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ABSTRACT   

The paper shows a comparison of the three different methods to determine stress and strain in a U-shaped 

pipe compensator which is used to decrease stress in long pipes due to the constrained temperature dilatations. 

The stress and strain are analyzed analytically first with some parts of the analytical solution obtained 

numerically, such as integrals with no analytical solution in a closed form, i.e., functional series can be 

involved as a tool to solve those integrals.  

The pipe is analyzed as a beam or a planar frame using the Castigliano's method to determine displacements. 

Since there are curved parts of the U compensator, the curved beam theory is applied. The alternative method 

to determine the strains and stresses along the pipe is shown using the numerical simulations in SolidWorks. 

The results are compared with the analytical solution. Finally, the experimental method using a 3D scanner 

is involved for a comparison to check the applied conditions in the analytical and the simulation model. 
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1. Introduction 

If the dilatation of a long pipe is constrained in the direction of the pipeline, then the temperature change can 

cause structural integrity problems due to the significant stress which can easily pass over the yield strength of 

the material, even cause the pipeline destruction [1]. For this reason, an entire pipe segment is usually added [1] 

in the pipeline as shown in Fig. 1. The main purpose of introducing this segment of the pipeline is to allow that 

two ends of the compensator can slide inside or outside the compensator in the direction of the pipeline as much 

as the connected pipelines dictate due to the temperature change. The longer the connected pipeline the larger 

temperature dilatations have to be taken by the compensator ends. The compensator turns this longitudinal 

dilatation into bending along the U-shaped frame. 

 

 
Figure 1. A thermal dilatation compensator in a pipeline [2] 
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Without compensator extremely large axial forces can occur since the pipeline cannot even buckle due to the 

constrained lateral displacement by the soil, wall, etc., depending on where the pipe is installed. Several other 

sources of stress in the pipeline wall are analyzed in [3] and [4]. The thermal stresses combined with other 

loadings [3,4] can cause plastic deformation of the pipeline.  

Since the compensator contains several segments that can be considered straight line beams and curved beams, 

as shown in Fig. 2, the analytical determination of dilatations is consisted mainly of applied Castigliano's method 

[5, 6, 7] with specific cross-section of beams, which is the cross-section of a pipeline.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. The U-shaped compensator segments 

 

 

Alternatively, the method of elastic lines can be used as well [7] to establish the relationship between the force 

at the end of the compensator and the dilatation in the direction of the pipeline, i.e., in the direction of the force 

F in Fig. 2.  

 

On the other hand, the U compensator can be modeled and simulated using numerical methods such as the finite 

element method [8] or the finite volume method [4, 9, 10]. The numerical method can be implemented in 

commercial software or some individually developed program packages, as explained in [4], to determine the 

corresponding dilatation for a given force in the direction of the pipeline. However, all that is mentioned above 

is related to modeling and can introduce errors through various assumptions of modeling process. Therefore, 

yet the third method is involved to determine what the real deformation is on the U-shaped compensator, and 

that is the 3D scanning that can determine the surface strain and displacements of the compensator surface 

points. In this way, both previous results can be compared with the experimental data.  

 

For this purpose, ATOS Core 200 (GOM, GmbH) 3D scanner is used. The system records images of the loaded 

object, with specially prepared surface. The prepared surface contains black dots randomly applied, over a white 

(nonreflective) surface area of the U compensator, by spraying a part of the surface that is going to be analyzed. 

By monitoring the relative motion of the applied black points, the system calculates true or technical strain 

components with respect to the defined coordinate system (for more detailed explanation, see [11] and [12]).  

 

 

2. Analytical method results 

 

The compensator is consisted of several pipes that can be considered as beams, with the straight elastic line and 

the curved beams with elastic line in the shape of an arc, as shown in Fig. 3. To determine the deformation and 

the stiffness of the U compensator, several analytical methods can be used, such as Castigliano's method, elastic 
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line method, and variations of the methods based on elastic deformation energy [5, 6, 7]. The coordinate along 

the elastic line is the integration variable to solve for the energy of the elastic deformation, as shown in Fig. 3.  

The real loading of the U compensator at the end is by the force and the bending moment, since the pipe is 

connected in a way that it opposes the relative rotation of the cross-section, as well. However, since the stiffness 

with respect to the rotation at the end is relatively low, due to the assumption that a long pipe is connected to 

the compensator, here we consider that only a force is transferred from the pipe to the compensator.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. U compensator modeling (Horizontal plane) 

 

Using the Castigliano's method [5, 6, 7], without neglecting any contribution of the axial and transversal forces 

in the deformation energy, first step in the analysis is to define the total deformation energy, as [7] 
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where 𝑆𝑛 = 𝑒𝐴 is the static moment of inertia, 𝑒 is the distance between neutral layer defined by the radius 𝑟𝑛 

and the center of the cross-section denoted by 𝑟0, 𝑒 = 𝑟0 − 𝑟𝑛, 𝐹𝑡 is the transversal force, 𝐹𝑛 is the normal force 

to the considered cross-section, 𝑀𝑥 is the bending moment, 𝐼𝑥 is the moment of inertia, 𝐼𝑥 =
(𝐷4−𝑑4)𝜋

64
,  𝐸 is the 

Young's modulus, 𝐺 =
𝐸

2(1+𝜈)
 is the shear modulus and 𝜈 is the Poisson's ratio. 

 

The radius of the neutral layer (where the normal stress due to the bending moment is equal zero) is calculated 

in the way that the total integral over the cross-section of the normal stress due to the bending moment is equal 

zero [5, 6, 7]: 

 

 𝑟𝑛 = ∫
𝑑𝐴

𝑟𝐴
, (2) 
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over the cross-section area A. 

 

Factors 𝑘𝑡1
 and 𝑘𝑡𝜑

 are the scalars obtained via integrating the shear stress over the cross-section within the 

segment AC and the curved segment CD, respectively. Since the cross-section is the same, then the two factors 

are same 𝑘𝑡1
= 𝑘𝑡𝜑

= 𝑘𝑡. 

 

Using the Castigliano's theorem, the displacement of one end with respect to the other end of the compensator 

is: 
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Further, for the simplicity, the index in the bending moment will be omitted. The bending moment, the axial 

and the transversal force can be calculated over the three segment, up to the symmetry plane, as the following. 

 

For the segment AC: 

 

𝑀 = −𝐹𝑠, 
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For the curved segment CD: 
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For the segment DE: 
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After the substitution of (4) to (6) into (3), the following is obtained: 
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The radius of the neutral layer, according to (2), considering the symmetry, is: 
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The inner integral is:  
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where, 𝛿 is the thickness of the pipe wall. The coordinates in (9) are shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The cross-section and neutral layer position 

 

 

Since there is a symmetry plane through G, then this cross-section has no rotation, and we can consider that the 

cross-section G is clamped. The moment 𝑀𝐶
𝐹⃗′ = 𝐹𝐿1. 

 

The integral on the right hand-side of (9) can be calculated numerically using Matlab (or via functional series), 

as: 

 

 𝑟𝑛 = 0.5028 𝑟0, (11) 

and  

 𝑒 = 𝑟0 − 𝑟𝑛 = 0.4972 𝑟0. (12) 

 

The moment of inertia in (8) is: 

 

 𝐼𝑥 =
(𝐷4−𝑑4)𝜋

64
 , (13) 

 

where 𝐷 and 𝑑 are outer and inner diameter of the thick wall pipe. The cross-section area is: 
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The parameter 𝑘𝑡 in general is defined as [5, 6, 7]: 

 

 𝑘𝑡 = 𝐴 ∫
𝑆𝑥

′ 2

𝐼𝑥
2𝜂2(𝑦)

𝑑𝐴
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, (15) 

 

where 𝑆𝑥
′  is the static moment of the part of the cross-section area from the distant side, below the line KT, with 

respect to the central axis 𝑥, 𝜂(𝜉) is the width of the material cross-section at the position 𝑦, as shown in Fig. 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Calculation of the parameter 𝑘𝑡 

 

In Fig. 5, the parameter 𝜂 depends on y and geometrically is: 

 

 𝜂(𝑦) = 𝐽𝐾(𝑦) + 𝑇𝑁(𝑦)=2𝐽𝐾(𝑦),  (16) 

 

where the distance 𝐽𝐾(𝑦) is obtained as: 

 

 𝐽𝐾(𝑦) = 𝐻𝐾(𝑦) − 𝐻𝐽(𝑦) = 𝜌2𝑠𝑖𝑛𝛼 − 𝜌1𝑠𝑖𝑛𝜓,  (17) 

 

where 𝜌1 and 𝜌2 are the inner and outer radius of the thick-wall pipe, and the two angles are related from the 

geometry as: 

 

 𝜌2𝑐𝑜𝑠𝛼 = 𝜌1𝑐𝑜𝑠𝜓 = 𝑦. (18) 

 

From (18),  
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Using (16), (17) and (19), 𝜂  becomes: 
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 𝜂(𝑦) = 2√𝜌2
2 − 𝑦2 , for 𝜌1 ≤ 𝑦 ≤ 𝜌2. (21) 

 

 

The static moment of one part of the cross-section area, below or above the line parallel to x axis (see Fig 5.), 

at the distance y from the central axis, is for 𝜌1 < 𝑦 ≤ 𝜌2: 
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 𝑆𝑥
′ = ∫ −

1
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and for 0 ≤ 𝑦 ≤ 𝜌1: 
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 𝐼1 = ∫ 𝜉 (2√𝜌2
2 − 𝜉2 − 2√𝜌1
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The solution is analog to (22): 
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Due to the property that it can be added and subtracted, the static moment of the area can be obtained using 

standard formulae for portion of a cycle below the line at y and subtracting the hollow portion of the inner cycle 

below the line y, which yields the same result. 

 

Using (25) and (15): 
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4

9
(𝜌2

2−𝑦2)
3

2(𝜌2
2−𝑦2)

1
2

𝑑𝑦
𝜌2

𝜌1
],  (27) 

 

where 𝐼𝑥 =
(𝜌2

4−𝜌1
4)𝜋

4
 and 𝐴 = (𝜌2

2 − 𝜌1
2)𝜋. 

 

The integral in (27) is solved using programming in Matlab, for 𝜌1 =
𝑑

2
=

45.3

2
= 22.7 mm and 𝜌2 =

𝐷

2
=

53.5

2
mm = 26.8 mm: 

 

 𝑘𝑡 = 1.494. (28) 

 

Finally, using (8), (12), (13), (14) and (28): 

 

 𝛿𝐴 = 0.417 mm ,  (29) 

 

for the force of 6 kN and the Young's modulus of 110 GPa. 

 

Using the approximate method for the corresponding rectangular frame, without the arc part of the U 

compensator (considering that CD and EF parts are without arc, but rectangular shape), then 𝛿𝐴 = 0.743 mm. 

Significant influence of the bending of the beam in this case is noticeable, due to the significant contribution of 

the length of bending part of the frame with respect to the rest of the frame.   

 

Maximum and minimum stress at the critical points of the cross-section in the middle of the U compensator are: 

 

 𝜎𝑒𝑥𝑡,𝑝 =
𝐹(𝐿1+𝑟0)

𝐼𝑥

𝐷

2
−

𝐹

𝐴
= 97.1 MPa − 9.65MPa = 87.45MPa , (30) 
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 𝜎𝑒𝑥𝑡,𝑛 = −
𝐹(𝐿1+𝑟0)

𝐼𝑥

𝐷

2
−

𝐹

𝐴
= −97.1 MPa − 9.65MPa = −106.75MPa . (31) 

 

Corresponding extreme (positive and negative) normal strain values at the critical points of the cross section are 

[5, 6, 7]: 

 

 𝜖𝑝 =
1

𝐸
[𝜎𝑒𝑥𝑡,𝑝 − 𝜈(𝜎𝑥 + 𝜎𝑦)] =

𝜎𝑒𝑥𝑡,𝑝

𝐸
= 0.795 ⋅ 10−3, (32) 

 

 𝜖𝑛 =
1

𝐸
[𝜎𝑒𝑥𝑡,𝑛 − 𝜈(𝜎𝑥 + 𝜎𝑦)] =

𝜎𝑒𝑥𝑡,𝑛

𝐸
= −0.971 ⋅ 10−3, (33) 

 

where the two normal stress components, in the two directions in the plane of the cross-section, are equal zero. 

 

The simplified analysis has been done for the case when there is no arc of the knee part of the compensator, 

which resulted in significantly different value for the dilatation. This shows that there is significant influence of 

the bending at the knee part and the theory of bended beams has to be used, since the pipe diameter is not 

negligible with respect to the radius of the knee. The following sections will describe the numerical simulations 

results and the experimental part, with the results that will be used for comparison with the analytical results 

above. 

 

 

3. Experimental results obtained via 3D scanner and numerical simulations using Solid Works 

 

The U pipe loading was simulated using the SolidWorks, with the same parameters and dimensions considered 

in the analytical part. The geometry and the results of the normal stress in the direction of the loading force are 

shown in Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. The geometry and the normal stress in the direction of the loading force obtained in Solid Works 

(the dimensions are given in millimeters) 

 

The radius of the curvature of the central line is 𝑟0 = 40 mm which is comparable with the outer and the inner 

diameter of the pipe, such that the analysis of the curved part of the frame cannot be analyzed using the theory 

of straight beams, which is one of the reasons that the analytical results deviate from the numerical analysis 

results for the curved part of the frame.  

 

The experiment setup is shown in Fig.7, where a massive clamp was used and a force sensor that has the 

measurement range up to 150 kN.  The clamp can generate force roughly up to 30 kN, using a wrench. For 

measuring the force, a precise voltmeter is used and an amplifier if relatively small values of force are used. 
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Figure 7. The loading of the U pipe using clamp (left) and the used force sensor (right) 

 

To measure strain in on the 3D scanner, it is necessary to prepare the surface that is analyzed. The surface should 

not be reflective, such that the surface in Fig. 7 was sprayed with a non-reflective white color. Since the 3D 

scanner monitors the relative position of the a number of points at the surface, it is necessary to spray the surface 

of the U pipe with black non-reflective color, as shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. The surface preparation of the U pipe rough spray (left) and the fine spray (right) 

 

Strain at the surface is detected by taking the reference image via scanner and several images during the 

deformation process, or a video. The change of the U pipe dimension in the direction of the loading can be 

measured by measuring the relative position of one side of the yaw with respect to the other, as shown in Fig. 

9. Depending on the spray dots diameter, the scanner can register certain number of dots that can be used to 

measure relative position during the deformation of the knee part of the pipe, by applying the load using the 

clamp, as shown in Fig. 9.  

 

The goal is to find an appropriate resolution and distribution of dots by spraying, such that the software registers 

a high number of dot pairs. The software GOM Correlate is installed on the laptop in Fig. 9 (left), which can 

automatically check for the preparedness of the object surface as shown in Fig. 9 (right). The diagram at right 
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hand-side shows the distribution in the green area, which shows that the spay was applied appropriately. This 

is the most difficult part of the measurement, since the spraying test is usually done several times until the 

appropriate distribution is reached, when the scanner software can register points on the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Taking images via scanner ATOS Core 200 (left) and registered points on the surface by the 

scanner (right) 

 

If only one part of the surface is of an interest, such as the knee part of the U pipe, then the scanned and analyzed 

surface area can be redefined by the used, as shown in Fig. 10. The force of 6 kN was applied which caused the 

deformation that was registered by the scanner, as shown in Fig. 10. The motion of one part of the yaw can be 

registered relatively to the basis that is shown by the green dots to the right of the figure. The strain 𝜖𝑥 is the 

strain at the knee surface in the direction of the loading force, which is given in the percentage scale.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. The results obtained using the 3D scanner for the strain (left) and for the displacement (right) 

 

The influence of the gap in the threading was eliminated using the preloading on the clamp in such a way that 

the reference measurement started at the force of 600 N, rather than at zero force.  

 

4. Results discussion  

 

The only surface area that was considered is the knee, since the bending moment is about the maximum at this 

part of the U compensator, which means that deformations and surface strain are about the maximum in the 

absolute value.  

 

Some of the differences between the analytical solution and the experiment are caused by the difference in the 

cross section of the straight parts. The knee part is also a bit different than the model in the analytical 

consideration. The real knee's cross-section gradually increases from one side to the other. The analytical model 
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uses the same cross-section all over the compensator, which is equal to the middle cross-section of the knee 

part. 

 

By comparing the analytical method with the results obtained using the software and the results obtained using 

the 3D scanner, we can notice that there is relatively good agreement, although the software showed higher 

values for the normal stress in the direction of the loading force. However, the strain at the surface area is 

directly related to the stress via the Hooke's law, which provides the way to calculate the stress using the 

experimental results shown in Fig. 10 or we can calculate the strain analytically and compare it with the values 

in Fig. 10.  Earlier, the strain values for the critical point are calculated analytically 𝜖𝑝 = 0.795 ⋅ 10−3 =

0.0795 ⋅ 10−2 = 0.0795 % and  𝜖𝑛 = −0.971 ⋅ 10−3 = 0.0971 ⋅ 10−2 = 0.0971 %, which are relatively 

close to the values in Fig 9.  

 

The values of the displacement have more significant deviation to the analytical solution, since there is 

significant movement of the clamp during the loading process, which causes errors in the filtering the rigid body 

motion part from the relative displacement of all registered points with respect to the basis (seven dots to the 

right of Fig. 10).  The displacement 𝛿𝐴 represents the compensation of the thermal dilatations that depend on 

the temperature change of the connected pipes, their lengths, and the material property. This means that the 

displacement is the input data in the real application of the U compensator and from the analytical expression 

shown here, we can calculate the stress and strain of the U compensator.  

 

 

5. Conclusion  

 

The U compensator of thermal dilatations was analyzed using the theory of curved beams and the Castigliano's 

method. The deformation of the U pipe was directly corelated with the force caused by the thermal dilatations 

of connected long pipes. In the real applications, the displacement at the end of the U compensator is obtained 

as the total thermal dilatation of connected pipes and using the derived expressions, the generated force can be 

calculated. The analytical expressions were derived for the displacement, stress and strain at the critical points 

of the U compensator in order to compare them to the experimental values that were obtained using the 3D 

scanner.  

  

Using a 3D scanner to experimentally determine the surface strain requires careful preparation of the surface. 

First, the surface has to be painted with white non-reflective color and then sprayed by black non-reflective 

color. The most difficult part of the scanning is to apply spray with the appropriate size of dots and appropriate 

density.  

 

The comparison of the analytical results and the experimental results obtained using the 3D scanner showed no 

significant deviation, except the displacement value which had a certain amount of error due to the rigid body 

motion of the complete system with the clamp, such that the basis that was supposed to stay fixed was 

significantly moving during the loading process.  

 

The future work can be focused on the direction of program development that would automatically determine 

the stress tensor components at any desired point inside the domain of the analyzed object based on the scanning 

of the object shape and based on the strain distribution across the surface area of the object.  
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