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ABSTRACT 

 
Investigation of Genetic Algorithm Design Representation for 

Multi-Objective Truss Optimization. (August 2006) 

Soumya Sundar Pathi, B.Tech., National Institute of Technology Calicut, India 

Chair of Advisory Committee: Dr. Anne Raich 

 

            The objective of this research is to develop a flexible design grammar and 

genetic algorithm representation to be used in a multi-objective optimization method to 

design efficient steel roof trusses given space dimensions and loading requirements by 

the user. The goal of implementing the method as a multi-objective problem is to obtain 

a set of near-optimal trusses for the defined unstructured problem domain, not just a 

single near-optimal design. The method developed was required to support the 

exploration of a broad range of conceptual designs before making design decisions.  

Therefore, a method was developed that could define numerous design variables, support 

techniques to locate global or near-global optimal designs, and improve the efficiency of 

the computational procedures implemented.  This research effort was motivated by the 

need to consider structural designs that may be beyond the established conventions of 

designers in the search for cost-efficient, structurally-sound designs. 

 An effective design grammar that is capable of generating stable trusses is 

defined in this research. The design grammar supports the optimization of member size, 

in addition to truss geometry and topology. Multi-objective genetic algorithms were used 

to evolve sets of Pareto-optimal trusses that had varying topology, geometry, and 

member sizes.  The Pareto-optimal curves provided design engineers with a range of 

near-optimal design alternatives that showed the tradeoffs that occur in meeting the 

stated objectives.  Designers can select their final design from this set based on their own 

individual weighting of the design objectives. Trials are performed using a multi-

objective genetic algorithm that works with the design grammar to evolve trusses for 
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different span lengths.  In addition to evaluate the performance of the developed 

optimization method further, trials were performed on a benchmark truss problem 

domain and the results obtained were compared with results obtained by other 

researchers.  

 The results of the performance evaluation trials for the proposed method, in 

which the sizing, shape and topology were simultaneously performed, indicated that the 

method was effective in evolving a variety of truss topologies compared to previous 

published results, which evolved from a ground structure.  The diverse topologies, 

however, were obtained over several trials instead of being found in a Pareto-optimal set 

found by a single trial.  In addition, the proposed method was not able to locally 

optimize the member section sizes.  Additional trials were performed to determine the 

benefit of applying local optimization to the member section sizes for a given truss 

topology or geometry provided by the method.  The results indicate that significant 

weight reduction could be achieved by performing local optimization to the truss designs 

obtained by the proposed multi-objective optimization method. 
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CHAPTER I 

 INTRODUCTION 

Overview 

            Performing engineering design optimization, especially the optimization of 

complex structural systems, is an active area of research. The focus of research in 

structures is on developing computational methods to support decision making 

concerning complicated modern structures that carry heavy loads over long spans, while 

also meeting specific architectural, construction, and economic requirements. As part of 

many of the methods developed, there is a need to support the exploration of a broad 

range of conceptual designs before making design decisions.  Therefore, the methods 

developed must be able to realistically define numerous design variables, support 

techniques to locate global or near-global optimal designs, and improve the efficiency of 

the computational procedures implemented.  This research effort focuses on the design 

optimization of long span truss systems.  The computational methods developed seek to 

obtain cost-efficient designs, with respect to construction and material costs, while also 

satisfying structural design requirements and a designer’s aesthetic criteria concerning 

layout of members and joints. Consideration of all of these issues makes the development 

of design and optimization methods a challenge even for smaller-scale structural 

systems.  

            Modern researchers have been using Genetic Algorithm (GAs) (Holland 1975; 

Goldberg 1989) and other heuristic methods to search for near-optimal topology layouts, 

in addition to determining member cross-sectional areas. Lin and Hajela (1992, 1993) 

performed discrete shape optimization to find the minimum weight of an eight bar truss 

subjected to displacement constraints. Rajeev and Krishnamoorthy (1992) used GAs to 

find minimum weight-truss systems through discrete shape optimization subject to stress 

constraints. Sakamoto and Oda (1993) used GAs to find minimum weight trusses by 

optimizing truss topology by combining genetic algorithms with an optimality criteria  

This thesis follows the style and format of the Journal of Structural Engineering. 
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method. GAs were used to perform the layout of the truss and the optimality criteria 

assisted in finding the member cross-sectional areas. In comparison, Hajela and Lin 

(1994) adapted a two-stage shape and topology optimization process. The first process 

found the optimal topology of the trusses using a ground structure approach, and the 

second process found the optimum member sizes for the resulting truss topology. Many 

other heuristic optimization methods have been employed by researchers in the field of 

truss shape and topology optimization. One of the most common example includes fuzzy 

logic-controlled genetic programming (Yang & Soh, 2000).  

   Even though there has been a substantial amount of research performed in the 

field of truss shape and topology optimization, research that seeks to simultaneously 

optimize the truss geometry, shape, and topology is uncommon. In addition, many 

research efforts remain focused on problems that work with a predefined structured 

domain, in which the number of nodes and members and the load locations are fixed.  In 

order to fully explore conceptual designs for a problem, however, designs that vary in the 

number of members and nodes and in how the loads are carried by the structure must be 

examined, which requires that the limits imposed by a predefined structured domain 

must be removed. 

Motivation 

            This research effort is motivated by the need to consider structural designs that 

may be beyond the established conventions of designers in the search for cost-efficient, 

structurally-sound designs. Mathematical optimization methods work with inflexible 

statements of constraints in the formulation and perform a local search, which may result 

in sub-optimal design alternatives.  Therefore, these methods are not suitable for 

generating varied design geometries and topologies and performing a global search for 

near-optimal design alternatives. A computational design program, however, can be 

developed to provide the ideal environment for exploring more efficient and varied 

designs. Genetic algorithms, along with other heuristic methods like simulated annealing 

and taboo search, have been shown to provide global exploration capabilities and have 
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been used for design optimization. Many researchers have worked on problems that are 

limited to structured domain, in which the all the trusses optimized have the same fixed 

nodal locations, number of members, number of nodes, and load locations. Some 

researchers have also worked on the optimization of all the three levels of optimization 

(i.e. topology, geometry and shape), but have only done so in stages. Research focused 

on developing methods to simultaneously optimize all three levels of optimization is only 

just beginning to appear in the context of structural design problems. All of these factors 

form the motivation to develop a computational method that can efficiently search over a 

broad range of different truss geometries and topologies while at the same time 

performing all three levels of truss optimization simultaneously. 

Research objective and scope 

            The objective of this research is to develop a flexible design grammar and genetic 

algorithm representation to be used by a computational method to design efficient steel 

roof trusses given design space dimensions and loading requirements by the user. The 

goal of the computational method is to obtain a set of near-optimal trusses for the defined 

unstructured problem domain, not just a single near-optimal design. The unstructured 

domain only prescribes the magnitude of loading, the support locations, and the overall 

dimensions of the domain. No other structural information concerning nodal locations or 

the number or the placement of members is defined.  

            The method developed will support the optimization of truss designs for two 

objectives that concern weight, and deflection along with keeping the constraints of 

stress within the prescribed limit. Multi-objective genetic algorithms are used in this 

research effort to evolve the set of Pareto-optimal trusses within this domain that have 

varying topology, geometry, and sizes.  A Pareto-optimal curve (weight and deflection), 

which represents the optimal set of design alternatives evolved, will be generated for 

each predefined unstructured problem domain (loading condition, support location, and 

maximum height) investigated in this research. The Pareto-optimal curve will be used to 

provide design engineers with a range of near-optimal design alternatives that show the 

tradeoffs that occur in meeting the stated objectives.  Designers can select their final 
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design from this set based on their own individual weighting of the design objectives. 

The quality of the designs obtained will be evaluated by comparing the truss designs 

evolved using the proposed computational design system with truss designs obtained by 

other researchers on a defined benchmark problem domain cited in the research 

literature. 

Methodology 

            The computational search method and design representation developed in this 

research is based on Multi-objective Genetic Algorithms (MOGA) (Goldberg 1989). In 

single-objective optimization, typically one near-optimal solution is desired and this 

solution is the best at meeting the stated objective. However, most realistic engineering 

problems have multiple, often conflicting, design objectives.  If there are several design 

objectives, a single criterion can be formed in a GA by using one composite fitness 

function that is created by weighting each objective.  The best single design alternative 

can then be found by optimizing the composite fitness function. To support the search for 

an efficient design starting back at the conceptual design phase, however, it is not 

critical, and probably not even desired, to search for only a single solution. Instead, it is 

more important to provide design engineers with a view of the broad range of design 

alternative designs that result from different design objective priorities. MOGAs can be 

used to evolve a Pareto-optimal set of designs that optimize several objectives, which 

enables the engineers to evaluate the tradeoffs that occur due to having conflicting 

objectives. 

            To obtain the Pareto-optimal set of truss designs that minimize weight and 

deflection while maximizing member stress ratios, several multi-objective concepts 

proposed by other researchers are applied in this research. The search domain of the 

design problem studied has many multiple local optimums. Even small changes in the 

topology, geometry or member sizes can often create a locally-optimum design. In this 

large and complex search domain, there is a high possibility that many locally optimum 

trusses are prematurely eliminated from the population even though they may eventually 

have better structural performance than others when further optimized. Several 
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mechanisms must be used, including fitness sharing, to prevent the population from 

converging to a single near-optimal truss design and to maintain solutions that are well 

distributed all over the entire Pareto-front during the entire GA process. By providing 

these features, a diverse range of topologies and shapes of trusses will be evolved. 

Outline 

            Chapter І provides a discussion of the motivation, objective, scope and 

methodology for this research effort. Chapter ІІ provides a literature review of work done 

by previous researchers on structural design optimization using GAs and MOGAs , in 

addition to discussing the basic operators of a GA.  In Chapter ІІІ, the unstructured 

design problem domain investigated in this research is defined and the MOGA 

representation used for truss optimization in this research is presented. Chapter ІV details 

the procedures involved in implementing the developed methodology and the 

experiments performed to verify that the method is capable of obtaining efficient truss 

design alternatives. Chapter V defines the benchmark problem investigated and provides 

a comparison of results obtained from the computational method developed in this 

research with the research obtained previously by other researchers. The conclusion is 

presented in Chapter VІ, which provides a summary of the results, including a discussion 

of the benefits provided by the proposed method, the problems identified by this 

research, and future recommendations to extend this research work. 
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  CHAPTER ІІ 

LITERATURE REVIEW 

 
            This chapter is divided into three parts. In the first part, the layout optimization of 

truss system is discussed briefly. The second part highlights on the format and operators 

used for simple genetic algorithm (SGA) and the multi-objective genetic algorithm 

(MOGA). In the third part, a review of the methods and strategies proposed by other 

researchers in solving truss optimization problems using GAs is presented. 

Layout optimization 

            Layout Optimization of truss systems refers to producing trusses with minimal 

weight and primarily satisfying stress, displacement, and slenderness criteria. Layout 

optimization can be classified into three main categories: 

І)     Sizing Optimization: Sizing optimization is concerned with the optimal 

selection of the cross–sectional areas of the truss members where all the nodal 

connectivity and the nodal locations remain fixed in the truss.  

ІІ)  Geometry Optimization: Geometry optimization is concerned with the 

optimal selection of the location of the nodal connections, which affect the 

lengths of individual members and the overall shape of the truss, which primarily 

refers to changing the nodal co-ordinates during optimization. 

ІІІ)    Topology Optimization: Topology optimization is concerned primarily with 

the placement of members in the truss structure relative to each other. It also 

determines the number of members and the number of nodes that exist in the 

structure along with their support conditions. 

Overview of genetic algorithms 

Introduction 

            The solutions obtained from mathematical search methods studied substantially 

in the past are based on a local scope and the final optimal solution found depends 

heavily on the initial starting point and on the neighborhood of the search space 

investigated. 
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            However, most real world problems have unpredictable, complex domains, in 

which continuity and existence of mathematical function gradients are not guaranteed. 

For these reasons, the mathematical methods developed for optimization do not have 

robustness required to search structural design domains that tend to have non-convex, 

highly nonlinear search spaces with small, often discontinuous, feasible regions. 

            Genetic algorithms (GA) were first developed by Holland (1975) and his 

colleagues and his students at the University of Michigan. They were further developed 

by Goldberg (1989). GAs works on the principle of natural selection to evolve solutions 

to problems. The GA operations can be divided into those that operate in the Genospace 

where the genetic operations are performed and those that operate in the Phenospace, 

where the function evaluations are performed on individuals. The GA fitness function 

serves as a link between the two realms, since it determines which encoded individuals 

have a better chance of survival based on their respective objective values. The other link 

between the two is the encoding scheme that uniquely maps an individual design solution 

from the phenospace to its corresponding bit-encoded genotype string and vice versa 

(Goldberg 1989). Thus these systems have the characteristics that they evolve through 

the application of genetic operators of recombination and mutation and adapt themselves 

to the environment through fitness selection. Many researchers have validated the 

usefulness of GA’s in solving optimization problems. The best part of applying GAs is 

that they are easy to implement computationally, while at the same time providing 

powerful search methods. Goldberg (1989) identified four main characteristics in which 

GA are different from other traditional optimization methods: 

1) GAs work with a coding of the parameters set, not the parameters 

themselves 

2) GAs search from a population of points, not a single point 

3) GAs use payoff (objective function) information, not derivatives or other 

auxiliary knowledge. 

4) GAs use probabilistic transition rules, not deterministic rules 
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Simple Genetic Algorithm (SGA) 

            Fig. 2.1 below presents the flowchart of the operators involved in implementing 

the SGA. The actions of the operators as shown allow the SGA to search for improved 

solutions over the generations performed. Individual design solutions are typically 

represented in the genotype by a bit encoding of 0’s and 1’s in a string, although other 

types of encodings are possible. The evolutionary process starts from a population of 

randomly generation individuals and proceeds in a generational fashion. In each 

generation, the fitness of the whole population is evaluated and each individual is 

assigned fitness values depending on how well that individual meets the stated objectives 

and constraints. Selection is then performed to pick individuals from the current 

population based on their fitness values to form a new population.  This population 

becomes the current population in the next generation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.1. Flowchart of simple genetic algorithm 
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 SGAs apply three main genetic operations: selection, crossover, and mutation. De 

Jong (1975) conducted research to determine the performance of GAs that implemented 

simple crossover, simple mutation, and roulette wheel selection using five test functions. 

The form of the GA studied from the basis of the SGA. Since then SGAs have been used 

in a wide variety of applications with different combinations of SGA operators, 

parameter settings and search strategies.  The operations shown in Fig. 2.1 are repeatedly 

applied until no further improvement is found or a pre-specified number of generations is 

performed. 

Simple Genetic Algorithm (SGA) representation 

            All optimization design variables for a single solution are represented by binary 

numbers in a SGA individual. Fig. 2.2 presents two design variables (X1 and X2) that are 

converted into binary numbers, in which each variable is encoded using 3-bits. The value 

range of each variable in this case is 0 – (2³ -1). An individual is then defined by 

concatenating these binary numbers together to form a string. 

 

 

0 1 1

1 1 0

0 1 0 0 0 1

1 1 0 0 1 1

1 1 1 1 1 1

X1 X2

X2

X1

0 1 0

0 0 1

X1

X2

1 1 1

1 1 1X2

X1

X1

X1

X2

X2

 

Fig. 2.2. Representation of SGA 
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Fitness evaluation 

            Each individual in the population is randomly initialized. These individuals are 

decoded during the process of optimization and the decoded values are used to evaluate 

the fitness of each individual. The fitness of each individual is evaluated using a fitness 

function. The fitness function performs the function of determining how well the 

individuals meet the stated objectives along with the penalties on fitness for violation of 

constraints. For example, SGA can be applied to an optimization problem with a single 

objective function:  

                             Max F(x) = 
1

n

i
i

X
=
∑                                                                    (2.1)              

The fitness value of each individual in the SGA population is then computed using 

equation (2.1). Table 2.1 shows the fitness values of each individual. 

 

 

Table 2.1.  Fitness values of individuals computed with equation 2.2 and values in Fig. 

2.2. 

Individual X1 X2 Fitness (X1+X2) 

1 6 3 9 

2 2 1 3 

3 7 7 14 

 

 
 
Selection operator 

            Based on their assigned fitness values, some individuals in the current population 

are selected to be part of the population evaluated in the next generation. Individuals with 

higher fitness values have a greater chance of being selected than those having lower 

fitness values. The selected individuals are used to generate new offspring through 

genetic operators (crossover and mutation) to construct the population for the next 

generation. Roulette wheel and tournament selection are the two important selection 
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schemes that are most common in the literature. In this research, tournament selection is 

used to select individuals to undergo crossover and mutation. In general, in tournament 

selection ‘N’ (where ‘N’ is a predefined number) number of individuals is selected at 

random from among the current population and the fittest among them is picked for the 

new population. The process of tournament selection is continued until the next 

generation population is filled. Fig. 2.3 provides a visual example of tournament 

selection where N = 3. Individuals having higher fitness values have a greater chance of 

being selected, thus resulting in generating fitter individuals in the next generation. 

Tournament selection allows user to have greater control over the selection pressure from 

one generation to the next. A smaller tournament selection will have less selection 

pressure where as a higher tournament selection will have high selection pressure which 

typically results in obtaining local optima. 

 

 

 

Fig. 2.3. Example of tournament selection (tournament size: 3)  
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Genetic crossover and mutation operators 

            The selected individuals in the population undergo possible alteration using 

crossover and mutation operators. Many crossover techniques exist, including single 

point crossover, multipoint crossover, and uniform crossover (Goldberg 1989). 

Crossover is a recombination operator. It cannot produce new information to the search 

process, but it can provide a mechanism for individuals to improve their fitness. For 

example using single point crossover, a point on the parent individual is selected and all 

encoded bits beyond that point in the individual string are swapped between the two 

parent individuals. The resulting individuals are called children and wait to undergo 

possible mutation before the next generation. Fig. 2.4 presents an example of single point 

crossover applied to two individuals. 

 

 

Chromosome 1 11011 001001111

Chromosome 2 00111 110011110

Offspring 1 11011 110011110

Offspring 2 00111 001001111
 

Fig. 2.4. Example of single point crossover 

 
 
            Mutation is used in GAs to help maintain genetic diversity from one generation to 

the next, and also to help introduce or reintroduce useful information into the population 

of individuals. The purpose of mutation in SGAs is to allow algorithms to avoid local 

minima by preventing the population of chromosomes from becoming similar to each 

other, thus slowing or even stopping evolution. Fig. 2.5 presents a simple mutation 

operation, which involves flipping each bit in the encoding based on a set probability of 

mutation. 
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Fig. 2.5. Mutation operation 

 
 
Elitism 

            The SGA operators and selection mechanisms are all applied probabilistically.  

Therefore, there is no guarantee that the best individuals in the current populations will 

be selected. Elitism is used to transfer copies of the best individuals in the population 

directly into the next generation without undergoing any crossover or mutation.  The rest 

of the population is selected using tournament selection.  Using elitism prevents the loss 

of the best solutions found to date by the SGA.  

Multi objective genetic algorithm (MOGA) 

            In SGAs, a composite fitness function must be used to handle problems in which 

there is more than one stated design objective.  The individual objectives are combined 

together through addition or multiplication and often exponential or other factors are 

applied to impose the desired priority among the satisfaction of the different objectives.  

The composite fitness function plays an important role in determining whether an 

individual is selected for reproduction to produce the individuals in the next generation.  

However, in the composite function often becomes highly sensitive to its formulation 

and to the factors applied.  Therefore, often a lot of effort must be put into optimizing the 

composite function form to obtain good, consistent results.  In addition, the composite 

fitness function with a predefined set of factors can only be used to obtain a single 

solution. Therefore, the major advantage of using a MOGA over a SGA is its 

independence of the fitness function to the priority factors used to handle multiple 

objectives and the ability to obtain a set of equally good solutions. In MOGA, the 

selection of parents to undergo reproduction is done on the basis of their individual rank, 

which in turn is determined from their distance to and position on the trade-off surface 
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obtained considering the stated objectives separately. This surface, commonly called the 

Pareto surface, is a three dimensional curve in this research since there are three 

objectives i.e. stress, deflection and weight. Those individuals in the population that are 

determined to be non-dominated by all other individuals are assigned Rank 1.  During 

ranking, these individuals are then eliminated from the ranking process (having already 

been assigned a rank of 1) and the next set of non-dominated individuals in the 

population is found and assigned Rank 2. The process continues till all the individuals in 

the population are ranked (Srinivas and Deb 1994). 

Overview of previous research on truss optimization using genetic algorithms 

Traditional and evolutionary approach to truss optimization 

            Traditional methods of optimization were the main focus of research during the 

late seventies and eighties. This research led to the application of a number of 

mathematical optimization techniques to optimize trusses. Most of the research 

performed concentrated on member size optimization for a fixed structural topology and 

geometry. Berke and Khot (1987) used optimality criteria method and Schmit (1981) 

used a mathematical programming method for truss optimization. Templeman and Yates 

(1983) suggested a method for discrete optimization using segmental members. John and 

Ramakrishnan (1987) studied a combinatorial optimization approach using branch and 

bound algorithms for discrete structural truss optimization. 

            Rechenberg (1965) was the first to use the concept of biological evolution in 

design and analysis, although the importance of GAs came into picture through the work 

of Holland (1975). Goldberg (1989) researched the applicability of genetic algorithm in 

the optimization field which started an era of research in this field.  

Shape, geometry and topology optimization 

            Rajeev and Krishnamoorthy (1992) and Jenkins (1992) were among the first to 

apply GAs successfully to truss optimization. The former researchers concentrated their 

efforts on the optimization of member sizes; whereas the later researcher focused on 

geometry optimization. After the successful implementation of GA in shape optimization 

of trusses, many researchers tried to simultaneously apply topology and geometry 
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optimization along with the shape optimization in order to enhance the ability of design 

optimization. 

            Several researchers in the mid-1990s tried to work on the limited topology and 

geometry optimization from different prospective. Hajela and Lee (1994) performed 

topology optimization using the ground structure approach, which was first proposed by 

Dorn et al. In their research, they followed a two stage procedure. In the first stage a 

number of truss topologies that were kinematically stable were generated. The next stage 

used the topologies generated in the first stage as initial seeds and member-sizing 

optimization was performed with the consideration of structural constraints in addition to 

additional topology optimization. In order to overcome the two stage procedure, Rajan 

(1995) using the ground structure performed sizing optimization along with limited 

geometry and topology optimization. Although the research was an improvement over 

the previous ones concerning optimization of truss designs, it still had the drawback of 

using a ground structure approach, which limited the flexibility of creating diverse 

designs in an unstructured problem domain. 

            Other researchers also tried to implement fitness sharing as an effective technique 

to maintain the diversity in the population and curtail the need of large population sizes 

and longer string lengths. Gage et al. (1995) developed a variable- complexity genetic 

algorithm procedure for topology optimization. Their method using GAs was followed 

up by a gradient based optimizer to size the members. This research effort also 

introduced the variable length GA and the use of cut-splice crossover operation. Further 

improvement in the field was shown by Deb and Gulati (2001), in which each member’s 

presence or absence in the truss topology was determined by the area assigned to each 

member of a truss. If the member size was less than the predefined critical area, then the 

member was removed. In their research, the nodes of the trusses were divided into two 

categories. The first category was known as the basic nodes and the next as non-basic 

nodes. The presence of the basic nodes was a must to make the trusses kinematically 

stable. The non-basic nodes were optional. Thus, the trusses that did not have the basic 

nodes were excluded from further evaluation. 
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Optimization in an unstructured problem domain 

            In the research conducted by Shresta and Ghaboussi (1998), a new methodology 

to evolve optimum truss design in an unstructured problem domain, in which the designs 

are allowed to emerge free of preconceived designs, was developed. The string 

representing the structure is made up of fixed number of concatenated substrings. Each 

substring encoded the nodal location, the presence or absence of a node and the member 

information for members that are connected to the node. Even though a fixed length 

string was used, the maximum number of nodes was kept as a variable as the string 

length could be initialized to the desired extent. To evaluate the efficiency of the 

proposed methodology, optimization trials were performed for two design spaces that 

had maximum heights of 10m and 35m with both spanning 70m in length. Weight 

optimization of the truss was performed taking into consideration the different types of 

design constraints. The trusses generated from the two design spaces had reasonable 

configurations and the stresses in the members were within the specified limits set by the 

prescribed loading and design space. Thus, this research was a milestone in the field of 

adaptability of SGA to unstructured problem domains and to truss topology and 

geometry optimization. 

Hybrid heuristic techniques 

            During the late nineties various researchers have come up with a wide variety of 

ideas and ways of implementing GAs to improve the optimization of trusses. Rajeev and 

Krishnamoorthy (1997) proposed a strategy that resulted in automatically arriving at 

lower bound indices for each design variable along with using a variable length genetic 

algorithm. The topologies that did not result in optimal solutions died off in early 

generations, and after a few generations the population was found to be composed of 

individuals of the same lengths. 

            String lengths play a major role in determining the computational time involved 

in the optimization process. Long string lengths make the GA process slower in general. 

This is a serious problem when large scale optimization problems are considered. Jenkins 

(1997) proposed in his research a space condensation heuristic that helped in achieving 
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better optimal results in a shorter period of time. Jenkins (2002) developed an idea of 

implementing GA without crossover. He proposed an adaptive GA that used only 

mutation. In his research, two kinds of mutation were used. One was the random 

mutation, which was similar to that used in SGAs, in which mutation is performed with 

genes that are selected based on mutation probability, and the other was intelligent 

mutation that was performed conditionally. For instance, if the stress in a truss member 

exceeds the design stress then positive mutation was applied to increase the cross 

sectional area otherwise negative mutation is performed. Thus, this type of 

implementation reduced the computational expense of the method. 

            Yeh (1999) proposed a hybrid GA to enhance the efficiency of the GA process. 

The concept of fully stressed design is combined with that of the survival of the fittest. 

Fully stressed design is efficient in finding local optimum, while GAs are better at 

finding global optimum.  This research achieved faster convergence and more stability as 

compared to the use of GA alone. 

           Raich and Ghaboussi (2000) used an implicit redundant representation (IRR) of 

the GA string to produce near-optimal frame designs. The IRR GA overcomes the fixed 

parameter limitation of SGA by its ability to self organize the GA representation and to 

enable the individuals in the population to encode a varying number of design parameters 

during optimization. This methodology was able to expand the optimization search 

process to include diverse topologies and geometries simultaneously. 
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CHAPTER III 

DESIGNING A PARAMETER VALUE REPRESENTATION AND MODELING 

AN UNSTRUCTURED DOMAIN 

 
            The design representation used by a GA is critical in that it provides the mapping 

between the genotype string encoding and the phenotype expression of the design 

variable values. In order to generate a truss structure and to analyze it, all the information 

about the design parameters like the nodal locations, number of nodes, and member areas 

must be encoded in an individual. In addition to the information regarding the 

parameters, loading information, including the magnitude and location, and the support 

conditions must be specified to completely analyze the generated truss structure. 

Therefore, for modeling trusses in an unstructured domain, the GA population must 

provide all the information required to define a diverse set of complete truss structures to 

evaluate each generation.  

  To define each truss alternative, each individual’s information is encoded as a 

binary string that can be decoded into the design variable values. A predefined mapping 

between the binary representation and the design variables, which is called the design 

grammar, is defined. A design grammar plays an important role in the whole process of 

design and optimization. Its definition strongly influences the shape and topology of the 

trusses generated, which implies it has a strong influence on the size of the search space. 

It also determines the proportion of the feasible area to that of the infeasible area in the 

search domain. Taking the above facts into consideration implies that the choice of the 

design grammar is one of the most important aspects of developing a computational 

method to assist in optimizing truss designs. 

            Many researchers have worked on various types of design representations in 

attempts to provide a flexible encoding of design variables. As discussed in Chapter II, a 

ground structure approach uses a predefined topology and geometry for fixed numbers 

and locations of nodes. Each member’s presence/absence is determined by an ‘on/off’ bit 

(1/0) in the GA individual. Limited geometry optimization has also been performed 

(Rajan 1995) by considering the location of some nodes as design variables. Robert et al. 
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(1996) in his research used a triangular element that represented sub-geometry of a 

simple bridge element. A number of triangles were joined at their baseline and the top 

nodes of each triangle were connected to generate a stable structure. 

            In addition to the design representation it is necessary to define the problem 

domain. The individuals (truss alternatives) in the GA population need to compete with 

each other based on their fitness in their environment, which very much depends on the 

problem domain. For structural problems, there must be boundary conditions applied to 

limit the search space as otherwise it would make the search space infinite. In this 

research, the maximum height of the truss and the maximum span length are defined to 

help constrain the search space. 

            The main objective of this research is to investigate the performance of a new 

design representation by evaluating the impact the design representation has on obtaining 

quality sets of Pareto-optimal trusses using MOGA. A flexible design representation has 

been developed to achieve this goal. The unstructured domain is constrained using 

boundary conditions to limit the search space and to ensure designs that have practical 

application. 

Designing a parameter value representation 

            Several researchers have proposed different forms of design variable 

representations in their research. This research implements a form of the implicit 

redundant representation (IRR) GA (Raich & Ghaboussi, 1997).  In the IRR GA, a single 

individual is composed of a number of redundant segments and gene instances, which 

contain the encoded design variable values. The gene instances contain essential 

information, which is used to generate a truss alternative based on the decoding process 

defined by the design grammar. The location of gene instances is explicitly specified in 

the individual. The location and contents of the redundant segments do not affect the 

gene instances. Fig. 3.1 represents the design variable representation used in this 

research. 
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Max. No. of Nodes 

 

Nodal  Locations 

 

Member sizes 

Redundant 

Segments 

Fig. 3.1. Parameter value representation used in this research 

 
 
            The first four bits of the string encode a number that defines half the maximum 

number of nodes to be used in the truss formation. The next nine segments encode the 

location of each node (which assigns the ‘x’ and ‘y’ co-ordinates). Then after the nodal 

locations are assigned and the truss is generated using the predefined design grammar, 

the member sizes are assigned to the members using the next set of string segments.  

            In this research, a maximum value of the string length is assigned taking into 

consideration the maximum value of nodes that can be generated and the maximum 

number of elements that the truss can have for the maximum number of nodes generated. 

The trusses are generated based on the nodal locations. After the nodes are generated 

they are sorted according to their distance from the base node, which in this research was 

fixed at the origin (x coordinate and y coordinate both at 0). Then the nodes are 

numbered starting from the base coordinate as the first node according to their distance 

from the previous node. Fig. 3.2 shows how the node are decoded, sorted and numbered 

with respect to their previous nodes, keeping the base node at the origin. 
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(1) Nodes generated by GA                         (2) Nodes numbered based on distance        

Fig. 3.2. Sorting and numbering of nodes based on their distance 
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            This research only investigates symmetric truss structures. Constraints that 

require symmetry of members and nodal locations could be defined. Instead, in this 

research, the representation only generates one half of the nodes. By mirroring the 

generated information to the other side, a complete set of nodes required to evolve the 

whole truss structure is generated. The reduced problem domain resulting from using the 

imposed symmetry saves computational expense. The degrees of freedom associated 

with each node are assigned to the nodes. Fig. 3.3 shows the generation of half of the 

nodes and the imposed symmetry to create a complete truss structure. 

 

 

 

CENTER LINE

            

CENTER LINE

 
 

(1) Nodes created                          (2) Impose symmetry 

Fig 3.3. Nodes generation using the nodal information decoded from the MOGA 

genotype 

 
 
 
            The generated nodes are connected to each other by a predefined design grammar 

to develop a truss structure. Various types of design grammars were investigated initially 

in this research, but the final design grammar selected was the one that satisfied the 
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desired criteria (overall flexibility in changing the number of nodes and members, overall 

desired characteristics in topology and geometry shown in generated trusses).   
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(1) Nodal Connectivity with Centre node                 (2) Nodal Connectivity without Centre node 

Fig 3.4. Design grammar used in this research 

            Fig. 3.4 shows the schematic representation of the design grammar used in this 

research. The nodes are connected to each other by preference of their numbering 

through a predefined pattern. The 1st node is connected to the 2nd and the 1st node is also 

connected to the 3rd. Similarly the 2nd node is connected to the 3rd and the 4th node. The 

process continues until the first half of the truss is completely connected. The other half 

of the truss (the mirror image) is connected in a similar manner. In order to connect the 

two sides of the truss, a set of criteria are applied to determine the type of connection to 

impose. 

 1st criteria: If there is no node at the midpoint: Two nodes are selected such that 

one is nearest to the midpoint at the bottommost level and the other is closest to 

the midpoint at its topmost point. Then the nodes corresponding to these nodes on 

the other half is selected. These nodes are all connected each other in a cross 

pattern. 

 2nd criteria: If there is one node at the center line: First two nodes are selected 

excluding the one at the center line, such that one is nearest to the midpoint at the 

bottommost level and the other is closest to the midpoint at its topmost level. 

Then the nodes are compared with respect to their distance with respect to the 
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centerline node. The one which is closest to the center line node is dropped and 

the other one is taken into consideration for connecting the two halves by finding 

a corresponding node on the other half. 

            After the nodes are connected together, the members are assigned areas from a set 

of predefined set of member areas, such that the assigned values of member properties 

are symmetric. At the end of this process, a symmetric truss structure is defined.  

            Since the number of loaded nodes and their locations is not fixed, the loads are 

specified by the user as distributed loads instead of point loads. For each truss examined 

by the MOGA, the top nodes in the truss are determined and each of the top nodes is 

assigned a load based on the tributary area method. A distributed load of 3 k/ft is applied 

to all the trusses examined in the trials presented, which assumes a spacing of 10 ft 

between planar trusses. Thereafter, the truss is checked for the stability criteria and the 

satisfaction of dimension constraints. The trusses which pass are sent on for analysis, 

wherein the stresses in each member and the overall deflection of the truss is calculated 

for the given support conditions. Fig. 3.5 presents how the tributary area method is used 

to determine point loads on the top nodes from the distributed load.     

 

 

                                                                     

    

Fig. 3.5. Tributary area method used to determine the loading on the top nodes 
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Modeling in an unstructured domain 

            An unstructured design domain has no prescribed bounds on the number of 

design parameters as compared to structured design domain. The unstructured design 

domain reflects a realistic design domain that has no a priori knowledge concerning the 

number of design parameters. In comparison, a structured design domain fixes the values 

for many design parameters and cannot change these values during optimization.  

Specifically for truss design, the unstructured design domain has no predefined 

information regarding the nodal locations, the number of nodes, the member sizes neither 

it has any knowledge of the load location nor the magnitude of the loads on the loaded 

nodes. In the unstructured problem domain, the number of nodes and their locations are 

allowed to vary. Therefore, the load is assigned as distributed load instead of point load 

on specified nodes. When the design parameters are decoded from MOGA individuals to 

obtain the nodal locations then the distributed load is converted into point loads on each 

top node based on the tributary area. Only minimal design information is specified for 

the unstructured domain in order to impose the designer’s criteria on dimensions and 

support types. In this research, the minimal design information provided is limited to: 

 Maximum height of the truss : 15 ft 

 Span length: 40 ft and 60 ft 

 Support Conditions: Hinge and Roller  

 Load: 3 k/ft 

            Fig. 3.6 presents the unstructured design domain and imposed load conditions 

used in this research. The experimental trials performed for the benchmark problem use a 

different problem domain definition.  The criteria and design information for the 

benchmark problem is presented in Chapter V.    
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Fig. 3.6. Unstructured design domain and imposed load conditions 
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CHAPTER ІV 

MULTI-OBJECTIVE OPTIMIZATION USING NON-DOMINATED PARETO 

OPTIMAL METHODS 

 

Background information 

            Multi-objective optimization attained by using a composite fitness function that is 

an aggregation of multiple objective values results in convergence of the GA population 

to a single solution. As the number of objectives increases, the optimization of the single 

solution becomes difficult due to tradeoffs that exist among the objectives. In addition, 

the single solution obtained only reflects one possible weighting of the objectives. 

Therefore, when a constant weight is assigned to each objective function, which is 

required to construct the composite fitness function, the direction of the GA search is 

fixed in the multi-dimensional space as shown in Fig. 4.1. In Fig. 4.1, f¹ is an objective 

function to be maximized and f² is to be minimized. The close circle in Fig. 1 represents 

the final, single solution obtained by the GA. In design, the relative weighting of the 

objectives is impossible to do a priori. Therefore, obtaining a single solution will not 

necessarily best satisfy the designer’s priorities in satisfying the multiple objectives. To 

address this problem, each objective should be considered as equally important as 

opposed to combining all the objectives into one measure through weighting. This 

approach enables the discovery of an optimal set composed of solutions that are equally 

good at optimizing conflicting objectives specified.  The optimal set will contain more 

than one solution.  These solutions will define a range of designs that are obtained in a 

single GA trial, instead of many individual GA trials with different defined weightings of 

the objectives.  
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Fig. 4.1. Direction of search in GA with a combined fitness function 

 
 
            Schaffer (1985) made an early attempt to perform optimization using multi-

objective genetic algorithms (MOGA). Schaffer proposed the vector evaluated genetic 

algorithm (VEGA) for finding Pareto-optimal solutions for multi-objective optimization 

problems. In VEGA, a population is divided into disjoint subpopulations that are 

governed by different objective functions. Although Schaffer reported some successful 

results, VEGA can only find extreme solutions on the Pareto front since the search 

direction is parallel to the axes of the objective space. Fig. 4.2 shows the search direction 

of VEGA. To improve on the above shortcoming, Schaffer suggested two approaches. 

One is to provide a heuristic selection preference for non-dominated individuals in each 

generation and the other is to crossbreed among the species by adding some mate 

selection. 
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Fig. 4.2. Direction of search in VEGA 

 
 
            Goldberg (1989) suggested a novel non-dominated sorting procedure, which uses 

the concept of domination to give preference to non-dominated individuals in the 

population. Goldberg also suggested the use of a niching strategy among solutions of a 

non-dominated class to satisfy the second goal of multi-objective optimization i.e. 

diversity among solutions. The niche count (niching strategy) is a measure of how 

similar an individual is to other individuals in the population.  Imposing a selection 

biased to the niche count enables GA individuals in a population to be better distributed 

all over Pareto front by providing the information of how much an individual is shared in 

a population rather than having clumps of individuals that are similar form along the 

front. In this research, niche count was implemented by using sharing functions 

(Goldberg 1989). 

Non-Dominated pareto ranking and sharing functions 

            Goldberg (1989) suggested non-dominated Pareto ranking, in which all the non-

dominated individuals in the population are assigned the same fitness for selection. Non-

dominated individuals are those that are better than or equal in objective fitness to all 
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other individuals in the population. By comparing all the individuals with one another, 

the highest rank can be assigned to the non-dominated individuals. Excluding the highest 

rank individuals, the same procedure is executed to assign the next highest rank to the 

non-dominated individuals remaining in the population. The procedure is repeated until 

all the individuals are ranked. Non-dominated Pareto ranking provides a rational way to 

consider all the conflicting objectives that cannot be compared directly with each other. 

The concept of non-domination is illustrated in Fig. 4.3, which shows a set of six sample 

solutions for two criteria (f¹ and f²). The non-dominated solutions in the set are indicated 

by a ranking of zero (0). For each of the non-dominated solutions, there is no other 

solution in the set that has a lower value in both criteria for this minimizing problem. 

However, the solution ranked four (4) is dominated by four other solutions in the set, i.e. 

four other solutions have lower values in both criteria. 
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Fig. 4.3. A Pareto ranking scheme 

 
 
            To better support the distribution of individuals over the entire Pareto-optimal 

surface, a sharing function can be applied. The sharing function defines the degree of 
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fitness sharing that must be applied to each individual in a population (Goldberg 1989). 

Highly similar individuals in the population are penalized by a reduction in fitness. 

Reducing an individual’s fitness increases the population diversity pressure of selection 

for the population, which allows the population to maintain individuals at local optima 

for multi-modal problems and over the Pareto-optimal surface for multi-objective 

problems. The degree of sharing for one individual is calculated by summing a set of 

sharing function values that indicate the distance between it and the other individuals in 

the population having the same rank. Fig. 4.4 illustrates the definition of the sharing 

function for a problem with one objective. The individuals that are close in objective 

space will have larger imposed sharing function values and those individuals that are far 

apart will have smaller sharing function values. 
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Fig. 4.4. Triangular sharing function 
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            Equation 4.1 presents the equation proposed by Goldberg (1989) to calculate the 

shared fitness values for each individual in the population. 

∑
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)()(                                                    (4.1) 

where 

            n               =   size of the population 

            f (xi)         =   fitness value of the ith individual 

            s(d(xi,xj))   =   sharing value based on distance between ith and jth individual 

            fs(xi)         =   fitness value of ith individual considering the degree of  

                                   sharing 

            Equation 4.1 supports the distribution of non-dominated individuals over the 

Pareto-optimal front and assists in maintain diverse topologies in the population. Fig. 4.5 

illustrates the flow of operations performed by the MOGA for Pareto-ranking that 

implements a sharing function. 
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Fig. 4.5. Flow of MOGA based on Pareto-ranking that implements sharing 
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Optimization based on ranking and sharing function 

            Multi-objective optimization was performed using ranking and a sharing function 

to assign fitness values to each individual. In all trials performed, the individuals were 

selected using tournament selection. The individual in the tournament pool with the 

lowest rank is always selected. When two individuals are selected having the same rank, 

then selection is performed based on information provided by the sharing function 

defined in Equation 4.1. In case the individuals have the same shared fitness value then 

one individual is randomly selected. The total fitness of each individual is computed 

using the composite fitness function defined by equation 4.2. 
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Where  

            FTOT  =  Total fitness of each individual evaluated based on the composite fitness  

function 

            C      = 1000 (Constant used to ensure the generation of only positive fitness) 

            Fw      =   Weight fitness 

            Fd     =    Displacement fitness 

            Pst     =    Stress fitness 

            Equation 4.2 gives the total fitness. In this research maximizing fitness value is 

sort for. Pst is chosen such that it gives the total stress violation. When the stress violation 

occurs in a member then the stress fitness for that member equals zero. So the overall 

value of Pst becomes less. So, in order to maximize the value of Pst all the members in the 

truss should be within the maximum stress limit. Thus, maximizing stress fitness results 

in higher value of the total fitness. 

            In this research the truss weight and deflection were considered as separate 

objectives. Equation 4.3 state the computation of sharing function values using two 

objectives that are to be minimized, which are the truss weight and deflection. 
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Where 

            FTOT,I   = Total fitness values of ith individual 

            Fw,j         = Weight of the jth individual 

            Fd,j         =  Deflection of the jth individual 

            Dw,MAX = Maximum difference in weight in the population 

            Dd,MAX  = Maximum difference in deflection in the population 

           Cs         = 1000 (Constant to ensure positive values)  

            The two objective values for each individual were compared with those of all the 

other individuals to compute the distances. The summation of the distances for each 

individual was normalized by the maximum distance, which was determined as the 

distance between the two individuals that were the farthest away from each other in the 

population.  

            The problem search domain for any combinatorial optimization problem, 

including truss topology and geometry optimization, is extremely large.  In addition, a 

significant portion of the search space is infeasible area that includes unstable or non-

optimal trusses that have large deflections or weights. Thus the maximum distance used 

in the sharing function can cause individuals to continue to explore large infeasible areas. 

Therefore, the maximum distance calculated in this research in terms of weight and 

deflection is reduced. The reduction helps in providing a more efficient exploration for 

design solutions. The maximum distances are reduced by multiplying the maximum 

distance in terms of weight and deflection with an empirically found constant value. 
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Equation 4.7 and Equation 4.8 provide the computation of reduced distances in terms of 

weight and deflection and the empirically determined constant value. 

                                          MAXwDWMAXifiedw DCD ,_mod, =                                          (4.7) 

MAXdDDMAXifiedd DCD ,_mod, =                                            (4.8) 

Where 

            0< CDW, CDD ≤ 1, 

            CDW =0.6, 

            CDD = 0.9. 

Results of implementing MOGA for truss optimization 

  Table 4.1 presents the GA parameters used in this research to find near-optimal 

truss designs. A number of trials were performed to determine the most effective string 

length and GA parameters in obtaining consistent performance and quality of designs 

obtained. Two span lengths (40ft and 60ft) were investigated in the trials presented in 

this chapter.  Fig. 4.6 through Fig. 4.9 present the evolution of trusses for one trial 

conducted during the 40 ft span length case study over 1000 generations. Fig. 4.10 

presents the Pareto-optimal curve (all Rank 1 individuals in the population) obtained 

considering the tradeoff between satisfying the weight and deflection objectives after 

1000 generations were performed. Fig. 4.11 presents the Pareto-optimal curve for weight 

versus deflection for the 40 ft truss showing all rank 1, rank 2 and rank 3 individuals 

after 1000 generations. Fig. 4.12 through Fig. 4.15 present a view of how the evolution 

of trusses was performed for the 60 ft span length case study. Fig. 4.16 presents the 

Pareto-optimal curve (all Rank 1 individuals in the population) obtained considering the 

tradeoff between satisfying the weight and deflection objectives for the 60 ft span after 

1000 generations. Fig. 4.17 presents a Pareto curve for weight against deflection for a 

60ft truss with rank 1 and rank 2 individuals (trusses obtained after 1000th generation). 
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Table 4.1. Set of GA parameters used in the trials performed for the 40 and 60 ft span 
problem domain 

 40ft 60ft 

Generations 

Population Size 

Crossover Rate 

Mutation Rate 

String Length 

1000 

1000 

0.8 

0.006 

400 

1000 

1000 

0.95 

0.005 

400 

 

 

 

 

Fig. 4.6. Trusses obtained after the 100th generation for 40-ft span 

 
 

 

Fig. 4.7. Trusses obtained after the 400th generation for 40-ft span 
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Fig. 4.8. Trusses obtained after the 700th generation for 40-ft span 

 
 

 

Fig. 4.9. Trusses obtained after the 1000th generation for 40-ft span 
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Fig. 4.10. Pareto-optimal front for MOGA trial for 40ft. span (Rank 1 individuals) 
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Pareto Curve Based on Ranking
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Fig. 4.11. Pareto-optimal front for MOGA trial for 40ft. span (Rank 1, Rank 2, and Rank 

3 individuals) 

 

 

  Fig. 4.12. Trusses after the 100th generation for 60-ft span 

 
 

 

Fig. 4.13. Trusses after the 400th generation for 60-ft span 
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Fig. 4.14. Trusses after the 700th generation for 60-ft span 

 
 

 

Fig. 4.15. Trusses after the 1000th generation for 60-ft span  
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Fig. 4.16. Pareto-optimal front for MOGA trial for 60ft. span (Rank 1 individuals) 
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Pareto Curve Based on Ranking
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Fig. 4.17. Pareto-optimal front for MOGA trial for 60ft. span (Rank 1 and Rank 2 

individuals) 

 
 
 
            Fig. 4.6 through Fig. 4.9 show how the truss designs evolve by viewing the Rank 

1 individuals in the population during different generations for 40ft span. The results 

indicate that as the number of generations increase there is improvement in topologies 

and better design alternatives are developed. The same results are shown by the 

generational views of the 60ft span trial shown in Fig. 4.12 through Fig. 4.15 where there 

is increase in the number of members through generations, improved topology is found, 

and the number of feasible design alternatives in the population also increases. 

            In Fig. 4.10, Fig. 4.11, Fig. 4.16 and Fig. 4.17 the trusses defined on the Pareto-

optimal front have very similar topologies, but they differ in the nodal locations and in 

member section sizes used. 

            The Pareto-optimal front results in Fig. 4.10 for the 40ft. span showed similarities 

in truss topologies and were composed of 25 Pareto-optimal trusses even though the 
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population size was 1000. In Fig. 4.10. only shows four dots since there are only four 

rank one members and the rest twenty one are just a copy. 

This means majority of the trusses in the population did not converge to the Pareto-

optimal front because of the limited topologies that were optimal.  The number of 

structurally-efficient topologies for the 40-ft span problem domain is expected to be 

limited due to the short span involved.  

            In Fig. 4.16, the Pareto-optimal front result for a 60 ft. span trial is presented. The 

results indicate that the number of Pareto-optimal trusses increases over the number 

found in the 40ft span trials. In this case, a total number of 41 trusses are obtained. In 

addition, the number of distinct truss topologies found is greater in the 60ft span case. 

The results obtained in both the cases (i.e. 40ft and 60ft span) were sensitive to the 

constants used in the composite fitness functions and the sharing functions and the 

results were also sensitive to the GA parameters selected.  

            From the trials performed using the two different span lengths it was difficult to 

maintain the distributions of individuals along the Pareto-front using the sharing 

function.  This conclusion is supported by the fact that the Pareto-optimal front results 

reflect that most of the individuals were concentrated in local optimum or most of the 

individuals were in an infeasible area, which was indicated by trusses that did not meet 

all of the stress constraints. Most feasible truss designs obtained for both cases showed a 

lack of diversity in the truss topology. This means that individuals converged to a locally 

optimum topology. Thus, from the above results it can be interpreted that the MOGA 

design grammar and representation used with sharing function for this research was not 

able to effectively search for diverse topologies and reach near-optimal design 

alternatives within a single trial. 

            Fig. 4.18 through Fig 4.23 present additional trial results obtained for the 40ft and 

60ft span length trials performed. 
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Fig. 4.18. Most optimal individuals after 1000 generations for 40 ft span (Trial 2) 

 

 

Fig. 4.19. Most optimal individuals after 1000 generations for 40 ft span (Trial 3) 

 
 

 

Fig. 4.20. Most optimal individuals after 1000 generations for 40 ft span (Trial 4) 
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Fig. 4.21. Most optimal individuals after 1000 generations for 60 ft span (Trial 2) 

 

 

Fig. 4.22. Most optimal individuals after 1000 generations for 60 ft span (Trial 3) 

 

 

Fig. 4.23. Most optimal individuals after 1000 generations for 60 ft span (Trial 4) 

 

 



 

 

44

From the results shown in the previous figures, the MOGA method is able to explore 

different topologies over individual trials.  Through performing different trials (in an 

optimization sense, different starting points), the MOGA is able to propose diverse 

topologies to the user.  Information about trusses in Fig. 4.20 is presented in APPENDIX 

І. And the information about trusses in Fig. 4.23 is presented in APPENDIX ІІ. 
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CHAPTER V 

EVALUATION OF THE PROPOSED MOGA METHOD AND 

REPRESENTATION 

 
            This section of the thesis discusses the definition of the benchmark problem and 

results obtained from the proposed MOGA method and representation on the benchmark 

problem.  The results obtained in this research are compared with results obtained 

previously by other researchers on the same benchmark problem. To validate the 

proposed method and representation, the benchmark problem defined in the paper 

“Evolution of optimum structural shapes using genetic algorithm” by Shrestha and 

Ghaboussi (1998) was studied then the algorithm was modified to meet the predefined 

conditions in the benchmark problem and the results obtained were compared to the 

benchmark problem. 

Benchmark problem definition 

Problem domain description 

            The methodology proposed by Shrestha and Ghaboussi (1998) introduces the 

concept of physical design space, which is the specified physical space within which the 

generated structure is fully enclosed. This space can have any arbitrary contiguous shape 

and may contain internal “hole” through which no part of the generated structure must 

pass. The physical design space allows limits to be imposed on the shape of the 

generated structure, which is important to meet functionality considerations. 

            The evolved structure can acquire any shape within the physical design space. 

Some important features of the evolved structures are listed below: 

 The structure can have any number of free nodes. It can also have specified 

partially fixed or fixed nodes, some of which may be loaded or support nodes. 

The free nodes can occupy any position within the physical design space, 

whereas the partially fixed nodes will have some of their nodal co-ordinates 

specified. Similarly, the structure can have any number of members, with any 

pattern of nodal connectivity. It can also have members whose end nodes, which 

must be either fixed or partially fixed, are specified. The partially fixed and fixed 
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nodes and the fixed members, if specified must be present in all the generated 

structures. 

 The members are chosen from a set of discrete member sizes, assumed to be a 

subset of commercially available member sizes from standard design manuals. 

    The structure may be subjected to either static or moving, single or multiple 

loadings. They may include self weight of the structure, various live loads, or any 

other loadings required by the design codes. 

            In addition to the above, the generated structure can contain truss or beam 

elements or both. The supports can either be fixed, roller, or pinned.  

            In the previous research study on the benchmark problem, the method applied 

addressed various design objectives and constraints. The design constraints were 

classified into member and nodal constraints. In the results presented in Shresta and 

Ghaboussi, weight minimization was considered as the design objective; the member 

constraints considered are stress, slenderness ratio, minimum member length, maximum 

member length, member symmetry; and the nodal constraints considered are the nodal 

displacements and nodal symmetry. Table 5.1 provides details of member and nodal 

constraints used by Shresta and Ghaboussi. 

Problem description 

            The methodology proposed by Shresta and Ghaboussi aimed at attaining a 

minimum weight optimal truss shape with simple supports. The span lengths are set at 70 

meter (about 230 ft). The maximum height of the structure was 10 meter (about 33 ft). 

The generated structures could contain any number of free nodes and any number of 

members. The structural elements are specified to be truss elements. The members are 

selected from a set consisting of 27 standard AISC sections (1998), ranging from W 14 * 

22 through W 14 * 426. The material properties are those of steel (E = 2.01*10^5 MPa, 

fy = 248.8 MPa, ρ = 7.85103 Kg/ m^3). The relevant AISC ASD design specifications are 

followed. 

            The specified allowable values are: σa = 0.6* fy; sa
T

 = 300; sa
C= 200. The allowable 

compression stress σaj
C, is determined from buckling considerations, based on code 
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requirements. The displacements are limited to (1/1000)th of the span length, in 

accordance with relevant AASHTO specifications (1989). Fig 5.1 provides a figure 

representing the design space, the boundary conditions, and the loading used in the 

example problem. 

 

 

 
Fig. 5.1. Physical design space, boundary condition and loading for the benchmark 

problem (Shresta and Ghaboussi, 1998) 

 
 
 
            The total load applied to the trusses in the benchmark problem is 674.4 Kips and 

the span ‘L’ used in the problem is 70m (230ft). The height of the structure ‘H’ is 10m 

(33ft).  

            In the previous study, the population size was limited to 100. The mutation rate is 

0.002 and the crossover rate is 1.0. Multipoint crossover is used with the number of 
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crossover sites ranging from 2 to 10 chosen randomly.  The number of generations 

performed was 10,000. 

 

 

Table 5.1. Benchmark problem results (Shreseta and Ghaboussi, 1998)  

Truss Weight (kgs) Generation attained Truss Deflection (inches) 

60,329 9754 2.753 

 

 

 

            Fig. 5.2 represents the development of the optimal truss topology and geometry 

for the benchmark problem through different generation and the final attainment of the 

best optimal truss (Shresta and Ghaboussi, 1998). Table 5.1 presents the optimal truss 

weight obtained in the benchmark problem and the maximum deflection. 

 

 

Fig. 5.2. Development of the truss structure through different generation and the final 

attainment of the most optimal truss (Shresta and Ghaboussi, 1998) 
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Evaluation of the proposed MOGA method and representation by the benchmark 

problem             

            To evaluate the developed MOGA method, the same problem domain as used in 

the benchmark problem was used with the same loading conditions and set of member 

sizes. Table 5.2 through Table 5.5 present the optimal truss weight and deflection 

obtained from different trials using the proposed MOGA methodology along with the 

GA parameters used in the problem. 

            Fig. 5.3 through Fig. 5.10 present the final population of near-optimal truss 

designs obtained after 1000 generations from different trials. The majority of the truss 

designs obtained in the final generation are similar in topology in the trials performed. 

These trusses do show more variation in their geometry (nodal locations) and in the 

member sections sizes assigned. 

 

 

 

Table 5.2. Parameters used in trial 1 and the most optimal results obtained 

Number of 

Generations 

Crossover 

Rate 

Mutatio

n Rate 

Truss 

Weight 

(kgs) 

Generatio

n attained 

Truss 

Deflection 

(inches) 

1000 0.8 0.005 95417.69 1000 3.14 

 

 

 

 
Fig. 5.3. Truss topologies obtained after the 1000th generation in trial 1 
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Fig. 5.4. Fittest truss design obtained after 1000th generation in trial 1 

 

 
 
Table 5.3. Parameters used in trial 2 and the most optimal results obtained from the 

developed method 

Number of 

Generations 

Crossover 

rate 

Mutation 

Rate 

Truss 

Weight 

(kgs) 

Generation 

attained 

Truss 

Deflection 

(inches) 

1000 0.8 0.0045 71985.43 1000 3.74 

 

 

 

 
Fig. 5.5. Truss topologies obtained after the 1000th generation in trial 2 

 
 
                            

 
Fig. 5.6. Fittest truss design obtained after 1000th generation in trial 2 
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Table 5.4. Parameters used in trial 3 and the most optimal results obtained from the 

developed method 

Number of 

Generation 

Crossover 

Rate 

Mutation 

Rate 

Truss 

Weight 

(kgs) 

Generation 

attained 

Truss 

Deflection 

(inches) 

1000 0.8 0.004 71534.3 1000 2.598310 

 

 

                  

 

Fig. 5.7. Truss topologies obtained after the 1000th generation in trial 3 

 

 

 

Fig. 5.8. Fittest truss design obtained after 1000th generation in trial 3 
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Table 5.5. Parameters used in trial 4 and the most optimal results obtained from the 

developed method 

Number of 

Generation 

Crossover 

Rate 

Mutation 

Rate 

Truss 

Weight 

(kgs) 

Generatio

n attained 

Truss 

Deflection 

(inches) 

1000 0.8 0.003 68079.13 1000 3.15 

 

 

 

 

Fig. 5.9. Truss topologies obtained after the 1000th generation in trial 4 

 
 
 

 

Fig. 5.10. Fittest truss design obtained after 1000th generation in trial 4 

 
 
 
          Based on the results obtained from the four trials, the best truss design obtained 
with respect to weight displacement and stress in the members is obtained in trial 3. 

            From the results presented in Table 5.1 through Table 5.4, it can be concluded 

that the truss designs obtained using the proposed MOGA method have larger weight, 

while the deflection is under the permissible limits used in the example problem (1/1000 

of the span). Fig. 5.8 presents the most optimal truss obtained by MOGA method in four 
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trials. It should be noted that the computational time taken to obtain the truss designs 

using the proposed MOGA method is less compared to the result obtained by Shresta and 

Ghaboussi (1998), since the optimal solution is attained within fewer generations. 

            In order to validate the results obtained from the proposed MOGA method, a 

separate structural analysis was performed.  The same stress and deflections were 

obtained in both programs. Table 5.6 presents the results obtained from structural 

analysis package compared to those obtained from the proposed MOGA method. There 

is a slight variation of the results shown in Table 5.6 due to the conversion of units from 

meters to feet.  Fig. 5.11 presents a view of the truss examined by the structural analysis 

package. 

 

 

Fig. 5.11. View of the truss design provided from the structural analysis package 

 
 
 
Table 5.6. Comparison of the member stresses between the analysis package and the 

MOGA method 
Member  Structural Analysis Package Proposed MOGA method 

1 11.9269 11.2701 

2 6.0786 6.724581 

3 15.548 15.03081 

4 4.3067 4.390468 

5 23.223 22.52593 

6 12.4418 12.95195 
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Table 5.6. Continued 
Member  Structural Analysis Package Proposed MOGA method 

7 3.1937 3.275068 

8 13.615 13.09089 

9 1.0647 1.000003 

10 11.9269 11.2701 

11 6.0786 6.724581 

12 15.548 15.03081 

13 4.3067 4.390469 

14 23.223 22.52593 

15 12.4418 12.95195 

16 3.1937 3.275069 

17 13.615 13.09089 

18 1.0647 1.000003 

19 42.9339 41.8353 

 
 

 

 

            Due to the large search space of potential design alternatives defined by the 

unstructured problem domain, the optimization of the member section sizes is not 

performed to its fullest extent.  Instead, the optimization of truss topology and geometry 

is performed to a greater extent. In addition, once the population begins to converge it is 

difficult to continue member size optimization in any MOGA.  In order to determine the 

state of member size optimization performed by the MOGA method, local optimization 

was performed on the truss design produced by the MOGA method in order to determine 

how much weight savings could be obtained.  This investigation was carried out with the 

trusses obtained in trial 1 of the benchmark problem.  

            Trial 1 is selected for optimization, to show to what extent the trusses can be 

optimized using fine tuning since it has the highest weight. And from the results it can be 

seen that it can be optimized to like twenty thousand Kgs. 



 

 

55

            Table 5.7 presents the changes made to the truss obtained by the MOGA method 

to locally optimize the member section sizes and Table 5.8 presents the final structural 

analysis results obtained after local optimization was performed. Fig 5.12 shows the 

result view of the locally optimized truss. The results should in Table 5.8 confirm that 

there is a drastic reduction in weight of the truss, although this comes with a slight 

increase in truss deflection. Also, it can be concluded from the results shown in Table 5.7 

that only four different member section sizes result from the local optimization of 

member size, which makes the structure more practical from a constructability viewpoint 

also. 

 

 

 

Fig. 5.12. View of the truss design undergoing local member section size optimization 

 
 
 
Table 5.7. Results obtained through local member size optimization for fixed topology 

Member 

Original Section 

Size 

Optimized 

Section Size 

Original Truss 

Weight 

Optimized 

Truss Weight 

M1 W14x99 W14x34 3.5727 1.2277 

M2 W14x311 W14x99 13.064 4.1593 

M3 W14x34 W14x26 1.1653 0.8961 

M4 W14x311 W14x34 15.9349 1.7434 

M5 W14x257 W14x257 12.6567 12.6567 

M6 W14x426 W14x426 31.3519 31.3519 
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Table 5.7. Continued 

Member 

Original Section 

Size 

Optimized 

Section Size 

Original Truss 

Weight 

Optimized 

Truss Weight 

M7 W14x370 W14x99 12.1656 3.2479 

M8 W14x311 W14x257 12.2415 10.1254 

M9 W14x26 W14x26 0.8583 0.8583 

M10 W14x99 W14x34 3.5727 1.2277 

M11 W14x311 W14x99 13.064 4.1593 

M12 W14x34 W14x26 1.1653 0.8961 

M13 W14x311 W14x34 15.9349 1.7434 

M14 W14x257 W14x257 12.6567 12.6567 

M15 W14x426 W14x426 31.3519 31.3519 

M16 W14x370 W14x99 12.1656 3.2479 

M17 W14x311 W14x257 12.2415 10.1254 

M18 W14x26 W14x26 0.8583 0.8583 

M19 W14x99 W14x426 3.8975 16.7417 

 
 

 

 

 

Table 5.8. Comparison of results obtained through local member size optimization for 

fixed topology with the results from the developed methodology 

Original Truss 

Weight (kgs) 

Optimized Truss 

Weight (kgs) 

Original Truss 

Deflection (inch) 

Optimized Truss 

Deflection(inch 

95417.69 67781.82 3.14 3.96 

 

 

 

            The individuals in each of the regions circled below in Fig. 5.13. have mostly the 

same topology and geometry. They vary in their member sizes to some extent. Thus, 

each of the sub curves is the Pareto-optimal curve that would be obtained when looked at 
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a restricted design space – the topology and geometry fixed or very similar and only 

changes in member sizes perhaps.   

 

 

 

Pareto Curve

0
0.5

1
1.5

2
2.5

3
3.5

4

0 100000 200000 300000

Weight in Lbs

D
ef

le
ct

io
n 

in
 In

ch
es

Rank 1

 
Fig. 5.13. Pareto-optimal curve representing rank 1 individuals obtained in trial 3 

 

 

 
Table 5.9. Comparison table showing the most optimal weights attained 

Generation Attained 

in example problem 

Generation attained 

by the developed 

methodology 

Most optimal 

weight attained by 

the  example 

problem (Kgs) 

Most optimal 

weight attained by 

the developed 

methodology (Kgs) 

10000 1000 60,329 71,534.3 

 

 

 



 

 

58

            Table 5.9 presents a comparison table between the most optimal weight attained 

and the generations taken to attain the most optimal solution by Shresta and Ghaboussi 

(1998) and the proposed MOGA method. Although the truss weight attained by the 

MOGA method is higher, as shown previously, local optimization of member sizes can 

be applied to reduce it substantially. The major advantage of the proposed MOGA 

method is that it generates trusses randomly and does not start from any ground structure, 

so a wide variety of trusses can be explored and the final results can be locally optimized 

to obtain feasible truss designs while also maintaining deflections within the limits. 

Moreover the generation of attainment of the most optimal individual in the proposed 

methodology is pretty less which implies that the computational time taken would be less 

compared to the example problem. 

           Fig. 5.14 through Fig. 5.17 present the Pareto-optimal trusses found from 

additional trials. These results shown in these figures indicate that the program performs 

an extensive search of the problem domain and is capable of exploring diverse truss 

topologies although in different trials, not in a single trial. The MOGA parameter values 

used in each trial plays an important part along with the initial random seed to determine 

the type of trusses evolved and the final population. 

 

 

 

Fig. 5.14. Pareto-optimal truss topologies obtained from trial 5  
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Fig. 5.15. Pareto-optimal truss topologies obtained from trial 6  

 

 

Fig. 5.16. Pareto-optimal truss topologies obtained from trial 7  
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Fig. 5.17. Pareto-optimal truss topologies obtained from trial 8  

 
 
 
              Although the propose MOGA method does perform a broad search to come up 

with truss topologies, it is clear from Fig. 5.3 through Fig. 5.10 that in the final 

population obtained in each trial the topologies  were very similar. Different topologies 

were obtained after running several trials.  The Pareto front presented in Fig. 5.13 (trial 

3) reflects that most of the individuals were concentrated in local optimum or most of the 

individuals were in the infeasible area. Since most of the feasible trusses showed lack of 

diversity in truss topologies, this implies that individuals converged to a locally optimum 

topology. The selection of the GA parameters also plays a role in the generation of the 

trusses making up the Pareto-optimal front. The proposed MOGA method is capable of 

evolving trusses that have lower weight and deflections, but the design representation is 

not fully effective in providing support for the simultaneous optimization of topology, 

geometry, and member size in a single trial. 
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CHAPTER VІ 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 

Summary of objectives 

            The objective of this research was to develop an effective genetic algorithm 

design representation for multi-objective truss optimization that can support the design a 

set of near-optimal trusses. To meet this objective, several MOGA implementing various 

diversity preserving strategies were investigated. 

            As a first step, different design grammars were investigated based on their ability 

to produce diverse truss designs and the best one was selected. Then an investigation was 

performed to determine the optimal MOGA parameter settings through trials. As 

discussed in Chapter ІV, several trials were performed to determine the optimal string 

length. In addition, several criteria discussed in Chapter ІІІ were used to help understand 

the characteristics of the unstructured problem domain defined in this research. 

            The definition of a large, complex problem domain made it difficult for the 

individuals in the GA population to explore the search space and to simultaneously 

optimize the truss topology, geometry, and member sizes. Several criteria discussed in 

chapter ІV were implemented and the GA parameters were very carefully chosen to 

preserve the quality of the Pareto-optimal front and to try to maintain diversity in the 

population.  In the proposed algorithm, a niche count was computed using a sharing 

function (Goldberg 1989). The sharing function helped to maintain some diversity in the 

population. Sharing is formulated in terms of how close the trusses are in objective space 

–weight and deflection 

            To evaluate the performance of the proposed MOGA method, trials were 

performed on a benchmark truss problem domain and the results obtained were 

compared with result obtained by other researchers (Shrestha and Ghaboussi 1998) 

considering all the criteria defined in the benchmark problem. The results of the 

comparison showed that the performance of the proposed MOGA method, in which the 

sizing, shape and topology were simultaneously performed, was effective in evolving a 
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variety of truss topologies compared to previous published results, which evolved from a 

ground structure.  However, the diverse topologies were obtained over several trials not 

within the same population in a single trial.  In addition, the proposed MOGA method 

was not able to locally optimize the member section sizes.  This research effort 

investigated the effect on truss weight and deflection obtained by locally optimizing the 

member section sizes for a given truss topology and geometry.  The results indicate that 

the significant weight reduction is achieved by additional local optimization. 

Future work 

            The main purpose of the representation and algorithm proposed in this research is 

to support the development of an efficient computational model that is capable of 

generating diverse truss topologies and geometries. However, the generation capability is 

constrained to some extent in the formulation by the specific design grammar used. In 

addition, the large unstructured problem domain defined increase the size of the search 

space.  Based on results obtained in this research, the size of the feasible area in the 

search space is very small.  In addition, the trusses on the Pareto front obtained in this 

research are not optimal compared to trusses designed by engineering practice to some 

extent. Therefore even though the trusses are well optimized based on deflection and 

weight they can not be put for practical use. The truss structures can be made practical by 

using fewer member sizes, but the deflection and weight constraints may not be satisfied. 

Thus, all the problems of making the truss structure practical and keeping the weight and 

deflection criteria within limit fine tuning (sizing optimization) can be done to the final 

results obtained from the proposed method. 

            To address the problems that were raised during this research effort, the 

following research directions are recommended: 

 Develop an efficient practical design grammar and representation 

            Design grammar plays an important role in the whole process of development of 

the computational model. Even though in this research the design grammar 

investigated was able to examine topologies and geometries, it was not capable of 

effectively optimizing truss designs. Looking at the research literature, many 
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design grammars have been proposed. The design grammars involving some 

predefined shapes like triangles, rectangles etc. can be used as they would not 

produce any unstable trusses. Moreover the search space will be considerably 

reduced. However, the flexibility of the design grammar must be considered in 

order to obtain near – global optimal set. Having too small of a search space will 

prevent the MOGA from synthesizing the design alternatives effectively. 

 Use parallel computing on a UNIX based system 

Parallel computing on a UNIX based system can be used to reduce the 

computational time. 

 Backup pool 

      To prevent the trusses from getting stuck in local optimum, a back-up pool may 

be considered that stores the best trusses from a generation and they don’t come 

into play when the selection of the individuals are done for the next generation. 

The individuals stored in the backup pool may then be allowed to undergo 

crossover and mutation with the other selected individuals to some extent. This 

may prevent individuals from getting stuck in some local optimum. 

 Fine tuning 

The most important criteria to make a feasible truss structure are to have 

consistency in member areas. A twelve member truss cannot afford to have 

twelve different member sizes. So, by doing fine tuning (sizing optimization) to 

the results obtained, some feasible member sizes can be selected and the truss 

structure can be made practical along with meeting all the weight and deflection 

criteria. 

            In this research, investigation of the MOGA design representation was 

performed. The future improvement of the design grammar and the computing methods 

will allow the evolution of optimized truss designs for practical use. In addition, other 

soft computing methods like neural networks can be integrated to help support intelligent 

designs in the future. 
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APPENDIX І  

 

 
Most optimal individuals after 1000 generations for 40 ft span (Trial 4) 
 
 
 

Pareto Curve
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Pareto curve showing the trade off between weight and deflection 
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Truss 1: Information 
 
No. of elements No. of nodes Wt. of the truss (Lbs) Deflection produced(inches) 
7 11 2486.296143 0.793367 
  
 
Nodal Information 
 

Node X Node Y 
0 0 
2 11 
16 1 
20 10 
24 1 
38 11 
40 0 

 
 
Nodal Connectivity 
 

Nodal connectivity to form members 
1 2 
1 3 
2 3 
2 4 
3 4 
6 7 
7 5 
6 5 
6 4 
5 4 
3 5 

 
 
Truss 4: Information 
 
No. of elements No. of nodes Wt. of the truss Deflection produced 
7 11 2275.863281 1.080930 
 
Nodal Information 
 

Node X Node Y 
0 0 
8 11 
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16 1 
20 10 
24 1 
32 11 
40 0 

 
 
Nodal connectivity 
 

Nodal connectivity to form members 
1 2 
1 3 
2 3 
2 4 
3 4 
6 7 
7 5 
6 5 
6 4 
5 4 
3 5 

 
 
 
 
 
 
 
 
Truss 5: Information 
 
No. of elements No. of nodes Wt. of the truss Deflection produced 
7 11 2073.486328 1.305574 
 
Nodal Information 
 

Node X Node Y 
0 0 
16 1 
16 11 
20 10 
24 11 
24 1 
40 0 
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Nodal connectivity 
 

Nodal connectivity to form members 
1 2 
1 3 
2 3 
2 4 
3 4 
6 7 
7 5 
6 5 
6 4 
5 4 
2 6 

 
 
Truss 7: Information 
 
No. of elements No. of nodes Wt. of the truss Deflection produced 
5 7 2503.818359 0.061649 
 
Nodal Information 
 

Node X Node Y 
0 0 
0 11 
20 1 
40 11 
40 0 

Nodal Connectivity 
 

Nodal connectivity to form members 
1 2 
1 3 
2 3 
4 5 
5 3 
4 3 
1 5 
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Truss 10: Information 
 
No. of elements No. of nodes Wt. of the truss (Lbs) Deflection produced(inches) 
7 11 2073.486328  1.305574 

  

Nodal Information 
 

Node X Node Y 
0 0 

16 1 

16 11 

20 10 

24 11 

24 1 

40 0 

 
Member Connectivity 
 

Nodal connectivity to form members 
1 2 
1 3 
2 3 
2 4 
3 4 
6 7 
7 5 
6 5 
6 4 
5 4 
2 6 

 
All the other trusses are just a copy of the above trusses. 
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APPENDIX І І 

 

 
Most optimal individuals after 1000 generations for 60 ft span (Trial 4) 
 
 

Pareto Curve
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Pareto curve showing the trade off between weight and deflection 
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Truss 1: Information 
 
No. of elements No. of nodes Wt. of the truss (Lbs) Deflection produced(inches) 
13 23 5713.537 0.83416 
 Nodal Information 
 

Node X Node Y 
0 0 
6 0 
0 8 
15 12 
21 3 
27 8 
30 4 
33 8 
39 3 
45 12 
60 8 
54 0 
60 0 

 
 
 
Nodal Connectivity 
 

Nodal connectivity to form members 
1 2 
1 3 
2 3 
2 4 
3 4 
3 5 
4 5 
4 6 
5 6 
5 7 
6 7 
12 13 
13 11 
12 11 
12 10 
11 10 
11 9 
10 9 
10 8 
9 8 
9 7 
8 7 
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6 8 
1 2 

 
 
 
 
 
Truss 2: Information 
 
No. of elements No. of nodes Wt. of the truss Deflection produced 
10 18 5588.617 1.474557 
 
Nodal Information 
 

Node X Node Y 
0 0 
6 3 
0 8 
19 12 
23 3 
37 3 
41 12 
60 8 
54 3 
60 0 

 
Nodal Connectivity 
 

Nodal connectivity to form members 
1 2 
1 3 
2 3 
2 4 
3 4 
3 5 
4 5 
4 6 
4 7 
9 10 
10 8 
9 8 
9 7 
8 7 
8 6 
7 6 
5 7 
5 6 
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Truss 4: Information 
 
No. of elements No. of nodes Wt. of the truss Deflection produced 
10 18 4886.308 4.326453 
 
Nodal Information 
 

Node X Node Y 
0 0 
6 3 
8 8 
23 12 
23 3 
37 3 
37 12 
52 8 
54 3 
60 0 

 
 
 
Nodal Connectivity 
 

Nodal connectivity to form members 
1 2 
1 3 
2 3 
2 4 
3 4 
3 5 
4 5 
4 6 
4 7 
9 10 
10 8 
9 8 
9 7 
8 7 
8 6 
7 6 
5 7 
5 6 
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Truss 5 
 
No. of elements No. of nodes Wt. of the truss Deflection produced 
10 18 5122.426 2.08865 
 
 
 
Nodal Information 
 

Node X Node Y 
0 0 
6 3 
0 8 
23 12 
23 3 
37 3 
37 12 
60 8 
54 3 
60 0 

 
 
 
Nodal Connectivity 
 

Nodal connectivity to form members 
1 2 
1 3 
2 3 
2 4 
3 4 
3 5 
4 5 
4 6 
4 7 
9 10 
10 8 
9 8 
9 7 
8 7 
8 6 
7 6 
5 7 
5 6 

 
All the other trusses are just a copy of the above trusses. 

 



 

 

77

VITA 

 

 

Name:                   Soumya Sundar Pathi 

 

Address:                Plot J-11 Lewis Road, 

                              Bhubaneswar Orissa, India. 751009 

 

Email Address:     soumyasundar_pathi@yahoo.com 

 

Education:             B.Tech, Civil Engineering, (National Institute of Technology 

                              Calicut), India. M.S., Civil Engineering Texas A&M University 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




