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Abstract— Semantic segmentation is a challenging problem
that can benefit numerous robotics applications, since it pro-
vides information about the content at every image pixel.
Solutions to this problem have recently witnessed a boost on
performance and results thanks to deep learning approaches.
Unfortunately, common deep learning models for semantic
segmentation present several challenges which hinder real life
applicability in many domains. A significant challenge is the
need of pixel level labeling on large amounts of training
images to be able to train those models, which implies a
very high cost. This work proposes and validates a simple
but effective approach to train dense semantic segmentation
models from sparsely labeled data. Labeling only a few pixels
per image reduces the human interaction required. We find
many available datasets, e.g., environment monitoring data, that
provide this kind of sparse labeling. Our approach is based
on augmenting the sparse annotation to a dense one with the
proposed adaptive superpixel segmentation propagation. We
show that this label augmentation enables effective learning of
state-of-the-art segmentation models, getting similar results to
those models trained with dense ground-truth. We demonstrate
the applicability of the presented approach to different image
modalities in real domains (underwater, aerial and urban
scenarios) with publicly available datasets.

I. INTRODUCTION

Solutions for semantic segmentation have witnessed a
significant boost in recent years thanks, in big part, to
convolutional neural networks [11]. A lot of applications in
the robotic field have seen the impact of these improvements,
such us autonomous driving [24] or object detection and
manipulation [35]. Unfortunately, many applications and do-
mains do not have available the large amount of labeled train-
ing data required by successful existing techniques. Semantic
segmentation, or dense labeling models, typically need pixel-
level annotations in order to be trained [11], [37]. This type
of labeling is very time consuming and often needs human
experts, therefore it is not always available. For example, we
find monitoring data from underwater regions in the CoralNet
project [5] which only provide sparse labels provided by
marine biology experts. Another example is DeepSat [4], a
large dataset of satellite images which only provides image-
level labels. These and plenty of similar monitoring projects
would benefit from strategies to learn semantic segmentation
models from image-level annotations or a few pixel labels.
In particular, our work is focused on the challenge of how to
train dense labeling models from sparse labels, as illustrated
in Fig. 1. Solving this challenge enables the application of
recent advances of semantic segmentation CNNs to a lot of
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Fig. 1. Robotic platforms have enabled easy collection of plenty of
monitoring datasets in different domains. This work demonstrates that
augmenting sparse input data labels enables effective training of semantic
segmentation models to process them with much lower labeling effort.

domains, which can then enhance their processing and extract
more detailed information and conclusions from their data.

Inspired by the success of different data augmentation
techniques used to train CNNs, we explore an strategy to
enable better training from sparse labeling. The two main
contributions presented in this work are:
• A sparse labeling augmentation method, based on

propagation using superpixels, which enables effective
training of fully convolutional neural networks, for
pixel-level classification, when only very sparse ground
truth labels are available.

• A comparison of different CNN based strategies for se-
mantic segmentation from sparse ground-truth labels.
We demonstrate their performance in realistic domains
(underwater, aerial and urban scenarios) with publicly
available datasets.

Our experimental results demonstrate that the proposed
augmentation from sparse ground truth labels, despite having
a few incorrect pixel labels, provides valuable and effective
information to train an end-to-end segmentation model. The
proposed approach benefits are twofold: 1) it provides better
results than prior work, which was based on individual patch
classification or simpler labeling augmentations, training on
the same sparsely labeled data; 2) it achieves comparable
results to approaches trained on densely labeled images,
while having the advantage of less intensive annotation
requirements.



II. RELATED WORK

This section discusses related work from the most relevant
topics to our work: state-of-the art semantic segmentation
and strategies to deal with weak and sparse labeling.

A. Semantic image segmentation

Semantic segmentation has received significant attention
in the recent years. As in many other applications,
convolutional neural networks (CNN) have achieved the
state-of-the-art with approaches such us Mask-RCNN [13],
combining the idea of regions of interest (ROI) with per
class segmentation and classification of every ROI, or
Tirasmisu architecture [17], a fully convolutional extension
of DenseNet [16], a state-of-the-art architecture for
classification. Among earlier approaches, we find numerous
solutions based on superpixel segmentation techniques
[29]. This type of semantic segmentation approaches
perform a superpixel classification or superpixel based
label propagation [26], [31]. This recent survey on image
segmentation by Zhu et al. [37] provides a detailed discussion
of classical solutions for this problem, while Garcia et al.
[11] present a compilation of recent contributions on
semantic segmentation focused on deep learning, including
new architectures and common datasets. Our approach joins
both recent CNN based semantic segmentation models
with superpixel segmentation algorithms. As we discuss
later, while the CNN based models are the core of the
segmentation process, the superpixels are shown to be very
effective to augment sparse training labels.

Autonomous systems have facilitated the collection of
extremely large amounts of data for monitoring tasks, such
as target following in unstructured 3-D environments [28],
autonomous surveillance of coral reef ecosystems [25] or
wildlife monitoring from aerial systems [14]. To enable
automatic processing of their content, semantic segmentation
models for the different domains target classes are needed.
This requires training new models, either from scratch or
fine-tuning existing related models. In either case, a signifi-
cant bottleneck is the lack of dense labeling to train semantic
segmentation models, specially in domains where an expert is
needed to label ground truth images. For example, CoralNet
[5] is a collaboration project focused on coral reef monitor-
ing, which shares a lot of datasets from underwater regions
from all over the world. Unfortunately, they only provide a
few pixels labeled per image, clicked manually by an expert.
This common situation leads to a key challenge for our work:
how to deal with the lack of labeled training data.

B. Lack of training data and labels

Scarce labeled training data is a common issue when
building and training deep learning based systems. We find
several strategies to overcome this problem in prior work.

Data augmentation, i.e., generating additional data by
altering the original labeled data, is a very common solu-
tion. Many works have followed this strategy, including for
example the well know Alexnet model [20].

A more recent solution to augment the training data is to
generate synthetic data [12], [27]. This strategy provides
perfect ground-truth labels, at the cost of generating the
scenes on the simulation platform. This brings additional
challenges due to the difficulty of generating realistic images
which cover all the variations from real world.

Models for weakly labeled data. Another common strat-
egy to deal with a lack of accurate training labeled data is
to build approaches that can learn from weakly labeled data.
Lu et al [23] carried out a survey on different approaches to
train semantic segmentation from noisy and weakly labeled
data, which discusses these problems in detail and presents
many related solutions. We discuss a few examples of the
most frequently weak labels used for semantic segmentation:
image-level annotations and sparse pixel annotations.

Several recent approaches study how to use per image
labels, as opposed to per pixel labels, to obtain per pixel
image segmentation models. Kolesnikov and Lampert [19]
propose a new composite loss function to train semantic
segmentation CNN models directly from image-level labels.
Durand et al. [9] propose a classification neural network,
trained from image-level labels to learn good representations,
and then work with its feature maps to get an accurate
segmentation result. Other scenario, closer to our case of
study, consists of having sparse labels available when the
model to be trained requires dense per pixel annotations.
Several recent works have approached this challenge from
different perspectives. Uhrig et al [32] propose a new
CNN architecture, Sparsity Invariant CNNs, focused on
reconstructing a dense depth map from sparse LIDAR
sensor information. They work with sparse convolutions to
learn directly from sparse labeling, and show successful
results with levels of sparsity between 5% and 70%).
Vernaza et al [34] propose how to simultaneously learn a
label-propagator and the image segmentation model. This
approach propagates the ground truth labels from a few
traces to estimate the main object boundaries in the image
and provide a label for each pixel. Hu et al. [15] propose to
train from partially labeled data, introducing a new partially
supervised training paradigm and weight transfer function.

Differently previously discussed approaches, which pro-
pose specific architectures, we study an alternative but
complementary path. Inspired by the good results of data
augmentation at image-level in many deep learning based
approaches, we propose to augment the labeled data at pixel
level by using propagation and study its effects. Prelim-
inary results of training dense segmentation models with
augmented sparse labels were shown in [2]. Here we improve
those results thanks to a better strategy to augment the sparse
labels, which is more robust, regardless of the modality of
the input images, than the preliminary results. We present
significantly better performance both in binary and multi-
class segmentation, and a more exhaustive validation using
more recent CNN architectures and additional application
domains.



Fig. 2. Sparse labeling augmentation to train dense semantic segmentation
models. Given an image (a) with sparse labels (b), the multi-level superpixel
propagation proposed (c) obtains an augmented ground-truth (d). This aug-
mented labeling is shown to be very effective to train a fully convolutional
neural network for semantic segmentation (e).

III. PROPOSED APPROACH

This section describes the pipeline proposed to overcome
the challenges discussed in previous sections. Fig. 2 repre-
sents the main ingredients from the presented approach: end-
to-end CNN model for semantic segmentation trained with
our augmented labeling.

A. Semantic Segmentation Formulations

We consider two common formulations of the semantic
segmentation from sparse annotations problem: classification
of small image patches, to combine them to obtain the final
image segmentation, and per pixel classification, to directly
obtain the image semantic segmentation.

1) Per patch classification: Semantic segmentation can
be formulated as a patch classification problem. If we have
a set of labeled pixels as ground truth, we can train a
classification CNN on patches cropped around those labeled
pixels and obtain the final image segmentation combining
the classification result for each patch. This strategy, which
has been successfully applied in existing approaches [6], is
trained on n labeled patches, one per labeled pixel in the
training images. The training pairs used are of the form:

(X(i,j), y(i,j)),

where X(i,j) is a patch of dimensions d× d centered around
each a labeled pixel with coordinates (i, j), and y(i,j) is a
scalar representing the label of this pixel.

2) Per pixel classification: More frequently, semantic
segmentation is formulated as a pixel classification problem.
In this case, an end-to-end CNN architecture is trained
from dense input ground truth labels to obtain directly the
classification for each pixel, i.e., the final semantic segmen-
tation. We consider the most common fully convolutional

architectures for this problem: the FCN architecture [22] and
the symmetric encoder-decoder [3]. In both architectures, the
network is trained with pairs of images:

(X, Y′),

where X is the original input image, a m× n× 3 array, and
Y′ is a m× n array with a label for each pixel.

Both approaches are a classification problem, whose
model is obtained by minimizing the error between predicted
and expected value (min(|ŷ − y|)) for the corresponding
pairs of training input. Both strategies are trained using the
common cross entropy loss function described in (1).

L = − 1

N

N∑
j=1

M∑
c=1

yc,j ln(ŷc,j), (1)

N is the number of labeled pixels and M is the number of
classes. Y (i) is a binary indicator (0 or 1) of belonging to
a certain class c for pixel j and ŷ(i) is the CNN predicted
probability of belonging to a certain class c for pixel j. In
the per pixel approach each i represents a pixel, while in
the per patch approach each i represents a patch, so N = 1
since we only have one label per patch.

We have built the three architectures (patch classification
and two architectures for end-to-end semantic segmentation)
on top of the same base CNN model, DenseNet [16]. In
particular, for the patch-classification architecture we used
DenseNet-169 with k=24, the FCN architecture uses the
same classification architecture (DenseNet-169) combined
with an up-sampling layer and the symmetric encoder-
decoder uses the FC-Densenet103 architecture [17]. Sec. IV-
B discusses the results obtained with our trained models of
these three alternative architectures, both trained from scratch
and exploring some finetuning options.

B. Labeling augmentation with multi-level superpixels

This section describes the proposed strategy for sparse
label augmentation1. The goal is not to the propagation
itself, but to augment our available training data to boost
the training of a CNN for semantic segmentation.

a) Superpixel based label propagation: Our strategy
for label augmentation is based on existing superpixel seg-
mentation techniques. These techniques cluster image pixels
into groups of similar connected pixels (named superpixels).

The basic single-level superpixel based augmentation strat-
egy has two steps. First, the image is segmented into
superpixels, as shown in the examples in Fig. 3. Then,
the labeled pixels information is propagated following the
superpixel segmentation, i.e., all pixels in each superpixel
get the label that appears the most within that superpixel.
Fig. 4 shows some examples using different superpixel seg-
mentation algorithms: CRS [8], PB [36], ERS [21], SLIC [1]
and SEEDS [33]. Section IV-C compares the effectiveness of
different existing superpixel segmentation techniques when
applied to the proposed label augmentation.

1Code at https://github.com/Shathe/ML-Superpixels
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Fig. 3. Superpixel segmentation obtained varying the number of superpixels
(clusters) to get using SEEDs technique.

Fig. 4. Sparse ground truth labeling augmentation obtained with different
superpixel segmentation techniques. The top-left view is the original image
and the bottom left view is the sparse available ground truth. The rest are
binary (coral/no-coral) labeling augmentations.

Fig. 5. Multi-level superpixel augmentation algorithm. From left to right:
input image, available labels (sparse GT), augmented labels after 3 and 6
iterations, and final augmented labels (augmentedGT) after 10 iterations.

This basic single-level superpixel approach, used in prior
work with promising results [2], has some drawbacks:

• The number of used superpixels is fixed.
• Some superpixels may not have labeled pixels inside,

thus, they will generate unlabeled regions.

This generates a strong trade-off between proper contour
fit and amount of unlabeled regions: higher number of
superpixels gives better results and fits better the actual
shapes, but it increases the number of superpixels that turn
out unlabeled. The multi-level superpixel extension described
next solves these issues.

b) Multi-level Superpixel Segmentation: The multi-
level superpixel segmentation proposed (see Algorithm 1)
consists of applying iteratively the superpixel image segmen-
tation, progressively decreasing the number of superpixels
generated in each iteration. In the first iteration the number of
superpixels is very high, leaving a lot of unlabeled pixels in
the augmented labeling but being able to find small regions.
The following iterations continue increasing the superpixel
size until they get to fill all the unlabeled pixels (see Fig. 5).

Algorithm 1: Propagation with Multi-level Superpixel
Segmentation

1 function MLsuperpixels (SparseGT, img)
Input : RGB image (img) and corresponding sparse

ground-truth labeling (SparseGT)
Output : Augmented ground-truth

2 nSuperpixels = getHighNumber();
3 augmentedGT = blankImage();
4 while augmentedGT.hasUnlabeledPixels() do
5 sp = getSuperpixels(img, nSuperpixels);
6 aug = getAugmentedLabels(SparseGT, sp);
7 augmentedGT = mask(augmentedGT, aug);
8 nSuperpixels = decreased(nSuperpixels);
9 end

10 return augmentedGT;

IV. EXPERIMENTS

Experiments in this section evaluate different aspects of
the proposed approach to augment sparse input labels for
semantic segmentation model training. They demonstrate the
effectiveness of the proposed strategy compared to existing
ones with more costly labeling requirements.

A. Evaluation

This section details the datasets and the evaluation metrics
used in the following experiments.

1) Datasets: We use four different datasets in our experi-
ments, from four different domains. The first one, Eilat Flu-
orescence Corals dataset [6], is the main dataset used in our
experiments, because it is a real use case of data published
with only sparse labels available. The other datasets used
allow us to demonstrate the generalization of the proposed
methods to different domains. Besides, since they have dense
annotations, we can do a direct comparison of training results
with augmented labels vs. original dense labels.
• Eilat [6] has 142 training images and 70 for validation.

There are 200 labeled pixels per image, assigning to
each of them a label from 4 coral and 6 non-coral
classes.

• Camvid [7] is an autonomous driving dataset with 11
different classes, frequently used to train existing state-
of-the-art approaches for urban areas image segmenta-
tion models.

• RIT [18] is an aerial imagery dataset with multi-
espectral data from 18 classes. RIT does not provide test
images labeling, so we evaluate its results by separating
part of the evaluation set they provide.

• Pascal VOC 2012 [10] is a well known general purpose
dataset with 20 different classes.

2) Ground-truth and annotations considered: We use sev-
eral types of annotations, or ground truth labels, to evaluate
the results of the segmentation models obtained.

The Eilat dataset is evaluated with metrics computed with
respect to three different reference annotations:
• Original-GT: original sparse ground-truth labels avail-

able with the dataset.



TABLE I
BINARY (CORAL VS NO-CORAL) CLASSIFICATION WITH DIFFERENT

SEMANTIC SEGMENTATION APPROACHES

Metrics
Model PA MPA MIoU

Evaluation based on Manual annotation
Patch classification* 74.40 54.36 43.66
FCN 92.19 81.78 73.51
Symmetric encoder-decoder 94.02 85.10 79.02

Evaluation based on Augmented-GT
Patch classification* 89.11 76.11 64.58
FCN 90.33 70.83 63.34
Symmetric encoder-decoder 92.32 82.07 73.01

Evaluation based on Original-GT
Patch classification* 93.75 90.00 85.06
FCN 81.01 71.87 60.27
Symmetric encoder-decoder 89.18 86.78 76.79

* Our implementation of Beijbom et al. [6].

• Augmented-GT: augmented ground-truth obtained by
our approach.

• Manual annotations: a few manual annotated images for
binary (coral vs non-coral) segmentation obtained by a
marine biologist.

The Original-GT is the least representative and reliable
of the three ground-truth options, since it has very few
annotations per image, but it is necessary to perform direct
comparisons with previous results using it. The Augmented-
GT is an approximated labeling and, as we measure next,
contains some noise (94% accuracy against the obtained
manual annotations). However it provides a very repre-
sentative reference labeling [2], as we discuss next. The
Manual annotations are the most reliable and representative
to compare, but we do not have them available for all images.

The other three datasets are evaluated with their avail-
able dense labeling ground truth (Manual annotations). The
sparse labels of these datasets are obtained automatically
by sampling the dense labeling following a grid (random
distributions leads to similar augmentation results). Note that
small objects or instances may not get any ground truth label
in the simulated sparse ground-truth, which corresponds to
only a 0.1% of the dense ground-truth (e.g., from a 500x500
image, the simulated sparse ground-truth will contain just
250 labeled pixels).

3) Metrics: standard metrics for semantic segmentation
are used: PA (Pixel Accuracy), MPA (Mean Pixel Accuracy)
and the MIoU (Mean Intersection over Union).

B. Semantic Segmentation Architectures Evaluation

This first experiment is intended to evaluate and compare
the results of common CNN based architectures when trained
from the sparse available labels.

1) Experiment setup: This experiment is run with the
Eilat dataset, and considers the three common architectures
for semantic segmentation detailed in Sec. III-A. For the
patch classification we set the dimension of the patches
around each labeled pixel to d = 50 pixels. To train the
two end-to-end semantic segmentation architectures, the
ground-truth augmentation used is the basic version, as in

[2] to allow direct comparisons with those results.

2) Results training from scratch: For the three architec-
tures, a model is trained from scratch, using image augmen-
tation (horizontal and vertical flips and crops of the data) and
the same training set up (all of them converge): 500 epochs,
initial learning rate of 0.001 and exponential learning rate
decay of 0.99. Table I shows a summary of the performance
of the three models obtained. It includes results using the
original sparse labels (Original-GT) for completion, but as
previously discussed [2], those only evaluate a few pixels,
while the other metrics compute a score considering all pixels
and therefore are more significant.

The end-to-end semantic segmentation approaches yield
to better results than the patch-classification method. Then,
in the rest of the experiments, results are shown only with
the best performing architecture, the symmetric encoder-
decoder based on FC-Densenet103.

3) Results with Fine-tuning: We have explored the bene-
fits of finetuning existing models on the target data, since it
is a common strategy to improve results when there is not a
lot of labeled data available for training.

Finetuning experiments were carried out on both the
binary and multiclass classification with the purpose of
answering three questions about the potential benefits of
finetuning: Does the training converge earlier? Can it learn
with less amount of data? Does it yield to better results?.
We use two different datasets to obtain a base model, which
we finetune later on the Eilat data. The first one, is another
dataset from the CoralNet project [5], Moorea2 dataset, and
belongs to a similar domain to Eilat (corals). Therefore, this
is expected to work better for finetuning. The second one,
Camvid dataset, is from a different domain, urban scenes. For
both cases, finetuning for the Eilat data converged 2.5 times
earlier to a similar quality model than training from scratch.
As expected, pre-training on the similar domain of Moorea
data allows finetuning for Eilat with less amount of images,
while obtaining the same results. Therefore, finetuning saves
training time and labeled data requirements, but does not
improve the quality of the obtained models.

C. Labeling augmentation quality evaluation

The experiments in this section show the advantages of
using the presented multi-level superpixels based labeling
augmentation with respect to other augmentation approaches
in different image modalities and domains.

1) Experiment setup: For all the following experiments,
the multi-level superpixel based augmentation starts with the
number of superpixels set to 1500, and decrease it to the
80% in each iteration. This augmentation costs an average
of 15 seconds per image on a 500x500 resolution (1 second
per superpixel level). To evaluate the quality of the obtained
label augmentation, we compare it with the actual ground
truth segmentation of the test images.

2https://www.bco-dmo.org/dataset/676105



Fig. 6. Examples for labeling augmentation evaluation with different datasets. (a) input images, (b) original dense labeling, (c) augmented labeling
recovered from just a 0.1% of the original labeled pixels.

TABLE II
LABELING AUGMENTATION ON RGB AND FLUORESCENCE IMAGES

Augmentation Metrics
Approach PA MPA MIoU
Using fluorescence Evaluation based on Manual annotation
SEEDS single-level 93.38 86.86 77.86
SEEDS multi-level 94.20 87.50 79.88
SLIC multi-level 93.86 85.37 78.37
Using RGB Evaluation based on Manual annotation
SEEDS single-level 92.21 80.20 72.90
SEEDS multi-level 93.23 84.91 75.37
SLIC multi-level 92.76 83.60 75.37

TABLE III
SEEDS MULTI-LEVEL LABELING AUGMENTATION COMPARED TO

ORIGINAL DENSE MANUAL ANNOTATIONS ON DIFFERENT DOMAINS

Metrics
Datasets PA MPA MIoU

Evaluation based on Manual annotation
Camvid 91.95 76.91 65.05
RIT 97.44 72.31 59.18
VOC 2012 96.87 95.77 93.31

2) Multi-level vs single-level: First, we compare the qual-
ity of the labeling augmentation with the multi-level ap-
proach with respect to the basic version, single-level, used in
earlier results [2]. Table II shows the augmentation labeling
results of the baseline (single-level superpixel augmentation)
and the two best superpixel segmentation results using our
multi-level approach. The rest of the superpixel segmentation
methods we experimented on (PB, ERS, CRS) got around 1%
less in all the metrics with respect to SLIC. We evaluate the
results with the two image modalities, RGB and fluorescence,
available on the Eilat dataset.

The multi-level superpixels augmentation outperforms the
baseline by 1-3% in all the metrics. SEEDS superpixels work
slightly better because they fit better to contours, therefore
SEEDs is used for the rest of the experiments.

TABLE IV
LABELING AUGMENTATION USING PASCAL VOC 2012 DATASET

Augmentation from traces MIoU
Vernaza et al. (SPCON)[34] 76.50
Vernaza et al. (RAWKS v1) [34] 75.80
Vernaza et al. (RAWKS v2)[34] 81.20
Augmentation from sparse pixel labels MIoU
Alonso et al. from 0.1% of pixels (300 pixels) [2] 86.36
Multi-level approach from 0.01% of pixels (30 pixels) 74.40
Multi-level approach from 0.1% of pixels (300 pixels) 93.31
Multi-level approach from 1% of pixels (3000 pixels) 97.25

3) Label augmentation in different domains data: This
experiment evaluates the proposed label propagation method
on different domains data: Camvid, RIT and VOC (described
in Sec. IV-A.1). We compare the original dense labeling
available on each dataset and the results from applying our
approach to augment a simulated sparse labeling. Fig. 6
shows qualitative results of these experiments, and Table III
summarizes the quantitative comparison of the augmented
labeling with the original dense labeling, with very good
results in the three different domains. The proposed aug-
mentation methods performs a propagation of existing sparse
labels, therefore it needs to have at least one labeled pixel per
object or instance. The sparse labeling simulation (sampling)
can miss samples from very small instances. So the RIT
dataset, which is the one with more small details (see Fig. 6),
gets the lowest scores.

Table IV compares our approach, Multi-level, using differ-
ent sparsity as input for the propagation, with other recent
label augmentation or propagation methods using the PAS-
CAL VOC 2012 dataset. Vernaza et al. [34] uses traces as
the input of the augmentation process as well as the learned
boundaries (learnt by a neural network) using the RAWKS
algorithm (v1) to augment the traces sparse labeling. V2
means the evaluation is done on the 94% of the pixels, where
the model is confident enough. Alonso et al. [2], our baseline
version, uses the same grid structure of sparse pixels as our



TABLE V
RESULTS TRAINING ON ORIGINAL DENSE MANUAL ANNOTATIONS

(REAL) AND OUR SIMULATED GROUND-TRUTH (AUGMENTED)

Metrics
PA MPA MIoU

Datasets Evaluation based on Manual annotation
Camvid (real) 88.68 48.81 44.36
Camvid (augmented) 87.70 46.97 42.95
RIT (real) 94.23 20.36 19.16
RIT (augmented) 89.30 19.65 17.85

TABLE VI
MULTICLASS SEMANTIC SEGMENTATION RESULTS ON EILAT DATASET

Metrics
PA MPA MIoU

Evaluation on dense scores: Augmented-GT
Beijbom et al.[6] v1 — — —
Beijbom et al.[6] v2 73.61 25.32 17.89
Alonso et al.[2] 85.88 42.25 31.12
Ours v1 90.96 51.28 39.44
Ours v2 91.68 52.76 42.22

Evaluation on sparse scores: Original-GT
Beijbom et al.[6] v1 87.80 48.50 —
Beijbom et al.[6] v2 90.20 53.10 43.66
Alonso et al. [2] 81.23 41.97 28.14
Ours v1 84.96 56.96 42.94
Ours v2 84.54 59.26 44.10

multi-level superpixels augmentation.
The augmented labeling obtained with our approach is

very close to the original ground truth, as shown in the
different results in this section. The presented multi-level
superpixel augmentation outperforms related methods for
labeling augmentation with different levels of label sparsity.

D. Performance of models trained with augmented labeling

This last group of experiments demonstrates that training
state-of-the-art CNNs with the proposed augmented labeling
gets similar results than with the original dense labeling.

1) Experiment Setup: For these experiments we use the
augmented labeling generated from the 0.1% of the dense
labeling, simulated as explained in Sec. IV-A.2. We use
the Eilat, RIT-18 and Camvid datasets for evaluation. For
training we use the hyper-parameters described in Jegou et
al. [17]. This configuration applies to the training with the
augmented and original dense labeling. We also use image
augmentation (horizontal and vertical flips, data crops).

2) Training results: Augmented vs real: We compare the
quality of the segmentation obtained from a model trained on
the original dense segmentation ground-truth or from a model
trained on the augmented ground-truth using multi-level
superpixels. Table V shows a summary of the results with
Camvid and RIT, which provide ground truth segmentation.

The results obtained training with our augmented ground-
truth are comparable to training with original ground-truth.
This could be expected since we already validated that the
augmented labeling is very close to the original one. The
differences between the original and augmented labeling
can be seen as noisy labels, and neural networks have been
shown to be capable to learn from noisy data [30]. Fig. 7

Fig. 7. Semantic segmentation on Camvid. (a) original images, (b) results
using a model trained on original dense labeling, (c) results using a model
trained with our proposed augmented labeling.

Fig. 8. A comparison between the result of our pipeline using the multi-
level Superpixels for labeling augmentation and the same output applying
SEEDS superpixels to enhance it.

shows some visual examples of this comparison.

Eilat dataset does not have original dense labeling for
all images, therefore we do a separated evaluation for it.
We compare our approach with prior work published by
the authors of the dataset for multi-class segmentation (10
classes). Table VI summarizes these results. We compare
the original results in [6] (v1) and our implementation of
it with a newer base model (v2). This method consists of
a patch-classification approach. Note that (v2) does perform
equal or better than original (v1), and that (v1) is shown
only where original publication included results. Results also
include our previous work baseline with the single-level label
augmentation [2], and two versions of the work presented
here (Ours v1 and Ours v2). Ours v1 consists of training
the FC-DenseNet103 with our multi-level superpixels label-
ing augmentation. Ours v2 applies an additional SEEDS
superpixel post-processing to refine the Ours v1 segmen-
tation result (see Fig. 8). We show the original-GT scores
because some related work only has published results using
this. However, note how the proposed method significantly
outperforms previous work on the more significant dense
scores. These results also point that a final superpixel based
smoothing can help to enhance the final result.

V. CONCLUSION

We have presented a novel approach to augment labeled
data, at pixel level, to facilitate training semantic segmen-
tation models. As shown, our approach enables the training
of state of the art architectures for semantic segmentation



in scenarios where there are only sparse labels available.
More generally, it also benefits any scenario by lowering the
labeling requirements to train new models on new domain
datasets which still need to be labeled.

Our experiments analyze different aspects of the proposed
approach: different superpixel segmentation techniques, rel-
evant architectures for semantic segmentation, and the in-
fluence of different density in the available labels. We
have demonstrated that the proposed augmented labeling is
effective to train CNN models for segmentation, reaching
comparable results to those obtained by training with dense
ground-truth labels, much more costly to obtain. The use of
grid-based sparse data was motivated because it is actually
available in real world use cases. As future steps, we plan
to explore different types of sparsity distributions and extend
the applicability to other data types like 3D information.
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