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A B S T R A C T 

Presence of damage leads to variation in modal properties of observed structures. The 

majority of studies use the changes in natural frequencies for damage detection. The 

reason is that the frequencies are often easily measurable with high accuracy by using 

reasonable sensors. However, frequencies are more sensitive to environmental effects, 

such as temperature, in comparison with mode shapes. Besides, defects in symmetric 

structures can cause the same changes in frequency. In contrast, mode shapes are more 

sensitive to local damage because they own local information and are independent of 

symmetric characteristics. These make mode shapes have dominant advantages in 

detecting nonlinear and multiple damage. ECOMAC is an index derived from mode 

shapes. It is a fact that these indices are not always possible to detect faults successfully 

in structures. Therefore, in this paper, a hybrid optimization algorithm, particle swarm 

optimization – gravitational search algorithm, namely PSOGSA, is used to improve the 

accuracy of infect detection using a hybrid objective function combined ECOMAC and 

frequency based on the inverse problem. Numerical studies of a two-span continuous 

beam, a simply supported truss, and a free-free beam, are utilized to verify the 

effectiveness and reliability of the proposal. From the obtained results, the proposed 

approach shows high potential in damage identification for different structures. 

1 Introduction 

In engineering applications, modal testing approach is employed worldwide as effective non-destructive tools. The 

approach can be used for different structures due to its simplicity and low cost [1-3]. By means of this approach, damages in 

tested structures can be detected, localized, and quantified. The changes in natural frequencies are obvious proofs for presence 

of defects in structures [4]. However, the temperature has a significant effect on these changes. This can lead to misidentifying 
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of damage in structures [5]. Another parameter that can be used to identify failures, is the changes in mode shapes. It’s stable 

with temperature changes [6] and more sensitive to local damage. Based on mode shapes, many studies proposed damage 

indices for damage detection and localization. Authors in [7] developed a new index, namely modal curvature index (MCI) 

using displacement mode shapes. Location of defect is identified based on differences of curvature of modal data between 

intact and damaged structures. However, the effectiveness of this method closely related to number of measurement points 

along structures. Modal flexibility method (MFM) is another effective method in damage identification proposed by Pandey 

and Biswas [8]. Because stiffness matrix is inverse of flexibility matrix, reduction of stiffness leads to an increase of 

flexibility. The rise of flexibility can point out the damaged location. The point makes this method more attractive is that the 

method only requires the first few lower modes for accuracy of damage localization. Modal strain energy (MSE) is also an 

effective method for defect identification. In this approach, changes in resonant frequency and strain mode shapes are used 

to detect damage. In addition, the reduction in modal strain energy between two sets of measurement points can be employed 

to identify the damage by Stubbs and Kim in [9]. These methods show good performance in defect identification, but they 

require complex computation.  

Some authors proposed simple indices based on directly using displacement mode shapes. Modal assurance criterion, 

MAC, is employed to check the similarity between two mode shapes by using displacements of all measured points in each 

mode. Orthogonality characteristics of displacement mode shapes are used to determine whether pairs of mode shapes are 

identical or not. Two different mode shapes, even a small disparity, can cause a change of MAC values. Therefore, this index 

can be used to indicate the presence of damage in the structure, but it fails in damage localization. Coordinate modal assurance 

criterion (COMAC) is an extension of MAC, proposed by Lieven and Ewins [10]. Different from MAC index, COMAC uses 

displacements of all modes at each measured point to identify mismatching along with the tested structure. This index is 

calculated at each point in the structure. For this reason, it can be used to localize location of failures. From the study, Hunt 

proved that his proposed index, enhance coordinate modal assurance criterion (ECOMAC) has potential in overcoming the 

scaling errors or polarity mistakes in measured data [11]. The implementation of this approach for defect presence is simple. 

However, many studies [12-14] reveal that COMAC, and ECOMAC often get trouble in damage localization.  

Therefore, it is necessary to improve the capacity of failure localization of these indices. Using an artificial neural 

network is a promising solution that is able to ameliorate their ability [15, 16]. Some authors combined ANN and modal 

damage indicator for damage identification and quantification [17]. Many studies revealed that a combination of ANN and 

optimization techniques can improve the performance of traditional ANN [18-20]. However, for an effective network, it 

requires big data for training related to many scenarios of damage location, single or multiple damage as well as failure 

quantification. In other words, this method requires more time for collecting the training data. For a real application, the 

reduction of computation cost and simple implementation is very necessary. Therefore, the inverse problem or model 

updating method can be employed to enhance effectiveness of these indices. The success of this approach is based on the 

global optimal search-ability of optimization algorithms. Many well-known algorithms e.g. Genetic algorithm (GA), particle 

swarm optimization (PSO), simulated annealing (SA), gravitational search algorithm (GSA), etc., are applied successfully in 

many studies of damage detection. Authors in [21] used successfully bird mating optimizer (BMO) coupling with a hybrid 

objective function, derived from frequency and mode shapes. A truss, a planar frame structure, and measurement data of a 

free-free beam were used to verify the effectiveness of the proposal. Based on errors of frequency, mode shapes, and the 

relative weighting of the two parameters, Friswell et al. proposed a robust approach for damage detection in a steel cantilever 

plate. In their study, GA combines with Eigen-sensitivity to localize and quantify damage using numerical and experimental 

data of the steel plate [22]. GA and modified Cornwell indicator confirmed their effectiveness in damage assessment [23]. 

XIGA, Jaya algorithm were also recommended as an efficient approach for inverse problems [24, 25]. Authors in [26, 27] 

improved significantly capability of failure identification of COMAC by coupling with firefly algorithm (FA) and Genetic 

algorithm (GA), respectively. A simply supported beam, a truss structure, and a CFRP structure were investigated in their 

study.  

Recently, many novel heuristic optimization algorithms, especially hybrid algorithms, have been developing. They were 

used to solve inverse problems based on vibration measurement of real structures [28, 29]. These algorithms are able to 

quickly escape from local optima and can find the global optimum faster. Particle swarm optimization-gravitational search 

algorithm, so-called PSOGSA is a promising hybrid algorithm. This hybrid algorithm is developed by Mirjalili and Hashim 

[30] to improve the exploration of PSO as well as speed up the exploitation of GSA. From the obtained results, the proposed 

hybrid algorithm shows a superior performance associated with the convergence rate and the best fitness value of the objective 

function.   
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As mentioned above, ECOMAC can overwhelm the shortcomings of COMAC, but studying on its improvement coupling 

with an optimization algorithm has not been conducted. Therefore, this study makes use of a hybrid algorithm, PSOGSA to 

intensify ECOMAC in damage identification. Two beam-like structures and a truss-like structure are used to evaluate the 

effectiveness of the proposal. 

2 Methodology of proposed approach 

2.1 MAC, COMAC, and ECOMAC indices 

2.1.1 Modal assurance criterion (MAC) 

Modal assurance criterion (MAC) is a popular index for correlation checks between mode shapes. The mode shapes can 

be derived from simulation and measurement, or healthy and damaged structure. Each value of MAC can indicate the 

similarity between two sets of mode shapes. MAC values between intact and damaged structure are calculated as 
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where 1j tonm , nm is the number of considered modes, int , dam

i i  are mode shapes of the intact and damaged structure, 

1i tonn , nn is the number of measured points or degree of freedoms (DOFs) along the structure,  
T

implies conjugate. 

When two mode shapes are completely identical, MAC value equals 1. MAC value of a bad correlation between two mode 

shapes close to 0. It can be seen that this index only is used to detect the presence of defects without localization. 

2.1.2 Co-ordinate modal assurance criterion (COMAC) 

Co-ordinate modal assurance criterion (COMAC) is developed from MAC. However, COMAC can point out the location 

where two mode shapes mismatch. Therefore, COMAC value at each measured point (or each DOF) can be identified by 

using all mode shapes data at each point. 
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Same as MAC, the best similarity of two mode shapes generates a COMAC value of 1. COMAC value reaches to 0 for a 

poor likeness. Therefore, points that have low values of COMAC indicate the damaged position. In practical application, 

values of (1-COMACi) often are applied to identify failure points. 

2.1.3 Enhance Co-ordinate modal assurance criterion (ECOMAC) 

Enhance Co-ordinate modal assurance criterion (ECOMAC) can indicate the disparity between two sets of mode shapes. 

Each point (DOF) is calculated by using data of all modes obtained at the corresponding sensor. Data of pairs of mode shapes 

should be on a similar scale before the calculation of ECOMAC. ECOMAC value of two identical pairs of mode shapes equals 

0 and closes to 1 with poor similarity. Therefore, a point, which is near damage position, has a high magnitude. 

 

int

, ,

1

| |

2

nm
dam

j i j i

j

iECOMAC
nm

 








 (3) 

 



34 JOURNAL OF MATERIALS AND ENGINEERING STRUCTURES 8 (2021) 31–45 

 

2.2 Optimization algorithm PSOGSA 

2.2.1 Particle swarm optimization-gravitational search algorithm, PSOGSA 

The hybrid algorithm is inspired by particle swarm optimization (PSO) and gravitational search algorithm (GSA). 

Mirjalili and Hashim combined the local search capability of GSA and social thinking of PSO. The combination shows 

promising performances in exploration and exploitation compared to PSO, and GSA, respectively.  

The algorithm is started by calculation of gravitational forces F based on random positions ,i js s and Euclidean 

distances between two agents 
ijD   
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where, ,aj piM M : active and passive gravitational mass of j and i agents,  G t is gravitational constant, and  is 

reducing coefficient. Equations from (6) to (8) are used to calculate    , iG t M t  and  im t . 
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Equation (9) computes a total force  iF t  on agent i due to N agents. Then, the force divided by the mass of agents 

Mi as in equation (10) to achieve acceleration of agent i at time t  
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The social coefficient cs and cognitive coefficient cc of PSO, and acceleration of agent contribute to the update of 

agents’ velocities 
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Then, after each iteration, positions of agents using a correction factor,  are updated as 

      1 1i i is t s t v t       (12) 

These updated positions are used to evaluate the fitness for all agents in the next iteration. The procedure is repeated 

until meeting a stopping criterion.  
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2.2.2 Hybrid objective function 

In this study, a hybrid objective function derived from changes in frequencies and ECOMAC values is proposed to 

improve the damage identification capability of ECOMAC. These indices are computed by using a set of mode shapes 

between real and predicted damages. By minimizing the fitness value of the objective function, the predicted damage is close 

to the real one in terms of damage location and extent. 
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where, nn and nm: number of DOFs and considered nodes; ,real estimatedf f : frequency values of real and estimated damage. 

3 Damage identification based on inverse problem 

Three numerical structures are utilized to investigate effectiveness and feasibility of the proposed method. The first is a 

two-span continuous beam-like structure. The second case is a simply supported truss-like structure. The final study is a free-

free beam. These structures are modelled in ANSYS 17 [31] by using beam element (BEAM 188).    

3.1 Case study 1: a two-span continuous beam-like structure 

3.1.1 FE model and defect cases: 

 

 

a. FE model of the beam in ANSYS b. Labelling element numbers 

Fig. 1 – FE model of the continuous beam, L=24m 

 The rectangle-section beam consists of 8 elements as in Fig. 1. Material properties: Young’s modulus 11 22 10E N m 

; Density 37820kg m  , Poisson’s ratio 0.3v  . Dimension of each element 1 0.2 b h m m   , 3 iL m . For damage 

simulation, reductions of Young’s modulus of elements are assumed to vary from 0% to 100%. Three damage scenarios, 

including single and multiple damage in the beam, are investigated in this study.  

Table 1 – Summary of damaged elements and corresponding extents of failure 

Scenario Number of damaged elements Location : Extent (%) 

1 1 6 : 10% 

2 2 3 : 30% 5 : 5% 

3 4 2 : 30% 4 : 40% 5 : 10% 7 : 20% 

 

The first four modes are used to identify the objective function. Summary of the intact and damaged frequencies is 

showed in Table 2. 

Some initial parameters of the hybrid algorithm are set: population = 200, max iteration = 70, 0.5cc  , 1.5sc  , 20 

, 
0 1G  , and 1  . To identify the damaged elements as well as severity, all elements are assumed to reduce a random 

amount in stiffness (in this case, Young’s Modulus) in a range of 0%-100%. These reductions of stiffness and corresponding 

elements are considered as input variables in PSOGSA. They are input into the FE model to determine sets of frequencies 

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9
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and mode shapes. These modal properties then are used to calculate the objective function.  The fitness values of the objective 

function are evaluated in each loop until obtaining the best value of fitness, close to 0. The final values of these variables are 

utilized to determine the position and severity of damages in the beam. 

Table 2 – The first four healthy and damaged frequencies for the three considered cases 

No 
Intact beam Damaged beam 

fintact (Hz) fScenario1 (Hz) fScenario2 (Hz) fScenario3 (Hz) 

1 3.18 3.15 3.05 2.94 

2 4.97 4.95 4.89 4.42 

3 12.72 12.63 12.36 11.73 

4 16.08 15.95 15.62 15.03 

3.1.2 Results 

The convergence rate of PSOGSA over 70 iterations, the estimated locations and extents of damages in the beam are 

depicted in Fig. 2 to Fig. 4. It can be observed that the convergence rate of 1st and 2nd damage scenarios are faster compared 

to the 3rd scenario, as in Fig. 2, and especially in Fig. 3.  

  

a. 1st scenario b. 2nd scenario 

 

c. 3rd scenario 

Fig. 2 – Convergence process of the hybrid objective function using PSOGSA for the beam. 
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For the first two cases, the damaged elements can be identified after 3 to 5 iterations. Meanwhile, the third case needs 

more than 25 iterations to determine damaged ones.  It is reasonable because the third scenario is considered with four defects 

in the beam. Therefore, it requires more time for damage identification compared with the other cases. The CPU-time for 

three cases are 4.70, 5.01 and 5.27 hours, respectively. 

For this beam, modal properties of the first five vertical bending modes are collected to calculate ECOMAC values and 

objective function. The purpose of using only a few modes is to investigate the capability of the proposed method for a real 

application. It is not easy to measure all modes in real structures.  

From the obtained results as in Fig. 4, locations of single damage and multiple damage can be identified exactly. 

Reduction of stiffness at 5%, 10%, 20%, 30%, 40% also are determined successfully. 

 .  

a. 1st scenario b. 2nd scenario 

 

 

c. 3rd scenario 

Fig. 3 – Evolutionary process of damage localization and quantification. 

 

It can be seen that the combination of PSOGSA and ECOMAC, frequencies in objective function can overcome the 

mentioned drawbacks. In other words, ECOMAC values are completely improved by using an optimization algorithm, like 

PSOGSA. For further investigation, this proposed approach is applied to damage identification in a truss-like structure in the 

next section. 
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a. 1st scenario b. 2nd scenario 

 

c. 3rd scenario 

Fig. 4 – Damage identification associated with the three damage scenarios. 

3.2 Case study 2: a simply supported truss-like structure 

3.2.1 FE model and defect cases 

 
 

a. FE model of the truss in ANSYS b. Labelling element numbers 

Fig. 5 – FE model of the truss-like structure in ANSYS, L=9x10=90m, H=8m 

A 35-bar truss-like structure is modelled in ANSYS using  0.2 0.1 0.01I   cross-section with material properties: 

Young’s modulus 11 22 10E N m  ; Density 37850kg m  , Poisson’s ratio 0.3v  . Reductions of Young’s modulus of 

elements also vary from 0% to 100%. Two damage scenarios are generated as listed in Table 3. To guarantee the accuracy 
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of predictions, the first five modes were used to determine the values of the objective function. Frequencies of undamaged 

and damaged state are performed in Table 4. 

Table 3 – Summary of damaged bars and corresponding extents of failure 

Scenario Number of damaged elements Location : Extent (%) 

1 1 5 : 30% 

2 2 7 : 20% 12 : 30% 

Table 4 – The first five healthy and damaged frequencies for the two considered cases 

No 
Intact truss Damaged truss 

fintact (Hz) fScenario1 (Hz) fScenario2 (Hz) 

1 2.63 2.57 2.55 

2 8.24 8.22 7.85 

3 10.6 10.57 10.41 

4 18.85 18.47 18.65 

5 41.09 40.8 39.83 

Because the number of elements of truss is higher than that of the beam, a larger number of population and iteration is 

used. Therefore, population = 250, max iteration = 90, other parameters of PSOGSA are set same as previous section, 

excepting 0.5  . 

3.2.2 Results 

The complex truss structure has 35 elements, 19 nodes. Many elements have to be considered, therefore, the convergence 

rate is slower and computational time is higher. From Fig. 7, over 10 to 15 iterations, damaged bars can be indicated. In other 

words, the CPU time is more than that of the beam associated with the same damage scenarios. 8.37 and 8.44 hours are 

required to idenfity the damaged elements in the second case study. 

The first five modes are also used to calculate ECOMAC values. Once more time, the proposed approach can localize 

damages’ position and quantify exactly failure severity as in Fig. 8. The high accuracy of the prediction in two damage 

scenarios regarding the location and extent of damage confirms the reliability of the proposed method. 

  

a. 1st scenario b. 2nd scenario 

Fig. 6 – Convergence process of the hybrid objective function using PSOGSA for the truss 
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a. 1st scenario b. 2nd scenario 

Fig. 7 – Evolutionary process of damage localization and quantification 

  

a. 1st scenario b. 2nd scenario 

Fig. 8 – Damage identification associated with the two damage scenarios  

3.3 Case study 3: a free-free beam-like structure 

3.3.1 FE model and defect cases 

An experiment of the free-free steel beam was conducted in laboratory condition. Fifteen sensors were placed on the top 

surface to achieve the dynamic response of the beam. Acquisition time is 5 minutes using a sampling rate of 2651 Hz. The 

beam was excited by striking on the top surface with a hand-hammer. The beam was hung by two wires at points 4 and 12. 

Measurement grid is depicted in Fig. 9. The interested readers can consult [4] for details of the measurement campaign.  

In this paper, a FE model is built based on the vibration data. Beam 189 was used to model the beam in ANSYS. Then 

this FE model is used to investigate the effectiveness of the proposed approach. Multiple damage with several damage 

positions and levels are identified using the optimized fitness. Based on the sensor placement in the measurement, the FE 

model of the free-free beam consists of 16 elements, 17 nodes. The total length of the beam is 0.01 14 0.07 0.01 1L m    

. Assumed material properties 11 22 10E N m  ; 37820kg m  , Poisson’s ratio 0.3v  . The dimension of the real cross-

section of the beam 0.0714 0.0098 b h m m   . The first five simulated frequencies are compared with the measured 

frequencies as in Table 5. 
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a. The schematic placement of sensors (unit in mm) b. Implementing on the beam 

Fig. 9 – Measurement setup. 

 

 

a. FE model of the beam in ANSYS b. Labelling the element numbers 

Fig. 10 – FE model of the free-free beam. 

Table 5 – Discrepancy between computed and measured frequencies 

Mode Measurement  (Hz) Simulation (Hz) Deviation (%) 

1 50.83 51.01 0.35 

2 140.4 140.53 0.09 

3 274.74 275.23 0.18 

4 456.94 454.39 -0.56 

5 678.9 677.7 -0.18 

All the obtained errors are less than 0.6%. It means that the FE model can represent the behaviour of the real one. 

Therefore, the FE model can be utilized for damage identification. Damage scenarios are generated by reducing Young’s 

modulus of three elements in a range of 0% to 100% at several positions.  

In this case, the number of population and iteration is 200 and 70 respectively. Other hyper-parameters are 1cc  , 

1.5sc  , 20  , 
0 1G  , and 1  . The first five natural frequencies as in Table 7 and mode shapes are used to calculate 

the objective function, as mentioned in equation (13). Details of damaged elements and corresponding severity are shown as 

follows.  

Table 6 – Summary of damaged elements and corresponding extents of failure 

Scenario Number of damaged elements Location : Extent (%) 

1 3 8 : 30% 9 : 10 % 10 : 20% 

2 3 7 : 12% 11 : 22 % 13 : 32% 

153 4 5 6 121 2 7 8 9 10 11 13

15 accelerometers

14

Tested beam

13 163 4 5 6 12 14 15

1 2 7 8 9 10 11 13 163 4 5 6 12 14 15 17

1 2 7 8 9 10 11

The tested beam 
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Table 7 – The first five healthy and damaged frequencies for the two considered cases 

No 
Intact beam Damaged beam 

fintact (Hz) fScenario1 (Hz) fScenario2 (Hz) 

1 51.01 48.01 49.58 

2 140.53 138.61 134.44 

3 275.23 267.19 265.62 

4 454.39 443.10 434.20 

5 677.7 662.01 656.81 

3.3.2 Results 

Multiple damage identification is the main objective in this situation. Likewise to the previous section, the changes in 

frequencies and ECOMAC indices are used to compute the fitness function. As can be seen, the proposed approach continues 

to identify failure as well as the corresponding failure level very quickly, after about 15 loops. (Fig. 11, and Fig. 12). For the 

first scenario computation time is 5.48 hours. Meanwhile the second one needs 5.28 hours for damage detection. Besides, the 

chosen hyper-parameters and the objective function using ECOMAC index are completely proper for solving this problem. 

  
a. 1st scenario b. 2nd scenario 

Fig. 11 – Convergence process of the hybrid objective function using PSOGSA for the free-free beam. 

  
a. 1st scenario b. 2nd scenario 

Fig. 12 – Evolutionary process of damage localization and quantification. 
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The combination of PSOGSA and ECOMAC, frequency shows high potential in damage identification based on obtained 

results. Damaged elements are precisely indicated regardless of whether they are successive or apart as in Fig. 13. Besides, 

this approach also accurately identified the different failure levels. 

  

a. 1st scenario b. 2nd scenario 

Fig. 13 – Damage identification associated with the two damage scenarios.  

4 Conclusions 

This paper takes advantage of the global optimal search-ability of optimization algorithms in improving damage index, 

namely ECOMAC. The superior identification results in terms of location and quantification, confirm the effectiveness and 

feasibility of the proposal: 

 The proposed approach shows high potential in damage identification for various structures,  

 Only the first few modes can be used to determine successfully damaged elements and their extent. 

 Simple implementation by using optimization technique coupling with frequency, ECOMAC, derived directly from 

displacement mode shapes. 

 Computational time should be considered when the proposed approach is applied to a complex truss structure. 

The successful application to the numerical models (two beams and a truss structure) is the promising foundation for the 

application of the proposal in real structures. However, further works need to be studied, such as using measurement data, 

considering noise effects. 
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