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ABSTRACT 

 

Pyrimidine Nucleotide de novo Biosynthesis as a Model  

of Metabolic Control. (August 2005)  

Mauricio Rodríguez Rodríguez, B.S., Pontificia Universidad Javeriana  

Chair of Advisory Committee: Dr. James R. Wild 
 
 

This manuscript presents a thorough investigation and description of metabolic control 

dynamics in vivo and in silico using as a model de novo pyrimidine biosynthesis. 

Metabolic networks have been studied intensely for decades, helping develop a detailed 

understanding of the way cells carry out their biosynthetic and catabolic functions. 

Biochemical reactions have been defined, pathway structures have been proposed, 

networks of genetic control have been examined, and mechanisms of enzymatic activity 

and regulation have been elucidated. In parallel with these types of traditional 

biochemical analysis, there has been increasing interest in engineering cellular 

metabolism for commercial and medical applications. Several different mathematical 

approaches have been developed to model biochemical pathways by combining 

stoichiometric and/or kinetic information with probabilistic analysis, or deciphering the 

comparative logic of metabolic networks using genomic-derived data. However, most of 

the research performed to date has relied on theoretical analyses and non-dynamic 

physiological states. The studies described in this dissertation provide a unique effort 

toward combining mathematical analysis with dynamic transition experimental data. 

Most importantly these studies emphasize the significance of providing a quantitative 



 iv

framework for understanding metabolic control. The pathway of de novo biosynthesis of 

pyrimidines in Escherichia coli provides an ideal model for the study of metabolic 

control, as there is extensive documentation available on each gene and enzyme involved 

as well as on their corresponding mechanisms of regulation. Biochemical flux through 

the pathway was analyzed under dynamic conditions using middle-exponential growth 

and steady state cultures. The fluctuations of the biochemical pathway intermediates and 

end products transitions were quantified in response to physiological perturbation. 

Different growth rates allowed the comparison of rapid versus long-term equilibrium 

shifts in metabolic adaptation. Finally, monitoring enzymatic activity levels during 

metabolic transitions provided insight into the interaction of genetic and biochemical 

mechanisms of regulation. Thus, it was possible to construct a robust mathematical 

model that faithfully represented, with a remarkable predictability, the nature of the 

metabolic response to specific environmental perturbations. These studies constitute a 

significant contribution to the fields of quantitative biochemistry and metabolic control, 

which can be extended to other cellular processes as well as different organisms.  
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CHAPTER I 

 

INTRODUCTION 

 

 

METABOLISM AND ITS CONTROL 

 

A complete understanding of cellular metabolism requires, in addition to a description of 

its architecture, a thorough analysis of the inherent network of biochemical signals and 

genetic mechanisms controlling it. The physiological responses of the cell associated 

with changes in environmental conditions are far from simple and understanding them is 

of exceptional importance for the advancement of basic science as well as in medical 

and biotechnological applications.  

 

The current paradigm of metabolic control describes cellular homeostasis as a state of 

intracellular equilibrium in which the macromolecular machinery thrives in a chaotic 

world that continually opposes its need for equilibrium. According to this view, the 

whole organization of the cell, structural and functional, is intended to maintain the 

cell’s internal environment in equilibrium. In fact, cellular metabolism teaches us that 

living organisms are dynamic systems in constant flow and readjustment. 

 

This dissertation follows the style of Journal of Bacteriology. 
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As an organism progresses through its life cycle, metabolism balances both provision 

and consumption of the energy it needs to function. As such, metabolism is the 

collective name for all the chemical reactions, both anabolic and catabolic, carried out 

inside and on the surface of a cell, coupling the exergonic oxidation of nutrients with the 

endergonic transformation and biosynthetic processes needed for life. Metabolic balance 

is thus managed by an extremely intricate and efficient (often overlapping) system of 

regulatory controls. In practice, the different mechanisms of metabolic control can be 

generally grouped as genetic and biochemical. Although most of these mechanisms are 

present throughout the evolutionary scale, the scope of this manuscript will be limited to 

the description of those in prokaryotic organisms. 

 

Genetic Mechanisms of Control  

 

The term genetic is applied in this context to distinguish those cellular responses acting 

at the level of gene expression; these responses are typically transcriptional controls that 

regulate the activity of certain genes. In the case of prokaryotes, this type of control is 

largely applied through functionally distinct groups of genes called operons, in which 

polycistronic sequences can be jointly regulated. If multiple operons are regulated by the 

same mechanism they are described as a regulon, or a modulon if grouping seemingly 

unrelated operons. These different levels of regulation ensure the coordinated interplay 

of related cellular functions. The actual mechanisms involve the control of expression of 

genes through their promoters and adjacent sequences. Gene expression promoters are, 
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in certain cases, responsive to the concentration of certain metabolites inside the cell via 

cis-acting DNA control elements that bind trans-acting regulatory proteins. The 

regulatory proteins binding DNA operators can act either as activators or as repressors of 

gene expression and their activity can be modulated by the concentration of effector 

metabolites (54). A different strategy of metabolic regulation at the transcriptional level 

affects not initiation but elongation and termination steps. It was thought initially that 

once the transcription complex left the promoter region it could continue uninterrupted 

until it reached the termination structures, but specific regions along the DNA have been 

identified that serve as sites of transcriptional pausing and premature termination. In 

such cases, mechanisms of attenuation and antitermination act to bring about metabolic 

regulation (26).  

 

Enzymatic Mechanisms of Metabolic Control  

 

Transcriptional level control provides a relatively slow metabolic response to 

environmental changes, as there can be a lag as genes are turned on or induced and 

enzyme levels are adjusted. This lag can be even more dramatic in the case of repression 

as levels of already present proteins drop. A more immediate response is achieved by 

controlling the flux through active biochemical reactions.  These additional responses 

are not redundant or energetically inefficient mechanisms as they are, in fact, 

complementary signals that help fine-tune the cellular response to rapid perturbations in 

the external milieu. There are three recognized mechanisms of fine-tuning the metabolic 
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response at the enzyme level: allosteric regulation, covalent modification and substrate 

cycles. Allosteric regulation involves the conformational change of key enzymes in a 

pathway that bring about variation in the catalytic activity and, therefore, overall 

metabolic flux. The key enzyme is usually the first step unique to a specific pathway and 

its activity can be feedback-inhibited by one or more of the end products of that 

pathway. Allosteric effectors can also act as activators of enzymatic activity, although 

these are typically not metabolites of the same pathway, but rather products of a parallel 

or dependent pathway that can signal the need for more product of the activated 

pathway. Covalent modification of proteins can also affect metabolism by controlling 

the activities of a wide variety of enzymes in the cell (54). Although covalent 

modification includes phosphorylation, uridylylation and adenylylation, protein 

phosphorylation is probably the most frequent posttranslational control mechanism and 

acts as a more global mechanism of regulation. Substrate cycling is important in 

enzymes with low activity coefficients such as allosteric enzymes and it serves to bypass 

the thermodynamically unfavorable reverse reaction and diminish the flow through a 

pathway.  
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PYRIMIDINE BIOSYNTHESIS AS A MODEL TO STUDY METABOLIC  

CONTROL 
 

De novo pyrimidine nucleotide metabolism is a central component of all free-living 

cells, occupying an essential position relative to metabolic processes involved in the 

macromolecular synthesis of nucleic acids. Pyrimidine nucleotide biosynthesis is 

typically initiated de novo in a ubiquitous biosynthetic pathway that is managed through 

a complex system of regulatory signals. The pivotal position of this pathway requires 

that it be carefully regulated to provide for maintenance of the stable, intracellular 

nucleotide pools necessary for cell survival. In the Enterobacteriaceae, this regulatory 

network involves genetic, allosteric, and physiological control systems that need to be 

integrated into a coordinated set of metabolic checks and balances.  Over the years a 

repertoire of mechanisms that can modify flux in this pathway have been discovered. 

These important discoveries have resulted largely from a reductionism approach and 

integration of the molecular details of regulation with the complex portrait of cell 

function has proven challenging.  However, over the past ten years both technical and 

theoretical tools have been developed such that the global picture is emerging.  The 

theoretical framework allows for a mathematical description of each of the individual 

molecular mechanisms and their potential to contribute to the control of metabolic flux. 

The new sciences of genomics, proteomics, transcriptomics and metabolomics provide 

us with the most detailed picture yet of metabolism, identifying complex networks of 

genes with coordinated regulation.  As biology integrates these new technologies, and 
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moves from the study of one protein in a pathway to the study of networks of proteins, a 

molecular understanding of how living cells operate as systems is closer than ever 

before.   

 

Figure 1 illustrates how intricate the network of reactions is which sustains life.  All of 

these reactions occur in a cell that is less that 1 mm in diameter, and each requires an 

enzyme that is itself the product of a series of information-transfer and protein synthesis 

reactions. For each metabolite produced there can be multiple enzymes that are required 

not just for synthesis, but also those that can chemically modify it in a variety of ways.  

For example, uridine-5�-triphosphate (UTP) is produced in Escherichia coli by the 

sequential reaction of eight independent enzymatic steps.  Once produced it serves as a 

substrate for RNA polymerase, responsible for the RNA synthesis essential for cell 

growth.  However, UTP can also be aminated in an ATP requiring reaction to yield 

cytidine-5�-triphosphate (CTP), dephosphorylated to uridine-5�-diphosphate (UDP) and 

reduced to 2�-deoxyuridine-5�-triphosphate (dUTP).  Similar to these UTP reactions, 

competitions for thousands of other metabolites are occurring simultaneously. It would 

be easy to imagine that the network of metabolism is so finely balanced that any 

perturbation would be disastrous. Yet, the cell is amazingly resilient. Environmental 

perturbations are countered with responses directed at maintaining homeostasis, and this 

is achieved by an elaborate network of mechanisms that control and regulate each 

reaction. In addition to environmental signals, cells respond to internal signals that allow 

them to evaluate their physiological state and coordinate their biosynthetic capabilities.   
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Figure 1. Overview of the biochemical network in E. coli. A) Schematic representation of a cell and its 
metabolic network and pools of metabolites; circles represent metabolites and lines represent reactions; all 
other symbols represent pools of intracellular metabolites. B) Detail of the pathway of de novo 
biosynthesis of pyrimidine nucleotides (47). 

 

As pathways of reactions intersect or branch, multiple control points responsive to 

different metabolites have developed to handle the competing demands. Traditional 

biology tells us that by regulating a few enzymes at key points in a metabolic network, a 

cell can effect large-scale changes in its general metabolism.  For pyrimidine 

biosynthesis, this controlling enzyme is aspartate transcarbamoylase, and the de novo 

pathway is an ideal system for the testing of these traditional regulatory concepts. 

Although ubiquitous in nature, it has been adapted by the acquisition of a variety of 

different regulatory controls and pathway organizations.  Fifty years of research on the 
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pathways and enzymes of pyrimidine biosynthesis provide a detail of information 

essential for the testing the regulatory paradigms. 

 

Overview of Pyrimidine Biosynthesis in Escherichia coli 

 

In Escherichia coli, de novo pyrimidine biosynthesis starts with the condensation of 

ammonia or glutamine with bicarbonate in the presence of ATP (Figure 2). This initial 

reaction of the de novo pathway is catalyzed by the enzyme carbamoyl phosphate 

synthase, CPSase (EC 6.3.5.5) (62). The carbamoyl phosphate produced by this reaction 

is combined with aspartate in a subsequent reaction catalyzed by aspartate 

transcarbamoylase (ATCase, EC 2.1.3.2). This reaction marks the first step unique to 

pyrimidine biosynthesis and, as such, is traditionally considered to be the rate-limiting 

step for flux through the pathway.  This is consistent with its characterization as an 

allosterically regulated enzyme responsive to the pathway’s end products. The amino-

acid derivative that is produced, carbamoyl aspartate, is then cyclized by dihydroorotase 

(DHOase, EC 3.5.2.3) to form dihydroorotate. This cyclic amide is subsequently 

oxidized to orotate by dihydroorotate dehydrogenase (DHOdeHase, EC 1.3.3.1). The 

ribose ring from PRPP is transferred to the pyrimidine ring by orotate 

phosphoribosyltransferase (OPRTase, EC 2.4.2.10). The orotidine-5’-phosphate 

produced is then decarboxylated by ODCase (EC 4.1.1.23) to form uridine 

monophosphate (UMP), the end product of the de novo pathway. As seen in Figure 2, 

this is only the beginning as ultimately the pyrimidine requirement for DNA and RNA  
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Figure 2. Pyrimidine metabolism. Schematic map of pyrimidine metabolic reactions in E. coli. De novo 
reactions are highlighted. The enzymes are represented by their IUPAC-IUBMB enzyme classification 
nomenclature (68).  

 
 
synthesis is fulfilled by interconversion of nucleotides.  For this purpose, the UMP is 

phosphorylated by uridylate kinase (EC 2.7.4.-) and UDP kinase (EC 2.7.4.6) to provide 

UDP and UTP, which is ultimately converted into CTP by CTP synthetase (EC 6.3.4.2).  

The formation of the deoxyribonucleotides dUDP and dCDP from the corresponding 

ribonucleotides is controlled by ribonucleotide reductase (EC 1.17.4.1). Thymidylate 

synthase (EC 2.1.1.45), another important enzyme of the pyrimidine nucleotide pathway, 
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catalyzes the conversion of dUMP into dTMP. The deoxynucleoside triphosphates dTTP 

and dCTP eventually provide the pyrimidine nucleotide substrates for DNA 

polymerization. 

 

 

The Network of Regulatory Genetic Interactions 

 

Carbamoyl Phosphate Synthase. The genes and operons encoding for the pyrimidine 

de novo enzymes are led by sequences responsive to the intracellular concentrations of 

UTP and CTP as summarized in Table 1.  

 

Table 1. Genetic regulation of metabolic flux through de novo pyrimidine biosynthesis 

Gene (Enzyme) Regulation Reference 
carAB (CPSase) UTP and CTP Lu et al., 1989

Piérard et al., 1976 
pyrBI (ATCase) UTP Turnbough, 1983 
pyrC (DHOase) CTP Turnbough, 1993 

pyrD (DHOdeHase) CTP Wilson and Turnbough, 1990 
pyrE (OPRTase) UTP Poulsen and Jensen,, 1987 

pyrF (ODCase� UTP Turnbough et al., 1987 

 

 

Expression of the carAB operon, which encodes the two subunits of CPSase, is regulated 

at two tandem promoters, P1 and P2, by the cumulative repression of the end products of 

the arginine and pyrimidine biosynthetic pathways. Initiation of transcription of this 

operon at P1 can be negatively regulated by  
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Figure 3. Schematic organization of the carAB operon (47). 

 

the intracellular availability of pyrimidine nucleotides (Figure 3). This regulation 

requires the upstream binding of trans-acting factors CarP and IHF (integration host 

factor). Binding of these proteins is believed to induce structural modifications (bending) 

of the DNA and facilitate the recruitment of other regulatory factors (8, 12-14, 71). 

Another mechanism that appears to act independently from CarP/IHF-mediated 

regulation involves UTP-sensitive reiterative transcription at the 3’-end of the transcript, 

due to transcript-template slippage (28). At the P2 promoter, initiation is regulated by 

ArgR, the arginine repressor. Binding of the hexameric ArgR to the two operator 

sequences (ARG boxes) flanking the start site for transcription, prevents binding of the 

transcriptional machinery (8, 71, 104). The regulatory activity of ArgR over the P2 

promoter, however, does not appear to affect initiation of transcription at the P1 

promoter.  

 

Aspartate Transcarbamoylase. The organization of the pyrLBI operon includes two 

tandem promoters, P1 and P2, followed by an open reading frame that encodes a 

“leader” polypeptide with 44 amino acids in length (Figure 4). The catalytic chains are 
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encoded by the pyrB gene, while pyrI encodes the regulatory chains. Of the two 

promoters, P2 has been identified as the physiologically significant promoter (56). 

 

 

Figure 4. Schematic organization of the pyrBI operon (47). 

 

The pyrLBI operon is located at 97 minutes on the chromosome map, away from the 

genes encoding the other six enzymes involved in pyrimidine biosynthesis. The 

expression of this operon is regulated by the intracellular levels of uridine or cytidine 

nucleotides. Most of this regulation occurs through an UTP-sensitive attenuation control 

mechanism (Figure 5). Attenuator-independent mechanisms, including a pyrimidine-

sensitive transcriptional initiation mechanism and stringent control by ppGpp, account 

for a smaller range of regulation (56). Transcriptional termination at the pyrBI attenuator 

(a ρ-independent transcriptional terminator) is regulated by the relative rates of 

transcription and translation within the pyrBI leader region.  When intracellular levels of 

UTP are low, they cause RNA polymerase to pause at the uridine-rich region in the 

leader transcript, which allows time for the ribosome initiating translation to catch up to 

the stalled RNA polymerase before it transcribes the attenuator region. As RNA 

polymerase makes its way through the attenuator, the adjacent translating ribosome 

blocks formation of the terminator hairpin. This permits RNA polymerase to read 

through into the pyrBI structural genes, with translation terminating before the pyrB 
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initiation codon.   At high intracellular levels of UTP, RNA polymerase does not pause 

during transcription of pyrL. Without this pausing, the ribosomes cannot catch up to 

RNA polymerase before it transcribes the attenuator. This allows formation of the RNA 

hairpin, thus terminating transcription prior to the structural genes (21).  

 

 

Figure 5. Transcriptional control of pyrBI (101). 

 

Dihydroorotase. The transcriptional start site of pyrC is located 36 base-pairs upstream 

of the structural gene. Regulation of the pyrC gene of Escherichia coli appears to 

respond coordinately to pyrimidine limitation. The mechanism of regulation of gene 

expression involves attenuation, as in the case of ATCase. A regulatory region between 

the promoter and the beginning of the pyrC transcriptional initiation region has been 

shown to form a hairpin at the 5’-end of the transcript. This hairpin structure, which  
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Figure 6. Schematic organization of pyrC (47). 

 

overlaps the functional ribosome-binding site SD1 (the Shine-Dalgarno sequence 1), is 

controlled by a nucleotide-sensitive selection of the transcriptional start site. At high 

intracellular levels of CTP, transcription starts seven bases downstream of the –10 region 

and the hairpin is formed. When CTP levels are low and GTP levels are high, 

transcription is initiated with GTP two bases downstream. This shorter transcript is not 

able to form the 5’-end hairpin and the gene is translated normally (57, 110). In addition 

to the attenuation mechanism, it has been suggested that regulation of pyrC, pyrD, pyrE, 

and pyrF involves a common repressor protein; this despite the fact that the genes of the 

pyrimidine biosynthetic pathway are not closely linked within the chromosome. The 

purine repressor PurR has been identified as a component of this regulatory system 

(Figure 6). It binds a control site similar to the pur regulon operator, repressing 

expression of this gene by two-fold (16, 111).   

 

Dihydroorotate Dehydrogenase. Regulation of gene expression of pyrD is, as in the 

case of pyrC, associated with the action of PurR (16). The regulator binds to a site 

upstream of the promoter and blocks the recruitment of the transcriptional apparatus.  
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Figure 7. Schematic organization of pyrD (47). 

 

This site is located near to the promoters of pyrD, as well as pyrC, carAB and prsA, 

which encodes phosphoribosyl pyrophosphate synthase (EC 2.7.6.1) (9, 111). As 

mentioned above this site has a sequence similar to the binding site for the purine 

repressor (Figure 7). Regulation of expression of pyr genes is in support of the idea that 

the coordination of pyrimidine and purine nucleotides synthesis must be appropriately 

equalized. Other examples of this coordinated regulation are found in the allosteric 

activation of CPSase by ATP and the GTP-mediated attenuation of pyrC and pyrE.  

 

 

Figure 8. Schematic organization of pyrE (47). 

 

Orotate Phosphoribosyl Transferase. Regulation of transcription of the gene encoding 

OPRTase, pyrE, includes an attenuation mechanism in the intercistronic rph-pyrE region 

(Figure 8). The attenuation is modulated by the intracellular levels of UTP and GTP, in 

the presence of the NusA regulatory protein. pyrE is transcribed together with the gene 

rph, which is part of the same operon. Two promoters, P1 and P2 have been located 

upstream of this operon and appear to initiate transcription at constitutive levels. rph 

encodes Rnase PH, an exonuclease involved in processing of tRNA 3’-ends. When the 
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UTP pools are low, the dicistronic rph-pyrE mRNA is formed and quickly processed 

into the monocistronic subunits. At high UTP intracellular levels, an attenuator forms at 

the intercistronic region and transcription is terminated before reaching the pyrE open 

reading frame (3, 4, 7, 73). 

 

 

Figure 9. Schematic organization of pyrF (47). 

 

Orotidine Monophosphate Decarboxylase. The pyrF gene, which encodes ODCase, is 

part of an operon in the chromosome of Escherichia coli that includes a downstream 

orfF gene of unknown function (Figure 9). The translational start site of orfF and the 

pyrF stop codon overlap, which suggests translational coupling in their expression. 

Transcriptional control of pyrF, as in the other pyr genes, is coordinately controlled by 

intracellular levels of pyrimidine nucleotides. However, analysis of the nucleotide 

sequence suggests that there is no attenuation mechanism involved (40, 98).   

 

The Network of Biochemical Signaling  

 

Carbamoyl Phosphate Synthase. CPSase (EC 6.3.5.5) synthesizes a common substrate 

for the arginine and pyrimidine biosynthetic pathways, carbamoyl phosphate (CP). 

CPSase is a dimeric enzyme composed of two non-identical subunits of 42 and 120 

KDa; the small subunit catalyzes the amidotransferase reaction, while the large subunit 
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catalyzes the phosphorylation reactions (Figure 10). The production of CP begins with 

hydrolysis of glutamine to produce ammonia and the phosphorylation of bicarbonate 

with ATP to produce carboxy phosphate. The ammonia is channeled through the interior 

of the enzyme to a second active site, where it reacts with the carboxy phosphate to   

   

 

Figure 10. Structure diagram of CPSase (35). 
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produce the unstable intermediate carbamate. This intermediate is then channeled to the 

third active site, where it is phosphorylated by the second ATP molecule. The final 

product is thus formed and released from the enzyme at the opposite end where 

glutamine entered (77, 96). The small subunit contains the binding site for glutamine, 

and the large subunit those for bicarbonate and ATP. This subunit is also subjected to 

allosteric regulation by ornithine and UMP, which act as activator and feedback-

inhibitor, respectively. The enzyme is also subject to cumulative repression by arginine 

and pyrimidine compounds (70, 97). 

 

The combined allosteric and genetic effects provide a complex, but efficient mechanism 

of controlling the supply of CP for the arginine and pyrimidine pathways. Although the 

components of these mechanisms of control have been characterized, the details of their 

interaction remain unclear. Expression of the operon and activity of the enzyme, increase 

as does the cellular need for pyrimidine nucleotides. UMP inhibition of the enzyme 

provides a fast cellular response, whereas reiterative transcription and P1-mediated 

inhibition of expression provide a more resource-efficient, although slower, control. 

 

Aspartate Transcarbamoylase. ATCase (EC 2.1.3.2) is a ubiquitous enzyme of 

pyrimidine biosynthesis that catalyzes the first step unique to the pyrimidine biosynthetic 

pathway in Escherichia coli. In different organisms, the enzyme exists in different states 

of oligomerization or as part as multifunctional complexes. The Escherichia coli enzyme 

is structurally complex and relatively large: it contains six catalytic chains, organized in 
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two trimers, that are associated with six regulatory chains, which are organized as three 

dimers, 2(c3):3(r2). Each catalytic chain has a molecular weight of 33,000 KDa, whereas 

each regulatory chain has a molecular weight of 17,000 KDa.  

 

ATCase exerts significant control over the rate of pyrimidine biosynthesis. This is 

achieved by modification of the enzymatic activity in response to substrate concentration 

(homotropic cooperativity) and to the nucleotide end products of both the purine and 

pyrimidine pathways (heterotropic regulation) (25). In the oligomeric holoenzyme, 

catalysis proceeds by a preferred order mechanism with carbamoyl phosphate binding 

before aspartate and N-carbamoyl-L-aspartate leaving before inorganic phosphate. 

Homotropic cooperativity is induced by aspartate in the presence of a saturating  

 



 20

 

Figure 11. Structure diagram of ATCase (52, 63). 

 

concentration of carbamoyl phosphate and involves a structural transition of the enzyme 

that is consistent with a two-state, concerted model.  As aspartate is bound, the enzyme 

shifts from the T state (tense), characterized by low catalytic activity and low affinity for 

substrates, to the R state (relaxed) with high activity and high affinity for substrates 

(Figure 11). This positive cooperativity is evidenced experimentally when plotting the 

kinetics on a sigmoidal substrate saturation curve. Heterotropic activation is effected by 

the purine ATP, while the pyrimidine end products CTP and UTP feedback inhibit the 

enzyme.  The two pyrimidine nucleotides synergistically inhibit ATCase: CTP inhibits 
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the enzyme’s catalytic activity by, approximately, 60% and UTP has minimal effect, 

whereas acting in combination CTP and UTP inhibit the activity of ATCase by over 

95% (Figure 12) (108).  CTP, ATP and UTP compete, with different affinities, for 

binding to a common allosteric site on the regulatory subunits. CTP has the highest 

binding affinity with a pattern that is consistent with two classes of three sites each 

whose dissociation constants differ by a factor of 20 (Kd-CTP: 5-20 µM). The binding of 

ATP follows a pattern similar to that of CTP with two classes of affinity sites, except 

that ATP binding is one order of magnitude weaker than that of CTP (Kd-ATP: 60-100 

µM).  The binding of UTP appears to be limited to three sites (Kd-UTP: 800 µM), although 

there may be a second class of sites that is too weak to be measured.  CTP binding to 

three sites appears to enhance the binding of UTP to the remaining three sites by almost 

100-fold, resulting in a predicted Kd for UTP in the presence of CTP of 10 µM (23). 

These biochemical binding characteristics are explained by the physiological 

requirements of the pathway: while the intracellular concentration of CTP (500 µM) and 

UTP (900 µM) are 3 to 6-fold lower than that of ATP (3-5 mM), their stronger binding 

can effectively displace ATP at the allosteric sites of the enzyme.  

 

Comparison of the crystallographic structures of the enzyme has revealed that each of 

the catalytic chains is composed of two independently folded structural domains: the 

carbamoyl phosphate (CP) domain and the aspartate (Asp) domain.  The active sites are  
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Figure 12. Aspartate saturation curve and allosteric effects of ATCase. No allosteric effectors (black 
circles), ATP activation (white circles), CTP inhibition (black triangles), and CTP+UTP inhibition (white 
triangles) (101). 

 
 
located at the interface between the CP and Asp domains of one catalytic chain and the 

CP domain of an adjacent catalytic chain.  Likewise, the regulatory chains are composed 

of two structural domains: the zinc-binding (Zn) domain and the allosteric (Allo) 

domain.  Differences between the two states of the enzyme have been identified by 

comparison of the inhibitor-ligated (CTP) T-state structure and a substrate analogue-

ligated (N-(phosphonacetyl)-L-aspartate; PALA) R-state structure (45, 50). The T→R 
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quaternary transition involves substantial conformational rearrangements as the catalytic 

trimers separate by 11Å and mutually reorient 10o around the 3-fold axis, while each 

regulatory dimer rotates 15o around the 2-fold axis. During substrate binding, the two 

domains of each catalytic chain (Asp and CP) undergo domain closure, while the two 

domains of the regulatory chain (Allo and Zn) undergo domain separation. Site-directed 

mutagenesis studies have shown that closure of the CP and Asp domains is important for 

the formation of the high affinity, high activity R-state, required to attain the proper 

active site conformation needed for catalysis, and for homotropic cooperativity (42). 

 

Numerous mutational studies, along with the many structural and biochemical analyses, 

have contributed to our understanding of ATCase by identifying key residues within 

active site and allosteric sites, as well as important interactions for the stabilization of the 

T and R states.  To clarify the allosteric mechanism, several mutants have been designed 

to isolate the homotropic from the heterotropic effect, ATP activation from inhibition, 

and CTP inhibition from the CTP+UTP synergism.  Even though there is not yet a 

complete description of the allosteric mechanism, there is strong evidence that binding 

of just one ligand to an active site, is sufficient to induce the concerted structural 

transition from the T to the R state (60).  

 

Dihydroorotase. L-5,6-dihydroorotate amidohydrolase (EC 3.5.2.3) is the enzyme that 

completes the cyclization of the pyrimidine precursors in the biosynthetic pathway. As 

mentioned, it is also part of the triad of enzymes that forms the CAD complex in 
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eukaryotes. In E. coli, DHOase catalyzes the dehydration of carbamoyl aspartate to form 

dihydroorotate. 

 

DHOase is a homodimer with a molecular weight of 38,500 Da. It is an unusual enzyme, 

in that it catalyzes the synthesis of an amide bond without needing a coupled reaction to 

drive it. Entropy drives the reaction to the formation of dihydroorotate rather than to the 

less thermodynamically favorable intermolecular amide bond formation (86, 105). There 

are no effectors that inhibit the activity of the enzyme, although it has been reported to 

be sensitive to oxidative modification and trace metal ions. The structural integrity of the 

active site appears to be stabilized by a single Zn(II) ion. There are two other Zn(II) ions 

weakly bound to each monomer that are not essential for activity (11, 106).  

 

Dihydroorotate Dehydrogenase. DHOase (EC 1.3.3.1) catalyzes the fourth and only 

redox sequential reaction in the de novo biosynthesis of pyrimidines, the oxidation of 

dihydroorotate to orotate. This enzyme is membrane bound and linked with the electron 

transport system in Escherichia coli. It has a molecular mass of 37KDa and contains an 

FMN (flavin mononucleotide). The overall reaction can be divided mechanistically in 

two partial reactions. The first reaction involves the transfer of a hydride ion to the FMN 

group. This is followed by the reoxidation of FMN through electron transfer from FMN 

to the external electron acceptor. Ubiquinone is believed to be the oxidizing substrate in 

vivo (43, 69). The recently solved crystal structure of this enzyme reveals that it is a 

monomer, but in solution can be associated through its N-terminus to behave as a dimer. 
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DHOdeHase folds into an α/β-barrel with the active site situated on top of the barrel. No 

inhibitors have been identified to bind the enzyme. The amino terminus of this molecule 

is responsible for binding to the membrane and channeling of electrons (58, 67).  

 

Orotate Phosphoribosyl Transferase. OPRTase (EC 2.4.2.10) is a protein with a 

molecular weight of 23 KDa that is responsible for the synthesis of orotidine-5’-

monophosphate (OMP), the precursor of UMP in the cell. The enzyme uses the orotate, 

formed in the previous reaction, and α-D-5-phosphoribosyl-1-pyrophosphate (PRPP), in 

the presence of divalent cations, to yield OMP and pyrophosphate (PPi). This is the fifth 

step in pyrimidine biosynthesis. The active form of the enzyme appears to be a 

homodimer with catalytically important residues available to the neighboring subunit. 

The reaction mechanism appears to involve a two-step process for the release of PRPP 

with the participation of a flexible loop at the interface of one of the subunits. The 

substrates bind to two different sites each per dimer with different affinities. Binding of 

orotate increases the binding affinity of PRPP to its site by four-fold. After binding, the 

flexible loop descends to shield the active site. This is followed by a very fast catalytic 

reaction and a much slower release of the product, that also involves the movement of 

the solvent-exposed loop (32, 87, 88, 102, 103).  

 

Orotidine Monophosphate Decarboxylase. ODCase (EC 4.1.1.23) catalyzes the last 

reaction of the de novo pathway of biosynthesis of pyrimidines, the decarboxylation of 

OMP to UMP and CO2. ODCase has a molecular weight of 27 KDa and is perhaps the 
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most proficient enzyme known, enhancing the rate of OMP decarboxylation by a factor 

of 1017 (the uncatalyzed reaction half-time is, approximately, 78 million years). This feat 

is accomplished without metal ions or cofactors and an estimated dissociation constant 

of less than 5 x 10-24 M (75). The active enzyme is a homodimer with an α/β–barrel 

structure. The reaction follows a mechanism in which binding of the substrate to the 

active site is secured by a loop that closes in, similar than OPRTase. This is followed by 

sequential proton transfer and decarboxylation steps that are facilitated by several 

charged residues in the active site (30, 31).  

 

To summarize, there are two distinguishable, although interrelated, levels of regulation 

of pyrimidine biosynthesis. At the gene level, transcription is coordinately controlled by 

the intracellular levels of pyrimidine nucleotides, uridine for pyrBI, pyrE and pyrF and 

cytidine for pyrC and pyrD, and purine nucleotides in the cases of pyrC and pyrE. The 

mechanisms of control are related to promoter-induction and attenuation. At the 

enzymatic level, two enzymes CPSase and, the first committed step enzyme, ATCase 

respond to intracellular levels of allosteric effectors, again both purine and pyrimidine 

nucleotides. The subtleties in the coordination of these mechanisms ensure the efficient 

balance in the production of those molecules that are used mostly as the precursors of 

nucleic acids.   
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LIQUID CULTIVATION OF CELLS IN A CONTINUOUS FLOW SYSTEM 
 

Description of the characteristics of liquid cultivation of cells must begin with making 

mention of the fact that liquid bacterial cultures are highly heterogeneous and any 

measurement simply serves to monitor average values in the population. Indeed, 

although individual cells may be genetically identical to one another, there exist 

variation in the physiological state, age, size and metabolic characteristics. Realization 

of this limitation is important for the design of a culture system that minimizes 

heterogeneity; a goal that can be successfully achieved with the careful optimization of 

continuous flow growth conditions.  

 

Continuous cultivation of cells in a chemostat aims at obtaining a steady state that is 

achieved by a constant supply of fresh medium, which is added at the same rate as used 

media and cells are harvested (Figure 13). The term steady state in this case refers to a 

constant biomass and nutrient concentration inside the culture vessel. Steady state thus  
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Figure 13.  Chemostat cultivation of Escherichia coli.  

 

allows continuous exponential growth in which a well-mixed sample taken will be 

representative of the population. Under steady state growth conditions this population 

can be defined as: 

 

 

 

 

 

This can be expressed mathematically as: 
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where F is the flow-rate of medium, V is the culture volume inside the vessel, X0 and X 

represent the biomass in the feed and fermentor respectively, µ is the growth rate and α 

the death rate.  

 

Under steady state conditions, the rate of change in biomass dX/dt = 0, α << µ, therefore 

the death rate can be ignored. Also X0=0 in a sterile medium feed, so the equation can be 

rearranged to define the growth rate in terms of the dilution rate, D: 

Equation 2 

D
V
F ==µ          

 

 
Steady State Growth and Perturbation 

 

The ultimate function of a bacterial cell is the formation of new cells. This statement 

could very well summarize most of what is known about the life cycle of a prokaryotic 

organism. Irrespective of its fundamental importance in studying and understanding 

physiology and metabolism, less effort has been put into the objective characterization of 

the life cycle of a bacterium than its manipulation for research or commercial purposes. 

Most of the book chapters and journal articles dedicated to describing bacterial growth 

do so by relating the physical characteristics observed under specific culture conditions.   

However, it cannot be said that the description of bacterial growth as the series of phases 

defined for a batch culture are representative of the physiological stages of the life cycle 
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of the organism. In fact, microorganisms in nature grow under mixtures of nutrients and 

other environmental variables and are constantly adapting their physiological and 

metabolic apparatuses. There are several research groups that have focused their effort 

on uncovering the mechanisms and signal transduction governing cell cycle in bacteria; 

most of these groups are analyzing the segregation of the bacterial chromosome and are 

fueled by the availability of extensive genomic data (94). 

 

Cellular growth in bacteria is defined by the accumulation of cell mass and it proceeds in 

an uninterrupted fashion, from one cell division to the next, at the same rate throughout 

the cell cycle. Two events mark the cell cycle, DNA replication and the septation 

process. DNA replication appears to proceed at a rate not directly proportional to growth 

and it cannot be assigned to a discrete stage in the cell cycle (as is the case in 

eukaryotes) (66); strikingly, recent reports suggest the existence of an apparatus of 

chromosome localization similar to that responsible for mitosis (72). Concomitant with 

the process of chromosome replication and segregation is that of septation. Cell division 

in E. coli requires the invagination of the cell envelope in a process that involves the 

formation of a ring across the mid-cell region by a group of proteins, some of which 

have been identified, although the nature of the signals that trigger this mechanism are 

not clear. The timing of the synthetic activities of the cell leading to cell division are 

dependent on the rate of growth of the cell, while the final objective of the metabolic 

response remains that of providing the resources (energetic and structural) to ensure 
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replication of the genetic material and cell elongation; the processes that lead to cell 

division.  

 

The metabolic burden of a cell engaged in replication and division can vary with the 

nutritional and environmental conditions. Under conditions of nutritional deprivation, 

cells will see this burden increase in the form of a greater energy demand. This energetic 

demand can be momentarily satisfied at the expense of the adenylate energy charge 

(AEC) of the cell (defined by the ratio of intracellular concentrations of ATP, ADP and 

AMP) (66). However this ratio will need to recover promptly or else drive the cell to a 

state of senscence.  How promptly the energy charge ratio can recover will depend on 

the rate or growth of the cell. The energy demand from a nutritional shift can also be 

satisfied by increased NADH oxidation in the respiratory chain. NADH is mostly 

produced by the tricarboxylic acid (TCA) cycle. The cell can respond to higher energy 

demand by induction of the regulon controlled by global transcription factors, notably 

cAMP-CRP, which control key enzymes in the TCA cycle. An interesting study on this 

metabolic adaptation of E. coli to environmental perturbation has been recently 

published (33, 107). An additional signaling mechanism, that of the ppGpp alarmone, 

together with ATP and GTP, may contribute to regulation of the ribosome concentration 

to meet biosynthetic demands (41).  

 

Accordingly, during steady state growth the metabolic response can be evaluated 

according to two types of limitations, biomass accumulation or energy source demand. 
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In a glucose-limited chemostat, at low dilution rates (<0.3 h-1), the glucose is mostly 

utilized as a cell-mass precursor; at higher dilution rates (>0.3 h-1), nutrient utilization 

shifts to satisfy the energy limitation with the consequent decrease in the rate of 

production of ATP (therefore smaller AEC ratio). This shift also appears to increase flux 

through the pentose phosphate pathway and reduced TCA cycle flux and NADH 

turnover (44). Limitations in the respiratory NADH turnover and associated generation 

of ATP through oxidative phosphorylation can cause reorganization of the catabolic flux 

distribution to meet anabolic demands (27). 

 

Continuous cultivation of cells in a chemostat does not describe, however, the dynamic 

response to famine and feast the cells endure in natural conditions. Although single-

substrate limited growth is also not the natural state of most cells, experiments done in 

glucose-limited chemostats represent an approximation to the cellular response to 

nutrient availability.  

 

MATHEMATICAL MODELING OF METABOLISM 
 

Modeling Enzyme Kinetics 

 

Progress of a reaction showing typical Michaelis-Menten kinetics can be simulated 

solving the relevant differential equation (Equation 3) 
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Equation 3 
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To simulate the decrease in substrate concentration in this type of reaction, one needs to 

formulate the appropriate equation, describe the relevant steady state kinetic parameters 

(Vmax and KM) and initial substrate concentration and solve. Figure 14 depicts the time-

dependence of substrate consumption and product formation of one such reaction. 

Metabolic pathways typically comprise more complicated enzymatic behaviors and 

numerical analysis and simulation are far more challenging. 

 

For these studies, the powerful differential equation solver of Mathematica (Wolfram 

Research Inc.) NDSolve was chosen to find the solutions of the equations (113). Even 

though it is relatively straightforward to formulate sets of simultaneous first-order 

ordinary non-linear differential equations, the large number of parameters that need to be 

assigned makes it time-consuming and error-prone to manually perform the numerical 

calculations. NDSolve is the program Mathematica uses to numerically solve arrays of 

simultaneous differential equations. The power of NDSolve comes from its use of 

diverse multi-step integration methods, that is, NDSolve finds successive points on a 

curve with iterations of evaluation of the slope for every solution (64). 
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Figure 14. Time-dependent simulation of a typical enzyme-catalyzed reaction. For this simulation it 
was assumed Michaelis-Menten kinetics of an enzyme with Vmax = 80 µmol/L, KM = 4 mM and an initial 
substrate concentration of 6 mM. Decrease in substrate concentration alone (A) or compared to product 
formation (B). 

 

Parameter Estimation 

 

Parameters for the development of a model can be taken from experimental observations 

data or the available literature produced by other research laboratories. However, for 

most modeling efforts there are additional kinetic constants and intracellular 

concentrations that have to be estimated. Often kinetic constants are determined under 

different experimental conditions and it is best to estimate them. For example, in the 
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present studies the Vmax parameter for a number of reactions was estimated from reliable 

turnover numbers, taking the limit of the rate equation of the reaction of interest when 

the substrate (or substrates) concentration tends to infinity, assuming the concentration 

of product to be zero. The KM value can then be calculated taking the limit of the rate 

equation as well for the value of the substrate that is half the Vmax, assuming a product 

concentration to be zero.  

 

It is necessary to emphasize that modeling cellular systems is an extremely complex 

task. Often it is found that real metabolic networks have a large number of parameters 

relative to the available experimental data. An attempt to precisely estimate all the 

parameters in a metabolic pathway, would involve tracing every independent variable 

over a large number of individual perturbation experiments. It is obvious that we do not 

currently possess the techniques to achieve this for most metabolic networks. Therefore, 

other values need to be estimated by adjusting them to maximize the correlation between 

the mathematical simulation and the experimental data.  

 

Several of the parameters used in the model presented here were chosen from values that 

maximized the probability of the data; this is formally called maximum likelihood 

estimation. In these studies the FindMinimum program of MathematicaTM was used to 

find local minima of functions defining the sums of squares of nucleotide concentrations. 

FindMinimum uses several methods of optimization such as Newton, Quasi-Newton, 

Levenberg-Marquadt, Gradient and Conjugate Gradient (6, 15, 114). In general, the 
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method of least squares was used to find the vector values (ϕ) that led to the best 

simulation of the available experimental data (d), that is, maxϕ p(ϕ|d), where p is the 

probability. For instance, if we have a data set d of n reaction rates vi, that are associated 

with a defined substrate concentration ai, then we can use vi = v(ai, ϕ) to describe our 

data. If we assume that each estimate has an a normal, or Gaussian, error distribution and 

variance σ2
i, then the maximum probability of reaching a reaction rate vi with our 

estimated parameter is 

Equation 4 
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The modeling presented in these studies is composed of arrays of simultaneous nonlinear 

differential equations and, therefore, parameter estimation is very difficult. The 

relatively large number of parameters makes the optimization process very slow and 

labor intensive.   

 

Modeling of de novo Pyrimidine Biosynthesis 

 

Modeling of biological systems becomes necessary when looking toward a 

comprehensive image of cellular physiology. If one wants to manipulate the cellular 

environment without conducting the research to unintended results, it is necessary to 

establish quantitative logical relationships that describe the control of cellular 
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metabolism. Fortunately, the tools that have now become widely used to organize the 

available biological knowledge also allow us to approach this goal. In silico models of 

carbohydrate and amino acids metabolism have been the focus of several research 

groups over the past decade and a concerted effort has been initiated to extend this 

research to a full mathematical description of the E. coli bacterium (34).  

 

Synthesis of nucleotides constitutes an elemental component of the central metabolic 

processes of living organisms and, as such, pyrimidine de novo biosynthesis presents an 

invaluable opportunity to understanding metabolic control. As noted earlier, there exist 

vast amounts of information related to the control of expression of the pyr operons, as 

well as for the structure and biochemical regulation of the two allosteric enzymes 

involved in this pathway. It is clear that a mathematical model of the metabolic flux 

through a biosynthetic pathway must be integrated with the experimental data. This type 

of modeling faces several challenges: the growth conditions have to be stabilized and 

made reproducible; control from allosteric and genetic components have to be 

quantified; and intermediate metabolites and end-products must be measured. In 

addition, the dynamic behavior must be defined and validated to allow for the 

monitoring of the mass transfer. This is the approach used to build the mathematical 

model of de novo pyrimidine biosynthesis presented in this dissertation. 

 

To solve the experimental challenges, chemostats were used for the growth of E. coli in 

culture, readily allowing the manipulation of the activity of the de novo pathway. The 
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chemostat constitutes a reliable culture system, allowing for the evaluation of the 

pathway’s dynamics by enabling flux measurements at the required time intervals. 

Validation of the dynamic behavior then came from quantification of enzymes, 

metabolites and products. Each of these variables was monitored and analyzed relative to 

the rates of each of the reactions over several generations and upon perturbations of the 

pathway’s equilibrium. In particular, the effort was concentrated on the regulation of the 

two rate-controlling enzymes of this pathway: CPSase and ATCase.   

 

After sufficient quantitative data was obtained, it was possible to begin integrating all 

the information into a coherent mathematical model. For the de novo pyrimidine 

pathway, a series of ordinary differential equations were selected to describe the kinetic 

behavior of the enzymes. In the case of the first two allosterically controlled enzymes 

that initiate de novo pyrimidine biosynthesis, additional parameters had to be included to 

simulate the changes in activity induced by the allosteric effectors and substrate 

cooperativity. In E. coli, the individual kinetics of the enzymatic activities has been 

thoroughly studied, so the challenge resided in trying to numerically reflect the multiple 

and, in most cases, not fully understood interactions between the different enzymes, their 

dynamic substrate concentrations, cofactors and effectors. The process of building a 

mathematical model of the allosteric control of de novo pyrimidine biosynthesis in the 

model organism Escherichia coli has been described elsewhere (82), and is explained in 

chapter II. This construction was based on an extensive body of research performed in 

Dr. James R. Wild’s laboratory as well as that published by others. The model was 
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developed to study the effects of repression/derepression of pyrimidine biosynthesis as 

controlled by exogenously supplied uracil. As opposed to standard kinetic models, this 

treatment considers temporal variations in nutrient uptake and in concentration of 

allosteric effectors. The addition of uracil as an environmental variable and 

parameterization of the model yielded an optimal kinetic response. Even though the 

model initially proposed is sufficient to approximate the allosteric responses in the de 

novo pyrimidine pathway, much of the control relies on the transcriptional control of the 

pyr regulon. A second-generation model was formulated that included this genetic 

information as well as data on metabolic dynamics following perturbation at different 

growth rates. The expanded version of the model was then capable of accurately 

simulating the contributions of both types of metabolic regulation. The model thus 

formulated demonstrated the significant contribution of allosteric control to the rapid 

physiological response as well as the more gradual contribution of transcriptional control 

to the adaptation of the cell to external stimuli and environmental changes. Comparison 

of the output of these simulations with the values obtained experimentally helped 

establish the validity of the model. The results show consistency between the two 

approaches, making the predictive value of the model highly promising.  
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CHAPTER II 

 

MODELING THE DYNAMICS OF ALLOSTERIC REGULATION ∗∗∗∗ 

 

 

OVERVIEW  

 

With the emergence of multifaceted bioinformatics-derived data, it is becoming possible 

to merge biochemical and physiological information to develop a new level of 

understanding of the metabolic complexity of the cell. The biosynthetic pathway of de 

novo pyrimidine nucleotide metabolism is an essential capability of all free-living cells, 

and it occupies a pivotal position relative to metabolic processes that are involved in the 

macromolecular synthesis of DNA, RNA and proteins, as well as energy production and 

cell division. This regulatory network in all enteric bacteria involves genetic, allosteric, 

and physiological control systems that need to be integrated into a coordinated set of 

metabolic checks and balances. Allosterically regulated pathways constitute an exciting 

and challenging biosynthetic system to be approached from a mathematical perspective. 

However, to date, a mathematical model quantifying the contribution of allostery in 

controlling the dynamics of metabolic pathways has not been proposed. In this study, a 

                                                 
∗ Reprinted from Journal of Theoretical Biology, 234, Mauricio Rodríguez, Theresa A. Good, Melinda E. 
Wales, Jean P. Hua, James R. Wild, Modeling allosteric regulation of de novo pyrimidine biosynthesis in 
Escherichia coli, 299-310, Copyright (2005), with permission from Elsevier. 
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direct, rigorous mathematical model of the de novo biosynthesis of pyrimidine 

nucleotides is presented. We corroborate the simulations with experimental data 

available in the literature and validate it with derepression experiments done in our 

laboratory. The model is able to faithfully represent the dynamic changes in the 

intracellular nucleotide pools that occur during metabolic transitions of the de novo 

pyrimidine biosynthetic pathway and represents a step forward in understanding the role 

of allosteric regulation in metabolic control. 

 

INTRODUCTION  

 

The bacterium Escherichia coli is the most thoroughly studied prokaryotic 

microorganism from a biochemical and genetic point of view, due primarily to its 

relative ease of manipulation in the laboratory and its extensively documented genetic 

and physiological organization. The amount of information and experimental data 

available on this enteric bacterium has made it the choice of a recently created alliance 

for cellular simulation, the International E. coli Alliance (34). The ultimate objective of 

this project is to create a virtual simulation of its cellular and molecular functions. This 

simulation will be comprehensive and capable of defining accurate responses to external 

manipulation in a way that reflects the in vivo metabolic functions and behavior of the 

living cell.  
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The functionally integrated, virtual E. coli is being constructed by combining currently 

available data with new directed research that is designed to augment accurate model 

building. Compilation and integration of several decades of molecular data is a 

monumental task in which this information has to be merged with that of genomics, 

transcriptomics and proteomics through step-wise mathematical simulations. The 

importance of simulating systemic metabolomics at the cellular level cannot be 

overstated. Understanding the interactions of all the cellular components will facilitate 

and guide future work, bringing a new level of understanding to how molecular life 

functions are integrated at the cellular level.  

 

From the early work analyzing sensitivity coefficients within a pathway (90) to the more 

recent efforts to deal with the data pouring in from the E. coli genome sequencing 

project (1, 78, 79, 92), a growing need to integrate diverse experimental observations has 

resulted in the application of modeling as a powerful tool in the study of metabolic 

processes. Research has focused on cellular mechanisms of control such as the study of 

DNA replication (29), regulation of transcription (10, 20) and chemotaxis (95). Specific 

approaches have been applied to some metabolic pathways, as is the case of a model of 

attenuation in the tryptophan biosynthetic pathway (49) and the lac operon (99). While 

many of the metabolic modeling efforts with E. coli have been focused on improving 

conditions for a desired commercial application (2, 51, 53), more basic research has been 

performed on the metabolic pathways of different organisms (24, 76, 89). These and 
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other works have contributed greatly towards a general understanding of the regulatory 

mechanisms of cellular networks and its applications. However, to our knowledge, there 

is no body of literature specifically dedicated to analyzing E. coli metabolism from a 

pure description of the mechanisms controlling networks in a wild-type environment.  

 

It is important to understand the detailed contribution and coordination of the diverse 

mechanisms controlling metabolic pathways. De novo nucleotide metabolism 

synthesizes purines and pyrimidines, the building blocks of nucleic acid polymers, which 

constitute a fundamental component of the central metabolic processes of all living 

organisms. In E. coli, de novo pyrimidine synthesis begins with the condensation of 

ammonia or glutamine with bicarbonate and ends in the formation of UMP, UTP, CTP, 

dCTP and dTTP. Aspartate transcarbamoylase (ATCase, EC 2.1.3.2) and carbamoyl 

phosphate synthetase (CPSase, EC 6.3.5.5) are considered the key allosterically 

regulated enzymes controlling metabolic flux through the pathway. CPSase is feedback-

inhibited by UMP and activated by ornithine, and ATCase, in turn, is inhibited by UTP 

and CTP and activated by the purine nucleotide ATP (101). The CPSase product, 

carbamoyl phosphate (CP), is shared by both the arginine and the pyrimidine 

biosynthetic pathways, establishing ATCase as the first step unique to pyrimidine de 

novo biosynthesis and its primary regulatory control.  
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To undertake the integration of a mathematical model of the de novo pyrimidine 

biosynthetic pathway, a system of coupled ordinary differential equations was 

formulated to describe the kinetic behavior of each of the enzymic reactions in the 

pathway. In the case of the allosterically controlled enzymes that initiate de novo 

pyrimidine biosynthesis, kinetic parameters were included to simulate the changes in 

activity induced by the allosteric effectors. In addition, the differential equations 

describing the biosynthesis of the first two enzymes in the pathway need to contain 

expressions for the decrease in enzyme synthesis in the presence of elevated pyrimidine 

nucleotide concentrations. As appropriate, the kinetic parameters for the model and the 

form of kinetic expressions for individual enzymes in the pathway were optimized from 

an extensive body of research in our laboratory and that published by others. In this 

chapter, an initial mathematical model of the regulation of de novo pyrimidine 

biosynthesis in E. coli is described. Underlying is the significant contribution that 

allosteric control puts into the rapid physiological adaptation of the cell to external 

stimuli and environmental changes. 

 

Enzyme Kinetics 

 

As more genomes are sequenced, it becomes apparent that living systems are 

characterized not only by the complement of genes they carry but also by the 

mechanisms of control conducted at the molecular level. The most important 

intracellular molecules that are regulated include enzymes, intracellular substrate pools, 
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allosteric ligand effectors, cofactors and, ultimately, the metabolic products. The ability 

of molecular systems to regulate the complex interactions among these molecules 

constitutes the basis of cellular homeostasis. The kinetics of the reactions catalyzed by 

enzymes becomes the standard by which cellular metabolic systems have to reach and 

maintain metabolic steady states.  

 

Several parameters need to be considered when analyzing enzyme kinetics: (1) the rate 

or maximum velocity of the reaction (vmax) an enzyme can reach when it is saturated 

with substrate; (2) the Michaelis constant (KM) or its equivalent (S0.5) that equals the 

substrate concentration at which the rate of the reaction is half the vmax; and (3) the 

turnover number (kcat) or number of substrate molecules converted to products per 

second.  

 

There are a variety of kinetic mechanisms, both homotropic and heterotropic, by which 

enzyme activities can be regulated. Substrates can affect the rate of a reaction by 

cooperative interaction at the active site of an enzyme (homotropic effects), as can 

reaction products and other small molecules when present in adequate concentrations. In 

contrast, heterotropic effectors can change the kinetics by interaction at allosteric sites 

distinct from the active site. Under physiological conditions, substrate concentrations 

near their KM facilitate the rapid adjustments of reaction rates. In some cases, there are 

mechanisms of homotropic cooperativity in which the affinity of interdependent 

catalytic sites is altered after a substrate molecule binds. Allosteric effectors, on the other 
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hand, are present in a wide range of concentrations in the cell and they are readily 

available to bind to allosteric sites, causing structural rearrangements of the enzymes that 

may be transmitted as altered conformations of the active sites (80). Intracellular 

concentrations of allosteric effectors provide an important form of metabolic regulation 

by providing a system that allows for rapid adjustments in biochemical flux by affecting 

the activity of one or more enzymes in the pathway.  

 

The rates of individual enzymic reactions have been studied since the 19th century. 

Initial studies of Adrian Brown, Emil Fischer and others, were followed by the 

mathematical formulations proposed by Leonor Michaelis and Maud Menten in 1913 

(19). The progress of a reaction showing typical hyperbolic first-order substrate 

saturation kinetics can be simulated by the following differential equation (Equation 5): 

 

Equation 5 
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where [A] is the substrate concentration, vmax and KM correspond to the limiting rate of 

the reaction and substrate concentration at half the limiting rate, respectively.  

 

Even though it is relatively straightforward to formulate sets of simultaneous first-order 

nonlinear differential equations, the large number of parameters that need to be assigned 
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makes it time-consuming and error-prone to manually perform the calculations. In the 

studies discussed here, the powerful differential equation solver of Mathematica™ 

(Wolfram Research Inc.) NDSolve was used. Using NDSolve to simultaneously solve 

arrays of differential equations through multi-step integration methods, allows for 

successive points on a curve to be found with iterations of slope evaluation (64).  

 

To simulate the decrease in substrate concentration, an equation describing the relevant 

steady-state kinetic parameters (vmax, KM) and initial substrate concentration has been 

formulated. The Michaelis–Menten equation is traditionally used to show the time-

dependence of substrate consumption and product formation of one such reaction. The 

numerical analysis and simulation of metabolic pathways comprising more complicated 

enzymic behavior is far more challenging. 

 

Previous Studies 

 

A previous study emphasized the role of ATCase in the pyrimidine pathway (36). This 

genetic and physiological analysis included a deconstruction of the reaction to determine 

the value of allosteric regulation in controlling intracellular concentrations of NTPs. An 

interesting experiment was included in the study that assigned the value of allosteric 

regulation in terms of the evolutionary adaptive advantage. This experiment was done by 

shifting a mixed culture of cells, with and without allosterically-controlled ATCase, 
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through cycles of repression/derepression with uracil. The study concluded that allosteric 

regulation provides an advantage, as the cells harboring ATCase with the allosteric 

regulation accumulated over those cells with an unregulated version of the enzyme. The 

study also concluded that the allosteric regulation contributed to the control of NTP 

pools by buffering the effects of nutritional perturbation. When the cells were expressing 

plasmids harboring ATCase either with or without allosteric control, the pyrimidine 

nucleotide pools decreased rapidly followed by a gradual recovery of normal levels. In 

the case of the allosterically-controlled ATCase, the pyrimidine nucleotides did not drop 

as low and had a more gradual rate of recovery that in cells expressing ATCase without 

allosteric control.  Allosteric control, therefore, appears to contribute significantly to 

preserving the cell from reckless disruptions from metabolic homeostasis. These findings 

encouraged the research presented here. 

 

MATERIALS AND METHODS  

 

Model Development 

 

Mathematically describing each individual enzyme is the necessary first step in the 

simulation of the flux through a metabolic pathway. The model described here has been 

developed to study the dynamic transitional effects of repression/derepression of 

pyrimidine biosynthesis. The de novo biosynthetic pathway, shown in Figure 15, 

encompasses a series of nine reactions that lead to the production of UTP and CTP. 
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CPSase (EC 6.3.5.5), ATCase (EC 2.1.3.2), dihydroorotase (DHOase, EC 3.5.2.3), 

dihydroorotate dehydrogenase (DHOdeHase, EC 1.3.3.1), orotate phosphoribosyl  

�

Figure 15. Schematic representation of de novo biosynthesis in E. coli. The reactions catalyzed by the 
pyr enzymes bring about the formation of UMP from aspartate, ammonia/glutamine, bicarbonate ATP and 
PRPP. Further reactions convert UMP to UTP and CTP. 1, carbamoyl phosphate synthase; 2, aspartate 
transcarbamoylase; 3, dihydroorotase; 4, dihydroorotate dehydrogenase; 5, orotate phosphoribosyl 
transferase; 6, orotidine-5�-phosphate decarboxylase; 7, uridylate kinase; 8, nucleoside diphosphate kinase; 
and 9, CTP synthase. The dashed arrow lines denote specific allosteric effects. 
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transferase (OPRTase, EC 4.1.1.23), and orotidine-5�-phosphate decarboxylase 

(ODCase, EC 2.4.2.10), catalyze the formation of UMP. UMP is phosphorylated to UDP 

by uridylate kinase (UMP kinase, EC 2.7.4.-) and UDP is subsequently transformed into 

UTP and CTP, through the action of nucleoside-5�-diphosphate kinase (NDKinase, EC 

2.7.4.6) and CTP synthase (EC 6.3.4.2). 

 

The definition of the mathematical functions, or rate equations, of the biochemical steps 

of this pathway must take into consideration the presence or absence of allosteric effects. 

In the first biochemical step (r1), the reaction rate for the formation of CP, which is 

catalyzed by CPSase (E1), is described by Equation 6. In this equation and all those 

following, the term vmaxi refers to the apparent maximal velocity of the reaction i. Eqn. 6 

includes terms for the binding of the substrates bicarbonate (Kbc, Kibc) and glutamine 

(Kq) and for the allosteric inhibitory effect exerted by UMP intracellular concentration 

(Kiump) (84): 

 

 

Equation 6 

r1 = vmax1E1 × bc × glu

1+ ump
K iump

� 

� 
� � 

� 

� 
� � K ibc × Kq + Kq × bc + Kbc × glu + bc × glu( )
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CP condenses with aspartate in a reaction (r2) to yield carbamoyl aspartate (CA), as 

described by  

 

Equation 7 

�
�

�

�

�
�

�

�
×+×+

�
�

�

�

�
�

�

� ×++

��
�
�
�

�

�

��
�
�
�

�

�

+

×+
=

2
2

2
1

1
2

2
2

2

22max

2

1
1

1

2

nH
i

nH
nH

nH
m

utpctp

atp

nH
i

nH

K

asp
cpasp

cp
K

K
utpctp

K
ctp

K
atp

K

asp
cpEv

r   

 

 

This reaction is catalyzed by ATCase (E2) and the mathematical expression includes a 

Hill coefficient (nH1) that describes the cooperativity between the substrates and a 

second Hill coefficient (nH2) for cooperativity under substrate inhibition (55). 

Additionally, a term for the allosteric effects is included. The rate of formation of CA is 

favorably affected by ATP, whereas CTP and UTP synergistically inhibit the enzyme.  

 

The rate of change in concentration of CP is then given by the rate of its formation in 

reaction (1) minus the rate of its depletion in reaction (2), as seen in Equation 8. An 

analogous expression can be developed for the rate of change of concentration of CA, 

seen in Equation 9 
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Equation 8 

d cp[ ]
dt

= r1 − r2          

Equation 9 

d ca[ ]
dt

= r2 − r3           

 

 

where r3 is the rate of formation of dihydroorotate from CA 

 

Equation 10 

r3 = vmax 3 × ca
Km3 + ca

          

 

Analogous to r3, the expressions for the remaining steps in the pathway are much 

simpler, as they do not include cooperativity or heterotropic interactions. Rather, as seen 

below, they follow simple Michaelis–Menten kinetics 

 

Equation 11 

d[dho]
dt

= vmax 3 × ca
Km 3 + ca

− vmax 4 × dho
Km 4 + dho

       

 

where dho represents the dihydroorotate formed in the reaction catalyzed by DHOase 

serving as substrate for the following reaction, catalyzed by DHOdeHase 
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Equation 12 

d[oro]
dt

= vmax 4 × dho
Km4 + dho

− vmax 5 × oro × prpp
Km5 + oro × prpp

      

 

where oro and prpp are the substrates of the reaction catalyzed by OPRTase 

 

Equation 13 
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where omp is orotate-5�-phosphate 

 

Equation 14 

d[ump]
dt

= vmax 6 × omp
Km6 + omp

− vmax 7 × ump
Km 7 + ump

+ vmax 9 × ura × prpp
Km9 + ura × prpp

    

 

where ump is the product yielded by the decarboxylation of omp by ODCase; and ura 

represents the external uracil incorporated into the cell from the culture media 

 

Equation 15 
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Equation 16 

ctpK
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where gpyr and KMp are the pyrimidine utilization rate and constant of pyrimidine 

utilization, respectively. These two terms are based on the assumption that the UTP and 

CTP produced are part of an intracellular pool that is constantly used to supply 

metabolic demands. The products utp and ctp are formed by the action of the enzymes 

NDKinase and CTP synthase, respectively. 

 

Equation 17 

d[ura]
dt

= − vmax 9 × ura × prpp
Km9 + ura × prpp

        

 

In Equation 14, there is a term for the synthesis of ump from uracil, when uracil is 

supplied in the external medium. Since experimental evidence indicates that an E. coli 

culture, upon changing the media from excess to absence of uracil, undergoes a 

metabolic adjustment that is reflected in the intracellular pools of NTPs, a simple 

expression for the degradation of the uracil was also included in Equation 17.  

 

In Equations 15 and 16, there are terms for the consumption of UTP and CTP, 

respectively, as the nucleotides are incorporated into RNA. For both UTP and CTP, it 

was assumed that the rate of NTPs incorporation into RNA was proportional to the 
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growth rate of the organism as we assumed growth was limited by some other, external 

component. In future formulations of the model, the effects that the growth rate has on 

different NTP pools and the ability of the organism to adapt to different environments 

will be incorporated.  

 

Since regulation of the pathway depends not only on biochemical regulation, but also on 

rates of synthesis and degradation of the CPSase and ATCase, expressions for the UTP- 

and CTP-dependent enzyme synthesis and enzyme degradation were included 

 

Equation 18 
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where Ke1 and Ke2 are synthesis coefficients, and kdeg1 is a degradation coefficient. These 

terms account for a simplification of additional genetic parameters involved in enzyme 

synthesis that are not included in this model. Importantly, however, the concentrations of 

the feedback regulatory molecules are also present in each of the expressions.  
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A total of 11 reaction rates and equilibrium expressions were formulated as differential 

expressions and integrated using the NDSolve algorithm (Mathematica™). Initial 

conditions were estimated, as described above, for steady state conditions with a 

doubling time of 42 min. 

 

Parameter Estimation 

 

Modeling cellular systems is a complex task and, often, metabolic networks have a large 

number of parameters in relation to the available experimental data. An attempt to 

precisely estimate all the parameters in a metabolic pathway involves tracing every 

independent variable over a large number of individual perturbation experiments. It is 

obvious that the techniques to achieve this for most metabolic networks are not currently 

available and, therefore, several parameters had to be computationally estimated. Kinetic 

parameters and relative enzyme and metabolite concentrations are listed in Table 2. 

Kinetic constants such as vmax and KM were estimated from experimental data using 

standard techniques (6). In brief, an algorithm was developed which minimized the sum 

of the squares of the residuals between the output of the model (nucleotide 

concentration) and experimental data at discrete time points. The model consisted of the 

set of differential equations that describe the dynamics of pyrimidine biosynthesis.  

 

Model input parameters were the set of unknown kinetic constants. The local 

optimization was performed in Mathematica™ via a built-in function (FindMinimum)  
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Table 2. List of parameters used in the model.  Summary of the parameters used to define the rate 
equations modeling the allosteric response on pyrimidine de novo biosynthesis in E. coli 

 
Parameter Definition Value Reference 

Vmax1 vmax for carbamoyl phosphate synthetase 0.38 mmol L-1 Calculated from Robin et al. (1989) 
Bc Intracellular concentration of bicarbonate 8 mM Estimated 
Glu Intracellular concentration of glutamine 4 mM Calculated from Neidhardt (1987) 
Asp Intracellular concentration of aspartate 4 mM Calculated from Neidhardt (1987) 
Prpp Intracellular concentration of 

phosphoribosyl pyrophosphate 
0.18 mM Estimated 

Kibc Bicarbonate inhibition constant 0.75 mol L-1 Estimated 
Kiump UMP inhibition constant 0.98 mol L-1 Estimated 
Kbc KM for bicarbonate 36 mM Calculated from Robin et al. (1989) 
Kq KM for glutamine 22 mM Calculated from Robin et al. (1989) 
Vmax2 vmax for aspartate  24 mmol L-1 Calculated from LiCata et al. (1997) 
KM2 KM for aspartate  19.8 mM from LiCata et al. (1997) 
Katp ATP binding constant 4.8 mM Estimated 
Kctp CTP binding constant 4.1 mM Estmated 
Kutp UTP binding constant 4.9 mM Estimated 
NH1 Hill coefficient 2.3 from LiCata et al. (1997) 
Vmax3 vmax for dihydroorotase 24.7 mmol L-1 Calculated from Jensen et al. (1984) 
KM3 KM for dihydroorotase 0.7 mM Estimated 
Vmax4 vmax for dihydroorotate dehydrogenase 6.4 mM L-1 Calculated from Jensen et al. (1984) 
KM4 KM for dihydroorotate dehydrogenase 0.24 mM Estimated 
Vmax5 vmax for orotate phosphoribosyl transferase 0.6 mmol L-1 Calculated from Jensen et al. (1984) 
KM5 KM for orotate phosphoribosyl transferase 9.9 mM Estimated 
Vmax6 vmax for OMP decarboxylase 0.8 mmol L-1 Estimated 
KM6 KM for OMP decarboxylase 32 mM Estimated 
Vmax7 vmax for UMP kinase 1.18 mmol L-1 Estimated 
KM7 KM for UMP kinase 19.8 mM Estimated 
Vmax8 vmax for nucleoside diphosphate kinase 0.28 mmol L-1 Estimated 
KM8 KM for nucleoside diphosphate kinase 8.4 mM Estimated 
Vmax9 vmax for uracil phosphoribosyl transferase 2.8 mmol L-1 Estimated 
KM9 KM for uracil phosphoribosyl transferase 0.08 mM Estimated 
Ki2 Substrate inhibition coefficient for 

ATCase 
2 Estimated 

Kdeg1 Degradation coefficient for CPSase 0.12 Estimated 
Kdeg2 Degradation coefficient for ATCase 0.072 Estimated 
NH2 Second Hill coefficient 2 from LiCata et al. (1997) 
grate Growth rate  42 min-1 Measured 
KMg Coefficient for growth rate 396 Estimated 
gpyr Pyrimidine utilization rate 0.4 min-1 Estimated 
KMp Constant for pyrimidine utilization 5.8 Estimated 
Ke1 Synthesis rate coefficient for CPSase 36  Estimated 
Ke2 Synthesis rate coefficient for ATCase 120  Estimated 
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which employed the following methods: Conjugate Gradient, Gradient, Levenberg-

Marquardt, Newton and Quasi-Newton. As the solution was a local optimum, the 

parameter estimates obtained were dependent upon judicious choice of the initial 

conditions. 

 

Model Testing and Validation 

 

Whenever possible, individual estimates from the model were compared to available 

experimental data to validate the mechanistic steps in the model, forms of the 

mathematical expressions, and estimates of model constants. Several examples of model 

verification are described. Each of the rate equations was validated by comparison with 

experimentally obtained kinetic information for each of the enzymes. In this manner, an 

internal quality control of the model was established and stringent parameterization 

procedure was followed in the optimization of those kinetic parameters that had to be 

estimated. The process of optimization is a lengthy and intensive one, as integration of 

multiple biochemical activities in a series of reactions is considerably less trivial than 

deriving descriptions of single mechanisms. Added to this complexity was the multiple 

and overlapping interaction of the mechanisms of regulation. Multiple iteration cycles 

had to be computationally executed to optimize the parameters described in the model. 
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RESULTS AND DISCUSSION 

 

Case 1: CPSase 

 

A step-wise validation of the model resulted in confidence that each of the 

differential equations was appropriately formulated. Validation was obtained by 

comparing the simulated results with available experimental data. Rate 1, shown 

in Equation 6, represents the rate of CP synthesis by CPSase in the absence of 

other enzymes in the pathway. The form of the equation mimics that of 

Michaelis–Menten but with an inhibition term included to account for the 

experimentally observed effects of UMP on CPSase activity. Simulation of the 

inhibitory effect of UMP on CPSase activity was achieved via this mathematical 

formulation as shown in Figure 16. In the simulation, the reaction reaches 

saturation at approximately the same glutamine concentration as has been 

determined experimentally. In addition, the extent of the inhibitory effect is 

reproduced precisely as previously reported (81). 

 

Case 2: ATCase 

 

ATCase presents a more complex system given the multiple homotropic and heterotropic 

effects to which it is subjected. Previous studies have agreed on the cooperative behavior 
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�

Figure 16. Simulation of CPSase inhibition by UMP vs. experimental data. (A) Data published by 
(81). No uracil added (�), 15 �g ml−1 (�), 25 �g ml−1 (�) and 50 �g ml−1 ( ) of uracil. (B) Simulation of 
the rate of formation of CP as a function of the concentration of glutamine, both, in the presence of 
50 �g ml−1 of UMP (····) and its absence (—). 
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of substrate binding and the extent of allosteric effects induced by ATP, CTP, and UTP 

acting synergistically with CTP. The mathematical description of the enzymic reaction, 

rate 2, given in Equation 7 accurately mimics all of these effects, as shown in Figure 17.  

 

�

Figure 17. Simulation of ATCase kinetic and allosteric behavior, compared to experimental data. 
(A) Saturation curves for ATCase unregulated (�) and its response to allosteric effectors: ATP (�), CTP 
( ) and CTP+UTP ( ), as previously published (101). (B) Mathematical simulation of the allosteric 
effects in ATCase: kinetic sigmoidal behavior in the absence of allosteric effectors (—); activation kinetics 
in the presence of ATP (· – ·); inhibitory effect by CTP (····); or UTP+CTP (– –). 
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Case 3: Correlation Between CPSase and ATCase Enzyme Levels and Nucleotide 
Pools 
 

It has been established that the level of the intracellular pools of CTP and UTP correlate 

with the levels of expression of the pyr genes (40); thus, the proposed model should 

accurately couple CTP and UTP levels with synthesis and degradation rates of the 

relevant enzymes. As seen in Equations 18 and 19, while the enzyme synthesis rate, the 

first term in each expression, is reduced in the presence of UMP and CTP, degradation of 

enzymes remains constant. Figure 18 illustrates the changes in the UMP, CTP and UTP 

levels in the cell and the accompanying dynamic response of enzymes 1 and 2 (CPSase 

and ATCase, respectively). These simulations, however, do not include experimental data 

describing the transcriptional derepression of the pyr genes and represent hypothetical 

descriptions of this type of response. Notably, the simulation of nutritional derepression 

using the mathematical model coincides qualitatively with the expected onset of 

enzymatic reactivation. 
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�

Figure 18. Nucleotide levels change in the cell and the accompanying dynamic response of enzymes 1 
and 2 (CPSase and ATCase, respectively). (A) UMP levels in response to derepression (····) and the 
corresponding response in CPSase levels (—). (B) UTP (····) and CTP (– –) levels and the corresponding 
overexpression response of ATCase (—) in response to derepression. 
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Case 4: Responses of CTP and UTP Pools to Nutritional Perturbation  

 

Typically, the transition following nutritional perturbation of the pyrimidine pathway 

enzymes causes a change in the size of the NTP pools. After the perturbation, CTP and 

UTP pools drop rapidly due to depletion. CTP levels drop to 66% and 46% of their 

initial level for the allosterically regulated vs. the unregulated enzyme, respectively. 

UTP drops to 51% and 30%. As the pyrimidine pathway derepresses, the intracellular 

concentrations of UTP and CTP recover to their normal levels. Figure 19 shows the 

dynamic response of the model to an initial high level of uracil that is rapidly consumed. 

Experimentally, this was achieved by taking repressed cells to a derepressed state by 

removing the uracil from the medium. Our model satisfactorily simulates the 

derepression behavior observed under these conditions. In addition, by simply removing 

the allosteric effect terms in rate 2, a parallel model was created that mimics the 

behavior of the cell without allosteric control of the second enzyme in the pathway (just 

catalytic subunits). Comparison of model predictions with and without allosteric terms in 

the equations qualitatively captures the experimentally observed differences in dynamic 

response of nucleotide pools in wild-type cells and those with their allosteric subunits 

deleted. As seen in Figure 19, response of cells deficient in allosteric control is more 

dramatic compared to those with allosteric control. The complexity of the interrelation of 

all the equations makes this a finely tuned and sensitive model. Subtle changes in the 

kinetic parameters are continually being tested and used to predict outcomes of changes 

in experimental conditions.  
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�

Figure 19. Simulation of NTP pools responses after pyrimidine pathway derepression. (A1–4) The 
experimental results reflect a sharp drop in the levels of CTP and UTP rapidly after derepression. (B1–4) 
The corresponding simulation shows remarkable similarity. Holoenzyme (—); catalytic subunit (····).  
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Several models have been published describing different metabolic pathways in E. coli, 

beginning with models 15 years ago describing the whole cell, but omitting control of 

metabolic pathways (90). Currently, there are several models that describe specific 

pathways in E. coli such as the tryptophan biosynthetic pathway (49), replication (29), 

and chemotaxis (95), all of which use computational tools in an attempt to understand 

mechanisms of cell regulation and control. 

 

This study presents a computational simulation that includes allosteric regulation of the 

de novo pathway of pyrimidine biosynthesis. As opposed to standard kinetic models, this 

treatment considers temporal variations in the nutrient uptake and in concentration of 

allosteric effectors. This type of dynamic modeling allows the physiological adaptation 

of the cell, as evidenced in response of the nucleotide pools, to be evaluated. Not only is 

allosteric control of de novo pyrimidine biosynthesis simulated, but also the model 

formulation potentially allows for the prediction of differences in adaptation when the 

cells are grown under different environments.  

 

The equations used to simulate the overall pathway response were tested individually 

and validated relative to existing literature data. In the case of the first reaction, which is 

catalyzed by CPSase, the model accounts for the allosteric inhibition effected by UMP 

binding. In this simulation, saturation is achieved with comparable glutamine 
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concentrations as has been observed experimentally (81). The addition of uracil as an 

environmental variable and parameterization of the model yielded an optimal kinetic 

response.  

 

A similar approach was utilized to evaluate the behavior of the model with respect to 

ATCase activity. The kinetic optimization in this case was more demanding, since the 

second enzyme of the pathway is subject to the action of multiple homotropic and 

heterotropic controls. The critical step was to optimize the parameters and equations 

such that the regulatory lag caused by substrate cooperativity is seen as a sigmoidal path 

in a saturation curve. Multiple iteration steps had to be taken before each of the allosteric 

effects was simulated in agreement with the experimental observations from our 

laboratory. Successful simulation of the physiological response, including allosteric 

effects of the first two reactions, allowed us to simplify the addition of the remaining 

kinetic expressions and focus on the NTP levels as the objective of the refinement 

process.  

 

The expression levels of the first two enzymes in the pathway were found to respond to 

the derepression simulation by a transient overexpression of CPSase, and an increase in 

steady-state levels in the case of ATCase. The timing and extent of these events 

correlated directly with the shift in the nucleotide pools. It is interesting to hypothesize 
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about the roles of these two enzymes in the regulation of the flux through the metabolic 

pathway. CPSase levels respond to the concentration of its regulator UMP. ATCase 

levels rapidly build to increase the decaying levels of UMP and, ultimately, results in 

pyrimidine nucleotide homeostasis. CP, the product of the reaction catalyzed by CPSase, 

is a highly unstable metabolite that, in addition, has to be partitioned between the 

pyrimidine and arginine biosynthetic pathways. While other organisms have 

multienzyme complexes that effectively channel this substrate through several catalytic 

sites (18, 59, 109), this is not the case with E. coli. Studies performed with Pyrococcus 

abyssi provide an example of CPSase and ATCase that associate to form a transient 

complex or pseudo-compartment, thus facilitating transfer of the unstable CP produced 

from one catalytic site to the other (74). However, while there is evidence of substrate 

channeling in E. coli during protein synthesis, purine biosynthesis, carbohydrate 

phosphorylation through the phosphotransferase system and aspartic acid metabolism 

(38, 39, 83, 85), to our knowledge there are no reports of channeling involving 

pyrimidine metabolism. More recently, the process of metabolic channeling has been 

investigated in other biological systems using mathematical modeling (61), thus opening 

the door to the directed study of these and other metabolic control processes through 

computer simulations.  

 

In the case of pyrimidine biosynthesis, integration of individual kinetics into the 

complete pathway required the development of a way to quantify the result of 
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parameterization at each step of the metabolic pathway. Repression/derepression 

experiments have substantiated the role of the allosteric regulation in NTP pools 

consumption and production in E. coli, acting in concert with the important contribution 

of genetic control. The rapid drop in the observed CTP and UTP levels upon starvation 

for pyrimidines indicates the initial depletion of their intracellular concentrations, which 

was followed by a recovery as de novo biosynthesis of pyrimidines replenished the 

pools. The most sensitive component of this approach was the estimation of local 

minima used for the parametric calculations. Using a few selected parameters at a time, 

the sums of the squares of the residuals of the experimental data and the nucleotide 

fractions at specific times were calculated. Following this concept, the minimal set of 

parameters that were capable of capturing the allosteric response to uracil-induced 

repression/derepression was identified.  

 

The initial drop in nucleotide pools corresponded to the depletion of pools as pyrimidine 

nucleotide synthesis shifted to the de novo pathway. Initially, the concentrations of CTP 

and UTP synthesized from uracil were sufficient to keep ATCase repressed. 

Immediately after uracil depletion, the NTP levels dropped. Allosteric inhibition and 

genetic repression were relieved and the activation of the enzyme was evidenced by the 

de novo synthesis of nucleotides as their pools stabilized at the normal physiological 

levels. Our model faithfully captured this behavior. In fact, the simulations showed the 

difference in the extent of the NTP levels between the holoenzyme and catalytic subunits 
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that was observed experimentally. This demonstrated that the experimental results 

obtained for changes in CTP and UTP pool levels could be emulated by including 

allosteric parameters for CPSase and ATCase.  

 

Even though the model presented is sufficient to approximate the allosteric responses in 

the de novo pyrimidine pathway, one would imagine that much of the control in vivo 

relies on the transcription of the pyr regulon. This first generation model includes a very 

simple mathematical description of the modulation of enzyme synthesis in response to 

pyrimidines. For a more detailed description of transcriptional control, additional 

parameters have to be defined and experimental data obtained that serve to validate those 

formulations. The results of this work are described in the following chapters. 
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CHAPTER III 

 

DYNAMICS OF THE REGULATION OF METABOLIC FLUX IN RESPONSE 

TO PERTURBATIONS AT DIFFERENT GROWTH RATES 

 

 

OVERVIEW  

 

Induction of pyrimidine repression/derepression provides a valuable opportunity for 

quantifying the dynamics of the metabolic response of the cell. Monitoring the 

intracellular accumulation of nucleotide triphosphates (NTPs) in the cell becomes, in this 

case, an indicator of the metabolic response. An efficient and highly reproducible 

method of extraction and separation allows reliable quantification of the NTPs. Two 

types of physiological conditions were chosen to induce perturbation, middle 

exponential and steady state cultures. Results obtained highlight the importance of the 

rapid adaptive response provided by allosteric regulation at different growth rates. The 

two physiological states analyzed permit a simulation of natural conditions of feast and 

famine to be explored, as well as to draw hypotheses regarding the interplay of genetic 

versus metabolic mechanisms of homeostatic control.   
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INTRODUCTION  

 

Pyrimidine Biosynthesis Repression/Derepression 

 

When Escherichia coli is grown under conditions of minimal supplied nutrients, most 

biosynthetic pathways are activated, including that of de novo pyrimidine biosynthesis. 

Growth under such derepressing conditions will continue at steady state as long as the 

nutrient source and environmental conditions remain constant. In the case of pyrimidine 

biosynthesis, the addition of uracil to the media results in repression of the de novo 

pyrimidine pathway and the nucleotide interconversion and/or the salvage pathways 

maintain production of pyrimidine nucleotides. Under these conditions, de novo 

biosynthesis has been estimated to account for less than 20% of pyrimidine nucleotide 

production (17). It has been established that the level of the intracellular pools of CTP 

and UTP correlate with the levels of expression of the de novo pathway genes (40, 112). 

As uracil is depleted, UTP and CTP levels from salvage reutilization of this precursor 

will drop. This decrease will cause the reactivation of the de novo pathway genes and the 

concentration of enzymes involved in de novo biosynthesis returns to higher levels to 

restore pyrimidine nucleotide concentrations.   

 

Using this experimental approach in combination with mathematical modeling of the 

pathway has demonstrated the physiological role that allosteric regulation of ATCase 

plays in controlling flux through the de novo pathway (82). Analysis of metabolic flux 
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from cells grown in batch cultures is limited by the lack of standardization, resulting in 

sampling variable physiological states. Following the dynamics of transition after 

nutritional perturbation using chemostat-grown cultures provided the additional 

information needed. Cells grown under controlled conditions in a chemostat, allow the 

system to provide a population of cells to be tested with similar average physiological 

states. Additionally, use of chemostat cultures allows for the possibility of subjecting 

cellular cultures to nutritional perturbation at different, and controlled, growth rates. Use 

of this approach, with iterations of rounds of experimental and mathematical analysis, 

provided evidence that suggests distinct roles for allosteric and transcriptional controls in 

regulating the dynamics of metabolic flux.  

 

MATERIALS AND METHODS  

 

Growth Conditions 

 

Escherichia coli E63 (5) cultures were maintained in minimal TF (65) medium agar 

plates, supplemented with 0.2% glucose, 2 µg/ml thiamine and 1% casamino acids. 

Fresh plates (less than 1 week old) were grown prior to experiments. Startup inoculums 

were prepared with the same medium from a single colony in a 5 ml roller tube and 

incubated overnight at 37°C. One milliliter of the inoculum was used to start 100 ml 

culture flasks or 5 ml for the chemostat experiments. Care was taken to prepare the 

inoculums in the same medium (with or without uracil) contained in the flask or 
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chemostat, which were in turn pre-equilibrated at 37°C to avoid unnecessary disruption 

of cell growth. 

 

Batch Cultures 

 

Shaker flasks were used to grow E. coli cells in 150 ml of TF medium. In addition to 

supplementing the media with glucose, thiamine and amino acids, 50 µg ml−1 uracil was 

added when appropriate to induce repression of the de novo pathway. The flasks were 

inoculated as described above and the cells grown to middle exponential phase (defined 

at 100 Klett units) at 37°C with 200-rpm agitation. At that point samples for further 

analysis were taken as described below. 

 

Continuous Cultures 

 

Similarly, E. coli cells were grown in 1 L TF supplemented medium using chemostats. 

Medium with uracil was pre-warmed at 37°C before inoculating with 5 ml of the starter 

culture. Cells were allowed to grow until steady state was reached based on 

spectrophotometric measurements of the cell density, which typically was obtained 

within five residence times. Cells were allowed to continue for at least three more 

residence times before the culture was processed for further analysis of nutritional 

perturbation.  
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Nutritional Perturbation 

 

Derepression experiments were conducted with E. coli cells grown in supplemented TF 

media in the presence of uracil until they reached middle exponential growth phase 

(batch growth, 8×107 cells ml−1), or cell concentration steady state level (chemostat 

growth, 2×109 cells ml−1), as determined spectrophotometrically at 420 nm. The 

nutritional perturbation was implemented by the rapid harvesting (< 5 min) of culture by 

centrifugation at 4,500-rpm and immediate resuspension in media without uracil.  

 

Nucleotide Pools Extraction 

 

Nucleotide pools were extracted at the defined time intervals by sample precipitation 

with 6% trichloro-acetic acid and nucleoside triphosphates (NTPs) were separated and 

quantified using HPLC within 48 h after extraction (100). Batch or chemostat cultures 

were sampled at specific times, with the initial (pre-centrifugation) sample taken 

immediately before initiating the nutritional perturbation. Additional samples were taken 

immediately after resuspension of the cells in minimal media without uracil (time 0) and 

then, as appropriate, at 2.5, 5, 10, 15, 25, 30, 50, 60, 90, 100, 120, 150, 180, 300, 600, 

900, 1200, 1500 and 1800 minutes. Shorter time interval samples (up to 600 minutes) 

were taken for batch cultures and higher growth rate (1 h-1) continuous cultures. 

Continuous cultures at intermediate (0.5 h-1) or lower growth rates (0.2 h-1) were 

sampled at longer time intervals (up to 1800 minutes). Samples were processed promptly 
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at the specified times as follows: 5 ml of cells suspension were pipetted onto a cellulose 

membrane of 0.45 µm pore size and the liquid quickly removed by filtration using a 

vacuum manifold. The filter was immediately submerged into pre-chilled 500 µl 

6%TCA and vortexed for 1 minute at maximum speed. The sample was then incubated 

on ice for 30 minutes. This suspension was subsequently transferred into microfuge 

tubes containing 500 µl of 0.7 M Tri-N-Octylamine/Freon (1,1,2-tricholo-

trifluoroethane) solution, freshly prepared and pre-chilled before the extraction. The 

tubes were again vortexed for 1 min at maximum speed and incubated for another 30 

minutes on ice.  After incubation, the tubes were centrifuged for 30 seconds at 13,000 

rpm and the aqueous (upper) phase transferred to a pre-chilled clean microfuge tube. The 

centrifugation and transfer steps were repeated to ensure that the sample was clean from 

debris or any other residue. After the extraction, the samples were stored immediately at 

–70°C and separated on the HPLC within 48 hours. 

 

Chromatographic Separation of Nucleotides 

 

Nucleotide extraction samples were separated and analyzed by anion exchange HPLC 

through a Partisil-10 SAX column from Whatman. The stationary phase consists of 

quaternary nitrogen groups on an organic chain that is Si-O-Si bonded to 10 µm silica 

gel particles media. Sample volume was 100 µl. A 15 min isocratic separation with 

25mM ammonium phosphate buffer, pH 3.3, at a flow rate of 1.3 ml/min, followed by a 

linear gradient from 0 to 100% 750mM ammonium phosphate buffer in 20 min, pH 3.8, 
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at a flow rate of 2 ml/min. Data was collected throughout the 45 minute run on a 

Beckman HPLC, using the System Gold Nouveau software and a diode array detector 

monitoring 254 and 280 nm. 

 

RESULTS AND DISCUSSION 

 

Optimization of Chromatographic Quantification of Pyrimidine Nucleotides 

 

The chromatographic separation was optimized to separate and quantify all four 

nucleotide triphosphates (UTP, CTP, ATP, GTP) as well as the monophosphate UMP. 

Figure 20 shows the retention times of the NTPs and UMP based on this separation 

protocol.  

 

An important observation was that the chromatographic spectra of separation of 

nucleotides showed less variation in experiments conducted using chemostat cultures, as 

opposed to those from batch cultures. The quantification had to be accomplished within 

48 hours post-extraction to avoid misleading results from nucleotide dephosphorylation.   
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Figure 20. Chromatographic spectrum of de novo pyrimidine nucleotides. 

 

 
 
Analysis of Nutritional Perturbation Using Batch Cultures 

 

As previously described, the cells responded to the nutritional perturbation by the 

readjustment of the intracellular levels of NTPs. It was noted that variability could be 

observed from one experiment to another based on the efficiency of the extraction, 

particularly from batch cultures, although the dynamics of the levels of NTPs was 

consistent. To standardize the presentation of the data, variations in levels of NTPs are 
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presented as values relative to the total pool, as opposed to the absolute values.  The 

horizontal dotted line represents, in each case, the steady state levels prior to nutritional 

perturbation. 

 

 

Figure 21. Dynamics of intracellular NTPs following derepression in batch cultures. 

 

Following the nutritional perturbation, relative levels of UTP and CTP decreased, 

dropping to 54 and 60% their initial values, respectively. The relative change in the 

purine pool concentration was reflected as an increase in the ATP and GTP 

concentrations of 23 and 35%, respectively. Remarkably, the response reached its peak 

level within 5 minutes following derepression and the cells were able to replenish their 
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nucleotide pools within 15 minutes to bring the concentrations back to their initial levels 

(Figure 21).  

 

Standardization of Derepression Experiments Under Steady State Conditions 

 

To extend these studies to homeostatic conditions, chemostats were used to grow cells to 

steady state to ensure that the average cell population was in the same physiological state 

at each perturbation experiment (~2x109 cells/ml). Chemostats achieve steady state by 

supplying a constant flow of nutrients to the culture and controlling other sources of 

environmental variation. Table 3 summarizes the growth parameters established for the 

steady state experiments. 

 

Table 3. Chemostat cultivation parameters 

 
Parameter Equation Value 
Volume (V)  1.0 liter 

Flow Rate (F) D = F/V 200 ml/h 
Dilution Rate (D)  0.2 h-1 
Growth Rate (µ) µ = Ln2/td 0.2 h-1 

Doubling Time (td)  208 min 
Aeration  1 psi 
Agitation  300 rpm 

Temperature  37°C 
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Analysis of Nutritional Perturbation Using Steady State Cultures 

 

As seen in Figure 22, the dynamics of derepression demonstrated an initial increase in 

the intracellular concentrations of pyrimidine trinucleotides, followed by a relatively 

rapid recovery to initial levels. The time responses differ from those seen in Figure 21. 

Two possible explanations for these differences are growth rate, as these experiments 

were conducted at a growth rate five times slower than that obtained in shaker flasks, or 

because of differences in the physiological states of the cells between the two culture  

 

 

Figure 22. Dynamics of pyrimidine perturbation from steady state. 
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Table 4. Dynamics of intracellular NTPs 

Nucleotide Initial 
Concentration 

(mM) 

Final 
Concentration 

(mM) 

Min  
Concentration 

(mM) 

Max 
Concentration 

(mM) 

Time 
Max 
(min) 

Fold 
Increase 

CTP 0.45 0.6 0.45 0.84 50 1.8 
UTP 0.38 0.48 0.38 1.18 100 3.5 
ATP 1.67 1.96 1.61 2.87 25 1.8 
GTP 0.4 0.44 0.29 1.82 25 6.2 
 

systems. UTP and CTP showed an average 1.8 and 3.5-fold increase, respectively, 

relative to the initial concentrations. Purine intracellular pools also increased, showing a 

1.8 and 6.2-fold gain for ATP and GTP, respectively (Table 4).  

 

In order to compare these results with the batch culture response, analysis of 

concentration change relative to that of the total NTP pool is provided in Figure 23. Both  

 

 

Figure 23. Relative dynamics of intracellular NTPs. 
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Table 5. Dynamics of relative intracellular NTPs 

Nucleotide Relative 
Pre-

harvest 
(%) 

Relative 
Initial 

Concentration 
(%) 

Relative 
Final 

Concentration 
(%) 

Relative 
Min 

Concentration 
(%) 

Relative 
Max 

Concentration 
(%) 

Time 
Max 
(min) 

CTP 11.75 16.18 11.56 21.48 150 1.86 
UTP 8.57 17.31 8.57 30.37 100 3.54 
ATP 64.76 55.96 33.66 64.76 0 -1.92 
GTP 13.35 12.5 9.51 30.52 25 3.21 
 

pyrimidine NTP pools increase relative to the total pool, as does GTP. ATP relative 

change, however, is negative compared to the total change in the pools. Important values 

of this transition are summarized in numerical form in Table 5. 

 

 

Figure 24. Control derepression experiments. 
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Table 6. NTP levels during control experiments 

Nucleotide Relative 
Pre-

harvest 
(%) 

Relative 
Initial 

Concentration 
(%) 

Relative 
Final 

Concentration 
(%) 

Relative 
Min 

Concentration 
(%) 

Relative 
Max 

Concentration 
(%) 

Time 
Max 
(min) 

CTP 16.59 15.18 12.82 10.58 15.18 0 
UTP 18.5 16.89 17.93 16.55 20.10 600 
ATP 39.74 45.09 44.14 43.02 45.37 300 
GTP 25.18 22.83 25.10 22.31 26.46 25 
 

Control experiments were carried out to determine the effect, if any, of culture 

manipulation during the derepression experiments over the pathway’s flux. Figure 24 

and Table 6 show the average response of experiments in which cells were manipulated 

in the same way as the previous experiments, but without inducing the nutritional 

perturbation. As evidenced by the results of the control experiments, physical 

manipulation of the cell cultures has a negligible effect on the levels of NTP pools. 

 

UMP Quantification 

 

In addition to quantifying formation of nucleotide triphosphates, the extraction and 

separation protocols were optimized to allow characterization of UMP levels. UMP is an 

intermediate product in the de novo pathway of pyrimidine biosynthesis that has also an 

important role in regulation. UMP is responsible for the feedback-inhibition of CPSase, 

the first enzyme of the pathway.  

 

As observed in Figure 25, UMP levels show a considerable increase in response to uracil 

depletion. From its initial concentration, intracellular UMP increased 1.7-fold within 150 
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minutes post-derepression. Steady state levels were reached again around 600 minutes 

after uracil removal.  

 

 

Figure 25. UMP quantification.  

 

 

Nucleotide Dynamics in Relation to Steady State Growth Rate 

 

At first sight, comparison of the results obtained using batch versus chemostat culture 

experiments features some striking differences. During batch cultivation, following 

nutritional perturbation, UTP and CTP levels responded with an initial decrease in their 

levels followed by a relatively fast recovery and progressive stabilization of normal 

levels (Figure 21). Chemostat cultures, however, exhibited the opposite response, with 

an increase in the intracellular levels of UTP and CTP that was followed by recovery and 

stabilization of steady state levels (Figure 22). Two hypotheses are proposed to explain 

this observation; first, that the difference in the direction of the response was a 
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consequence of the difference in the cell doubling time between the two experiments (40 

min versus 208 min, batch versus chemostat culture, respectively). The second 

hypothesis was that the different response was associated with the different 

physiological states of the two experiments (middle-exponential versus steady state 

growth). To test these hypotheses, chemostat experiments were conducted to examine 

the dynamics of the metabolic response to perturbation at different doubling times: 208 

min, 104 min and 42 min. This last rate corresponds to that observed in shaker flask  

 

 

Figure 26. Dynamics of NTP response at intermediate growth rate. 
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experiments. When reducing the doubling time by half (104 min), the response 

corresponded directly to that seen at slower doubling time, as UTP and CTP levels 

increased in response to nutritional perturbation. The dynamics was the same, with the 

NTP levels reaching its maximum change 75 min after the perturbation (Figure 26). This 

corresponded to half the response time seen at 208 min. When the doubling time was 

reduced to 42 min the response was the opposite, with UTP and CTP levels decreasing 

after the nutritional perturbation. As seen in Figure 27, the dynamics of the intracellular  

 

 

Figure 27. Dynamics of NTP response at high growth rate. 
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NTP pools very closely resembles that observed with middle exponential cultures. A 

plausible explanation for this observation relates to the possibility that the cells may be 

in a different physiological state when growing at different rates (48). Differences in the 

physiological state of the cells at different growth rates are related to specific energetic 

and metabolic demands. The energetic requirement of the cell during nutritional 

readjustment may imply a shift of the adenylate energy charge as an exacting 

biosynthetic function is reactivated. Looking at an approximate calculation of the 

adenylate energy charge (AEC) from chemostat experiments at different growth rates 

provided interesting observations.  Figure 28 and Table 7 show the results of an 

approximate AEC estimation using the intracellular concentration values for ADP and 

ATP (AMP had to be excluded from this calculation, since the chromatographic 

separation had not been optimized to resolve this nucleotide). It is apparent from the data 

obtained that there is no net change in the AEC during the dynamics of readjustment 

following nutritional perturbation. Changes in ATP levels corresponded directly with 

those of ADP. It is interesting to note, however, that there was a readjustment in the 

adenylate nucleotide levels at slower doubling time that coincided with that of 

pyrimidine nucleotides. At faster doubling times, the levels of ADP and ATP remained 

near their steady state values. Noticeably, the steady state concentration of ATP is higher 

and the AEC slightly lower at faster doubling times. It is possible that the higher 

concentration is due to a higher energetic demand in rapidly growing cells, as all 

biosynthetic pathways are highly active. Slowly growing cells have, presumably, fewer 
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Figure 28. Intracellular levels of ADP and ATP after nutritional perturbation. 

 

Table 7. Approximate AEC values after nutritional perturbation 

Low Growth Rate High Growth Rate 
Time (min) Approximate AEC Time (min) Approximate AEC 

0 0.85 0 0.77 
25 0.87 2.5 0.77 
50 0.83 5 0.77 

100 0.81 10 0.78 
150 0.84 15 0.78 
300 0.81 30 0.78 
600 0.83 60 0.78 
900 0.82 90 0.79 

1200 0.80 150 0.77 
1800 0.82   

 

 

biosynthetic processes highly active at the same time, therefore imposing less energetic 

demands. If this is the case, then it is likely that the activation of the pyrimidine de novo 

biosynthetic pathway does not have a net effect large enough to cause a noticeable 

decrease in the levels of ATP.   
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In summary, the levels of pyrimidine NTPs are partially depleted at high growth rates as 

the cells build up enzyme levels to cope with the ongoing DNA replication and increased 

transcriptional needs. It is possible that under such conditions, higher growth rates, the 

allosteric response is essential in controlling the depletion before it reaches critical 

levels. Eventually derepressed levels are recovered as a consequence of the 

transcriptional reactivation of the biosynthetic pathway genes. Conversely, at lower rates 

of growth, pyrimidine NTPs accumulate initially, presumably as a consequence of 

reactivation of the de novo pathway genes. It then follows that slower doubling cells rely 

more on transcriptional control, as cell division is not imminent, eventually reaching 

normal levels once the system fully adapts to the new nutritional conditions. If this is the 

case, analysis of enzymatic activity should reflect the transcriptional reactivation of the 

genes that encode enzymes involved in de novo biosynthesis of pyrimidine 

triphosphonucleotides.  
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CHAPTER IV 

 

INSIGHT INTO THE INTERACTIONS BETWEEN THE BIOCHEMICAL AND 

GENETIC MECHANISMS THAT COOPERATE TO ACHIEVE METABOLIC 

CONTROL 

 

OVERVIEW  

 

An analysis of the interactions between biochemical and genetic mechanisms of 

metabolic control requires an evaluation of specific enzymatic activity. Quantification of 

intracellular levels of enzymes was achieved by the analysis of multiple samples 

extracted over a period of time selected to reflect dynamics. Cell-free extracts were 

analyzed for all of the enzymatic steps participating in de novo pyrimidine biosynthesis. 

Results show a distributed and highly coordinated control along the pathway. The initial 

enzymes, carbamoylphosphate synthetase and aspartate transcarbamoylase, 

demonstrated a greater range of response corresponding to the degree of complexity and 

evolutionary association found at these steps. The remaining enzymes in the pathway, 

dihydroorotase, dihydroorotate dehydrogenase, orotate phosphoribosyl transferase and 

orotidine monophosphate decarboxylase, showed a more moderate response to 

nutritional perturbation. 
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INTRODUCTION  

 

Interaction of the Genetic and Biochemical Networks 

 

Most cells change their enzymatic activity and composition in any adaptive response to 

specific environmental challenges. In practical terms this means that enzymatic reactions 

do not occur in the cell at the same extent of activity all the time. Two seemingly 

independent, although highly interconnected, modes of control, therefore, regulates 

enzymatic reactions. Cells can, for example, shut down biosynthetic pathways when the 

end products are no longer needed or can be promptly obtained from the environment. In 

this case the amount of enzymes that carry out the biochemical reactions decrease as a 

consequence of genetic control of their rates of synthesis. A more rapid-response 

mechanism is charged with fine-tuning the activity of enzymes, once they have been 

synthesized. This is achieved mainly by allosteric inhibition of regulatory enzymes. The 

coordination of the two mechanisms of control is what ultimately contributes to the 

determination of flux through the pathway. 

 

Analysis of enzymatic activity from cell-free extracts, taken at discrete time intervals 

after nutritional perturbation, is used in this study to quantify metabolic regulation. This 

dynamic analysis leads to an appreciation of how the production and utilization of 

metabolites are kept in balance. More importantly, it leads to separation in the analysis 

of transcriptional versus allosteric control of metabolism at steady state. This analysis 
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was accomplished through the formulation of a second generation mathematical model, 

constructed from that described earlier (82), that includes the same equations and 

parameters plus several additional ones that complement their description of metabolic 

control. Addition of the new parameters was based on the experimental data obtained 

from the quantification of nucleotide pools and enzymatic activities described here. 

These data provided information regarding the relative responses and contributions at 

each step along the pathway. This new model has been validated and its robustness 

offers an indication of its applicability for the design of new hypotheses that speed up 

research directed towards a complete understanding of control of cellular metabolic 

biosynthesis. 

 

MATERIALS AND METHODS  

 

Preparation of Cell-free Extracts  

 

An initial inoculum of Escherichia coli E63 was started in a 5 ml roller tube of 

supplemented TF medium with uracil. This was used to inoculate a 2-liter chemostat 

with the same culture medium and allowed to grow for 8 generations to reach steady 

state. Before inducing nutritional perturbation of the steady state culture, a 25 ml sample 

was taken and the cells immediately pelleted by centrifugation to be used as a control. 

Nutritional perturbation was induced by rapid (<5 min) collection of the cells by 

centrifugation and prompt transfer to supplemented TF medium without uracil. 
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Additional 25 ml samples were taken immediately after resuspension of the cells (time 

0) and after 2.5, 5, 10, 15, 25, 50, 100, 150, 300, 600, 900, 1200 and 1800 minutes. All 

samples were immediately pelleted by centrifugation and kept frozen at –20°C. 

 

Cell pellets were resuspended in 1 ml of 1M Tris-HCl, pH 8.3, and sonicated at 20 KHz 

for 4 cycles of alternating 1 min burst with 1 min on ice. The samples were centrifuged 

for 15 minutes at 13500 rpm, the supernatant was removed into clean 1.5 ml tubes and 

stored at –20°C.  

 

 

CPSase Activity Assays  

 

Activity of carbamoyl phosphate synthase was determined using the sensitive 

radiochemical assay described by Ingraham and Abdelal (37), with some modifications. 

The assay traps the labile carbamoyl phosphate produced by CPSase using 

hydroxylamine to produce hydroxyurea. The reaction mix included, for a final reaction 

volume of 1 ml, each of the following: 0.1 M Tris-HCl buffer, pH 8.3, 0.2 M KCl, 2 mM 

ATP, 0.1 M MgCl2 and 100 mM L-glutamine. Cell-free extracts for this assay were 

prepared using the BugBuster Protein Extraction Reagent (NovagenTM) as follows: 

frozen cell pellets were resuspended in 2 ml of BugBuster reagent supplemented with 

1mg/ml lysozyme and 2 units of benzonase, incubated at room temperature for 20 

minutes and pelleted by centrifugation. Assay tubes were prepared containing 500 µl of 
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cell-free extract plus 420 µl of reaction mix. The assay tubes were preincubated at 37°C 

for 5 minutes and the reaction started with 80 µl of radiolabeled bicarbonate (127 mM 

NaHCO3:127 µM NaH14CO3) and mixed well. Each reaction was evaluated after 5, 10 

and 15 minutes by removing 250 µl and mixing with 25 µl of 1.3M hydroxylamine/HCl. 

The assay time points were then incubated for 10 minutes at 95°C, allowed to cool down 

and mixed with 75 µl of 40% trichloroacetic acid. Dry ice was added to the tubes to 

drive off unreacted bicarbonate as gaseous CO2 overnight. Radioactive content was 

quantified by mixing reactions with 1 ml of Ultima Gold scintillation cocktail 

(PackardTM) and counting in a Liquid Scintillation Counter Model LS 7000 

(BeckmanTM).  

 

 

ATCase Activity Assays  

 

The assay used was based on the conditions described by Shepherdson (93) and Gerhart 

(25) with some modifications. A carbamoyl aspartic acid standard curve was prepared by 

making serial dilutions of a 1mM CAA stock solution. The final concentrations of these 

were 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 mM. A pre-mixed solution was prepared, containing 

1.5 ml of 1 M Tris-HCl, pH 8.3, 3 ml of 0.2 M K-Asp and 19.5 ml of deionized water 

and kept on ice. Dilutions of the cell-free extracts (1:20) were prepared with 1 M Tris-

HCl, pH 8.3 and kept on ice. Carbamoyl phosphate (0.024 g) was weighted out and kept 

on ice, dissolved in 3 ml of deionized water immediately before use. A stop mix 
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consisting of 33.3 ml of antipyrine/H2SO4 solution (0.5 g / 100 ml of 50% acid), 16.7 ml 

of monoxime/acetic acid (0.4 g / 50 ml of 5% CH3COOH) and 25 ml of deionized water 

was also prepared. 1.5 ml of this mix was dispensed in each of 30 test tubes, covered 

with aluminum foil and kept on ice; the remaining was kept in a beaker, on ice, also 

covered to shield from light. The premixed reaction solution (1.6 ml) was dispensed into 

10 tubes containing the cell-free extracts. These 10 tubes, as well as those for the CAA 

standard curve were placed in a water bath at 28°C. The CP was suspended, and used to 

start the assay by dispensing 200 µl into the 10 reaction tubes (with 10 sec intervals) and 

vortexing. At 10, 20 and 30 min after initiating the reaction, 500 µl were transferred to 

the tubes with stop mix and vortexed. The remaining stop mix dispensed (1.5 ml) into 

each CAA dilution. All reactions were incubated in the light at 60°C for 110 minutes. At 

that time the samples were placed on ice and their light absorbance at a 466 nm 

wavelength promptly determined.  

 

DHOase Activity Assays  

 

This assay was adapted from that used by Kelln (43, 46) and followed a procedure  

similar to the activity assay for ATCase. A standard curve of varying concentrations of 

carbamoyl aspartic acid was prepared from a 1 mM stock solution. A 1:20 dilution of the 

cell-free extracts in 1 M Tris-HCl, pH 8.3 was used as before and the reaction initiated 

with 20 mM L-Dihydroorotate. The reactions were allowed to proceed at 28°C for 10, 20 

and 30 minutes. At the specified times, the reactions were stopped with a mixture of 
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antipyrine/sulfuric acid and monoxime/acetic acid. The stopped reactions, together with 

the CAA and DHO controls were incubated for approximately two hours at 60°C to 

develop color. As with the ATCase assay, the absorbance at 466 nm was determined and 

used to calculate specific activities of each sample.  

 

DHOdeHase Activity Assay  

 

Activity of dihydroorotate dehydrogenase was quantified following a procedure adapted 

from Karibian (43).   For each experiment, an appropriate cell-free extract dilution was 

preincubated with 1 M Tris pH 8.8, 100 mM MgCl2 and deionized water. Dihydroorotate 

was used as the substrate from a 20 mM stock solution. The final volume of the reaction 

was kept to 100 µl. The reaction was followed by quantifying the absorbance change in a 

Ultrospec 2000 spectrophotometer (Amersham TM) at 290 nm. An increase in the 

absorbance of the reaction, in a 1 cm length path, of 1.93 units was correlated with a 

change in the substrate concentration of 1 mM. The analysis of the data collected was 

performed as described later in this chapter. 

 

OPRTase Activity Assay 

 

This assay was adapted from that used by Schwartz and Neuhard (91), which uses the 

production of OMP as the measured variable. The conditions of the assay, very similar 

to those used in the DHOdeHase assay, include 100 mM Tris pH 8.8, 6 mM MgCl2 and 
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water, mixed with an appropriate dilution of the cell-free extract. Two substrates are 

needed for this reaction, orotate, at a final concentration of 0.25 mM and 5-

phosphoribosyl-1-pyrophosphate, at a final concentration of 0.6 mM. A decrease in the 

absorption of the reaction of 3.67 was equated to an increase in the concentration of 

product, OMP, of 1 mM. The wavelength for detection was 295 nm.  

 

ODCase Activity Assay 

  

This assay (22) followed the decrease in concentration of OMP at a 290 nm wavelength 

over 20 minutes. The assay conditions were the same as those used for OPRTase with 

the exception of the substrate, which was 0.4 mM OMP. The millimolar extinction 

coefficient of OMP is 1.38.  

 

CTP Synthase Activity Assay 

 

The assay for CTP synthase was adapted from that used in the studies of Zalkin (115). It 

followed the synthesis of CTP, which has an extinction coefficient of 1520 M-1cm-1, at 

291 nm. The conditions used were as follows: 20 mM Tris pH 8.3, 0.5 mM ATP, 10 mM 

MgCl2, 0.5 mM UTP, 2 mM glutamine and 0.1 mM GTP in deionized water, mixed with 

the appropriate dilution of cell-free extract. The reaction was started by addition of UTP 

and followed at 38°C during 5 minutes.  
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Analytical Procedures  

 

Measurements of optical density (OD) at the appropriate wavelengths were performed to 

monitor color development in the reactions. Samples were used for absorbance 

quantification on Ultrospec 2000 and Ultrospec 3300 Pro spectrophotometers 

(Amersham/Pharmacia Biotech). Absorbance readings were recorded for all sets of 

samples and calibration curves.  

 

Protein concentration was determined using the absorbance readings of 1:20 dilutions of 

the cell-free extracts at 260 and 280 nm wavelengths. The spectrophotometer was zeroed 

with a buffer blank. The following equation was used to estimate the protein 

concentration: 

 

   [Protein] (mg/ml) = 1.55 x A280 – 0.76 x A260 

 

Determination of protein concentration by ultraviolet absorption (260 to 280 nm) 

depends on the presence of aromatic amino acids in proteins. Tyrosine and tryptophan 

absorb at approximately 280 nm, whereas the 260 nm reading was used to correct for 

nucleic acid content. The main advantages of this method of determining protein 

concentration are that the sample is not destroyed and that it is very rapid.  
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Calculation of specific activity was done using the following equation: 

 

Equation 20 

V
P

t
A

tivySpecificAc
][*ε

λ∆
=       

 

where ∆Aλ  is the rate of change in absorbance and t the time units, ε is the extinction 

coefficient of the substrate consumed or product formed during the reaction and [P] is 

the concentration of protein in the cell-free extract and V the volume of the reaction.  

 

RESULTS AND DISCUSSION  

 

Dynamics of Enzymatic Activity in Response to Metabolic Perturbation 

 

The regulation of the enzymatic activity along the pathway of de novo biosynthesis of 

pyrimidines is coordinated between the allosteric and transcriptional control 

mechanisms. Although some of the enzymes respond to allosteric effectors, thus 

providing an immediate and fine-tuning responsive mechanism, all are coordinately 

regulated at the gene expression level. These experiments allowed for a clear insight into 

the interplay of both mechanisms of regulation. Following the flux of metabolites at 

different growth rates during derepression allowed a dissection of the allosteric response 
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and measurement of specific activities of the enzymes complemented the analysis by 

providing information regarding transcriptional activation. Analysis of enzymatic levels 

of activity provided a quantifiable method of observing the contribution of gene 

expression in restoring metabolic steady state. As expected, all the enzymes exhibited 

responsiveness to the nutritional perturbation, with steady state derepressed levels of 

expression higher than repressed levels. The extent and dynamics of these responses are 

described in the following pages. 

 

CPSase Response. The first enzyme of the pathway is a critical regulatory point 

controlling flux through the pathway. In E. coli, the activity of CPSase is shared between 

the pyrimidine and arginine biosynthetic pathways. This requires that the product of this 

first reaction, CP, be partitioned in order to satisfy competing demands. The hierarchy of 

this decision-making process is still unclear; however, CPSase responds to pyrimidine de 

novo activation by increasing its activity within 100 minutes by 10.3-fold with respect to 

steady-state values (Figure 29). Expression of the carAB operon is regulated by the 

cumulative repression of the end products of both pathways and it is interesting to 

observe, from the results of pyrimidine derepression, the extent of the response induced 

by the reactivation of this pathway. UMP, as shown in figure 25, also follows a similar 

trend of accumulation and likely plays a role in controlling the activity of this enzyme as 

it regains steady state levels.  
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Figure 29. Dynamics of CPSase perturbation from steady state.  

 

ATCase Response. The second step of this pathway is the first reaction devoted 

exclusively to the production of UTP and CTP de novo. The specific activity of ATCase 

is much greater than that of any other enzyme in the pathway and, therefore, a 3.8-fold 

increase in activity provided a considerable amplification of the metabolic flux. The 

levels of enzyme rose within 100 minutes after the perturbation and they gradually 

receded over approximately three generation times (Figure 30).  Activation of the P2 

promoter and transcriptional attenuation are responsible for the control of synthesis of 

ATCase. The response observed for derepression of ATCase follows the time scale 

observed for the accumulation of the end products of the pathway, UTP and CTP, 

responsible for these mechanisms of control (Figures 22 and 23). Present also in this 

enzyme is the contribution of allosteric inhibition brought about by the accumulation of 
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UTP and CTP, which are likely contributing to the control of activity as the enzyme 

accumulates in response to nutritional perturbation.  

 

 

Figure 30. Dynamics of ATCase perturbation from steady state.  

 

DHOase Response. DHOase also had a significant activity increase following 

derepression. As seen in Figure 31, derepression levels reached 5.6-fold activation with 

respect to initial values. Importantly, in higher organisms, this enzyme is present as a 

multi-enzyme complex together with CPSase and ATCase and therefore an important 

step in controlling flux through the pathway. Although lacking the allosteric-level 

regulation present in the first two enzymes, DHOase transcription also responds to the 

intracellular concentration of pyrimidine nucleotides. As in the case of ATCase, 

transcriptional regulation involves also an attenuation mechanism. CTP levels are 
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involved in this mechanism by forcing initiation of transcription from a site that results 

in formation of a terminator when pyrimidine trinucleotide levels are high. Although 

derepression of DHOase is not as high as that of CPSase, it still is relatively high when 

compared to the response of the enzymes downstream in the pathway. 

 

 

 

Figure 31. Dynamics of DHOase perturbation from steady state.  

 

 

DHOdeHase Response. Subsequent de novo reaction steps, beginning with 

DHOdeHase exhibited a less dramatic response associated with the metabolic 

perturbation. Figure 32 shows the dynamics of this response, which reached 2.2-fold 

increase within 150 minutes after derepression. Regulation of pyrD is also responsive to 



 105

the intracellular concentration of CTP and, as is the case for pyrC, pyrE and pyrF, to the 

action of a common repressor (PurR). The repressor is believed to bind to sites 

conserved in these operons and block the recruitment of transcriptional accessory 

proteins. As evidenced from the observations of the dynamics in the response of this and 

the other enzymes in the pathway, the response to nutritional perturbation is coordinate 

in timing and extent.  

 

 

 

Figure 32. Dynamics of DHOdeHase perturbation from steady state.  

 

 

OPRTase Response. The phosphorylation of orotate had a similar increase in 

transcriptional activation as that observed for DHOdeHase. A 2.3-fold increase was 
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observed and steady state values subsequently recovered (Figure 33). In addition to the 

action of PurR, pyrE transcription is regulated through attenuation modulated by the 

levels of UTP. 

 

 

Figure 33. Dynamics of OPRTase perturbation from steady state.  

 

 

ODCase Response. UMP formation can be considered a threshold step in de novo 

pyrimidine production in the cell. The last step in the de novo pathway is also an 

important step given the role of UMP as a controller for the activity of CPSase, the first 

step in the pathway. In addition, UMP is the step that connects nucleotide 

interconversion and salvage reutilization with de novo biosynthesis. Being at this 

junction, may help explain why the activity of ODCase, as shown in Figure 34, increased 
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by 1.7-fold 100 minutes following derepression; slightly less than any of the previous 

steps in the pathway. Although analysis of the nucleotide sequence of pyrF suggests that 

there is no attenuation mechanism involved in its expression, transcription of this gene is 

also coordinately controlled by the intracellular levels of pyrimidine nucleotide and 

responded accordingly to nutritional perturbation.   

 

 

Figure 34. Dynamics of ODCase perturbation from steady state. 
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Figure 35. Dynamics of CTP synthase  perturbation from steady state.  

 

CTP Synthase Response. Synthesis of CTP was an interesting step to consider under 

this study given its key role in controlling the fate of the de novo products. CTP synthase 

is also allosterically regulated by ATP, CTP and GTP. The derepression change of CTP 

synthase activity was measured to be 2.4-fold within 150 minutes, as observed in Figure 

35. The results obtained from the activity assays of this enzyme suggest that the response 

to nutritional perturbation may extend beyond the genes involved solely in de novo 

biosynthesis of pyrimidine nucleotides, into those involved in the accessory reactions of 

interconversion and salvage reutilization.  
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Figure 36. Comparative enzymatic response relative to ATCase.  

 

Taken together, the results of the enzymatic assays suggest a larger role for the initial 

pathway steps in controlling the metabolic response than that of the latter steps. The 

reactions catalyzed by CPSase, ATCase and DHOase exhibited the greater change in 

activity. The activation seemed to be less dramatic for the remaining steps of the 

pathway. Interestingly, the first three steps in the pathway have evolved to become a 

single multi-activity enzymatic complex in higher eukaryotes. This supramolecular 

association may be a function of a significant role of these three enzymes in flux 

regulation, given their location within the pathway organization. The dynamics of 

enzymatic expression and activity correlated with the results obtained from NTP pools, 

both in extent and duration. ATCase had the largest activity level overall and a 

comparison of the activity of the enzymes relative to that of ATCase helps illustrate the 
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significance of the contribution of this enzyme in controlling metabolic readjustments 

(Figure 36). ATCase showed activity levels ranging from 4.5 to 20 times that of the 

other enzymes of the pathway (Table 8). CPSase, with derepression levels over 10-fold 

higher than repressed levels, showed a range of response larger than any other enzyme in 

the pathway. A question that arises concerns the control mechanism responsible for 

funneling the excess CP in the UMP versus the arginine biosynthesis direction. The 

answer may be in the coordinated control of all the enzymes within a pathway, as it is 

shown here to be the case for the pyr genes (Figure 37). On the other hand, it may also 

be the case that allosteric regulation of ATCase serves as a controller of how much CP 

goes to UMP formation, indirectly directing flux in both pathways. Regarding de novo 

pyrimidine biosynthesis, these results, together with the responses observed with NTP 

levels, provide the necessary information to construct a model of metabolic control that 

help us approach some of these questions.   

 

 

Table 8. Enzymatic response to metabolic perturbation 

Enzyme Initial 
Conc. 
(mM) 

Final 
Conc. 
(mM) 

Minimal 
Conc. 
(mM) 

Maximal 
Conc. 
(mM) 

Time 
Min 

Conc. 
(min) 

Time 
Max 

Conc. 
(min) 

Fold 
increase 

CPSase   2.06   4.09   2.45      21.12 0 150 10.3 
ATCase 31.19 33.6 30.66 100 0, 15 150   3.8 
DHOase   3.65   9.3   3.65      20.45 0 150   5.6 
DHOdeHase   6.89   6.17   5.49 12 1200 150   2.2 
OPRTase   4.69   5.62   4.44      10.40 0, 1200 300   2.3 
ODCase   4.77   5.36   4.77        7.88 0, 1800 100   1.7 
CTP 
Synthase 

  1.53   1.53   1.53       3.75 0, 1800 150   2.4 
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Figure 37. Profile of enzymatic activity following metabolic perturbation.  

 

 

Model Flexibility to Varying Experimental Conditions 

 

Following the studies of nutritional perturbation using batch cultures and the 

development of the mathematical formulation describing it, the chemostat-derived data 

provided important additional parameters.  As a test of the robustness of the 

mathematical formulation of the pathway, the same model was used to determine 

whether it could describe the dynamic response observed at a lower growth rate in 

chemostat cultivation. As additional data had been obtained describing the dynamics of 
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enzymatic activation, several new equations were added to the initial model to include 

this information in the formulation of a second-generation model.  

 

The second-generation model was formulated including the same equations and 

parameters defined for the initial model plus additional ones to describe the 

transcriptional response. Adjustment of the growth rate parameters was then sufficient to 

approximate the physiological response observed in the cells grown in chemostat at 

lower growth rate.   Expressions for the pyrimidine-dependent enzyme synthesis and 

degradation were defined as 

 

Equation 21 

grate
Kg

ctpKmg
ctpgreg

cdiv
atp

utpgtp
atpatp

Ek
umpK

K
dt
Ed

e

e ×

+
××

+
+××−

+
= 11deg

1

11

)(
][

  

 

Equation 22 
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where Ke1 and Ke2 are synthesis coefficients, and kdeg1 and kdeg2 are degradation 

coefficient for CPSase and ATCase, respectively, as described previously. Terms added 
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to these equations account for a description of additional genetic parameters involved in 

enzyme synthesis. Cell division, cdiv, is normalized to the energetic state of the cell, by 

describing it in association with ATP concentration. Two parameters, greg and Kmg, 

describe the transcriptional regulation dependence on intracellular CTP levels; whereas 

grate and Kg are an expression of the growth rate-dependence of the equation.  

Analogous to equations 1 and 2, expressions for the transcriptional control of the 

remaining steps in the pathway were included 
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where E3 represents the synthesis of DHOase while Ke3 and kdeg3 are the respective 

synthesis and degradations coefficients 

 

Equation 24 
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where E4 represents the synthesis of DHOdeHase while Ke4 and kdeg4 are the respective 

synthesis and degradations coefficients 
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Equation 25 
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where E5 represents the synthesis of OPRTase while Ke5 and kdeg5 are the respective 

synthesis and degradations coefficients 

 

 

Equation 26 
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where E6 represents the synthesis of ODCase while Ke6 and kdeg6 are the respective 

synthesis and degradations coefficients. 

 

Importantly, the Kei values used corresponded to the derepression data obtained for each 

step in the pathway reported in Table 8. In addition, initial concentrations of the NTPs 

were adjusted proportionally using the values obtained from HPLC analyses. Table 9 
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summarizes the parameters added to those described for the first-generation model in the 

formulation of the second-generation model.  

 

Table 9. List of parameters added in the second-generation model.  Summary of the parameters used 
to define the equations modeling the transcriptional derepression on pyrimidine de novo biosynthesis in E. 
coli 

 
Parameter Definition Value Reference 

Ke3 Synthesis rate coefficient for DHOase 5.6 This study 
Ke4 Synthesis rate coefficient for DHOdeHase 2.2 This study 
Ke5 Synthesis rate coefficient for OPRTase 2.3 This study 
Ke6 Synthesis rate coefficient for ODCase 1.7 This study 
Kdeg3 Degradation coefficient for DHOase 0.1 Estimated 
Kdeg4 Degradation coefficient for DHOdeHase 0.1 Estimated 
Kdeg5 Degradation coefficient for OPRTase 0.12 Estimated 
Kdeg6 Degradation coefficient for ODCase 0.12 Estimated 
greg pyr gene regulation rate  0.4 Estimated 
Kmg pyr gene regulation coefficient 5.8 Estimated 
gregb pur gene regulation rate 0.78 Estimated 
Kmgb pur gene regulation coefficient 3.5 Estimated 
cdiv Cell division coefficient  2.3 Estimated 
Vmax10 vmax for nucleoside diphosphate kinase 

(ATP) 
2.37 mmol L-1 Estimated 

Km10 KM for nucleoside diphosphate kinase 
(ATP) 

12.3 mM Estimated 

Vmax11 vmax for nucleoside diphosphate kinase 
(GTP) 

1.69 mmol L-1 Estimated 

Km11 KM for nucleoside diphosphate kinase 
(GTP) 

12.2 mM Estimated 

 

The second-generation model was then used in the simulation of derepression of NTP 

levels at lower growth rate and showed a behavior qualitatively similar to that observed 

experimentally (Figure 38). Quantitatively, the simulation showed also remarkable 

similarity to the experimental values without the need to readjust additional parameters 

for the rates of reactions.   
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Figure 38. Simulation of NTP derepression at low growth rate. 

 

Response of the enzymes involved in the pathway was also successfully simulated using 

the same model (Figure 39). The dynamics of derepression exhibited by the enzymes in 

the model was quantitatively similar to the experimental data (Table 10). These results 

provide significant support of the validity of the model, as they constitute a test of its 

descriptive value as well as an indication of its predictive power. 
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Figure 39. Simulation of enzymatic response following nutritional perturbation. 
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Table 10. Comparison of transcriptional derepression experimental vs. model 

Enzyme  Derepression 
(Experimental) 

Derepression 
(Model) 

CPSase 10.3 8.4 
ATCase 3.8 4.3 
DHOase 5.6 5.3 
DHOdeHase 2.2 2.3 
OPRTase 2.3 2.1 
ODCase 1.7 2.1 

 

During the formulation of the first generation model, its inability to simulate precisely 

the dynamics of derepression of the UTP and CTP pools was noticed, as the measured 

recovery rate of the pools with allosterically regulated ATCase was slower compared to 

that seen for the unregulated enzyme. By including transcriptional control data into the 

second-generation model, which allowed the refinement of the previous simulations, the 

model is now capable of simulating the dynamics of both the variation (allosteric 

control) and speed of recovery (transcriptional derepression). Figure 40 shows the 

comparison of the data obtained experimentally (Figure 40A) to the simulations using 

the first (Figure 40B) and second-generation models (Figure 40C). 
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Figure 40. Simulation of allosteric only (B) or allosteric and transcriptional (C) controls following  
nutritional perturbation compared to experimental data (A). 
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One of the objectives driving the formulation of a model of metabolic control is to 

develop the ability to make biochemically sound predictions of important features and 

the role of individual components in maintaining overall biosynthetic control in the cell. 

The model of metabolic control presented here provides a greater understanding of the 

control of a biosynthetic pathway and represents a departure from reductionist 

investigations of isolated components that overlook the importance of the interaction and 

interdependence of the multiple components. As such, it is desirable to use a model like 

the one developed for this study in the formulation of hypotheses that can help lead the 

direction of future research that expands understanding of interactive regulatory 

networks. The model of control of de novo biosynthesis of pyrimidines presents the 

opportunity to look at such interactions, as it intersects with the process of arginine 

biosynthesis in E. coli. The first enzyme of this pathway, CPSase, produces an essential 

metabolite for the production of arginine and pyrimidines, carbamoyl phosphate (CP). A 

fundamental question that remains in the interaction of the two pathways that compete 

for the allocation of CP is what regulates the distribution of CP towards each pathway. 

Using the model, the dynamics at each step along the pathway can be dissected.  By 

examining the first two reactions for the formation of CP and CA (carbamoyl aspartate), 

it was possible to observe their dynamics following the nutritional perturbation and 

transition back to steady state levels (Figure 41A). Eliminating allosteric control from 

ATCase in the model by removing the terms that account for this type of regulation, 

leaving all other parameters unchanged, provides an interesting view of its effect.  
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Figure 41. Theoretical prediction of the role of allosteric control in directing the allocation of 
resources between branching biochemical pathways. (A), Allosterically regulated ATCase. (B) 
Unregulated ATCase. 

 

The levels of CA increase several thousand-fold before regaining steady state, whereas 

those of its precursor metabolite, CP, drop significantly before reaching steady state 

(Figure 41B). An interesting hypothesis from these findings relates to the role of 

allosteric regulation in controlling not only the fate of pyrimidine biosynthesis, but also 

that of allocation of an important metabolite between the competing pathways. It is 

likely based on what is known about both pathways that ATCase plays such a role in 

directing traffic at this biochemical intersection. The three steps downstream from 

CPSase in the direction of arginine biosynthesis lack the allosteric regulation present in 
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ATCase along the pyrimidine biosynthesis route. Several experiments can be designed 

from these observations, including the responses to nutritional perturbation from E. coli 

mutants defective in the allosteric regulation of both ATCase and CPSase.  

 

Given the wealth in amount and quality of the biochemical experimental data used in the 

formulation of this model, it constitutes an important approximation to a quantitative 

understanding of the contribution of allosteric and transcriptional mechanisms in 

achieving cellular metabolic control.  Scholarly utilization of this model of metabolic 

control will contribute to the development and testing of hypotheses concerning the 

mechanisms used by the cell to regulate production of metabolites that are energy 

intensive. Our ability to make predictions of the outcomes of manipulating related 

cellular processes should be greatly enhanced. 
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CHAPTER V 

 

CONCLUSIONS 

 

 

Evolution has selected the framework of genetic, biochemical and regulatory signals that 

bring about success in life; at least success at the cellular level. There coexist in any cell, 

distinct levels of networks interacting through nonlinear and, perhaps, even stochastic 

processes of thousands of molecules. Such an array of complex associations fulfills the 

ultimate goal of providing the cell the adaptability it needs to execute its functions in an 

ever-unpredictable environment. In order to be able to understand successful cellular 

function, one needs to recognize the communication among the different types of 

cellular signals. Metabolic control is such communication process, as it is defined by the 

regulatory properties of the cellular networks.  

 

There are common regulatory properties that are recurrent on most metabolic processes, 

including those signals that act upon genes or directly on the enzymes catalyzing 

biochemical reactions. The most frequent mode of controlling gene networks involves 

coordinated regulation of transcription, whereas enzymatic regulation almost invariably 

follows the topology of feedback inhibition.  
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An ideal model for the study metabolic control is represented in Escherichia coli by the 

de novo biosynthetic pathway of pyrimidine nucleotides. The genes encoding all of the 

enzymes participating in this pathway have been characterized and cloned. The 

mechanisms and structures of the enzymes themselves have been resolved, as has been 

the nature of the regulatory signals controlling the allosteric steps. This pathway exhibits 

coordinated regulation of gene expression, transcriptional attenuation, feedback 

inhibition and pathway branching. Extensive amount of scientific literature has 

documented most of what is technically possible to know about the individual 

components of this pathway. Still missing is a more comprehensive view of the interplay 

among metabolites, enzymes, genes and signal molecules that results in sustainable 

production of pyrimidines.  

 

The studies described in this dissertation provide a framework for understanding how 

cells coordinate central metabolic processes. Dynamic analyses of metabolic repression 

and derepression were used to dissect the regulatory components and to quantify their 

contribution in maintaining cellular homeostasis. Flux of metabolites was used to 

visualize and quantify the efficiency of transcriptional and allosteric regulation in 

restoring intracellular balance. The activities of all the enzymes involved in the pathway 

were measured to determine in vivo responses following metabolic perturbation. The 

experimental information gathered was analyzed using arrays of differential equations to 

yield a new way of understanding the deterministic balance provided to the cell by 
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metabolic control. The mathematical description was validated to establish its predictive 

value.  

 

Analyses of intracellular nucleotide pools served to demonstrate the partitioning of 

metabolic control, evidencing how the regulation of gene expression affects the response 

of rapidly growing cells. Relative levels of UTP and CTP dropped within a few minutes 

after uracil depletion, while the transcription, translation and biosynthetic processes were 

activated; allosteric inhibition was promptly relieved to help maintain physiologically 

safe levels. A different behavior was detected when the cells were doubling more slowly. 

Both UTP and CTP seemed to accumulate, presumably as an effect of a temporarily 

increased output produced by the activation of the pathway; physiological levels were 

restored once the activities of transcriptional and allosteric controls regained balance.   

 

Assays of enzymatic activity provided supporting evidence of the type of response, as 

fluctuation in the amount of enzymes expressed correlated with the measurement of end 

products. Initial overexpression of the Pyr enzymes was reflected in increased UTP and 

CTP levels; once the amounts of enzymes reached balanced active levels, metabolic 

output returned to steady state concentration.  

 

The mathematical formulation of this processes, faithfully simulated metabolic flux as 

well as allosteric and transcriptional responses. We anticipate that this mathematical 

description will continue to improve and “evolve” as more input becomes available 
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through experimentation. In turn, the mathematical model will help in the selection and 

design of the experiments to be performed, such as an investigation into the role of 

allosteric regulation in controlling metabolic flux across branched pathways. Iterations 

of this process should help speed up data acquisition and analysis for this and, we 

expect, other biosynthetic pathways in Escherichia coli and other cellular organisms.  
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