Packing Plane Spanning Trees into a Point Set

Ahmad Biniaz* Alfredo García ${ }^{\dagger}$

Abstract

Let P be a set of n points in the plane in general position. We show that at least $\lfloor n / 3\rfloor$ plane spanning trees can be packed into the complete geometric graph on P. This improves the previous best known lower bound $\Omega(\sqrt{n})$. Towards our proof of this lower bound we show that the center of a set of points, in the d-dimensional space in general position, is of dimension either 0 or d.

1 Introduction

In the two-dimensional space, a geometric graph G is a graph whose vertices are points in the plane and whose edges are straight-line segments connecting the points. A subgraph S of G is plane if no pair of its edges cross each other. Two subgraphs S_{1} and S_{2} of G are edge-disjoint if they do not share any edge.

Let P be a set of n points in the plane. The complete geometric graph $K(P)$ is the geometric graph with vertex set P that has a straight-line edge between every pair of points in P. We say that a sequence $S_{1}, S_{2}, S_{3}, \ldots$ of subgraphs of $K(P)$ is packed into $K(P)$, if the subgraphs in this sequence are pairwise edge-disjoint. In a packing problem, we ask for the largest number of subgraphs of a given type that can be packed into $K(P)$. Among all subgraphs, plane spanning trees, plane Hamiltonian paths, and plane perfect matchings are of interest. Since $K(P)$ has $n(n-1) / 2$ edges, at most $\lfloor n / 2\rfloor$ spanning trees, at most $\lfloor n / 2\rfloor$ Hamiltonian paths, and at most $n-1$ perfect matchings can be packed into it.

A long-standing open question is to determine whether or not it is possible to pack $\lfloor n / 2\rfloor$ plane spanning trees into $K(P)$. If P is in convex position, the answer in the affirmative follows from the result of Bernhart and Kanien [3], and a characterization of such plane spanning trees is given by Bose et al. [5]. In CCCG 2014, Aichholzer et al. [1] showed that if P is in general position (no three points on a line), then $\Omega(\sqrt{n})$ plane spanning trees can be packed into $K(P)$; this bound is obtained by a clever combination of crossing family (a set of pairwise crossing edges) [2] and double-stars (trees with only two interior nodes) [5]. Schnider [12] showed that it is not always possible to pack $\lfloor n / 2\rfloor$ plane spanning double stars into $K(P)$, and gave a necessary and sufficient condition for the existence of such a packing. As for packing other spanning structures into $K(P)$, Aichholzer et al. [1] and Biniaz et al. [4] showed a packing of 2 plane Hamiltonian cycles and a packing of $\left\lceil\log _{2} n\right\rceil-2$ plane perfect matchings, respectively.

The problem of packing spanning trees into (abstract) graphs is studied by Nash-Williams [11] and Tutte [13] who independently obtained necessary and sufficient conditions to pack k spanning trees into a graph. Kundu [10] showed that at least $\lceil(k-1) / 2\rceil$ spanning trees can be packed into any k-edge-connected graph.

In this paper we show how to pack $\lfloor n / 3\rfloor$ plane spanning trees into $K(P)$ when P is in general position. This improves the previous $\Omega(\sqrt{n})$ lower bound.

[^0]
2 Packing Plane Spanning Trees

In this section we show how to pack $\lfloor n / 3\rfloor$ plane spanning tree into $K(P)$, where P is a set of $n \geqslant 3$ points in the plane in general position (no three points on a line). If $n \in\{3,4,5\}$ then one can easily find a plane spanning tree on P. Thus, we may assume that $n \geqslant 6$.

The center of P is a subset C of the plane such that any closed halfplane intersecting C contains at least $\lceil n / 3\rceil$ points of P. A centerpoint of P is a member of C, which does not necessarily belong to P. Thus, any halfplane that contains a centerpoint, has at least $\lceil n / 3\rceil$ points of P. It is well known that every point set in the plane has a centerpoint; see e.g. [7, Chapter 4]. We use the following corollary and lemma in our proof of the $\lfloor n / 3\rfloor$ lower bound; the corollary follows from Theorem 3 that we will prove later in Section 3.

Corollary 1. Let P be a set of $n \geqslant 6$ points in the plane in general position, and let C be the center of P. Then, C is either 2 -dimensional or 0 -dimensional. If C is 0 -dimensional, then it consists of one point that belongs to P, moreover n is of the form $3 k+1$ for some integer $k \geqslant 2$.

Lemma 1. Let P be a set of n points in the plane in general position, and let c be a centerpoint of P. Then, for every point $p \in P$, each of the two closed halfplanes, that are determined by the line through c and p, contains at least $\lceil n / 3\rceil+1$ points of P.

Proof. For the sake of contradiction assume that a closed halfplane \bar{H}, that is determined by the line through c and p, contains less than $\lceil n / 3\rceil+1$ points of P. By symmetry assume that \bar{H} is to the left side of this line oriented from c to p; see the figure to the right. Since c is a centerpoint and \bar{H} contains c, the definition of centerpoint implies that \bar{H} contains exactly $\lceil n / 3\rceil$ points of P (including p and any other point of P that may lie on the boundary of \bar{H}). By slightly rotating \bar{H} counterclockwise around c, while keeping c on the boundary of \bar{H}, we obtain a new closed halfplane that contains c but
 misses p. This new halfplane contains less than $\lceil n / 3\rceil$ points of P; this contradicts c being a centerpoint of P.

Now we proceed with our proof of the lower bound. We distinguish between two cases depending on whether the center C of P is 2-dimensional or 0 -dimensional. First suppose that C is 2-dimensional. Then, C contains a centerpoint, say c, that does not belong to P. Let p_{1}, \ldots, p_{n} be a counter-clockwise radial ordering of points in P around c. For two points p and q in the plane, we denote by $\overrightarrow{p q}$, the ray emanating from p that passes through q.

Since every integer $n \geqslant 3$ has one of the forms $3 k, 3 k+1$, and $3 k+2$, for some $k \geqslant 1$, we will consider three cases. In each case, we show how to construct k plane spanning directed graphs G_{1}, \ldots, G_{k} that are edge-disjoint. Then, for every $i \in\{1, \ldots, k\}$, we obtain a plane spanning tree T_{i} from G_{i}. First assume that $n=3 k$. To build G_{i}, connect p_{i} by outgoing edges to $p_{i+1}, p_{i+2}, \ldots, p_{i+k}$, then connect p_{i+k} by outgoing edges to $p_{i+k+1}, p_{i+k+2}, \ldots, p_{i+2 k}$, and then connect $p_{i+2 k}$ by outgoing edges to $p_{i+2 k+1}, p_{i+2 k+2}, \ldots, p_{i+3 k}$, where all the indices are modulo n, and thus $p_{i+3 k}=p_{i}$. The graph G_{i}, that is obtained this way, has one cycle ($p_{i}, p_{i+k}, p_{i+2 k}, p_{i}$); see Figure 1. By Lemma 1, every closed halfplane, that is determined by the line through c and a point of P, contains at least $k+1$ points of P. Thus, all points $p_{i}, p_{i+1}, \ldots, p_{i+k}$ lie in the closed halfplane to the left of the line through c and p_{i} that is oriented from c to p_{i}. Similarly, the points $p_{i+k}, \ldots, p_{i+2 k}$ lie in the closed halfplane to the left of the oriented line from c to p_{i+k}, and the points $p_{i+2 k}, \ldots, p_{i+3 k}$ lie in the closed halfplane to the left of the oriented line from c to $p_{i+2 k}$. Thus, all the k edges outgoing from p_{i} are in the convex wedge bounded by the rays $\overrightarrow{c p_{i}}$ and $\overrightarrow{c p_{i+k}}$, all the edges outgoing from p_{i+k} are in the convex wedge bounded by $\overrightarrow{c p_{i+k}}$ and $\overrightarrow{c_{i+2 k}}$, and all the edges from $p_{i+2 k}$ are in the convex wedge bounded by $\overrightarrow{c p_{i+2 k}}$ and $\overrightarrow{c_{i+3 k}}$.

Figure 1: The plane spanning trees T_{1} (the left) and T_{2} (the right) are obtained by removing the edges $\left(p_{1+2 k}, p_{1}\right)$ and $\left(p_{2+2 k}, p_{2}\right)$ from G_{1} and G_{2}, respectively.

To verify that the k spanning trees obtained above are edge-disjoint, we show that two trees T_{i} and T_{j}, with $i \neq j$, do not share any edge. Notice that the tail of every edge in T_{i} belongs to the set $I=\left\{p_{i}, p_{i+k}, p_{i+2 k}\right\}$, and the tail of every edge in T_{j} belongs to the set $J=\left\{p_{j}, p_{j+k}, p_{j+2 k}\right\}$, and $I \cap J=\emptyset$. For contrary, suppose that some edge (p_{r}, p_{s}) belongs to both T_{i} and T_{j}, and without loss of generality assume that in T_{i} this edge is oriented from p_{r} to p_{s} while in T_{j} it is oriented from p_{s} to p_{r}. Then $p_{r} \in I$ and $p_{s} \in J$. Since $\left(p_{r}, p_{s}\right) \in T_{i}$ and the largest index of the head of every outgoing edge from p_{r} is $r+k$, we have that $s \leqslant(r+k)$ $\bmod n$. Similarly, since $\left(p_{s}, p_{r}\right) \in T_{j}$ and the largest index of the head of every outgoing edge from p_{s} is $s+k$, we have that $r \leqslant(s+k) \bmod n$. However, these two inequalities cannot hold together; this contradicts our assumption that $\left(p_{r}, p_{s}\right)$ belongs to both trees. Thus, our claim, that T_{1}, \ldots, T_{k} are edge-disjoint, follows. This finishes our proof for the case where $n=3 k$.

If $n=3 k+1$, then by Lemma 1 , every closed halfplane that is determined by the line through c and a point of P contains at least $k+2$ points of P. In this case, we construct G_{i} by connecting p_{i} to its following $k+1$ points, i.e., $p_{i+1}, \ldots, p_{i+k+1}$, and then connecting each of p_{i+k+1} and $p_{i+2 k+1}$ to their following k points. If $n=3 k+2$, then we construct G_{i} by connecting each of p_{i} and p_{i+k+1} to their following $k+1$ points, and then connecting $p_{i+2 k+2}$ to its following k points. This is the end of our proof for the case where C is 2-dimensional.

Now we consider the case where C is 0 -dimensional. By Corollary 1, C consists of one point that belongs to P, and moreover $n=3 k+1$ for some $k \geqslant 2$. Let $p \in P$ be the only point of C, and let p_{1}, \ldots, p_{n-1} be a counter-clockwise radial ordering of points in $P \backslash\{p\}$ around p. As in our first case (where C was 2 -dimensional, c was not in P, and n was of the form $3 k$) we construct k edge-disjoint plane spanning trees T_{1}, \ldots, T_{k} on $P \backslash\{p\}$ where p playing the role of c. Then, for every $i \in\{1, \ldots, k\}$, by connecting p to p_{i}, we obtain a plane spanning tree for P. These plane spanning trees are edge-disjoint. This is the end of our proof. In this section we have proved the following theorem.

Theorem 1. Every complete geometric graph, on a set of n points in the plane in general position, contains at least $\lfloor n / 3\rfloor$ edge-disjoint plane spanning trees.

3 The Dimension of the Center of a Point Set

The center of a set P of $n \geqslant d+1$ points in \mathbb{R}^{d} is a subset C of \mathbb{R}^{d} such that any closed halfspace intersecting C contains at least $\alpha=\lceil n /(d+1)\rceil$ points of P. Based on this definition, one can characterize C as the intersection of all closed halfspaces such that their complementary open halfspaces contain less than α points of P. More precisely (see [7, Chapter 4]) C is the intersection of a finite set of closed halfspaces $\overline{H_{1}}, \overline{H_{2}}, \ldots, \overline{H_{m}}$ such that for each $\overline{H_{i}}$

1. the boundary of $\overline{H_{i}}$ contains at least d affinely independent points of P, and
2. the complementary open halfspace H_{i} contains at most $\alpha-1$ points of P, and the closure of H_{i} contains at least α points of P.

Being the intersection of closed halfspaces, C is a convex polyhedron. A centerpoint of P is a member of C, which does not necessarily belong to P. It follows, from the definition of the center, that any halfspace containing a centerpoint has at least α points of P. It is well known that every point set in the plane has a centerpoint [7, Chapter 4]. In dimensions 2 and 3 , a centerpoint can be computed in $O(n)$ time [9] and in $O\left(n^{2}\right)$ expected time [6], respectively.

A set of points in \mathbb{R}^{d}, with $d \geqslant 2$, is said to be in general position if no $k+2$ of them lie in a k-dimensional flat for every $k \in\{1, \ldots, d-1\} .{ }^{1}$ Alternatively, for a set of points in \mathbb{R}^{d} to be in general position, it suffices that no $d+1$ of them lie on the same hyperplane. In this section we prove that if a point set P in \mathbb{R}^{d} is in general position, then the center of P is of dimension either 0 or d. Our proof of this claim uses the following result of Grünbaum.

Theorem 2 (Grünbaum, 1962 [8]). Let \mathcal{F} be a finite family of convex polyhedra in \mathbb{R}^{d}, let I be their intersection, and let s be an integer in $\{1, \ldots, d\}$. If every intersection of s members of \mathcal{F} is of dimension d, but I is $(d-s)$-dimensional, then there exist $s+1$ members of \mathcal{F} such that their intersection is $(d-s)$-dimensional.

Figure 2: The dimension of a point set in the plane, that is not in general position, can be any number in $\{0,1,2\}$.

Before proceeding to our proof, we note that if P is not in general position, then the dimension of C can be any number in $\{0,1, \ldots, d\}$; see e.g. Figure 2 for the case where $d=2$.

Observation 1. For every $k \in\{1, \ldots, d+1\}$ the dimension of the intersection of every k closed halfspaces in \mathbb{R}^{d} is in the range $[d-k+1, d]$.

Theorem 3. Let P be a set of $n \geqslant d+1$ points in \mathbb{R}^{d}, and let C be the center of P. Then, C is either d-dimensional, or contained in $a(d-s)$-dimensional polyhedron that has at least $n-(s+1)(\alpha-1)$ points of P for some $s \in\{1, \ldots, d\}$ and $\alpha=\lceil n /(d+1)\rceil$. In the latter case if P is in general position and $n \geqslant d+3$, then C consists of one point that belongs to P, and n is of the form $k(d+1)+1$ for some integer $k \geqslant 2$.

[^1]Proof. The center C is a convex polyhedron that is the intersection of a finite family \mathcal{H} of closed halfspaces such that each of their complementary open halfspaces contains at most $\alpha-1$ points of $P\left[7\right.$, Chapter 4]. Since C is a convex polyhedron in \mathbb{R}^{d}, its dimension is in the range $[0, d]$. For the rest of the proof we consider the following two cases.
(a) The intersection of every $d+1$ members of \mathcal{H} is of dimension d.
(b) The intersection of some $d+1$ members of \mathcal{H} is of dimension less than d.

First assume that we are in case (a). We prove that C is d-dimensional. Our proof follows from Theorem 2 and a contrary argument. Assume that C is not d-dimensional. Then, C is $(d-s)$-dimensional for some $s \in\{1, \ldots, d\}$. Since the intersection of every s members of \mathcal{H} is d-dimensional, by Theorem 2 there exist $s+1$ members of \mathcal{H} whose intersection is $(d-s)$ dimensional. This contradicts the assumption of case (a) that the intersection of every $d+1$ members of \mathcal{H} is d-dimensional. Therefore, C is d-dimensional in this case.

Now assume that we are in case (b). Let s be the largest integer in $\{1, \ldots, d\}$ such that every intersection of s members of \mathcal{H} is d-dimensional; notice that such an integer exists because every single halfspace in \mathcal{H} is d-dimensional. Our choice of s implies the existence of a subfamily \mathcal{H}^{\prime} of $s+1$ members of \mathcal{H} whose intersection is d^{\prime}-dimensional for some $d^{\prime}<d$. Let s^{\prime} be an integer such that $d^{\prime}=d-s^{\prime}$. By Observation 1, we have that $d^{\prime} \geqslant d-s$, and equivalently $d-s^{\prime} \geqslant d-s$; this implies $s^{\prime} \leqslant s$. To this end we have a family \mathcal{H}^{\prime} with $s+1$ members for which every intersection of s^{\prime} members is d-dimensional (because $s^{\prime} \leqslant s$ and $\mathcal{H}^{\prime} \subseteq \mathcal{H}$), but the intersection of all members of \mathcal{H}^{\prime} is $\left(d-s^{\prime}\right)$-dimensional. Applying Theorem 2 on \mathcal{H}^{\prime} implies the existence of $s^{\prime}+1$ members of \mathcal{H}^{\prime} whose intersection is $\left(d-s^{\prime}\right)$-dimensional. If $s^{\prime}<s$, then this implies the existence of $s^{\prime}+1 \leqslant s$ members of $\mathcal{H}^{\prime} \subseteq \mathcal{H}$, whose intersection is of dimension $d-s^{\prime}<d$. This contradicts the fact that the intersection of every s members of \mathcal{H} is d-dimensional. Thus, $s^{\prime}=s$, and consequently, $d^{\prime}=d-s^{\prime}=d-s$. Therefore C is contained in a $(d-s)$-dimensional polyhedron I which is the intersection of the $s+1$ closed halfspaces of \mathcal{H}^{\prime}. Let H_{1}, \ldots, H_{s+1} be the complementary open halfspaces of members of \mathcal{H}^{\prime}, and recall that each H_{i} contains at most $\alpha-1$ points of P. Let \bar{I} be the complement of I. Then,

$$
\begin{aligned}
n & =|I \cup \bar{I}|=\left|I \cup H_{1} \cup \cdots \cup H_{s+1}\right| \\
& \leqslant|I|+\left|H_{1}\right|+\cdots+\left|H_{s+1}\right| \leqslant|I|+(s+1)(\alpha-1),
\end{aligned}
$$

where we abuse the notations I, \bar{I}, and H_{i} to refer to the subset of points of P that they contain. This inequality implies that I contains at least $n-(s+1)(\alpha-1)$ points of P. This finishes the proof of the theorem except for the part that P is in general position.

Now, assume that P is in general position and $n \geqslant d+3$. By the definition of general position, the number of points of P in a $(d-s)$-dimensional flat is not more than $d-s+1$. Since I is $(d-s)$-dimensional, this implies that

$$
n-(s+1)(\alpha-1) \leqslant d-s+1 .
$$

Notice that n is of the form $k(d+1)+i$ for some integer $k \geqslant 1$ and some $i \in\{0,1, \ldots, d\}$. Moreover, if i is 0 or 1 , then $k \geqslant 2$ because $n \geqslant d+3$. Now we consider two cases depending on whether or not i is 0 . If $i=0$, then $\alpha=k$. In this case, the above inequality simplifies to $k(d-s) \leqslant d-2 s$, which is not possible because $k \geqslant 2$ and $d \geqslant s \geqslant 1$. If $i \in\{1, \ldots, d\}$, then $\alpha=k+1$. In this case, the above inequality simplifies to $(k-1)(d-s)+i \leqslant 1$, which is not possible unless $d=s$ and $i=1$. Thus, for the above inequality to hold we should have $d=s$ and $i=1$. These two assertions imply that $n=k(d+1)+1$, and that I is 0 -dimensional and consists of one point of P. Since $C \subseteq I$ and C is not empty, C also consists of one point of P.

References

[1] O. Aichholzer, T. Hackl, M. Korman, M. J. van Kreveld, M. Löffler, A. Pilz, B. Speckmann, and E. Welzl. Packing plane spanning trees and paths in complete geometric graphs. Information Processing Letters, 124:35-41, 2017. Also in CCCG'14, pages 233-238.
[2] B. Aronov, P. Erdös, W. Goddard, D. J. Kleitman, M. Klugerman, J. Pach, and L. J. Schulman. Crossing families. Combinatorica, 14(2):127-134, 1994. Also in SoCG'91, pages 351-356.
[3] F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of Combinatorial Theory, Series B, 27(3):320-331, 1979.
[4] A. Biniaz, P. Bose, A. Maheshwari, and M. H. M. Smid. Packing plane perfect matchings into a point set. Discrete Mathematics \& Theoretical Computer Science, 17(2):119-142, 2015.
[5] P. Bose, F. Hurtado, E. Rivera-Campo, and D. R. Wood. Partitions of complete geometric graphs into plane trees. Computational Geometry: Theory and Applications, 34(2):116-125, 2006.
[6] T. M. Chan. An optimal randomized algorithm for maximum tukey depth. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 430-436, 2004.
[7] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, 1987.
[8] B. Grünbaum. The dimension of intersections of convex sets. Pacific Journal of Mathematics, 12(1):197-202, 1962.
[9] S. Jadhav and A. Mukhopadhyay. Computing a centerpoint of a finite planar set of points in linear time. Discrete \mathcal{E} Computational Geometry, 12:291-312, 1994.
[10] S. Kundu. Bounds on the number of disjoint spanning trees. Journal of Combinatorial Theory, Series B, 17(2):199-203, 1974.
[11] C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the London Mathematical Society, 36(1):445-450, 1961.
[12] P. Schnider. Packing plane spanning double stars into complete geometric graphs. In Proceedings of the 32nd European Workshop on Computational Geometry, EuroCG, pages 91-94, 2016.
[13] W. T. Tutte. On the problem of decomposing a graph into n connected factors. Journal of the London Mathematical Society, 36(1):221-230, 1961.

[^0]: *University of Waterloo, Canada. Supported by NSERC Postdoctoral Fellowship. ahmad.biniaz@gmail.com
 ${ }^{\dagger}$ Universidad de Zaragoza, Spain. Partially supported by H2020-MSCA-RISE project 734922 - CONNECT and MINECO project MTM2015-63791-R. olaverri@unizar.es

[^1]: ${ }^{1} \mathrm{~A}$ flat is a subset of d-dimensional space that is congruent to a Euclidean space of lower dimension. The flats in 2-dimensional space are points and lines, which have dimensions 0 and 1.

