
W&M ScholarWorks W&M ScholarWorks

Arts & Sciences Articles Arts and Sciences

3-2014

Symbolic ARMA Model Analysis Symbolic ARMA Model Analysis

Keith H. Webb

Lawrence Leemis
William & Mary, lmleem@wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Webb, Keith H. and Leemis, Lawrence, Symbolic ARMA Model Analysis (2014). Computational
Economics, 43(3), 313-330.
10.1007/s10614-013-9373-z

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been
accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more
information, please contact scholarworks@wm.edu.

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/aspubs
https://scholarworks.wm.edu/as
https://scholarworks.wm.edu/aspubs?utm_source=scholarworks.wm.edu%2Faspubs%2F1888&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.wm.edu%2Faspubs%2F1888&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu

Symbolic ARMA Model Analysis

Keith H. WEBB

Lawrence M. LEEMIS

Department of Mathematics

The College of William & Mary

Williamsburg, VA 23187–8795, USA

khwebb@math.wm.edu

leemis@math.wm.edu

ARMA models provide a parsimonious and flexible mechanism for modeling the evolution

of a time series. Some useful measures of these models (e.g., the autocorrelation function or

the spectral density function) are tedious to compute by hand. This paper uses a computer

algebra system, not simulation, to calculate measures of interest associated with ARMA

models.

KEY WORDS: Autocorrelation functions; Computer algebra systems; Spectral density func-

tion; Time series analysis; Unit roots analysis.

1 Introduction

Many problems in time series analysis rely on approximate values from Monte Carlo simu-

lations or the central limit theorem rather than exact results. The computer algebra system

Maple and the APPL (A Probability Programming Language) package can calculate exact

1

results that would be impractical to compute by hand (Glen, et al. 2001). This paper de-

scribes our time series extension to APPL which can compute autocorrelation and partial

autocorrelation functions of ARMA (autoregressive moving average) models which would

otherwise require extremely tedious pencil and paper work or simulation to find, along with

several other tools for working with ARMA models. Simulation is not used in any of the

results. 1

The time series extension to APPL provides procedures for ARMA models to:

• calculate an autocorrelation (TSCorrelation), including autocorrelations of models

with heteroskedastic error terms,

• calculate a partial autocorrelation (TSPartialCorrelation),

• calculate a mean (TSMean),

• calculate a variance or covariance (TSVariance),

• plot an autocorrelation or partial correlation function (TSPlot),

• calculate a spectral density function (SDF),

• perform a unit roots analysis to determine whether or not an AR(p) model is stationary

or an MA(q) model is invertible (UnitRoots),

• forecast an AR(p) model and calculate a confidence interval (TSForecast),

• generate a realization of a process (TSRealization),

• perform an exploratory time series analysis (ETSA) which displays several of the previ-

ous commands at once.

1The extension can be downloaded from http://www.math.wm.edu/~leemis/TSAPPL.txt and APPL can
be downloaded from http://applsoftware.com/

2

http://www.math.wm.edu/~leemis/TSAPPL.txt
http://applsoftware.com/

Section 2 describes the data structure for storing ARMA models and explains the ways

that the mean, variance, autocorrelation, partial autocorrelation and forecasts are computed.

Section 3 illustrates how to use the time series extension through a series of examples.

1.1 Basics of ARMA Models and APPL

An AR(p) model has p autoregressive components, 0 moving average components and is

defined by

Yt = c+ φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt, (1)

where Yt is the value of the time series at time t, c is a real-valued constant, φ1, φ2, . . . , φp

are real-valued parameters, and ε0, ε1, ε2, . . . , εt are error terms, typically mutually indepen-

dent and normally distributed with a mean of 0. An MA(q) model has 0 autoregressive

components, q moving average components and is defined by

Yt = c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q, (2)

with variables defined similarly. An ARMA(p, q) model is a combination of (1) and (2):

Yt = c+ φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q. (3)

One aspect of analyzing ARMA (and other time series) models is finding autocorrelation

functions, that is, the jth autocorrelation, denoted by ρj, is the correlation between the value

of a time series Yt at time t and its value Yt−j at time t− j. For models where the εt terms

are independent and identically distributed (IID), ρj is the same at any time t. The jth

autocorrelation of MA(q) models with q < ∞ drops off to 0 when j > q because Yt and

Yt−j do not share terms. On the other hand, the jth autocorrelation of stationary AR(p)

models asymptotically approaches 0 as j increases because the value of Yt affects all future

3

values, but its impact decreases over time. Finding the exact autocorrelation function for

an ARMA model can be difficult to do by hand, especially when error terms are not IID.

Section 2 explains two ways that this process is automated with Maple and APPL.

APPL is essential for working with various distributions of error terms. For example,

suppose that εt ∼ exponential(4) and we want to find E[ε2t]. APPL can find the exact

solution quickly:

> X := ExponentialRV(4);

> g := [[x -> x ^ 2], [0, infinity]];

> U := Transform(X, g);

> Mean(U);

1

8

The Mean, Variance, and Transform procedures, as well as the data structure for probability

distributions in APPL, are all used when working with ARMA models. This enables our

software to use an arbitrary probability distribution for the error terms. For more on APPL,

see Glen et al. (2001).

2 Implementation

The time series analysis extension to the APPL software consists of approximately 1000 lines

of Maple code which allow a user to define an ARMA model and compute various measures

associated with the model. The data structure for storing the ARMA model and methods

for computing the autocorrelation and partial autocorrelation are described here.

4

2.1 Data Structure

One of the first steps in developing the time series extension is to define a data structure

within Maple to store a times series model. A list-of-lists data structure was used to describe

an ARMA model. This allows for both symbolic and numeric values for the parameters, and

the error terms εt can have arbitrary probability distributions. The first sub-list contains

the parameters φ1, φ2, . . . , φp for the autoregressive portion of the model; the second sub-list

contains the parameters θ1, θ2, . . . , θq for the moving average portion of the model; the third

element of the list contains the probability distribution of the error terms. For example, the

statement

> X := [[0.2, 0.93], [1.4], NormalRV(0, sigma)];

sets the variable X to an ARMA(2, 1) model with φ1 = 0.2, φ2 = 0.93, θ1 = 1.4, and N(0, σ2)

error terms (Gaussian white noise). Procedures AR, MA, and ARMA have also been written to

save on keystrokes. For example,

> Y := ARMA(1, 1);

sets the variable Y to a ARMA(1, 1) model with arbitrary parameters φ1, θ1, and the default

standard normal error terms (the default allows a realization to be computed). Other error

terms can also be included using these procedures, for example,

> X := MA([2, 3, 1 / 4], ExponentialRV(1));

sets the variable X to an MA(3) model with parameters θ1 = 2, θ2 = 3, θ3 = 1/4, and

unit exponential error terms. Time-dependent error terms can be introduced in the data

structure by using the variable tau, the time series placeholder for t in the expression for

the error-term distribution. Time-dependent errors are illustrated in Section 3.

5

2.2 Computing Autocorrelation by the Defining Formula

The autocorrelation between Yt and Yt−j can be calculated using the defining formula:

ρj =
Cov(Yt, Yt−j)

σYtσYt−j

=
E[(Yt − E[Yt])(Yt−j − E[Yt−j])]√

E[(Yt − E[Yt])2]
√
E[(Yt−j − E[Yt−j])2]

. (4)

For MA(q) models, this is a straightforward but tedious computation to perform by hand.

Since for any random variables X1, X2 and constants a, b we have

E[aX1 + bX2] = aE[X1] + bE[X2], (5)

then

E[Yt] = E[c+ εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q]

= c+ E[εt] + θ1E[εt−1] + θ2E[εt−2] + · · ·+ θqE[εt−q]. (6)

Maple and APPL can then compute E[Yt] term-by-term, even for error term distributions

that are non-normal or time-dependent (i.e., not IID). The computed values of E[Yt] and

E[Yt−j] are then substituted into (4). The resulting expressions within each of the expected

values are then expanded so that Maple and APPL can compute each expected value term-

by-term once again using (5). With these results, Maple can compute the mean, variance,

jth covariance and jth autocorrelation for MA(q) models.

For stationary AR(p) and ARMA(p, q) models, this method will not work because com-

puting E[Yt] requires computing E[Yt−1], which in turn requires computing E[Yt−2], etc.

However, autocorrelations for either stationary or non-stationary AR(p) and ARMA(p, q)

models over a finite time horizon can be computed using this method. For example, consider

6

an AR(2) model at time 7,

Y7 = c+ φ1Y6 + φ2Y5 + ε7 (7)

and let the two initial observations be Y0 = c + ε0 and Y1 = c + φ1Y0 + ε1. Substitute

c+ φ1Y5 + φ2Y4 + ε6 for Y6 in (7), then substitute c+ φ1Y4 + φ2Y3 + ε5 for Y5, . . . , c+ ε0 for

Y0. The resulting Y7 will not contain any Yt terms and thus the jth autocorrelation of Y7,

ρj,7, can be computed using the method described above.

2.3 Computing Autocorrelation with the Yule–Walker Equations

Autocorrelation for a steady-state AR(p) model (i.e., a stationary process that has run

for long enough that covariances are equal) cannot be computed using the above method.

Instead, a well-known system of equations called the Yule–Walker equations describes the

autocorrelations (provided that the error terms are IID). For an AR(p) model, the Yule–

Walker equations are (Hamilton 1994, page 59):

ρ0 = 1

ρ1 = φ1ρ0 + φ2ρ−1 + · · ·+ φpρ1−p

ρ2 = φ1ρ1 + φ2ρ0 + · · ·+ φpρ2−p

...

ρp = φ1ρp−1 + φ2ρp−2 + · · ·+ φpρ0. (8)

Since for real–valued processes ρ1 = ρ−1, ρ2 = ρ−2, . . . , we can solve for any ρj whenever the

process is stationary. Covariances can be computed with the similar system of equations,

7

where γj is the jth covariance:

γ0 = φ1γ1 + φ2γ2 + · · ·+ φpγp + σ2

γj = φj−1γ1 + φj−2γ2 + · · ·+ φpγj−p j = 1, 2, (9)

For a stationary ARMA(p, q) process there is not an easily definable system of equations for

computing autocorrelations. However, a system can be generated in the following manner.

Consider finding the equation for γj of an ARMA(p, q) model, j ≤ q. Observe that when

j > q, then (9) describes γj. For simplicity, let c = 0 even though the results hold when this

is not the case.

Yt = φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q

E[YtYt−j] = E[Yt−j(φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)]

γj = φ1γj−1 + φ2γj−2 + · · ·+ φpγj−p + E[Yt−j(εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)].

Now define ξk = E[Ytεt−k] and let θ0 = 1, giving us the following solvable system of equations

(once the expectations ξk are computed):

γj = φ1γj−1 + φ2γj−2 + · · ·+ φpγj−p + θjξ0 + θj+1ξ1 + · · ·+ θqξq−j j ≤ q

γj = φj−1γ1 + φj−2γ2 + · · ·+ φpγj−p j > q. (10)

8

The expectation ξk can be computed in the following way and then substituted into (10):

ξ0 = E[εt(φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)]

= E[ε2t] = σ2

ξ1 = E[εt−1(φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)]

= φ1ξ0 + θ1σ
2

ξ2 = E[εt−2(φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)]

= φ1ξ1 + φ2ξ0 + θ2σ
2

...

ξk = E[εt−k(φ1Yt−1 + φ2Yt−2 + · · ·+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + · · ·+ θqεt−q)]

= φ1ξk−1 + φ2ξk−2 + · · ·+ φkξ0 + θkσ
2.

Maple will solve (8), (9) and (10) either with arbitrary parameters or with values that

describe a stationary process.

9

2.4 Computing Partial Autocorrelation

Partial autocorrelations are computed by first finding autocorrelations with one of the above

methods. Then the jth partial autocorrelation is (Woodward and Gray, 1981, pages 579–580)

αj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ0 ρ1 ρ2 · · · ρj−2 ρ1

ρ1 ρ0 ρ1 · · · ρj−3 ρ2

ρ2 ρ1 ρ0 · · · ρj−4 ρ3
...

...
...

. . .
...

...

ρj−1 ρj−2 ρj−3 · · · ρ1 ρj

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ0 ρ1 ρ2 · · · ρj−2 ρj−1

ρ1 ρ0 ρ1 · · · ρj−3 ρj−2

ρ2 ρ1 ρ0 · · · ρj−4 ρj−3
...

...
...

. . .
...

...

ρj−1 ρj−2 ρj−3 · · · ρ1 ρ0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (11)

which can be evaluated using Maple’s LinearAlgebra package.

2.5 Invertibility for MA(q) Models

MA(q) models as defined by (2) are invertible if they can be represented by an AR(∞) model.

For models with IID error terms, this is true when the roots of the model’s characteristic

equation lie outside the unit circle in the complex plane. The characteristic equation of an

MA(q) model is

1 + θ1z + θ2z
2 + · · ·+ θqz

q = 0. (12)

However, non-invertible MA(q) models have an invertible representation with identical

moments (Hamilton 1994, page 68). If λ1, λ2, . . . , λn are the roots of (12) inside the unit

circle and λn+1, λn+2, . . . , λq are the roots of (12) outside the unit circle, then an invertible

10

model with identical moments is

Yt = c+

(n∏
i=1

(1− λiL)

)(q∏
i=n+1

(1− λ−1i L)

)
ε′t, (13)

where V [ε′t] = σ2λ−21 λ−22 · · ·λ−2n and L is the lag or backshift operator, i.e., εtL = εt−1,

εtL
2 = εt−2, etc.

2.6 Forecasting AR(p) Models

Consider an AR(p) model where the values of Yt, Yt−1, . . . are known, but the values of

Yt+1, Yt+2, . . . are unknown, and we want to find the expected value and a confidence interval

for Yt+s for some positive integer s. Then,

Yt+s = φ1Yt+s−1 + φ2Yt+s−2 + · · ·+ φpYt+s−p + εt+s

Yt+s−1 = φ1Yt+s−2 + φ2Yt+s−3 + · · ·+ φpYt+s−p−1 + εt+s−1

...

Yt+1 = φ1Yt + φ2Yt−1 + · · ·+ φpYt−p+1 + εt+1.

Since Yt+1 is an error term plus a constant, then we can substitute Yt+1 into Yt+2, then

substitute Yt+2 into Yt+3, . . . , then substitute Yt+s−1 into Yt+s, resulting in an expression

consisting of error terms and constants. The software assumes that the error terms are

mutually independent and normally distributed, which implies that the value of Yt+s is also

normally distributed. Maple can then compute the mean and variance of Yt+s and call

APPL’s IDF procedure to find values for a confidence interval.

11

3 Examples

This section consists of a series of examples that highlight the capability of the time series

extension to the APPL language. Some of the long symbolic results may find use in statistical

software which currently use simulation to find measures of interest.

Example 1: MA(2) model with time-dependent error terms. Consider the MA(2) model,

Yt = c + εt + θ1εt−1 + θ2εt−2, where εt ∼ N(0, ln(t)2), εt−1 ∼ N(0, ln(t − 1)2), etc. First we

will compute the second autocorrelation at time t, ρ2,t, by hand and then we will compute

ρ2,t using the time series extension.

Using the defining formula for correlation, we have

ρ2,t =
Cov(Yt, Yt−2)

σYtσYt−2

=
E[(Yt − E[Yt])(Yt−2 − E[Yt−2])]√

E[(Yt − E[Yt])2]
√
E[(Yt−2 − E[Yt−2])2]

.

Notice that since all error terms have a mean of 0, then E[Yt] = c and E[Yt−2] = c. Substi-

tuting in the expressions for Yt and Yt−2 we have,

ρ2,t =
E[(εt + θ1εt−1 + θ2εt−2)(εt−2 + θ1εt−3 + θ2εt−4)]√

E[(εt + θ1εt−1 + θ2εt−2)2]
√
E[(εt−2 + θ1εt−3 + θ2εt−4)2]

.

While the error term distributions are not identical, they are independent and have mean 0,

meaning that for any i 6= j we have E[εt−iεt−j] = 0. This allows us to simplify when

expanding the polynomials inside the expected values. So we have,

ρ2,t =
E[θ2ε

2
t−2]√

E[ε2t + θ21ε
2
t−1 + θ22ε

2
t−2]
√
E[ε2t−2 + θ21ε

2
t−3 + θ22ε

2
t−4]

.

Each θi parameter is a constant (i.e., we can bring them outside of the expected value

operator), so it remains to find E[ε2t], . . . , E[ε2t−4] to complete our calculation of ρ2,t. For

any k > 0 and εk ∼ N(0, ln(k)2) we can use the properties of the normal and chi-square

12

distributions to find E[ε2k]. First, ε2k/ln(k)2 ∼ χ2(1), which implies that E[ε2k/ln(k)2] = 1

because the expected value of a chi-square random variable is its degrees of freedom. Then,

since 1/ln(k)2 is a constant, we can bring it outside of the expected value operator and solve,

giving us E[ε2k] = ln(k)2. Using this result, we have:

ρ2,t =
θ2ln(t− 2)2√

ln(t)2 + θ21ln(t− 1)2 + θ22ln(t− 2)2
√

ln(t− 2)2 + θ21ln(t− 3)2 + θ22ln(t− 4)2
.

Now we will compute the same autocorrelation in just two commands using the time

series extension.

> X := MA(2, NormalRV(0, ln(tau))):

> TSCorrelation(X, 2);

θ2ln(t− 2)2√
ln(t)2 + θ21ln(t− 1)2 + θ22ln(t− 2)2

√
ln(t− 2)2 + θ21ln(t− 3)2 + θ22ln(t− 4)2

The first command assigns the time series list-of-lists data structure to X. The first argument

of the MA() procedure is the order of the model and the second argument is the distribution

of the error terms in APPL format (APPL takes standard deviation rather than variance

for its probability distributions), with tau as the placeholder for t. The second command

computes the second autocorrelation of the assigned model.

Example 2: Unit Roots Analysis of an MA(3) model. Find the unit roots of an MA(3)

model with parameters θ1 = 0.7, θ2 = 0.9, and θ3 = −1.3. Since all MA(q) models are

stationary, a unit root analysis of an MA(q) model tests for invertibility. If the model is

not invertible, then an invertible representation will be found according to equation (13) in

Section 2.5. A call to the procedure UnitRoots prints the values of the unit roots, plots the

unit roots in the complex plane, and gives an invertible representation of the model with

identical autocorrelation function.

13

> X := MA([0.7, 0.9, -1.3]):

> UnitRoots(X):

The roots are:

[−0.3730587892 + 0.6289673928I,−0.3730587892− 0.6289673928I, 1.438425271]

Number of roots inside the unit circle: 2

Assuming error terms are i.i.d, then an invertible representation is:

Yt = c + εt + 0.0509128847εt−1 + 0.0160683988εt−2 − 0.3717765894εt−3

1

0

0.5

1

R

0

0.5

-0.5

-1

-1 -0.5

i

If the parameter values were given as exact values rather than decimals (and q ≤ 4), then

the invertible model would also have exact parameters. So if the model were instead input

as

> X := MA([7 / 10, 9 / 10, -13 / 10]):

then the UnitRoots procedure prints the exact values of the three roots of the cubic poly-

nomial

1 +
7

10
z +

9

10
z2 − 13

10
z3 = 0,

14

which are the real root

1

78

3

√
217836 + 780

√
73329 +

236

13
3
√

217836 + 780
√

73329
+

3

13

and the complex conjugates

−
1

156

3
√

217836 + 780
√
73329−

118

13
3
√

217836 + 780
√
73329

+
3

13
±
i
√
3

2

(
1

78

3
√

217836 + 780
√
73329−

236

13
3
√

217836 + 780
√
73329

)
.

Example 3: Unit Roots Analysis of an AR(3) model. Instead of testing for invertibility as

in the previous example, unit roots analysis of AR(p) and ARMA(p, q) models tests for

stationarity. AR(p) models with IID error terms are stationary when the roots of 1− φ1z −

φ2z
2 − · · · − φpz

p = 0 lie outside the unit circle.

> X := AR([0.5, 0.1, -0.3]):

> UnitRoots(X);

The roots are:

[1.034099254 + 0.9230480107I, 1.034099254− 0.9230480107I,−1.734865174]

All roots lie outside the unit circle, so the ARMA process is stationary

-1

10.5

i

-0.5-1

-0.5

-1.5

0

0

1

R

0.5

15

Example 4: MA(1) model with exponential error terms. As expected, non-normal but IID

error terms produce the same autocorrelation function as the case with normal error terms.

> X := MA(1, ExponentialRV(4)):

> TSCorrelation(X, 1);

θ1
1 + θ21

Example 5: AR(2) model at time 7. In this example, ρ2,7 for Y7 = c + φ1Y6 + φ2Y5 + ε7 of

an AR(2) model is calculated using recursive substitution then taking of expected values as

described in Section 2.2. Notice that the constant term, c, appears in the expression.

> X := AR([1 / 2, 1 / 4]):

> TSCorrelation(X, 2, 7);

1067
√
30621

√
16384

31355904
√

2209
16384

c2 + 461
256

This can also be evaluated with arbitrary parameters, but the resulting expression for the

2nd autocorrelation value is very long.

Example 6: AR(4) model with autocorrelation computed by the Yule–Walker equations.

We can compute ρ2 for an AR(4) model that is in steady-state (i.e., stationary) by the

Yule–Walker method described in Section 2.3. The optional "YW" flag tells Maple to find

the correlation by solving the Yule–Walker equations rather than the method described in

Section 2.2.

> X := AR(4):

> TSCorrelation(X, 2, "YW");

16

− −φ42φ2 + φ4φ3
2 + φ1φ4φ3 − φ22φ4 + φ1

2 + φ2 + φ1φ3 − φ22

−1 + φ4 + φ2 + φ4
2 − φ43 − φ42φ2 + φ1φ3 + φ3

2 + φ1
2φ4 + φ1φ4φ3

Example 7: ARMA(3, 3) model at time 8. The 2nd autocorrelation of Y8 is computed as

described in Section 2.2.

> X := ARMA([1 / 2, 3 / 10, 1 / 10], [9 / 10, 1 / 2, 3 / 10]):

> TSCorrelation(X, 2, 8);

3935943161

31174413101120000000

√
97420040941

√
6400000000

1√
204404181
16000000

+ 14874485521
25600000000

c2

This can be computed with arbitrary parameters but the resulting equation is very long.

Again, notice that the constant term, c, appears in the expression.

Example 8: ARMA(3, 2) autocorrelation by solving the Yule–Walker equations. The 2nd

autocorrelation of Yt is computed as described in Section 2.3.

> X := ARMA([5 / 10, 3 / 10, 1 / 10], [3 / 4, 1 / 4]):

> TSCorrelation(X, 2, "YW");

1636

1831

Example 9: MA(2) partial autocorrelation. The 3rd partial autocorrelation of an MA(2)

model is computed as described in Section 2.4.

> TSPartialCorrelation(MA(2), 3);

17

θ1 (1 + θ2)
(
−2 θ2 − 2 θ2

3 + θ1
2 + θ2

2θ1
2 + θ2

2
)

1 + 2 θ2
2 + θ1

6 + θ1
2 + θ1

4 + 2 θ2
4 − 2 θ2θ1

2 + θ2
2θ1

4 + 5 θ2
2θ1

2 − 4 θ2θ1
4 − 2 θ2

3θ1
2 + θ2

6 + θ2
4θ1

2

Example 10: MA(1) partial autocorrelation with time–dependent error terms. The 3rd partial

autocorrelation is computed as described in Section 2.4 and εt ∼ N(0, t).

X := MA(1, NormalRV(0, sqrt(tau))):

TSPartialCorrelation(X, 3);

θ1
3 (t− 1)3√

t + θ1
2t− θ12

√
t− 1 + θ1

2t− 2 θ1
2
(
t2 − t + θ1

4t2 − 3 θ1
4t− θ12 + 2 θ1

4
)

Example 11: AR(3) partial autocorrelation at time 7. In this example, the first two auto-

correlations of Y7 are found using the method described in Section 2.2 which are then used

to find the 2nd partial autocorrelation as described in Section 2.4.

> TSPartialCorrelation(AR([1 / 2, 3 / 10, 1 / 10]), 2, 7);

1

132731033

(
22811879108847780543893

33554432000000000000000
c2 − 58277673273951481

838860800000000000000000

√
132731033

√
51200000√

170119849

256000000
c2 +

289249

128000
+

89625931935942986179113

8388608000000000000000

)√
132731033

√
51200000

1√
170119849
256000000

c2 + 289249
128000

(
5269767243516833

13107200000000000
c2 +

2761515025601

1000000000000

)−1

Again, this partial autocorrelation can be computed with arbitrary parameters but the re-

sulting expression is very long. As in two of the above examples, the constant term, c,

18

appears in the expression.

Example 12: AR(3) partial autocorrelation by solving the Yule–Walker equations. By using

the "YW" flag in TSPartialCorrelation, the computer finds the autocorrelations by Yule–

Walker which it then uses to find the 2nd partial autocorrelation as described in Section 2.4.

> TSPartialCorrelation(AR(3), 2, "YW");

−4φ3φ1φ2 + φ2φ3
2 − φ2 + 2φ2

2 − φ1φ22φ3 − φ23 + φ1
3φ3 + 2φ1

2φ3
2 + φ1

2φ2 + φ3
3φ1 − φ3φ1

φ1
2φ3

2 + 2φ3
3φ1 − 2φ3φ1 + φ3

4 − 2φ3
2 + 2φ2φ3

2 + 1− 2φ2 + φ2
2 − φ22φ32 − φ12

Example 13: Plotting ARMA(3, 3) autocorrelation. TSPlot will find several autocorrelations

or partial autocorrelations (by using the optional "partial" flag as a third parameter) and

then plot them. In this example, the "YW" flag is used to tell Maple to find autocorrelations

by solving the Yule–Walker equations as described in Section 2.3.

> X := ARMA([0.4, 0.2, -0.3], [0.9, 0.3, -0.2]):

> TSPlot(X, "YW");

Lag

121110987

0.4

654321

Correlation

1

0.8

0

0.6

0.2

0

-0.2

19

Example 14: Forecasting an AR(3) model. In this example an AR(3) model is forecast 5

time periods into the future as described in Section 2.6. The last three known values of the

model are [-5, -1, 4] , with -5 being the most recent. Such small data sets may be used,

for example, for the price of a stock shortly after its launch or for space missions where there

is limited data on past missions. The fourth (optional) argument in TSForecast contains

the lower and upper percentiles on the confidence interval. The default is a symmetric 90%

confidence level. This example plots symmetric 95% confidence intervals.

> X := AR([0.5, 0.1, -0.3], NormalRV(0, 4)):

> TSForecast(X, 5, [-5, -1, 4], [.025, .975]);

Assuming error terms are normal for this forecast.

42

Y[t]

10

3

5

0

-5

-10

-15

1

t

8765

Expected value and confidence interval are:

[0.36950, 12.78829339,−12.04929337]

After the three known values are plotted, the next five expected values and confidence interval

bounds are plotted.

20

Example 15: ARMA(3, 3) realization. TSRealization will sample normally distributed error

terms with the Box–Muller transformation and then plot a realization for the given model.

If AR parameters are given, then the system warms up before plotting. This example plots

a realization of 75 values (the default is 50 values).

> X := ARMA([5 / 10, 3 / 10, 1 / 10], [1 / 10, 5 / 10, 7 / 10]):

> TSRealization(X, 75);

706050403020100

4

0

-4

-8

Example 16: Exploratory time series analysis of an MA(3) model. The ETSA() command

calls autocorrelation, partial autocorrelation, unit roots analysis, spectral density function,

and realization procedures.

> X := MA([1 / 5, -7 / 5, 11 / 5]):

> ETSA(X);

Time series model:

Yt = c + εt + 1
5
εt−1 − 7

5
εt−2 + 11

5
εt−3

Autocorrelations:

21

Correlation

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

Lag

3210

Partial Autocorrelations:

Lag

1211109871

0

65432

1

0.8

0.6

0.4

0.2

-0.2

-0.4

0

Unit Roots Analysis:

The roots are:[
− 1

33
(8171 + 33

√
61305)(1/3) − 16

33(8171+33
√
61305)(1/3)

+ 7
33
, 1
66

(8171 + 33
√
61305)(1/3) +

8

33(8171+33
√
61305)(1/3)

+ 7
33

22

−1
2
I
√
3

(
− 1

33
(8171 + 33

√
61305)(1/3) + 16

33(8171+33
√
61305)(1/3)

)
, 1
66

(8171 + 33
√
61305)(1/3)

+ 8

33(8171+33
√
61305)(1/3)

+ 7
33
− 1

2
I
√
3

(
− 1

33
(8171 + 33

√
61305)(1/3) + 16

33(8171+33
√
61305)(1/3)

)]
All roots are inside the unit circle.

Assuming error terms are i.i.d., then an invertible representation is:

Yt = c+ εt −
7

11
εt−1 +

1

11
εt−2 +

(
1

1089

√
61305+

4096

35937(8171 + 33
√
61305)

+
8164

35937

)
εt−3

R

i

1

1

-0.5

0.5

0-0.5

-1

-1 0.5

0

Spectral Density Function:

f(ω) =
196
25
− 158

25
cos(ω)− 48

25
cos(2ω) + 22

5
cos(3ω)

π
0 < ω < π

23

omega

32.52

5

4

1.5

3

2

1

1

0.5

0

0

First Realization:

30

8

4

20

0

-4

10 5040

Second Realization:

24

302010

2

0

-2

50

-4

-6

40

Acknowledgment

This research is partially supported by an NSF CSUMS grant DMS–0703532 at the College

of William & Mary.

References

[1] Box, G., G. Jenkins, Time Series Analysis: Forecasting & Control (3rd edition).

Prentice Hall, 1994.

[2] Glen, A. G., D. L. Evans, L. M. Leemis, APPL: A Probability Programming Language.

The American Statistician 55(2) 156–166. 2001.

[3] Hamilton, J. D., Time Series Analysis. Princeton University Press, Princeton, New

Jersey, 1994.

[4] Woodward, W. A., H. L. Gray, On The Relationship Between the S Array and the

Box–Jenkins Method of ARMA Model Identification. Journal of the American

Statistical Association 76(375) 579–587. 1981.

25

	Symbolic ARMA Model Analysis
	Recommended Citation

	Introduction
	Basics of ARMA Models and APPL

	Implementation
	Data Structure
	Computing Autocorrelation by the Defining Formula
	Computing Autocorrelation with the Yule–Walker Equations
	Computing Partial Autocorrelation
	Invertibility for MA(q) Models
	Forecasting AR(p) Models

	Examples

