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Lower System Reliability Bounds from

Binary Failure Data Using Bootstrapping

LAWRENCE M. LEEMIS

The College of William & Mary, Williamsburg, Virginia 23187

Binary failure data are collected for each of the independent components in a coherent system. Boot-

strapping is used to determine a (1 − α)100% lower confidence bound on the system reliability. When

a component with perfect test results is encountered, a beta prior distribution is used to avoid an overly

optimistic lower bound.

Key Words: Beta distribution, Binomial confidence interval, Coherent system, Computer algebra system.

W
E CONSIDER the problem of determining a
(1 − α)100% lower confidence bound on the

system reliability for a coherent system of k com-
ponents using the failure data (yi, ni), where yi is
the number of components of type i that pass the
test and ni is the number of components of type i
on test, i = 1, 2, . . . , k. We assume throughout that
the components fail independently, e.g., no common-
cause failures. The outline of the article is as follows.
We begin with the case of a single (k = 1) com-
ponent system where n components are placed on a
test and y components pass the test. The Clopper–
Pearson lower bound is used to provide a lower bound
on the reliability. This model is then generalized to
the case of multiple (k > 1) components. Bootstrap-
ping is used to estimate the lower confidence bound
on system reliability. We then address a weakness in
the bootstrapping approach—the fact that the sam-
ple size is moot in the case of perfect test results, e.g.,
when yi = ni for some i. This weakness is overcome
by using a beta prior distribution to model the com-
ponent reliability before performing the bootstrap-
ping. Two subsections consider methods for estimat-
ing the parameters in the beta prior distribution for
components with perfect test results. The first sub-
section considers the case when previous test results
are available, and the second subsection considers
the case when no previous test results are available.
A simulation study compares various algorithms for

Dr. Leemis is a Professor in the Department of Mathemat-
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calculating a lower confidence bound on the system
reliability. The last section contains conclusions.

Single-Component Systems

Single-component systems are considered first be-
cause (1) there are known approximate confidence
intervals for the lower reliability confidence bound
and (2) these intervals will be used later in the arti-
cle to help determine the appropriate parameters for
the beta distribution in the case where no prior test
results exist on the component of interest.

Let n components be placed on test and let y of
these components pass the test. Under the assump-
tion that the test values (1 for pass, 0 for failure)
X1, X2, . . . , Xn are independent and identically dis-
tributed Bernoulli random variables with unknown
parameter p, Y =

∑n
i=1Xi is a binomial random

variable with parameters n and p. The maximum
likelihood estimator for p is p̂ = Y/n, which is unbi-
ased and consistent. The interest here is in a lower
confidence bound for the reliability p.

There is a wide literature on confidence intervals
of this type because a confidence interval on a pro-
portion is of interest on anything from a political poll
to consumer preference. Vollset (1993) compares 13
confidence intervals and Newcombe (2001) compares
7 confidence intervals. Rather than fine tuning these
intervals, as has been suggested by many authors, we
have settled on using the Clopper–Pearson (CP) ex-
act interval even though Newcombe (2001, page 201)
points out that its status as a gold standard has been
disputed recently because the method is conserva-
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LOWER SYSTEM RELIABILITY BOUNDS FROM BINARY FAILURE DATA USING BOOTSTRAPPING 3

tive, i.e., the actual coverage is greater than or equal
to the stated coverage (see Agresti and Coull, 1998,
for details).

Let pL < p < pU be an exact (Blyth 1986) CP
two-sided confidence interval for p, where pL and pU

are functions of the sample size n, the number of
successes y, and the stated coverage of the interval,
1−α. This is an approximate confidence interval due
to the discrete nature of the binomial distribution.
For y = 1, 2, . . . , n − 1, the lower limit pL satisfies
(see, for example, Agresti and Coull, 1998)

n∑
k=y

(
n

k

)
pk

L(1− pL)n−k = α/2.

For y = 1, 2, . . . , n− 1, the upper limit pU satisfies
y∑

k=0

(
n

k

)
pk

U (1− pU )n−k = α/2.

As shown in Leemis and Trivedi (1996), these
confidence-interval limits can be expressed in terms
of quantiles of the F distribution:

1

1 +
n− y + 1

yF2y,2(n−y+1),1−α/2

< p <
1

1 +
n− y

(y + 1)F2(y+1),2(n−y),α/2

,

where the third subscript on F refers to the right-
hand tail probability.

Simply reallocating the probability α to the lower
limit gives the following lower confidence bound for
the reliability:

pL =
1

1 +
n− y + 1

yF2y,2(n−y+1),1−α

,

for y = 1, 2, . . . , n − 1. For the case of all failures
(y = 0), the lower bound is, of course, pL = 0. For
the case of all passes (y = n), the lower bound is
pL = α1/n.

Example: CP Lower Confidence Interval
Bounds

The following four sets of values for n and y give
point estimates and 95% CP lower confidence inter-
val bounds for the reliability:
n = 10, y = 7 ⇒ p̂ = 0.7, pL = 0.393.
n = 100, y = 97 ⇒ p̂ = 0.97, pL = 0.924.
n = 10, y = 10 ⇒ p̂ = 1.0, pL = 0.741.
n = 100, y = 100 ⇒ p̂ = 1.0, pL = 0.970.

FIGURE 1. Point Estimate (dashed) and CP Lower Con-

fidence Bounds (solid) When n = 10.

An S-Plus function named confintlower is given
in Appendix 1, which can be used to calculate these
lower confidence-interval bounds. Figure 1 is a plot
of y vs. pL when n = 10 for α = 0.10, 0.05, 0.01, with
the points connected with line segments. Figure 2
contains a similar plot for n = 100. The lower bounds
are monotonic in y, n, and α.

FIGURE 2. Point Estimate (dashed) and CP Lower Con-

fidence Bounds (solid) When n = 100.

Vol. 38, No. 1, January 2006 www.asq.org



4 LAWRENCE M. LEEMIS

Multiple-Component Systems

A three-component (k = 3) series system is used
as an example throughout this section, although the
techniques described here apply to any coherent sys-
tem of k independent components. The number of
components tested and the number of passes for each
type of component for the example are given in Table
1. The point estimate for the system reliability is

21
23
· 27
28
· 82
84

=
1107
1288

∼= 0.8595.

The remainder of this section involves the use of
bootstrapping (Efron and Tibshirani, 1993) to cal-
culate a lower 95% confidence-interval bound. Other
authors (e.g., Martin (1990) and Padgett and Tom-
linson (2003)) have used bootstrapping for determin-
ing confidence limits. The approach used here differs
conceptually from the standard bootstrap problem,
where the standard error of a single unknown dis-
tribution is estimated by resampling iid data. In our
setting, there are k different distributions (one for
each component) and we resample component relia-
bilities and combine using the reliability function to
yield the system reliability.

Bootstrapping resamples B of the systems, calcu-
lates the system reliability, then outputs the αBth

ordered system reliability. More specifically, for the
three-component system of interest, the bootstrap-
ping algorithm follows these steps.

• For the first component, the data set (21 ones and
2 zeros) is sampled with replacement 23 times.

• These values are summed and divided by 23, yield-
ing a reliability estimate for the first component.

• The previous two steps are repeated for compo-
nents 2 and 3.

• The product of the reliability estimates for the
three components are multiplied (because the
components are arranged in series and their fail-
ures are independent) to give a system-reliability
estimate.

The above procedure is repeated B times. The B
system reliability estimates are then sorted. Finally,
the αBth ordered system reliability is output, which
is used as a lower bound on the system reliability.

The algorithm for estimating the (1 − α)100%
lower confidence-interval bound is given in Table 2,
where p̃i is a bootstrap estimate for the reliability of
component i and zj is a bootstrap estimate of the
system reliability. The binomial distribution is ap-
propriate because the resampling from the data set

TABLE 1. Failure Data for

a Three-Component Series System

Component number i = 1 i = 2 i = 3

Number passing (yi) 21 27 82
Number on test (ni) 23 28 84

is performed with replacement. In the pseudocode
in Table 2, indentation is used to indicate begin-end
blocks. The returned value zαB is the order statis-
tic associated with the zj ’s generated in the outside
loop. See Law and Kelton (2000) for handling the
case when αB is not an integer.

This algorithm has been implemented in S-Plus as
a function named seriessystemboot, which is given
in Appendix 2. The first two arguments, n and y, are
vectors of length k, and the third argument, alpha,
is a real number between 0 and 1, e.g.,

seriessystemboot(c(23, 28, 84),

c(21, 27, 82), 0.05)

prints a point estimate and a 95% lower confidence-
interval bound on the system reliability for the three-
component series system considered in this section.
After a call to set.seed(3) to set the random num-
ber seed, five calls to seriessystemboot yield the
following estimates for pL:

0.7426057 0.7482993 0.7456744
0.7486690 0.7453416.

The dispersion associated with these five estimates
is due to the finite choice of B, i.e., B = 10,000.

Resampling error can be eliminated using the sym-
bolic Maple-based APPL (Glen, Evans and Leemis,
2001). The APPL statements given in Appendix 3
utilize the Product and Transform procedures. This
alternative approach to determining a lower 95%
bootstrap confidence interval bound for the system
reliability is equivalent to using an infinite value for
B. Because p̃i can assume any one of ni + 1 val-
ues, there are a possible 24 · 29 · 85 = 59,160 po-
tential mass values for the random variable T deter-
mined by the Product procedure. Of these, only 6633
are distinct because the Product procedure com-
bines repeated values. Because the random variable
T from the APPL code plays an analogous role to
the vector z from the bootstrap algorithm in Ta-
ble 2, the lower 95% bootstrap confidence-interval

Journal of Quality Technology Vol. 38, No. 1, January 2006



LOWER SYSTEM RELIABILITY BOUNDS FROM BINARY FAILURE DATA USING BOOTSTRAPPING 5

TABLE 2. Bootstrap Algorithm for Calculating a (1 − α)100% Lower Confidence Bound

for the Reliability of a k-Component Series System

for j from 1 to B [resampling loop]
for i from 1 to k [loop through components]
p̃i ← Binomial(ni, yi/ni)/ni [component i reliability]

zj ←
∏k

i=1 p̃i [calculate system reliability]
sort z [sort the system reliability values]
return zαB [return the estimate for the lower bound]

bound is the 0.05 fractile of the distribution of T,
which is pL = 6723/9016 ∼= 0.746. This result using
APPL is consistent with the standard resampling ap-
proach for finding the lower confidence-interval limit
based on the five results presented earlier (one equals
6723/9016 exactly, two fall above 6723/9016, and two
fall below 6723/9016).

How Well Does the Bootstrap Procedure Perform?

This question is difficult to address because there
is no exact interval to compare with, even in the
case of a single component. It is instructive, how-
ever, to isolate one component and compare the CP
approach described in the previous section with boot-
strapping. Arbitrarily choosing the second compo-
nent with n2 = 28 items on test, Figure 3 shows
the CP lower confidence bound and the bootstrap
lower confidence bound for α = 0.05 and for y2 =
10, 11, . . . , 28. The bootstrap lower confidence inter-
val limit does not require any iteration because the
value plotted is q/28, where q is the smallest integer
that satisfies

q∑
k=0

(
n2

k

) ( y2
28

)k (
1−

( y2
28

))n2−k

≥ α,

i.e., q is the α-quantile of a binomial distribution with
n2 = 28 trials and probability of success y2/28. Fig-
ure 3 shows that

• the bootstrap interval is more susceptible to the
discrete nature of the binomial sampling scheme
• the CP interval is wider than the bootstrap inter-

val.

Figure 3 also points out a glaring deficiency in
the bootstrapping approach that was not revealed in
the example in this section because all three of the
system components had one or more failures during
their life test. When component i has perfect test
results (e.g., yi = ni), the sample size becomes irrel-
evant. Thus, a test where two components out of two

pass the test is equivalent to one where 100 compo-
nents out of 100 pass the test from the perspective
of the bootstrapping algorithm. This is clearly un-
acceptable. The next section gives a modification to
the bootstrapping approach that adjusts for these
perfect tests.

Perfect Component Test Results

The problem created by perfect component test
results is likely to occur for components and sys-
tems with moderate to high reliability. As suggested
by Chick (2001) and Martz and Waller (1982, pp.
265–266), a beta(α1, α2) prior distribution can be
placed on the component reliability. The beta dis-
tribution is a logical choice for a prior distribution of
the component reliability due to (1) the flexibility in

FIGURE 3. Point Estimate (dashed), CP Lower 95%

Confidence Bound, and Bootstrap Lower 95% Confidence

Bound for the Reliability of Component 2 Based on a Sam-

ple of Size n2 = 28.
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6 LAWRENCE M. LEEMIS

TABLE 3. Bootstrap Algorithm for Calculating a (1 − α)100% Lower Confidence Bound

for the Reliability of a k-Component Series System When Some Components Have Perfect Test Results

for j from 1 to B [resampling loop]
for i from 1 to k [loop through components]

if (yi = ni) p̃i ← Beta(α1i + yi, α2i) [component i reliability: perfect test]
else p̃i ← Binomial(ni, yi/ni)/ni [component i reliability: failure(s) occur]

zj ←
∏k

i=1 p̃i [calculate system reliability]
sort z [sort the system reliability values]
return zαB [return the estimate for the lower bound]

the shape of its probability density function, (2) its
(0, 1) support, and (3) its analytically tractable con-
jugate posterior distribution. Determining the values
of the parameters α1 and α2 is a problem that will
be addressed in the following two subsections.

The beta distribution has probability density
function

f(x) =
Γ(α1 + α2)
Γ(α1)Γ(α2)

xα1−1(1−x)α2−1, 0 < x < 1,

where α1 and α2 are positive shape parameters. This
is the standard parameterization, although Martz
and Waller (1982) use a slightly different form. The
mean of a beta(α1, α2) random variable is

µ = E[X] =
α1

α1 + α2
,

and the variance is

σ2 = V [X] =
α1α2

(α1 + α2)2(α1 + α2 + 1)
.

If the prior distribution of a reliability P ∼
beta(α1, α2) and the sampling is binomial (as it is
in our case), then the posterior distribution of P is
beta(α1 + y, α2 + n − y), where n is the number of
components on test and y is the number of passes.
The difficulty in our case is in determining the ap-
propriate values for α1 and α2. For the time being,
we will proceed as if we know the values of α1 and α2

and give an algorithm for finding the lower reliability
confidence bound, pL. Estimating α1 and α2 will be
addressed subsequently.

A lower reliability confidence bound pL can be
determined by generating a bootstrap beta random
variate (rather than a binomial) when the component
test results are perfect. An algorithm for determining
pL for a k-component series system using B resam-
plings with some or all components having perfect
tests is given Table 3. If component i has perfect test

results (i.e., yi = ni) then the analyst must define
the prior beta parameters α1i and α2i.

Example: Three-Component Series System

Table 4 is identical to Table 1 except that com-
ponent 2 now has perfect (28/28) test results. The
point estimate for the system reliability increases to

21
23
· 28
28
· 82
84

=
41
46
∼= 0.8913.

Thus, the effect of the one additional component that
passed the test increases the system reliability esti-
mate from approximately 0.86 to approximately 0.89.
This increase should be reflected in an appropriate
increase in the lower confidence limit, pL.

This algorithm has been implemented as the S-
Plus function seriessystembayesboot given in Ap-
pendix 4 (the number of bootstrap replications B =
10,000 and values of the beta parameters α12 = 1 and
α22 = 1 are arbitrary). As before, n and y are vec-
tors of length k and alpha is a real number between
0 and 1, e.g.,

seriessystembayesboot(c(23, 28, 84),

c(21, 28, 82), 0.05)

prints a point estimate and a 95% lower confidence-
interval bound on the system reliability for the
three-component series system. After a call to
set.seed(3) to set the random number seed, five

TABLE 4. Failure Data for

a Three-Component Series System

Component number i = 1 i = 2 i = 3

Number passing (yi) 21 28 82
Number on test (ni) 23 28 84

Journal of Quality Technology Vol. 38, No. 1, January 2006



LOWER SYSTEM RELIABILITY BOUNDS FROM BINARY FAILURE DATA USING BOOTSTRAPPING 7

calls to seriessystembayesboot yield the following
values for pL:

0.7474437 0.7484738 0.7492014
0.7484301 0.7495972.

With the choice α1 = α2 = 1, the increase of ap-
proximately 0.03 in the point estimate of the system
reliability from the previous example results in only a
tiny increase in the lower confidence interval limits.
This is clearly unacceptable. What happened? The
arbitrary choice of α1 = 1 and α2 = 1 has resulted in
a uniform prior distribution, which is an overly pes-
simistic assessment of the reliability of component 2,
particularly in light of the perfect test results.

What choice would make more sense? It is im-
portant to skew the probability density function of
the beta prior distribution so that its mean is greater
than 1/2, or, equivalently, choose α2 < α1. There are
four different shapes of the probability density func-
tion associated with the choice of parameters that
satisfy the constraint α2 < α1. Most important is the
value of the probability density function near f(1)
because these are the particular reliability values of
interest. The following four cases demark various fea-
tures of the probability density function.

• f(0) = 0 and f(1) = 0 when 1 < α2 < α1 (Case
I).
• f(1) is finite when 1 = α2 < α1 (Case II).
• a vertical asymptote at x = 1 and f(0) > 0 when
α2 < 1 = α1 (Case III).

• a vertical asymptote at x = 1 and f(0) = 0 when
α2 < 1 < α1 (Case IV).

We have disregarded the case α2 < α1 < 1 because
this results in a vertical asymptote at both 0 and
1, which is inconsistent with the probability density
function of a high-reliability component. The most
intuitively appealing of the four cases listed above
it the fourth case, α2 < 1 < α1, because this mini-
mizes the probability of generating a small beta vari-
ate (since f(0) = 0) and pushes as much of the proba-
bility near 1 as possible due to the vertical asymptote
near 1.

Table 5 gives means of the beta prior distribu-
tion and lower confidence interval bounds for several
combinations of α1 and α2 satisfying the constraint
α2 < α1. The lower bounds are determined by taking
the sample median of five runs of seriessystem-
bayesboot with B = 10,000 resampled series sys-
tems per run. The subscript on the lower bound in-
dicates which of the shapes in the list given above

TABLE 5. Prior Beta Distribution Mean and

Lower 95% Confidence Interval Limit Estimate

for the System Reliability

α1

α2 0.1 1 10

1 0.909/0.779III — —

10 0.990/0.783IV 0.909/0.759II —

100 0.999/0.783IV 0.990/0.779II 0.909/0.725I

is represented. The value of the lower bound is quite
sensitive to the choices of α1 and α2. There are many
(α1, α2) pairs that yield a reasonable lower bound.

The following two subsections outline methods for
estimating the parameters of the prior distribution.
The first subsection considers the case when previous
test results exist, so data are available to estimate
α̂1 and α̂2. The second subsection considers the case
when no previous test data are available.

Previous Test Data Exists

When previous test data that are representative of
the current test data for a component with perfect
test results, this data can be fit to yield parameter es-
timates α̂1 and α̂2 for the prior beta distribution. Let
z1, z2, . . . , zn denote the fraction surviving for previ-
ous tests on a component of interest with equal sam-
ple sizes (which has perfect test results and need a
beta prior distribution). The maximum likelihood es-
timators satisfy the simultaneous equations (Evans,
Hastings, and Peacock, 2000, page 41):

ψ(α̂1)− ψ(α̂1 + α̂2) =
1
n

n∑
i=1

log zi,

ψ(α̂2)− ψ(α̂1 + α̂2) =
1
n

n∑
i=1

log(1− zi),

where ψ is the digamma function. Law and Kelton
(2000) outline methods for calculating α̂1 and α̂2.
These equations have no closed-form solution and
must be solved iteratively. Alternatively, the method-
of-moments estimates are found by equating the pop-
ulation mean, µ, and population variance, σ2, to the
associated sample moments:

z̄ =
1
n

n∑
i=1

zi, s2 =
1
n

n∑
i=1

(zi − z̄)2,

Vol. 38, No. 1, January 2006 www.asq.org



8 LAWRENCE M. LEEMIS

which results in the closed-form method of moments
estimators:

α̂1 =
(1− z̄)z̄2

s2
− z̄, α̂2 =

α̂1(1− z̄)
z̄

.

Example: Estimating the Beta Parameters
from Previous Experiments

Consider the previous example, where previous
test results on component 2 have yielded the follow-
ing n = 4 fractions surviving:

z1 =
27
28
, z2 =

28
28
, z3 =

26
28
, z4 =

27
28
.

Because the sample mean and variance are

z̄ =
1
n

n∑
i=1

zi =
27
28
∼= 0.964,

s2 =
1
n

n∑
i=1

(zi − z̄)2 =
1

1568
∼= 0.000638,

the method-of-moments estimators are (these corre-
spond to Case I from the previous list):

α̂1 =
1431
28
∼= 51.11, α̂2 =

53
28
∼= 1.89.

When these values for the parameters are used in se-
riessystembayesboot, the median of five lower 95%
confidence bounds with B = 10,000 for the system
reliability is 0.763.

No Previous Test Data Exist

We now turn to the more difficult case of deter-
mining the prior beta distribution parameter esti-
mates α̂1 and α̂2 in the case of a component with
perfect test results and when no previous test data
are available. For such a component, the point esti-
mate of the component reliability is p̂ = 1 and the
CP lower reliability bound is pL = α1/n. One heuris-
tic technique for determining the parameters is to
choose α̂1 and α̂2 such that F (pL) = α, i.e.,∫ pL

0

Γ(α̂1 + α̂2)
Γ(α̂1)Γ(α̂2)

xα̂1−1(1− x)α̂2−1dx = α. (1)

The intuition behind this choice is that 100α% of
the time, a prior component reliability (which will be
modified subsequently by the data set) will assume a
value less than pL. One problem with this criteria is
that there are an infinite number of α̂1 and α̂2 that
satisfy this equation. Further refinement is necessary.

For a sample of size n > 1, the (α̂1, α̂2) pair satis-
fying Equation (1) will (a) intersect the line α̂1 = 1
on 0 < α̂2 < 1 and (b) intersect the line α̂2 = 1

on α̂1 > 1. One technique for determining a (α̂1, α̂2)
pair is to find the intersection of the values of α̂1 and
α̂2 that satisfy Equation (1) and the lines α̂1 = 1
and α̂2 = 1. These two points of intersection, or any
point on the line segment connecting them, can be
used as prior beta distribution parameter estimates.
It is interesting to note that

• the intersection of Equation (1) and the line α̂1 =
1 corresponds to Case III for the beta distribution
parameters (Scenario 1)
• the intersection of Equation (1) and the line α̂2 =

1 corresponds to Case II for the beta distribution
parameters (Scenario 2)
• any point on the line segment connecting the two

intersection points (not including the endpoints of
the segment) corresponds to Case IV for the beta
distribution parameters (Scenario 3).

We first consider the intersection of Equation (1)
and α1 = 1. Integration of the beta probability den-
sity function is analytic in this case, yielding

1− (1− pL)α̂2 = α

or

α̂2 =
log(1− α)

log(1− α1/n)
.

Next, we first consider the intersection of Equation
(1) and α2 = 1. The integration of the beta proba-
bility density function is analytic in this case as well,
yielding

pα̂1
L = α

or
α̂1 = n.

Example: Three-Component Series System
with Beta Prior Distributions

Consider again the three-component series sys-
tems. System 1 has test results displayed in Table 1.
System 2 has test results displayed in Table 4. The
point estimate for the system reliability of System 1
is

21
23
· 27
28
· 82
84

=
1107
1288

∼= 0.8595,

and the point estimate for the system reliability of
System 2 is

21
23
· 28
28
· 82
84

=
41
46
∼= 0.8913.

Hence, the slight difference between the two test re-
sults (the perfect test results for component 2) has
resulted in a 0.8913−0.8595 = 0.0318 increase in the
point estimate for the system reliability. A similar

Journal of Quality Technology Vol. 38, No. 1, January 2006



LOWER SYSTEM RELIABILITY BOUNDS FROM BINARY FAILURE DATA USING BOOTSTRAPPING 9

TABLE 6. Lower Reliability Bounds (α = 0.05) for

the System Reliability of a Three-Component Series System

with Alternative Beta Prior Parameters

Model α̂1 α̂2 pL ∆pL

Uniform prior 1 1 0.748 0.002
Scenario 1 1 0.022418 0.785 0.039
Scenario 2 28 1 0.769 0.023
Scenario 3 14.5 0.511209 0.772 0.026

increase in the lower bound for the system reliability
for a reasonable procedure is expected.

The earlier analysis of System 1 using APPL has
resulted in an exact (no resampling variability) boot-
strap 95% lower limit on the system reliability of
0.746. Table 6 contains 95% lower confidence limits
for the system reliability using four different com-
binations of prior beta distribution parameter esti-
mates α̂1 and α̂2 for component 2. The parameter
estimates for Scenario 3 are found by averaging the
parameter estimates for Scenarios 1 and 2. The lower
bounds pL are determined by taking the median re-
sult of five runs with B = 10,000 replications using
the bootstrap procedure described earlier. The col-
umn labeled ∆pL gives the difference between the
lower confidence limit for System 2 and the lower con-
fidence limit for System 1. The uniform prior model
is too wide because the 0.748−0.746 = 0.002 increase
in the lower bound is inconsistent with the 0.0318 in-
crease in the point estimate for the system reliability.
Based on this example only, Scenarios 1 and 3 seem
to be the most appropriate because their increases
in the lower bound bracket the increase in the point
estimator for the system reliability.

Our heuristic, which chooses α̂1 and α̂2 such that
F (pL) = α works reasonably well in the example
with one component having perfect test results, but
will likely need to be modified if several components
have perfect test results. A large-scale Monte Carlo
simulation, which involves varying α, the number of
system components, the configuration of the system
components, and the expected fraction of cases where
perfect test results are encountered, is the only way
to evaluate the techniques presented here and to com-
pare them, for example, with the asymptotic tech-
niques presented in Mann, Schaefer, and Singpur-
walla (1974, p. 498). Such a simulation is appropriate
on a system-by-system basis.

Simulation

Monte Carlo simulation is used to test several
heuristic methods along with the techniques devel-
oped in this paper. We begin with a pilot simulation
that is used to evaluate a large number of methods
in order to thin the number of methods considered.

Simulation Study A

The system considered in this pilot study is a
three-component series system with identical com-
ponents. In keeping with the earlier example, there
are n1 = 23, n2 = 28, and n3 = 84 components of
each type placed on test. There are B = 1000 boot-
strap replications used and 1000 simulation replica-
tions conducted. The stated coverage of the lower
confidence-interval bound for the system reliability
is 0.95. If the intervals cover approximately 95% of
the true system reliability values for a wide range
of true component reliabilities, then the confidence-
interval procedure is performing adequately. Using
the two-sided CP confidence-interval procedure for
a single component described earlier, the acceptable
range for the fraction of simulated confidence inter-
vals (at α = 0.01) covering the true system reliability
is from 0.931 to 0.968 inclusive. The simulations are
run in S-Plus using the set.seed command prior to
each run to exploit the common random numbers
variance reduction technique.

In addition, the number of components that
achieve perfect test results is computed for general
true component reliabilities p1, p2, and p3. For gen-
eral n1, n2, and n3, let the random variable W be
the number of components with perfect test results.
The probability density function of W is

f(w) =




(1− pn1
1 )(1− pn2

2 )(1− pn3
3 ) w = 0

(1− pn1
1 )(1− pn2

2 )pn3
3

+(1− pn1
1 )pn2

2 (1− pn3
3 )

+pn1
1 (1− pn2

2 )(1− pn3
3 ) w = 1

(1− pn1
1 )pn2

2 pn3
3

+pn1
1 (1− pn2

2 )pn3
3

+pn1
1 pn2

2 (1− pn3
3 ) w = 2

pn1
1 pn2

2 pn3
3 w = 3.

These values are computed and given in Table 7 for
various true, identical component reliabilities rang-
ing from 0.60 to 0.99.

Nine algorithms for handling the case of one or
more components with perfect test results are com-
pared in the pilot simulation. We have included al-
gorithms of an ad hoc nature (e.g., Algorithms 2 and
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TABLE 7. Estimated Lower Confidence Interval Coverage (α = 0.05) for the System Reliability of a Three-Component

Series System with 1000 Replications Using Bootstrapping with a Beta Prior Distribution for Perfect Test Results.

The Random Variable W Denotes the Number of Components with Perfect Test Results. The Tabled Values

Give the Fraction of Intervals that Fall Below the True System Reliability. Fractions Set in Boldface Type

Are in the Range 0.931 to 0.968 Inclusive and Are Not Statistically Different from the Stated Coverage of 0.95

True reliability: 0.60 0.70 0.80 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Pr(W = 0) 0.999 0.999 0.992 0.864 0.822 0.767 0.704 0.621 0.521 0.401 0.267 0.131 0.029
Pr(W = 1) 10−5 10−4 0.008 0.132 0.170 0.216 0.271 0.334 0.401 0.460 0.483 0.424 0.221
Pr(W = 2) 10−12 10−8 10−5 0.005 0.008 0.014 0.025 0.044 0.078 0.136 0.234 0.380 0.492
Pr(W = 3) 10−30 10−21 10−13 10−6 10−6 10−5 10−4 10−4 0.001 0.004 0.016 0.065 0.257

Algorithm 1 0.958 0.964 0.946 0.912 0.910 0.910 0.899 0.899 0.878 0.873 0.809 0.765 0.738

Algorithm 2 0.958 0.964 0.945 0.950 0.960 0.980 0.988 1.000 1.000 1.000 1.000 1.000 1.000

Algorithm 3 0.958 0.964 0.953 0.939 0.954 0.937 0.955 0.972 0.981 1.000 1.000 1.000 1.000

Algorithm 4 0.958 0.964 0.948 0.960 0.957 0.968 0.988 1.000 1.000 1.000 1.000 1.000 1.000

Algorithm 5 0.958 0.964 0.939 0.927 0.918 0.919 0.902 0.910 0.895 0.877 0.832 0.820 0.745

Algorithm 6 0.958 0.964 0.947 0.923 0.942 0.951 0.947 0.947 0.970 0.976 1.000 1.000 1.000

Algorithm 7 0.958 0.964 0.933 0.923 0.947 0.917 0.944 0.942 0.936 0.936 0.982 1.000 1.000

Algorithm 8 0.958 0.964 0.951 0.925 0.925 0.916 0.911 0.926 0.900 0.906 0.876 0.827 1.000

Algorithm 9 0.975 0.947 0.949 0.920 0.918 0.919 0.888 0.897 0.886 0.867 0.822 0.737 0.730

3) and those with some theoretical basis (e.g., Al-
gorithm 9) in order to show that the beta prior ap-
proach dominates the other approaches as compo-
nent reliability increases.

• Algorithm 1: Pure bootstrapping. A component
with a perfect test always generates perfect simu-
lated results.

• Algorithm 2: Always assume a failure. When
component i has perfect test results (i.e., yi = ni),
introduce an artificial failure by assuming that
yi = ni − 1, for i = 1, 2, . . . , n.

• Algorithm 3: Increase the sample size. For per-
fect test results, artificially increase sample size to
approximate the lower confidence bounds with a
single failure using the confidence intervals for a
single component given earlier in the paper, then
bootstrap. In our case, n1 = 37 (y1 = 36), n2 = 45
(y2 = 44), and n3 = 134 (y3 = 133).

• Algorithm 4: Bayes bootstrapping with α1 = 1
and α2 = 1 (i.e., uniform prior).

• Algorithm 5: Bayes bootstrapping with α1 = 1
for all components, and α2 = log(1 − α)/ log(1 −
α1/ni), for i = 1, 2, . . . , k, as described earlier.

• Algorithm 6: Bayes bootstrapping with α1 = ni,
for i = 1, 2, . . . , k, and α2 = 1 for all components,
as described earlier.

• Algorithm 7: Bayes bootstrapping with α1 and
α2 that are averages of the values given in Algo-
rithms 5 and 6, as described earlier.

• Algorithm 8: Bayes bootstrapping with α1 =
100 and α2 = 1.

• Algorithm 9: A procedure from Mann, Schafer,
and Singpurwalla (1974, pp. 497–499) which, us-
ing asymptotic normal theory, calculates a lower
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bound as

k∏
i=1

yi

ni
− zα

√√√√ k∏
i=1

(
yi

ni

)2 k∑
j=1

(
1
yj
− 1
nj

)
.

The performance of the confidence intervals given
in Table 7 is as expected. Algorithm 1, for example,
which takes the overly optimistic, pure bootstrap-
ping approach, produces lower confidence limits that
are shifted up, resulting in fewer than expected lower
confidence limits that fall below the true system re-
liability. The opposite case is true for the pessimistic
uniform prior distribution in Algorithm 4. In fact,
once the Bayesian portion of the algorithm began to
dominate (i.e., when the component reliabilities are
large), all nine algorithms fail to deliver confidence
intervals with the appropriate coverage. We experi-
mented with the confidence interval that performed
the best (Algorithm 7, which averages the parameter
estimates of Algorithms 5 and 6) by replacing average
with linear combination, but did not produce results
that were significantly better than those presented in
Table 7.

The abysmal performance of all of these algo-
rithms for high-reliability components is consistent
with the work of Martz and Duran (1985), who con-
sidered lower confidence bounds for the system re-
liability of 20 system configurations and component
reliabilities using three algorithms and two values of
α (0.05 and 0.10). Their intervals also diverged from
the stated coverages.

Simulation Study B

This poor performance led us to recode our al-
gorithms in C and to do an exhaustive search in
the (α1, α2) plane for values of the beta prior pa-
rameters α1 and α2 that yield reasonable coverages
for lower confidence bounds on the system reliabil-
ity. We returned to the case of a single component.
Figure 4 shows the results of this exhaustive search
for n = 23 components on test. Every (α1, α2) pair
that resulted in a confidence interval whose coverage
did not statistically differ from 0.95 was plotted for
p = 0.91, 0.92, . . . , 0.99. For each particular popula-
tion reliability p shown in Figure 4, the areas where
appropriate coverages are achieved are quite narrow.
Unfortunately, the graph in Figure 4 shows that there
is no single (α1, α2) pair that will work for all values
of p.

The following procedure has been developed as a
compromise that allows reasonable lower confidence-

 

FIGURE 4. Prior Distribution Parameter Pairs that Give

Accurate Coverage for the Example as a Function of the

Reliability p When n = 23.

limit coverage in the case of a system with one or
more components having perfect test results:

• For each of the components in the system, consult
with someone familiar with the component to get
a point estimate of the component reliability p∗i ,
i = 1, 2, . . . , k.

• Determine the number of components to be tested
n1, n2, . . . , nk.

• For each (p∗i , ni) pair with perfect test results, per-
form an exhaustive search of the (α1, α2) plane to
find a (α̃1, α̃2) pair that yields appropriate cover-
age.

• Perform Bayesian bootstrapping as described ear-
lier in this paper using the test results (ni, yi) and
the appropriate (α̃1, α̃2) values from the previous
step.

The final example illustrates this technique for a
single-component system and three-component sys-
tem.

Example: Single-Component System and
Three-Component Series System

Figure 5 shows the actual coverage for 1000 sim-
ulation replications for a single-component system
with n = 28 and a three-component system with
n1 = 23, n2 = 28, and n3 = 84. All true component
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FIGURE 5. Lower 95% Confidence Bound Coverage

for a Single Component System (dotted) and a Three-

Component System (solid) and Region Not Statistically Dif-

ferent from the Specification (dashed).

reliabilities are equal and are plotted on the hori-
zontal axis. The stated coverage on all intervals is
0.95. The usual bounds around 0.95 (at 0.931 and
0.968), which denote confidence intervals of which
actual coverage does not differ significantly from the
specification are given as horizontal dashed lines. All
Bayesian procedures use (α1, α2) = (252.28, 4.67),
which were values that fell outside of the axes in Fig-
ure 4 associated with the p∗ = 0.97 estimate for the
reliability of the second component. The jagged ap-
pearance for the coverage for the interval for a single
component (dotted) is consistent with the same pat-
tern shown by Blyth (1986). The three-component
system (solid), on the other hand, has different num-
bers of components on test that seem to average out
these fluctuations, resulting in appropriate coverage
through p = 0.97.

Conclusion

Determining lower confidence bounds from binary
data remains an important yet elusive task. The
Bayesian bootstrapping procedures developed here
yield adequate coverages given that an expert is able
make a good initial estimate of the reliabilities of in-
dividual components. The estimates discussed here
improve with increasing system complexity.
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Appendix 1

S-Plus code for calculating a CP (1−α)100% lower
confidence bound for a single component for n com-
ponents on test and y passes.

confintlower <− function(n, y, alpha) {
if (y == 0) {
pl <− 0

}
if (y == n) {
pl <− alpha ^ (1 / n)

}
if (y > 0 && y < n) {
fcrit1<− qf(alpha, 2 * y, 2 * (n - y + 1))
pl <− 1 / (1 + (n - y + 1) / (y * fcrit1))

}
pl

}

Appendix 2

S-Plus code for calculating a bootstrap (1 −
α)100% lower confidence interval bound for a k-
component series system of independent components
using B bootstrap replications.

seriessystemboot <− function(n, y, alpha) {
k <− length(n)
b <− 10000
z <− rep(1, b)

point <− prod(y) / prod(n)

for (j in 1:b) {
for (i in 1:k) {
z[j] <- z[j] * rbinom(1, n[i], y[i] / n[i])

/ n[i]
}

}
z <− sort(z)
pl <− z[floor(alpha * b)]
c(point, pl)

}

Appendix 3

APPL code for calculating a bootstrap (1 −
α)100% lower confidence interval bound for a k-
component series system of independent components
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using the equivalent of B = +∞ bootstrap replica-
tions.

n1 := 23;
y1 := 21;
X1 := BinomialRV(n1, y1 / n1);
X1 := Transform(X1, [[x -> x / n1],

[-infinity, infinity]]);
n2 := 28;
y2 := 27;
X2 := BinomialRV(n2, y2 / n2);
X2 := Transform(X2, [[x -> x / n2],

[-infinity, infinity]]);
n3 := 84;
y3 := 82;
X3 := BinomialRV(n3, y3 / n3);
X3 := Transform(X3, [[x -> x / n3],

[-infinity, infinity]]);
Temp := Product(X1, X2);
T := Product(Temp, X3);

Appendix 4

S-Plus code for calculating a bootstrap (1 −
α)100% lower confidence interval bound for a k-
component series system of independent components
with some perfect component test results using B
bootstrap replications.

seriessystembayesboot <− function(n, y, alpha) {
k <− length(n)
alpha1 <− 1
alpha2 <− 1
b <− 10000
z <− rep(1, b)

point <− prod(y) / prod(n)

for (j in 1:b) {
for (i in 1:k) {
if (y[i] == n[i]) z[j] <− z[j]

* rbeta(1, alpha1 + y[i], alpha2)
else z[j] <− z[j]

* rbinom(1, n[i], y[i] / n[i]) / n[i]
}

}

z <− sort(z)
pl <− z[floor(alpha * b)]
c(point, pl)

}
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