [0.37 - 0.69] 0.41 [0.27 - 0.60] 0.92 [0.77 - 1.10]	PED
Kempe ³⁵ 2010 (USA)	Cross-sectional study Professional online survey High quality	219 PED and 135 FD (rr: 68% y 51%)	Hib vaccination during a period of vaccine shortage	PR (PED vs FD) Know ACIP recommendations during supply failure Hib Do not vaccinate low-risk children Vaccinate high-risk children	4.98 [1.99 - 12.43] 1.27 [1.02 - 1.57] 0.79 [0.55 - 1.13]	PED
Daley ²⁴ 2010 (USA)	Cross-sectional study Professional survey High quality	349 PED and 331 FD (rr: 81% and 79%)	HPV vaccination by PED and FD	PR (PED vs FD) HPV recommendation -Of recommended:female11-12y	3.63[1.82-7.12] 1.14[0.98-1.32]	PED

				-Of recommended: female 13-15y	1.22[0.93-1.57]	
Kempe ⁴⁰ 2011	Cross-sectional study Professional	357 PED and 262 FD	Prevalence of doubts regarding	PR (PED vs FD)		NOT
(USA)	survey. High quality	(rr: 88% and 78%)	vaccination in families	Require parents to sign if they refuse vaccinations	1.45 [1.27 - 1.66]	CLEAR
				Reject anti-vaccine families	1.79 [1.61 - 1.98]	
Vadaparampil ²⁵	Cross-sectional study	287 PED and 500 FD	HPV recommendation at 11-	PR (PED vs FD)		PED
2011	Professional survey	(rr:68%)	12y and 13-17y	High knowledge about HPV	0.73 [0.61 - 0.88]	
(USA)	Medium quality			Perceiving barriers to vaccination	0.64 [0.52 - 0.79]	
				OR logistic regression model (PED vs FD)		
				Always recommends HPV at age 11-12	2.6 [1.9 - 3.7]	
				Always recommends HPV at age 13-17	4.7 [3.4 – 6.6]	
Toback ³¹ 2012	Cross-sectional study	105 PED offices and	Attitude in regard to flu	PR (PED offices vs FD offices)		SAME
(USA)	Professional survey	13 FD offices	vaccine	Recommend vaccine to all child 6month-5y	1 [1-1]	
	Medium quality			Recommend vaccine to no high risk child 5-18y	1.19 [0.93 - 1.5]	
				Recommend vaccine to high-risk child 5-18y	1.35 [0.76 - 2.39]	
Pruvost ³⁷ 2012	Cross-sectional study	43 PED and 109 FD	Adherence to the vaccine	PR (PED vs FD)		PED
France	Professional survey	(rr: 61%)	schedule for MMR, pertussis,	Adherence to pneumococcal vaccination schedule	12.10 [1.73 - 84.73]	
	Medium quality		and pneumococcus	Adherence to pertussis vaccination schedule	1.49 [0.89-2.46]	
				Adherence to MMR vaccination schedule	2.14 [1.32-3.47]	
O´Leary ³⁴ 2013	Cross-sectional study	285 PED and 192 FD	Rotavirus vaccine practices	PR (PED vs FD)		PED
(USA)	Professional survey	(rr:70% and 61%)		Recommend the vaccine	3.93 [2.28 - 6.76]	
	Medium quality			Inform but not recommend	0.24 [0.13-0.43]	
				Administer the vaccine	3.96 [2.44-6.40]	
				Doubts about security	0.28 [0.17-0.45]	
Tolaymat ³⁶	Cross-sectional study	26 PED, 34 FD and	Knowledge of vaccination in	PR (PED vs FD)		PED
2013	Professional survey	18 residents	children with inflammatory	Identify attenuated vaccines as unsafe	2.25 [1.16 - 4.36]	
(USA)	Low quality		bowel disease and			
(oral			immunosuppressive therapy			
communication						
)						

O´leary ⁴¹ 2015	Cross-sectional study	282 PED and 252	Prevalence of vaccine	Parents' request not to meet immunization		MIXED
(USA)	Professional survey	FD. (rr: 66% y 61%)	rejection and attitude towards	schedule (all): 1-4 /month rejection	63% (PED 68%; MF	
	High quality		it	At least 1request/month vaccine delay	57%)	
				PR (PED vs FD)	83% (PED 88%; MF	
				Require parents to sign if they refuse vaccinations	76%)	
				Reject anti-vaccine families		
				Asking about attitudes to vaccines in prenatal visit	PR 1.96 [1.65 - 2.33]	
					PR 1.78 [1.56 - 2.04]	
					PR 1.58 [1.34 - 1.85]	
Kulczcki ²⁶	Cross-sectional study	151 PED and 148 FD	Prescription of HPV vaccine in	PR (PED vs FD)		SAME
2016	Professional survey	(rr:43%)	primary care	HPV Prescription	1.06 [0.83 - 1.34]	
(USA)	Medium quality			Multivariate logistic regression. OR(PED vs FD)	0.57 [0.30-1.09]	
Allison ²⁷ 2016	Cross-sectional study	364 PED and 218 FD	HPV vaccine	PR (PED vs FD)		SAME/P
(USA)	Professional survey	(rr: 82% and 56%)	recommendations at 11-12 y	Vaccine recommendation	1.01 [0.89 - 1.15]	D
	High quality		and delay frequency	Talk about the vaccine. 11th visit.	1.27 [1.05 - 1.54]	
Levy ³⁹ 2016	Cross-sectional study	939 PED and 502 FD	Doctors perceptions after	PR (PED vs FD)		PED
(France)	Professional survey	(rr: 12%)	meningitis B vaccine	Knowing the existence of the vaccine	2.34 [2.01 - 2.71]	
	Low quality		commercialization	Know the vaccine schedule	1.67 [1.56 - 1.78]	
				Have started vaccination	1.41 [1.30 - 1.53]	
Vie le sagne ³⁸	Cross-sectional study	463 PED (232 T1,	Acceptability of hepatitis B	PR (PED vs GP)		PED
2016	Professional phone survey	231 T2) and 418 FD	vaccine after reimbursement	Vaccination at the beginning	1.08 [0.95 - 1.22]	
(France)	Medium quality	(192 T1, 296 T2)		Vaccination at 3 years (final)	2.64 [1.83 - 3.81]	
				Hepatitis B vaccine recommendation at the	2.96 [2.11 - 4.14]	
				beginning	2.73 [1.70 – 4.36]	
				Hepatitis B vaccine recommendation at 3 years		
Wilburg ²⁹ 2016	Retrospective Cohorts study	Medical records	HPV vaccination and	OR (PED vs FD)		PED
(Poster)	Medical records.	(2006-2013)	relationship with type of	Initiate vaccination	1.41 [no data]	
(USA)	Medium quality		professional	Complete vaccination	1.53 [no data]	
Kempe ⁴² 2017	Cross-sectional study Professional	325 PED. 310 FD	Knowledge of official	PR (PED vs FD)		PED
(USA)	survey. High quality	(rr: 75% and 68%)	vaccination registration	They do not know of the existence of a register	0.51 [0.33 - 0.77]	

			systems	Use the register	1.30 [1.06 - 1.60]	
Finney	Cross-sectional study Professional	43 PED and 177 FD	HPV vaccine recommendation	PR (PED vs FD)		PED
Rutten ²⁸ 2017	survey		and its relationship to	HPV strongly recommended to girls	5.84 [1.87-18.21]	
	Media quality		vaccination rates	HPV strongly recommended to boys	5.46 [2.23 - 13.34]	
(USA)				HPV always/usually recommended to girls	11.10 [1.57 - 78.54]	
				HPV always/usually recommended to boys	7.92 [2.53 - 24.80]	

FD: family doctors; PED: paediatricians; GP: general practitioners; rr: response rate; PR: prevalence ratio, T1: first period; T2: second period ,RV: rotavirus vaccines; Hib: Haemophilus influenzae type b HPV: human papillomavirus vaccine; MMR: measles, mumps, rubella y: years; ACIP: Advisory Committee on Immunization Practices (*) <1 favours FD/GP; >1 favours PEDs (**):p<0,001; (***):p<0.01 (*) OR cannot be calculated with available data

Author/year	Design/quality	Participants	Comparison	Outcome variable	Results*	Result
publication/					(OR or	favour
country					PR[95%CI])	
HE ⁴³ .2010	Cross-sectional study	396 PED and 464 FD (rr: 46%	Diagnosis and treatment of	PR (PED vs FD)		PED
Canada)	Professional mail survey	and 48%)	paediatric obesity/overweight	Consider should be treated even if there is no		
	Low quality			associated morbidity.	1.39 [1.05-1.83]	
				Use the recommended method/tool for classifying		
				overweight/obesity	1.93 [1.66-2.24]	
				Use recommended criteria for diagnosis obesity		
					1.52 [1.38-1.67]	
lunag ⁴⁴ 2011	Cross-sectional study	440 PED and 371 FD (rr:	Diagnosis and treatment of	OR (PED vs FD) (logistic regression)		PED
JSA)	Professional survey	73.7% and 66.9%)	paediatric obesity/overweight	Provide general advice	1.75 [1.35-2.27]	
	Low quality			Advice on specific diet topics	2.32 [1.78-3.03]	
				Recommend physical activity Referral to specialist	1.61 [1.25-2.12]	
				Systematic follow-up	1.56 [1.03-2.32]	
					1.49 [1.10-2.00]	
				PR (PED vs FD)		
				Calculate BMI on a regular basis	1.61 [1.37-1.89]	
				Use of BMI charts	1.77 [1.53-2.43]	
arkins ⁴⁵ 2012	Cross-sectional study	119 PED and 61FD (rr: 54%)	Knowledge and application of CPG	PR (PED vs FD)		PED
JSA)	Professional mail survey		on obesity	Knowledge of obesity CPG	1.51 [1.10 - 2.08]	
	Low quality			Adherence to the CPG by those who knew them	n.s.	
				Adequate diagnostics with BMI charts	1.71 [1.27-2.28]	
				Recommendation for physical activity of 1 or more		
				hours/day	0.81 [0.65-1.006]	
				Recommendation to limit screen time to less than 2		
				hours/day	1.49 [1.20-1.85]	
				Adherence to food recommendations	1.28 [1.04-1.56]	
/ladsen ⁴⁶	Cross-sectional study	559 PED. 554 FD and 317	Knowledge and compliance with	PR (PED vs FD)		similar

This article is protected by copyright. All rights reserved

Accepted Article

2013	Professional online survey	athletic directors (rr: 72%. 56%	national guidelines	Follow-up of the guidelines(all items)	1.15 [0.89-1.48]	
(USA)	Medium quality	y 78%)	for sudden cardiac death screening.			
Dixon ⁴⁷ 2014	Cross-sectional study	230 PED. 265 FD/GP and 39	knowledge, screening, and	PR (PED vs FD):		PFD
(USA)	Professional online survey	advanced practitioners (AP)	management attitudes regarding	Familiarized with lipid values	2.72 [2.25-3.27]	T LD
	Medium quality	(rr= 37% , 37%/11% and	paediatric lipid	Comfortable with handling children with lipid disorders	1.38 [1.13-1.67]	
		5.5%)	guidelines.	Promote healthy lifestyles	1.80 [1.41-2.28]	
				Recommend low-fat diet	1.46 [1.21 -1.74]	
				Should use lipid-lowering medications	2.43 [2.03-2.89]	

FD: family doctor; PED: paediatricians; GP: general practitioner; rr: response rate; CPG Clinical practice guidelines n.s: not significant (*) <1 favour FD/GP; >1 favours PEDs ; ; n.s: no significant

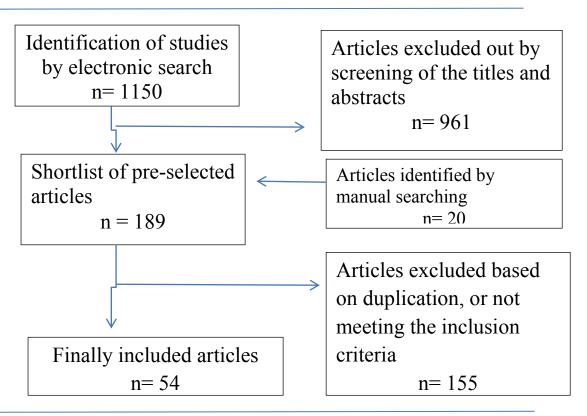
differences

Author/year	Design/quality	Participants	Comparison	Outcome variable	Results*	Results
publication/					(OR or PR	favour
country					[95%CI])	
McClave ⁴⁸ 201	Cross-sectional study	84 primary care	Awareness of the choking	PR awareness of its warning signs,		PED
0	Professional survey	PED, 31	game and its warning signs	PED vs GP	1.48 [1.03 - 2.12]	
(USA)	Low quality	PEDsubspec and 48		PED vs PEDsubspec	1.41 [1.02 - 1.95]	
		GP (rr: 19,61%)		PEDsubspec vs GP	0.92 [0.53 - 1.59]	
Herndon ⁴⁹	Cross-sectional study	264 PED and 157	Oral health knowledge confidence and	Multivariate analysis. Just differences:		PED
2010 (USA)	Professional survey	FD (rr: 31%)	practice patterns.	1-Fluoride-related knowledge	Best PED****	
	Low quality			2-Greater confidence in parents' advice	Best PED****	
Burney ⁵⁰ 2011	Cross-sectional study	57 PED (rr: 58%)	Practice in relation to screening for	PR (PED vs FD)		FD
(USA)	Professional on line	and 24 FD (rr: 62%)	anaemia or sickle cell trait	Routinely review screening tests for sickle cell disease in new		
	survey (pre- and post-			born infants:	0.73 [0.54 - 0.98]	
	training survey).					
	Low quality					
Hayeems⁵¹	Cross-sectional study	273 PED, 296 FD y	Information to families who receive	PR (PED vs FD)		PED
2013	Professional survey	250 midwives (rr:	positive screening results	1- Agreed that it was them		
(Canada)	Low quality	51%, 63% and 77%)	for their new-borns.	responsibility to provide care to families	1.53 [1.15- 2.08]	
				2- In favour of having specific and detailed informative talk		
				versus general information or brochure	2.63 [2.10-3.27]	
				3 Hold a specific and detailed informative talk in practice	2.23 [1.85-2.68]	
				4 Recognize lack of training on the subject	0.42 [0.33-0.52]	
				5- Be updated on the Ontario Screening Program	2.38 [1.95-2.90]	
				6- Confidence in knowing how to explain screening results to		
				parents	2.77 [2.25 - 3.40]	
Vyas ⁵² 2013	Cross-sectional study	88 PED and 49 FD	Knowledge and use of WHO growth	PR (PED vs FD)		PED
(USA)	Professional survey	(rr: 64,2 % and	charts	Knowledge of existence of WHO charts and recommendations	1.42 [1.03 - 1.96]	
	Low quality	35,8%)		Use of WHO charts	0.96 [0.73 - 1.27]	
Knudson ⁵³	Cross-sectional study	148 PED and 178	Adherence to AHA Guidelines for the	PR (PED vs FD)		PED

2016	Professional online	GP (rr: 29% and	management of neurodevelopmental	know the AHA recommendations	1,54 [1.28 – 1.85]	
(USA)	survey	13%)	disorders in Children with CHD	Rarely referred for developmental eval	0.68 [0.47-0.96]	
	Low quality			Other items studied	n.s	
Ayou ⁵⁴ 2017	Cross-sectional study	134 PED (rr: 48%)	Knowledge and practice about child	PED vs GP⁺		PE
(France)	Professional mail survey	and 298 FD	abuse and neglect	General Average Scoremax160)	87.98 vs 77.88**	
	Low quality	(previous survey)		Score on clinical practice(max 120)	52.84 vs 47.65***	
	1			Score on knowledge(max 60)	29.5 vs 24.2**	
Moore ⁵⁵ 2017	Cross-sectional study	34 PED and 16 FD	Knowledge and practice of psychomotor	PR (PED vs FD)		PE
(USA)	Professional survey	(rr: 38.5%)	development screening	Perform PDS always	1.82 [1.01 - 3.25]	
	Low quality			Interpreting the screening tests	2.60 [0.8 - 8.51]	
1				Review results with parents	3.51 [1.02 - 12.05]	
				Informing parents and writing of PDS	1.99 [1.10 - 3.60]	
	1			Referral to Early Care	5.35 [0.87 - 33.22]	

differences; (*) OR cannot be calculated with available data

Author/year publication/ country	Design/quality	Participants	Comparison	Outcome variable	Results* (OR or PR [95%Cl])	Result favou
Park ⁵⁶ 2013	Cross-sectional study	46 PED and 36	Use rapid strep test and prescription	PR (PED vs FD)		
(France)	Professional survey	FD (rr:74% vs	of ATB	Use rapid strep test in >3 years	1.33 [0.87 - 2.02]	PED
	Low quality	18%)		Prescribe ATB with strep rapid test -	0.54 [0.39 - 0.74]	
Mateo ⁵⁷ 2013	Cross-sectional study	152 PED and	Compliance with national guidelines	PR (PED vs FD)		PED
(Canada)	Professional survey	81FD/GP (rr:	for screening, post discharge follow-	Follow recommendations	1.76 [1.36 - 2.26]	
	Medium quality	17%)	up, and management of new-borns	Control before 72 hours of the hospital discharge of the new born baby	2.23 [1.49 - 2.31]	
			with hyperbilirubinemia.	Correct response to a jaundice case scenario	5.37 [0.85 - 33.66]	
Pham ⁵⁸ 2014	Cross-sectional study	256 GP, 221	Adherence to diagnostic guidelines	PR (PED vs GP)		
(France)	Professional survey	gastroenterologist	of CD	suspected CD from GI symptoms< 2y	1.40 [1.08 - 1.80]	PED
	Medium quality	and 227 PED		suspected CD from GI symptoms 2-18y	1.42 [1.12 - 1.81]	
				suspected EC by weight/size < 2 y	2.53 [1.77 - 3.59]	
				suspected EC by weight/size 2-18 y	1.95 [1.56 - 2.43]	
				suspected CD from general symptoms <2y	1.53 [1.27 - 1.83]	
				suspected CD from general symptoms 2-18y	1.50 [1.25 - 1.80]	
				use of antitransglutaminase antibodies for dx	4.54 [2.46 - 8.34]	
				use of anti-endomysium antibodies for dx	0.61 [0.50 - 0.73]	
Lee ⁵⁹ .2014	Cross-sectional study	352 PED and 25	Screening for type 2 DM in	PR (PED vs FD)		
(USA)	Professional mail	2FD (rr: 43%)	adolescents and adherence to ADA	HbAC1 screening of patients at risk of DM T2	1.53 [1.06 - 2.21]	PED
	survey		recommendations	At least one fasting test (plasma glucose or glucose tolerance)	1.26 [1.09 - 1.47]	
	Medium quality			know the ADA guides	0.64 [0.54 - 0.75]	
				Include HbA1C in initial screening	1.28 [1.11 - 1.48]	
Gupt ⁶⁰ 2015	Retrospective	1541 children	Factors related to delayed diagnosis	Logistic regression. Adjusted OR		PED
(Canada)	population-based	with acute		Having PED as primary care physician versus having a GP	0.62 [0.40 - 0.96]	
	cohort study	lymphoblastic				
	Medium quality	leukaemia				


diagnosed 1995-		
2011		

AAT: anti-tissue transglutaminase antibodies; AAE: anti-endomysium antibodies; ADA: association for the diagnosis of diabetes FD: family doctors; PED: paediatricians; GP: general practitioner; rr:

response rate; PR: prevalence ratio, ATB: antibiotics; CD: celiac disease GI: gastrointestinal ,y: years; dx: diagnosis DM diabetes mellitus, (*) <1 favours FD/GP; >1 favours PEDs

