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Nonparametric Estimation of the Cumulative Intensity Function for

a Nonhomogeneous Poisson Process from Overlapping Realizations

Bradford L. Arkin · Lawrence M. Leemis

Reliable Software Technologies, Sterling, Virginia 20166

Department of Mathematics, The College of William & Mary,

Williamsburg, Virginia 23187

barkin@rstcorp.com · leemis@math.wm.edu

A nonparametric technique for estimating the cumulative intensity function of a nonhomo-

geneous Poisson process from one or more realizations on an interval is extended here to

include realizations that overlap. This technique does not require any arbitrary parameters

from the modeler, and the estimated cumulative intensity function can be used to generate

a point process for simulation by inversion.

(Input Modeling; Nonstationary Poisson Process; Repairable Systems; Simulation; Time-

Dependent Arrivals; Variate Generation)
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1 Introduction

A nonhomogeneous Poisson process (NHPP) is often used as a model for systems whose

rate varies with time. This paper describes a nonparametric technique for estimating the

cumulative intensity function of a NHPP on the time interval (0, S] from one or more over-

lapping realizations. If the NHPP is used as an input to a Monte Carlo or discrete-event

simulation, it is possible to use inversion to generate event times. The estimation technique

may be applied to any sequence of events occurring over time or space, such as arrival times

to a queue, failure times of a repairable system, earthquake times, or pothole positions on a

highway.

A NHPP is a generalization of a homogeneous Poisson process where events occur ran-

domly over time at an average rate of λ events per unit time. The rate at which events

occur in a NHPP varies with time as determined by the intensity function, λ(t), which is an

integrable function of time. The cumulative intensity function is defined by

Λ(t) =

∫ t

0

λ(τ)dτ, t > 0,

and is interpreted as the expected number of events by time t. The probability of exactly n

events occurring in the interval (a, b] is given by

[

∫ b

a
λ(t)dt

]n

e−
∫ b

a
λ(t)dt

n!

for n = 0, 1, . . . (Cinlar 1975).
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2 Estimation Procedure

The intensity function, λ(t), for a NHPP is assumed to be nonnegative for all t ∈ (0, S].

The cumulative intensity function is to be estimated from realizations of the NHPP on any

interval (a, b], where 0 ≤ a < b ≤ S, and S is a known constant. The interval (0, S] may

represent the time a system allows arrivals (e.g., 9 AM to 5 PM at an office) or one period of

a cycle (e.g., one 24-hour period at a convenience store). The estimation procedure described

in this section is nonparametric and does not require any arbitrary decisions (e.g., parameter

values) from the modeler.

Let the interval (0, S] be partitioned into the fewest possible number of regions r such that

within each region (sj, sj+1] the number of realizations kj+1 is constant throughout. Thus, for

any time t ∈ (sj, sj+1] the number of realizations at time t is equal to kj+1, j = 0, 1, . . . , r−1.

Note that from this partitioning of (0, S] into r regions it follows that s0 = 0 and sr = S. Let

nj+1 be the total number of observed events (across all realizations) during the time span

(sj, sj+1]. Define n =
∑r

q=1 nq. It is assumed that the regions (sj, sj+1] form a partition of

(0, S], and that kj+1 > 0 as well as nj+1 ≥ 0 for j = 0, 1, . . . , r − 1.

Let t(0), t(1), . . . , t(n+r) be the order statistics of the superposition of the realizations

as well as the region boundaries s0, s1, . . . , sr. Note that it follows that t(0) = s0 = 0, and

t(n+r) = sr = S. While the region boundaries s0, s1, . . . , sr are included in the order statistics

t(0), t(1), . . . , t(n+r), they are not counted as events when constructing Λ̂(t); thus the values

n1, n2, . . . , nr reflect only the number of observations in each region.

Figure 1 shows how the data collected from overlapping realizations relates to the defined

notation.
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Realization 1

Realization 2

Realization 3

Superposition t

nj+1 = 2

kj+1 = 1

nj+2 = 5

kj+2 = 3

nj+3 = 0

kj+3 = 2

sj+1 sj+2 sj+3sj

Figure 1: Three Sample Regions Associated with Three Realizations

Setting Λ̂(sj+1) =
∑j+1

q=1 nq/kq yields a process where the estimated expected number of

events by time sj+1 is the sum of the average number of events in the first j+1 regions, since

Λ(sj+1) is the expected number of events by time sj+1, j = 0, 1, 2, . . . , r − 1. In a similar

fashion to the approach in Leemis (1991), the piecewise-linear estimator of the cumulative

intensity function between the time values in the superposition is

Λ̂(t) =

j
∑

q=1

nq
kq
+

(

i−
∑j

q=1 (nq + 1)
)

nj+1

(nj+1 + 1) kj+1

+

[

nj+1

(

t− t(i)
)

(nj+1 + 1) kj+1

(

t(i+1) − t(i)
)

]

,

t(i) < t ≤ t(i+1); i = 0, 1, 2, . . . , n+ r − 1,

sj < t ≤ sj+1; j = 0, 1, . . . , r − 1,

where the subscript j + 1 determines the active region and the subscript i + 1 determines
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the active ordered observations.

Figure 2 shows a single segment of Λ̂(t) between t(i) and t(i+1) in the (j + 1)st region,

t(i+1) sj+1

nj+1 observations

kj+1 realizations

t(i)sj

Λ̂(t(i+1))

Λ̂(t(i))

j
∑

q=1

nq

kq

j+1
∑

q=1

nq

kq

Figure 2: A single segment of Λ̂(t) in the (j + 1)st region

where time runs horizontally and Λ(t) runs vertically. Over the course of kj+1 realizations,

there were nj+1 observations during the time interval (sj, sj+1].

Some empirical evidence supporting the proposed extension of the estimator is provided

in Figure 3, where the population cumulative intensity function (smooth curve in dashed line)

and the proposed extended estimator (piecewise-linear function in solid line) are plotted for

several realizations of customers arriving to a lunchwagon. The realizations are generated

by thinning. The parent functions are the piecewise-linear intensity function

λ(t) =































10t+ 1, 0 < t ≤ 1.5,

16, 1.5 < t ≤ 2.5,

−6t+ 31, 2.5 < t ≤ 4.5,

5



and the cumulative intensity function

Λ(t) =































5t2 + t, 0 < t ≤ 1.5,

16t− 11.25, 1.5 < t ≤ 2.5,

−3t2 + 31t− 30, 2.5 < t ≤ 4.5,

from Klein and Roberts (1984). This intensity function models arrivals to a lunchwagon

between 10:00 AM and 2:30 PM. The estimator plotted in Figure 3 was generated over the

time span (0, 4.5], and consists of the r = 3 partitions (0, 1.5], (1.5, 3], and (3, 4.5]. The first

and last regions, (0, s1] and (s2, s3], utilize only k1 = k3 = 1 realization, while the middle

region, (s1, s2], utilizes k2 = 12 realizations. Thus Figure 3 portrays a (1, 12, 1) instance.

Note that the sampling variability on the middle time interval (1.5, 3] is smaller than on

the other two intervals. These regions can be seen in Figure 3, where rectangles with upper

t

Λ
(t
)

4.543.532.521.510.50

60

50

40

30

20

10

0

Figure 3: Depiction of the Three Regions

right-hand corner coordinates (sj+1, Λ̂(sj+1)), j = 0, 1, 2 have been added. Each rectangle in
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Figure 3 represents a NHPP modeling solution equivalent to the one proposed by Leemis

(1991).

An asymptotically exact 100(1− α)% confidence interval for Λ(t) is

∣

∣

∣
Λ(t)− Λ̂(t)

∣

∣

∣
< zα/2

√

√

√

√

Λ̂(t)− Λ̂(sj)

kj+1

+

j
∑

q=1

Λ̂(sq)− Λ̂(sq−1)

kq
,

where zα/2 is the 1 − α/2 fractile of the standard normal distribution, and t ∈ (sj, sj+1].

This interval is a generalization of an interval derived in the appendix of Leemis (1991). The

performance of this confidence interval is evaluated in Section 4. Figure 4 shows Λ(t), Λ̂(t)

t

Λ
(t
)

4.543.532.521.510.50

60

50

40

30

20

10

0

Figure 4: Parent Cumulative Intensity Function, Nonparametric Estimator, and 95% Confi-
dence Bands

and 95% confidence bands for the lunchwagon example. Note that the bands spread more

rapidly on the first and third regions, where only one realization has been observed.
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3 Variate Generation

The cumulative intensity function for a NHPP is often estimated to generate variates for

simulation. Using a time transformation (Cinlar 1975), the event times from a unit Poisson

process, E1, E2, . . . , can be transformed to the event times of a NHPP via Ti = Λ
−1(Ei).

For the NHPP estimate considered here, the events at times T1, T2, . . . on (0, S] can be

generated for Monte Carlo simulation by the algorithm below, given the superpositioned

values t(0), t(1), . . . , t(n+r), as well as r, n1, n2, . . . , nr, k1, k2, . . . , kr.

i← 1 [initialize variate counter]

j ← 0 [initialize region counter]

MAX ←
∑r

q=1 nq/kq [set MAX to Λ̂(S)]

generate Ui ∼ U(0, 1) [generate initial random number U1]

Ei ← − loge(1− Ui) [generate initial unit exponential variate E1]

while Ei < MAX do

begin

while Ei >
∑j+1

q=1 nq/kq do [update region counter if necessary]

begin

j ← j + 1 [increment region counter]

end

m←

⌊

(nj+1+1)kj+1(Ei−
∑j

q=1 nq/kq)
nj+1

⌋

+
∑j

q=1 (nq + 1)
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[set m 3 Λ̂(t(m)) < Ei ≤ Λ̂(t(m+1))]

Ti ← t(m) + [t(m+1) − t(m)]

(

(nj+1+1)kj+1(Ei−
∑j

q=1 nq/kq)
nj+1

−
(

m−
∑j

q=1 (nq + 1)
)

)

[generate event time]

i← i+ 1 [increment variate counter]

generate Ui ∼ U(0, 1) [generate next random number]

Ei ← Ei−1 − loge(1− Ui) [generate next HPP event time]

end

The algorithm above assumes the existence of a random number generator capable of produc-

ing the independent U(0, 1) variates U1, U2, . . . , Ui. Thus, it is a straightforward procedure

to obtain a realization of i− 1 events on (0, S] from the superpositioned process and U(0, 1)

values U1, U2, . . . , Ui. Inversion has been used to generate this NHPP, so certain variance

reduction techniques, such as antithetic variates or common random numbers, may be ap-

plied. Replacing 1−Ui with Ui in the algorithm will save CPU time although the direction of

the monotonicity is reversed. As
∑r

q=1 nq increases, the amount of memory required to store

t(0), t(1), . . . , t(n+r) increases, but the amount of CPU time required to generate a realization

depends only on the sum of ratios
∑r

q=1 nq/kq, or equivalently, the sum of the average num-

ber of events per region. Thus, collecting more realizations (resulting in narrower confidence

intervals) increases the amount of memory required, but does not impact the expected CPU

time for generating a realization.

Due to a discrete measure of time or rounding, tied observations, i.e., t(i) = t(i+1),

occasionally occur in practice. If t(m) = t(m+1) for some m, then a point of disconti-
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nuity is introduced to Λ̂(t) at t(m). An example of this discontinuity is illustrated in

Figure 5. These tied values do not pose a problem to the variate generation algorithm.

sj+1sj

j
∑

q=1

nq

kq

j+1
∑

q=1

nq

kq

Ei

Ei+2

Ei+1

Ti+2Ti Ti+1

Figure 5: The Variate Generation Algorithm

If t(m) = t(m+1) for some m, and a unit exponential variate Ei is generated such that

Λ̂(t(m)) = Λ̂(t(m+1)) ≤ Ei ≤ limt↓t(m+1)
Λ̂(t), then the event time Ti corresponding to Ei

is set equal to the time of the tied observation as follows:

Λ̂−1(Ei) = t(m) = t(m+1) = Ti,

as illustrated in Figure 5.

4 Examples

Three examples will be given in this section. The first revisits the lunchwagon model, the

second contains failure times of a repairable system, and the third uses failure times from a

nonrepairable system.

10



The functions λ(t) and Λ(t) given in Section 2 model arrivals to a lunchwagon during the

midday rush hour time interval (10:00, 2:30]. These functions were used in a Monte Carlo ex-

periment to test the accuracy of the confidence interval provided above. By creating 100,000

(1, 12, 1) instances with region boundaries {0, 1.5, 3, 4.5}, the same as the Λ̂(t) illustrated

in Figures 3 and 4, we were able to measure the actual coverage of the following points at a

nominal coverage of 0.95. Table 1 lists for each of the eight time values the actual coverage,

Time Actual Coverage Misses High Misses Low
0.90 0.9501 0.0013 0.0487
1.35 0.9386 0.0048 0.0566
1.80 0.9505 0.0200 0.0296
2.25 0.9466 0.0196 0.0339
2.70 0.9498 0.0174 0.0329
3.15 0.9509 0.0295 0.0196
3.60 0.9498 0.0251 0.0251
4.05 0.9517 0.0167 0.0316

Table 1: Coverages in the Lunchwagon Example (Nominal Coverage 0.95)

and the number of high and low misses. This experiment indicates that the approximate

confidence intervals for the cumulative intensity function estimate are fairly accurate for a

large sample size n. This is not surprising since the Poisson distribution converges to a

normal distribution as its mean increases. There appears to be some nonsymmetry in the

proportion of intervals missing high versus those missing low for small time values.

The second example examines the data set consisting of failure times for a group of 20

copy machines (Zaino and Berke 1992). For these machines, time is measured by the number

of actuations, i.e., the number of copies made, and the time at installation is defined to be

0. This data set (adjusted for staggered installation times) is displayed in Table 2, a plot of

the failure times on (0, 75000] is given in Figure 6, and a plot of the individual cumulative

11



Machine # First Second Third Fourth Fifth Sixth Seventh Eighth
125 2774 6963 8954 9201 9507 10074 10278 10830
126 11070 14300 16160 20900 23029 27091 58472 72716
127 67827
128 1440 10776 11016 15198 34392
129 6237 6880 7463 11638
130 1518 18872 40075 43543 54896 62364 65787 66149
131 50 3791 5000 7393 19252 22401 23214 25020
132 2793 6517 6982 13110 34389 43823 70675
133 3962 7884 8187 10861
134 415 15924 18616 19616 21235 23935 33709 39235
135 9111 10091 16649 16877 17628
136 1215 1452 3676 40334 41354 48729 50573 54261
137 4199 5354 20931 26229 29081 30247 38942 41329
138 9449 10695 10895 54840 59661
139 11286 26149 31149 59601 65184 75756 117510 124314
140 2009 33165 126646 165016 168508 235121 236969
141 13676 152238 152644
142 1532 2399 2938 7108 8094 16070 18178 42820
143 102 220 11720 18016 18143 27825 55399 56223
144 974 17664 20994 38118 43811 47320 49973 53654

Table 2: Copy Machine Failure Times (Actuations)

Actuations

M
ac
h
in
e
N
u
m
b
er

700006000050000400003000020000100000

145

140

135

130

125

Figure 6: Copier Failure Times and Observation Periods

12



Actuations

Λ̂
(t
)

700006000050000400003000020000100000

8

7

6

5

4

3

2

1

0

Figure 7: Individual Cumulative Intensity Function Estimators Copying Machines

intensity function estimators for each of the 20 machines is given in Figure 7. The copier

failure times constitute a Type II right-censored sample since copiers are removed from the

test upon their last observed failure. We consider the performance of the copiers over their

first S = 75, 000 copies here.

This data set consists of 20 realizations on the interval (0, b], where b ∈ (0, 75000]. Since

there are three machines (machine numbers 139, 140, 141) with b = S (i.e., machines that

are observed over the entire interval (0, S], and the end value b is unique for every other

machine), there are r = 18 regions such that k1 = 20, k2 = 19, k3 = 18, . . . , k17 = 4, k18 = 3,

and s1 = 10, 830, s2 = 10, 861, s3 = 11, 638, . . . , s17 = 72, 716, s18 = 75, 000. The total

number of observed failure times n on (0, 75000] is equal to 119.

By using the above information, an estimator for the cumulative intensity function Λ(t)

of the copiers can be developed. This estimator is plotted along with 95% confidence bands

in Figure 8. The fact that the confidence bands do not include the line between (0,0)
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0

Figure 8: Estimated Cumulative Intensity Function for the Copier Failure Times

and (S, Λ̂(S)) indicates that the failure rate λ(t) does indeed vary, making a NHPP an

attractive model. Also, this estimator supports the claim made by Zaino and Berke (1992)

that an extended run-in period will decrease the number of early failures after installation.

Using the third failure of machine number 143 at actuation 11,720 as the time value in

the data set where the slope of the cumulative intensity function changes, the early and

later failure rates can be estimated. Since Λ̂(11, 720) ∼= 2.53 and Λ̂(75, 000) ∼= 8.54, the

early estimated failure rate on 0 < t ≤ 11, 720 actuations is 2.53
11,720

∼= 0.00022 failures per

actuation, and the subsequent estimated failure rate on 11, 720 < t ≤ 75, 000 actuations is

8.54−2.53
75,000−11,720

= 0.000095 failures per actuation.

The final example studies the data set consisting of failure times of heat pump compres-

sors located in five separate buildings (Nelson 1990), each under repair contract for a time

span (a, b]. At time a, each building has a set number of heat pump compressors, and no

more are added during the time under contract (e.g., a = 2.59 and b = 9.33 for Building

14



B as shown in Table 3). The contract periods for the compressors in the five buildings are

illustrated in Figure 9.

Superposition

Building B

Building K

Building H

Building E

Building D

0 1 2 3 4 5 6 7 8 9
t

9.332.59

4.45 7.05

7.331

5.09

4.14

0

0

Figure 9: Observation Periods for the Heat Pumps in the Five Buildings

While the building is under repair contract, the failure of a heat pump compressor results

in its removal from the building, decrementing the total number of heat pump compressors

by one each time. The data set consists of n = 28 failure times, and yields r = 29 regions.

Number Entry Exit
Building of Time Compressor Failure Times Time

Compressors a b
B 164 2.59 3.30, 4.62, 4.62, 5.75, 5.75, 7.42, 7.42, 8.77, 9.27, 9.27 9.33
D 356 4.45 4.47, 4.47, 5.56, 5.57, 5.80, 6.13, 7.02 7.05
E 458 1.00 2.85, 4.65, 4.79, 5.85, 6.73 7.33
H 149 0.00 0.17, 0.17, 1.34 5.09
K 195 0.00 2.17, 3.65, 4.14 4.14

Table 3: Compressor Failure Times (Years)

Some interesting results occur when this data is modeled using the estimator presented

in Section 2. Because a heat pump compressor is removed from the building upon its failure,
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each region has either 0, 1, or 2 observations. In this example, a region has two observations

only when there is a tie, which occurs six times in this data set. Another result of the

removal upon failure nature of this data set is that every observation t(m) is equal to some

right-hand region boundary sj+1, j = 0, 1, . . . , r − 1. The number of realizations kj+1 for

each region is equal to the number of compressors under contract during the time interval

(sj, sj+1]. The values kj+1 are much larger than the number of realizations seen in the

previous two examples, with values ranging from k29 = 154 to k11 = 1, 122. The k29 = 154

value corresponds to 164 less the 10 failed compressors removed from Building B just prior

to the end of the study. The k11 = 1, 122 value corresponds to time 4.45
+ (just after the

compressors are entered into service on Building D), when there are 149 + 458 + 164 + 356

= 1,127 less the 5 failed compressors at times 0.17, 0.17, 1.34, 2.85, and 3.30.

The estimator created from the data in Table 3 is graphed in Figure 10 along with 95%

t (years)

Λ̂
(t
)

9876543210

0.1

0.08

0.06

0.04

0.02

0

Figure 10: Estimated Cumulative Intensity Function for the Heat Pump Compressor Failure
Times

confidence bands. The classic bathtub-shaped failure rate function might possibly be at work
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here, as evidenced by the early failures (that suspiciously seem to be limited to Building H)

and the late failures that occur after Year 7.

5 Summary

An extension of the estimator given by Leemis (1991) is presented that provides for a non-

parametric estimation of the cumulative intensity function for a nonhomogeneous Poisson

process using overlapping realizations. Simulation via inversion is straightforward.

As in classical statistics, an estimator derived from a data set containing a small num-

ber of observations or realizations should be approached cautiously as the results may be

unrepresentative of the system on average, due to sampling variability. Data sets containing

clustered observations, as in example three at time 7.42, will result in an estimator that

produces simulations with similar characteristics. Increasing the number of realizations in-

creases the precision of Λ̂(t). In a similar fashion to many confidence intervals from classical

statistics, the confidence interval width is proportional to the inverse of the square root of

the number of realizations (e.g., a quadrupling of realizations over all segments results in a

halving of the width of the confidence interval).1

1The authors gratefully acknowledge support from the National Science Foundation for providing funding

for an Educational Innovation Grant CDA9712718 “Undergraduate Modeling and Simulation Analysis.” The

authors also thank the editor and referees for their helpful suggestions.
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