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Abstract3

Let P be a set of n points in the plane in general position. We show that at least bn/3c4

plane spanning trees can be packed into the complete geometric graph on P . This improves5

the previous best known lower bound Ω (
√
n). Towards our proof of this lower bound we6

show that the center of a set of points, in the d-dimensional space in general position, is of7

dimension either 0 or d.8

1 Introduction9

In the two-dimensional space, a geometric graph G is a graph whose vertices are points in the10

plane and whose edges are straight-line segments connecting the points. A subgraph S of G is11

plane if no pair of its edges cross each other. Two subgraphs S1 and S2 of G are edge-disjoint12

if they do not share any edge.13

Let P be a set of n points in the plane. The complete geometric graph K(P ) is the geometric14

graph with vertex set P that has a straight-line edge between every pair of points in P . We say15

that a sequence S1, S2, S3, . . . of subgraphs of K(P ) is packed into K(P ), if the subgraphs in16

this sequence are pairwise edge-disjoint. In a packing problem, we ask for the largest number of17

subgraphs of a given type that can be packed into K(P ). Among all subgraphs, plane spanning18

trees, plane Hamiltonian paths, and plane perfect matchings are of interest. Since K(P ) has19

n(n− 1)/2 edges, at most bn/2c spanning trees, at most bn/2c Hamiltonian paths, and at most20

n− 1 perfect matchings can be packed into it.21

A long-standing open question is to determine whether or not it is possible to pack bn/2c22

plane spanning trees into K(P ). If P is in convex position, the answer in the affirmative follows23

from the result of Bernhart and Kanien [3], and a characterization of such plane spanning trees24

is given by Bose et al. [5]. In CCCG 2014, Aichholzer et al. [1] showed that if P is in general25

position (no three points on a line), then Ω(
√
n) plane spanning trees can be packed into K(P );26

this bound is obtained by a clever combination of crossing family (a set of pairwise crossing27

edges) [2] and double-stars (trees with only two interior nodes) [5]. Schnider [12] showed that28

it is not always possible to pack bn/2c plane spanning double stars into K(P ), and gave a29

necessary and sufficient condition for the existence of such a packing. As for packing other30

spanning structures into K(P ), Aichholzer et al. [1] and Biniaz et al. [4] showed a packing of 231

plane Hamiltonian cycles and a packing of dlog2 ne − 2 plane perfect matchings, respectively.32

The problem of packing spanning trees into (abstract) graphs is studied by Nash-Williams [11]33

and Tutte [13] who independently obtained necessary and sufficient conditions to pack k span-34

ning trees into a graph. Kundu [10] showed that at least d(k − 1)/2e spanning trees can be35

packed into any k-edge-connected graph.36

In this paper we show how to pack bn/3c plane spanning trees into K(P ) when P is in37

general position. This improves the previous Ω(
√
n) lower bound.38
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2 Packing Plane Spanning Trees39

In this section we show how to pack bn/3c plane spanning tree into K(P ), where P is a set of40

n > 3 points in the plane in general position (no three points on a line). If n ∈ {3, 4, 5} then41

one can easily find a plane spanning tree on P . Thus, we may assume that n > 6.42

The center of P is a subset C of the plane such that any closed halfplane intersecting C43

contains at least dn/3e points of P . A centerpoint of P is a member of C, which does not44

necessarily belong to P . Thus, any halfplane that contains a centerpoint, has at least dn/3e45

points of P . It is well known that every point set in the plane has a centerpoint; see e.g. [7,46

Chapter 4]. We use the following corollary and lemma in our proof of the bn/3c lower bound;47

the corollary follows from Theorem 3 that we will prove later in Section 3.48

Corollary 1. Let P be a set of n > 6 points in the plane in general position, and let C be the49

center of P . Then, C is either 2-dimensional or 0-dimensional. If C is 0-dimensional, then it50

consists of one point that belongs to P , moreover n is of the form 3k+1 for some integer k > 2.51

Lemma 1. Let P be a set of n points in the plane in general position, and let c be a centerpoint52

of P . Then, for every point p ∈ P , each of the two closed halfplanes, that are determined by53

the line through c and p, contains at least dn/3e+ 1 points of P .54

H

c

p

Proof. For the sake of contradiction assume that a closed halfplane H, that55

is determined by the line through c and p, contains less than dn/3e+1 points56

of P . By symmetry assume that H is to the left side of this line oriented from57

c to p; see the figure to the right. Since c is a centerpoint and H contains58

c, the definition of centerpoint implies that H contains exactly dn/3e points59

of P (including p and any other point of P that may lie on the boundary60

of H). By slightly rotating H counterclockwise around c, while keeping c61

on the boundary of H, we obtain a new closed halfplane that contains c but62

misses p. This new halfplane contains less than dn/3e points of P ; this contradicts c being a63

centerpoint of P .64

Now we proceed with our proof of the lower bound. We distinguish between two cases65

depending on whether the center C of P is 2-dimensional or 0-dimensional. First suppose that66

C is 2-dimensional. Then, C contains a centerpoint, say c, that does not belong to P . Let67

p1, . . . , pn be a counter-clockwise radial ordering of points in P around c. For two points p and68

q in the plane, we denote by −→pq, the ray emanating from p that passes through q.69

Since every integer n > 3 has one of the forms 3k, 3k+1, and 3k+2, for some k > 1, we will70

consider three cases. In each case, we show how to construct k plane spanning directed graphs71

G1, . . . , Gk that are edge-disjoint. Then, for every i ∈ {1, . . . , k}, we obtain a plane spanning72

tree Ti from Gi. First assume that n = 3k. To build Gi, connect pi by outgoing edges to73

pi+1, pi+2, . . . , pi+k, then connect pi+k by outgoing edges to pi+k+1, pi+k+2, . . . , pi+2k, and then74

connect pi+2k by outgoing edges to pi+2k+1, pi+2k+2, . . . , pi+3k, where all the indices are modulo75

n, and thus pi+3k = pi. The graph Gi, that is obtained this way, has one cycle (pi, pi+k, pi+2k, pi);76

see Figure 1. By Lemma 1, every closed halfplane, that is determined by the line through c and77

a point of P , contains at least k + 1 points of P . Thus, all points pi, pi+1, . . . , pi+k lie in the78

closed halfplane to the left of the line through c and pi that is oriented from c to pi. Similarly,79

the points pi+k, . . . , pi+2k lie in the closed halfplane to the left of the oriented line from c to80

pi+k, and the points pi+2k, . . . , pi+3k lie in the closed halfplane to the left of the oriented line81

from c to pi+2k. Thus, all the k edges outgoing from pi are in the convex wedge bounded by the82

rays −→cpi and −−−→cpi+k, all the edges outgoing from pi+k are in the convex wedge bounded by −−−→cpi+k83

and −−−→ci+2k, and all the edges from pi+2k are in the convex wedge bounded by −−−→cpi+2k and −−−→ci+3k.84
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Therefore, the spanning directed graph Gi is plane. As depicted in Figure 1, by removing the85

edge (pi+2k, pi) from Gi we obtain a plane spanning (directed) tree Ti. This is the end of our86

construction of k plane spanning trees.87
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p2

p3 p1

p2+k
p2+2k
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p2

p3

p1+k

p1+2k

Figure 1: The plane spanning trees T1 (the left) and T2 (the right) are obtained by removing
the edges (p1+2k, p1) and (p2+2k, p2) from G1 and G2, respectively.

To verify that the k spanning trees obtained above are edge-disjoint, we show that two88

trees Ti and Tj , with i 6= j, do not share any edge. Notice that the tail of every edge in Ti89

belongs to the set I = {pi, pi+k, pi+2k}, and the tail of every edge in Tj belongs to the set90

J = {pj , pj+k, pj+2k}, and I ∩ J = ∅. For contrary, suppose that some edge (pr, ps) belongs to91

both Ti and Tj , and without loss of generality assume that in Ti this edge is oriented from pr92

to ps while in Tj it is oriented from ps to pr. Then pr ∈ I and ps ∈ J . Since (pr, ps) ∈ Ti and93

the largest index of the head of every outgoing edge from pr is r + k, we have that s 6 (r + k)94

mod n. Similarly, since (ps, pr) ∈ Tj and the largest index of the head of every outgoing edge95

from ps is s+ k, we have that r 6 (s+ k) mod n. However, these two inequalities cannot hold96

together; this contradicts our assumption that (pr, ps) belongs to both trees. Thus, our claim,97

that T1, . . . , Tk are edge-disjoint, follows. This finishes our proof for the case where n = 3k.98

If n = 3k + 1, then by Lemma 1, every closed halfplane that is determined by the line99

through c and a point of P contains at least k + 2 points of P . In this case, we construct Gi100

by connecting pi to its following k + 1 points, i.e., pi+1, . . . , pi+k+1, and then connecting each101

of pi+k+1 and pi+2k+1 to their following k points. If n = 3k + 2, then we construct Gi by102

connecting each of pi and pi+k+1 to their following k + 1 points, and then connecting pi+2k+2103

to its following k points. This is the end of our proof for the case where C is 2-dimensional.104

Now we consider the case where C is 0-dimensional. By Corollary 1, C consists of one point105

that belongs to P , and moreover n = 3k + 1 for some k > 2. Let p ∈ P be the only point of106

C, and let p1, . . . , pn−1 be a counter-clockwise radial ordering of points in P \ {p} around p. As107

in our first case (where C was 2-dimensional, c was not in P , and n was of the form 3k) we108

construct k edge-disjoint plane spanning trees T1, . . . , Tk on P \ {p} where p playing the role of109

c. Then, for every i ∈ {1, . . . , k}, by connecting p to pi, we obtain a plane spanning tree for P .110

These plane spanning trees are edge-disjoint. This is the end of our proof. In this section we111

have proved the following theorem.112

Theorem 1. Every complete geometric graph, on a set of n points in the plane in general113

position, contains at least bn/3c edge-disjoint plane spanning trees.114
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3 The Dimension of the Center of a Point Set115

The center of a set P of n > d + 1 points in Rd is a subset C of Rd such that any closed116

halfspace intersecting C contains at least α = dn/(d+ 1)e points of P . Based on this definition,117

one can characterize C as the intersection of all closed halfspaces such that their complementary118

open halfspaces contain less than α points of P . More precisely (see [7, Chapter 4]) C is the119

intersection of a finite set of closed halfspaces H1, H2, . . . ,Hm such that for each Hi120

1. the boundary of Hi contains at least d affinely independent points of P , and121

2. the complementary open halfspace Hi contains at most α− 1 points of P , and the closure122

of Hi contains at least α points of P .123

Being the intersection of closed halfspaces, C is a convex polyhedron. A centerpoint of P is124

a member of C, which does not necessarily belong to P . It follows, from the definition of the125

center, that any halfspace containing a centerpoint has at least α points of P . It is well known126

that every point set in the plane has a centerpoint [7, Chapter 4]. In dimensions 2 and 3, a127

centerpoint can be computed in O(n) time [9] and in O(n2) expected time [6], respectively.128

A set of points in Rd, with d > 2, is said to be in general position if no k + 2 of them lie in129

a k-dimensional flat for every k ∈ {1, . . . , d− 1}.1 Alternatively, for a set of points in Rd to be130

in general position, it suffices that no d+ 1 of them lie on the same hyperplane. In this section131

we prove that if a point set P in Rd is in general position, then the center of P is of dimension132

either 0 or d. Our proof of this claim uses the following result of Grünbaum.133

Theorem 2 (Grünbaum, 1962 [8]). Let F be a finite family of convex polyhedra in Rd, let I be134

their intersection, and let s be an integer in {1, . . . , d}. If every intersection of s members of F135

is of dimension d, but I is (d− s)-dimensional, then there exist s+ 1 members of F such that136

their intersection is (d− s)-dimensional.137

C C C

Figure 2: The dimension of a point set in the plane, that is not in general position, can be any
number in {0, 1, 2}.

Before proceeding to our proof, we note that if P is not in general position, then the138

dimension of C can be any number in {0, 1, . . . , d}; see e.g. Figure 2 for the case where d = 2.139

Observation 1. For every k ∈ {1, . . . , d+1} the dimension of the intersection of every k closed140

halfspaces in Rd is in the range [d− k + 1, d].141

Theorem 3. Let P be a set of n > d + 1 points in Rd, and let C be the center of P . Then,142

C is either d-dimensional, or contained in a (d − s)-dimensional polyhedron that has at least143

n− (s+ 1)(α− 1) points of P for some s ∈ {1, . . . , d} and α = dn/(d+ 1)e. In the latter case144

if P is in general position and n > d+ 3, then C consists of one point that belongs to P , and n145

is of the form k(d+ 1) + 1 for some integer k > 2.146

1A flat is a subset of d-dimensional space that is congruent to a Euclidean space of lower dimension. The flats
in 2-dimensional space are points and lines, which have dimensions 0 and 1.
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Proof. The center C is a convex polyhedron that is the intersection of a finite family H of closed147

halfspaces such that each of their complementary open halfspaces contains at most α−1 points148

of P [7, Chapter 4]. Since C is a convex polyhedron in Rd, its dimension is in the range [0, d].149

For the rest of the proof we consider the following two cases.150

(a) The intersection of every d+ 1 members of H is of dimension d.151

(b) The intersection of some d+ 1 members of H is of dimension less than d.152

First assume that we are in case (a). We prove that C is d-dimensional. Our proof follows153

from Theorem 2 and a contrary argument. Assume that C is not d-dimensional. Then, C is154

(d − s)-dimensional for some s ∈ {1, . . . , d}. Since the intersection of every s members of H155

is d-dimensional, by Theorem 2 there exist s + 1 members of H whose intersection is (d − s)-156

dimensional. This contradicts the assumption of case (a) that the intersection of every d + 1157

members of H is d-dimensional. Therefore, C is d-dimensional in this case.158

Now assume that we are in case (b). Let s be the largest integer in {1, . . . , d} such that every
intersection of s members of H is d-dimensional; notice that such an integer exists because every
single halfspace in H is d-dimensional. Our choice of s implies the existence of a subfamily H′
of s+ 1 members of H whose intersection is d′-dimensional for some d′ < d. Let s′ be an integer
such that d′ = d−s′. By Observation 1, we have that d′ > d−s, and equivalently d−s′ > d−s;
this implies s′ 6 s. To this end we have a family H′ with s + 1 members for which every
intersection of s′ members is d-dimensional (because s′ 6 s and H′ ⊆ H), but the intersection
of all members of H′ is (d− s′)-dimensional. Applying Theorem 2 on H′ implies the existence
of s′ + 1 members of H′ whose intersection is (d − s′)-dimensional. If s′ < s, then this implies
the existence of s′ + 1 6 s members of H′ ⊆ H, whose intersection is of dimension d − s′ < d.
This contradicts the fact that the intersection of every s members of H is d-dimensional. Thus,
s′ = s, and consequently, d′ = d− s′ = d− s. Therefore C is contained in a (d− s)-dimensional
polyhedron I which is the intersection of the s + 1 closed halfspaces of H′. Let H1, . . . ,Hs+1

be the complementary open halfspaces of members of H′, and recall that each Hi contains at
most α− 1 points of P . Let I be the complement of I. Then,

n = |I ∪ I| = |I ∪H1 ∪ · · · ∪Hs+1|
6 |I|+ |H1|+ · · ·+ |Hs+1| 6 |I|+ (s+ 1)(α− 1),

where we abuse the notations I, I, and Hi to refer to the subset of points of P that they contain.159

This inequality implies that I contains at least n− (s+ 1)(α− 1) points of P . This finishes the160

proof of the theorem except for the part that P is in general position.161

Now, assume that P is in general position and n > d + 3. By the definition of general
position, the number of points of P in a (d − s)-dimensional flat is not more than d − s + 1.
Since I is (d− s)-dimensional, this implies that

n− (s+ 1)(α− 1) 6 d− s+ 1.

Notice that n is of the form k(d+ 1) + i for some integer k > 1 and some i ∈ {0, 1, . . . , d}.162

Moreover, if i is 0 or 1, then k > 2 because n > d + 3. Now we consider two cases depending163

on whether or not i is 0. If i = 0, then α = k. In this case, the above inequality simplifies to164

k(d − s) 6 d − 2s, which is not possible because k > 2 and d > s > 1. If i ∈ {1, . . . , d}, then165

α = k + 1. In this case, the above inequality simplifies to (k − 1)(d − s) + i 6 1, which is not166

possible unless d = s and i = 1. Thus, for the above inequality to hold we should have d = s167

and i = 1. These two assertions imply that n = k(d + 1) + 1, and that I is 0-dimensional and168

consists of one point of P . Since C ⊆ I and C is not empty, C also consists of one point of P .169

170
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