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Report Format 

The majority of work included in this report was conducted by 
James Robert Morrison as partial fulfillment of the requirements 
for a Master of Science degree in the Department of Fishery and 
Wildlife Biology. Morrison's thesis is appended to this report in 
its entirety. A bibliography relevant to effects of ski area 
development on the environment is provided at the end of Morrison's 
thesis. Recommendations from Morrison's work led to development of 
an intensive pellet plot survey in Pete's Bowl at Vail, and 
continuation of observations of elk use of habitats in the Back 
Bowls at Vail and in the Mud Springs/McCoy Park area at Beaver 
Creek. We include a summary of data collected during summer 1991 
from that work. 
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EXECUTIVE SUMMARY 

Elk in the Upper Eagle River Valley, Colorado, migrate 

seasonally to and from summer and winter ranges. The timing of 

migration to summer ranges appears to be correlated with receding 

winter snows. Movement toward winter ranges is influenced by 

weather, but also by other factors including mating activities. In 

the Upper Eagle River Valley, significant amounts of elk winter 

range has been altered for housing, commercial, and recreational 

development. Additionally, recreation, timber, and livestock 

activities occur on habitats used by elk in summer. The purpose of 

our work has been to elucidate habitat use patterns and responses 

of elk to these activities and developments and to evaluate 

potential impacts to resident elk populations. The first phase of 

this work reported on elk movements, dispersal and winter range 

carrying capacity (de Vergie 1989). In this report, we discuss 

work conducted from 1988 through 1991, which was designed to 

document responses of elk to expansion of ski areas and human 

activities in summer habitats. 

We have used radio-telemetry as a means of ascertaining 

locations of elk as well documenting elk mortality. Telemetry has 

numerous advantages; primarily, an animal equipped with a telemetry 

device can almost always be relocated. A major disadvantage of 

telemetry, especially when it is employed in mountainous terrain 

is, that the accuracy of locations may be inadequate to make 

specific inferences regarding habitat use patterns. In the early 

phases of our work, when we had fewer telemetered elk, we could 
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visually locate each animal after general locations were obtained 

using telemetry. As sample sizes increased, visual locations of 

all telemetered elk became infeasible, and we relied more on 

triangulation and aerial estimates to determine locations of 

telemetered elk. Reliance on this approach necessitated evaluation 

of system accuracy. 

Triangulation using bearings defined with a hand-held antenna 

resulted in errors that ranged from 609 to 1,105 meters. When we 

used an airplane with a belly-mounted antenna system, errors ranged 

from 409 to 1081 meters. Errors are influenced by the abilities of 

observers and, more significantly, by signal bounce in mountainous 

terrain. We concluded that both systems we tested were adequate 

for making inferences regarding gross changes in geographic use 

patterns, but these systems were inadequate for ascertaining 

specific habitat use patterns. Our accuracy was as good or better 

than the few published studies that have evaluated accuracy. 

Because of the error associated with telemetry locations we are now 

using visual locations of elk to evaluate specific habitat use 

patterns. Telemetry is still a valuable tool for monitoring gross 

movements and animal survival. The reader is referred to Chapter 

1 of Morrison's thesis appended to this report for specific details 

regarding our assessment of the accuracy of the telemetry systems 

we employed. 

When we utilized only telemetry data to evaluate changes in 

elk habitat use associated with expansion of ski facilities in the 

Back Bowls of Vail, we could detect no statistically significant 
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changes in use patterns. We attribute this result to the failure 

of our telemetry system to accurately determine specific locations 

of elk. Using visual observations of elk in the Back Bowls and 

comparing data before and after development, we measured an 11-fold 

decrease in the number of elk using China Bowl. This reduction may 

be associated with: 1. China Bowl was more developed than other 

the other bowls. 2. Development in China Bowl occurred at lower 

elevations than development in other bowls. 3. China Bowl was the 

only area with a new chair lift. 

Elk seemed to avoid China Bowl the first year following 

development, but use appeared to increase during and after the 

second year following development. Elk did not abandon the Back 

Bowls, but merely shifted their use patterns, avoiding areas of 

recent development. The effects of physical disturbance on elk may 

have been minimized because human activity was excluded from the 

Bowls during periods of concentrated elk use. Specifics for this 

segment of our work are included in Chapter 2 of the appended 

thesis. Monitoring of elk use in the Back Bowls is continuing, and 

we recommend that human activity in this area be minimized or 

excluded from 15 May to 1 July. 

We also used observational data to evaluate changes in use 

patterns for elk associated with development in McCoy Park and Mud 

Springs. Development included physical disturbance from ski runs 

built at Arrowhead and Beaver Creek ski areas, and a cabin at McCoy 

Park, and the human activity associated with these developments. 

We documented no change in the number of elk observed in McCoy Park 
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following development, but a 46-fold decrease in elk use at Mud 

Springs occurred post-development. Further analysis indicated that 

elk decreased their use of both McCoy Park and Mud Springs 

drainages during mid to late summer after development occurred. 

Elk use began to increase following post-development lows during 

the second and third years after development . Details on this 

segment of our study are included in Chapter 3 of the appended 

thesis. We continue to monitor elk use in both the Mud Springs and 

McCoy Park drainages. 

Results of our work indicate that elk respond to physical 

disturbances and human activities by altering their habitat use 

patterns. Avoidance of the disturbances that we evaluated was 

greatest during the first year following the activity, but animals 

appeared to acclimate to disturbances during and after the second 

year of disturbance. In areas where ample, undisturbed habitat 

exists, elk may respond to disturbance by merely changing habitat 

use patterns with no measurable impacts to population sizes or 

performance. Our studies were not designed to measure reductions 

in populations, but we recommend that future work evaluate 

population performance. Quite likely, elk calf survival would be 

thQ most sensitive and realistic parameter to measure for this type 

of study. Albeit extremely valuable, a study of thls type would 
also be significantly more 

costly than the work we report herein. 

At the request of the Colorado Divisi·on of 
Wildlife and Vail 

Associates we developed an • t . 
in ensive pellet plot survey in Pete's 

Bowl at Vail 
' and continued to monitor elk use in the Back Bowls 
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and at Mud Springs and McCoy Park. Data from Pete's Bowl will 

provide a less expensive, indirect measure of elk use in this area 

that can be compared to similar data obtained after projected 

development occurs. We will use observational data from the Back 

Bowls and McCoy Park/Mud Springs to evaluate the suggested trends 

of elk acclimation to disturbance. 

We implemented our pellet plot study during summer 1990. A 

pellet plot study measures the number of animal droppings, in this 

case concentrating on deer and elk, found on representative plots 

in a study area. Pete's Bowl was selected because it is slated for 

future development. By evaluating plots, pre- and post-

development, changes in animal use can be inf erred. We implemented 

175, 4 X 15 meter plots, which were all randomly located in Pete's 

Bowl. This design enables us to detect small changes in pellet 

distributions with good statistical power. Once plots were 

established (summer 1990) approximately 140 man-hours are required 

to collect field data each year. 

Plots established during summer 1990 were located and cleared 

of all animal evidence (fecal pellets, etc.). During summer 1991, 

we surveyed all plots. We were unable to locate 2 plots; possibly 

they were lost in an avalanche that appeared to have swept the 

slope where the plots were supposed to be. Evidence of all 

wildlife use was recorded on the remaining 172 plots. Because this 

is the first year of actual data collection, we have no comparisons 

with prior years data. Because of the large number of plots 

containing deer and elk pellets, our study will have good 
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statistical power. on the 172 monitored plots, we found 144 elk 

fecal groups and 303 deer fecal groups. Some of our 

interpretations are confounded because domestic sheep droppings 
I 

were found on plots in the upper reaches of Pete's Bowl. Domestic 

sheep droppings are easily confused with deer droppings. Domestic 

sheep are not supposed to be using this area and we anticipate that 

in the future they will not be allowed to graze here. 

Also summarized in this report are observational data for elk 

use of the Back Bowls and McCoy Park/Mud Springs collected during 

summer 1991. These data are currently being analyzed by Jim 

Morrison for inclusion in a publication with data he collected from 

1988 through 1990. Preliminary examination of 1991 data suggests 

that elk are using both study areas. Elk continue to use the Back 

Bowls including China Bowl, although few elk were observed there in 

1991. Most elk had migrated from the Back Bowls by early July. 

Elk were observed at both McCoy Park and Mud Springs, although 

numbers do not approach pre-development levels. Late summer use of 

these areas continues to be low. We last observed elk in the McCoy 

Park/Mud Springs areas on 17 July and saw no elk there during 2 

visits after that time. 

Because of increased overhead rates at Colorado State 

University, the continuation of our work (pellet plots and 

observations for the Back Bowls and McCoy Park\Mud Springs) will be 

conducted by A. W. Alldredge and Jan P. Alldredge through RFL 

Environmental. RFL Environmental is a small, DBE Certified firm 

owned by Jan Alldredge specializing in environmental consulting. 
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SUMMARY OF ELK STUDIES SUMMER 1991 

During summer 1991, we continued to make observations on elk 

in the Back Bowls at Vail and at McCoy Park and Mud Springs. Our 

purpose is to continue evaluation of trends in elk use following 

disturbance from both habitat alterations and human activities. 

Observational data were obtained by Bill de Vergie and Mathew 

Alldredge from 22 May through 29 July. Pellet plots were evaluated 

during 9-11 August, by Gene Byrne, Bill Andree, Bill Heicher, Craig 

Wescoatt, Bill de Vergie, Jan Alldredge and Bill Alldredge. 

Elk Observation Data Summer 1991 

Observational data are summarized in Table 1. Although 

statistical analysis of these data are pending, elk continue to use 

both study areas. Elk were observed in the Back Bowls on 10 out of 

12 visits from 22 May through 25 June. No elk were observed in the 

Back Bowls after 25 June, although some telemetered elk were still 

known to be in the general vicinity until 18 July. Elk were 

recorded in China Bowl on only 1 occasion when 3 animals were 

observed. Elk were, however frequently observed in the bowls 

adjacent to China Bowl. 

Observers recorded elk in the McCoy Park/Mud Springs areas on 

7 out of 13 visits. Group sizes for these observations ranged from 

1 to 8 animals, and large numbers of animals were never observed. 

No elk were seen in the area on 2 visits made after 17 July. 

Because of differences in observers and frequencies of 

observations, it is difficult for us to interpret these 

observational data. We are currently evaluating this information 
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and comparing it to previously collected data. Results of this 

work will be presented in a publication authored by Jim Morrison. 

Table 1. Elk observation data for the Back Bowls at Vail and McCoy 
Park/Mud Springs, Summer 1991. 

Date Location Elk Present No. Observed 

5/22/91 Back Bowls No 
Game Creek Yes 50+ 
Beaver Creek Yes 10-15 
Mud Springs No 

5/23/91 Mud Springs Yes 3 
McCoy Park No 
Game Creek Yes 75+ 
Lower Sunup Yes 1 (radio) 

5/28/91 Back Bowls Yes ND 
Game Creek Yes 30+ 

5/31/91 Mud Springs Yes 2 
McCoy Park No 
Siberia Bowl Yes 7 
Lower Teacup Yes 15+ 
China Bowl No 
Game Creek Yes 20 

6/4/91 McCoy Park No 
Mud Springs No 

6/5/91 Mud Springs Yes 9-11 
McCoy Park No 
Teacup Bowl Yes 8 
China Bowl No 

6/6/91 Game Creek Yes 1 

6/7/91 China Bowl No 
Siberia Bowl Yes ND 
Game Creek Yes 3 

6/10/91 Super Bowl Yes 3 
Teacup Bowl Yes 3 

6/11/91 Sundown Bowl Yes 6 
China Bowl No 
Teacup Bowl Yes 5 
Mud Springs No 
McCoy Park No 
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6/14/91 Siberia Bowl Yes 15 
China Bowl Yes 3 
Teacup Bowl Yes 4 
Sundown Bowl Yes 4 

6/17/91 Mud Springs Yes 3 
McCoy Park No 
No Name Road Yes 20 
Commando Bowl Yes 20+ 
China Bowl No 
Teacup Bowl Yes 3 
Siberia Bowl No 
Pete's Bowl Yes 1 

6/21/91 No Name Road Yes 42 
McCoy Park Yes 7 
Mud Springs No 

6/25/91 Siberia Bowl No 
China Bowl No 
Teacup Bowl No 
Sundown Bowl No 

7/1/91 McCoy Park Yes 3 
Mud Springs No 

7/2/91 Back Bowls No 

7/9/91 Back Bowls No 

7/10/91 McCoy Park Yes 2 
Mud Springs No 
No Name Road No 

7/18/91 Back Bowls No 

7/23/91 Back Bowls Yes 1 radio sign. 

7/24/91 McCoy Park No 
Mud Springs No 

7/28/91 Back Bowls No 

7/29/91 McCoy Park No 
Mud Springs No 

Data collection for summer 1992 will be more standardized and will 

conform with the approach used by Morrison for collection during 

the period 1988-1990. 

Conclusions that can be drawn from data collected during 
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summer 1991 are that elk continue to use the Back Bowls and McCoy 

Park/Mud Springs. Elk use in China Bowl still appears to be low 

when compared to adjacent Back Bowls and to data for pre

development use in China Bowl. Numbers of elk observed in McCoy 

Park/Mud Springs remain lower than pre-development observations; 

however, use may be increasing. Prior to development elk used this 

area throughout summer (Andree personal communication), but with 

the increase in development and human activity in the area, elk 

have not been observed in the area after late July. Elk appear to 

have been displaced from areas of development, but impacts on 

population size and performance are unknown. 

Pete's Bowl Pellet Plot Study 

We implemented our pellet plot study during summer 1990. A 

pellet plot study measures the number of animal droppings, in this 

case concentrating on deer and elk, found on representative plots 

in a study area. Pete's Bowl was selected because it is slated for 

future development. By evaluating plots, pre- and post

development, changes in animal use can be inferred. This study is 

designed to extend for a 10-15 year period and will provide data on 

elk use pre- and post-development. Both the opportunity and our 

approach are unique for this type of study. Results will allow 

indirect inferences to be drawn regarding elk (and deer) use. 

Pete's Bowl was selected, because it would not be fiscally possible 

to monitor all of the 4 bowls that might be developed south of Two 

Elk Creek. Pete's Bowl will likely be the first bowl developed and 

it may receive the largest amount of development, thus it was the 
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logical candidate for monitoring. 

Analysis of data from this work will provide an i tdirect index 

of elk and deer use. our approach will be to use nega ;ive binomial 

statistics and the Multi-Response Permutation Proce ures (MRPP). 

Negative binomial statistics will be used to ascerta·n changes in 

pellet densities between years. The MRPP approach wil 1 allow us to 

detect changes in the distribution of pellet groups b itween years, 

even if the total pellet densities are constant across years. This 

analysis could offer insights in the location of use by elk. The 

MRPP approach is currently in planning stages and, al though we 

believe that it offers good potential, it may prove i tfeasible for 

our work. 

We implemented 175, 4 X 15 meter plots, wh · ch were all 

randomly located in Pete's Bowl. This design enables us to detect 

small changes in pellet distributions with good stati ;tical power. 

Once plots were established (summer 1990) approxima ely 140 man

hours are required to collect field data each year. 

Plots established during summer 1990 were locate l and cleared 

of all animal evidence (fecal pellets, etc.). During summer 1991, 

we surveyed all plots. We were unable to locate 2 pl ,ts; possibly 

they were lost in an avalanche that appeared to the 

slope where the plots were supposed to be. Evi .ence of all 

wildlife use was recorded on the remaining 172 plots. Because this 

is the first year of actual data collection, we have n > comparisons 

with prior years data. Because of the large num ,er of plots 

containing deer and elk pellets, our study wil. have good 
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statistical 

On the 72 monitored plots, we found 144 elk fecal groups and 

303 deer fee 1 groups, with an average of 0.84 elk groups and 1.76 

deer groups Some of our interpretations are confounded 

because tic sheep droppings were found on plots in the upper 

reaches of ete' s Bowl. Domestic sheep droppings are easily 

confused deer droppings. Domestic sheep are not supposed to 

be using area and we anticipate that in the future they will 

not be allo ed to graze here. The pellet plot study offers good 

potential fr drawing inferences regarding elk and deer use. If 

our results are as good as predictive calculations indicate, we 

should be a le use this index in future work. The main advantage 

to this ap is that it is less expensive than intensive 

telemetry w The disadvantage is that inferences are made 

indirectly om indices of use and without large sample sizes, the 

validity of conclusions is suspect. We are optimistic about the 

pellet plot approach. 

Summer 1992 - Data Collection Approach 

During summer 1992, elk use of the Back Bowls at Vail will be 

monitored 6 times each week for the period 25 May through 1 July. 

After 1 Jul monitoring will be conducted once every 10 days. We 

will evalua e pellet plots in Pete's Bowl in early August, and 

continue mo itoring elk numbers in the McCoy Park\Mud Springs area, 

making obse vations at least once every week from 20 May through 1 

July. 1 July monitoring will be reduced to approximately 

every Ground observations for both the Back Bowls and the 
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McCoy Park\Mud Springs area will be supplemented ith aerial 

early July, a preliminary report of observations will e provided 

to all cooperators, and during September 1992 a report summarizing 

all summer 1991 data collection will be provided. 

conclusions 

We believe that it is important to continue co lection of 

these data to elucidate patterns in elk response to d'sturbances. 

We will continue to use telemetry to evaluate gross ovements of 

elk at Vail. The observational data we collect in th Back Bowls 

and at McCoy Park/Mud Springs will be compared to pre disturbance 

data to evaluate the potential for elk to acclimate to isturbance. 

Data we collect from the plots in Pete's Bowl will 

ever" experiment that will allow us to develop a good p e-treatment 

data base that can be compared to post-development da 

these data are an indirect measure of elk (and deer) u 

provide a good index of use. 

Although 

they will 

As recreational activities expand into areas th t were once 

almost exclusively used for wildlife, the of these 

activities must be evaluated. Currently, these are 

perceived as either good or bad; but this percepti n is rarely 

based on scientifically credible data. The data we collect will 
continue the progression of steps we have b 

egun to ob ain credible 
input into the decision making process. 
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ABSTRACT OF THESIS 

THE EFFECTS OF SKI AREA EXPANSION ON ELK, AND 

ACCURACY OF 2 TELEMETRY SYSTEMS IN MOUNTAINOUS TERRAIN 

CHAPTER 1. ACCURACY OF A 2-ELEMENT, HAND-HELD ANTENNA AND 

AN AERIAL TELEMETRY ANTENNA IN MOUNTAINOUS TERRAIN 

Few telemetry studies have reported the accuracy of hand-held or 

airplane antenna systems, and none has reported on accuracy in 

mountainous terrain. I measured the accuracy of a 2-element, hand-held 

antenna and a belly-mounted, airplane antenna on 2 study sites in 

mountainous terrain. 

Precision of the hand-held antenna (s = 5.43 °, n = 321) was better 

than that previously reported for this system in similar terrain and was closer 

to that reported in flat, non-timbered terrain. Contrary to the findings of Pace 

(1988, 1990), precision was constant, regardless of distance between 

transmitters and receiving stations. Significant bias of the antenna from 4 of 8 

receiving stations (pooled bias = -3.21 °, n = 321) indicated! that bounced 

signals were common in mountainous terrain. 

I used program TRIANG to triangulate the location of each transmitter, 

and afterwards, censored inaccurate locations by using the1 size of error 

ellipses as an index to poor locations. Using this method, I found that the 

Andrews Estimator had smaller errors associated with it than the Huber or 

Maximum Likelihood Estimator (MLE). The mean and 90% quantile of the 

distance between the true and estimated locations produced by the Andrews 

Estimator were 609 m and 1,105 m for Vail (n = 49); and 940 111 and 1,531 m 

for Homestake (n = 50), respectively. Coverage of the Andrews error ellipses 
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was as qood or better (coverage range = 8-39%) than error ellipses from 

other location estimators, but was 'still considerably less than the expected 

95%. 

When I utilized the airplane antenna system, I found that the mean and 

90% quantile [490 m and 1,081 m, respectively (n = 50)] of the distance 

between true and estimated location for aerial locations was less than that of 

the hand-held system. 

Key words: aerial and ground locations, errors, mountainous terrain, 

telemetry, TRIANG, Yagi antenna 

CHAPTER 2. THE EFFECTS OF SKI AREA EXPANSION ON GEOGRAPHIC 

USE PAlTERNS OF ELK 

I documented the effects of physical disturbances in sub-alpine bowls 

at Vail Ski Area on the geographic use patterns of elk (Cervus elaphus). I 

used radio-telemetered elk and visual observations of elk in measuring the 

responso to this type of development. Temporal control was achieved by 

comparing elk use patterns which were recorded 1 year before development 

to those of the following 2 years. Spatial control (incorporated by comparing 

use patterns of elk at the ski area to use patterns of an undisturbed elk 

population) allowed me to factor out the effects of weather (e.g., snow melt, 

plant phenologies) on use patterns. 

RBsults from my telemetry data indicate no change in elk use patterns 

after development. However, the frequent radio-signal bounce that is 

associati~d with mountainous terrain may have inflated location errors and 

decreased my ability to detect changes in use patterns had they existed. 
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Observational data, having a much smaller associated error, al lowed detection 

of more subtle changes in use patterns. Results from my observations 

indicate elk use in the entire treatment study area decreased threefold after 

development. My analysis of each bowl suggests that this decrease was 

primarily influenced by an 11-fold decrease in elk use of the most developed 

bowl, China Bowl. I detected no changes for the remaining, less developed 

bowls, Tea Cup and Siberia-Mongolia Bowls. Post development results 

suggest that elk may have partially acclimated, behaviorally, to these 

disturbances and/or revegetation in developed bowls may have attracted elk 

to these areas. Although I detected changes in geographic use patterns, elk 

did not completely abandon developed areas. The effects of these 

disturbances likely were minimized by excluding human activity from 

developed areas during periods of concentrated elk use. 

Key words: behavior, Cervus elaphus, elk, development, physical 

disturbances, ski areas 

CHAPTER 3. CHANGES IN THE NUMBER OF ELK OBSERVED AFTER 

DEVELOPMENT OF 2 COLORADO SKI AREAS 

I documented the response of elk to both physical and human 

disturbances by measuring the changes in the number of olk observed in 

McCoy Park and Mud Springs drainages after development. Development 

occurred close to the drainages after 1987 and consisted of the construction 

and operation of Trapper's Cabin (a guest lodge built by Be1aver Creek Ski 

Area) and Arrowhead Ski Area. 
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Ell< were observed in McCoy Park and Mud Springs for 2 summers 

before dit=M31opment (1985 and 1987), and I compared these observations to 

those madB during the 3 summers after development (1988-1990). 

Using negative binomial statistics, I was unable to detect a statistical 

differenc13 in the number of elk observed in McCoy Park, although the first 

summer after development the number of elk observed was nearly half that of 

the other 4 summers. There was a dramatic decrease in the number of elk 

observecl in Mud Springs; a 46-fold decrease in elk use occurred during the 

first 2 summers after development. During the third year after development, 

the number of elk observed increased; however, the average number of elk 

observecl was still fourfold less than before development. 

I made comparisons between time of year elk were observed in both 

McCoy Pairk and Mud Springs and the time of year Trapper's Cabin was 

used. My results indicate that after development, elk altered their use 

patterns and occupied these drainages earlier in the summer, before 

Trapper':; Cabin opened for use. 

In 1 B88, changes in the number of elk observed were likely due to 

activities associated with the construction of Arrowhead Ski Area, and/or the 

presence, and operation of Trapper's Cabin. Increases in elk use of both 

drainages in 1989 and 1990 were likely caused by the cessation of 

construction at Arrowhead Ski Area, and/or the behavioral acclimation of elk 

to disturbances. 

Key words: behavior, Cervus elaphus, development, elk, human activity, 

physical disturbance 
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PREFACE 

My thesis is written in 4 chapters. In Chapter 1, I n~port on telemetry 

errors associated with a 2-element, hand-held antenna and a 2-element 

antenna mounted to the belly of an airplane. This chaptier is important 

because assessment of telemetry error was critical in cletermining the 

resolution of changes in use patterns that report in the second chapter. In 

Chapter 2, I discuss the effects of the physical development associated with 

ski area expansion on early summer geographic use patterns of elk. In 

Chapter 3, I report the effects of both physical and human disturbances on 

elk use patterns at 2 other Colorado ski areas, and in Chapter 4 I summarize 

conclusions from my first 3 chapters. Finally, in an appendix I include a 

bibliography of articles addressing the effects of ski areas on the environment. 

Much of the work in this thesis was completed by former graduate 

student, Bill de Vergie and myself. Both Bill and I arei tl1ankful for the 

opportunity and responsibility given to us to complete this study. We believe 

graduate students are logical investigators for studies liike this bscauss: 

(1) being students we can complete studies in a cost effective manner; 

(2) being at the university we have access to some of the newest technology 

and techniques used in wildlife studies; (3) because we do not have a vested 

interest in the outcome of results we are more likely to complete objective, 

third party studies; and (4) studies like this give us an excelllent opportunity to 

become trained as professional biologists. 
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CHAPTER 1 

ACCUFlACY OF A 2-ELEMENT, HAND-HELD ANTENNA AND AN 

AERIAL TELEMETRY ANTENNA IN MOUNTAINOUS TERRAIN 

Several studies have measured the accuracy of null-peak and/or twin, 

multi-element antenna telemetry systems (Springer 1979, Hupp and Ratti 

1983, Lee et al. 1985, Garrott et al. 1986, Kufeld et al. 1987, Pace 1988, Mills 

and Knowlton 1989). However, use of these cumbersome antenna systems is 

limited because they must be fixed either at permanent towers or on vehicles. 

If highly mobile wildlife species, such as elk, do not remain in the vicinity of 

towers or roads accessible to vehicles, then these antenna systems have little 

utility. Consequently, to follow mobile animals, biologists have used either the 

2-element, hand-held Yagi antenna, which is collapsible and easily 

transported, or airplanes with fixed antennas. Unfortunately, little is known 

about the accuracy of these telemetry systems, especially in mountainous 

terrain where radio signal bounce is frequent. Because of the nature of high 

frequency radio signals, these signals can bounce off rocks, cliffs, and even 

trees, which may make locating transmitters difficult (Hupp and Ratti 1983, 

White and Garrott 1990). 

Tllree studies have measured the accuracy of the hand-held antenna 

(Garrott et al. 1987, Hupp and Ratti 1983, Pace 1988). Hupp and Ratti (1983) 

found the 2-element antenna (n = 3) was 2-3 times less precise and 8-1 O 

times more biased than the null-peak antenna, when it was used in areas that 

were relatively flat and non-timbered. Areas with more relief and timber 

created errors for both systems which were too large to accurately estimate 

locations of radio transmitters. Pace (1988) reported errors for a 4-element, 

hand-held antenna on flat farmland and had similar findings to those of Hupp 
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and Ratti; however, bias and sample size were not reported. Garrott et al. 

(1987) did not measure the precision or bias of their 2-elernent antenna 

system, but instead measured the distance between true and estimated 

locations. With distances between the tracker and transmitter ranging from 

0.3-1.0 km, they reported a mean error of 267 m (range, 74-1,025 m) for 

moderately rolling terrain. 

Several biologists have described methodology for obtaining accurate 

telemetry locations from aircraft (Kolenosky and Johnston 1967, Seidensticker 

et al. 1970, Mech et al. 1971, Whitehouse and Steven 1977, Gilmer et al. 

1981); but again, few have measured the error associated with such methods. 

Hoskinson (1976) and Whitehouse and Steven (1977) reported errors 

associated with their locations from strut-mounted antennas ranging from 7-75 

m (n = 20) and 15-400 m (n = 45), respectively. In both studies, airplanes 

flew at low altitudes [Hoskinson (1976) flew 15-30 m above ground level] over 

flat terrain and made several passes over each transmitter while biologists 

made location estimates. Garrott et al. (1987) made locations in moderately 

rolling terrain (they flew 100-400 m above ground level) and reported errors 

associated with their strut-mounted antenna ranging from 25-750 m 

(mean = 275 m, n = 15). 

Unfortunately, inferences may be limited from the above studies when 

one or more of the following conditions are not met: (1) Belly-mounted 

antennas are used to locate transmitters rather then strut-mounted antennas. 

(2) In studies where many transmitters are used, locations must be 

determined quickly and several passes over each transmittE~r may not be 

..-
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possible. (3) Finally, mountainous terrain precludes flying at low altitudes. (for 

safety reasons pilots must fly at least 200-600 m above ground level). 

If biologists continue to use hand-held and airplane-mounted antennas 

to locate telemetered animals, further assessment of the error associated with 

locations needs to be made, especially in mountainous terrain where radio 

signal bounce can frequently occur. During my telemetry work with 

radio-collared elk, I measured the accuracy in mountainous terrain of both a 

2-element, hand-held Yagi antenna and a 2-element Yagi antenna mounted 

under an airplane. 

STUDY AREA 

My 2 study sites were in central Colorado near the city of Vail (39°30' 

N, 106°25' W). The Vail study site covers most of Two Elk Creek, a 

secondary drainage that includes 12 primary drainages. These drainages are 

V-shaped, indicating little past glacial activity. Elevation ranges from 

2,740-3,480 m (9,000-11,400 ft). South facing slopes are approximately 20% 

timbered, primarily at lower elevations, and north facing slopes are 80% 

timbered. The Homestake study site encompasses the lower extent of 

Homestake Creek. Homestake Creek is U-shaped, and contains numerous 

rock micro-ridges (10-50 m high), suggesting past glacial activity. Elevation 

ranges from 2,740-3,800 m (9,000-12,450 ft), and both south and north facing 

slopes are 90% timbered. 

METHODS 

Ground Locations 
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During the summers of 1989 and 1990, 9 and 8 Telonics1 transmitters 

(150-151 Mhz) were placed in the Vail and Homestake study sites, 

respectively. Transmitters with antenna sewn into radio collars were situated 

in locations unknown to me and were fastened to trees 1-1.5 m above the 

ground (approximately the height of transmitters on standing elk). 

I used a Telonics 2-element, hand-held Yagi antenna and a Telonics 

scanning receiver from 3 or 4 (of 5 potential) receiving stations at Vail and 3 

stations at Homestake (Fig. 1.1) to estimate the location of each transmitter. I 

chose each of the 8 receiving stations from 31 potential stations based on the 

following criteria: 

1. The station was topographically prominent and provided good radio signal 

reception with line-of-sight across the study site, thus reducing the 

probability of receiving a bounced signal. 

2. I positioned each station to facilitate location of 20-25 transmitters in 2-4 

hours. Because I was solely responsible for determining the locations 

of telemetered elk while estimating the location of the above 

transmitters, I had to visit all stations as quickly as possible to reduce 

Uni;~:~ ~f commercial name does not imply endorsement by Colorado State 
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Fig. 1.1 . Maps of receiving stations, transmitters, and landmarks on Vail and 
Homestake study sites. Number for each receiving station is listed. Mean 
distances between stations and transmitters were 2.5 km (range, 0.5-4.6 km) 
and 4.2 km (range, 1.6-8.5 km) respectively for Vail and Homestake sites. 
Mean distance between stations and landmarks was 4.0 km (range, 3.3-5.2 
km). Axes are scaled by Universe Transverse Mercator (UTM) coordinates, 
and each block is 1 km 2 or 100 ha. 
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location errors which might be due to animal movements (Schmutz and White 

1990). 

3. located each station as close as possible to geometrically optimal 

locations (White 1985). In general, to minimize errors in triangulation, 

stations should not be too close to each other, and if the study site 

includes an entire drainage, they should be located on both sides of 

the drainage. 

Because of criterion 2, I could not situate stations on both sides of the 

drainage and still complete locations in 2-4 hours. Consequently, I placed 

stations only on 1 side of the drainage for both Vail and Homestake study 

sites. 

Elevation of receiving stations averaged 3,350 m (11,000 ft) for Vail and 

3,230 m (10,600 ft) for Homestake. Mean distances between transmitters and 

receiving stations were 2.5 km (range, 0.5-4.6 km) and 4.2 km (range, 1.6-8.5 

km), respectively, for Vail and Homestake. 

I measured the bearing at each station, within 1 °, to the strongest 

radio signal for each transmitter with a Silva Ranger2 mirrored compass, and 

I estimated 4-5 locations for each of the 17 transmitters, (49 and 50 locations 

for the Vail and Homestake sites, respectively) by using the computer 

program TRIANG (White and Garrott 1984, 1990). r maximized independence 
of the 4-5 locations on each transmitter by taking the following precautions to 

prevent past locations from influencing future locations: (1) While I located 

2
Use of commercial name does not imply endorsement by Colorado State 

University. 
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transmitters fixed to trees, • f also located transmitters on 20-25 moving elk. 

(2) I made locations at least 1-week apart. (3) I did not use program TRIANG 

to estimate transmitter · locations until · I -retrieved transmitters. The true 

location of each transmitter was determined with topographic maps, using 

triangulation on known landmarks and careful inspection of proximate 

topography and vegetation. I did not measure the error associated with 

ascertaining these true locations, but because I used the above methods to 

determine these locations, the error of the true location of each transmitter is 

likely within 30-50 m. 

I measured the error associated with this telemetry system using the 

following methods: 

1. I measured the precision of all 8 receiving stations. This was measured 

for each station by standardizing the median of bearings for each 

transmitter to zero and then pooling the data for all transmitters. In 

addition, data for all 8 stations were pooled to get an overall precision. 

Because TRIANG requires that standard deviation of all towers be 

equal, I tested to see if standard deviations differed between the 8 

stations by using Levene's test (LEV1 :Median variation) for 

homogeneous variance (Conover et al. 1981). This variation used the 

absolute difference between each datum and the median. In addition 

to testing for equal precision between receiving stations, I tested for 

equal precision as distance between transmitters and receiving stations 

increases. The Andrews, Huber and Maximum Likelihood Estimator 

assume that precision is equal as distance increases; however, Pace 

(1988, 1990) found that precision for his telemetry system was not 
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constant as distance increased, but rather the relationship was more 

bath-tub shaped [i.e., precision remained constant over most of the 

spectrum of distances and increased only at close ( < 5 m) and far 

distances {> 950 m)] (Fig. 1.2). Using Levene's test, I tested for 

changes in precision as related to distance by using distance criteria to 

block data for bearings standardized to zero. Distances between 

transmitters and receiving stations ranged from 0.56 km to 8.5 km. 

Consequently, I blocked data into 5 groups; 0-1, 1-3, 3-5, 5-7, and 7-9 

km. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - l! 
Distance Between Transmitter and Receiving Station 

_ ., 

Fig. 1.2. Theoretical behavior of variance and prec1s1on as related to the ,~ 
distance between transmitter and receiving station. Solid line illustrates 
Pace's theory where precision increases at close and far distances. Dashed 
line illustrates the theory of constant precision. 

2. I measured the bias of bearings by averaging the differences between the 

true bearing for each transmitter and each estimated telemetry bearing. 

Biases of transmitters were pooled for each station. Using Student's 

t-test, I tested whether the bias was different from zero for each station 

and all stations pooled. 
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3. I measured the distance between true and estimated locations for all 3 

estimators available through TRIANG, the Andrews, Huber and MLE 

(Lenth 1981). Without radio signal bounce, these 3 estimators produce 

the same location estimate (White and Garrott 1990). However, with 

signal bounce, the Andrews and Huber Estimators attempt to detect 

this bounced signal by weighing signals less where the distance 

between the receiving station and estimated location is greatest and 

weighing signals more where intersection with other bearings is closest 

to the optimal angle of 90° (White and Garrott 1990). Neither of these 

estimators are designed to estimate locations with more than 1 

bounced signal when only 3-4 receiving stations are used. 

4. Finally, I measured the coverage of error ellipses, which is the percentage 

of error ellipses that covered true locations, for all 3 estimators. 

Because bearings from 2-element antennas are not as precise as those 

from null-peak antennas (Hupp and Ratti 1983), TRIANG is not as sensitive in 

detecting bounced signals. As a result, TRIANG uses bounced signals to 

estimate locations when it should not. To decrease the probability of using 

less accurate locations, I used a censoring method identical to that used by 

Garrott et al. (1986). I completed censoring by plotting Andrew's error ellipse 

versus distance between true and estimated location for each study site. In 

theory, the relationship between error ellipse size and the distance between 

true and estimated locations should be positive and curvilinear; i.e., the area 

of error ellipses increases to the squared power while the distance between 

the true and estimated locations increases to the first power. If a positive 

relationship exists between these 2 variables, one can then delete locations 
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with error ellipses above a certain size to decrease the probability of using 

locations with the greatest error. 

After inspection of the positions of Homestake receiving stations in 

relation to the transmitters, I realized my receiving stations were not 

positioned adequately to allow estimation of locations for the southern section 

of the study site (Fig. 1.1) (White 1985). Consequently, to decrease the 

probability of using poor locations, I deleted all locations that had a Universe 

Transverse Mercator (UTM) Y coordinate south of 4364000 N. 

I also tested for triangulation errors associated with reading a 

hand-held compass by making 10 visual locations of 2 landmarks (5 each) in 

Super Bowl on the Vail study site. I used stations 48, 49, and 52 to make 

these locations. For analysis, I pooled data from all 3 stations and named this 

station 99. To allow for comparison, I used the same 4 methods for 

measuring error on both visual locations and telemetry locations (except, 

precision was not tested as related to distance between landmark and 

receiving station). Mean distance between landmarks and receiving stations 

was 4.0 km (range, 3.3-5.2 km). 

Aerial Locations 

Fifty locations were completed from an airplane on 17 transmitters fixed 

to trees, and 1 0 additional transmitters that had fallen from radio-collared elk 

(these were on collars that were designed to drop off elk after a 2 year period 
or were transmitters from elk mortalities). Aerial locations were determined 

200-600 m above ground from a Cessna 185 airplane with a rotating, 

belly-mounted antenna. Locations of these transmitters were made while 

concurrently locating 50-60 radio-collared elk during flights lasting from 4-6 

-
-
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hours. Because of the large number of transmitters being located, locations 

were made as quickly as possible (mean location time = 4-6 min/location). 

Generally, each transmitter signal was tracked to the strongest signal source 

and the pilot circled this source once. Locations were plotted on 7.5 minute 

topographic maps and were later converted to UTM coordinates. I report 

error as distances between true and estimated locations. This error includes 

the error associated with locating transmitters and that associated with 

plotting locations on topographic maps. 

RESULTS 

Ground Locations 

Using Levene's test for homogeneous variance, I rejected my null 

hypothesis that precision was equal between all receiving stations 

(P = 0.0001) (Fig. 1.3). After further analysis, I found that when I deleted the 

least precise station (Station 45) I was unable to reject (P = 0.42). Although 

the standard deviation of Station 45 was larger than the rest, I included this 

station in the pooled standard deviations used for TRIANG. TRIANG uses this 

standard deviation to calculate the size of error ellipses (e.g., a larger 

standard deviation will cause TRIANG to produce larger error ellipses) and I 

chose to include station 45 so that error ellipses would reflect the maximum 

error of locations and provide the highest coverage of true locations. The 

pooled standard deviation for the 8 receiving stations was 5.43 °. The 

standard deviation for the visually located landmarks was 1.2 °. 
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Overall, precision of bearings did not change as a function of distance 

between transmitters and receiving stations (P = 0.13) (Fig. 1.4). However, a 

general trend of greater precision as the distance between transmitter and 

station increased was present. When I grouped data for the transmitters that 

were between 0.5 km and 5 km from receiving stations and compared them 

with data for transmitters greater than 5 km, I found the bearings on the 

distant transmitters to be more precise (P = 0.02). 

Fifty percent of 8 stations (40% at Vail, 67% at Homestake) had a mean 

bias significantly different from zero (a = 0.05) (Fig. 1.3). Mean bias for all 8 

stations pooled was -3.21 °, which was significantly different from zero 

(P = 0.0001). Bias for visually located landmarks was +2.6°, which was also 

significantly different from zero (P = 0.001). 

A positive correlation existed between error ellipse size and distance 

between true and estimated locations (r2 = 0. 76) (Fig. 1.5) for Vail data. I 

deleted all locations with error ellipses greater than 150 ha. I did not delete 

ellipses less than 150 ha because errors did not decrease significantly after 

those deletions. No correlation (r2 = 0.001) was observed between error 

ellipse size and the distance between true and estimated location for stations 

at Homestake. However, to delete obviously poor locations at Homestake, I 

censored only those locations with error ellipses greater than 300 ha. 

The MLE had a lower associated error than Andrews or Huber 

Estimators before deleting poor locations (Fig. 1.6, Table 1.1) at Vail. The 

MLE performed as well (within 5-10 m) as the Andrews and Huber for all 

locations except for a few with large errors (errors > 2,000 m). For locations 

associated with larger errors, the MLE was substantially better, with 
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Table 1.1. Mean and 90% quantile before and after censoring for Andrews, Huber and MLE 
for Vail, Homestake and Super Bowl locations. Mean and 90% quantile are also listed for 
aerial locations. 

Before censoring (m) After censoring (m) 

Mean 90% Mean 90% 

Vail Andrews 800 1,781 609 1,105 

Huber 755 1,420 643 1,239 

MLE 670 1,322 657 1,216 

Homestake 1,196 1,954 940 1,531 

Huber 1,194 1,952 937 1,531 

MLE 1,194 1,952 938 1,531 

Super" Andrews 286 462 

Huber 286 461 

MLE 286 461 

Aeriala 490 1.081 

a Locations not censored. 



ti) 
Cl 
I!? 
ti) 

> 
0 u .., 
C: 
CD e 
CD 
~ 

100 

80 

60 

40 

20 

0 

IC]BcforeCGIIIOring 

- Aftcc CGlll0ring 

16 
100 100 

Homestake 

Fig. 1. 7. Percent of error ellipses, before and after censoring, that covered 
true location. Percent coverage is shown for all 3 estimators at Vail. 
Coverage for all estimators at Homestake and Super Bowl were identical. 
Coverage for landmarks in Super Bowl was calculated with s = 5.43 °. 
Coverage with s = 1.2 ° was 10%. Dashed line is expected coverage of 
estimators. For; Vail n = 49, Homestake n = 50, and Super Bowl n = 10. 

errors 200-1,700 m less than Andrews and Huber; however, after censoring 

these inaccurate locations, the Andrews Estimator performed better. 

~ 

Telemetry locations in Homestake and visual locations in Super Bowl "" 

produced location estimates with similar errors (within 5-1 0 m of each other) 

for all 3 estimators. 

Coverage, the percentage of error ellipses that include the true 

location, for all 3 estimators (for both Vail and Homestake) was substantially 

lower than the expected 95% (Fig. 1.7). Coverage increased slightly after 

censoring locations in Vail, but, surprisingly, decreased for Homestake. 

Coverage for visually located landmarks in Super Bowl, when using error 

ellipses created with the bearing standard deviation from telemetry data of 
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5.43° was 100%; however, when the standard deviation for visual locations 

(1.2°) was used, TRIANG produced much smaller error ellipses and coverage 

dropped to 10%. 

Aerial Locations 

The mean distance between true and estimated aerial locations with the 

belly-mounted antenna was 490 m with a 90% quantile of 1081 m (Fig. 1.6, 

Table 1.1). 

DISCUSSION 

Ground Locations 

The precision and bias of my 2-element antenna system in timbered, 

mountainous terrain (precision, s = 5.43 °, bias = -3.21 °, n = 321) was better 

than that reported by Hupp and Ratti (1983) (precision, s = 83.8 °, 

bias = 17.2°, n = 3) for similar terrain. In fact, my precision and bias were 

most similar to Hupp and Ratti's best study site, which was non-timbered, flat 

terrain (precision, s = 5.00°, bias = -3.24°, n = 3). My precision was also 

close to that reported by Pace (1988) (precision, s = 5.74°, n and 

bias = unknown) on flat farmland. Although the mean distance between my 

true and estimated locations was 3-4 times more than that reported by Garrott 

et al. (1987), the distance between my transmitters and receiving stations was 

also 3-4 times greater. 

Although bearings tended to be more precise as distance between 

transmitter and receiving station increased, I did not detect a distinct decrease 

in precision at close and far distances, as Pace (1988, 1990) did. My inability 

to show a change in precision as distance increased may be due to the 

following differences between my study and Pace's: (1) Pace used a 
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CHAPTER 2 

THE EFFECTS OF SKI AREA EXPANSION ON GEOGRAPHIC 

USE PATTERNS OF ELK 

Skiing has become a major industry in North America. Currently, 684 

ski areas exist in North America (Enzel 1988), and the industry continues to 

grow. In just 12 years (1976-77 to 1988-89), estimated skier days nearly 

doubled (from 28 to 53 million) and gross revenues increased fivefold (from 

349 million to 1.83 billion) (Goeldner and Farwell 1977, Goeldner et al. 1990). 

As a result of this growth, proposals for new ski areas and expansion of 

existing ski areas has become common. For example, in Colorado 3 new ski 

areas have been proposed and expansion has been planned for many of the 

existing 30 ski areas. Tragically, the effects of this billion dollar industry on 

the environment have rarely been documented {Alldredge 1988, Rosenstock 

1988) (see Appendix A for a list of studies on ski areas and their effects on 

the environment). Since the National Environmental Policy Act (NEPA) was 

passed in 1969, every ski area on federal land has been required to complete 

an Environmental Assessment (EA) or Environmental Impact Statement (EIS) 

before development. However, these documents only speculate on the 

effects ski areas may have on the environment; private or public agencies 

rarely measure the effects after development. In my study, I measured the 

response of Rocky Mountain elk (Cervus elaphus nelsom1 to physical 

disturbances resulting from ski area expansion, as reflected in changes of 

early summer geographic use patterns. 

Prior to this study, no one had quantified the effects of ski areas on 

elk; however, biologists have completed research measuring impacts from 

similar disturbances, such as logging and/or roads. Disturbances associated 
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with these activities consists of 2 components, physical and human. The 

effects of physical disturbances (e.g., clear-cuts) on elk are uncertain. Ward 

(1976) and Lyon and Jensen (1980) suggest that elk prefer clear-cuts; 

however, Hershey and Leege (1976) found the opposite, in fact, that elk may 

even avoid clear-cuts. The effects of human disturbances on elk are more 

consistent. Ward (1976) and Lyon (1979b) suggest that elk avoid active 

logging. Hershey and Leege (1976), Perry and Overly (1976), Lyon (1979a), 

and Morgantini and Hudson (1980) suggest that elk avoid roads open to 

human use. Generally, studies measuring the effects of logging and roads on 

hunted elk populations indicate that elk avoid areas where habitat alterations 

have occurred, especially if levels of human activity are high. Unhunted elk 

(e.g., in national parks) tend to be more tolerant of human activities (Lyon and 

Ward 1982). 

These studies provide biologists only a start from which to predict the 

effects of ski area development on elk. Ski area development differs from 

logging and roads, in that, development is predominately at a larger scale; the 

average ski area is 733 hectares with 260 skiable hectares (range, 15-5,700 

hectares) (Goeldner et al. 1990), whereas clear-cut logging in the above 

studies encompassed only 2-138 ha. Also, human activity associated with ski 

areas during winter and summer months may be much more intense than that 

found during and after logging, or along roads. 

Data collection for this study began in 1985, when the Colorado 

Division of Wildlife became interested in documenting movements of elk near ,--_ 

Vail. From 1987 to 1988, de Vergie (1989) further quantified the movement of 

the 2 migratory and hunted elk populations used in this study, 1 population 
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located south of the city of Vail and the other population residing in 

Homestake drainage. After de Vergie's last field season in 1988, Vail 

Associates expanded Vail Ski Area into the Back Bowls, adding 770 hectares 

of skiable terrain, and completed the single largest ski area expansion ever 

undertaken in the United States (Beasly 1989). For 2 years after this 

expansion, I measured the response of elk to these physical disturbances. 

STUDY AREA 

I worked with 2 migratory elk populations, each of approximately 

200-300 animals (8. Andree, Colo. Div. Wildl., pers. commun.) on 2 study 

sites, 15 km apart, located in central Colorado near the city of Vail (39°30' N, 

106°25' W). The Vail study site encompassed most of Two Elk Creek. Elk in 

this area winter northwest of Two Elk Creek and use Two Elk Creek primarily 

in early summer during calving season. Elevation of Two Elk Creek ranges 

from 2,740-3,475 m (9,000-11,400 ft). South facing slopes, hereafter referred 

to as the Back Bowls, are 20% timbered with quaking aspen (Populus 

tremuloides) and lodgepole pine (Pinus contorta) occurs predominantly at 

lower elevations ( < 3,200 m). The remaining non-forested areas are 

comprised of sub-alpine meadows. North facing slopes are 80% timbered 

with lodgepole pine at lower elevations and subalpine fir (Abies lasiocarpa) 

and Engelmann spruce (Picea engelmannit) at upper elevations. Human 

activity on this site was concentrated on a trail besides Two Elk Creek. Most 

human activity consisted of hiking, mountain biking, and occasional motor 

cycling. 

The Homestake study site encompassed the middle and lower extent 

of Homestake Creek. The Homestake elk population differs from the Vail elk 
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population in that elk in the Homestake area use the same drainage during 

both winter and early summer. Elevation of the Homestake study site ranges 

from 2,740-3,795 m (9,000-12,450 ft). The lower elevations of southeast 

facing slopes are 60% timbered and are predominantly quaking aspen with 

mixed subalpine fir and Engelmann spruce. Upper elevations of southeast 

facing slopes and all of the northwest facing slopes are 90% timbered and are 

predominantly lodgepole pine. Human activity at Homestake was 

concentrated besides the drainage bottom, as it appeared to be in the Vail 

site. However, because a gravel road instead of a trail lies along the drainage 

bottom, this area was much more accessible to humans and consequently, 

levels of human activity were higher. Because I saw no indications of 

changes in human activity levels, I assumed human activity levels were 

constant throughout this study in both Vail and Homestake sites. 
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METHODS 

Treatments 1, 2 and 3 

Vail Associates began development of Sun Up, Tea Cup, China and 

Siberia Bowls in the Back Bowls in Fall 1988 (Fig. 2.1). Approximately 90% of 

the development was completed that year with the remaining development 

completed in Fall 1989. Development consisted of typical disturbances 

associated with ski area development, such as service roads, timber removal, 

chair lift installation, and revegetation. Because all these disturbances 

occurred in either 1988 or 1989, or both years, I was unable to determine 

whether elk responded more to one disturbance (e.g., timber removal) than 
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another. However, because more development occurred in 1988 

(approximately 90% of total development), I was able to measure how elk 

responded to 2 levels of development. 

I divided development in the Back Bowls into 3 treatments. 

Treatment 1, completed during the fall of 1988, consisted of: (1) timber 

removal in Tea Cup and China Bowl, (2) ground disturbance and road 

construction in Sun Up, Tea Cup, China and Siberia Bowls, and (3) the 

installation of chair lift #21 in China Bowl. For each bowl, I quantified 

Treatment 1 by using a surveying wheel and tape measure to determine the 

area of service roads, revegetation, and timber removal (estimated from 

ground disturbance in timber stands), and I also measured the length of 

service roads. I compared the area of these disturbances to the relative 

areas of each bowl and the relative area of bowls below 3,230 m (10,600 ft). 

Prior to Treatment 1, elk were not observed above 3,230 m (de Vergie, pers. 

commun.). I also obtained data on the volume of timber removed associated 

with the development (Yv. Bailey, U.S. For. Serv., pers. commun.). To 

measure the effeot5 of Treatm,mt 1, I compared elk use patterns from 1366 to 

those of 1989. 

Treatment 2 was completed during the fall of 1989 and consisted of: 

(1) thinning China Bowl timber stand, (2) revegetation of disturbed ground in 

Sun Up, Tea Cup, China and Siberia Bowls, and (3) time. I used time to test 

whether or not elk acclimated, behaviorally, to physical disturbances. 

quantified Treatment 2 using ground measurements from Treatment 1 to 

estimate revegetation and the volume of timber removed ryv. Bailey, U.S. For. 

--✓ 
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Serv., pers. commun.). To measure the effects of Treatment 2, I compared ·. 

elk use patterns from 1989 to those of 1990. 

Treatment 3 resulted from the combined development of Treatment 1 
_/,.✓ 

and Treatment 2 which consisted of: (1) timber removal in Tea Cup and 

China Bowl, (2) ground disturbance and road construction in Sun Up, Tea 

Cup, China and Siberia Bowls, (3) the installation of chair lift #21 in China 

Bowl, (4) revegetation of disturbed ground in Sun Up, Tea Cup, China and 

Siberia Bowls, and (5) time. To measure the effects of Treatment 3, I 

compared elk use patterns from 1988 to those of 1990. 

All 3 treatments, with the exception of time, involve only physical 

disturbances and do not include any forms of human activity. With 

cooperation from study contributors, it was possible to close the Back Bowls 

to human activity and prevent an increase in human use during periods of 

concentrated elk use (May 15 to July 1). Thus, my results reflect the effects 

of the physical development associated with ski areas, and they were not 

confounded with increased human activity, commonly found after such 

developments. 

Temporal and Spatial Control 

My study included both temporal and spatial controls. Temporal 

control was achieved by collecting data on elk use patterns prior to treatment 

(I had 1 and 3 years of pre-development data for my telemetry data and 

observational data, respectively) and comparing these to data on elk use 

patterns for 2 years after treatment. Spatial control was incorporated by 

monitoring both treatment and control elk populations. The treatment 

population, Vail elk, experienced treatment from Vail's expansion. The 
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Homestake population, which was the control group, experienced no 

development or increase in human activities. I used this spatial control to 

factor out changes in use patterns due to weather (i.e., snow melt, plant 

phenologies). 

Sample Units 

Only cow elk were used for the telemetry data in this studf Adult 

female elk were trapped and fitted with 150-151 Mhz radio-collars at both Vail 

and Homestake sites from the winter of 1986-1987 to the winter of 1989-1990. 

Elk from the Vail population were trapped with portable corral traps (Taber 

and Cowan 1969) in 1986-1987 and 1988-1989 and with Clover traps (Clover 

1956) in 1987-1988 and 1989-1990. Elk from the Homestake population were 

trapped with corral traps in 1986-1987 and Clover traps the remaining winters. 

Although certain elk may be more likely to be trapped than others (e.g., 

young "naive" elk may be more likely to enter a trap than older "wise" elk), I 

did not observe any tendency to trap one age class over another. 

Consequently, I have assumed that the populations of cow elk were randomly 

sampled. 

I analyzed each treatment using only data on those elk for which I had 

both pre- and post-treatment data (Table 2.1 ). An alternative was to use data 

from all collared elk for each year. Because elk were trapped each winter, 

this design would have resulted in larger sample sizes for post-treatment 

years. This approach was not used because I feared newly collared elk 

would have caused me to falsely conclude that there were changes in elk use 

patterns. Some of the newly radio-collared elk had distinctively different use 

patterns than previously collared elk. In 1987, locations were made of elk that 
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were trapped in 1986-1987; however, I did not use data from this year for 

analysis because no collared elk from the Vail population used the Back 

Bowls. 

Table 2.1. Number of radio-collared elk available for each treatment for Vail and Homestake 
elk populations. Treatment 1 compares 1988 to 1989; Treatment 2 compares 1989 to 1990; 
and Treatment 3 compares 1988 to 1990. 

Vail 

Homestake 

Treatment 1 

8 

7 

Treatment 2 

17 

14 

Treatment 3 

7 

a For 2 of the 3 analyses, radio-collar failure reduced the number of telemetered elk to 2. 

In addition to telemetry data, I used changes in the number of elk 

visually observed in the Back Bowls to detect changes in use patterns. I used 

all sex and age class data for subsequent analysis. 

Location Methods 

Radio-collared elk were located using a Cessna 185 airplane with a 

belly-mounted antenna every 7-1 0 days from May 15 - July 1 (locations for 

each elk per year = 5), and every 2-3 weeks from July 1 to September 1 for 

each year. In addition, from May 15 - July 1, elk were located on the ground 

every 1-3 weeks in 1988, and every 2-3 days in 1989 and 1990. In 1988, 

animals were located on the ground by tracking the radio signal to its 

strongest source, and then attempting to make a visual observation (27% of 

locations were visuals) (de Vergie 1989). In 1989 and 1990, because of 

increased sample size and the increased frequency of locations, elk locations 

were estimated by triangulation using program TRIANG (White and Garrott 

1984, 1990) (0.6% of locations were visuals). See Chapter 1 for details on 

methods used to make locations and associated errors with these locations. 
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Accuracy of telemetry locations made in 1988 was not measured; 

however, error associated with these locations was likely equal to or less than 

that of locations in later years. In 1988, fewer elk were radio-collared and 

more time was spent locating animals. 

Changes in Elk Geographic Use Patterns 

Analysis of my data was difficult because it consisted of 3 response 

variables, X and Y location coordinates, and time. Previously, several 

biologists (Edge et al. 1985, Kuck et al. 1985, Knick 1990) have used changes 

in home range size to detect changes in geographic use patterns. This --· 

approach, however, has one serious fault. Animals may spatially shift actual 

home ranges without changing home range size, and analysis, in that case, 

would not detect a change. An alternative approach, parametric multivariate 

statistics, was not appropriate in this study because not all variables were 

normally distributed (e.g., times when locations were made were uniformly 

distributed). Because I could not find 1 ideal analysis that met all my needs, I 

employed 5 different methods to detect changes in elk use patterns between 

treatments. These multiple analyses were not intended to increase the 

probability of rejecting the null hypothesis (Type I Error), but instead were 

utilized to understand the data as fully as possible (each method evaluates 

.. 

data from a different perspective) and to insure that no changes in use ~✓ 

patterns went undetected. 

My first 3 methods use telemetry data for analysis. Method 1 works 

well in detecting changes in spatial distribution of elk locations; however, it 

fails to directly incorporate data from the Homestake elk population as a 

control. Method 2 uses the Homestake elk population as a control and 
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concentrates more on the temporal aspect rather than spatial distributions. 

Method 3 also incorporates time, but it concentrates more on the developed 

area in the Back Bowls and does not assume the Homestake elk population 

as a control. Method 4 works with changes in visual observations of elk. 

Because the error associated with making visual locations was considerably 

less than the error associated with telemetry locations, Method 4 has greater 

statistical power to detect changes in use patterns. Finally, Method 5 was a 

survey looking for elk sign in developed bowls. I analyzed data for the first 4 

methods statistically; the level of rejection for these tests was a = 0.05. 

Because no quantifiable data were collected for Method 5, I did not perform 

any statistical analysis. 

Method 1. Changes in spatial distribution of elk locations - I measured 

changes in the spatial distribution of elk locations between treatments using 

Multi-Response Permutation Procedures (MRPP) (Biondini et al. 1988). 

MRPP was used for analysis because, unlike other statistical procedures, 

MRPP can handle 2 dimensional data such as Universe Transverse Mercator 

(UTM) coordinates. The third response variable, time, was not included in 

this analysis because the time of these locations was equally spaced for each 

year. If I included time in my MRPP analysis, consistent sampling would 

make the analysis less sensitive to changes in the spatial distribution of 

locations. In order to keep sampling schedules and sample sizes consistent 

and reduce the probability of using poor telemetry locations, I used only aerial 

locations in this analysis. Elk were located approximately 5 times during the 

season of concentrated elk use, May 15 - July 1. As discussed above, 

because of the inherent limitations of MRPP, I was unable to use the 
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Homestake elk population as a control to factor out the effects of changes in 

snow melt rates on the use patterns of the Vail elk population. Consequently, 

I completed separate analyses for Vail and Homestake elk populations, and 

changes in use patterns between the 2 populations were explained 

descriptively. The null hypothesis for method 1 was the following: H0 : There 

was no difference in the spatial distribution of elk locations. 

Method 2. Changes in the time of year elk left Vail and Homestake 

Regions - From location data collected from 1987-1990, I created a region for 

both Vail and Homestake elk populations that represented winter (December 

1 - May 15) and early summer ranges (May 15 - July 1) (Fig. 2.2). I then 

used the dates that elk left their respective regions to detect changes in use 

patterns. Changes in use patterns between treatments for the Homestake elk 

population were assumed to be weather-related (i.e., snow melt, plant 

green-up) and were used to factor out the same weather-related changes in 

use patterns from the Vail elk population. I estimated the date each elk left 

these regions using the mean date of the last location in each region and the 

date of the first location outside the region. Both aerial and ground locations 

were used in estimating the date that elk left the Vail and Homestake Regions. 

Although some ground locations had higher degrees of error associated with 

them than others (see Chapter 1), I incorporated all ground locations in my 

analysis. When elk moved outside either the Vail or Homestake Region, 

ridges obscured line-of-sight between transmitter and receiving station; thus 

decreasing signal quality (signals were not as loud and were distorted). High 

quality signals that originated in these regions were easily distinguished from 

signals that originated outside these regions. For example, none of the 99 

-..-
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transmitter locations used in Chapter 1, known to be within either the Vail or 

Homestake Regions (49 locations at Vail and 50 locations at Homestake), was 

incorrectly estimated outside of its respective region. During 1990, the 

Homestake sample size was reduced from 4 to 2 because of radio failures 

which occurred before elk had migrated to late summer ranges. 

My response variable was the difference between the dates (later 

year - earlier year) elk left their respective regions (e.g., June 24, 1990 - June 

18, 1989 = 6 days). I ran analyses separately for each treatment employing 

Student's two-sample t-tests. Each t-test was tested for homogeneous 

variances using Levene's (LEV1 :Median Variation) (Conover et al. 1981). I 

also used MRPP, a comparable non-parametric test, for analysis. MRPP and 

Permutation Tests for Matched Pairs (PTMP, a version of MRPP for matched 

pairs) (Biondini 1988) were used for Method 2 and 3, respectively. These 

non-parametric tests provided an additional method of detecting changes in 

use patterns. Although these analyses are not as statistically efficient as 

parametric tests, they do not require the assumption of normality. My null 

hypothesis for method 2 was the following: H0 : Vail elk did not leave their 

region earlier or later when compared to the Homestake elk. 

Method 3. Changes in the length of time elk used the Greater Teacup, 

China and Siberia Region (GTCSR) - This method concentrates more on 

changes in use of the developed bowls and is analogous to Method 2, but 

differs in that I did not use the Homestake elk as a control, and I determined 

the number of days that elk used this region, rather than the date that they 

left. The GTCSR contains the 3 bowls listed plus a buffer zone around the 

edge, which was 1,100 m wide (Fig. 2.2). I added this buffer zone to increase 
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the probability of including locations of elk that were actually located in the 

above bowls (these elk were most likely located along the southern 

boundaries of these bowls), but because of telemetry errors their locations 

were estimated south of these bowls. I chose 1,100 m because this was the 

90% quantile of ground telemetry errors (see Chapter 1 for more details). 

Theoretically, with this buffer I have included 90% of the elk locations that 

were along this southern edge. I used aerial and ground locations for this 

analysis; however, to reduce the probability of using poor locations, I 

censored ground locations and used only those locations that had an error 

ellipse of less than 150 ha. (See Chapter 1, for more information on why I 

chose 150 ha for censoring locations.) I estimated the number of days that 

elk used the GTCSR by subtracting the mean date of the last elk location 

before they moved into the region and first location in the region from the 

mean date of the last elk location in the region and the date of the first 

location outside the region, or: 

Days in GTCSR = {Last Location in + 1st Location out) - {Last Location out + 1st Location in) 
2 2 

I did not use a control at Homestake to factor out the effects of 

changes in snow melt rates between years, because changes in snow melt 

rates may shift when elk use this region, but these changes should not affect 

how long elk use the area. Topography surrounding GTCSR is such that elk 
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Vail Region 

Greater Tea Cup, China, Siberia Region 

Homestake Region 
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~ -•-
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km 

Fig. 2.2. Map of Vail Region, Homestake Region and, the Greater Tea Cup, 
China and Siberia Region (GTCSR) used for second and third analysis to 
detect changes in elk use patterns. 

must cross one ridge to enter this region and another to exit. The first ridge 

is at lower elevations and snow melts earlier there than on the second, higher 

ridge. It appears that snow melt on these ridges influences when elk can 

move in and out of the GTCSR. For example, during years when snow on 

these ridges melts later, elk likely move into the GTCSR at a later date, but 
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snow on the second ridge will also keep elk from moving out of the GTCSR 

until a later date. In theory, without the effects of treatments, changes in 

snow melt between years may shift when elk use the GTCSR, but these 

changes should not affect how long elk use this region. 

In analyzing my data, I compared the difference (later year - earlier 

year) in the number of days that elk used the GTCSR for each treatment 

using a paired t-test to test whether or not that number differed from zero. In 

addition, I used a comparable non-parametric test, PTMP. The null 

hypothesis for method 3 was the following: H0 : Elk did not increase or 

decrease the length of time they used the GTCSR. 

For both of the previous methods, I computed the statistical power of 

analyses if the null hypothesis was not rejected. An analogy of statistical 

power can be made by comparing it to the power of an optical instrument. 

With the naked eye a person may be unable to detect a difference between 2 

species of grass, but with a more powerful optical instrument, such as a 

dissecting scope, a person may notice that one grass species is more heavily 

pubescent (hairy) than the other. As power increases, a person's ability to 

detect differences between 2 groups also increases. A technical definition of 

statistical power is the probability of rejecting the null hypothesis at a specified 

difference between treatment and control populations and sample size. 

Power increases as the effects of a treatment and sample size are increased. 

I computed power for the 2-sample t-test used in Method 2, and the paired 

t-test used in Method 3. 

Method 4. Changes in the number of elk observed in the Back Bowls -

In addition to telemetry locations, I used changes in the number of elk visually 



41 

observed in the Back Bowls to detect changes in use patterns. In timbered 

areas, changes in the number of elk seen may not adequately measure 

changes in use patterns. Elk may change their use patterns in timbered 

areas, and because they are not easily observed in timber, those changes will 

not be detected. (Telemetered animals are useful when timber obstructs 

observation of elk, as habitat type does not impede location of animals.) 

However, because the Back Bowls are approximately 80% non-timbered and I 

was able to visit high, unobstructed vantage points were I could view elk 

without disturbing them, changes in the number of elk observed is likely an 

effective method to measure changes in use patterns. Unfortunately, because 

the control elk population used a more heavily timbered habitat (i.e., 60-90% 

timbered), I was unable to use changes in elk use patterns of the Homestake 

elk population to factor out the effects of weather from the Vail elk population. 

To evaluate whether or not changes in weather influenced the number of elk 

that were seen, I inspected weather data to see if any changes between 

1988-1990 (in precipitation or temperatures) could be used to explain 

differences in elk abundance. 

Visual observations were made in each of the Back Bowls, Sun Down, 

Sun Up, Tea Cup, China, and Siberia-Mongolia during aerial flights and 

ground locations between May 15 and July 1, 1986-1990. Aerial flights 

comprised 27%, 42%, 50%, 18% and 16% of all observations for 1986, 1987, 

1988, 1989 and 1990, respectively. Sampling schedules were approximately 

uniform throughout this time period and observations in each bowl were 

assumed to be independent. I grouped observations in Siberia and Mongolia 
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bowls because observers were not always successful in distinguishing elk in 

Siberia Bowl from those in Mongolia Bowl. 

Because data on the number of elk seen had a negative binomial 

distribution (i.e., smaller groups were observed more frequently than large 

groups), I chose analysis based on this distribution, and used program 

SURVIV (White 1983). Within SURVIV, I arbitrarily chose to use 14 cells to 

model the negative binomial distribution for each year. A cell consisted of a 

single group size and the frequency of observations for that group size. For 

example, if group size was 2 and frequency was 4, then 4 groups of 2 elk 

were seen in that year. If 14 different group sizes were not observed, I added 

cells where zero occurrences were noted from a group size of 1 until 14 cells 

were filled. I created 9 models for all possible changes in elk use patterns 

(Table 2.2). The best fitting model was selected using Akaike Information 

Criteria (Akaike 1973, Sakamto et al. 1986) and, ultimately, likelihood ratio 

tests (a = 0.05). In negative binomial statistics, m = mean, and k is a 

measure of dispersion. As data become clumped, K • o; as data approaeh a 

random distribution, k • oo. The mean number of elk seen, m, was the 

primary parameter of interest. Estimates of k are not discussed unless 

dramatic changes were measured. Separate analyses were completed for 

pooled data from all the Back Bowls and for data from each individual bowl. 

The null hypothesis (or null model) for method 4 was the following: H0 : 

There was no change in the mean number of elk observed per visit, m, after 

1988. 

Goodness-of-fit for all models was acceptable (P > 0.10) for all 

analyses except for the Back Bowls and China Bowl. Goodness-of-fit for 
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Table 2.2. Nine negative binomial models used to test differences in the number of elk seen 
in the Back Bowls between years. With negative binomial statistics, m = mean, and k is a 
measure of dispersion. As data become clumped, k • O; as data approach a random 
distribution, k • oo. 

Model 

M K 

M 

K 

MTKT 

Model Description 

m and k were same for all years 

m was same for all years, k was different for all years 

m was different for all years, k was same for all years 

m was same for all years before treatment, m was same for both years after 
treatment 
k was same for all years before treatment, k was same for both years after 
treatment 

M T m was same for all years before treatment, m was same for both years after 
treatment 
k was different for all years 

K T m was different for all years 

M T2K 

k was same for all years before treatment, k was same for both years after 
treatment 

m was same for all years before treatment, but different for both years after 
treatment 
k was same for all years 

M T2K T m was same for all years before treatment, but different for both years after 
treatment 
k was same for all years before treatment, k was same for both years after 
treatment 

ALL DIFF m and k were different for all years 

these analyses were poor because large group sizes created excessively 

large chi-square values. Without these few large groups, goodness-of-fit was 

acceptable. Because goodness-of-fit improved without data for large groups, 

fit was likely not low because my data were not appropriate for the negative 

binomial distribution, but instead because the test for goodness-of-fit did not 

handle these large values adequately. I prefer negative binomial analysis over 

alternative statistical analyses, Analysis of Variance and MRPP, for the 

following reasons: (1) My data do not meet the assumption of normality and 
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homogenous variance as required for Analysis of Variance. (2) MRPP, like 

negative binomial statistics, tests for changes in means and dispersion, but 

unlike negative binomial statistics, it can not determine whether rejection was 

caused by a change in the mean or in dispersion. 

Method 5. Changes in elk sign in Tea Cup and China Bowl - This 

survey was completed on foot for Treatment 1 only. In early July, 1988 and 

1989, 3-4 biologists (2 of these 3-4 biologists completed this both years) 

traversed Tea Cup and China Bowl and made notes on tracks and pellet 

groups. Because comparison between years was somewhat subjective and 

this method was not easily quantified, this survey was not completed in 1990. 

Consequently, no comparison was made for Treatment 2 or 3. 

Weather 

It is possible that changes in weather between years may influence elk 

use patterns. For example, changes in snow melt between years may delay 

plant phenologies (Holoway 1962, Bock 1976) and thus, may affect elk use 

pattern5 (Sweeny 1375). In addition, I speculate that more snow in May and 

early June may inhibit elk movements and consequently affect elk use 

patterns. To evaluate the relationship between changes in weather and elk 

use patterns, I used data from the following 3 sources: 

1. I used data from Eagle weather station (via Colorado Climate Center, Fort 

Collins). I used Eagle's data, after considering several weather 

stations, because Eagle's weather data were complete, reliable, and 

covered the last 45 years. Although the climate at Eagle is generally 

dryer and warmer than that experienced by Vail and Homestake elk 
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populations, it functions as an index of fluctuations in temperature and 

precipitation. 

2. used peak run-offs from the Gore Creek-Minturn stream monitoring 

station to indicate peaks in snow melt. This station is located 15 km 

east of Vail; no water diversions exist above this monitoring station. 

3. Finally, I used photo-points (fixed points where photos are taken) that I 

established in 1989 in the Back Bowls to indicate changes between 

years in snow melt and plant green-up. I took photos for 5 

photo-points every 3-5 days between May 20 and June 15 and 

approximately once every 2 weeks afterwards for 1989 and 1990. 

Photos between years were matched for similar snow melt patterns 

(i.e., bare ground showing) and dates for matching photos were 

compared. 

I limited my discussion to changes in weather that most likely affected 

snow melt and plant green-up, since those are the factors that are most likely 

to have the greatest effect on elk use patterns (Sweeny 1975). 

Plant Phenologies 

Initially, I postulated that snow compaction caused by skier activities 

might have affected snow melt rates and plant phenologies, thus, influencing 

elk habitat selection (Sweeny 1975), and I attempted to quantify the effects of 

snow compaction. After realizing that the interaction of slope, aspect, extent 

of compaction, wind and micro-topography on snow melt rates was complex 

and required extensive measurements to adequately quantify the effects, I 

deleted a comprehensive investigation of this factor. However, I did complete 
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a pilot study of the effects of snow compaction on plant phenologies using: 

(1) photo-points, and (2) vegetative measurements on 2 plots with different 

snow melt rates. 

I used 3 of the above 5 photo-points to estimate the effects of snow 

compaction on snow melt rates. These 3 photo-points were situated along 

out-of-bounds boundaries (where one side experienced snow compaction 

from skiers and the other side did not) on wind-compacted, sub-alpine areas 

in the Back Bowls. Comparison of snow melt rates and plant green-up on 

skied and un-skied areas were made for all 3 photo-points. 

To measure the effects of early and late snow melt on plant 

phenologies I set up 2 pilot study plots in upper China Bowl 

(elevation = 3,410 m). These plots, which measured 15 m by 15 m and were 

50 m apart, had different snow melt rates because of micro-topographical 

differences. The early snow melt plot was free of snow approximately 1 week 

before the second. I sampled these plots systematically at 1 0 points, with 2 

sub-samples per point, and I estimated phenological stages by measuring leaf 

length of 2 dominant species, Senecio sp. and Achillia lanulosa. I measured 

plots 3 times in 1989: June 24 (shortly after snow melt on the late snow melt 

plot), July 14, and August 24. I did not statistically analyze resulting data, 

except for means and standard errors, because plots were initiated as a pilot 

study and were not intended to supply definitive results. 

RESULTS 

Treatments 1, 2 and 3 

Total ground disturbance (below 3,230 m) in all developed bowls was 

5.5% (Table 2.3) in Treatment 1. Ground disturbance ranged from a low of 
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2.3% in Siberia Bowl to 11.2% in China Bowl. The volume of timber removed 

that was more than 8" diameter at breast height (DBH) was 67 .3 thousand 

board feet (MBF). Two hundred eleven cords of aspen and other logs 

measuring 5-7.9" DBH were also removed. 

The average percentage of ground revegetated (below 3,230 m) in all 

developed bowls was 4.6% in Treatment 2 (Table 2.3). Revegetation ranged 

from 1.9% in Siberia Bowl to 10.1 % in China Bowl. During the thinning of 

timber in China Bowl, 7.4 MBF (trees > 8" DBH) and 0.8 cords 

(5" DBH < trees < 7.9" DBH) were removed. As discussed earlier, Treatment 

3 consisted of all components of Treatments 1 and 2. 

Table 2.3. Treatment 1 measurements of service roads, revegetation, timber removal and 
total ground disturbance in Tea Cup, China and west Siberia Bowls. Measurements of 
disturbances in Sun Up Bowl are included in total below 3410 m. 1 ha = 2.47 acres. 

Service Roads Revegetation Timber a Total 

km ha % ha % ha % ha 

Below 3,230 m 

Tea Cup 3.1 1.6 0.9 4.2 2.2 4.1 2.2 5.8 

% 

3.1 

China 1.5 1.1 1.1 10.5 10.1 4.3 4.1 11.7 11.2 

Siberia 0.6 0.2 0.4 0.8 1.9 0.0 0.0 1.0 

Total 5.2 2.9 0.9 15.5 4.6 8.4 2.5 18.4 

Below 3,41 o m 

Total 8.8 5.1 0.6 23.9 3.0 8.4 1.1 29.0 

a Timber removal estimated from ground disturbances 

In general, disturbances in China Bowl were 2-5 times greater than 

those in Tea Cup and Siberia Bowls for all 3 treatments. These disturbances 

were typically at lower elevations and closer to Two Elk Creek than those in 

Tea Cup or Siberia Bowls. 

2.3 

5.5 

3.7 
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Changes in Elk Geographic Use Patterns 

Method 1. Changes in spatial distribution of elk locations - Using 

MRPP, I was unable to detect any changes in use patterns of elk for all 

treatments at Vail and Homestake except for Treatment 3 in the Homestake 

elk population (Fig. 2.3-2.8) (see Table 2.7 for P values). 

Table 2.7. Summary of analyses for first 4 methods to detect changes in elk use patterns. 
Null hypothesis is stated for each analysis. For the 3 telemetry methods P values are given 
for each treatment. For the fourth method, the best fitting model is described. 

1. MAPP 

Vail 

Homestake 

2. Vail and Homestake 
Region 

Two sample t-tests 

MRPP 

3. GTCSR 

t-tests 

PTMP 

4. Elk observations 

Model# 1 

Treatment 1 Treatment 2 Treatment 3 

H0 : No difference in spatial distribution 

0.44 

0.07 

0.27 

0.55 

H0 : No difference when elk left region 

0.13 

0.10 

0.78 

0.66 

H0 : No difference how long elk used region 

0.20 

0.28 

0.85 

0.86 

H0; No difference in m or k after 1988 

m i for all Back Bowls, m i for China Bowl, 
m = for Tea Cup and Siberia-Mongolia Bowls 

0.40 

0.01 

0.71 

1.00 

0.50 

0.56 
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Fig. 2.3. Locations of elk at Vail between May 15 and July 1 for Treatment 1. 
Most of the elk from the Vail population migrate from their winter range near 
Game Creek to the Back Bowls and then to their late-summer range near 
Smith and Stafford Gulch. Using Multi-Response Permutation Procedures I 
was unable to reject the null hypothesis (P = 0.44). For elk n = 8; for 
locations in 1988 n = 40; and for locations in 1989 n = 40. 
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Fig. 2.4. Locations of elk at Vail between May 15 and July 1 for Treatment 2. 
Most of the elk from the Vail population migrate from their winter range near 
Game Creek to the Back Bowls and then to their late-summer range near 
Smith and Stafford Gulch. Using Multi-Response Permutation Procedures I 
was unable to reject the null hypothesis (P = 0.27). For elk n = 17; for 
locations in 1989 n = 85; and for locations in 1990 n = 83. 
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Fig. 2.5. Locations of elk at Vail between May 15 and July 1 for Treatment 3. 
Most of the elk from the Vail population migrate from their winter range near 
Game Creek to the Back Bowls and then to their late-summer range near 
Smith and Stafford Gulch. Using Multi-Response Permutation Procedures I 
was unable to reject the null hypothesis (P = 0.40). For elk n = 7; for 
locations in 1988 n = 35; and for locations in 1989 n = 35. 
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Fig. 2.6. Locations of elk at Homestake between May 15 and July 1 for 
Treatment 1. Most of the elk from the Homestake population migrate from 
winter-early summer range to late-summer ranges near Lost and Isolation 
Lakes. Using Multi-Response Permutation Procedures I was unable to reject 
the null hypothesis (P = 0.068). For elk n = 7; for locations in 1988 n = 35; 
and for locations in 1989 n = 34. 
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Fig. 2.7. Locations of elk at Homestake between May 15 and July 1 for 
Treatment 2. Most of the elk from the Homestake population migrate from 
winter-early summer range to late-summer ranges near Lost and Isolation 
Lakes. Using Multi-Response Permutation Procedures I was unable to reject 
the null hypothesis (P = 0.55). For elk n = 14; for locations in 1989 n = 69; 
and for locations in 1990 n = 63. 
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Fig. 2.8. Locations of elk at Homestake between May 15 and July 1 for 
Treatment 3. Most of the elk from the Homestake population migrate from 
winter-early summer range to late-summer ranges near Lost and Isolation 
Lakes. Using Multi-Response Permutation Procedures I was able to reject the 
null hypothesis (P = 0.009). For elk n = 4; for locations in 1988 n = 20; and 
for locations in 1990 n = 16. 
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Method 2. Changes in the time of year elk left the Vail and Homestake 

Regions - Vail elk did not appear to leave their region earlier or later (after 

treatments) when compared to changes of the Homestake elk. Variances of 

Vail and Homestake data were equal for all treatments (P > 0.60) except for 

Treatment 1 (P = 0.051). Using appropriate two-sample t-tests, I was unable 

to reject my null hypothesis for all treatments (Fig. 2.9) (See Table 2.7 for P 

values). My results were similar when I used MAPP. In general, for Method 2 

and 3, P values of non-parametric tests did not differ from those of parametric 

tests. 

Method 3. Changes in the length of time elk used the Greater Teacup, 

China and Siberia Region (GTCSR) - Elk used the GTCSR for the same 

number of days (before compared to after development) for all 3 treatments. 

Using paired t-tests and PTMP I was unable to reject my null hypothesis, that 

elk did not increase or decrease the length of time they used GTCSR, for all 

treatments (Fig 2.9) (See Table 2.7 for P values). 

Statistical power for Vail and Homestake Region analysis (Method 2) 

was 38% for Treatment 1 and 5% for Treatments 2 and 3 (fable 2.4). For 

GTCSR analysis (Method 3), power was 23%, 4%, and 9% for Treatments 1, 

2, and 3, respectively (fable 2.5). These analyses did not possess good 

power (i.e., power > 85%) until treatment effects were 2-5 times greater (i.e., 

the difference between changes in when elk left their region between Vail and 

Homestake was 15-25 days, or the changes in length elk used GTCSR was 

7-10 days). Increasing sample size to 100 radio-collared elk (50 elk in control 

and 50 elk in treatment population) would not increase power as much as 
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Fig. 2.9. Change in the date elk left Vail and Homestake Region over Treatments 
1 , 2 and 3. Solid vertical line marks no change and dashed line shows mean of all 
elk. For; Treatment 1, P = 0.13, Treatment 2, P = 0. 78, and Treatment 3, 
P = 0.71. For Vail; Treatment 1, n = B; tor Treatment 2, n = 17; and for 
Treatment, 3 n = 7. For Homestake; Treatment 1, n = 7; for Treatment 2, 
n = 11; and for Treatment 3, n = 2. 

Table 2.4. Statistical power calculations for 2-sample t-test used to measure the difference in date 
elk left Vail and Homestake Regions for Treatments 1, 2 and 3. Power for observed change in use 
for each treatment and my sample size is in bold print. 

Treatment 1 Treatment 2 Treatment 3 

mean n mean n mean n 

(days) 15 40 100 (days) 28 40 100 (days) g 40 1ao 
16.3 0.38 0.42 0.43 7.2 0.05 0.05 0.05 5 0.05 0.06 0.06 
19 0.79 0.83 0.84 14 0.82 0.83 0.84 23 0.73 0.83 0.84 
23 0.90 0.93 0.93 16 0.92 0.93 0.93 26 0.85 0.93 0.93 
26 0.93 0.97 0.98 18 0.97 0.97 0.98 30 0.93 0.97 0.98 
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Fig. 2.10. Change in the number of days elk used Greater Tea Cup, China and 
Siberia Region over Treatments 1, 2 and 3. Solid vertical line marks no change 
and dashed line shows mean of all elk. For; Treatment 1, P = 0.20, Treatment 2, 
P = 0.85, Treatment 3, P = 0.50. For Treatment 1, n = B; for Treatment 2, 
n = 17; and for Treatment 3, n = 7. 

Table 2.5. Statistical power calculations for paired t-test used to measure the mean change in use 
(days) of the Greater Teacup, China and Siberia Region for Treatment 1, 2 and 3. Power for 
observed change in use for each treatment and my sample size is in bold print. 

Treatment 1 Treatment 2 Treatment 3 

mean n mean n mean n 

(days) 8 20 50 (days) 17 30 50 (days) 7 20 50 

3.9 0.23 0.26 0.28 0.4 0.04 0.04 0.04 1.7 0.09 0.10 0.10 

7 0.58 0.66 0.69 5 0.65 0.68 0.69 6 0.55 0.66 0.69 

10 0.85 0.91 0.93 8 0.91 0.92 0.93 8 0.83 0.91 0.93 

11 0.93 0.97 0.98 9 0.96 0.97 0.98 10 0.91 0.97 0.98 
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increasing treatment effects. On average, increasing sample size to 100 

resulted in only a 5% increase in power for all 3 treatments. 

Method 4. Changes in the number of elk observed in the Back Bowls -

The number of elk observed in China Bowl and the entire Back Bowls 

declined after development. The best fitting model for the total number of elk 

observed in all the Back Bowls and China Bowl was M _ T _ K_ T _, where m and 

k were the same for all years before treatment and all years after treatment 

(Fig. 2.11, Fig. 2.12, Table 2.6). With this model m decreased threefold from 

a pre-treatment value of 15.1 elk to a post-treatment value of 5.4 elk for the 

Back Bowls, and 11-fold for China Bowl, from 7.7 elk to 0.7 elk. The second 

best fitting model for the Back Bowls and China Bowl was M _ T2K _ T _. With 

this model, m increased in 1990 over 1989; however, m did not approach 

pre-treatment values. I was unable to reject the null model for, Sun Down, 

Sun Up, Tea Cup, and Siberia-Mongolia Bowls, the best fitting model was 

M_ K_, where m and k were the same for all years. 

The above changes in the number of elk observed from year to year 

were apparently not a result of weather changes. When I made comparisons 

between the number of elk observed and changes in weather, there was no 

clear relationship. 

Method 5. Changes in elk sign in Tea Cup and China Bowl -

Biologists involved in this segment of the study concurred that elk sign in 

China Bowl decreased from 1988 to 1989. Tracks in China Bowl indicated 

movement of elk through this bowl, but substantial use was not apparent. Elk 

sign in Tea Cup Bowl was more evident than in China Bowl and was nearly 

equal to that observed in 1988. 
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Fig. 2.11. Group sizes of elk seen in all the Back Bowls, Sun Down Bowl, 
and Sun Up Bowl for years 1986-1990. Years 1986-1988 were pre-treatment 
and years 1989-1990 were post-treatment. Arrow marks the mean of the 
number of elk seen. For; 1986 n = 11, 1987 n = 7, 1988 n = 10, 1989 
n = 28, 1990 n = 32. 
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Table 2.6. Output of negative binomial models from program SURVIV for number of elk seen 
in; Back Bowls, Sun Down Bowl, Sun Up Bowl, Tea Cup Bowl, China Bowl, and 
Siberia-Mongolia Bowl. The top 3 models are listed for each bowl in order of model 
preference. Model selection was based on Akaike Information Criteria (AIC) and ultimately 
likelihood ratio tests (a = 0.05). See Table 2.2 for definitions of models. 

Model 

1) M_T_K_T_ 

2) M_T2K_T_ 

3) K_T_ 

Sun Down 

1) M_K_ 

2)K_ 

3) K_T_ 

Sun Up 

1) M_K_ 

2) M_T_K_T_ 

3) K_T_ 

Tea Cup 

1) M_K_ 

2) M_T2K_ 

3)K_ 

China 

1) M_T_K_T_ 

2) M_T2K_T_ 

3) M_T_ 

Siberia-Mongolia 

1)M_K_ 

2) M_T_ 

3) M T KT 

Log-likelihood 

-245.467 

-245.092 

-243.701 

-52.629 

-48.162 

-48.091 

-46.793 

-44.274 

-41.837 

-96.042 

-95.381 

-92.500 

-115.500 

-114.971 

-113.894 

-125.243 

-120.927 

-125.230 

DF 

66 

65 

63 

68 

64 

63 

68 

66 

63 

68 

67 

64 

66 

65 

63 

68 

63 

65 

Akaike Information 
Criteria 

498.933 

500.183 

501.401 

109.258 

108.324 

110.182 

97.585 

96.547 

97.674 

197.085 

196.761 

197.001 

239.000 

239.943 

241.787 

254.486 

255.926 

263.374 

Log-likelihood 
G-0-F 

0.000 

0.000 

0.000 

0.998 

0.999 

0.999 

0.987 

0.996 

0.998 

0.433 

0.443 

0.539 

0.012 

0.011 

0.011 

0.120 

0.178 

0.049 
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Weather 

Based primarily on data for precipitation in April and May (precipitation 

was most likely in the form of snow) I suggest the order of years from earliest 

to latest snow melt and plant green-up were 1988, 1989 and 1990 (Table 2. 7) 

(Fig. 2.14). Data on peak stream flow also indicate later snow melt in 1989 

Table 2.7. Summary of weather data I used to determine rates of snow melt for each year. 
Numbers for temperature and precipitation refer to deviation from 45 year mean. Photo-points 
were not completed in 1988. 

1988 1989 1990 

May Temp. ("C) + 0.4 + 1.5 + 0.5 

June Temp. ("C) + 2.9 - 0.2 + 2.9 

April Precip. (cm) - 1.3 + 1.4 + 1.2 

May Precip. (cm) - 0.7 - 0.6 + 0.4 

Date of Peak Stream Flow May 16 May 22 - 30 June 3 

Photo-Points Snow melt 5-9 days 
later than 1989 
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Fig. 2.13. Daily stream flow for Gore Creek-Minturn monitoring station for 
May 1 - June 30, 1988-1990. Peak flows index snow melt. Gore Creek is on 
the northern edge of the study site. No water diversion exists above gauging 
station. 
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-Early Snow Melt 
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Fig. 2.15. Mean leaf length of Senecio sp. and Achillea lanulosa on early and 
late snow melt plots (7-1 0 days difference in melt rates) in upper China Bowl 
(elevation = 3,410 m) in 1989. Error bars = 1 standard error about the 
mean. 

and 1990 (Table 2. 7) (Fig. 2.13) (later peaks likely occur when snow pack is 

thicker). 

Plant Phenologies 

As one would predict, results from snow melt plots (Fig. 2.15) suggest 

that soon after snow melt (June 24) there was increased vegetation growth in 

the early snow melt plot; however, this difference in growth diminished as the 

growing season progressed (July 14 and August 24). 

Heterogeneous patterns of snow melt caused difficulty in ascertaining 

the effects of skier compaction on snow melt rates. Inspection of the 3 

photo-points indicated that for both 1989 and 1990, snow melt occurred 1-2 

days later where snow was compacted for 2 photo-points. There was no 

noticeable difference on the third photo-point. Although snow compaction 
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appeared to affect snow melt rates, it did not seem to affect plaryt green-up in 

any of the 3 photo-points. 

DISCUSSION 

In my 3 analyses of radio-telemetry data, I was unable to detect 

statistically significant changes in elk use patterns for any treatment, thus 

suggesting no treatment effects. However, as in habitat preference studies, 

large errors associated with telemetry locations (mean errors were 490 m for 

aerial locations and 609 m and 940 m for ground locations at Vail and 

Homestake, respectively) likely reduced my power to detect changes in 

geographic use patterns (White and Garrott 1986). Power calculations 

indicate that with this telemetry system, treatment effects need to be 2-5 times 

greater before power is appropriate (i.e., power > 80%). 

Much smaller errors associated with visual observations of elk allowed 

me to detect more subtle changes in use patterns. Based on the model that 

best fit my observational data, elk use appeared to decrease threefold after 

development (post 1988) in all Back Bowls. However, when bowls were 

analyzed individually, China Bowl was the only area that exhibited a decrease 

in use, with an 11-fold decrease in the number of elk seen. 

The second best fitting model for observational data indicates that elk 

increased use of all the Back Bowls in 1990 when compared to 1989. When 

bowls were analyzed separately, China Bowl and Tea Cup Bowl showed 

increases in elk use. The cause of this increase in elk use was likely due to 

the behavioral acclimation of elk to physical disturbances and/or the fact that 

elk were attracted back to these bowls by revegetation that had become 

established. Although elk use appears to have increased during the second 
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year after development, observational data suggest that it was still much 

below pre-development levels. To further document whether or not elk are 

acclimating to disturbances, and if they do, to what degree of 

pre-development levels, I recommend that visual observations of elk be 

continued for at least 5-1 O years after development. If this survey can not be 

completed every year, a survey every second or third year would still provide 

valuable information. To appropriately evaluate data collected from these 

surveys, changes in the number of elk observed should be compared to 

population data obtained from the Colorado Division of Wildlife. 

Because several different physical disturbances occurred 

simultaneously, I was unable to determine which disturbance(s) elk responded 

to; however, I speculate that the larger decrease in elk use in China Bowl 

(than Tea Cup or Siberia Bowls) was likely due to one or more of the 

following: (1) There was generally 2-5 times as much disturbance in China 

Bowl as there was in Tea Cup or Siberia Bowl. (2) Disturbances in China 

Bowl typically occurred at lower elevations than in Tea Cup and Siberia Bowl, 

and elk appeared to prefer these elevations that became snow free and 

experienced plant green-up earlier each spring. Elk may also have been 

more sensitive to disturbances at these low elevations. (3) China Bowl was 

the only bowl with a chair lift, and elk may have responded to this lift. 

Because photo-points indicated that snow melt did not occur more 

than 1-2 days later after skier-caused snow compaction at wind-compacted, 

sub-alpine sites, I do not consider snow compaction a significant factor 

causing elk use patterns to change under these conditions. Furthermore, it is 

unlikely that snow compaction at other sites in the Back Bowls affected elk 
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use pattern. If compaction was the primary cause of observed changes, 

would expect similar changes in elk use patterns (all 3 developed bowls 

generally experienced the same extent of snow compaction) in all bowls. 

Instead, elk use in Tea Cup and Siberia-Mongolia Bowls remained relatively 

constant, while it decreased in China Bowl. 

Although results from my pilot study plots measuring plant phenologies 

indicate that a later or earlier snow melt of 7 days may affect plant 

phenologies, I am unable to speculate how this change may affect elk. 

Further studies are needed to document how snow compaction under various 

environmental conditions (e.g., slope, aspect, degree of compaction, 

exposure to winds, micro-topography) affects snow melt, plant phenologies, 

and elk. 

Changes in weather (as it affects snow melt and plant green-up) 

between years were likely not a cause for observed differences in elk use 

patterns. If weather were a primary influence affecting use patterns, I would 

expect to see similar changes of elk use in all bowls. 

My conclusions are similar to those of Hershey and Leege (1976), who 

suggest that elk may not prefer habitats that have been physically disturbed. 

Although elk appear to have used the most developed Back Bowl (China 

Bowl) less, they have not; however, completely abandoned the Back Bowls. 

Based on other studies addressing the effects of human disturbance on 

hunted elk (Hershey and Leege 1976, Perry and Overly 1976, Ward 1976, 

Lyon 1979a and b, Morgantini and Hudson 1980), I speculate that elk 

responses would have been greater had human activity been allowed in the 

Back Bowls during periods of elk use. By excluding human activity from 
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developed areas during periods of concentrated elk use, the physical effects 

of ski areas on elk were likely minimized. 

Three precautions must be taken when one makes inferences from my 

study. First, because only cow elk were radio-collared, inferences from 

radio-telemetry data should only be made to cow elk. Second, in this study I 

measured geographic use patterns of elk and how they changed in response 

to ski area development, but I did not measure the preferred parameter, 

fitness, or the ability of an individual to pass on genes. In theory, fitness is 

best measured by estimating survival and reproductive rates. Currently, 

studies measuring fitness require considerable finances and effort; however, 

future development of more sophisticated radio-transmitters using the satellite 

operated Global Positioning Systems (GPS) may greatly increase the quality 

of data collected, facilitating these studies. A GPS radio-transmitter could 

potentially be equipped with a mortality sensor, and could locate an elk [with 

an associated error less than 30 m (Hurn 1989)] several times an hour. 

Currently, GPS is used by the military and surveyors, but the system has not 

been modified for wildlife studies. 

Finally, care should be taken when making inferences from this study 

to other ski areas. The vegetation in the Back Bowls at Vail is atypical of 

most ski areas. Before development, the sub-alpine Back Bowls were only 

20% timbered, whereas most ski areas are 80-95% timbered beforehand. Elk 

may respond differently to changes in cover under these 2 different situations. 

If one accepts the optimal habitat model of 60% forage to 40% cover 

(Black et al. 1976, Thomas et al. 1979), timber removal from a habitat with 

~ -
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20% cover could decrease habitat quality, whereas timber removal from a 

habitat with 80-95% cover could increase quality. 
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CHAPTER 3 

CHANGES IN THE NUMBER OF ELK OBSERVED AFTER 

DEVELOPMENT OF 2 COLORADO SKI AREAS 

Several biologists have suggested that elk (Cervus elaphus) are 

sensitive to physical and human disturbances and that they will alter 

geographic use patterns in response to roads (Hershey and Leege 1976, 

Perry and Overly 1976, Lyon 1979a, Morgantini and Hudson 1980), active 

logging, (Ward 1976, Lyon 1979b), and noise associated with mining (Kuck et 

al. 1985). measured changes in the number of elk observed after the 

development of 2 adjacent Colorado ski areas to further document the 

response of a hunted population of Rocky Mountain elk (Cervus elaphus 

nelsom) to physical and human disturbances. 

STUDY AREA 

Observations of elk were made in McCoy Park and Mud Springs, 2 

adjacent drainages, situated in central Colorado, 15 km west of the city of Vail 

(39°36' N, 106°33' W) (Fig. 3.1). Both drainages are located between 

Beaver Creek and Arrowhead Ski Areas. A migratory elk population of 

approximately 150-300 animals (B. Andree, Colo. Div. Wildl., pers. commun.) 

uses this area each summer. 

McCoy Park is approximately 4 km2 with elevations rangtng trom 21670 

--
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McCoy Park is approximately 4 km 2 with elevations ranging from 2,870 

to 3,140 m (9,400 to 10,300 ft). The area is approximately 50% timbered, with 

quaking aspen (Populus tremuloides) and lodgepole pine (Pinus contorta) at 

lower elevations and subalpine fir (Abies lasiocarpa), and Engelmann spruce 

(Picea engelmannit) at higher elevations. 

Mud Springs is situated to the west of McCoy Park and is 

approximately 5.5 km 2 , with elevations ranging from 2,310 to 2,870 m (7,600 

to 9,400 ft). The lower 30% of Mud Springs is covered with shrubs, such as, 

serviceberry (Amelanchier alnifolia), chokecherry (Prunus virginiana), and 

snowberry (Symphoricarpos oreophilus). The upper 60% is timbered with 

quaking aspen and lodgepole pine. The remaining 10% of Mud Springs is 

comprised of meadows. 

Eagle River & I - 70 

r--,----r-----..__Avon 

0 1 

.. 
Veil 15 km 

KM 

3 

t -•-

5 
Fig. 3.1. Map of McCoy Park and Mud Springs near Beaver Creek and 
Arrowhead Ski Area. 
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METHODS 

Treatments 

Two developments occurred in and around McCoy Park and Mud 

Springs. The first took place in McCoy Park during Fall 1987, and involved 

the construction of Trapper's Cabin, a guest lodge built by Beaver Creek Ski 

Area (Fig. 3.1). From 1988 to 1990, this cabin was closed each spring until 

around June 20; from mid June until September the cabin was used 

frequently (Fig. 3.3). Up to 30 people used this cabin in the evenings, and 

during the day, guests were led on horse-back trips in and around McCoy 

Park. 

The construction of Arrowhead Ski Area, a second development, 

occurred in the Summer of 1988. This ski area was constructed 1 km north 

of McCoy Park and Mud Springs. Construction activities included the use of 

heavy machinery, chain saws, and the burning of slash piles. Picnic platforms 

were also built in Mud Springs in 1988 and were used thereafter. 

Data Collection 

To detect changes in geographic use patterns, I used the number of 

elk observed in each drainage per visit as a response variable, from May 15 

to September 1 for the years 1985 through 1990. Visits were made at either 

dawn or dusk every 5-1 0 days using (1) a combination of truck and foot, or 

(2) an airplane (Table 3.1). Data collection began in 1985 by District Wildlife 

Manager Bill Andree, Colorado Division of Wildlife, who gathered sex-age ratio 

data. Because only 2 visits were made in 1986, these data were deleted from 

analysis. From 1987 to 1988, former graduate student, Bill de Vergie 

continued these surveys. I completed the survey from 1989 through 1990. 

__, 
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Although each observer used slightly different methods for making 

observations, they all spent enough time in each area to document how many 

elk were present. Consequently, I have assumed that there was no observer 

bias. 

Table 3.1. Proportion of visits (the number of visits are listed parenthetically) made to McCoy 
Park and Mud Springs each summer by location method. All surveys made from an airplane 
were made in the morning. Ground locations were made either in early morning or evening. 

1985 1987 1988 1989 1990 

McCoy Park 

Air 58 (7) 38 (9) 35 (6) 46 (6) 33 (4) 

Ground 42 (5) 62 (15) 65 (11) 54 (7) 67 (8) 

Mud Springs 

Air 88 (7) 75 (12) 60 (6) 46 (6) 33 (4) 

Ground 12 (1) 25 (1) 40 (4) 54 (7) 67 (8) 

Analysis 

Because the observational data were negative binomially distributed 

(i.e., smaller groups were observed more frequently than large groups), I 

chose an analysis based on the negative binomial distribution identical to that 

used for observational data in Chapter 2 (see Method 4 in Methods section of 

Chapter 2 for details on this analysis). The only difference in methods 

between these 2 chapters is that I used 11 models to test all possible 

changes in elk use patterns (fable 3.2), whereas I used 9 models in the 

previous chapter. My null hypothesis (null model) for both drainages was the 

following: H0 : There was no change in the mean number of elk seen per 

visit, m, after 1987. 
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Table 3.2. Eleven negative binomial models used to test differences in the number of elk 
seen in the McCoy Park and Mud Springs between years. With negative binomial statistics, 
m = mean, and k is a measure of dispersion. As data become clumped, k - O; as data 
approach a random distribution, k - oo. 

Model 

M K 

M 

K 

MTKT 

MT 

Model Description 

m and k were same for all years 

m was same for all years 
k was different for all years 

m was different for all years 
k was same for all years 

m was same for all years before treatment 
m was same for all years after treatment 
k was same for all years before treatment 
k was same for all years after treatment 

m was same for all years before treatment 
m was same for all years after treatment 
k was different for all years 

K T m was different for all years 

M T2K 

k was same for all years before treatment 
k was same for all years after treatment 

m was same for all years before treatment and 3rd year after 
treatment. 
m was same for 2 years after treatment 
k was same for all years 

M T2K T m was same for all years before treatment and 3rd year after 
treatment. 
m was same for 2 years after treatment 
k was same for all years before treatment 
k was same for all years after treatment 

M T3K m was same for all years before treatment and 2nd and 3rd year after 
treatment, but different for 1st year after treatment 
k was same for all years 

M T3 m was same for all years before treatment and 2nd and 3rd year after 
treatment, but different for 1st year after treatment 
k was different for all years 

ALL DIFF m and k were different for all years 

--

--
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If the null model was not rejected, I completed statistical power 

calculations using parameter estimates from the second best fitting model and 

tested how often this model was selected over the null model. Power 

calculations were computed using PROC SIMULATE in SURVIV (White and 

Garrott 1990); 500 simulations were completed. (See Method 3 in Methods 

section of Chapter 2 for a detailed definition of power.) 

Goodness-of-fit of binomial models was acceptable (P > 0.12) for Mud 

Spring, but was poor for McCoy Park (P < 0.000). Goodness-of-fit for McCoy 

Park was low because, as discussed in Chapter 2, large group sizes created 

excessively large chi-square values. Without these few large groups, 

goodness-of-fit was acceptable. Because fit improved without data for large 

groups, it was not likely low because my data were not appropriate for the 

negative binomial distribution, but because the test for goodness-of-fit did not 

handle large values adequately. 

Time of Use 

One constraint in using analysis based on the negative binomial 

distribution is that the time elk observations are made is not incorporated into 

analysis. Elk may alter when they use an area, but as long as the mean 

number of elk observed remains constant, no change in use will be detected. 

For example, twice as many elk may use McCoy Park the first half of a 

summer, and may then decrease their use 2-fold the remainder of the 

summer, but as long as the average number of elk (m) remains the same, no 

change will be detected between 2 years. To detect whether or not elk 

changed the period of time when they used these areas, I plotted the mean 

number of elk observed during 7 time periods using histograms. Each time 
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period was 15-16 days in length, and altogether they covered a period of time 

from May 15 to September 1. Histograms were the most appropriate way to 

plot my data becaus_e _ they allowed me to remove daily fluctuations in the 

number of elk observed, and they -facilitated comparison between years. I 

described temporal changes in elk use patterns from interpretations of these 

histograms; no statistical analyses were performed. 

Human Activity 

To detect any patterns between levels of human activity and periods of 

elk use McCoy Park and Mud Springs, I used histograms (identical to the 

ones described above) to plot the proportion of nights that Trapper's Cabin 

was occupied during 1988-1990. Although Trapper's Cabin was not the sole 

source of human activity in this area, I used these data as an index. Other 

activities included day horse-back trips in McCoy Park, use of the Arrowhead 

picnic platforms, and use of a picnic area for Trapper's Cabin, on the western 

edge of McCoy Park overlooking Mud Springs. During my surveys, I 

documented all of these additional activities. 

Weather 

As discussed in Chapter 2, it is possible that weather changes between 

years influenced elk use patterns in McCoy Park and Mud Springs. To 

evaluate relationships between weather changes and changes in use patterns, 

' used weather data from: (1) Eagle weather station (via Colorado C/imata 
Center, Fort Collins), (2) Gore Creek-Minturn stream monitoring station, and 

(3) photo-points established in the Back Bowls of Vail for 1989-1990 (see 

Chapter 2 for more details). Because changes in snow melt rates and 

precipitation most likely had the greatest effect on plant growth and, 
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consequently, elk use patterns (Sweeny 1975), I limited my discussion to 

these factors. 

RESULTS 

Analysis 

The best fitting model for McCoy Park indicated that elk use did not 

change after development. This model was M_, where m, the mean 

number of elk observed, was the same for all years, but k, which measures 

dispersion, was different for all years (Fig. 3.2, Table 3.3). In this model 

m = 13. 7. The second best fitting model for McCoy Park was M _ T3, where 

m was the same for 1985, 1987, 1989 and 1990, but different for 1988, and k 

was different for all years. Under this model m = 15.1 for 1985, 1987, 1989 

and 1990 and m = 8.1 for 1988. The power calculations from SURVIV 

showed me that if model M T3 were true, with the above parameter 

estimates, the power to reject the null model (M_) was low, only 6%. 

The best fitting model for Mud Springs indicated that elk use decreased 

dramatically for 2 years after development and increased slightly the third 

year. This model was M _ T2K _ T _, where m was same for 1985 and 1987, m 

was same for 1988 and 1989, k was the same for 1985 and 1987, and k was 

the same for 1988-1990 (Fig. 3.2, Table 3.3). With this model m = 9.2 for 

1985 and 1987, m = 0.2 for 1988 and 1989, and m = 2.2 for 1990. 
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Fig. 3.2. Group sizes of elk seen in McCoy Park and Mud Springs for years 
1985 and 1987-1990. Years 1985 and 1987 were pre-treatment and years 
1988-1990 were post-treatment. Arrow marks the mean of the number of elk 
seen. For McCoy Park; 1985 n = 12, 1987 n = 24, 1988 n = 17, 1989 
n = 13, 1990 n = 12. For Mud Springs; 1985 n = 8, 1987 n = 16, 1988 
n = 10, 1989 n = 13, 1990 n = 12. 

Table 3.3. Output of negative binomial models from program SURVIV for number of elk seen 
in McCoy Park and Mud Springs. The top 3 models are listed in order of model preference. 
Model selection was based on Akaike Information Criteria (AIC) and ultimately likelihood ratio 
tests (a = 0.05). See Table 3.2 for definitions of models. 

Model Log-likelihood OF Akaike Information Log-likelihood 

Criteria G-O-F 

McCoy Park 

1)M_ -231.975 64 475.950 0.000 

2) M_T3 -231.765 63 477.531 0.000 

3) M_T_ -231.905 63 477.811 0.000 

Mud Springs 

1) M_T_K_T_ -95.507 66 199.015 0.118 

2) M_T2K_T_ -93.743 65 197.486 0.162 

3) K -93.786 64 199.571 0.139 

= 

..,... 
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Time of Use 

Elk were observed in McCoy Park throughout the summer of 1985 and 

1987 (Fig. 3.3). However, in 1988, the first year after development, no elk 

were seen after July 1. In 1989 and 1990 elk were observed later in the 

summer than in 1988 (until July 15); however, elk use decreased during late 

summer. At Mud Springs, elk were observed from early June through August 

in 1985 and 1987, but again, elk used this area less during mid-late summer 

after development occurred (post 1987). In 1988 and 1989 elk were not seen 

after June 1. In 1990, elk were observed later than the 2 previous summers, 

until July 15, but elk were not seen in late summer. 

Human Activity 

During 1988-1990, Trapper's Cabin was used from mid June through 

August. The cabin was occupied for 37%, 66%, and 51% of the nights for 

1988, 1989, and 1990, respectively (Fig. 3.3). During 1989 and 1990, I did not 

observe any horse-back trips or use of the Arrowhead picnic platforms; 

however, on several occasions I did see people at the Trapper's Cabin picnic 

area. 

Weather 

Based on data from stream flow rates, spring precipitation, and 

photo-points, the order of snow melt, from earliest to latest years, were likely 

1987, 1988, 1989, 1990 and 1985 (Fig. 3.4, 3.5). Cumulative precipitation for 

the months June-August, listed in order from least to most, was: 6.3 cm in 

1988, 7.8 cm in 1985, 8.0 cm in 1990, 8.2 cm in 1989, and 8.5 cm in 1987. 
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Fig. 3.3. Number of elk seen as related to human activity at Trapper's Cabin. 
Open histograms show the mean number of elk seen in McCoy Park and 
Mud Springs for 7 time periods between May 15-September 1 for years 1985 
and 1987-1990. Years 1985 and 1987 were pre-treatment and years 
1988-1990 were post-treatment. Asterisks mark time periods when no visits 
were made. For McCoy Park; 1985 n = 12, 1987 n = 24, 1988 n = 17, 1989 
n = 13, 1990 n = 12. For Mud Springs; 1985 n = 8, 1987 n = 16, 1988 
n = 10, 1989 n = 13, 1990 n = 12. Shaded histograms show the proportion 
of nights Trapper's Cabin was booked for 1988-1990. 
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DISCUSSION 

Although the number of elk that used McCoy Park in 1988 was nearly 

half that of previous and later years (1985, 1987, 1989-1990), the best fitting 

,,...., 

,..,. 

_ _, 

S:-' 

negative binomial model suggests that elk use did not change in 1988. ---

However, power calculations indicated that if use actually did decrease in 

1988 that power of negative binomial analysis was low (6%). The apparent 

change in when elk used McCoy Park to time periods before Trapper's Cabin 

(Fig. 3.3) opened for each season indicates the elk changed use periods. 

Elk in Mud Springs responded much more to developments than they 

did in McCoy Park. A 46-fold decrease in elk use occurred during the first 2 

summers after development. During the third summer after development, elk 
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use increased, but was still fourfold less than pre-development use. Elk also 

appeared to shift the time period during which they used Mud Springs from 

mid-summer (pre-1988) to early summer (post-1988). 

Unfortunately, I was unable to ascertain exactly which activity caused 

these changes in elk use patterns. In 1988, changes were likely caused by 

human activity associated with Trapper's Cabin and/or the construction of 

Arrowhead Ski Area. Because construction activities at Arrowhead Ski Area 

ceased after 1988, low elk use in 1989 and 1990 was most likely due to 

activities associated with Trapper's Cabin. This conclusion is supported by 

the general shift in elk use in McCoy Park and Mud Springs to early summer, 

before Trapper's Cabin opened each summer. Observer bias likely did not 

influence changes in the number of elk seen, because the same observer was 

present during the 2 years when the greatest change in elk use occurred. 

If activities associated with Trapper's Cabin were the primary cause in 

a change elk use patterns, it seems unusual that the largest change did not 

occur in McCoy Park, where Trapper's Cabin is located, but instead occurred 

in Mud Springs. Elk in Mud Springs likely responded more to developments 

for 1 or more of the following reasons: (1) Elk may have already acclimated, 

behaviorally, to human activities in McCoy Park. Prior to 1988, elk in McCoy 

Park probably experienced higher levels of human activity from nearby Beaver 

Creek Ski Area than those elk using Mud Springs. (2) Before development, 

elk which were more sensitive to human activity may have already changed 

use patterns in McCoy Park, but these same elk were still using Mud Springs. 

(3) Use of the picnic area overlooking Mud Springs by guests from Trapper's 

Cabin was a disturbance. (4) Other human activities associated with these 
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developments may have occurred of which I was unaware. Surveys of 

McCoy Park and Mud Springs were made at dawn or dusk, and I may have 

missed other human activities during mid-day. 

Increased elk use of McCoy Park and Mud Springs after 1988 may be 

due to: (1) behavioral acclimation of elk to human activity, and/or 

(2) cessation of activities associated with the development of Arrowhead Ski 

Area. Elk use approached pre-development levels in McCoy Park, but the 

average number of elk observed in Mud Springs was still 4 times less than 

that of pre-development. 

Because there was not a clear relationship between snow melt rates, 

precipitation, and changes in the number of elk observed, I speculate that 

weather was not a primary influence. Low precipitation in 1988 may have 

influenced elk to use both these drainages less, but this does not explain why 

elk still used these drainages less in 1989 and 1990, when more precipitation 

fell. 

In conclusion, this study supports the hypothesis, as proposed in 

studies on the effects of roads, logging, and mining on elk (Hershey and 

Leege 1976, Perry and Overly 1976, Ward 1976, Lyon 1979a, Lyon 1979b, 

Morgantini and Hudson 1980, Kuck et al. 1985), that these animals are 

sensitive to physical and human disturbances. Because it appears that elk in 

Mud Springs may be acclimating to disturbances, I recommend that surveys 

in this area continue for at least another 5-1 O years. It is important to 

document whether or not elk use will ever approach pre-development use 

levels, and if so, how long does it take. If this survey can not be completed 

__ --, 

-----
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every year, a survey every second or third year would still provide valuable 

information. 
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CHAPTER 4 

CONCLUSIONS 

In this thesis, I accomplished the following: First, I tested the accuracy 

of 2 radio-telemetry systems commonly used by many wildlife biologists. 

Second, using the above telemetry systems and changes in the number of elk 

observed, I measured the effects of physical disturbances resulting from ski 

area expansion on geographic use patterns of elk. Finally, in a similar study 

on a second study site, I documented the effects of both physical 

disturbances and human activity on geographic use patterns of elk. 

In Chapter 1, I measured the error associated with a 2-element, 

hand-held antenna system and a belly-mounted airplane antenna system. 

Precision of the hand-held antenna {s = 5.43 °) was better than that 

previously reported for this system in similar terrain and, in fact, was closer to 

previously reported precision for flat, non-timbered terrain. Contrary to Pace 

(1988, 1990), precision was constant, as related to different distances 

between transmitters and receiving stations. Significant bias of the antenna 

from 4 of 8 receiving stations {pooled bias = -3.21 °) indicated that bounced 

signals were common in mountainous terrain. After estimating locations in 

TRIANG, I censored inaccurate locations by deleting locations with error 

ellipses above a determined size. After censoring locations, the Andrews 

Estimator had smaller associated errors than the Huber tsfimator or MLr 
The respective mean and 90% quantile of the distanse between the true and 

estimated locations produced by the Andrews Estimator for the hand-held 

antenna system were 609 m and 1,105 m for the Vail study site and 940 m 

and 1,531 m for the Homestake site. The belly-mounted airplane antenna 
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system performed better than the hand-held antenna system. The respective 

mean and 90% quantile of the distance between true and estimated locations 

was 409 m and 1,081 m. 

Both of these antenna systems are frequently used by wildlife 

biologists, but errors associated with these systems are rarely measured, and 

often are considered insignificant. Results from this study, however, indicate 

that those errors may be large. Therefore, I strongly recommend that before 

initiating a study using radio-telemetry, biologists should evaluate whether or 

not the error associated with an antenna system is compatible with study 

objectives. For example, these antenna systems are appropriate for studies 

measuring gross changes in geographic use patterns of elk, but would not be 

appropriate for studies measuring more subtle changes in locations (e.g., 

habitat use studies). 

In Chapter 2, I measured the effects of physical disturbances resulting 

from the expansion of Vail Ski Area on the geographic use patterns of elk. 

Using the telemetry systems evaluated in Chapter 1, I found no changes in 

geographic use patterns of elk after expansion. As discussed above, these 

telemetry systems are most appropriate for detecting gross changes in use 

patterns and are thus not effective for detecting subtle changes. However, a 

second data set, which included visual observations of elk, was more precise 

and allowed subtle changes in use patterns to be detected. With 

observational data, a threefold decrease in the mean number of elk seen in 

the Back Bowls of Vail was measured after development. When I analyzed 

each Back Bowl separately, no decrease in the number of elk observed was 

detected except for China Bowl, where an 11-fold decrease was measured. 
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Elk may have been more responsive to the development in China Bowl 

because of the following: (1) China Bowl was more developed than other 

bowls. (2) Development in China Bowl occurred at lower elevations than other 

bowls. (3) China Bowl was the only area with a new chair lift. Data from the 

second year after development suggest that elk may have partially acclimated, 

behaviorally, to these disturbances, and/or that plant growth from 

revegetation attracted them back to these bowls. Although I detected some 

changes in geographic use patterns, elk did not abandon the Back Bowls. 

The effects of physical disturbances may have been minimized by excluding 

human activity from the Back Bowls during periods of concentrated elk use. 

One precaution must be taken when making inferences from this study 

to other ski area developments. Before development, the sub-alpine Back 

Bowls were only 20% timbered, whereas most ski areas are 80-95% timbered. 

Elk may respond differently to timber removal in sparsely timbered versus 

heavily timbered habitats (Black et al. 1976, Thomas et al. 1979). 

In Chapter 3, I also measured the response of elk to development, but 

it differs from Chapter 2 in that I did not use radio-telemetered elk to measure 

a response, and development consisted of increased levels of human activity 

and physical disturbances (developments in Chapter 2 consisted only of 

physical disturbances). Using observational data, I found no change in the 

number of elk observed after development in McCoy Park: however, in Mud 
Springs elk use decreased 46-fold after development. I also made 

comparisons between time of year elk were observed in McCoy Park and 

Mud Springs and the time of year Trapper's Cabin was occupied. My results 

--
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indicate that after development, elk altered their use patterns and decreased 

use of both drainages during mid-late summer. 

It seemed unusual that the response of elk to developments was less 

in McCoy Park, where Trapper's Cabin is located, than in Mud Springs. This 

change at Mud Springs may have been due to one or more of the following: 

(1) elk in McCoy Park historically have been exposed to more human activity, 

and therefore may have previously acclimated, behaviorally, to disturbances, 

(2) elk, which may have been more sensitive to disturbances, had already 

changed use patterns in McCoy Park, but they were still using Mud Springs, 

(3) use of a picnic area for Trapper's Cabin near Mud Springs was a 

disturbance, or (4) other human activities may have occurred in Mud Springs 

of which I was unaware. Increased elk use of McCoy Park and Mud Springs 

the second and third summer after development may be due to the 

acclimation of elk to human activity and/or the cessation of disturbances 

associated with development of Arrowhead Ski Area. Because there was no 

clear relationship between snow melt rates, precipitation, and the changes in 

the number of elk seen, weather was probably not a primary influence in 

observed changes. 

Results from Chapters 2 and 3 support the hypothesis which has been 

proposed in numerous studies (Hershey and Leege 1976, Perry and Overly 

1976, Ward 1976, Lyon 1979a and b, Morgantini and Hudson 1980, Kuck et 

al. 1985) namely, that hunted elk are sensitive to physical disturbances and 

will avoid them. However, I have demonstrated that elk will respond differently 

to different types of disturbance. Elk using the Back Bowls responded to 

developments in China Bowl by decreasing their use or the area, but I 
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detected no such response from elk in Tea Cup or Siberia Bowls. Similarly, 

elk using Mud Springs responded more than the animals using McCoy Park. 

If biologists want to accurately predict how elk will respond to 

disturbances, further studies are needed. Data collected in Chapter 2 provide 

baseline information for such a study. In Chapter 2, I measured the effects of 

only physical disturbances on elk. My study was not confounded (as many -----

studies have been) by human activity. A future study, measuring the 

response of elk only to human activity (e.g., mountain bikes, hikers, 

horse-back riders) would provide valuable insights to the importance and 

interaction of these 2 disturbances on elk. With proper finances, a 

well-designed study could be implemented. 

Results from Chapter 2 and 3 indicate that elk may be acclimating, 

behaviorally, to both physical disturbances and human activity; however, elk 

use is still substantially lower than pre-treatment levels. In order to document 

to what level of pre-development use elk may acclimate, I recommend that _ 

data collection continue for the next 5-1 O years. Ideally, data collection 

should continue each summer, but if funding is limited, data may be collected 

every 2-3 years. I have documented the immediate short term response of 

elk to development at ski areas. Now it is important to document the long 

term response of elk. To appropriately evaluate data collected from these ---

surveys, changes in the number of elk observed should be compared to 
population data obtained from the Colorado Division of Wildlife. 

One final precaution must be taken when making inferences from 

Chapters 2 and 3. Although geographic use patterns of elk were measured in 

response to disturbances, a measure of the preferred parameter, fitness, the 
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ability of an individual to pass on genes, was not measured. Currently, 

studies measuring fitness require considerable funding and labor; however, 

the development of more sophisticated radio-transmitters using the satellite 

operated Global Positioning Systems (GPS) may greatly increase the 

efficiency and quality of data collected and reduce the labor and possibly the 

funding needed for such studies. 
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