
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository
INTERACTIVE STORYTELLING ENGINES

A Dissertation

by

TEONG JOO ONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2006

Major Subject: Computer Science

https://core.ac.uk/display/4271372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

INTERACTIVE STORYTELLING ENGINES

A Dissertation

by

TEONG JOO ONG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, John J. Leggett
Committee Members, Richard K. Furuta

Frank M. Shipman III
Hugh D. Wilson

Head of Department, Valerie E. Taylor

August 2006

Major Subject: Computer Science

iii
ABSTRACT

Interactive Storytelling Engines.

(August 2006)

Teong Joo Ong, B.S., University of Oregon;

M.C.S., Texas A&M University

Chair of Advisory Committee: Dr. John J. Leggett

 Writing a good story requires immense patience, creativity and work from the author,

and the practice of writing a story requires a good grasp of the readers’ psychology to cre-

ate suspense and thrills and to merge the readers’ world with that of the story. In the digi-

tal writing space, authors can still adhere to these rules of thumb while being aware of the

disappearance of certain constraints due to the added possibility of narrating in a nonlin-

ear fashion.

There are many overlapping approaches to interactive storytelling or authoring, but

each of the approaches has its own strengths and weaknesses. The motivation for this

research arises from the perceived need for a new hybrid approach that coalesces and

extends existing approaches. Since each of the approaches empowers certain aspects of

the storytelling and narration process, the result forces a new research direction which

eliminates certain weaknesses exhibited by a single approach, due to the synergistic

nature of the various approaches. We have developed: 1) a Hybrid Evolutionary-Fuzzy

Time-based Interactive (HEFTI) storytellling engine that generates dynamic stories from

a set of authored story constructs given by human authors; 2) a set of authoring tools that

allow authors to generate the needed story constructs; and, 3) a storytelling environment

for them to orchestrate a digital stage play with computer agents and scripts.

We have conducted a usability study and system evaluation to evaluate the perfor-

mance of the engine. Our experiments and usability study have shown that the authoring

environment abstracted the complexity of authoring an interactive, dynamic story from

the authors with the use of windows-based interfaces to help them visualize various

iv
aspects of a story. This reduces the amount of learning and knowledge required to start

having the pleasure of authoring dynamic stories. The studies also revealed certain fea-

tures and tools that may be reflected by authoring tools in the future to automate various

aspects of the authoring process so that the authors may spend more time thinking rather

than writing (or programming) their stories.

v

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank my advisor, John Leggett. His sharp

insight, quick wit and patient guidance made this research endeavor full of fun and chal-

lenges. Dr. Leggett has taught me well; especially that we may have the best algorithms

and software in the world, but they are worthless if no users can use them. I would like to

thank Dr. Furuta, Dr. Shipman and Dr. Wilson, who gave me many useful suggestions and

inspired so many research ideas. I would like to also thank them for taking time in

reviewing this dissertation and giving valuable comments.

I have grown academically and personally from interactions with many other people

from the group of Digital Flora of Texas and Humanities Informatics projects. I would

like to thank Dr. Haowei Hsieh for his exciting discussions with me and especially his

help for my experiments in this research. I would like to also thank Dr. Luis Francisco-

Revilla, Deng Jie, Konstantinos Meinkos, Unmil P. Karadkar, Rui Li, Yi Yang and other

students in the Center for the Study of Digital Libraries for cooperative works, exciting

discussions, help and fun moments.

Last, but not least, I would like to thank my parents and my girl friend, Siang-Chin

Tan, for their support, their encouragement and their love throughout all these years.

vi
TABLE OF CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGEMENTS... v

TABLE OF CONTENTS.. vi

LIST OF FIGURES .. ix

LIST OF TABLES.. xiv

 1. INTRODUCTION ...1

 1.1 Background and Literature Review ..2
 1.2 Combining Evolutionary Algorithms and Fuzzy Logic for

Dynamic Story Generation ..6
 1.3 Motivation and Scope ...7
 1.4 Scenarios of Use ...9
 1.5 Objectives of Research ...11

 2. ARCHITECTURE OF THE INTERACTIVE STORYTELLING ENGINE......12

 2.1 Genetic Algorithm and Fuzzy System ...15
 2.1.1 Genetic Algorithm ...15
 2.1.2 Fuzzy Logic ...18
 2.2 Design of the Evolutionary Fuzzy System..22

 3. CONSTRUCTING STORIES ...30

 3.1 Encoding the Story Components...30
 3.2 Decoding the Story Components ..34
 3.3 Stories Controlled by Rules ..35

 4. THE INTERACTIVE AUTHORING ENVIRONMENT (IAE).........................39

 4.1 Agent Characters ..39
 4.2 Text-to-Speech (TTS) Engines ...43
 4.3 The IAE Interfaces..44
 4.3.1 The Authoring Interface...44
 4.3.2 The Reading Interface..45

vii
Page

 4.4 Syntax and Semantics of the XML Tags ..47
 4.4.1 Replaying a Story...47
 4.4.2 Actions.xml..48
 4.4.3 Agents.xml ...49
 4.4.4 Objects.xml ..50
 4.4.5 Rules.xml ...51
 4.4.6 Scripts.xml ...53
 4.4.7 Story.xml..53
 4.4.8 Templates.xml..55
 4.4.9 Textstrings.xml ..58

 5. AUTHORING AN INTERACTIVE, DYNAMIC STORY59

 5.1 Case Study: A Simple Three Little Pigs’ Story..61
 5.2 Editing the Story Elements ...72
 5.3 Authoring Stories with the Drag-and-Drop Interface75

 6. STORY STATES AND BRANCHES IN A DYNAMIC STORY79

 7. AUTHORING A TEXT BASED STORY ..85

 7.1 The Interface...85
 7.1.1 Authoring a Story...87
 7.1.2 Story Element Distribution ..89
 7.1.3 Comparing the Story Elements ..91
 7.1.4 Visualizing Distribution of Story Elements...............................93
 7.1.5 Affinity Measure of Story Elements and Story Threads............96
 7.1.6 Hamming Distance Affinity Measure..98
 7.1.7 Multiple Contiguous Bit Affinity Measure..............................100
 7.1.8 Run-time Complexity ..101

 8. EVALUATION ...104

 8.1 Evaluation of the Interactive Authoring Environment (IAE).................104
 8.1.1 Profile of the Test Subjects ..105
 8.1.2 Research Procedures ..106
 8.1.3 Observations and Analyses ..107
 8.1.4 Desirable Features..109
 8.1.5 Undesirable Features..110
 8.1.6 Future Improvements ...111
 8.1.7 Conclusions..112
 8.2 Evaluation of the Storytelling Engine...113

viii
Page

 8.3 Affinity Measures ...114
 8.4 Setup ...117
 8.4.1 Linear Story ...118
 8.4.2 Non-linear Story ..127

 9. CONCLUSION AND FUTURE WORK ...134

 APPENDIX A STORY AND AGENT SCRIPTING FUNCTIONS....................148

 APPENDIX B TASK SHEET FOR THE USABILITY STUDY151

 APPENDIX C QUESTIONNAIRE FOR THE USABILITY STUDY.................156

 APPENDIX D USABILITY STUDY RESULTS ..163

 APPENDIX E TEST RESULTS FROM EVALUATION....................................164

 VITA...187

ix
LIST OF FIGURES

Page

Figure 1. The overall system architecture and subsystems’ relationships 12

Figure 2. Generating a story component ... 13

Figure 3. The standard GA crossover operators .. 17

Figure 4. Mutation that changes the encoding of a gene 17

Figure 5. A partially true and false situation in fuzzy logic 18

Figure 6. Fuzzy sets for laundry softness .. 20

Figure 7. Fuzzy sets for laundry quantity .. 20

Figure 8. Fuzzy sets for washing cycle ... 21

Figure 9. The inference and defuzzification processes of the fuzzy controller .. 22

Figure 10. Symmetric fuzzy sets in HEFTI’s FDBS ... 23

Figure 11. Regions in the domain of an input variable ... 24

Figure 12. Adjusted fitness function with R = 0.1 .. 26

Figure 13. Adjusted fitness function with R = 0.5 .. 26

Figure 14. Adjusted fitness function with R = 0.75 .. 27

Figure 15. Encoding story elements into a chromosome 32

Figure 16. Gene representation of story elements ... 33

Figure 17. Decoding a chromosome into story scripts .. 34

Figure 18. Hierarchical combination of story elements at various levels
with a story template to form a story component 35

Figure 19. Microsoft agent character editor’s properties tab page 40

Figure 20. The word balloon tab page .. 41

x

Page

Figure 21. The voice tab page ... 41

Figure 22. Assigning image frames to an animation ... 42

Figure 23. Building a character agent ... 42

Figure 24. The speech properties dialog box .. 44

Figure 25. The authoring interface .. 45

Figure 26. The reading interface ... 46

Figure 27. A high level story flow graph for the three little pigs’ story 59

Figure 28. Story’s introduction ... 70

Figure 29. Wolf terror ... 70

Figure 30. Wolf attack ... 71

Figure 31. Wolf’s plan .. 71

Figure 32. Pigsconclusion ... 71

Figure 33. Wolfsconclusion .. 72

Figure 34. A collapsible sub-tree embedded within a template numbered 1 72

Figure 35. Tree view of the action editor .. 73

Figure 36. Tree view of the agent editor ... 73

Figure 37. Manipulating a top level tree node .. 74

Figure 38. Manipulating a tree leaf ... 74

Figure 39. Attribute editor and the list of story elements 75

Figure 40. Visualizing a story component as a collection of story elements 76

Figure 41. Placing a story element at an indicated location 76

xi
Page

Figure 42. Deleting and rearranging a story element in the drag
and drop interface .. 77

Figure 43. Attribute box that allows authors to edit a story component
attribute .. 78

Figure 44. Several variants of the three little pigs’ story 80

Figure 45. The pigs are having fun together with the mother pig 81

Figure 46. The wolf agent shows up in front of the pigs and the pigs
scramble to safety .. 81

Figure 47. The straw house of the pink pig collapses! .. 82

Figure 48. The pig failed to escape from the wolf and becomes wolf’s lunch 83

Figure 49. The gray pig cooks the wolf after he falls down the chimney
of the wooden house .. 84

Figure 50. The pigs celebrate as the wolf rises to the heavens 84

Figure 51. Authoring interface of the text-based IAE ... 87

Figure 52. Timestep menu ... 88

Figure 53. Template menu .. 88

Figure 54. Element menu .. 88

Figure 55. Editing a story element .. 89

Figure 56. The statistical tool that complements the functionalities of
the authoring interface ... 90

Figure 57. Advanced parameters for the generate statistics tool 90

Figure 58. Story distribution form with its ordered list view 92

Figure 59. The story distribution form’s affinity list visualization 93

xii
Page

Figure 60. Story elements distribution bar graph .. 94

Figure 61. Story elements distribution bar graph for all of the story threads 95

Figure 62. The story thread differences dialog box .. 96

Figure 63. Process of computing the affinity measure for subsequence
of length 1 and 2 between two story threads 99

Figure 64. Process of computing the multiple contiguous bit affinity
measure for story threads A and B .. 101

Figure 65. Sequences of story elements grouped by story timesteps 114

Figure 66. Affinity for story elements considering different alignments 116

Figure 67. A non-linear story with multiple branching points 118

Figure 68. Graphing the series in Table E.1 .. 121

Figure 69. Graphing the series in Table E.2 .. 121

Figure 70. Graphing the series in Table E.3 .. 122

Figure 71. Graphing the longest contiguous element measure in Table E.4 123

Figure 72. Graphing the longest contiguous element measure in Table E.5 123

Figure 73. Graphing the longest contiguous element measure in Table E.6 124

Figure 74. Graphing the average contiguous measure in Table E.7 125

Figure 75. Graphing the average contiguous measure in Table E.8 126

Figure 76. Graphing the average contiguous measure in Table E.9 126

Figure 77. Number of forward branches for different story stages. 127

Figure 78. Graphing the series in Table E.13 .. 129

Figure 79. Graphing the series in Table E.14 .. 130

xiii
Page

Figure 80. Graphing the series in Table E.15 .. 130

Figure 81. Graphing the series in Table E.16 .. 131

Figure 82. Graphing the series in Table E.17 .. 131

Figure 83. Graphing the series in Table E.18 .. 132

Figure 84. Graphing the series in Table E.19 .. 132

Figure 85. Graphing the series in Table E.20 .. 133

Figure 86. Graphing the series in Table E.21 .. 133

xiv
LIST OF TABLES

Page

Table 1. Story elements referenced in template one ... 62

Table 2. New story elements referenced in tmplt_2.. 65

Table 3. Story elements referenced in tmplt_3 ... 66

Table 4. Story elements referenced in tmplt_4 ... 67

Table 5. Story elements referenced in the conclusion templates 69

Table D.1 Minutes it took the test subjects to complete the assigned tasks 163

Table E.1 Matching elements measure for 1,000 story elements set 164

Table E.2 Matching elements measure for 2,500 story elements set 164

Table E.3 Matching elements measure for 5,000 story elements set 164

Table E.4 Longest contiguous element measure for 1,000 story
elements set... 165

Table E.5 Longest contiguous element measure for 2,500 story
elements set... 165

Table E.6 Longest contiguous element measure for 5,000 story
elements set... 165

Table E.7 Average contiguous measure for 1,000 story element set 166

Table E.8 Average contiguous measure for 2,500 story element set 166

Table E.9 Average contiguous measure for 5,000 story element set 166

Table E.10 Lower and upper bounds of the 1,000 story element set 167

Table E.11 Lower and upper bounds of the 2,500 story element set 167

Table E.12 Lower and upper bounds of the 5,000 story element set 168

xv
Page

Table E.13 Matching element measure for 1,000 story elements
set (25% forward branching probability).. 168

Table E.14 Matching element measure for 1,000 story elements
set (50% forward branching probability).. 169

Table E.15 Matching element measure for 1,000 story elements
set (75% forward branching probability).. 169

Table E.16 Matching element measure for 2,500 story elements
set (25% forward branching probability).. 169

Table E.17 Matching element measure for 2,500 story elements
set (50% forward branching probability).. 170

Table E.18 Matching element measure for 2,500 story elements
set (75% forward branching probability).. 170

Table E.19 Matching element measure for 5,000 story elements
set (25% forward branching probability).. 170

Table E.20 Matching element measure for 5,000 story elements
set (50% forward branching probability).. 171

Table E.21 Matching element measure for 5,000 story elements
set (75% forward branching probability).. 171

Table E.22 Longest contiguous element measure for 1,000 story
elements set (25% forward branching) ... 171

Table E.23 Longest contiguous element measure for 1,000 story
elements set (50% forward branching) ... 172

Table E.24 Longest contiguous element measure for 1,000 story
elements set (75% forward branching) ... 172

Table E.25 Longest contiguous element measure for 2,500 story
elements set (25% forward branching) ... 172

Table E.26 Longest contiguous element measure for 2,500 story
elements set (50% forward branching) ... 173

xvi
Page

Table E.27 Longest contiguous element measure for 2,500 story
elements set (75% forward branching) ... 173

Table E.28 Longest contiguous element measure for 5,000 story
elements set (25% forward branching) ... 173

Table E.29 Longest contiguous element measure for 5,000 story
elements set (50% forward branching) ... 174

Table E.30 Longest contiguous element measure for 5,000 story
elements set (75% forward branching) ... 174

Table E.31 Average contiguous measure for 1,000 story element
set (25% forward branching) .. 174

Table E.32 Average contiguous measure for 1,000 story element
set (50% forward branching) .. 175

Table E.33 Average contiguous measure for 1,000 story element
set (75% forward branching) .. 175

Table E.34 Average contiguous measure for 2,500 story element
set (25% forward branching) .. 175

Table E.35 Average contiguous measure for 2,500 story element
set (50% forward branching) .. 176

Table E.36 Average contiguous measure for 2,500 story element
set (75% forward branching) .. 176

Table E.37 Average contiguous measure for 5,000 story element
set (25% forward branching) .. 176

Table E.38 Average contiguous measure for 5,000 story element
set (50% forward branching) .. 177

Table E.39 Average contiguous measure for 5,000 story element
set (75% forward branching) .. 177

Table E.40 Lower and upper bounds of the 1,000 story element
set (25% forward branching) .. 178

xvii
Page

Table E.41 Lower and upper bounds of the 1,000 story element
set (50% forward branching) .. 179

Table E.42 Lower and upper bounds of the 1,000 story element
set (75% forward branching) .. 180

Table E.43 Lower and upper bounds of the 2,500 story element
set (25% forward branching) .. 181

Table E.44 Lower and upper bounds of the 2,500 story element
set (50% forward branching) .. 182

Table E.45 Lower and upper bounds of the 2,500 story element
set (75% forward branching) .. 183

Table E.46 Lower and upper bounds of the 5,000 story element
set (25% forward branching) .. 184

Table E.47 Lower and upper bounds of the 5,000 story element
set (50% forward branching) .. 185

Table E.48 Lower and upper bounds of the 5,000 story element
set (75% forward branching) .. 186

1

1. INTRODUCTION

Storytelling in the form of narrative writing is a rigorous practice that requires disci-

pline, inspiration, creativity, and hard work. Histories, philosophies, concepts and ideas

can all be treated as a form of narration or expression, and only through a careful choice

of words and sentences (signs and structures) can the author appropriately convey

intended information to the reader. Before the advent of information technology, the main

medium used for this type of expression was paper in all of its various forms. Even after

the invention of computing environments, writing spaces still mimic these age old, two

dimensional (2D) static media. For example, popular word-processing suites such as

Microsoft’s Office and Lotus Smart-suite are modeled on the writing spaces spanned by

paper or similar media that have been in use since the dawn of human civilization. Sev-

eral researchers have opened new horizons to this art form by experimenting with differ-

ent ways of telling a story. Well-known examples include non-linear storytelling [14] and

interactive storytelling using artificial intelligence (AI) techniques [54, 64] in which the

readers play some role in unfolding the story. These techniques are particularly suited for

digital media that are no longer confined to 2D writing spaces. Digital writing spaces

offer more alternatives to express (abstract) ideas and concepts through visualization,

simulation and animation techniques [13]. This new generation of writing spaces mark

the beginning of a new era in information conveyance and storytelling.

In the digital age, authors can use computer graphics to stage a play in a virtual world.

Authors are now freer to narrate their stories in ways they deem preferable or explore

alternatives that can deviate from traditional representations of a story. Authors who

enjoy writing fantasy role-playing novels might start by writing electronic book versions

of the genre, whereas those who are more adventurous might create executable scripts,

interactive story components or indeterminate events that jointly form constructs of the

narration depending on the user’s responses [1]. However, in either case, writing a good

story still requires immense patience, creativity and work from the author, and the prac-

tice of writing a story still requires a good grasp of the readers’ psychology in order to

create suspense and thrills and to merge the readers’ world with that of the story.
This thesis follows the style of Artificial Intelligence.

2

Although there are no universal rules on how to write a good story for all genres that

appeal to all readers, influential work of writers such as Edward Morgan Forster [38] and

David Lodge [50] outline the foundational elements of narrative texts derived from the

structure used by most writers. From reminiscing to essay writing, a story has a topic that

informs the reader of what the story is about, an introduction that provides background

and character information for the story, a series of events that ultimately leads to develop-

ment of the characters and interaction of these characters and, finally, a closing that ends

the story or presages to a continuation of the story some time in the future. The above

description provides a high level view of the most common story components used in the

traditional writing space. In the digital writing space, authors can still adhere to these

rules of thumb while being aware of the disappearance of certain constraints due to the

added possibility of narrating in a nonlinear fashion and the increase in dimensionality of

the writing space.

1.1 Background and Literature Review

Interactive storytelling is a major endeavor, with a long history of previous research

[21, 77, 78]. The area of synthetic actors is especially important because they play a criti-

cal role in the implementation of future interactive storytelling systems [55]. Many over-

lapping approaches are currently being used to explore interactive storytelling, such as:

immersive storytelling [58, 71], emergent storytelling [4, 29], plot-based systems [41, 51,

68], interactive authoring of stories [11, 27, 51] and character-based systems [12, 42, 71].

These approaches present different design paradigms, aiming not only at the user experi-

ence but also different technical solutions to the problem of generating interactive narra-

tive itself and user intervention on the unfolding story.

Most approaches used in interactive storytelling fall into the field of narrative intelli-

gence. This term is commonly used to refer to research on human narratives and storytell-

ing, as well as the development of software or robotic agents that either support human

storytelling or are themselves storytellers and/or story-listeners. Mateas and Sengers [54,

64] provide an introduction to narrative intelligence and its study in artificial intelligence.

3

Applications of narrative intelligence include autobiographic agents that try to understand

the ‘world’ by constructing autobiographies, a term co-opted by Mateas and Sengers to

refer to histories and experiences collected by the agents while exploring the world [30,

67]. Based on this foundation, researchers at the University of Reading, UK experi-

mented with applying autobiographical memory [24] to virtual environments in the hope

of creating a more interesting virtual environment that met the cognitive needs of its users

(agents or avatars) in representing and encoding memories in terms of stories [19].

Other projects focus on creating authoring tools for writers to use virtual reality tech-

nologies in interactive storytelling. Glassner [39, 40] discusses relevant issues for design-

ing interactive fiction, the need for a story structure, and an idea called the story contract

that describes some important traits of successful fictive experiences. Related work done

by Sgouros [66, 67] addresses the lack of appropriate direction and execution environ-

ments for interactive media and proposes a solution based on CHOROS, a Java-based

environment for authoring, direction and control of narrative performances. In particular,

CHOROS allows the story author to annotate the performance script with stage directions

while offering an augmented reality interface for planning the behavior of the actors. The

system uses vision-based tracking methods and behavior-based control for adjusting the

behavior of the robotic actors according to the director’s instructions during the perfor-

mance [65].

Newer techniques, such as using fuzzy cognitive maps [52] to model and implement

believable agents' behaviors by virtue of their self-perception in the storytelling context,

serve as one of the keys for the autonomy of virtual entities' decision making. Research-

ers at the University of Teesside, suggest that making plan-based representations and

flexible character-based systems that rely on narrative formalisms and representations

can satisfy the real-time requirements of interactive storytelling, while still being compat-

ible with the narrative formalization they are pursuing [20, 22, 23]. One of their papers

presents a short episode generated by the system, which illustrates both high-level results

and technical aspects, such as re-planning and user intervention [23]. However, much

work remains to be done on developing more complex narrative representations and

4

investigating the relations between natural language semantics and narrative structures in

the context of interactive storytelling [22].

A number of research projects at the MIT Media Lab have focused on creating elec-

tronic media that exhibit features and characteristics which cannot be offered by tradi-

tional media. The Electronic Publishing project addresses the issues of professional

production and distribution of news and providing the news consumer with tools that

facilitate gathering, access, and use of news in both individual and communal contexts,

while facilitating two-way communication between writers and readers [7]. Thus, con-

trary to the traditional news publishing process, these tools allow the creation of an envi-

ronment in which the news-as-a-service involves the consumer of the news being an

active, engaged participant. Similarly, using ISIS, a programming language for respon-

sive media, research projects directed by Dakss and Bove [26] demonstrate the capability

to deliver interactive media contents to a wide variety of platforms, from high-powered

workstations and servers to set-top boxes and Personal Digital Assistants (PDAs). For

instance, “An Interactive Dinner At Julia's” focuses on delivering interactive contents of

television programs to produce "hyperlinked video" programs that enable viewers to nav-

igate a "web" of video clips featuring Julia Child. Using the remote control, viewers can

"click" on entrees and decorative items at the dinner table and be shown video clips in

which Julia creates these items. Commercial applications using the ISIS programming

language include the “HyperSoap” [25], a soap opera program produced in conjunction

with JCPenney in which a viewer can select clothing, props and scenery and see purchas-

ing information, such as the item's brand and price. The authoring software creates statis-

tical models of objects' color, texture, motion and spatial position and uses these models

to both track objects automatically and perform searches among identified objects. This

technology is now being licensed to a Boston-based company named WatchPoint Media

[75] which provides hyperlinked video as a service for interactive entertainment and a

portal to electronic commerce.

The Gesture and Narrative Language Group at MIT’s Media Lab design technology to

enable and enhance natural forms of communication and linguistic expression, focusing

5

on face-to-face conversation and storytelling for adults and children [15]. Tools created

by this group that are related to this research are BEAT, the Behavior Expression Anima-

tion Toolkit [18], Animal Blocks [2], Avatars [17] and Sam[62]. The BEAT toolkit auto-

matically inserts gesture and facial expression into character dialogue or monologue

scripts for animators. Animators input typed text to be spoken by an animated human fig-

ure and obtain output of synchronized nonverbal behaviors and synthesized speech in a

form that can be sent to a number of different animation systems. The toolkit uses nonver-

bal behaviors that are assigned on the basis of actual linguistic and contextual analysis of

the typed text, relying on rules derived from extensive research into human conversa-

tional behavior. A related project is the Animal Blocks collaborative storytelling environ-

ment for children. Animal Blocks can retell stories told by children who have played with

them previously. With the toolkit, the child can write her own stories in the book by using

the physical animal blocks in addition to the keyboard. Complementing the functional-

ities of the previous toolkits, the Avatars toolkit provides facilities to represent the user's

communicative intentions non-verbally in embodied, animated avatars for graphical

online societies [16]. Bringing together research results from the aforementioned

projects, the SAM agent is an embodied conversational storyteller for children. In SAM,

the character and the child share a castle play space and a set of story-evoking toys that

can magically exist in both participants' worlds [62].

In addition to exploring the possibilities of paper-based and electronic media,

researchers of the Interactive Cinema Group at MIT’s Media Lab seek to increase immer-

sion of audiences in theatrical settings using electronic sensing devices, computer anima-

tions, electronic collage, computational story engines, and communication networks [31].

The Metalinear Cinematic Narrative project [14] proposed a new narrative form that is a

collection of small related story pieces designed to be arranged in many different ways, to

tell many different linear stories from different points of view, using the aid of a storytell-

ing engine [32]. Similar in several aspects to my approach discussed in later sections,

Metalinear Cinematic Narrative has: a structural environment that describes the narrative

structure using narrative primitives, a representation environment that captures knowl-

6

edge of the various story components in the form of relationships between clips and story

granules, a presentational environment in which story agents narrate the story in their

own individual stylistics, and an agent scripting environment that allows the author to

create new agents, thus altering the narrative construction process. The resultant software

is a writing tool which offers the author knowledgeable feedback about narrative con-

struction and context during the creative process and is essential to the task of creating

metalinear narratives of significant dimension. Furthermore, work done by Barbara Barry

of the Interactive Cinema Group defines a specific storytelling process known as "Trans-

actional Storytelling” which is the construction of story through trade and re-purposing of

images and image sequences [6]. Barry’s “StoryBeads” are wearable computers designed

as a tool for constructing image-based stories by allowing users to sequence and trade

story pieces of image and text. StoryBeads are modular, wearable computer necklaces

made of tiny computer "beads" capable of storing or displaying images. Beads communi-

cate by infrared light, allowing the trade of digital images by beaming from bead to bead

or by trade of a physical bead containing images.

1.2 Combining Evolutionary Algorithms and Fuzzy Logic for Dynamic Story Gen-

eration

Synergy between evolutionary algorithms and fuzzy logic can occur in three comple-

mentary forms [72]:

1. Exploit the optimum search ability of evolutionary algorithms to synthesize and

optimize fuzzy systems [73];

2. Use a fuzzy knowledge base [3] to detect the emergence of a solution and dynami-

cally tune the parameters of the evolutionary algorithms [8, 48];

3. Embed fuzziness into the evolutionary algorithm itself, such as sacrificing preci-

sion in the calculation of fitness to save computational resources by defining a

fuzzy fitness criteria or fuzzifying the genetic operators [63].

7

Generation of dynamic stories with emergence properties cannot be easily accom-

plished with the first approach because the system has to rely on evolutionary algorithms

to optimize parameters or rules in a fuzzy system that has only a finite number of rules

and fuzzy sets. Stories generated from such a rule-based system are always bounded by

the number and range of the parameters in the fuzzy rules since the story generation pro-

cess is driven by a fuzzy system.

The second approach utilitizes the power of fuzzy logic to approximate a solution to

tune the parameters of the evolutionary algorithms in order to achieve faster convergence,

better population diversity or better solutions. Hybrid systems that use this approach rely

heavily on evolutionary algorithms to search the problem space, while the fuzzy knowl-

edge base fine-tunes their search capabilities at regular intervals or under certain condi-

tions. Such systems maintain the desired characteristic that the evolutionary algorithms

can “discover” potentially promising solutions from various regions in the problem

space, thus exhibiting emergence characteristics required in the generation of dynamic

stories.

Lastly, the third approach “fuzzifies” the genetic operators or encodings of genes in

evolutionary algorithms. This approach is mainly used in situations when it is hard to

assess the quality of candidate solutions with precision [73] or the fitness value computed

is inherently noisy. This could incur unnecessary runtime complexity since authors have

already provided a set of evaluation schema that guide the evolutionary algorithms in

assigning fitness or manipulating the gene to achieve better fitness. Fuzzifying these

inputs will not help in the evolutionary algorithm search process.

From the above discussion, the second approach matches most of the features

required in dynamic story generation without incurring additional costs in “fuzzifying”

inputs or being constrained by a limited set of fuzzy rules. Therefore, the design of our

storytelling engine adheres closely to the second approach.

1.3 Motivation and Scope

Each of the approaches to interactive storytelling discussed above has its own

strengths and weaknesses. The motivation for this research arises from the perceived need

8

for a new hybrid approach that coalesces and extends existing approaches. The result

forces a new research direction which eliminates certain weaknesses exhibited by a single

approach, due to the synergistic nature of the various approaches. Each approach empow-

ers certain aspects of the storytelling and narration process and it is important to inherit

these many strengths of the traditional approaches. But graceful juxtaposition of these

approaches is not possible without modification to their constructs, and characteristics of

these approaches will have to be discarded in pursuit of simplicity and understandability.

This new approach also introduces the use of a global search technique from artificial

intelligence that samples the problem space by using story construct templates created by

human authors that serve implicitly as rules for a Genetic Algorithm (GA) [56]. Such

template-based search methods offer greater flexibility and robustness than other

approaches, because the narrative rules can be controlled and customized by authors to fit

into the story context. Furthermore, the templates can be used to create rules that are con-

ceptually similar to logic-based reasoning and rules used in plot-based storytelling [41,

51, 68], character-based storytelling [12, 42, 71] and interactive authoring of stories [11,

51] by using the power of Fuzzy Decision-Based Systems (FDBS). Instead of modeling

agent perceptions directly with fuzzy logic as in the case of Maffre, et al. [52], fuzzy logic

is used to monitor and adjust system parameters to alter the GA’s sampling process of the

problem space and to monitor the performance of the other subsystems.

While using a stage play in a virtual environment to tell a story is not a new idea [46],

current research approaches [19, 20, 52, 67] led to the inspiration to create embedded

scripts constructed from “atomic actions” that will generate complex agent behaviors in

the virtual narration environment. Governed by the FDBS, synchronization of these

scripts during a storytelling session and activation and modification of the scripts at run

time by the author or storytelling engine are made to conform to the rules created specifi-

cally for the story context. Although this architecture has the potential shortcoming of

being bounded by the story contexts written by the human author and tacitly implied in

the story templates, less time and fewer resources are committed in the attempt to gener-

ate rules or templates that can be used in many story contexts.

9

Traditional approaches that are not being emulated by the template approach proposed

here are immersive storytelling and emergent storytelling. Due to their heavy reliance on

3D graphics and rendering techniques, virtual reality modeling, and large demands on

processing power, I have decided not to incorporate them into the architecture to ensure

the complexity of the resultant system is within acceptable limits. However, these

approaches can be easily incorporated into the overall schema through slight modifica-

tions in the story component constructs. In this scenario, the learned interactions of users

and agents can be reflected in the knowledge base used by the FDBS for autobiography

reconstruction. Immersive storytelling is also discarded due to the scope of this research

and the various agent controls, synchronization of user actions and path finding issues

exhibited by this approach.

1.4 Scenarios of Use

During the process of creating a story, the human author engages in various activities

that collectively form a narration. New media for the expression of ideas and concepts no

longer constrain the user since the new generation of authoring tools proposed here pro-

vides authors with the capability to orchestrate various story events, characters and rules

with immense flexibility [36]. A few modifications of the engine’s rule sets and parame-

ters can create completely different plots, story lines and relationships of story characters,

thus reducing the need to reorient one’s mindset in narrative writing.

Writers using the new generation of storytelling engines cannot be considered solely

as the story writers since they are not the sole creator of their stories, but instead play the

dual roles of writer and conductor in the narration symphony performed by the agent

characters through the storytelling engine with interaction from the reader. In such an

environment, the term cyborg author [1, 43] is a more accurate term that describes the

role of the human because he/she is not only relying upon the writing space for creative

activities, but also combining multimedia and graphical materials with simulations and

visualizations produced by the digital writing environment in order to author the compo-

sition. Unlike traditional story writing, authors using storytelling engines are augmented

10
by computers that can generate works that are less biased by authors’ opinions and points

of view, allowing reader involvement at an unprecedented level in unfolding the story

though mutual exploration of alternatives in story development between reader and the

storytelling engine in a pre-authored story environment.

Traditional stories and novels do not always have re-readability because the story ele-

ments are familiar to the reader. However, the cyborg author can improve on this aspect

because the storytelling engine allows dynamic stories to be generated from the current

story context. For example, an intended murder mystery that focuses on how a detective

(role-played by the reader) goes about finding the murderer of a victim can yield different

conclusions depending on the reader’s interaction. If the “player” consistently engages in

activities that increase the level of mistrust among agent characters, the rules created by

the author can make the agent characters unwilling to cooperate with the detective. With-

out the information provided by eyewitnesses, the story can end with the conclusion that

the detective was unable to solve the case and what exactly happened to the victim still

remains a mystery. On the other hand, if the “player” attempts to solve the mystery by

commingling with the agent characters and acting virtuously, the agent characters will

start to trust the “player” and cooperate with the player. With so many variables embed-

ded in the story, it is hard for the “player” to predict the composition of the next story

component. Consequently, the storytelling engine allows the murder mystery story to be

retold (reread) over and over again without exhausting the reader’s patience [47].

Applications of the storytelling engine are not restricted to the entertainment world. A

teacher could use the storytelling engine to teach children math. With the students assum-

ing the role of a tomb raider, various agent characters in the disguise of monsters will

spring out of their hiding places and challenge the raider with various mathematical puz-

zles [60]. These puzzles can be retrieved from a knowledge base or dynamically gener-

ated from the templates created by the teacher with the appropriate rules. As the student

becomes accustomed to these puzzles, the teacher can alter the difficulty of the puzzles by

simply modifying the knowledge base or templates. The integration of a storytelling

11
engine with educational materials encourages children to learn as they are playing a fully-

interactive game created by the teacher.

1.5 Objectives of Research

These observations, in part, lead to the objectives of this research: 1) create a Hybrid

Evolutionary-Fuzzy Time-based Interactive (HEFTI) storytellling engine that generates

dynamic stories from a set of authored story constructs given by human authors; 2) pro-

vide various authoring interfaces for authors to generate the needed story constructs for

dynamic stories; 3) create a storytelling environment that enables authors to narrate the

story and orchestrate a digital stage play, using computer agents and scripts to demon-

strate a certain level of creativity to aid authors in the authoring process [35]; 4) evaluate

the performance of the HEFTI storytelling engine in the context of dynamic story genera-

tion.

The benefits of such a system are many: 1) it allows authors the freedom to create

their own stories while providing a cyborg authoring environment that augments the

author’s natural storytelling capabilities by adding facilities for executable scripts, inter-

active story components, interactive events, and new media; 2) it encourages readers’

involvement in the story through textual and graphical representations in an interactive

environment, thus offering a greater level of immersion [43] than traditional paper-based

media; and, 3) it uses a new, hybrid evolutionary-fuzzy technique for story development

with the potential to offer endless possible combinations in length, depth of story, and

character development.

12
2. ARCHITECTURE OF THE INTERACTIVE STORYTELLING ENGINE

A layered and modularized architecture is proposed for HEFTI that isolates the

authors from the underlying mechanisms that run the storytelling engine, thus freeing

authors from the need to learn the convoluted syntax of programming languages in order

to begin authoring a story that can be played in the Stage Play Subsystem (SPS) (Figure

1). Furthermore, various authoring tools (described in section 5.3) collectively form an

Integrated Authoring Environment (IAE) that allows authors to monitor system status and

modify system parameters. These tools are linked directly to the knowledge base shared

by the Evolutionary-Fuzzy System (EFS), which consists of the Genetic Algorithms

(GA) and Fuzzy Decision-Based Subsystem (FDBS) (Figure 1). The EFS is mainly

responsible for creating content out of story templates, adjusting and monitoring system

parameters, and generating action scripts for the character agents.

Figure 1. The overall system architecture and subsystems’ relationships

13
To better facilitate information exchange between the storytelling engine and users of

this form of storytelling, the IAE will support two different modes, namely the read-only

and authoring modes. The read-only mode is a slender version of the environment with-

out the authoring tools to prevent readers from modifying properly configured story con-

tent distributed by authors. The read-only mode will initialize the EFS using the authored

environment, context and parameters distributed by authors and begin dynamically nar-

rating a story according to the reader’s interaction and system parameters. The authoring

mode, on the other hand, gives users full control over all aspects of the storytelling sys-

tem, allowing rules and parameters to be adjusted accordingly to suit the preferences of

the author or reader.

Figure 2. Generating a story component

14
The story component is the single most important entity representing story contents,

parameters and action scripts of the agents in the Stage Play Subsystem. Individual story

components are generated through the integration of rules, global events, and interactions

of agent characters with the reader and story component templates (Figure 2).

Figure 2 provides an overview of the authoring process, interactions and relationships

of the various submodules in the story generation process and the workings of the story-

telling engine. The life cycle of a dynamic story begins with:

1. At Time(t), The author manipulates/creates story building blocks that are stored in

the knowledge base with the authoring tools in the Integrated Authoring Environ-

ment (IAE):

i. A main story thread that serves both as a guideline and evaluation schema for

the storytelling engine (Section 4.4.7, Story.xml)

ii. Story templates that describe how story elements, such as agent actions (Sec-

tion 4.4.2, Actions.xml) can be combined to form story elements (Section

4.4.8, Templates.xml)

iii. Rules (Section 4.4.5, Rules.xml) and story variables (Section 4.4.4,

Objects.xml) that are used to generate emergent properties of a dynamic story

iv. Dialogues (Section 4.4.9, Textstrings.xml) to be spoken by the agent charac-

ters (Section 4.4.3, Agents.xml) and their corresponding behavior scripts (Sec-

tion 4.4.6, Scripts.xml)

2. With all of the necessary story building blocks available from the knowledge base,

the story generation process starts with initializing or storing story parameters (if

available). This step, Time(t+1), initializes various aspects of the storytelling

engine, such as setting/resetting the parameters of the GA within the EFS system

(Section 2.1, Genetic Algorithm and Fuzzy System) and storing the story state in

the knowledge base.

3. At Time(t+2), Fuzzy rules stored in the knowledge base are resolved by the FDBS

based on performance of the GA in the current execution cycle (Section 2.1.2,

Fuzzy Logic).

15
4. At Time(t+3), state of the story is checked based on rules and story conditions pro-

vided from the knowledge base to determine execution order or termination of the

story. At the same time, FDBS fine tunes/adjusts parameters of the GA based on

the results in step 3 if necessary and new sets of story building blocks, such as

story templates and story elements, are provided to the EPS to generate the next

part of the story in the form of a story component (Section 3, CONSTRUCTING

STORIES).

5. At the end of the generation process (Time(t+4)), state of the story is recorded in

the knowledge base for bookkeeping purposes. The information is recorded to

allow readers to “rewind” the story to any arbitrary point in time.

6. At Time(t+5), results from the generation process are sent to the agent architecture

and text-to-speech engines for processing.

7. Lastly, at Time(t+6), the agent architecture and text-to-speech engines execute the

appropriate agent scripts or rendition of the story scene in IAE.

8. Go back to step 2.

2.1 Genetic Algorithm and Fuzzy System

The genetic algorithm (GA) and fuzzy logic forms an integral part of EFS. GA

belongs to the evolutionary algorithms category which imitates nature’s way of evolving

complex biological systems and structures under the influence of environmental factors

[56], whereas fuzzy logic mimics our brain’s ability to perform approximate reasoning in

the face of incomplete information and uncertainty [76].

2.1.1 Genetic Algorithm

GA has found its use in many applications when other algorithms are too costly to

implement. It does not always generate an optimal solution to a given problem but, aided

by good evaluation functions, GA can discover satisfactory solutions or, sometimes, an

optimal solution. In contrast to other heuristics-based algorithms and random search algo-

rithms, the GA is simple to implement, requires less memory usage, and is more intuitive

16
because it employs simple data structures (such as a collection of linked lists to represent

individual chromosomes in a population and arrays to store cumulative frequency values

during the selection process and fitness of chromosomes).

AI researchers derived the GA from observations made by biologists concerning how

stronger species in a population tend to outperform others in the long run due to the natu-

ral selection process [28, 79]. From their work, we know that the process of evolution is a

slow process since its effects can be observed only after a long period of time. However,

we do not have that much time to wait for the effects of the evolutionary process to mani-

fest itself naturally. Instead computer algorithms that mimic the process of evolution are

being used to allow programs or solutions to evolve by themselves, albeit in a much sim-

pler manner than what is being done by nature [56]. GA is one of the evolutionary algo-

rithms that try to emulate the natural selection process through the use of various genetic

operators and selection processes in the evolutionary process. The genetic operators try to

imitate the processes used by nature to generate the myriad species of flora and fauna

found on this planet with various adaptations to the environment. GA’s selection, cross-

over and mutation operators are the computer counterparts of the selection and breeding

process of organisms in the real world to pass on their traits to the next generation. There-

fore, when a small number of strong individuals dominate an entire population after a

certain number of evolution cycles, the evolutionary algorithm is said to have reached the

convergence stage where new variability is less likely to develop.

In GA terminology, genes in a chromosome represent part of the solution instance,

and a chromosome is a collection of genes which represents a solution instance in the

problem space. A collection of several chromosomes form a population that represents

the solution instances currently discovered by GA. There are many ways that one can

encode a solution instance in the genes, however, the most popular encoding methods are

binary, floating point and string representations. Most encoding methods use a random

initial population at the start of the algorithm and, depending on the chosen encoding

method, a correction algorithm might be used to correct any mistakes in the generation or

17
selection routines so that the encoding for a chromosome represents a valid solution

instance in the problem space.

The standard crossover operator facilitates exchange of genetic materials between two

chromosomes. It specifies a point of exchange between two parents and genetic materials,

after the specified offset, are swapped between the parents. The multipoint crossover

operator allows multiple points of exchange between two parents (Figure 3). Many ver-

sions of crossover operators are mentioned in the literature [5, 56].

Figure 3. The standard GA crossover operators

The traditional mutation operator in GA introduces variations into a population by

overwriting a particular gene’s encoding with a random number. This is conceptually

similar to the AI search technique called simulated annealing that resets the search pro-

cess to a different area in the problem space randomly to reduce the probability of tether-

ing the search process around a local maxima peak [70] (Figure 4)

.

Figure 4. Mutation that changes the encoding of a gene

18
2.1.2Fuzzy Logic

Fuzzy logic has been used in a number of areas where traditional modeling techniques

are too expensive to implement or formulate. Fuzzy logic mimics the approximate rea-

soning capability of the human brain to evaluate rule conditions and consequences. In

contrast to traditional Boolean logic that operates on true and false values, fuzzy logic

evaluates rules in a continuous membership domain between 0 and 1.

By representing the correctness/membership of conditions in a continuous domain, a

fuzzy rule can be both partially true and false if its membership values in these domains

are greater than 0 (Figure 5). Such uncertainty is later resolved by the defuzzification pro-

cess (described later) to derive fuzzy rule consequence(s).

Greater convenience is achieved when certain ranges of the domain are associated

with linguistic labels, such as “accurate”, “a bit accurate”, “minimally accurate,” so that a

fuzzy rule can be written in an easily readable form such as:

If conditionA is accurate then perform actionC

Therefore, analogous to most Boolean rule systems, multiple fuzzy rules can be used

in conjunction to describe certain phenomena allowing the controller to exert appropriate

behaviors based on the observed input values.

Figure 5. A partially true and false situation in fuzzy logic

19
Assuming that conditionA is evaluated to be somewhat inaccurate, the firing strength

of this rule will be adjusted accordingly so that actionC can be invoked accordingly. In

contrast to a Boolean rule where everything is discrete in nature, the control action

actionC is either invoked or not invoked at its full strength. The power of fuzzy rules is

more apparent when we attempt to represent the range of firing strengths of the above

fuzzy rule into a set of Boolean rules. To accomplish such a task, we will have to take into

account the range of possible input values of the single fuzzy rule and formulate a set of

Boolean rules to handle them individually:

If conditionA is accurate then perform actionC at firing strength

If conditionA is a bit accurate then perform actionC at 50% firing strength

If conditionA is minimally accurate then perform actionC at 25% firing strength

One can quickly observe how tedious writing the Boolean rules can be in this situa-

tion because the writer not only has to formulate Boolean rules to handle every possible

set of input values, but the rule set above is still inadequate to handle situations such as

“If conditionA is somewhere between accurate and minimally accurate,” which can easily

be evaluated by fuzzy logic to be a membership value that falls somewhere in the range of

the fuzzy set Accurate.

Operators used in the inference process and defuzzification method used by the fuzzy

system can be based on several fuzzy rule-based models that are frequently used in prac-

tice, such as the Mamdani model or the Takagi-Sugeno-Kang (TSK) model [76]. A wash-

ing machine example based on the Mamdani model is provided below to give the reader

an overview of the fuzzy logic reasoning process:

Using a fuzzy washing machine with two fuzzy rules as an example, we want the con-

troller to monitor laundry quantity and softness to adjust the washing cycle accordingly.

The fuzzy rule set can consist of the following rules:

1. If Laundry Quantity is Large AND Laundry Softness is Hard then Wash Cycle is

Strong

2. If Laundry Quantity is Medium AND Laundry Softness is Soft then Wash Cycle is

Normal

20
We can setup the fuzzy sets for the input (Figure 6, Figure 7) and output (Figure 8)

variables as follow:

Figure 6. Fuzzy sets for laundry softness

Figure 7. Fuzzy sets for laundry quantity

21
As seen in Figure 6 and Figure 7, the input domain of the two variables, laundry soft-

ness and laundry quantity, are separated into four and three fuzzy sets respectively,

whereas the output domain consists of four fuzzy sets. Mapping of the input variables to

the appropriate fuzzy sets can be based on the weight of the laundry (laundry quantity)

and what was chosen by the user (laundry softness). After the mapping phase, the control-

ler is going to perform fuzzy inference based on the Mamdani model and combine the

output of the fuzzy rules using the minimum operator that extracts the lowest value from

a set of values (Figure 8). The lowest values from multiple rules are then used to generate

fuzzy subsets from the output variable whose centroid is then computed using the for-

mula:

where Wi stands for the weight of Di from 0 to 1 (y-axis) in a fuzzy set, and Di stands

for the value of the input variable (x-axis). In essence, the centroid formula computes the

weighted average of the fuzzy subsets to produce an appropriate output value (Figure 9).

Figure 8. Fuzzy sets for washing cycle

ΣWi Di⋅() ΣWi()⁄

22

2.2 Design of the Evolutionary Fuzzy System

The robustness of fuzzy rules makes them ideal for control related applications. The

FDBS of the storytelling engine uses a set of fuzzy rules to monitor various aspects of the

EPS to accomplish the following objectives: 1) fast convergence rate of the GA; 2) good

variability in story components; and, 3) good chromosome selection criteria. The applica-

tion environment makes achieving the first goal important because the IAE is a real-time

application that has to generate many story components for the reader. The difference in

speed might not be immediately apparent for a small story with few story elements, but

larger stories with many story elements can make the GA converge rather slowly due to

the search space complexity spanned by these story elements. The second objective is

related to the first objective because they are influenced by similar factors, namely, popu-

lation number, mutation rate and crossover rate. Lastly, the chromosome selection criteria

of the GA is also monitored by the FDBS because chromosomes selected from a previous

population play an important role in determining subsequent searches of the GA. In other

words, if the current evolution cycle of the GA is converging slowly, selection criteria of

the GA can be altered to be more competitive. This will increase the odds of selecting

Figure 9. The inference and defuzzification processes of the fuzzy controller

23
stronger individuals from the population, thus shortening the convergence time of GA

because variability in the population is reduced and less of the problem space is explored.

The problem of sub-optimality does not have much influence in HEFTI because the

constraints setup by the story rules (please refer to the “Stories Controlled by Rules” in

section 3.3 for details) generate story components that are valid solution instances, i.e.

logically correct and coherent partitions of the complete story, therefore, a suboptimal

solution in this context would be a solution instance which is highly similar to a previous

run of the same story. Since HEFTI is driven by a random number generator and readers

can provide a random seed during story initialization, this problem can be alleviated by

increasing the number of story templates and elements in any particular set to signifi-

cantly increase story variability in the chromosomes.

Based on the observations and objectives given above, we can construct a FDBS that

invokes fuzzy rules according to the performance of the GA. In this framework, the GA

parameters are adjusted based on FDBS evaluations of the previous story components’

generation cycle, so that GA can use the adjusted parameters in the next generation cycle.

Since fuzzy rule-based systems try to focus on capturing the generality or pattern of a

problem [73], we try not to formulate too many rules for the FDBS to avoid “overfitting”

[76] the controller, because this can result in poor performance of the GA. For simplicity,

HEFTI maps and scales all of the input and output values into three fuzzy sets: WEAK,

AVERAGE and STRONG (Figure 10).

Figure 10. Symmetric fuzzy sets in HEFTI’s

24
Mapping an input value to the ranges of the fuzzy sets is done by noting the six

regions in the domain of the input variable (as indicated by the dotted lines in Figure 11)

that divides the range of an input value into six even partitions. Functions that describe

the fuzzy sets can be determined using equations for straight lines and diagonal lines in

geometry, such as the equations that describe the shape of the fuzzy set Weak in Figure

10:

1.

2.

3. If i > 9 then µ(i) = 0

Where µ(i) represents the membership value of the input value i.

HEFTI adheres to the inference scheme of the Mamdani model due to how its rules

are described in the “If … Then ..” form instead of the TSK form “If … Then fn =

ax+bx+c.” The fuzzy rules used in HEFTI consist of the following (See below for symbol

definitions):

1. If a is STRONG and b is AVERAGE then y is STRONG

2. If a is WEAK and b is WEAK then c is STRONG and s is STRONG and y is

WEAK

f i 3 then µ i()≤ =

3 & i 9 then µ i() = (9 - i)/(9 - 3)≤>

Figure 11. Regions in the domain of an input variable

25
3. If a is STRONG and b is STRONG then c is WEAK and s is WEAK and y is

WEAK

4. If c is WEAK and s is WEAK and a is AVERAGE then c is AVERAGE and s is

AVERAGE and y is AVERAGE

Similar to the example demonstrated in Figure 9, the values of these rules are com-

bined with the minimum fuzzy operator and defuzzification of the subsets is computed

with the Centroid method.

Various symbols are used in the rule sets above for convenience. We will go through

their definitions one by one. Symbol a measures the given number of epochs that GA can

use to generate a story component. b measures population variability that is computed by

comparing the differences in individual genes (each representing a set of story elements)

among the chromosomes in a population. Comparison between genes can be accom-

plished easily by comparing the element indices encoded in the genes, if they are differ-

ent, we will increment b by 1 otherwise we will leave b as it is. This computation can be

viewed as a process where each chromosome is matched to a different pair, thus the num-

ber of comparisons being made to a population can be computed by the equation N * (N-

1), which translates into selecting a random chromosome from the population and pairing

it with the next chromosome without replacement.

The symbol y stands for the selection criteria of individuals from a population.

Although not explicitly stated in the rule set, the resultant firing strength of the fuzzy

rules (in the range between 0 to 1) is mapped to a function whose value serves as a scalar

that modifies individual fitness of genes that collectively contributes to the overall fitness

of a chromosome. The adjusted fitness of the genes is computed by the equation below:

Where e = natural log, R = firing strength of the rule, f = fitness of the gene before

normalization and F = fitness of the gene after normalization.

For low values of R (indicates low selection criteria), the function is concave down to

encourage variability in a population by promoting chromosomes with average fitness, as

shown by the graph below (R = 0.1):

F f
e R⋅=

26
However, as the value of R increases (which indicates a stronger selection criteria),

the function gradually becomes a concave down function that serves to increase the dif-

ference in fitness between weaker and stronger chromosomes, thus gradually reducing

population variability since strong individuals are now more likely to survive the selec-

tion process due to a larger boost in their fitness, as shown by the graphs below (R = 0.5),

Figure 12. Adjusted fitness function with R = 0.1

Figure 13. Adjusted fitness function with R = 0.5

27
and (R=0.75):

In the rule set, c stands for GA’s mutation rate. The firing strength of the fuzzy rules is

scaled according to the standard recommended range of mutation rate between 0 and 0.1.

For example, if we assume that the fuzzy rules are evaluated to a value of 0.75, the muta-

tion rate will be modified to be 0.1 * 0.75 = 0.075. Lastly, y stands for the crossover rate

of the chromosomes and adjustments made by the fuzzy rules are similar to that of c.

As explained in the previous paragraphs, the rules are designed to monitor conver-

gence, variability and selection criteria of the GA. Instead of using heuristic functions

that can be less readable and sometimes difficult to formulate, fuzzy rules can be easily

understood because of their linguistic labels and explicit expression of the relationships

between variables. The rest of this section goes through the process of how the rules are

formulated:

1. Rule 1 is used to control the selection criteria to avoid the event of too much pop-

ulation variability (b is AVERAGE) in the chromosomes near the end of the evo-

lution cycle (a is STRONG). This rule is used to avoid having a population with

many different average individuals such that the strong individuals are difficult to

Figure 14. Adjusted fitness function with R = 0.75

28
determine because their differences are so small. Therefore, the remedy to the

problem is to increase the selection criteria (y is STRONG) such that stronger

individuals have better odds in dominating the population during subsequent evo-

lution cycles since their competitiveness has been boosted significantly in the

selection process by the F function.

2. Rule 2 is used to control the mutation and crossover rate of GA. Mutation and

crossover rates [72] are one of the factors that differentiate the search behavior of

the GA from random search. Higher values in these rates encourage greater vari-

ability in the chromosomes, thus closing the gap between GA and random search.

Since we want greater population variability when GA begins its search in the

problem space, we can monitor where it is in the evolution process (a is LOW)

and the population variability measure (b is LOW) to adjust the mutation and

crossover rate accordingly. The rule also controls the selection criteria of the GA

(y is WEAK) such that weaker individuals have a better chance to pass the natural

selection filter during early stages of the search because we do not want to confine

the search process to a particular search region (represented by stronger individu-

als in the population) since this can potentially lead to local maxima solutions.

Thus, better variability in the population encourages more uniform search across

the problem space.

3. Rule 3 is just the complement of Rule 2, and it is used to increase the convergence

rate of GA.

4. Rule 4 is used to adjust the mutation and crossover rates and the selection criteria

of the GA when it is somewhere in the middle of the evolution process, such that

effects of the fuzzy rules have a much smoother transition between the start and

end of the entire evolution cycle. The absence of this rule would generate cliffs in

the GA parameters (mutation rate, crossover rate and the selection criteria) for

regions not covered by rule 2 and rule 3. Therefore, this rule ensures gradual

adjustments to the GA parameters as the state of the system changes over the

course of the entire evolution cycle.

29
The process of designing fuzzy sets and rules is an art [76]. No fixed set of guidelines

exist that designers can follow to design a good fuzzy system. However, experience and

detail knowledge about the problem domain can better acquaint engineers in designing

fuzzy rules for various systems.

30
3. CONSTRUCTING STORIES

Under the story construction paradigm of dynamically building stories from gener-

ated story components, a story can be divided into various story elements, namely

actions, agents, stage objects, music and action scripts. Relationships of these elements

are described by story templates and background story thread to determine their interac-

tions. Furthermore, there are a set of rules provided by the author to control how these

story elements can be combined dynamically with each other at execution time while the

story is being told. Although story elements are not as flexible as LegoTM blocks where

children can form arbitrary objects from certain categories of geometry shapes, the story

construction process of the HEFTI storytelling engine is conceptually similar to how chil-

dren construct various variants of an object using building blocks under certain guide-

lines/templates.

3.1 Encoding the Story Components

Only certain types of story elements are encoded in chromosomes for stochastic sam-

pling: 1) actions, which can generate various story events, alter the state of other objects

and agents, and have scripts and music associated with them; 2) agents, which are the

characters that carry out the plots, actions and events in the story; and, 3) objects, which

are as important as actions since they are the props of a given story and sometimes their

existence sets the stage for an appropriate story atmosphere and mood. In most stories,

the mere existence of an agent or object in a particular scene of a story can spark many

different events and plots. The following example from the three little pigs’ story illus-

trates the importance of these elements in the process of story construction. Assuming

that we are at the story time step when the wolf sees one of the pigs. If the pig has no

house to hide in, the wolf can just eat the pig without devising a method to tear down the

house. On the other hand, the existence of a house object between the wolf and pig can

spark various other events and actions on these agents since: 1) the wolf will have to think

of an alternative of action to remove the house object that prevents him from getting to

the pig; 2) the wolf might choose the wrong alternative(s) and get himself killed in the

31
process; and, 3) attributes of the house object can also generate various other scenes or

actions where the wolf manages to tear down the house or fails miserably in his attempt.

If the wolf manages to tear down the house, he can eat the pig for lunch or the pig can

escape from his claws by hiding in a different house. On the other hand, if the wolf fails

to tear down the house, he will have to think of a different alternative of action so that the

entire loop of decision making and event generation repeats itself again. Thus, from this

short example, we can see easily how different the three little pigs’ story can be with or

without the existence of a house object.

The encoding process of the aforementioned story elements into chromosomes is

accomplished by generating valid sets of story elements for each gene in the chromosome

during each story time step. The purpose of this process is to generate a constraint chro-

mosome that holds only valid story elements throughout the evolution cycle. This elimi-

nates the need for a correction algorithm to check for inconsistent or redundant story

elements. Under such an encoding framework, valid story elements consist of story ele-

ments that can be combined with each other according to the story conditions and rules

provided by the author. This encoding process can only evaluate genes in a chromosome

sequentially since the previous story element will have to be evaluated and changes in the

story state applied before it can continue with subsequent story elements in the chromo-

some (Figure 15).

The example below illustrates how the chromosome encoding scheme generates story

components for the next time step of the story and demonstrates how rules, actions and

events conjunctively decide how a story should progress. Assume that we are starting a

new three little pigs’ story. HEFTI will choose a story template from the template set pro-

vided by the author to serve as a general guideline on how the story elements and text can

be generated. Now let us look at how to encode one story sequence of the given template

into a gene within the chromosome:

32
Template 1:

Sequence 1:

Once upon a time, there was an old pig with three little pigs {action_1}

{currentpig1} is an {currentpig1.personality}, so {pig_action}

{currentpig2} is an {currentpig2.personality}, so {pig_action}

{currentpig3} is an {currentpig3.personality}, so {pig_action}

Note: {} depicts reference to a particular attribute, story element or a variable.

Depending on how the various action elements are authored, they can generate other

events and actions according to the rules associated with them. The reference

{pig_action} is a random variable that refers to a set of action elements: {action_2},

{action_3} and {action_4}. We have also associated a rule with {action_2} such that it

invokes {action_5} when a certain condition is fulfilled, otherwise it will invoke

{action_6}. Based on the example, the GA can encode these story elements into different

genes based on the participating story elements (Figure 16).

Therefore, if a story template has more than one story sequence, it will have more

gene selections and many different possible combinations based on the rule conditions,

variables and action elements referenced in the template. A story thread that is created by

the author is used to inform HEFTI about the various story stages, story templates to use

Figure 15. Encoding story elements into a chromosome

33
at each story stages in the evolutionary search process and specifies which of the story

elements are preferred in a particular time step of the story over others. Author may

assign a positive floating point number (to indicate preference) or a negative floating

point number (to indicate avoidance) in the story thread towards a particular story ele-

ment. When the GA selection process chooses a chromosome, the overall fitness of the

chromosome is based on the existence of story elements such that 0.5 fitness value is

assigned to story elements that are not specified by the story thread, while it assigns the

manually given fitness values to story elements referenced in the story thread. Since fit-

ness of an individual plays an important role in the natural selection process in GA, fit-

ness values assigned by authors through the story thread can significantly boost or reduce

the competitiveness of chromosomes in a population, thus allowing authors to exert a cer-

tain degree of control on the composition of the chromosomes and regions of the story

space searched by the GA. Since strong individuals occupy larger intervals in the cumula-

tive frequency domain than weak individuals, chromosomes with higher fitness values

will have greater odds of becoming members of the new population and vice versa. After

a certain number of evolution cycles (which can be specified by the author/reader), the

strongest individual (the chromosome with the highest fitness value) in the population

will be selected to decode into the appropriate story scripts to continue the story.

Figure 16. Gene representation of story elements

34
3.2 Decoding the Story Components

The decoding process is essentially the reverse of the encoding process since this pro-

cess steps through each of the genes in the selected chromosome and decodes the genes

according to their story context to generate a story component in order to continue the

story (Figure 17).

It is possible for us to encode everything about a story into a chromosome regardless

of the story granularity level. However, this is not always an efficient or practical

approach because such redundancy may influence the performance of the evolutionary

algorithm. This can further complicate the encoding, decoding and selection processes in

the GA, since the GA will have to resolve any redundant information (such as, story text

that does not influence the flow of the story) before performing searches in the story

space. Since the GA is used by HEFTI to generate story components based on a given set

of story templates instead of evaluating and resolving story elements to be included in the

search process, the GA should concentrate on finding valid sets of possible story compo-

Figure 17. Decoding a chromosome into story scripts

35
nent combinations. The responsibility of resolving ambiguities and creating story build-

ing blocks rests on HEFTI and the author.

Under the GA’s scheme of recombination and mutation, chromosomes become col-

lections of various story elements that can be combined to form a particular story compo-

nent, and the story elements are combinations of even lower level story elements such as

the story scripts, dialogues spoken by agents, scene objects and music. This hierarchical

representation (Figure 18) allows music, story scripts, scene objects and text spoken by

agents to be associated to a story element so that they can be combined with other story

elements to convey the intended story mood to the reader. While various plots are acted

out by the agents, the story atmosphere is reinforced by the existence of these comple-

mentary story elements in the scene.

3.3 Stories Controlled by Rules

Analogous to writing a program, authors have to write rules that govern execution

orders and decision making processes of agents that might arise when a program is loaded

into the system memory for execution. The story authoring process requires authors to

create rules that govern the generation of: 1) dynamic sub-stories that branch out of the

Figure 18. Hierarchical combination of story elements at various

levels with a story template to form a story component

36
current story; 2) how agents react to a particular story context when certain conditions are

met; and, 3) how the engine should recombine story elements to generate the next story

sequence. HEFTI allows authors to create story rules and invocation rules to drive the

story generation process.

Story rules govern the state of the story itself. They are provided by authors to control

the inclusion of a particular set of story templates into a story based on certain conditions.

These rules provide a mechanism for the engine to swap out irrelevant templates from the

story generation cycle as necessary. Using the XML encoded story thread from the three

little pigs’ story as an example:

<timestep order="2" name="wolf terror" sequence="and" condition =

"{ag_2.isEaten} == false OR {ag_3.isEaten} == false OR {ag_4.isEaten} ==

false">

 <set type="wolf terror"/>

</timestep>

Note: {ag_3.isEaten} indicates reference to a variable named ag_3 with the

attribute isEaten

The bolded text “{ag_2.isEaten} == false OR {ag_3.isEaten} == false OR

{ag_4.isEaten} == false" depicts story conditions that HEFTI tests before the template

set enclosed by the timestep tag can be used to construct new story components. In this

example, the author tests the attribute isEaten of the three pig agents referred to as ag_2,

ag_3, and ag_4 before the template set wolf terror is used in the story generation process.

Observing how the story is laid out in Section 5, we note that the pig agents (ag_2, ag_3

and ag_4) may be eaten by the wolf before they can get to their houses, so execution of

the story should stop when the pigs are gone from the scene because the big bad wolf

would have nothing else to eat. Therefore, the absence of the conditional test in the tem-

plate tag above generates inconsistency in the story because its absence allows HEFTI to

generate inconsistent story components using an invalid template set that may result in

laughable scenes such as the wolf trying to blow away a pig’s empty house. Instead of

writing templates to handle every possible scenario, which can be infinitely large, a short

37
conditional test in a template tag (such as the example above) can eliminate a large num-

ber of invalid story templates from the template set.

On the contrary, invocation rules are rules that introduce branching, combinations of

new story elements and uncertainty in the story components. They are more powerful

than story rules because any number of them can be invoked in an action element to

include additional story elements or rules to further alter the course of the story. Invoca-

tion rules are processed sequentially. An example from the three little pigs’ story will be

used to describe the invocation rule in greater detail (given an action element in the

actions.xml file):

<action id="act_3" invoke="rule1">

{currentpig.value.name} runs to his house |scene_12, {currentpig.value.agent-

Name} |

</action>

The invoke attribute of this story element act_3 invokes a rule rule1 that has the fol-

lowing definition:

<rule id="rule1"

type="normal"

set="wolf terror"

comments="rule1 = runs to his own house (if successful, hides in his own house,

otherwise invoke wolf action 5)"

precondition="$randf() > 0.25"

then="$do(act_9)"

else="$set(currentpig.value.isEaten,true);$remove(currentpig.value,ran-

dompig);$do(act_5)"

/>

The precondition of this rule generates a random floating point number to determine

how likely it is that a certain pig can escape from the wolf. According to the precondition

clause, there is a 25% probability that the pig will be eaten before he/she can get to the

house. If the pig is eaten, the else clause records the state of the agent and story before

38
invoking act_5, which shows the wolf eating the pig. On the other hand, if the pig man-

aged to get away from the wolf, he/she will hide safely in his/her house (as described by

the then clause $do(act_9)). The story elements, such as act_5 and act_9, involved in the

clauses can each have their own association with certain rules so that they can trigger

other rules or action elements in the knowledge base. Thus, under certain conditions, a

chain of rules are triggered simultaneously that generate a very different story from the

pre-authored set of story templates (Appendix A, Story Functions and Agent Scripting

Functions, provides detailed descriptions of the various story functions and agent script-

ing functions that can be employed in various story elements).

39
4. THE INTERACTIVE AUTHORING ENVIRONMENT (IAE)

The IAE consists of a collection of editing tools and the Stage Play Subsystem (SPS).

The editing tools provide high level access to the various story element definition files

that describe various aspects of the story, elements and agents, whereas SPS uses various

modules from the Microsoft Agent Character engine [57] to support agent animation,

text-to-speech synthesis and event handling.

The story definition files are encoded in the ubiquitous and structured XML document

format so that story elements, events and action instances can be represented in hierar-

chies. Editing tools in the IAE allow authors to define various story elements: 1) agent,

action and object instances (agents.xml, actions.xml, objects.xml); 2) set of rules

(rules.xml); 3) story thread (story.xml); 4) templates (templates.xml); and, 5) scripts

(scripts.xml). The agent, action and object elements described in the XML files form the

main building blocks of a story because they carry associations of rules, storyline, tem-

plates and scripting elements with them. Therefore, a rule is unlikely to be invoked with-

out an agent carrying out certain actions, which can subsequently trigger other rules or

actions that can alter the course of the story. Scripts that control how the agents will act

out a particular plot graphically are executed only after the aforementioned rules are

resolved.

4.1 Agent Characters

The SPS delegates character animations, text-to-speech synthesis and event handling

to the Microsoft Agent Character engine. This engine is freely available for download on

Microsoft’s agent character website along with a graphical editing tool that allows the

user to create and modify agent characters (Figure 19).

Most of the text input boxes in the editor are self-explanatory, thus, users should be

able to get acquainted with this tool rather quickly. The properties tab page provides

access to an agent character’s properties (Figure 19), the word balloon tab page allows the

user to customize the size of the balloon used to display text (Figure 20), and the voice

tab page presents a selectable list of any text-to-speech engines that are installed on the

40
local computer (Figure 21). The tree view control to the left lists the animation frame set

that is assigned to this particular agent character. Since an animation is formed by dis-

playing multiple image frames one after the other within a certain time frame, each of the

frames should represent certain minute changes in an agent’s posture. Thus, assigning a

new animation to an agent requires several image frames to create the illusion that an

agent character is executing a certain action (Figure 22).

Figure 19. Microsoft agent character editor’s properties tab page

After generating animations for an agent character, the user can now build the agent

character for the engine by clicking on the build character menu item under the file menu

(Figure 23). This command generates an agent character specification (.acs extension)

file that can be linked into any windows applications as an agent.

41
Figure 20. The word balloon tab page

Figure 21. The voice tab page

42
Figure 22. Assigning image frames to an animation

Figure 23. Building a character agent

43
4.2 Text-to-Speech (TTS) Engines

The agent architecture supports a myriad of speech input (voice recognition) and

speech output (text-to-speech) engines. Although speech input is not used by the IAE,

HEFTI uses speech output extensively in the narration process since he text-to-speech

engine can bring the auditory experience of a stage play to a higher level of realism than

mere story text. As dialogues between the characters and the tone of the narrator become

part of the narration, authors have the capability to adjust agents’ voices to reflect their

personalities and complement their voice with the appropriate background music to but-

tress the atmosphere of the story.

The Microsoft agent character architecture offers support for numerous text-to-speech

(TTS) engines, and they are available for download on the Microsoft Agent’s website.

This architecture offers an immensely robust and flexible application environment due to

its support of many different TTS engines and languages. Therefore, stories authored

with the IAE can be distributed in many different languages. The reader can choose the

language or it can be chosen according to the reader’s locale. The tasks of encoding,

decoding and pronouncing the words are delegated to the TTS engines since the authors

no longer have to provide a different set of voice recordings for each of the languages.

Languages supported by the TTS engines are immense and English, Chinese, Japanese,

Russian and Portuguese are just a small set of the languages supported.

Although manually configuring the TTS engines is not necessary, users can control

the voice type, voice speed and other options via the Speech control panel item. Double

clicking on this panel item brings up the Speech Properties dialog box that is populated

with controls to alter the parameters of an agent character (Figure 24).

44
4.3 The IAE Interfaces

The IAE provides various authoring tools to create story elements, and it also comes

with a reading interface that is populated with track bars, story log controls and control

panel for readers to choose their favorite story branches and manually override certain

system parameters while reading a story. Separation of the IAE into two different modes

differentiates its functionalities in two areas so that the authoring interface is used solely

to generate story elements, whereas the reading interface can be used to read a distributed

story or test and debug a story generated in the authoring interface.

4.3.1 The Authoring Interface

The authoring mode gives authors full control over all aspects of the storytelling

engine while allowing rules and parameters to be adjusted accordingly to suit their prefer-

ences. It consists of eight editors that modify the corresponding XML documents which

Figure 24. The speech properties dialog box

45
represent the story contents and context in HEFTI’s knowledge base. The editors are: 1)

storyline, which corresponds to the story thread provided by authors as an evaluation and

story creation guideline; 2) template, which modifies story templates that HEFTI uses to

generate dynamic stories; 3) action, which allows authors to create action elements that

can be used by agent characters to act out the plots; 4) object and variable, which modi-

fies the corresponding system state, list and agent state variables; 5) rule, which displays

a set of rules that govern the deletion, combination and inclusion of story elements; 6)

story resources, such as agent dialogues and multimedia contents embedded in the story;

7) agent, which enables authors to associate any attributes to the agent characters, such as

personality and behaviors to be used by rules defined with the rule editor; and, 8) agent

scripts, which associates scripts to various agent actions or scenes in the story so that they

can be combined dynamically by HEFTI (Figure 25).

4.3.2 The Reading Interface

The Reading mode, on the other hand, is a slender version of the environment without

the various authoring tools to prevent readers from modifying properly configured story

Figure 25. The authoring interface

46
content distributed by authors. The read-only mode initializes the EFS with the pre-

authored story context and parameters distributed in a set of XML files and begins

dynamically narrating the story according to the reader’s interaction and system parame-

ters (Figure 26). It consists of four windows: 1) Story log tracker that records the story as

it progresses so that readers can export their stories into an XML file to be shared with

others or replay a particular variant of the story that they enjoyed; 2) debugging informa-

tion window that provides information about the events and exceptions that are generated

by the system as the story is being told due to missing audio files or other story resources;

3) Control panel that allows the user to manually control various parameters of the GA.

The story seed is a random number generator seed that drives the HEFTI storytelling

engine so that a reader can use the same story seed to reread the same story again. Simi-

larly, the number of story instances and search duration controls determine the number of

chromosomes and duration that the EPS will search the story space. Readers do not have

to worry about setting appropriate values for these controls because they are automati-

cally controlled by the FDBS, however, this interface allows them to indirectly choose a

particular way that the story is being generated by HEFTI; and, 4) the story text window

displays the actual story text that is generated by HEFTI.

Figure 26. The reading interface

47
4.4 Syntax and Semantics of the XML Tags

4.4.1 Replaying a Story

The Reading Interface allows readers to read a story with different story seeds repeat-

edly. However, the Story Log Tracker window shown in the top left corner of Figure 22

allows readers to save the story they have generated into an XML file for safe keeping or

distribution. Since this file is stored in the XML format, any computer user can view its

contents with a text editor. The format of the replay file is grouped according to scene ids

and played in sequential order. An example is as follows:

 <ScriptLogs>

<scriptgroup id="scene_3"

synchronized="true"

textoutput="The three little pigs lived with their mother, they play and play

day in and day out until one day ,"

scripts="$setbackground(c:\\documents and settings\\mike\\desktop\\IAE\\

bin\\debug\\imports\\images\\back.bmp); $playsong(c:\\documents and set-

tings\\mike\\desktop\\IAE\\bin\\debug\\imports\\music\\intro.wav);

$show(MotherPig,0,0); $say(MotherPig,'Hi, I am the mother pig');

$show(PigA,300,0); $say(PigA,'Hi, I am Angela'); $show(PigB,300,80);

$say(PigB,'Yawn, I am Barney'); $show(PigC,300,160); $say(PigC,'Howdy!

I am Charlene'); $relativemove(MotherPig,-20,0);" />

<scriptgroup

id="scene_33"

synchronized="false"

textoutput=""

scripts="$anim(PigA,0,Play,yes,2);$anim(PigB,0,Play,yes,2);

$anim(PigC,0,Play,yes,2); " />

…

</ScriptLogs>

48
The scriptgroup tag consolidates all of the functions invoked in a story scene as a

group. In contrast to a story template, the parameters and references of variables (such as

{currentPig.id}) are “expanded” to refer to actual agents (such as PigA). Various script-

ing functions are separated by the ‘;’ character, but they still have the same definitions as

that described in Appendix A, Story Functions and Agent Scripting Functions. Therefore,

one can treat the replay scripts as merely a collection of agent scripts and functions that

are used to control agents and media elements for a particular variant of the story.

4.4.2 Actions.xml

XML tags in the Actions.xml file describe various agent action elements that can be

used in a story. This file has to be a well formed XML document. Subsequently, individ-

ual action tags are enclosed by the <actions> tag that supports a comment attribute, this

tag functions analogously to the <document> tag used in most XML documents, but since

we are not dealing with ordinary text documents, the tag “actions” provides better

description than “document” in this context. For example:

<actions comments="stores various action elements">

<action …/>

 …

</actions>

The actions tag encloses various action elements that can be performed by the agent

characters. Due to complexities stemming from possible story branches, actions, agent

interactions and conditions, the action tag also allows invocation of various functions,

variable references and scripting elements other than plain story text. We will explain

such mechanisms using an example from the three little pigs’ story:

<action id="act_5" invoke="rule9">

The wolf eats {currentpig.value.name} $set(currentpig.value.isEaten,true)

|scene_14|

</action>

49
The action tag has a unique attribute called id and an invocation attribute called

invoke. The id attribute uniquely identifies this action instance within the story knowl-

edge base, so that HEFTI can reference this story element by its id. Analogously, the

invoke attribute invokes a particular rule instance by its unique id whenever this particular

action instance is invoked. References to a particular variable are indicated by enclosing

their ids in curly braces, such as “{” and “}”. In our example, {currentpig.value.name}

references a global variable called currentpig, the next dot operator, in turn, references an

attribute, value, of currentpig, and the last dot operator references the attribute name of

an actual pig agent. The referencing process is resolved as follows: 1) the global variable

currentpig and the attribute value are processed to reference an actual object instance,

such as agt_2; 2) the next attribute name now references agt_2’s name attribute, so its

value is retrieved from the knowledge base; and, 3) the locations where this reference is

used are replaced by the result and become part of the story text.

A small set of functions are supported by the scripting engine to allow authors to keep

track of the story states, control story execution, set the value of variables and remove

story elements from a particular set. In our example, the $set function is one such func-

tion that assigns a particular value to a variable. In our example, the $set function assigns

the value true to an agent’s isEaten attribute referenced by the text currentpig.value. A

thorough discussion of the functions used in HEFTI is presented in Appendix A, Story

Functions and Agent Scripting Functions.

4.4.3 Agents.xml

Agents play an important role in the IAE. Due to the customizability of the story envi-

ronment, they can fulfill various roles such as narrators, actors and even background

objects according to the wishes of the author.

There are two types of agents used in the three little pigs’ story, normal agents such as

the pigs and wolf, and object agents that can be background objects or props in the story.

For example, object agents are used for the houses of the three little pigs with their own

set of animations, such as collapsing.

50
The agents.xml file has to be a well formed XML document where agent specification

begins with an <agents> tag that encloses descriptions of the agents:

<agents>

…

 <role id="ag_5" name="Wolf" personality="Agressive"/>

</agents>

The <role> tag enclosed by the agents tag provides various attributes of a particular

agent in the story. Other than the id attribute, which uniquely identifies an agent for the

system, authors are free to define their own attributes for their stories. In the three little

pigs’ story example, the attributes name, personality, owns and isEaten are used:

<role id="ag_1" name="Old Pig" personality="Neutral"/>

<role id="ag_2" name="Pig A" personality="extremely lazy" owns="obj_3"

isEaten="false"/>

<role id="ag_3" name="Pig B" personality="not so lazy" owns="obj_2"

isEaten="false"/>

<role id="ag_4" name="Pig C" personality="hard working" owns="obj_1"

isEaten="false"/>

<role id="ag_5" name="Wolf" personality="Agressive"/>

The name attribute is used to name the agents. The personality attribute is used to set

an agent’s personality. The owns attribute specifies the owner of a particular house

object, for instance, Pig A owns the straw house as he is an extremely lazy pig who does

not want to work hard. Lastly, the isEaten attribute serves as a state variable which allows

rules to determine if this pig is eaten by the wolf.

4.4.4 Objects.xml

Various variables are used to keep track of the story’s progress and states of the

agents, such information is treated as objects implicitly by the engine. There are two

types of variables supported by HEFTI: single value variables and random variables. A

51
single value variable holds the value of a particular attribute in a story element, for exam-

ple:

<object id="obj_1" name="stoneHouse" collapsable="false" material="stone"/>

The single value variable obj_1 defined above is actually a reference to the stone-

House object. It holds various attributes of the stoneHouse object that jointly describe the

house’s composition, how it should behave in face of a wolf’s attack and its building

material. The attributes described above are custom named to serve the purpose of the

three little pigs’ story, and authors are free to define their own attributes in their stories as

long as the variables can be uniquely identified based on the id attribute.

The random variable provides a list data structure for authors to introduce randomness

into the story. Various story elements can be added into the random variable so that they

can be selected randomly by HEFTI. For example:

<object id="randompig" name="randompig" type="random" elements=

"ag_2,ag_3,ag_4" />

The variable randompig is defined to be a random variable by its type attribute, it has

three elements associated to it, namely the ag_2, ag_3 and ag_4 agents. By associating

these elements to a random variable, the engine can randomly choose an element out of

this list whenever the random variable is referenced. Such a variable can prove to be very

convenient in generating unpredictability, since the wolf can now choose a random pig to

attack instead of adhering to a static story script. Unpredictability introduced by a random

variable can generate many different story branches from the original story while obeying

the rules of the story.

4.4.5 Rules.xml

Rules play an important role in dynamic stories because they control various aspects

of the story while determining the alternative actions of agents under various conditions.

The rules tag encloses various individual rules that might or might not be invoked in the

story and associates the rules to a unique id.

52
Rules in HEFTI are meant to provide conditional reasoning for authors, such as

assigning the value true to a global variable when the wolf shows up in the scene. There

are several attributes that can be used in the rule tag: 1) the set attribute associates a rule

to a particular story template set, in other words, a rule associated with a particular tem-

plate set will only be in force when story components are constructed out of this set; 2)

the comments attribute allows authors to associate comments to the rules they have writ-

ten to improve readability; and, 3) precondition, then and else attributes allow authors to

associate premises of the rules with various global variables, agent states and attributes in

the if-then-else statements. The example below illustrates a story rule being encoded in

the described format:

<rule id="rule1"

set="wolf terror"

comments="current pig runs to his own house(if successful, otherwise invoke

wolf action 5, which makes the wolf eat the pig)"

precondition="$randf() > 0.25"

then="$do(act_9)"

else="$set(currentpig.value.isEaten,true);$remove(currentpig.value,ran-

dompig);$do(act_5)"/>

The rule above has the unique id rule1, and it belongs to the template set wolf terror.

The precondition of this rule uses a random number generator to make a pig escape from

the claws of the wolf 75% of the time by hiding in his/her house, while 25% of the time

the pig will be eaten by the wolf before he/she could get to safety. In the event that the

wolf eats the pig, the attribute isEaten of this pig is set to true and the pig’s id is removed

from the random variable randompig so that the wolf cannot inflict further pain on the

same pig. Lastly, agent scripts that control the scene where the wolf eats the pig are acted

out by the agents on the screen by carrying out the appropriate actions.

53
4.4.6 Scripts.xml

Agent characters in the story are controlled by scripts that govern how they act out

their roles at run time. However, agent scripts are used only in stories told in the graphical

IAE (Section 4, THE INTERACTIVE AUTHORING ENVIRONMENT (IAE)). Stories

told in the text-based IAE do not require any agent scripts (Section 7, AUTHORING A

TEXT BASED STORY). The structure of the agent scripts.xml file should adhere to the

following layout:

<agentscripts>

 <script id="scene_1" comment="The Angela pig is a happy pig" synchro-

nized="true">

 All agent scripting functions are provided here

 </script>

...

</agentscripts>

The id attribute uniquely identifies the script within the story, the comment attribute

allows authors to provide their own descriptions of the script for future references and the

synchronized attribute indicates to the storytelling engine whether the scripting functions

should be “synchronized” (executed in order) or “non-synchronized” (simultaneous exe-

cution). There are many potential uses for this attribute, for instance, a virtual chorus can

be simulated by assigning the value false to the synchronized attribute so that multiple

dialogues of the agent characters are synthesized by the text-to-speech engines (Section

4.2, Text-to-Speech (TTS) Engines) at the same time.

4.4.7 Story.xml

The story.xml file describes the general structure of the story to HEFTI. Within the

enclosing storyline tag are sets of story templates, object, action and agent elements

defined by the author. Authors can include any set of story template into a particular time

step of the story by referencing them within the “timestep” tag and assigning the proper

time value to the order attribute, for instance:

54
<timestep order="1" name="introduction" >

<set type="introduction">

<element name="act_10" addfitness="1"/>

</set>

</timestep>

The timestep tag above has its order attribute set to 1, which makes it the first set exe-

cuted by the storytelling engine. Also enclosed by this tag is the set type introduction

which specifies the name of the set of templates, objects, actions and agent instances to

choose from. The element tag specifies preference or avoidance towards certain story

elements. In the above example, the storytelling engine is instructed to increase the over-

all fitness of a chromosome that holds the story element act_10. An author can also

penalize the fitness of a chromosome within a particular story element by assigning a

negative floating point value to the addfitness attribute.

Looping and conditional statements are also supported by the story thread. These

mechanisms allow authors to “program” a dynamic story with a huge set of valid story

variants without engaging in the ordeal of determining their validity manually. Functions

of the looping and conditional statements are similar to most programming languages,

such that when a given condition is met, the body of the statement will be executed and

vice versa. The only difference between a looping and a conditional statement is that the

body of a loop is executed repeatedly while the condition is valid, on the other hand, a

conditional statement will be executed only once.

A looping example:

<timestep order="4" name="wolf's plan" loop="{isPigStillAvailable.value} ==

true AND {isWolfDead.value} == false">

 <set type="wolf's plan" >

<element name="act_13" addfitness="2"/>

</set>

</timestep>

A conditional statement example:

55
<timestep order="5" name="Pigsconclusion" condition="{isWolfDead.value} ==

true AND {isPigStillAvailable.value} == true">

<set type="Pigsconclusion" />

</timestep>

In order to indicate to HEFTI that it should enter into a loop, the author has to create

conditions to be tested in the loop attribute. The loop example above has its loop attribute

set to check for the value of the global variables isPigStillAvailable and isWolfDead. This

loop will terminate whenever no more pigs are available for the wolf to devour or the

wolf is murdered by one of the pigs. Analogously, setting the condition attribute indicates

a tag to be a conditional statement. The conditional statement example above will be exe-

cuted if and only if the wolf is dead and one of the pigs is still alive.

Organizing the general structure of a story into an XML hierarchy has the advantage

that an author familiar with the format can quickly recognize the flow of the story. Detail

discussions about the operators supported by the conditional and loop statements are pro-

vided in the Appendix A, Story Functions and Agent Scripting Functions.

4.4.8 Templates.xml

Story templates form an integral ingredient in HEFTI’s story construction. Each of the

templates defined in the Templates.xml file belongs to a particular template set refer-

enced in the story thread. Associated with these template sets are rules, scripts, actions

and agent instances such that each of them plays a role in forming the final story that the

reader sees on the screen. Correlations between these story elements make story tem-

plates the most difficult for authors to construct since authors have to be vigilant in

detecting conflicting rules that might cause undesirable or unpredictable results, while at

the same time concentrating on the congruence of the story text embedded in the story

templates. In addition, authors have to consider the appropriate time and location to insert

story scripts that drive the agents so that the actors will not perform an action ahead of the

narrator’s speech.

56
Templates allow authors to break up a story into any granularity. The smaller pieces

that form a template are known as story sequences. These represent a series of smaller

time steps. Support for varying levels of granularity in the story templates allows authors

to map a particular story sequence to a simple action, such as an agent lifting his hand, or

a highly involved story plot where a detective is interrogating the suspect in a murder

mystery. The templates file has to adhere to the hierarchical structure below:

<templates>

<template id type>

<sequences>

 <sequence order>

statements, story text, refereces to object instances and others.

</sequence>

<sequence order>

…

</sequence>

</sequences>

</template>

</templates>

The id attribute of a story template uniquely identifies the template for HEFTI. The

type attribute defines the template set to which the story template belongs. Assigning a

template to a template set allows the engine to identify which templates to use during a

particular stage of the story, as described in the Story.xml section. The Story.xml file uses

the set attribute to name stages in the story, and associate rules and various object

instances to a particular time step in the story.

The listing below is an excerpt from the three little pigs’ story:

<template id="tmplt_2" type="introduction" >

<sequences>

 <sequence order="1" >

57
 The three little pigs lived with their mother, they play and play day in and

day out until one day , |scene_3| {act_1}

 </sequence>

 <sequence order="2" >

 $set(currenthouse.value,obj_3.name) $set(currentpig.value,ag_2.id) The

{ag_2.personality} {ag_2.name} pig |scene_4, {currentpig.value} | {act_10}

 </sequence>

 <sequence order="3">

 $set(currenthouse.value,obj_2.name) $set(currentpig.value,ag_3.id) The

{ag_3.personality} {ag_3.name} pig | scene_4, {currentpig.value} |

{act_10}

 </sequence>

 <sequence order="4">

 $set(currenthouse.value,obj_1.name) $set(currentpig.value,ag_4.id) The

{ag_4.personality} {ag_4.name} pig | scene_4, {currentpig.value} |

{act_10}

 </sequence>

</sequences>

</template>

The text enclosed by the sequence tags represent the story text. Although some of

them are actually function calls, object references and embedded scripts, all of them will

be resolved to strings at execution time. For example, the string generated from the first

element of this sequence could be “The three little pigs lived with their mother, they play

and play, day in and day out until one day, the mother pig grows old and asks the little

pigs to live by themselves.” Scripting elements enclosed in “|”s will not generate any

story text, whereas references (enclosed in “{” and “}”), might generate story text

depending on the rules being invoked, and the state of agents and variables. Similarly,

function calls (preceded by the “$” character) may or may not generate story text since

certain functions have a return value while others do not.

58
4.4.9 Textstrings.xml

All of the spoken text, and references to file and music objects are stored in the text-

strings.xml file. Each of these is treated as an XML element enclosed by the string tag

such as the following:

<textstrings>

<string id="PigA_Greeting" locale="USEnglish" text="Hi, I am Angela|Eh, I

am Angela"/>

<string id="PigB_Greeting" locale="USEnglish" text="Hi, I am Barney|Yawn, I

am Barney"/>

…

</textstrings>

Authors cannot customize the attributes of the XML tags in this file and attribute val-

ues will have to be assigned in order to make them accessible to HEFTI. The attribute id

is a globally unique identifier for that resource, whereas the Locale attribute allows

authors to provide different languages or files to be used according to the locale setting of

the IAE. To provide randomness in agent dialogues, authors can use the “|” operator to

form a list of texts that can be selected arbitrarily by HEFTI as the story is being told. For

example, the tag “<string id="PigA_Greeting" locale="USEnglish" text="Hi, I am

Angela|Eh, I am Angela"/>“ provides two possible text strings that can be chosen by

HEFTI whenever the reference PigA_Greeting is used in the story. Authors can assign

any names to the IDs of these resources but it will be convenient to name them systemat-

ically.

59
5. AUTHORING AN INTERACTIVE, DYNAMIC STORY

In contrast to traditional stories that are overlaid upon two dimensional media, story

branches in an interactive and dynamic story are similar to programs generated by the GA

that can respond according to conditions or inputs specified by the author. Conventional

approaches for visualizing story elements in a static story are no longer adequate due to

the dynamic nature of the story. Story variations stemming from interactions and relation-

ships between story elements that are driven by the GA can introduce high degree of

unpredictability in the resultant story that even the author cannot foresee.

A dynamic story has constructs that are similar to a computer programing language.

For instance, a rule in the story is similar to a conditional statement in a program because

it tests certain conditions to decide the possible courses of action. We can construct a

story flow graph out of a dynamic story in the same fashion as we derive an informal flow

graph out of a well-written computer program. A high level overview of the three little

pigs’ story is shown in figure 27:

1. The Start stage initializes various variables and agent characters.

2. The Introduction stage provides all necessary story background for the reader.

This guides the reader smoothly into the next stage of the story.

3. The Wolf’s Threat stage introduces one of the main characters, namely the wolf

agent, into the story. This indicates the start of the main story body.

4. The Wolf’s Attack and Wolf’s Plan stages depict interactions between the pigs

and the wolf as they engage in a series of actions. These stages constitute the

highlights of the story. As indicated by the back-pointing arrow in the Wolf’s

Plan stage, the story engages in a loop so that the wolf devises new attacks

according to certain story conditions.

Figure 27. A high level story flow graph for the three little pigs’ story

60
5. Finally, the story will reach the Conclusion stage when the wolf manages to eat

all of the pigs or was cooked by one of the pigs, thus ending the story.

To avoid confusions that might arise from the back-pointing and branching arrows in

the Wolf’s Threat, Wolf’s Attack and Wolf’s Plan stages, design details of this story in

these stages are provided below:

1. The story stage before Wolf’s Threat, namely Introduction, should provide an

entry point for the wolf agent into the story. Sentences such as “the pigs are so

happy with their new homes that they are completely unaware of the dangers

lurking near by ...” is used to prepare the reader for next stage of the story.

2. The Wolf’s Threat stage serves more functionality than merely introducing the

wolf agent. More variations of the story can be generated by providing story ele-

ments insertion points in various locations of the story templates for this story

stage so that shortly after introducing the wolf agent into the scene, the storytell-

ing engine may generate story components that describe how the wolf agent

attacks the pigs before they can retreat into the safety of their homes. If the wolf

manages to eat all of the pigs before they can run back to their homes, then the

story should terminate, so the state of the story branches to the Wolf’s Plan

stage where the story termination conditions are verified, thus resulting in a

branching arrow pointing from Wolf’s Threat to Wolf’s Plan. On the other

hand, if some of the pigs managed to get back to their homes, story termination

checking at the Wolf’s Plan stage will not terminate the story, instead the state

of the story moves to Wolf’s Attack stage so that the wolf agent can plan his

attacks on the remaining pigs, thus resulting in a back-pointing arrow from

Wolf’s Plan to Wolf’s Attack story stages. Lastly, if no pig is harmed at this

story stage, the wolf agent can start his attacks on the houses immediately in the

Wolf’s Attack stage.

3. In the Wolf’s Attack stage, the wolf agent engages in various endeavors to

break into a pig’s house and there are only two possible outcomes from this sce-

nario: death of the wolf agent or the house collapses and the pig agent is eaten by

61
the wolf. If the wolf agent is killed in action or all of the pigs are eaten by the

wolf then the story will terminate after evaluating the story conditions in the

Wolf’s Plan stage and the state of the story moves into the conclusion stage.

The story flow graph greatly influences how the story is generated because authors are

going to generate story components and templates that get recombined by the GA based

on the rules and conditions derived from a story flow graph.

As described in various sections of this document, HEFTI generates a story for vari-

ous story elements that are governed by rules. The underlying GA determines whether a

story component is valid for a given context by using the story templates and rules pro-

vided by the author. We can view story components as LEGOTM blocks and story genera-

tion as the process of making various structures or shapes by following a set of guidelines

described in the story thread. By having a high level overview of the intended story, we

can incrementally build a detailed story flow graph populated with story elements and

identify rules that we can incorporate into the story.

5.1 Case Study: A Simple Three Little Pigs’ Story

This case study gives the reader a glimpse to a level of story authoring that is very low

level for the average author, but tools (Section 5.2, Editing the Story Elements and Sec-

tion 5.3, Authoring Stories with the Drag-and-Drop Interface) have been written to gener-

ate this level of detail for the author which allow them to work with a higher level

language. With the story planned out, we can get our feet wet by first creating story ele-

ments for the three little pigs’ story. We will generate a linear story with a few story

branches. After this case study, readers can start generating more involved stories by uti-

lizing the power of rules and agents.

We will first generate a story template for the introduction story time step. Since text

strings in story templates are the main source of story text, we would normally populate

the two templates with more descriptive text than other types of story elements. The list-

ing below provides the story sequences embedded in the template sets:

62
1. Once upon a time, there was an old pig with three little pigs. {act_1} |scene_1|

2. $set(currenthouse.value,obj_3.name) $set(currentpig.value,ag_2.id) The

{ag_2.personality} {ag_2.name} pig {pigpick}

3. $set(currenthouse.value,obj_2.name) $set(currentpig.value,ag_3.id) The

{ag_3.personality} {ag_3.name} pig {pigpick}

4. $set(currenthouse.value,obj_1.name) $set(currentpig.value,ag_4.id) The

{ag_4.personality} {ag_4.name} pig {pigpick}

With the various story elements referenced in the template set, we can now generate

the agents, their attributes and possible actions using Table 1 (listed by order of appear-

ance) below:

Table 1. Story elements referenced in template one

act_1 The old pig grows old and asks the little pigs to live by themselves

act_2 {currentpig.value.gender} builds a {currenthouse.value}

|scene_11,{currentpig.value.agentName},{currenthouse.value}|

act_10 {currentpig.value.gender} buys a {currenthouse.value}

|scene_19,{currentpig.value.agentName},{currenthouse.value}|

act_22 {currentpig.value.gender} wonders around and finally finds a

{currenthouse.value} at last. |scene_35,{currentpig.value.agent-

Name},{currenthouse.value}|

currentpig <object id="currentpig" type="pointer" value="ag_2"/>

current-

house

<object id="currenthouse" type="pointer" value="obj_1"/>

obj_1 <object id="obj_1" collapsable="false" material="stone"

name="stoneHouse" collapsed="false"/>

obj_2 <object id="obj_2" collapsable="true" material="wood"

name="woodenHouse" collapsed="false"/>

63
Table 1. (Continued)

obj_3 <object id="obj_3" collapsable="true" material="straw"

name="strawHouse" collapsed="false"/>

ag_2 <role id="ag_2" name="Angela" personality="extremely lazy"

owns="obj_3" isEaten="false" agentName="PigA"

gender=”she”/>

ag_3 <role id="ag_3" name="Barney" personality="not so lazy"

owns="obj_2" isEaten="false" agentName="PigB"

gender=”he”/>

ag_4 <role id="ag_4" name="Charlene" personality="hard working"

owns="obj_1" isEaten="false" agentName="PigC"

gender=”she”/>

pigpick <object id="pigpick" elements="act_2,act_10,act_22" name="ran-

dompigaction" placement="noremove" type="random"/>

scene_1 $setbackground(IMG_BACK);$play-

song(SND_INTRO);$show(MotherPig,0,0); $say(Mother-

Pig,MotherPig_Greeting); $show(PigA,300,0);

$say(PigA,PigA_Greeting); $show(PigB,300,100);

$say(PigB,PigB_Greeting); $show(PigC,300,200);

$say(PigC,PigC_Greeting);

scene_11 $anim($getParam(1),"BuildHouse"); $show($getParam(2), $get-

PosX($getParam(1)), $getPosY($getParam(1))); $anim($get-

Param(1),"Happy");

scene_35 $anim($getParam(1),"Dance"); $show($getParam(2), $get-

PosX($getParam(1)), $getPosY($getParam(1))); $relative-

move($getParam(1),90,0); $anim($getParam(1),"Happy");

$say($getParam(1),Pig_Happy);

64
Table 1. (Continued)

XML syntax and tags used in Table 1 are described in Section 4.4 of this document.

Based on Table 1, note that we have incorporated a random variable pigpick within the

template so that the GA can combine various actions associated with this random vari-

able. This promotes randomness of the story but also allows chain invocation of rules

when the action elements are associated with other actions or rules. The scene objects ref-

erenced in tmplt_1 initializes the story environment by acts such as loading a background

scene image, playing the appropriate music, displaying the active agents, animating an

agent and displaying agent dialogues in the story. For more details about controlling an

agent character, please refer to Appendix A.2. In this simplified three little pigs’ story, we

will only define one story template for the introduction story stage.

The second template, tmplt_2, for the Wolf Threat story stage, is rather simple, as it

merely introduces the wolf agent and describes how the pigs try to flee from the wolf by

running to their own houses. Rule1 is referenced in act_3 so that the pigs occasionally

managed to escape from the claws of the wolf. Table 2 below lists all of the story ele-

ments that are used in this story stage.

1. One day, |scene_6| {act_4} $set(currentpig.value,ag_2.id) {act_3} $set(current-

pig.value,ag_3.id) {act_3} $set(currentpig.value,ag_4.id) {act_3}

scene_19 $hide($getParam(1)); $show($getParam(2), $getPosX($get-

Param(1)) + 20, $getPosY($getParam(1))); $show($getParam(1),

$getPosX($getParam(1)), $getPosY($getParam(1))); $anim($get-

Param(1),0,"BuyHouse","yes",1);$moveto($getParam(1), $get-

PosX($getParam(1)) + 10 , $getPosY($getParam(1)));

$anim($getParam(1),"Happy"); $say($getParam(1), Pig_Happy);

$relativemove($getParam(1),90,0); $anim($get-

Param(1),"Happy");

65
Table 2. New story elements referenced in tmplt_2

act_3 {currentpig.value.name} runs to his house |scene_12,{cur-

rentpig.value.agentName}|, invoke=”rule1”

act_4 The wolf shows up and frightens the pigs. |scene_13|,

Invoke=”rule1”

act_5 wolf eats {currentpig.value.name} $set(current-

pig.value.isEaten,true) $remove(currentpig.value,ran-

dompig), |scene_14,{currentpig.value.agentName}|

act_9 {currentpig.value.name} hides at home. |scene_34,{current-

pig.value.agentName}|

rule1 precondition="$randf() > 0.25" then="$do(act_9)"

else="$set(currentpig.value.isEaten,true);

$remove(currentpig.value,randompig);$do(act_5)

scene_6 $anim(PigA,"Dance"); $anim(PigB,"Dance");

$anim(PigC,"Dance");

scene_12 $anim($getParam(1),"Surprised"); $say($get-

Param(1),Pig_RunAway);

scene_13 $show(Wolf, $getPosX(PigA) + 250, 0); $anim(Wolf,

"ShowUp"); $anim(Wolf,0,"MakingFun","yes",2);

$say(Wolf,Wolf_Loves_Pigs);

scene_14 $moveto(Wolf, $getPosX($getParam(1)), $getPosY($get-

Param(1))); $hide($getParam(1)); $anim(Wolf,"EatPig");

$anim(Wolf,"FeelsGood"); $moveto(Wolf, $getPosX(PigA)

+ 250, $getPosY(PigA)); $say(Wolf, Wolf_EatPig);

$say(MotherPig, MotherPig_Sigh);

66
Table 2. (Continued)

Lastly, the functions $set and $remove are used to inform HEFTI about the state of the

pigs so that it will not potentially generate an invalid story sequence such as “the dead pig

cooks the wolf” later in the story. With a certain number of pigs hiding in their houses and

some, perhaps, eaten by the wolf, we will proceed to generate story template tmplt_3

using the story elements listed in Table 3 for the wolf attack stage of the story:

1. {act_13} and prepares to attack |scene_8|

Table 3. Story elements referenced in tmplt_3

Similar to the second story template, tmplt_3 is a simple story template. For reasons

that will be apparent to the reader later in this case study, this template will be incorpo-

rated in a story loop that generates the wolf attack sequence on each of the pigs.

The story template tmplt_4 controls how the wolf attacks the pigs as they are hiding in

their homes (wolf’s plan) using the story elements listed in Table 4.

1. $set(currentpig.value,{randompig}),$set(currenthouse.value,currentpig.value

.owns) {act_17} and {wolfpick}

scene_34 $moveto($getParam(1), $getPosX(stoneHouse), $get-

PosY($getParam(1))); $anim($get-

Param(1),0,"scared","yes",1);

$anim($getParam(1),0,"HidesFace","yes",1);

act_13 The wolf huffs and puffs. |scene_22|

scene_8 $anim(Wolf,0,"Prepared","yes",2);

scene_22 $say(Wolf, Wolf_Huffs); $anim(Wolf,0,"Huffsand-

puffs","yes",1);

67
Table 4. Story elements referenced in tmplt_4

randompig <object id="randompig" elements="ag_2,ag_3,ag_4"

name="randompig" type="random"/>

wolfpick <object id="wolfpick" elements="act_6,act_7,act_11"

name="randomwolfaction" type="random"/>

act_6 The wolf blows at the {currenthouse.value.name} $set(cur-

rentwolfact.value,act_6), |scene_15,{currentpig.value.agent-

Name}|,invoke=”rule8”

act_7 The wolf tries to ram down the {currenthouse.value.name}

$set(currentwolfact.value,act_7), |scene_16,{current-

pig.value.agentName}|, invoke=”rule8”

act_8 The {currentpig.value.name} starts a fire at the chimney and

cooks the wolf. |scene_17,{currentpig.value.agentName}|

act_11 The wolf climbs the chimney, |scene_20,{current-

house.value.name}|, invoke=”act_8”

act_17 The wolf comes to {currentpig.value.name} 's {current-

house.value.name} |scene_26,{currentpig.value.agent-

Name}|

act_18 The wolf pants, unable to break down the house. He has to

think of some other forms of attack. |scene_26,{current-

pig.value.agentName}|

act_21 the {currenthouse.value.name} collapses! $remove(current-

house.value,randomhouse) $set(currenthouse.value.col-

lapsed,true) |scene_30,{currenthouse.value.name}|

rule8 precondition="{currenthouse.value.collapsable} == true"

then="$do(act_21);$do(act_5);"

else="$do(act_18);$remove(currentwolfact.value,wolfpick)"

68
Table 4. (Continued)

Tmplt_4 describes various ways that the wolf can attack a pig’s house and some of

these actions will invoke rule8 to determine if the house can collapse in the face of the

wolf’s attack. If the house does not collapse, the wolf has to try other forms of attack.

Due to the setup of the story, the wolf can potentially eat all of the pigs before they can

get to safety or the wolf can be cooked as he tries to attack the pigs. We will have to pre-

pare two different set of story elements (Table 5) for the story endings: pigs’ conclusion

and wolf’s conclusion:

Ending 1.As a conclusion, |scene_31| {act_19}

Ending 2.Lastly, |scene_10| {act_20}

scene_15 $moveto(Wolf,$getPosX($getParam(1)) + 60, $get-

PosY($getParam(1))); $anim(Wolf,"Blow"); $moveto(Wolf,

$getPosX(PigA) + 250, $getPosY(PigA));

scene_16 $moveto(Wolf,$getPosX($getParam(1)) + 80, $get-

PosY($getParam(1))); $anim(Wolf,"Ram"); $moveto(Wolf,

$getPosX(PigA) + 250, $getPosY(PigA));

scene_20 $moveto(Wolf,$getPosX($getParam(1)) + 80,$get-

PosY($getParam(1)) - 10); $anim(Wolf,"Climb");

scene_26 $moveto(Wolf,$getPosX($getParam(1)) + 90,$get-

PosY($getParam(1)));

scene_30 $anim($getParam(1),"Collapse"); $hide($getParam(1));

$say(Wolf, Wolf_Tease);

69
Table 5. Story elements referenced in the conclusion templates

The first ending is played when the wolf was cooked by the pigs and he vanishes from

the pigs’ world. On the other hand, if the wolf managed to eat all of the pigs, he will pro-

ceed to eat the defenseless mother pig and leave the stage. Either of these scenes ends the

story.

The story’s conclusions are rather simple for this case study, but the interested reader

can expand the story by introducing more story elements into the story templates. Since

these story elements span the story space for the GA to perform stochastic search, more

variations in story elements can introduce very complex story behavior on behalf of the

agents and significantly affect story flow.

With the story templates and elements defined, we can start putting them together

with a story thread. A story thread defines the general structure of the story, i.e. how the

GA should evaluate the story elements based on their occurrences in the story and associ-

act_19 no one ever sees the wolf again. |scene_28|

act_20 the wolf eats the mother pig as well, and leaves this desolated

place. |scene_29|

scene_10 $anim(Wolf,0,"Happy","yes",2);

scene_28 $playsong(SND_Alliluyah);$show(Wolf, 550, 0);

$anim(Wolf,0,"GoToHeaven","yes",1);

$say(Wolf,Wolf_Revenge);$hide(Wolf);

scene_29 $moveto(Wolf,$getPosX(MotherPig),$getPosY(Mother-

Pig)); $hide(MotherPig); $anim(Wolf,"EatPig");

$anim(Wolf,"Full"); $moveto(Wolf,$getScreenX(), $get-

PosY(Wolf)); $hide(Wolf);

scene_31 $anim(PigA,0,"Happy","yes",2);

$anim(PigB,0,"Happy","yes",2);

$anim(PigC,0,"Happy","yes",2);

70
ate sets of templates with different stages of the story. We will start by providing an intro-

duction to the story:

<timestep order=”1” name=”introduction”>

<set type="introduction”>

<element name="act_10" addfitness="1"/>

</set>

</timestep>

Figure 28. Story’s introduction

Figure 28 indicates to HEFTI that it should start the story by choosing story templates

from the set introduction. Positive values in the add fitness attribute boosts the fitness of a

chromosome that references this story element, and vice versa. In listing 1, preference is

given to act_10 arbitrarily. We will then associate the template set wolf terror with the

story using similar XML tags:

<timestep order="2" name="wolf terror" condition="{ag_2.isEaten} == false OR

{ag_3.isEaten} == false OR {ag_4.isEaten} == false">

 <set type="wolf terror"/>

</timestep>

Figure 29. Wolf terror

In Figure 29, conditions are used to test if the template set from this story will be exe-

cuted. If the conditions are not met, HEFTI will skip this template set and execute the

next template set. During this time step, we are evaluating conditions to see if the pigs are

all eaten by the wolf before generating subsequent story components based on the given

story template wolf terror, since if there are no pigs, no agents are there to be afraid of the

wolf.

71
<timestep order="3" name="wolf attack" condition="{isPigStillAvailable.value}

== true" ><set type="wolf attack"/>

</timestep>

Figure 30. Wolf attack

Similar to the previous story time step, we must check the value of the global variable

isPigStillAvailable in Figure 30 to see if the wolf should start his attack or just conclude

the story because there are no more pigs for the wolf to attack.

 <timestep order="4" name="wolf's plan" loop="{isPigStillAvailable.value} ==

true AND {isWolfDead.value} == false">

 <set type="wolf's plan">

 <element name="act_13" addfitness="2"/>

 </set>

</timestep>

Figure 31. Wolf’s plan

The loop attribute of Figure 31 indicates to the engine that it should continue to gener-

ate story components for the reader until all of the pigs are eaten or the wolf is dead. Note

that we have boosted the fitness of story element act_13, which is chosen arbitrarily in

this example.

<timestep order="5" name="Pigsconclusion" condition="{isWolfDead.value} ==

true AND {isPigStillAvailable.value} == true">

 <set type="Pigsconclusion” />

</timestep>

Figure 32. Pigsconclusion

72
 <timestep order="6" name="Wolfsconclusion” condition="{isPigStillAvail-

able.value} == false AND {isWolfDead.value} == false">

 <set type="Wolfsconclusion"/>

</timestep>

Figure 33. Wolfsconclusion

Lastly, Figure 32 and 33 are the two different conclusions discussed earlier. Both of

these test for the value of the global variables isPigStillAvailable and isWolfDead to deter-

mine the appropriate template set to choose from.

5.2 Editing the Story Elements

The IAE provides two alternatives for authoring stories: tree views and drag-n-drop

windows. Since story elements are organized as a hierarchical and structured XML col-

lection, categorized by time steps in the story, tree view controls can succinctly display

the story elements in a very compact form via the metaphor of collapsible trees, sub-trees

and leaves. Thus, XML elements embedded within a given XML tag can be attached to a

sub-tree that is collapsible, whereas XML attributes corresponding to that XML tag are

represented as leaves within the sub-tree. An example of a collapsible subtree with

attributes attached is shown below (Figure 34):

Figure 34. A collapsible sub-tree embedded within a template numbered 1

73
In Figure 34, the tree label at the first level corresponds to a particular time step in a

story, whereas the sub-tree “introduction=Storytelling.RepInstance” names the set of

templates that can be incorporated into the story at the given timestep. In the subtree, the

definition of a single story element called act_10 and its associated “addfitness=1”

attribute indicates an author’s preference towards the existence of the act_10 story ele-

ment at this stage of the story. Tree views for the rest of the XML editors are simpler than

what was described above (Figure 35 and Figure 36), so an author who understands the

meanings behind the tree nodes in the previous example can browse around the interface

easily. The storyline editor has perhaps the most complicated tree view because of the

depth (four levels) of its XML document structure.

Figure 35. Tree view of the action editor

To author story elements, authors use context menus to manipulate tree nodes in the

editor windows. By right clicking on a tree node, the user can manipulate (add, delete or

edit) the tree nodes and the tree leaves (Figure 37 and Figure 38).

Figure 36. Tree view of the agent editor

74
Figure 38. Manipulating a tree leaf

Additional editing support is provided to authors when they are editing certain types

of story elements. For example, the menu item Edit Attribute in figure 38’s context menu

displays a notepad like editor for authors to edit the attribute. The get listing toolbar but-

ton supplies authors with a list of story elements that are found in the XML knowledge

base when the environment is first initialized. Authors can double click on any of the list

items to place that item into the editor’s text area, thus referencing it within the story

component (Figure 39).

Figure 37. Manipulating a top level tree node

75
Figure 39. Attribute editor and the list of story elements

Tree view controls are acceptable in viewing the story elements as a list with collaps-

ible tree nodes. However, tree view controls are mainly text based and visualizing story

elements in tree views relies mainly on authors’ understanding of the story. Therefore, a

drag and drop interface is provided for story authoring as well so that authors can quickly

glance at the story elements used in a story.

5.3 Authoring Stories with the Drag-and-Drop Interface

The drag and drop interface allows authors to quickly change the arrangement of the

story elements, add or remove a story element from an existing story template and add/

remove/edit attributes in the story templates (as seen in the Listbox control in Figure 40).

The panel to the left of the form lists story elements that can be referenced in a story ele-

ment/template so that authors can add a new story element by highlighting and dragging

one of these listed elements to the viewing window and dropping that object near the indi-

cated location (Figure 41):

76
Figure 41. Placing a story element at an indicated location

Figure 40. Visualizing a story component as a collection of story elements

77
To rearrange or delete a story element from the story component, authors can right

click on the story element and select the “Delete Object” menu item from the context

menu (Figure 42):

Figure 42. Deleting and rearranging a story element in the drag and drop interface

Adding/Removing/Editing an attribute in the drag and drop interface is simpler than

the tree view controls because authors only have to select an attribute in the list, click on

the Edit button and input the values they want to change for that attribute (Figure 43):

78
Figure 43. Attribute box that allows authors to edit a story component attribute

79
6. STORY STATES AND BRANCHES IN A DYNAMIC STORY

Figure 44 illustrates a small subset of the many variants of the three little pigs’ story

that can be constructed out of the story elements mentioned in the previous sections. As

shown in the figure, the story is populated with conditional statements, loops and story

elements. As the story progresses, rules jointly determine how links between story com-

ponents (collection of story elements pertaining to a scene) are removed or added. These

operations are dependent on the state of the story, story variables and agent attributes

such that new story elements can be appended or removed from the story components as

necessary. Two types of links are used in the figure: solid arrows depict ordinary links,

and perforated arrows indicate conditional links that can be removed or created dynami-

cally via story rules as the story progresses.

Figure 45 - Figure 50 illustrates an example of how a particular variant of the three lit-

tle pigs’ story is told. In summary, the HEFTI storytelling framework divides a story into

a number of time steps that can be described by a set of story templates. The story tem-

plates combine various story elements and rules described in the knowledge base and

describe how story elements can be combined by the GA. The end result is a dynamic

story that is different each time it is read. After studying the variants of the story in Figure

44, we can now look at a particular run of the story with the screenshots below (Figure 45

to 50).

This version of the three little pigs’ story starts off by providing background informa-

tion about the story and how the pigs enjoyed their life before the wolf showed up in their

neighborhood (Figure 45).

Life was fun and relaxed for the little pigs until one day the mother pig grow old and

asks the little pigs to start their own lives. Each of the pigs wonders off to build/buy/find

their new house. While the pigs are celebrating in front of their new houses, the wolf

shows up and the pigs immediately scramble to hide in their new houses (Figure 46).

80
Figure 44. Several variants of the three little pigs’ story

81
Figure 45. The pigs are having fun together with the mother pig

Figure 46. The wolf agent shows up in front of the pigs and

the pigs scramble to safety

82
Seeing the pigs hiding in their houses, the wolf begins his attack. The wolf can try to

blow the house away, ram down the house or climb the chimney. The actions chosen

depend on the rules, the GA parameters, author’s preferences to certain story elements,

the story template set authored by the author and the random number generator. In this

particular run of the story, the wolf agent chooses to attack the pink pig by trying to blow

his house away.

Since the collapsible attribute of the straw house is set to true, the wolf can easily ram

down or blow the straw house away (Figure 47). While the straw house collapses, the

pink pig tries to run to the next remaining house. His rate of success is determined by a

random number within a rule. However, in this example, the pink pig is unlucky because

he is eaten by the wolf before he can get to the next house (Figure 48).

Figure 47. The straw house of the pink pig collapses!

83
Figure 48. The pig failed to escape from the wolf and becomes wolf’s lunch

With two pigs remaining, the wolf next chooses to attack the gray pig by trying to

climb the house’s chimney. Conforming to all of the variants of the three little pigs’ story,

the wolf will learn his lesson whenever he chooses this method of attack. Therefore, the

wolf in this story is cooked by the gray pig (Figure 49).

With the bad wolf gone, the pink pig comes back to life so they can live a happy life

with their mother, and they celebrate day and night while the wolf curses them on his way

to heaven (Figure 50).

While reading the story and listening to the narrative text spoken by the Merlin agent,

several clips from the “Peter and the Wolf” symphonic poem composed by Rimsky Kor-

sakov are played in the background. These visual and audio elements jointly buttress the

story mood for the reader.

84
Figure 50. The pigs celebrate as the wolf rises to the heavens

Figure 49. The gray pig cooks the wolf after he falls

down the chimney of the wooden house

85
7. AUTHORING A TEXT BASED STORY

The authoring process described in the previous sections requires authors: to be able to

word the various story events appropriately, to have skills in generating 3D rendering of

agent characters for their stories, and to have a certain degree of understanding of the

scripting languages used by the IAE to control interaction of the agents. Since reusability

of the agent characters and agent scripts specifically designed for a particular story is

understandably lower than that of the story text for a different story, authors will most

likely spend most of their time generating renderings of their agent characters and writing

agent scripts for a new story. To save the authors time and effort, a purely text-based sto-

rytelling engine has been created based on the graphical version of IAE, so that authors

can focus more on the story authoring activity rather than on some 3D modeling software.

This text-based storytelling engine adheres to the same architectural design as the

graphical version of IAE with the exceptions that authors do not have to provide agent

scripts and agent characters to the engine in order to tell a story. The text-based IAE

maintains the same authoring elements as the graphical IAE. An overarching story thread

still has to be created to control how the story templates can be used. The story templates,

in turn, describe how various story elements, rules and agents can be combined over the

course of the story. All in all, the graphical IAE serves as a “proof-of-concept” prototype

that demonstrates how the agent characters, scripting elements and story components

generated by the storytelling engine can be combined to tell a story. On the other hand,

the text-based IAE focuses more on fulfilling our testing purposes and providing a better

story authoring experience to the authors by providing additional facilities such as story

locale setting, dynamic voice control of the narrator and the ability to view/change the

state of the story variables at run time.

7.1 The Interface

The authoring interface of the text-based IAE combines and organizes story templates,

elements and the story thread into a single layout called the Story View. This view is dis-

played in the middle panel that is populated with various colored rectangular boxes (or

86
enclosures) that represent the various story timesteps (Figure 51). Story timesteps are

assigned their own colors so authors can quickly determine which timesteps contain par-

ticular story template. For instance, the Red rectangle in Figure 1 groups all of the story

templates that belong to the timestep 0 together. The light gray story template rectangles

within the timestep enclosures represent individual story templates with their names and

locales written at the top, for instance tmplt_1|USEnglish and tmplt_2| USEnglish. From

earlier descriptions, a story template is divided into various template sequences, these

template sequences are represented by the slightly grayed out areas within a template and

all of the story elements and rules are grouped as lists within these areas. From earlier

descriptions (Section 4.4.8, Templates.xml), a story template is divided into various tem-

plate sequences, these template sequences are represented by the slightly grayed out areas

within a template and all of the story elements and rules are grouped as lists within these

areas. For example, the list of story elements used in the first sequence of tmplt_1| USEn-

glish are represented by five colored squares (namely, brown, dark green, hot pink, light

pink and white) within the template enclosure. To compensate for screen space and multi-

ple template locales, the interface groups story template enclosures with different locales

together by stacking them on top of the other, as shown by the stack with tmplt_1| USEn-

glish template at the top. The Story Timesteps panel to the right of the Authoring form

provides an overview of the number of story timesteps a story has and their correspond-

ing numbering in the story view.

Story elements and rules that are used in the stories are represented by treenodes that

are grouped together based on their types. These are shown in the Story Elements tree-

view located to the left of the Authoring form, so that authors can quickly inspect their

attribute values or properties while authoring the story. Lastly, the Legend panel at the

lower right corner of the Authoring form summaries the color scheme used in depicting

the story elements in the template sequences so that authors can quickly differentiate an

agent object from a function call immediately in story view.

87

Figure 51. Authoring interface of the text-based IAE

7.1.1 Authoring a Story

All of the editing, adding and removing of story elements and story templates can be

done with the context menus in story view, with the exception of creating new story ele-

ments which can be accomplished via the story elements treeview. Right clicking on dif-

ferent enclosures displays their corresponding context menu that provides various means

for authors to modify the story. Figure 52 to Figure 54 depict the corresponding actions

an author can perform on different enclosures. By right clicking on the timestep enclosure

(Figure 52), an author can add, remove or edit a story timestep and add a new template

into the story timestep. Similarly, right clicking on any story template brings up the tem-

plate context menu (Figure 53) that allows the addition, editing or removal of story tem-

plates and cloning of the selected template with a different locale. The cloning process

preserves all of the attributes and properties of the selected templates with the only excep-

88
tion that the template now exhibits a different locale. Lastly, the story element context

menu (Figure 54) allows authors to add, remove or edit story elements that are referenced

in any template sequence. Whenever the author chooses to edit the attributes or properties

of a story timestep/template/element, they will be prompted by dialog boxes that are sim-

ilar to Figure 55.

Figure 52. Timestep menu

Figure 53. Template menu

This form has several text areas at the top half of the form that corresponds to different

locales that are defined for this particular story timestep, template or element and the

attribute list lists various attributes associated to the story element under a particular

locale at the bottom left of the form. The three buttons to the right of the attribute lists

allow users to Edit, Add or Remove attributes from the corresponding story timestep,

template or element. Authors can click on the cancel button to undo the changes they

have made to the story timestep, template or element, whereas the Done button saves the

changes and brings them back to story view.

Figure 54. Element menu

89
7.1.2 Story Element Distribution

After the authoring process, authors might want to review their stories by running the

story with different seeds repeatedly to either check for looping problems in the rules

knowledge base or to acquire an overview of the likely distribution of the story elements

and templates. The text-based IAE interface provides a statistical tool that generates

information of interest to the authors. It automates most of the time-consuming process of

choosing a story seed to start a different story and provides an overview of the likely dis-

tribution of an authored story (Figure 56). As shown in Figure 56 below, authors can

specify the lower and upper bounds to which a random seed for a particular story is cho-

sen, whereas the input box called Number of runs allows authors to generate multiple sto-

ries simultaneously using random seeds that fall within the range specified in the Seed

Range field. For example, if the author inputs the value 2 in the Number of runs field and

the Seed Range is set to be from 1 to 10,000, the tool is going to generate 2 different story

instances, each of which is controlled by a random seed value that falls between the value

1 to 10,000. The Start button starts the generation process, the End and Exit button brings

Figure 55. Editing a story element

90
the author back to the authoring interface and the View results button allows the author to

visualize the results with various bar graphs and the affinity measure matrix.

Figure 56. The statistical tool that complements the functionalities of the authoring

interface

Figure 57. Advanced parameters for the generate statistics tool

Besides controlling how the random seeds are chosen for the stories, authors can also

tweak the parameters of the storytelling engine to observe how these parameters influ-

ence the story generation process (Figure 57). The Number of chromosomes input box

allows the author to control the number of individuals within a population, the Evolution

91
cycles input box refers to the parameter that determines how many times the selection

process and genetic operators are applied to the chromosomes in a population, and the

mutation and crossover ratios controls how likely it is that genetic materials are swapped

between the genes and chromosomes.

7.1.3 Comparing the Story Elements

The story threads generated by the statistical tool (Section 7.1.2, Story Element Distri-

bution) can be visualized in many different ways when the author clicks on the View

Results button. All of the possible visualization interfaces are consolidated into the Story

Distribution form (Figure 58). Figure 58 depicts the Ordered List view of the story distri-

bution form that groups all of the unique story elements based on a set of categories that

are shown in the legend panel located to the right of the form for each of the story

timestep. The coloring scheme of the timestep enclosures follows that of the Authoring

interface (Section 7.1, The Interface) so that authors can quickly determine the set of

story templates that are used in these story threads according to the colors of the enclo-

sures.

For instance, the first story thread appears to draw story elements from story templates

defined in timesteps 0 to 5 (where it enters into a loop at timestep 4). On the other hand,

the remaining story threads only briefly visited story templates defined in timesteps 0 to

5. This explains the obvious difference in length of these threads with the first story

thread, and one should expect to see a lot of difference in the story elements the story

components use.

The next tab page in the Story Distribution form is the Affinity List view. It provides a

detail listing of the story elements used in the story timesteps. The timestep enclosures

are color coded similarly to the timestep enclosures in the Ordered List view, but the

enclosures are elongated to accommodate all of the story elements (in order) used in the

corresponding timestep (Figure 59).

The Affinity List view provides visualization of the story elements at a finer granular-

ity than the Ordered List view, for as depicted in Figure 59, it can reveal differences in

92
story elements that would otherwise seem similar in the Ordered List view. For instance,

the last two story threads shown in Figure 58 are similar from a higher level view when

their respective story elements are grouped together based on category and uniqueness.

However, the affinity view in Figure 59 reveals that there are many differences between

these story threads when the story elements that are used to construct the story compo-

nents are laid out side by side in lists. Different coloring of the story elements further aids

authors in the process of identifying even minute differences in the story elements at a

glance.

Figure 58. Story distribution form with its ordered list view

93
Figure 59. The story distribution form’s affinity list visualization

7.1.4 Visualizing Distribution of Story Elements

The Ordered List and Affinity List views described in Section 7.1.3 allow authors to

visually compare the temporal offset of the story elements in any story thread individu-

ally. An even higher level view of the distribution of these story elements is presented by

bar graphs (Figure 60 and Figure 61) and a list view (Figure 62) that summarize these dis-

tributions in a concise manner. There are four ways that an author can collect such infor-

mation:

1. Distribution of story elements for a particular timestep
2. Distribution of story elements for a particular story thread
3. Distribution of story elements for all of the story threads
4. Show difference of story elements between two story threads

94
Figure 60. Story elements distribution bar graph

Displaying distribution of story elements at various story levels are highly similar,

with the exception of the fourth option which displays the difference of story elements

between two story threads. The operation performed by this option is the same as the log-

ical set A – set B operation that proceeds by eliminating story elements that exists in both

95
A and B from the set A so that at the end of this operation only story elements that do not

belong to set B remain in the result set. The story thread difference dialog box (Figure 62)

always displays the difference between two story threads where the left list represents the

result from the logical operation “set A – set B,” whereas the right list represents the

result from the logical operation “set B – set A.” Note that the color schema of the enclo-

sures and story elements adheres to those used in the authoring form (Section 7.1, The

Interface) and the main story distribution form (Section 7.1.3, Comparing the Story Ele-

ments).

The story thread difference form allows authors to quickly compare the story elements

that exist in different story threads. For example, the empty blue story timestep enclosure

shown in Figure 62 can inform them that both stories have similar endings.

Figure 61. Story elements distribution bar graph for all of the story threads

96
Figure 62. The story thread differences dialog box

Besides obvious information such as this, one can draw further observations about the

design of the story templates set, such as insufficient story templates for a particular story

timestep, if many story threads appear to generate empty enclosures across one or more

timesteps. Authors can generate these visualizations by right clicking on the enclosures in

the story distribution form and selecting the desired visualization.

7.1.5 Affinity Measure of Story Elements and Story Threads

Affinity measures are commonly used to measure the likeness based on relationship or

causal connection between various objects, groups and sets. The differences and similari-

ties of story threads can also be measured by affinity. A given story thread might share

similar subsequences of story elements as another story thread and by measuring their

affinity one can tell quickly how similar or different they are in terms of the story they

tell. If a story thread “reuses” a lot of story element subsequences from another story

97
thread, their affinity measure should reflect this fact by a lower value in the result and

vice versa. There are many different ways to compute affinity measures [33]:

1. Real-valued shape-space: the attribute strings are real-valued vectors
2. Integer shape-space: composed of attribute strings built out of a finite alphabet

of length k
3. Hamming shape-space: composed of attribute strings built out of a finite alpha-

bet of k
4. Symbolic shape-space: usually composed of different types of attribute strings

where at least one of them is symbolic, such as a “name”, a “color”

Although individual genes in HEFTI are encoded as floating point numbers, individ-

ual genes can be further divided into integers that encode the corresponding offsets of a

story element in the story element list pertaining to the story context. The encoding

scheme makes affinity measures that are suitable for real-valued shape-space less accu-

rate because the measure will be measuring the space represented by the genes without

taking into account of the story elements therein.

The integer shape-space related affinity measures would be suitable for HEFTI if the

offsets of the story elements in a gene actually convey certain information in their encod-

ing, such as physical distance of the agents or the importance of the story branch. How-

ever, in reality, the offsets used in the encoding of the genes are arbitrary in HEFTI and

they serve merely as an offset into a list of valid story elements during the story genera-

tion phase. Therefore affinity measures that are suitable for the integer shape-space will

yield inaccurate information.

The symbolic shape-space related affinity measure assumes that at least one of the

attribute strings (story elements in this case) in the story component is symbolic.

Although one could assume that the story elements are just symbolic representations of

characters, story events or scenes, decoding their exact meanings for the computation of

such affinity measure requires more input and effort from the authors than necessary.

Lastly, affinity measures in the hamming shape-space allow one to evaluate the inter-

action between a particular subsequence with others based on more robust criteria. For

example, they can be used to evaluate the hamming distance or binary matches of

98
attribute strings in chromosomes. The statistical tool of HEFTI generates affinity mea-

sures based on the hamming distance affinity measure and the multiple contiguous bit

affinity measure.

7.1.6 Hamming Distance Affinity Measure

The hamming distance between a subsequence and another subsequence can be com-

puted by applying the exclusive-or operator (XOR) between these subsequences. This

measure has the property that if the subsequences are generated randomly the expected

affinity is equal to half of their length (assuming that they are of same length). The binary

matching approach is used in the statistical tool of HEFTI to measure the similarity of a

given story thread with others by constructing the binary hamming shape-space based on

the following conditions:

1. Nothing is added to the end result if a subsequence of story elements with length
1 =x = m (where m is the length of the list of story elements in a particular story
thread/timestep) matches another subsequence in story thread B

2. A value 1 is added to the end result if no match is found between a given subse-
quence in story thread A with story thread B

The conditions listed above are applied to all possible subsequences of story thread A

at every possible length and to every possible subsequence of story thread B with the cor-

responding length. Since the measure would consider every possible alignment of the

subsequences, this means that the offset in which a story element is picked wraps around

to the first element in the list when we are constructing a subsequence of length greater

than 1, therefore the set of subsequences of length 2 and 3 for story thread A consist of:

{{act1,agt2}, {agt2,obj1}, {obj1,act3}, {act3, act1}} and {{act1,agt2,obj1},

{agt2,obj1,act3}, {obj1,act3,act1}, {act3,act1,agt2}}. This example also conveys to us

the complexity of the affinity measure and will be used in section 9 to compute its run

time complexity. Figure 63 succinctly summarizes this process.

99
Figure 63. Process of computing the affinity measure for subsequence of length 1

and 2 between two story threads

Besides presenting the affinity measure between story threads, the hamming distance

affinity measure is further computed for each of the story timesteps so that authors can

determine the similarity of the story components generated from story templates in any

story timesteps. They can also look at the overall affinity measure between two story

threads to derive an overview of their similarities.

100
7.1.7 Multiple Contiguous Bit Affinity Measure

Shape-spaces that measure the number of multiple contiguous complementary sym-

bols use the multiple contiguous bit rule [33]. The rationale of employing this measure to

story components in HEFTI is that extensive complementary regions might be interesting

for the detection of similar characteristics in symmetric portions of the story components,

and can be useful in performing specific tasks, such as pattern recognition. This measure

was proposed by Hunt and his collaborators [45] and is given by:

where DH is the total hamming distance computed using the rules described in Sec-

tion 7.1.6 and Li is the length of each complementary region i with 2 or more consecutive

complementary bits, as illustrated in Figure 64.

Several processes depicted in Figure 64 require further elaborations because their

meanings might not be immediately obvious to the reader:

1. Since a story thread is divided into multiple timesteps this measure will be com-
puted for each of the timesteps independently. In cases where the story threads
do not share similar timesteps, -1 is returned from the measure to indicate such
irrelevancy.

2. All of the possible alignments of the story elements in a given list will be used
due to the fact that story components are constructed from lists of story elements
via the combination mechanism in GA. So, the list offset for a particular subse-
quence in story thread A that matches another subsequence in story thread B can
be different. Therefore, straightforward computing of multiple-contiguous bit
affinity measure will yield less accurate results than one that tries all possible
alignments of the subsequences.

3. This measure will be used mainly to assess how different the story components
are across different story threads. Therefore, the higher the value the bigger the
story thread differences are.

D DH 2
Li

i
∑+=

101
Figure 64. Process of computing the multiple contiguous bit affinity measure for

story threads A and B

7.1.8 Run-time Complexity

The run-time complexity of the affinity measures are given here to illustrate the actual

computations and comparisons done by the affinity measures discussed in Section 7.1.6

and Section 7.1.7. Understanding the process of computing the affinity measures will also

help the reader in interpreting the evaluation results which are presented in Section 8.

Before deriving the run-time complexity of the affinity measures, we note that the affinity

measures are essentially comparing sublists of every possible length between two lists, so

102
the number of comparisons should be what we are interested in. With this in mind, we

will try to generalize the operations performed by both of the measures to a list of n ele-

ments, such that given two lists A and B with 5 elements:

List A: {a, b, c, d, e}

List B: {f, g, h, i, j}

Both of the hamming distance and multiple contiguous bit affinity measures are going

to compare sublists that hold list elements with length from 1 to 5, in other words, for list

A these sublists are:

{{a},{b},{c},{d},{e}},

{{a, b}, {b, c}, {c, d}, {d, e}, {e, a}},

{{a, b, c}, {b, c, d}, {c, d, e}, {d, e, a}, {e, a, b}},

{{a, b, c, d}, {b, c, d, e}, {c, d, e, f}, {d, e, a, b}, {e, a, b, c}} and

{{a, b, c, d, e}, {b, c, d, e, a}, {c, d, e, a, b}, {d, e, a, b, c}, {e, a, b, c, d}}

The sublists are not actually generated by the program to compute the affinity mea-

sures, they are listed here merely for clarity. Similarly, the sublists for list B can be con-

structed by the same process.

At this point in time, we note that the number of elements in each of the sublists are n.

When we are computing the hamming distance affinity measure for sublist of length of 1,

each of the list elements are compared with list elements of corresponding size from list

B. For instance, the sublist element {a} is compared to: {f}, {g}, {h}, {i} and {j} from

List B, {b} is compared to: {f}, {g}, {h}, {i} and {j}, etc. The number of comparisons for

each sublist element of length 1 is n (or 5 to be precise) and this process is repeated up to

n times because the number of sublist elements is n as well.

Since we are not only comparing sublist elements of length 1 alone, we will general-

ize the results above by noting that the number of comparisons for the sublist elements

from a sublist with length greater than 1 is proportional to m (where m represents the

length of the sublist element). We will illustrate this by observing that the number of com-

parisons for each element from a sublist of length m that is compared to another sublist of

equal length is m. In other words, we need at least 3 comparisons to determine the affinity

103
measure of {a, b, c} and {f, g, h} each with length 3. Since we cannot determine their

affinity value without comparing each of the elements in the sublist and this operation is

repeated up to n times to cover all of the sublist elements. We can generalize the complex-

ity of the process that computes the affinity measure for a sublist of a particular length is

O(nm) or to be lax. Lastly, this computation is performed for sublists of different

lengths for n of them, therefore the overall complexity of the algorithm is .(The

Big-O notation is just a rough approximation of the number of comparisons being made

in the algorithm, one can compute the exact number of comparisons as where

i ranges from 1 to n).

Computation of the multiple-contiguous bits affinity measure can be optimized by

noting that one can derive the measure directly from the process outlined above. Since a

sublist of length m will yield a value of 1 if and only if each of the sublist elements

matches the sublist elements with the corresponding offset from another sublist and com-

parisons are made across all sublists with length 1 to n, the sublist with the longest length

i that yields results greater than or equal to one in the hamming distance would be the

multiple-contiguous bits affinity measure for a list, since one can find no longer matches

of contiguous elements that satisfy the definition of the multiple-contiguous bits affinity

measure defined in Section 7.1.7. This observation allows us to compute the second affin-

ity measure in constant time by relying on the results derived while computing the ham-

ming distance affinity measure.

O n2()

O n3()

n n i⋅()
i

∑⋅

104
8. EVALUATION

8.1 Evaluation of the Interactive Authoring Environment (IAE)

The authoring tools in the Integrated Authoring Environment (IAE) are implemented

to emulate certain aspects of a cyborg authoring environment of the future. We assume

that future generations of human authors will be capable of simple programming and

have software tools that assist or simplify authoring tasks. These tools will allow them to

quickly visualize relationships between various modules while also providing means to

quickly construct new modules for a particular story, similar to the authoring model of the

IAE. As in most Integrated Authoring or Programming Environments (such as Frontpage,

Dreamweaver, JBuilder and Visual Studio), the IAE is designed to shield the user from

the complexity of the syntax and semantics involved in writing computer programs or

authoring dynamic webpages, while also automating certain menial tasks (such as typing

opening and closing XML tags in a particular story element file).

In order to evaluate how useful, effective and helpful the IAE might be to a cyborg

author of the future, a usability study was designed and carried out at the Center for the

Study of Digital Libraries (CSDL). The research protocol was approved by the Institu-

tional Review Board (IRB) on April 3rd. Two test subjects, having the requisite skills,

were selected from among the graduate students. Both were Ph.D. students and proficient

in computer programming skills. Their involvement in various research projects in the

center requires them to use various integrated development tools (such as JBuilder, Visual

Studio and DreamWeaver) and command line compiling tools (such as Java Development

Toolkit or JavaScript) to create applications and prototype systems. Most of the integrated

development tools the test subjects have used tend to share similar features (for example,

the development environment is usually an integration of programming, modeling and

compiling tools) and the command line tools are generally invoked via text commands

issued via a command console. These requisite experiences allow the subjects to compare

and contrast features between the development tools they have used and the IAE. The test

subjects were also able to provide a list of desirable or undesirable features of the IAE in

105
the questionnaires after completing the assigned tasks (as outlined in Section 8.1.2,

Research Procedures). This study attempts to find answers to the following questions that

are related to the utility of the IAE:

1. How similar is the IAE to the various integrated development tools and the com-
mand line compiling tools the test subjects have used? Why?

2. How much does the IAE help the test subjects in completing the assigned tasks?
3. What are the features most used by the test subjects and how can we improve

upon them?
4. What are the features that hinder the test subjects’ ability to properly carry out

their authoring activities? Why?
5. What are the features missing from the IAE that may help or simplify the author-

ing activities?
6. How long does it take for the test subjects to get acquainted with the IAE and

complete the tasks?

Having experience in the areas of user interface design, information management soft-

ware and knowledge about ‘modding’ of game modules or Multi-User Dungeons (MUD),

the two students are ideal test subjects for the IAE. In addition, they also demonstrated

commitment to learn the authoring tools and syntax in the IAE. Section 8.1.1, Profile of

the Test Subjects, provides details and experiences of the test subjects and how their com-

ments and suggestions may shed light on the expectations and features of future cyborg

authoring environments.

8.1.1 Profile of the Test Subjects

Test subject A has been working on projects in a software research lab for 2 years. A’s

responsibilities in these projects include creating new information visualization tools,

web-based information retrieval applications and software that facilitates or supports the

browsing of online artifacts for scholars. While conducting research, A has read exten-

sively about how modules and story scripts of MUDs or Massively Multiplayer Online

games (MMO) are ‘modded’ by the gaming community for personal interests or enhance-

ments. These readings give A significant understanding of the authoring or programming

features needed by the ‘modders’ and the processes involved in authoring new modules

and scripts for the games. In addition, A’s experience in customizing an information

106
workspace in the Visual Knowledge Builder (VKB) [69] allows A to appreciate and con-

trast the features of Integrated Environments. Lastly, A’s research interests and experi-

ences in the areas of hypertext and hypermedia, hypertextual novels, reading tools, and

information management make A a good test subject for this study because A has a better

understanding of the digital authoring process and how digital stories are authored. We

believe that A will be able to provide valuable inputs to the questions that motivate this

study.

Similarly, test subject B has been involved in the development of various information

management and workspace projects for about 2 years. B has created various modules

and add-ons for various software to allow better management and creation of personal

collections in the information workspace. B has had extensive experience in creating

information management tools, hypertextual collections, ‘modding’ applications and

game engines. For example, in one of B’s projects, B modified and scripted a text-based

MUD engine for Linux in order to create an imaginary world. Users were able to login,

explore the world, interact with the objects with their avatars, and work towards comple-

tion of the game’s goal (for instance, one can fly an airplane only if one had collected a

specific set of items from various non-player characters in the game). In addition, B’s

research interest also includes digital stories, entertainment and tools that can facilitate

the reading activities of the human reader. For example, in another of B’s projects, B cre-

ated reviews of a book-chapter using the visual attributes, spatial layout and linking fea-

tures provided by the VKB workspace. The resultant collection forms a hypertextual

novel to which readers can visually interact with various sections of B’s writing. B’s

experiences in these areas make B a good test subject for this study because B can easily

compare features of the IAE with similar authoring tools and is able to provide valuable

insights to the various potential authoring models supported by the IAE.

8.1.2 Research Procedures

Each test subject was asked to read and sign the informed consent form before the

study. I then gave a tutorial and demonstration of the Integrated Authoring Environment

107
(IAE) to the test subjects to elaborate on the concepts described in the tutorial handout as

well as the features of the IAE. The test subjects were able to ask questions and play with

the authoring tools in the IAE to familiarize themselves with the environment during the

tutorial and demonstration. After the test subjects were comfortable with the IAE, a pre-

generated children's story (The Three Little Pigs) was given to the test subjects to ana-

lyze. After the subjects understood the structure of the given story, they were then asked

to author three different variations into the story using the IAE. Proper understanding of

the story elements, templates, rules and structure was needed in order for the test subjects

to complete the assigned tasks. The steps involved are outlined in Appendix B, TASK

SHEET FOR THE USABILITY STUDY. Upon completing the assigned tasks from Part

I, they were asked to answer Part I of the questionnaire. Following this, they were asked

to author a new short story (with variations) based on the Little Red Riding Hood story

(Part II). After authoring the story, they were asked to answer Part II of the questionnaire.

We collected: 1) the XML documents automatically generated by the IAE after the

authoring process; 2) Questionnaires answered by the subjects; and, 3) my notes, taken

during the study. A 5 minute break was scheduled at the end of each of the tasks and the

test subjects could take as many breaks as they wanted while working on the tasks.

8.1.3 Observations and Analyses

Both test subjects (A and B) had no problem understanding the constructs of the story

and the interfaces of the IAE covered during the tutorial and demonstration sessions. The

time it took for the test subjects to complete the tasks in our usability studies are summa-

rized in Table D.1 of Appendix D. During the sessions, one of the test subjects asked

questions related to the creation of the Microsoft Agent Characters (Section 4.1, Agent

Characters) as well as their possible uses in gaming environments. The test subject was

disappointed to find out that although the agent characters are capable of interfacing

directly to the various TTS engines (Section 4.2, Text-to-Speech (TTS) Engines) as well

as performing various animations, their use in the gaming environments is rather limited

because of the lack of proper synchronization and control Application Programming

108
Interfaces (APIs). This indicated limitation of the agent architecture used by this IAE pro-

totype. A solution might use an implementation of an agent architecture that is written in

DirectX. This would allow reuse of the story agent characters and facilitate integration of

the storytelling engine within a windows gaming environment.

While working on Part I of the usability study, test subjects were at first confused by

the Story View and Legend displays (Figure 51). Some of the questions asked by both test

subjects were “Where do I create the random variable randomHouse?” and “Should I

place randomHouse under the Objects or Agents category in the Treeview control?”

Although tutorial and demonstration sessions attempted to thoroughly cover all aspects of

the authoring process, users were still unclear about all of the functionality of the inter-

faces. However, the test subjects had no problem placing other story elements they cre-

ated in subsequent tasks into the appropriate categories after the functions and roles of the

various story elements were properly explained to them. All in all, the test subjects man-

aged to complete almost all of the assigned tasks in Part I in a timely manner.

Part II of the usability study yielded more interesting results. The first test subject (A)

had decided to break down the Little Red Riding Hood story into five story stages instead

of the four story stages as described in the task sheet. A’s variant of the story consisted of

the following stages:

1. Introduction
2. RedRidingHoodMeetsTheWolf
3. WolfVisitsGranny
4. RedRidingHoodVisitsGranny
5. Conclusion

In addition, A also adopted a top-down approach in authoring the story: 1) divided the

story into five timesteps; 2) created five text only story templates in each timestep via

copying and pasting the story text from the given Little Red Riding Hood story file; 3)

tested the story to make sure that it ran properly; 4) made mental note of sections in the

story where random variables and story elements may be introduced to generate the story

variations; 5) implemented the appropriate story elements via the IAE; and, 6) repeated

steps 3 to 5 until A was satisfied with the story. A finished authoring the complete Little

109
Red Riding Hood Story with 12 story elements and 2 random variables. However, more

time was spent in authoring activities with the top-down approach because A had to

repeat steps 3-5 several times.

In contrast, B adopted a somewhat bottom-up approach in authoring the story. B

planned the story stages and marked in the Little Red Riding Hood story handout which

sections of the story maybe modified with custom story elements and text. B also gave

some thought to designing the story elements that may be used to introduce variations

into the story before authoring the entire story. All in all, B authored 14 story elements, 3

random variables and a story rule to be invoked in a story template to introduce additional

story text into the existing story with 30% probability.

8.1.4 Desirable Features

Both test subjects pointed out how the interface allowed them to expand, explore and

visualize different parts and branches of a story. A mentioned that the story view (which

was referred to as the Plot Display) tells the flow of the story, story branching points and

the possible story variations (generated by story templates) in each timestep. In addition,

A also pointed out that the display abstracted the programmatic nature (which A referred

to as procedural connections) of dynamic stories. Both test subjects have the conception

that authoring a dynamic story with the IAE is similar to authoring a homepage because

the authoring process was similar to marking cards, filling out forms with preset items

and moving items around. Although B also pointed out that the process of building the

story elements is similar to programming because one has to populate random variables

with list elements, coding the conditions and rules.

Both test subjects liked the visualization of the various story elements in the story

view, as well as the breaking down of a single dynamic story into various hierarchies

(such as, templates, timesteps, story elements and template sequences). A also pointed

out how the authors have the ability to randomize almost all aspects of their stories since

the authoring interface provides access to story object, action and template randomiza-

tions. Test subject B liked the convenience of accessing various story elements with a few

110
mouse clicks using the treeview control (which is located to the left of the story view

panel). However, B was confused by the use of certain color codings in the Story View

panel, and the lack of drag-and-drop support in Story View. For example, hot pink and

magenta were used to denote action and agent objects respectively in Story View, but

these colors are difficult to differentiate in certain situations. Lastly both test subjects

indicated that they enjoyed authoring stories with the IAE and scored the IAE a 6 out of 7

when that question was asked in the questionnaire.

8.1.5 Undesirable Features

The test subjects mentioned several features that are undesirable or not supported by

the IAE and storytelling telling engine. These features largely fall into the user interface

and system categories. Some of the user interface issues that the test subjects encountered

are as follows: 1) B mentioned that the creation process of story elements can be some-

times confusing, complicated or counterintuitive since the story element creation form

does not provide enough information to the user. For example, while authoring the first

story variation, test subject B failed to indicate to the IAE that randomHouse was a ran-

dom variable. This crashed B’s story when B was trying to execute the story. This mis-

take may be eliminated completely with better online documentation or explicit menu

items (such as a “Create a random variable” context menu item) for the authors to create

new story elements; 2) A was annoyed by the need to manually change the story seed in

order to get a different variation of a story. Since the IAE prototype used in the study is

designed for the authors to debug and test run their story, the assumption being made was

that the authors will have to manually change the story seed to quickly make corrections

to their stories so that they do not have to memorize the story seed that gave problems;

and, 3) B pointed out that the authors are still required to remember some of the syntax to

express conditions, functions and rule statements in the IAE. It would be very helpful if

the IAE simplified the declaration of such story constructs with context menus or shortcut

buttons similar to other Integrated Authoring or Programming Environments.

111
The system features or limitations the test subjected noted are as follows: 1) there is no

way to specify how the system can choose between two or more templates in the same

timestep. This requirement seems to go against the original design of the IAE because

only one story template is needed to generate the story text in a particular timestep based

on a given story thread. Unless the author wishes to create a multi-threaded story, the IAE

does not have to provide such functionality. In addition, the storytelling engine does not

currently support such story form; 2) there is no support for branching within the template

sequences since the IAE executes all of the template sequences before moving to the next

timestep. This may be a good feature to add to the IAE although it would serve as a form

of “syntactic sugar” since similar functionality is already provided in the story templates;

and, 3) test subject A stated that there is no support for automatic back-stepping in time.

Duplicating timesteps to mimic such functionality does not seem like a good solution.

Therefore, A concluded that IAE cannot properly tell stories that have recurring episodes

such as a detective story because such stories need frequent references to previous events.

This comment indicates confusion on behalf of A’s understanding of the storytelling

engine because the three little pigs’ story covered in the demonstration given before the

study employed loop and conditions to control how the wolf plans and attacks the pigs

until either party perishes in the process (Figure 27). Such confusion may result from the

lack of an assigned task that asks the test subjects to author a looping (or never ending)

story.

8.1.6 Future Improvements

The test subjects were also asked to provide a list of features that they think would

allow the authors to better visualize and understand others’ interactive stories in the study.

A history feature that logs the changes an author performed during a certain time such as

the history toolbar in VKB was mentioned by test subject B. This feature would be a use-

ful addition to the IAE because it would provide more contextual and temporal informa-

tion to the original author as well as collaborating authors. It may also provide “Undo”

and “Redo” functionalities to the IAE, so that authors can recover their work after com-

112
mitting certain mistakes. An annotation feature was also mentioned in the questionnaire

to allow authors to comment about the use of particular story templates and their possible

combinations. This feature is already supported by the XML attribute comments that can

be incorporated into the story files, however, currently there is no visualization provided

by the IAE to display the author’s embedded comments. Lastly, one of the test subjects

mentioned that it would be very helpful to link or highlight the appropriate story element

in the Treeview whenever the user clicked on a particular story element displayed in the

Story View since this feature allows the authors to quickly visualize and navigate

between different story elements in a story.

8.1.7 Conclusions

It is clear from the discussion that many improvements can be made to the IAE to

make it more user-friendly and better facilitate the authoring process of interactive,

dynamic stories. Notably, features and tools that may simplify the tasks of declaring story

elements, rules and conditions can help the authors greatly. Based on the inputs provided

by the test subjects, we know that the IAE may help in abstracting the complexity

involved in programming an interactive, dynamic story for most authors since the test

subjects felt that the authoring process is similar to authoring a webpage where forms and

web page elements are created and subsequently dropped into the appropriate containers.

Although the study also reveals the many improvements that we can make to the author-

ing environment, such as full drag-and-drop, annotation and editing support throughout

the Story View, as well as at the system level where generation of agent animations may

be automated (a suggestion that was given by test subject B while viewing the demonstra-

tion) to reduce workload of the human authors, the design of the IAE is a step in the right

direction to cyborg authoring in the future. The IAE the test subjects in authoring the

dynamic stories without requiring them to edit awkward XML syntax and reduced the

amount of learning required from the test subjects (as demonstrated by the time it took for

them to finish the tutorial in Table D.1). With the incorporation of the features and tools

113
suggested by these test subjects, the authoring environment may get even closer to the

cyborg authoring environment or tools used by authors of tomorrow.

8.2 Evaluation of the Storytelling Engine

In addition to conducting a usability study on the authoring interfaces, namely the

IAE, we have also performed an empirical study on the behavior of the system. This por-

tion of the study attempts to illustrate the behavior of the system with a set of controlled

variables. Traditional stories narrated using contemporary paper-based media can be eval-

uated/analyzed based on guidelines recommended by Foster and Lodge. Foster’s book

[38] is divided into seven chapters that deal with the founding elements of narrative texts

such as: story, people, plot, fantasy, prophecy, pattern and rhythm. Several new ideas and

terms were introduced in his book, which made the text an innovation at the time it was

published, and even today Foster's views form an important part of literary analysis. In

contrast, Lodge‘s book [50] collected 50 of his essays that discuss point of view, the “nar-

rator" and other aspects of writing in literary classics. In his work, he defines terms of the

novelist's craft deftly and concisely that will serve as both a quick introduction to the

beginner and a quick refresher to the more advanced writer. Since story text forms an

integral part of the stories generated by HEFTI, authors/readers may still adhere to the

guidelines set by Foster and Lodge for evaluation.

However, reliance on these guidelines to evaluate stories generated by HEFTI is not

as relevant or appropriate because the stories are now generated by a cyborg author from

story constructs provided by the human author. How closely the resultant stories adhere

to the guidelines set forth by Foster and Lodge is the sole responsibility of the human

author. Although the human author could still use the guidelines to evaluate the quality of

their written story, the research objective of HEFTI is focused on generating large quanti-

ties of story variants from a given set of inputs and rules that govern how story variations

are generated. Since stories generated by HEFTI can be broken down into story elements,

affinity measures that compute similar patterns in sequences of story elements to deter-

mine to what degree stories are similar to each other can be used to evaluate the perfor-

114
mance of HEFTI. Affinity measures allow us to observe similarities between different

stories using a set of story elements and parameters as input, so that we can compare and

analyze the behavior of story generation over a period of time (or a set range of random

number seeds).

8.3 Affinity Measures

Affinity measures are commonly used in evolutionary computing and immune net-

works for pattern recognition and feature extraction applications. For HEFTI, the expres-

sion “affinity” can be viewed as a general term that relates the quality of a sequence of

story elements (story thread) in relation to its peers based on the environment (from a par-

ticular story timestep) in which it is placed. An example of a sequence of story elements

is shown in Figure 65.

Figure 65. Sequences of story elements grouped by story timesteps

Since story templates are translated into timesteps in a story after being populated by

various story elements at run time, they are not included in the computation of affinity

between stories to prevent double counting. Affinity measures used in most immune net-

works and evolutionary computing applications are computed based on their shape simi-

larity. Hamming, Manhattan and Euclidean shape-spaces [33] are commonly used by

these applications to determine the distance between antibodies/sequences of elements

such that when the distance between two sequences is minimal, the sequences exhibit

maximal affinity with each other. The names of story elements (such as “action 1” and

“agent 2”) do not convey distance information in any of the aforementioned shape-

spaces. In other words, each of the story elements represents a unique entity to HEFTI, so

it is irrelevant to derive the affinity of what story element A’s semantic meaning is to B.

115
The Manhattan and Euclidean shape-spaces are not applicable in this context because

they measure distance between real-valued elements using the Manhattan and Euclidean

distance measures respectively (refer to [33] for more information about these measures).

In contrast, elements are represented as sequences of symbols over a finite alphabet of

length k in the Hamming shape-space, which makes it highly suited to compute the affin-

ity of two sequences of story elements because the story elements are just symbols/vari-

ables representing story texts written by the human author. Equation 8.1 depicts the

Hamming distance measure used to evaluate the affinity between two sequences of ele-

ments of length L in a Hamming shape-space. If the elements use binary strings to encode

information, k = {0, 1}, then one has a binary Hamming shape-space. If ternary strings, k

= 3, then one has a ternary Hamming shape-space; and so on.

Since story elements are given a unique name by the human author, a unique symbol

or integer value can be assigned to each of them, thus forming an integer Hamming

shape-space. A limitation of equation 8.1 is that it assumes that there is only one possible

alignment in which two story elements may react. This is an unrealistic assumption

because similar subsequences of story elements may occur anywhere in a given story

thread depicting similar events. The affinity measure must also take into account these

various possible alignments. Thus, the total affinity between two sequences can be calcu-

lated by summing the affinity of each possible alignment, as follows:

where Dk is given by equation 8.1 when the sequences are in a given alignment k. The

process is illustrated in Figure 66 for two sequences of story elements of length L = 8.

⎩
⎨
⎧ ≠

==∑
= otherwise 0

Ag Ab if 1
 where

i i

1
i

L

i
iD δδEquation 8.1

∑
=

=
L

k
kDD

1

116
Figure 66. Affinity for story elements considering different alignments

Two different measures are computed in Figure 66, namely the number of matching

elements and longest contiguous measures. Each of these measures provides different

information about how similar (or affine) two given sequences of story elements are to

each other. Since the number of matching elements measure merely indicates the match-

ing story elements, the measure provides information about how heavily story elements

are reused between any two generated stories as well as the number of times two stories

converge or branch from each other (the larger the value of the matching elements, the

more often the given story threads converged thus indicating a greater degree of similar-

ity between each other and vice versa). The matching elements measure provides a gen-

eral overview of the affinity between story threads, however, it does not provide adequate

information about the strength of affinity between two story threads or more localized

information such as what was the greatest extent of match between two stories. Since

117
non-contiguous matches between story elements should be less significant than contigu-

ous matches of story elements in two story threads, the longest contiguous measure

(based on the r-contiguous bit rule [33]) is also used in conjunction with the number of

matching elements measure in our evaluation to more accurately discriminate against

non-contiguous matches with high matching element counts.

In summary, the larger the value of computed affinity between two story threads, the

greater the number of story elements shared or the closer the story threads are to each

other. Since the design goal of HEFTI is to generate as many story variations from a

given set of story constructs as possible, we would like to see the matching elements mea-

sure and longest contiguous measure exhibit a downward trend as factors that influence

story variations (discussed in Section 8.4.1, Linear Story and Section 8.4.2, Non-linear

Story) increase during the empirical study.

8.4 Setup

Most interactive stories told via digital media can be highly non-linear. A highly non-

linear story reminds one of stories told in certain role-playing games (RPG) where play-

ers (readers) are free to stray away from the main story thread at certain designated story

branching points. Occasionally players’ actions may influence important characters or

events in the story, thus altering the course of the story. On the other hand, a linear story

line forces players to unfold the story in sequential order just like flipping the pages of a

book and decisions made by players (if any) carry little/no influence on the major events

or characters of the main story thread. A non-linear story is characterized by multiple

branching points (perforated arrows) or loops from a given story timestep as shown in

Figure 67, assuming that the story starts at Stage 1 and ends at Stage 5. On the other hand,

a linear story has no branching points other than the solid forward arrows that allow the

reader to traverse from one stage of the story to the next according to the order laid out by

the author. HEFTI is capable of generating both types of stories given the appropriate set

of story templates and elements. The factors that influence the number of story variants

generated are the random variables (a list of story elements that are randomly picked at

118
run time to populate a drop point in a story template), story rules, and branch points in the

story which only exist in a non-linear story setting.

Figure 67. A non-linear story with multiple branching points

The discussion above provides the basis for evaluating the performance of HEFTI.

The evaluation results reveal to the human author: 1) how many different stories can be

generated from a given set of story templates - too few variations may be a result of a

minimal set of story constructs (small selection pool of story templates, random variables

or rules) or loopholes in the story rules, or plots and events that prevent HEFTI from pop-

ulating certain story elements into the templates; 2) how unique the stories are from each

other - this is measured by the two affinity measure discussed in section 8.3; and, 3) the

average length of the stories given a similar setup - this information serves as a bench-

mark for authors to fine tune their stories to the desirable lengths.

8.4.1 Linear Story

While creating test sets, we have to take into account two factors, random variables

and story rules, that influence variability of stories. In essence, a random variable is a list

119
that holds various story elements. These could be an agent character with its own

attributes, an event with associated rules, or an agent action. Since the random variable is

resolved at run time and depends on the state of the story, the end result can be very com-

plex involving multiple rules associated with an agent action or event being invoked. This

chain-reaction may propagate further to other story elements creating more randomness

in the resultant story text. Similarly, a story rule can yield complex results, as well, if it is

associated with a random variable that may invoke multiple rules.

In order to simplify the evaluation process, we are not going to leverage these fea-

tures. Instead any random variables and story rules used in the test set have a constant

branching factor of X. That is, the random variable has a list of X elements with no asso-

ciated rules or attributes that may result in a chain of story elements being fired when

resolved at run time. Similarly, story rules in our test set are generated to exhibit similar

behavior as the random variable with the construct ‘if-elseif-elseif ... else’).

The other free parameter in our evaluation is the distribution (Y) of the random vari-

ables and story rules since the greater the number of story elements that are random or

invoke a story rule, the higher the probability that a new story variant is going to be gen-

erated. Therefore, story elements that are used to populate the story templates in our test

sets adhere to the probability Y of becoming a random variable or an ordinary story ele-

ment. Similarly, a story element that is contained in a random variable or exists solely as

an ordinary story element has similar probability Y for it to invoke a random rule.

Tables E.1 to E.3 displays the evaluation results from varying these free parameters in

generating 65,535 (the complete range of random number seeds) 10-stage stories with

20-50 story elements per stage from a set of 1,000 (Table E.1), 2,000 (Table E.2) and

5,000 (Table E.3) randomly generated story elements. Treating the different distribution

factors as separate series, we can generate an XY graph that allows us to observe the

behavior of HEFTI given different sets of story elements. The number of matching ele-

ments measure from Figures 68 to 70 indicates an inverse relationship between the num-

ber of story elements being reused and the distribution ratio of random variables, story

rules and the number of story elements being used to generate the stories. The decrease in

120
similarities of the dynamic stories generated are especially observable from the steep

drop in the measure in Figure 68 for the values 10% to 40% on the x-axis. At the lower

distribution range and smaller set of story elements to choose from, stories tend to be

highly similar to each other as indicated by the value of 1,146,862 for a distribution ratio

of 10% and a branching factor of 3. This value tells us that out of the 65,535 random 10-

stage stories with an average composition of 350 story elements generated by HEFTI, the

average number of story elements reused (convergence point in the story) is 17. In other

words, any particular randomly generated story has an average of approximately 18 con-

vergence points with at least one of the other 65,534 random stories. The average number

of story elements reused can be computed with the equation:

Where V is the matching element measure and N is the number of random stories gen-

erated. Drops in story convergence points are less significant with a larger pool of story

elements to generate the stories as is evident in Figure 69 and 70. Since the story genera-

tion mechanism has already benefited from a larger selection of candidates, increasing the

distribution ratio and branching factors contributed less to the variability of the stories.

Similar observations can be made about the series in Figure 70 where most of the series

slowly settles at a particular value as indicated by the almost flat slopes at the 70% to

90% ranges.

N

VA =

121
Figure 68. Graphing the series in Table E.1

Figure 69. Graphing the series in Table E.2

0

200000

400000

600000

800000

1000000

1200000

1400000

10% 20% 30% 40% 50% 60% 70% 80% 90%

0

10000

20000

30000

40000

50000

60000

10% 20% 30% 40% 50% 60% 70% 80% 90%

122
Figure 70. Graphing the series in Table E.3

The longest contiguous measure (Figure 71 to 73) is the longest sub-sequence of story

elements that matches another sub-sequence in a different story thread. Since sequences

of story elements that form a story are compared to other generated stories with different

alignments considered, this measure along with the average contiguous measure shows to

what extent the stories are similar to each other.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

10% 20% 30% 40% 50% 60% 70% 80% 90%

123

Figure 71. Graphing the longest contiguous element measure in Table E.4

Figure 72. Graphing the longest contiguous element measure in Table E.5

0

1

2

3

4

5

6

7

8

9

10% 20% 30% 40% 50% 60% 70% 80% 90%

0

1

2

3

4

5

6

10% 20% 30% 40% 50% 60% 70% 80% 90%

124
The upper and lower bounds of a series’ contiguous measure can be estimated based

on the average (Figure 74 to 76) and longest contiguous measure (Figure 71 to 73) with

the following equations:

The upper and lower bounds of the series tell how significantly the generated stories

differ from each other. The value of the lower bound is set to 0 whenever results from the

equations above are smaller than 0, because the minimum value that the contiguous mea-

sure may yield is 0, so values smaller than 0 are meaningless.

0

0.5

1

1.5

2

2.5

3

3.5

10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 73. Graphing the longest contiguous element measure in Table E.6

125
Tables E.10 to E.12 list the lower and upper bounds of the series with different num-

bers of story elements (1,000, 2,500 and 5,000), distribution and branching parameters.

As evident from the tables, an increase in the number of story elements to choose from

coupled by distribution and branches in the story, introduced variations in the generated

stories. Such results may be observed from the sharp decrease in lower and upper bounds

of the series in Table E.10, where, as the branching and distribution parameters are slowly

increased from 10% and 3 to 90% and 10 respectively, we see a drop of 82.79% and 75%

in the lower and upper bounds of the contiguous measure. Similar results can be observed

when we increase the pool of story elements in Table E.11, although the benefits of

increasing the distribution and branching factor of the random variables or story rules

decreases when the values of the parameters reach 70% and 8. Lastly, Table E.12 indi-

cates to us that by further increasing the number of story elements in the selection pool,

distribution and branching factors in the stories do not play such an important role in vari-

ability of the stories generated. This observation is supported by the low values of the

upper and lower bounds of the series as well as knowledge that a larger pool of selection

means it is less probable for the same entity to be chosen when elements are drawn ran-

domly from the pool.

0

1

2

3

4

5

6

7

8

10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 74. Graphing the average contiguous measure in Table E.7

126
Figure 75. Graphing the average contiguous measure in Table E.8

Figure 76. Graphing the average contiguous measure in Table E.9

0

0.5

1

1.5

2

2.5

3

3.5

4

10% 20% 30% 40% 50% 60% 70% 80% 90%

0

0.5

1

1.5

2

2.5

3

10% 20% 30% 40% 50% 60% 70% 80% 90%

127
8.4.2 Non-linear Story

Since a non-linear story has multiple branching points and possibly loops in the story

thread, story branches that allow readers to leap through the story threads have to also be

taken into account. Using similar constraints to the linear-story scenario, the random vari-

ables and story rules are randomly created to exhibit a branching factor of X and possible

story branches from story stage Y is always N-Y-1 (where N is the total number of story

stages in a given set of story constructs). These constraints give us all of the forward

branches in a story (Figure 77). Loops are not considered in this evaluation because they

can potentially generate stories of infinite length, thus infinite variants of a story.

Figure 77. Number of forward branches for different story stages.

Similar affinity measures are used to evaluate performance of the engine while gener-

ating non-linear stories. However, an additional free parameter, forward branching in

story thread, is introduced into the evaluation process since stories may make forward

128
leaps from one story stage to another. Evaluation results in this section are obtained by

setting the probability of forward branching in stories at 25%, 50% and 75%.

Besides functioning as guidelines to story generation for HEFTI, story templates

implicitly divide stories into various stages. Such characteristics of story templates indi-

cate that by allowing a certain probability of forward branching in story generation, the

number of contiguous story elements and matching elements measure should be inversely

related to the probability of forward branching. Since HEFTI generates stories that may

leap across multiple story stages, the higher the probability of forward branching for story

stage n, the less likely story templates in story stage n+1 are going to be used since story

templates from story stage n+m are now in the selection pool as well. Therefore, we

should expect drops in both measures because they are dependent upon how the story ele-

ments are constructed from a given set of story templates.

Figures 78 to 80 illustrate the matching element measures of the stories generated with

a 1,000 story element set with 25%, 50%, and 75% forward branching probabilities

respectively. Similarly, Figures 81 to 83 and Figures 84 to 86 depict the matching element

measures of the stories generated with 2,500 and 5,000 story element sets with the same

set of forward branching probabilities. Conforming to our earlier statement that the

matching elements measure should be inversely related to the probability of forward

branching, we observe that all of the dynamically generated non-linear stories have lower

matching element measures between one another than linear stories. The advantage of

allowing the construction of non-linear stories is particularly apparent for the smaller

selection pools, namely the 1,000 story element set, for we saw approximately 30%-38%

drop in matching elements measures between the values in Table E.1 and Tables E.13 to

E.15. However, the advantage quickly levels off due to increase in selection pool as evi-

dent by the approximately 8%-10% drop in matching elements measures between the val-

ues in Table E.2 and Tables E.16 to E.18 and the approximately 6%-9% drop in matching

elements measures between the values in Table E.3 and Tables E.19 to E.21. Uniqueness

and higher variation between the stories (as indicated by lower matching element mea-

sures and longest contiguous measures as in Tables E.22 to E.30) are also reflected by the

129
slope of the series in Figures 78 to 86 in which initial increase in branching and distribu-

tion parameters of the story elements resulted in large increases in story uniqueness and

variation.

However, further increase in these parameters brought out improvements at a decreas-

ing rate. In confirmation to our earlier analysis on story templates, most of the observed

longest contiguous measure of non-linear stories and the average contiguous measure are

smaller than those for linear stories, since HEFTI is now free to use story templates from

different story stages resulting in a larger selection pool. In contrast to linear stories, the

estimated upper and lower bounds (Tables E.40 to E.48) of non-linear stories indicate less

deviations from the average contiguous measure, most prominently from the reduced

number of zero entries in the tables as well as smaller differences between most series’

average contiguous measures and their corresponding upper bounds.

Figure 78. Graphing the series in Table E.13

0

100000

200000

300000

400000

500000

600000

700000

10% 20% 30% 40% 50% 60% 70% 80% 90%

130
Figure 79. Graphing the series in Table E.14

Figure 80. Graphing the series in Table E.15

0

100000

200000

300000

400000

500000

600000

10% 20% 30% 40% 50% 60% 70% 80% 90%

0

100000

200000

300000

400000

500000

600000

10% 20% 30% 40% 50% 60% 70% 80% 90%

131
Figure 81. Graphing the series in Table E.16

Figure 82. Graphing the series in Table E.17

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

10% 20% 30% 40% 50% 60% 70% 80% 90%

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

10% 20% 30% 40% 50% 60% 70% 80% 90%

132
Figure 83. Graphing the series in Table E.18

Figure 84. Graphing the series in Table E.19

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

10% 20% 30% 40% 50% 60% 70% 80% 90%

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

10% 20% 30% 40% 50% 60% 70% 80% 90%

133
Figure 85. Graphing the series in Table E.20

Figure 86. Graphing the series in Table E.21

0

2000

4000

6000

8000

10000

12000

14000

16000

10% 20% 30% 40% 50% 60% 70% 80% 90%

0

2000

4000

6000

8000

10000

12000

14000

16000

10% 20% 30% 40% 50% 60% 70% 80% 90%

134
9. CONCLUSION AND FUTURE WORK

In this dissertation, we have covered: 1) motivation for the emergence of storytelling

engines and cyborg authors; 2) various aspects of the HEFTI storytelling engine; 3) steps

involved in generating a story; 4) functions that can be used to control the state of HEFTI;

5) a rather detailed case study on generating a simple story; and, 6) a usability study and

empirical evaluations of linear and non-linear stories generated from HEFTI. The reader

can always expand the story space by introducing more rules and story elements, how-

ever, the story complexity can increase rather quickly as more agents, rules, events and

actions are included in the story space. Therefore, it is advisable for the reader to care-

fully think of the general structure of the story before authoring the story elements. Since

there are no visualization tools to assist authors in authoring the story elements, experi-

mentation is needed to properly place the story elements in the story environment. As in

most tasks, experience can greatly shorten the time and effort required to put a dynamic

story together. The only authoring process not covered is the agent animation frame cre-

ation process, which can be easily accomplished by setting the batch rendering option on

the author’s favorite modeling software to generate a series of images for the agents.

Observations made on the test subjects and the suggestions we obtained from the

usability study pointed out that the IAE abstracted the complexity of authoring (or pro-

gramming) interactive, dynamic stories from the authors with the use of various window

controls to help them visualize various aspects of a story. This reduces the amount of

learning required in order to start having the pleasure of authoring stories that change

based on a given story seed as well as a set of rules and conditions. Although the IAE is

by no means an accurate depiction of a cyborg authoring environment of the future, we

know that it reflects certain aspects of such an environment.

Results and analysis from the empirical study and evaluation indicate that a larger

selection pool of story elements made available to random variables, story rules and story

templates can significantly boost uniqueness and variation in the stories generated even if

the author chose not to create too many branching or convergence points in his/her story.

Since creating a larger selection pool of story elements can be very time consuming for a

135
human author (unlike the sets of story elements that are automatically generated in the

evaluation section), the author could still improve variations or uniqueness of his/her sto-

ries as told by HEFTI by increasing use of random variables, number of story elements

referenced by a random variable, number of branching points (in the form of if-elseif-

elseif-...-else) in story rules, and non-linearity of the story stages. However, the author

may only improve re-readability (assuming that re-readability of a story stems from

uniqueness and variations in the generated stories) of his/her story to a certain extent by

using such alternatives because ultimately a small selection pool limits the story space

spanned by the story elements as indicated by the matching elements and average contig-

uous measures in Figures 68 to 70, Figures 71 to 76 and Figures 78 to 86 in linear and

non-linear story settings.

Future extension of this architecture could include the introduction of template learn-

ing, possibly accomplished through neural networks that classify and construct templates

out of carefully selected story samples written by human authors, effectively eliminating

the bounded story context restriction. Animations of the agent characters could be auto-

matically generated by using key frames and interpolations from 3D graphics packages

such as Maya 3D or 3D studio max, thus simplifying the task of the human author. A tree

visualization of the story thread could be incorporated into the authoring environment so

that authors may visually alter the story components and assign probabilities to different

story branches in the story thread.

The inclusion of these automations, and user interface improvements and features

may make the resultant system closer to a cyborg authoring environment of the future.

Various pieces of the story may be automatically generated by the system with minimal

user intervention when their relationships are established by the author, so that the human

authors will be able to spend more time in thinking about a story instead of ‘writing’ a

story.

136
REFERENCES

[1] E. J. Aarseth, Cybertext: Perspectives on Ergodic Literature, Johns Hopkins Univer-

sity Press, Baltimore, MD, 1997.

[2] Animal Blocks. http://gn.www.media.mit.edu/groups/gn/projects/animalblocks/

[viewed on May 14, 2006]

[3] S. Arnone, M. Dell’Orto and A. Tettamanzi, Toward a fuzzy government of genetic

populations, in: Proceedings of the 6th IEEE Conference on Tools with Artificial

Intelligence (TAI-1994), New Orleans, LA, 1994, pp. 585-591.

[4] R. Aylett, Narrative in Virtual Environments - Towards Emergent Narrative, in: Pro-

ceedings of the American Association for Artificial Intelligence Fall Symposium on

Narrative Intelligence (AAAI-1999), Menlo Park, CA, 1999, pp. 83-86.

[5] T. Bäck , D. B. Fogel and Z. Michalewicz, Evolutionary Computation 1, Basic

Algorithms and Operators, Institute of Physics Publishing, London, United King-

dom, 2000.

[6] B. Barry, Story Beads: A wearable for distributed and mobile storytelling, MIT

Masters Thesis, 2000. http://ic.media.mit.edu/icSite/icpublications/Thesis/bar-

baraMS.html [viewed on May 14, 2006]

[7] W. Bender, The Electronic Publishing project, 2002. http://ep.media.mit.edu/

[viewed on May 14, 2006]

137
[8] A. Bergmann, W. Burgard and A. Hemker, Adjusting parameters of genetic algo-

rithms by fuzzy control rules, in: New Computing Techniques in Physics Research

III, K.H. Becks and D. Perret-Gallix (Eds.), World Scientific Singapore, Singapore,

1993.

[9] M. Bernstein, Patterns of hypertext, in: Proceedings of the ACM conference on

Hypertext and Hypermedia (SIGWEB-1998), Pittsburgh, PA, 1998, p. 21-29.

[10] M. Bernstein, M. Joyce and D. B. Levine, Contours of Constructive Hypertext, in:

Proceedings of the ACM conference on Hypertext and Hypermedia (SIGWEB-

1992), Milan, Italy, 1992, pp. 161-170.

[11] M.U. Bers and J. Cassell, Interactive Storytelling Systems for Children: Using Tech-

nology to Explore Language and Identity, Journal of Interactive Learning Research

9 (2) (1998) 183-215.

[12] T. Bickmore and J. Cassell, Small Talk and Conversational Storytelling in Embod-

ied Interface Agents, in: Proceedings of the AAAI Fall Symposium on Narrative

Intelligence (AAAI-1999), Cape Cod, MA, 1999, pp. 87-92.

[13] J. D. Bolter, Writing Space: Computers, Hypertext, and the Remediation of Print,

Lawrence Erlbaum Association, Mahwah, NJ, 2001.

138
[14] K. M. Brooks, Metalinear Cinematic Narrative: Theory, Process, and Tool,MIT

Ph.D. Dissertation, 1999. http://ic.media.mit.edu/icSite/icpublications/Thesis/

brooksPHD.html [viewed on May 14, 2006]

[15] J. Cassell, The Gesture and Narrative Language Group.

http://gn.www.media.mit.edu/groups/gn/ [viewed on May 14, 2006]

[16] J. Cassell and T. Bickmore: Negotiated Collusion: Modeling Social Language and

Its Relationship Effects in Intelligent Agents, User Modeling and Adaptive Inter-

faces 12 (2002) 1-44.

[17] J. Cassell, Y. Nakano, T. Bickmore, C. Sidner and C. Rich, Annotating and Generat-

ing Posture from Discourse Structure in Embodied Conversational Agents, in:

Workshop on Representating, Annotating, and Evaluating Non-Verbal and Verbal

Communicative Acts to Achieve Contextual Embodied Agents, Autonomous

Agents Conference, Montreal, Canada, 2001.

[18] J. Cassell, H. Vilhjalmsson and T. Bickmore, BEAT: the Behavior Expression Ani-

mation Toolkit, in: Proceedings of the Conference in computer graphics and interac-

tive techniques (SIGGRAPH-2001), Los Angeles, CA, 2001, pp. 477-486.

[19] M. Cavazza, R. Aylett, K. Dautenhahn and C. Fencott, Interactive Storytelling in

Virtual Environments: Building the Holodeck, Workshop on Intelligent Virtual

139
Environments, the 6th International Conference on Virtual Systems and Multimedia

(VSMM2000), Gifu, Japan, 2000, pp. 4-6.

[20] M. Cavazza, F. Charles and S. J. Mead, Intelligent Virtual Agents, in: Lecture Notes

in Artificial Intelligence vol. 2190, De Antonio, Aylett, & Ballin (Eds.), Springer-

Verlag, Berlin, Germany, 2001.

[21] M. Cavazza, F. Charles and S. J. Mead, AI-based Animation for Interactive Story-

telling, in: Proceedings of Computer Animation, IEEE Computer Society Press,

Bologna, Italy, 2001, pp. 318-325.

[22] M. Cavazza, F. Charles and S. J. Mead, Characters in Search of an Author: AI-

Based Virtual Storytelling, in: Proceedings of the International Conference on Vir-

tual Storytelling, Avignon, France, 2001, pp. 145-154.

[23] M. Cavazza, F. Charles and S. J. Mead, Interacting with virtual characters in interac-

tive storytelling, in: Proceedings of the First International Joint Conference on

Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002, pp. 318-325.

[24] S. Coles and K. Dautenhahn, A robotic story-teller, in: 8th International Symposium

on Intelligent Robotic Systems (SIRS-2000), Reading, United Kingdom, 2000, pp.

18-20.

[25] J. Dakss, S. Agamanolis, E. Chalom and V.M. Bove, Jr., HyperSoap, 2002. http://

www.media.mit.edu/hypersoap/ [viewed on May 14, 2006]

140
[26] J. Dakss and V. M. Bove, Jr., ISIS, a programming language for responsive media,

2002. http://web.media.mit.edu/~stefan/isis/ [viewed on May 14, 2006]

[27] C. Danis, L. Comerford, E. Janke, K. Davies, J. DeVries and A. Bertrand, Story-

writer: A Speech Oriented Editor, in: Proceedings of the ACM Conference on

Human Factors in Computing Systems (CHI-1994), Boston, MA, 1994, pp. 277-

278.

[28] C. Darwin, The Origin of Species, Modern Library Paperback, New York, NY,

1998.

[29] K. Dautenhahn, Story-Telling in Virtual Environments, in: Intelligent Virtual Envi-

ronments workshop, European Conference on Artificial Intelligence (ECAI-1998),

Brighton, UK, 1998, pp. 39-48.

[30] K. Dautenhahn, Embodiment in Animals and Artifacts, Papers from the AAAI Fall

Symposium, Technical report FS-96-02, AAAI Press, Cambridge, MA, 1996, pp.

27-32.

[31] G. Davenport, Interactive Cinema, 2002. http://ic.media.mit.edu/ [viewed on May

14, 2006]

[32] G. Davenport and M. Murtaugh, Automatist storyteller systems and the shifting

sands of story, IBM Systems Journal, 36 (3) (1997) 446 - 456.

141
[33] L. N. De Castro and J. I. Timmis, Artificial Immune Systems: A New Computa-

tional Intelligence Approach, Springer-Verlag, Berlin, Germany, 2002.

[34] DirectX Documentations, 2006.

http://msdn.microsoft.com/directx [viewed on May 14, 2006]

[35] E. Edmonds, G. Fischer, J. Mountford, F. Nake, D. Riecken and R. Spence, Creativ-

ity: Interacting with Computers, in: Proceedings of ACM Conference on Human

Factors in Computing Systems (CHI-1995), Denver, CO, 1995, pp. 185-186.

[36] D. C. Engelbart, Augmenting Human Intellect: A Conceptual Framework, Sum-

mary Report AFOSR-3223 under Contract AF 49(638)-1024, SRI Project 3578 for

Air Force Office of Scientific Research, Stanford Research Institute, October 1962.

[37] J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics: Princi-

ples and Practice in C - 2nd Edition, Addison-Wesley Publishing Co., Boston, MA,

1995.

[38] E. M. Forster, Apects of the Novel, Harvest Books, Fort Washington, PA, 1985.

[39] A. S. Glassner, Active Storytelling, in: Computer Graphics International (CGI-

1999), Canmore, Alberta, Canada, 1999, pp. 2-9.

[40] A. S. Glassner, Interactive Storytelling: People, Stories, and Games, in: Interna-

tional Conference on Virtual Storytelling, Avignon, France, 2001, pp. 51-60.

142
[41] D. Grabson and N. Braun, A Morphological Approach to Interactive Storytelling,

in: Proceedings of on Artificial Intelligence and Interactive Entertainment, Living in

Mixed Realities, Sankt Augustin, Germany, 1996, pp. 337-340.

[42] B. Hayes-Roth, R. van Gent and D. Huber, Acting in Character, in: Creating Person-

alities for Synthetic Actors, R. Trappl and P. Petta (Eds.), Springer-Verlag, New

York, NY, 1997.

[43] J. Horowitz-Murray, Hamlet on the Holodeck : The Future of Narrative in Cyber-

space, Free Press, New York, NY, 1998.

[44] Humanities Informatics Project, TAMU University and TAMU Libraries.

http://hi.tamu.edu/index.html [viewed on May 14, 2006]

[45] J. E. Hunt and D. E. Cooke, Learning using an artificial Immune System, Journal of

Network and Computer Applications: Special Issue on Intelligent Systems: Design

and Application 19 (1996) 189-212.

[46] B. Laurel, Computers as Theatre. Addison-Wesley Publishing Co., Boston, MA,

1993.

[47] B. Laurel, T. Oren and A. Don, Issues in Multimedia Interface Design: Media Inte-

gration and Interface Agents, in: Proceedings of ACM Conference on Human Fac-

tors in Computing Systems (CHI-1990), Seattle, WA, 1990, pp. 133-139.

143
[48] M. Lee and H. Takagi, Dynamic control of genetic algorithms using fuzzy control

techniques, in: Proceedings of the Fifth International Conference on Genetic Algo-

rithms, S. Forrest (Ed.), Morgan Kaufmann, San Mateo, CA, pp. 76-83, 1993.

[49] J. C. R. Licklider, Man-Computer Symbiosis, I.R.E. Transactions on Hunman Fac-

tors in Electronics, HFE-1 (1960) 4-10.

[50] D. Lodge, The Art of Fiction, Viking/Penguin Books, New York, NY, 1993.

[51] I. Machado, A. Paiva, and P. Brna, Real Characters in Virtual Stories (Promoting

Interactive Story-Creation Activities), in: Proceedings of the First International

Conference on Virtual Storytelling (ICVS 2001), Avignon, France, 2001, pp. 127-

134.

[52] E. Maffre, J. Tisseau and M. Parenthoën, Virtual Agents' Self-Perception in Story

Telling, in: Proceedings of the First International Conference on Virtual Storytelling

(ICVS 2001), Avignon, France, pp. 155-160.

[53] E. Mallen, Online Picasso Project

http://csdll.cs.tamu.edu:8080/picasso/ [viewed on May 14, 2006]

[54] M. Mateas and P. Sengers, Narrative Intelligence, in: Proceedings of the American

Association for Artificial Intelligence Fall Symposium on Narrative Intelligence

(AAAI-1999), Menlo Park, CA, 1999, pp. 1-10.

144
[55] M. Mateas and A. Stern, A Behavior Language for Story-Based Believable Agents,

in: Working notes of Artificial Intelligence and Interactive Entertainment, Ken For-

bus and Magy El-Nasr Seif (Eds.), AAAI Press. Menlo Park, CA, 2002.

[56] M. Michell, An Introduction to Genetic Algorithms, The MIT Press, Cambridge,

MA, 1999.

[57] Microsoft Agent home page.

http://www.microsoft.com/msagent/default.asp [viewed on May 14, 2006]

[58] R. Nakatsu and N. Tosa, Interactive Movies, Handbook of Internet and Multimedia

– Systems and applications, B. Furht (Ed), CRC Press and IEEE Press, Sound Park-

way, NW, 1999.

[59] T. Nelson, Literary Machine, Mindful Press, Sausalito, CA, 1982.

[60] J. Roschelle, J. J. Kaput, SimCalc MathWorlds for the mathematics of change,

Communications of the ACM, 39 (8) (1996) 97-99.

[61] D. Rutkowska, Neuro-Fuzzy Architectures and Hybrid Learning, Physica-Verlag,

Heidelberg, Germany, 2002.

[62] K. Ryokai, C. Vaucelle and J. Cassell, Literacy Learning by Storytelling with a Vir-

tual Peer, in: Proceedings of Computer Support for Collaborative Learning Confer-

ence, Boulder, CO, 2002, pp. 352-360.

145
[63] E. Sanchez and P. Pierre. Fuzzy logic and genetic algorithms in information

retrieval, in: 3rd International Conference on Fuzzy Logic, Neural Networks and

Soft Computing, Lizuka, Japan,1994, pp. 29-35.

[64] P. Sengers, Narrative Intelligence, in: Human Cognition and Social Agent Technol-

ogy, K. Dautenhahn (Ed.), John Benjamins Publishing Company, Amsterdam, The

Netherlands, 2000, pp.1-26.

[65] N. M. Sgouros, Supporting Audience and Player Interaction during Interactive

Media Performances, in: IEEE International Conference on Multimedia and Expo

(ICME-2000), New York, NY, 2000, pp. 1367-1370.

[66] N. M. Sgouros and S. Kousidou, Authoring and execution environments for multi-

media applications featuring robotic actors, in: Proceedings of the ninth ACM inter-

national conference on Multimedia, Ottawa, Canada, 2001, pp. 540-542.

[67] N. M. Sgouros and S. Kousidou, Generation and Implementation of Mixed-Reality,

Narrative Performances Involving Robotic Actors, in: Proceedings of the Interna-

tional Conference on Virtual Storytelling, Avignon, France, 2001, pp. 69-80.

[68] N. M. Sgouros, G. Papakonstantinou and P. Tsanakas, A Framework for Plot Control

in Interactive Story Systems, in: Proceedings of the 13th National Conference on

Artificial Intelligence (AAAI-96), Portland OR, AAAI/MIT Press, 1996, pp. 162-

167.

146
[69] F. Shipman, R. Airhart, H. Hsieh, P. Maloor, J.M. Moore and D. Shah, Visual and

Spatial Communication and Task Organization in the Visual Knowledge Builder, in:

Proceedings of the 2001 International ACM SIGGROUP Conference on Supporting

Group Work, Boulder, CO, 2001, pp 260-269.

[70] R. Stuart and P. Norvig, Artificial Intelligence: A Modern Approach - 2nd Edition,

Prentice Hall, Upper Saddle River, NJ, 2002.

[71] W. Swartout, R. Hill, J. Gratch, W. L. Johnson, C. Kyriakakis, C. LaBore, R. Lind-

heim, S. Marsella, D. Miraglia, B. Moore, J. Morie, J. Rickel, M. Thiebaux, L.

Tuch, R. Whitney and J. Douglas, Toward the Holodeck: Integrating Graphics,

Sound, Character and Story, in: Proceedings of the Autonomous Agents Confer-

ence, 2001, Montreal, Canada, page 409-416.

[72] A. Tettamanzi, Evolutionary algorithms and fuzzy logic: A two-way integration, in:

Proceedings of the 2nd Annual Joint Conference on Information Sciences, Wrights-

ville Beach, NC, 1995, pp. 464-467.

[73] A. Tettamanzi and M. Tomassini, Soft computing: Integrating Evolutionary, Neural

and Fuzzy Systems. Springer-Verlag, Berlin, Germany, 2001.

[74] E. Urbina and R. Furuta, Proyecto Cervantes 2001.

http://www.csdl.tamu.edu/cervantes/spanish/ [viewed on May 14, 2006]

147
[75] WatchPoint Media. http://www.watchpointmedia.com [viewed on May 14, 2006]

[76] J. Yen and R. Langari, Fuzzy Logic, Intelligence, Control and Information, Prentice

Hall, Upper Saddle River, NJ, 1998.

[77] M. R.Young, An Overview of the Mimesis Architecture: Integrating Narrative Con-

trol into a Gaming Environment, in: AAAI Spring Symposium in Artificial Intelli-

gence and Interactive Entertainment, AAAI Press, Menlo Park, 2001.

[78] M. R.Young, Creating Interactive NarrativeStructures: The Potential for AI

Approaches, in: AAAI Spring Symposium in Artificial Intelligence and Interactive

Entertainment, AAAI Press, Menlo Park, 2000.

[79] C. Zimmer, Evolution: The Triumph of an Idea, Harper Perennial, London, United

Kingdom, 2001.

148
APPENDIX A STORY AND AGENT SCRIPTING FUNCTIONS

A.1 Functions

In the IAE, function calls are differentiated from other commands by the preceding ‘$’

symbol attached to the name of functions. With the help of these functions, authors can

request random values, initialize variable values, request input from the user and use

other functionality from HEFTI that is difficult to implement via scripts alone. HEFTI

supports two types of functions: normal functions and agent control functions. The listing

below gives all of the functions that can be used in the engine:

1. set(<variable>, <value>) – Assigns <value> to <variable>

2. getuserinput(<random variable>, <value>) – Provides an input box for user to

select an element from the random variable.

3. do(<action instance>) – Executes a particular action instance

4. remove(<variable>,<random variable>) – Removes <variable> from the list in

<random variable>

5. randf() – Generates a random floating point number between 0 and 1

6. rand() – Generates a random integer value

7. add(<variable>,<random variable>) – Appends <variable> into the list in <ran-

dom variable>

Note: Although authors can invoke these functions anywhere in the XML files, the results

of these functions might be redundant in certain cases, for instance, invoking the “do”

function in story templates provides the same function as a reference call “{<action

instance>}.”

A.2 Agent Control Functions

Agent control functions are used throughout a story to control agent animations and

dialogues. A small set of functions are supported by the engine to: 1) replay an animation

selected from the agent’s animation repertoire; 2) speak the corresponding dialogues in

the story; 3) control visibility of an agent; 4) move to a particular location on the screen;

149
5) alter the background scene; and, 6) associate background music to a particular scene.

Definitions of the scripting functions and their corresponding parameters are as follows:

1. $anim(<agent_name>, 0, <animation>,<synchronization>,<numbers>) or

$anim(<agent_name>,<animation>) – Agent animation functions that can be

used to play a predefined animation of the agent.

2. $moveto(<agent_name>,x,y) – Moves an agent from its current location to x, y.

3. $relative_move(x,y) – Moves an agent by x pixels and y pixels from its current

position

4. $show(<agent_name>, x, y) – Makes the <agent_name> visible on the screen at

the screen coordinate x, y

5. $delay(<agent_name>, m) – Pauses <agent_name> by m milliseconds before

executing the next action script

6. $say(<agent_name>,<text>) – Makes <agent_name> speaks <text>

7. $hide(<agent_name>) – Hides the <agent_name>

8. $playsong(<filename or string reference>) – Plays the given song as the back-

ground music for this scene.

9. $setbackground(<filename or string reference>) – Sets the image that is to be

used as background scene.

10. $getParam(<offset>) – Allows author to retrieval scene parameters that are ref-

erenced in various story elements.

11. $getPosX(<agent_name>), $getPosY(<agent_name>) – Retrieves the x and y

coordinates of an agent.

To prevent confusion between scripting functions and other functions in story files,

scripting functions can only be invoked from the scripts.xml file. This configuration

allows authors to invoke agent scripts by referencing the scripts’ id within the story files,

for instance “|scene_1|.” Parameters can be passed to a particular script in the “|” closures,

such as “|scene_1, {currentPig.Name} |”, and the $getParam function can be used in the

script to retrieve the value of the variable currentPig:

“$anim($getParam(1),”DoSomething”);”

150
The statement above resolves the name of an agent referenced by {currentPig.Name}

and replays the animation DoSomething with the $anim function in script scene_1.

151
APPENDIX B TASK SHEET FOR THE USABILITY STUDY

Task Sheet

Authoring Interactive Stories

Subject ID: _________

Re-reading the same story can be boring, so dynamic stories with multiple story branches

and different endings are created to introduce randomness/variations. Today, you will be

using the authoring tools in the Integrated Authoring Environment (IAE) to try to intro-

duce three story variations into the Three Little Pigs children’s story. The basic story

structure, story elements and agent characters are already created to get you started. The

three variations of the story are stored in three separate folders using the naming scheme:

SubjectID\VariationX. Let me know if you need help or have questions. Please feel free

to take as many breaks as you want to. Try to save often so your work is not lost.

Part I: Authoring Story Variations (Total time: 2 hours):

A) Learn about the IAE. Follow the tutorial provided (30 minutes).

1. Story elements

2. Story templates

3. Story thread

4. Agent characters

5. Story rules

6. The authoring interface

7. Functions

8. Executing the Three Little Pigs’ story

9. Spend a few minutes exploring the authoring tools and understanding the story

elements in the given story (e.g. inspecting attributes of the various story ele-

ments)

Please take a 5 minute break.

152
B) Authoring story variation A: Randomize the houses that the pigs (agent characters)

build (15 minutes):

1. Open the story stored in folder SubjectID\VariationA

2. Create a random variable and name it randomhouse

3. Set the elements attribute of randomhouse to reference the ID of the house

objects (obj_1,obj_2 and obj_3).

4. Create a new attribute owns in the pig agent objects (agt_2, agt_3 and agt_4).

This will be used to associate a house object to the particular pig agent.

5. Locate story template 2 (ID: tmplt_2) in the IAE.

6. In sequence 2, 3 and 4 of tmplt_2, initialize the owns attribute of each of the pig

agents with the randomhouse variable. (hint: use the $set function to set the

owns attribute of the pig agents to an element from the randomhouse variable).

7. Modify story text in sequence 2 of tmplt_2 so that the materials used to build the

houses are read by the narrator. (hint: use the ‘{‘ & ‘}’ operators to dereference

an object or attribute).

8. Run the story and observe the story variations.

9. Save your work in the same folder: SubjectID\VariationA.

Please take a 5 minute break.

C) Authoring story variation B: Randomize how the pigs move in to their new homes (20

minutes):

1. Open the story stored in folder SubjectID\VariationB.

2. II.Create three action elements and name them act_buildHouse, act_buyHouse,

and act_findHouse.

3. III.Populate the action elements (act_buildHouse, act_buyHouse, and

act_findHouse) with story text and variables to describe how the current pig

agent (referenced in the currentPig variable) built, bought or found a new home.

(For example, your story text might read like: {currentpig.value.name} bought a

{currentpig.value.owns} in plain text)

153
4. Create a random variable and name it buildingRandomHouse.

5. Set the elements attribute of buildingRandomHouse to reference the ID of the

action elements created in step IV (namely act_buildHouse, act_buyHouse, and

act_findHouse)

6. Modify Sequence 2, 3 and 4 of Story template 1 (tmplt_1):

i. Dereference the buildingRandomHouse variable and in each of the template

sequences

ii. Hint: The resultant template sequence X might read like: $set(current-

pig.value,ag_X.id) {ag_X.name} left the mother pig and {building-

RandomHouse} in plain text.

7. Run the story and observe the story variations.

8. Save your work in the same folder: SubjectID\VariationB.

Please take a 5 minute break.

D) Authoring story variation C: Create story variations by introducting new story tem-

plate (15 minutes):

1. Open the story stored in folder SubjectID\VariationC.

2. Create a new story template in the Introduction story stage and assign tmplt_99

as its ID.

3. Set tmplt_2’s type attribute as Introduction.

4. Create four template sequences in tmplt_2.

5. Copy the layout of the story elements in tmplt_1.

6. Alter the story text in tmplt_2.

7. Run the story and observe the story variations.

8. Save your work in the same folder: SubjectID\VariationC.

Please take a 5 minute break.

E) Answer questions from Part I of the questionnaire (20 minutes).

154
Part II: Authoring a New Short Story (2 hours):

You have just finished introducing variation into the three little pigs’ story. Having better

understanding of the authoring tools in the IAE, you are now ready to author a short story

with the IAE from scratch. Author a short story (with some variations) based on the given

Little Red Riding Hood children’s story book. Try to save often so your work is not lost.

A) Plan your story (40 minutes).

1. There are four story stages (Introduction, RedRidingHoodMeetsTheWolf,

WolfVisitsGranny and Conclusion). Determine the story text that goes in the

story stages.

2. Name the agent characters in your story: Little red riding hood, her mother, her

grandmother, the wolf, and the hunter.

3. Briefly think about the story elements for your story, for example:

i. Her mother made a red riding hood for little red riding hood.

ii. Her mother baked some bread and wine and asked little red riding hood to

take them to her grandmother.

iii. Little red riding hood meets the wolf and the wolf asks her where she is

heading.

4. Briefly think about the story rules you want to use, for example:

i. If little red riding hood is polite to the hunter then make the hunter show up

later in the story to rescue her from the wolf.

ii. There is a 30% probability that little red riding hood might meet the wolf. If

she meets the wolf, then he will try to eat her grandmother otherwise she

will arrive at her grandmother’s little cabin and have a great dinner that

night.

Please take a 5 minute break.

B) Author your story using the IAE (50 minutes)

155
1. Load the empty story folder: SubjectID\NewStory.

2. Create the 5 agent characters (little red riding hood, her mother, her grand-

mother, wolf, and the hunter) and assign each of them a unique ID.

3. Create the story elements and rules you have listed in part 1.

4. Create four story templates for the four story stages and create a template

sequence for each story paragraph:

i. Introduction - Provides information about characters in the story.

ii. RedRidingHoodMeetsTheWolf – Describes how the wolf interacts with the

little red riding hood.

iii. WolfVisitsGanny – Describes how the wolf interacts with the little red

riding hood’s grandmother.

iv. Conclusion – Ends the story by informing the readers about what happened

to the wolf and moral of the story.

5. Populate the story templates with story text and story elements.

6. Run the story.

7. Save your work in the folder: SubjectID\NewStory.

Please take a 5 minute break.

C) Answer questions from Part II of the questionnaire (20 minutes).

156
APPENDIX C QUESTIONNAIRE FOR THE USABILITY STUDY

Pool of questions for the Questionnaire

Authoring Interactive Stories

Subject ID: ______________________

Part I: Authoring Story Variations

1. Please briefly describe the steps/processes you went through in planning your

story variation.

2. The authoring tools in the IAE helped me visualize the story elements.

1 2 3 4 5 6 7

Strongly disagree Neutral Strongly agree

157
3. It was easy for me to modify the given story after receiving sufficient training

about the authoring tools.

1 2 3 4 5 6 7

Strongly disagree Neutral Strongly agree

4. It was easy to locate the attributes/properties of a certain story element refer-

enced in the story with the authoring tools.

1 2 3 4 5 6 7

Strongly disagree Neutral Strongly agree

5. It was easy for me to visualize and understand the given story structure (plots,

events and character interactions) with the IAE.

1 2 3 4 5 6 7

Strongly disagree Neutral Strongly agree

6. Would you use the IAE to read interactive stories that others have written? Why

or why not?

158
7. What features in the authoring tools were helpful in authoring your story varia-

tion?

8. What new features would help the IAE to allow the authors to better visualize

and understand others’ interactive stories?

159
Part II: Authoring a New Short Story

1. Please briefly describe the steps/processes you go through in planning your

story.

2. The display of story templates in panels of different color allows me to plan my

story in terms of various story stages.

1 2 3 4 5 6 7

Strongly disagree Neutral Strongly agree

3. Organization of the various types of story elements (agents, objects, scripts and

rules) in the IAE allows me to locate the information I need.

1 2 3 4 5 6 7

Strongly disagree Neutral Strongly agree

160
4. Was authoring your story more like computer programming or building a web

page with a visual editor (such as Microsoft Frontpage)? Please explain.

5. What kind of authoring activity could you not perform with the authoring tools?

Please explain.

161
6. Is there a particular form of story that could not be expressed using the current

IAE features? Please explain.

7. What are the features that you like about the authoring tools in IAE? Please

explain.

162
8. What are the features that you dislike about the authoring tools in IAE? Please

explain.

9. I enjoyed authoring stories with the IAE.

1 2 3 4 5 6 7

Strongly disagree Neutral Strongly agree

163

APPENDIX D USABILITY STUDY RESULTS

Table D.1 Minutes it took the test subjects to complete the assigned tasks

164
APPENDIX E TEST RESULTS FROM EVALUATION

Table E.1 Matching elements measure for 1,000 story elements set

Table E.2 Matching elements measure for 2,500 story elements set

Table E.3 Matching elements measure for 5,000 story elements set

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 1146862 728117 452764 363093 250474 192903 180967 162870 156583
4 860146 612493 401927 312810 200379 182357 162882 139910 139320
5 696718 591372 368126 297462 182714 147443 142162 128323 126816
6 643112 420721 330192 259687 159821 125326 131920 117214 114134
7 564063 368123 290982 229874 147423 100268 112938 96431 106145
8 548938 329470 281811 210289 132812 91223 90871 96017 92346
9 477423 287168 240187 201727 111234 88202 87315 94764 78494
10 461966 271644 237349 198722 109584 86215 84293 93098 74569

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 50978 45098 43927 41748 37711 36581 34012 33119 31816
4 46764 44755 42810 38761 36530 33869 32867 31513 30124
5 43215 39894 37456 35542 33762 32894 31715 30007 28761
6 40772 37654 35907 34321 32975 32566 31853 30176 27731
7 35819 34688 34075 33851 32447 31248 29166 26412 24529
8 32159 30161 29490 28650 27865 26730 25997 25873 24397
9 29071 28993 27535 26021 25758 23992 23015 22904 21878
10 27162 26009 25858 25086 24571 23043 22666 21839 20959

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 18186 16945 15617 15133 14495 14157 13878 13252 12760
4 17652 16555 15538 14378 13435 12826 12072 11587 10564
5 15513 14794 13269 12869 12055 11951 11503 11438 10763
6 14880 13481 12816 11901 10714 10634 9995 9722 9552
7 12951 12066 11070 10934 10458 9779 9517 9120 8908
8 10187 9956 9782 9698 9507 9250 8931 8658 8440
9 9785 9522 9490 9290 9067 8716 8407 8034 7832
10 9624 9320 9145 8982 8726 8599 8318 8012 7751

165
Table E.4 Longest contiguous element measure for 1,000 story elements set

Table E.5 Longest contiguous element measure for 2,500 story elements set

Table E.6 Longest contiguous element measure for 5,000 story elements set

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 8 6 6 6 6 5 5 4 4
4 8 7 6 6 6 5 5 4 4
5 7 6 6 6 5 5 4 4 3
6 7 6 6 5 5 4 4 4 3
7 7 7 6 6 5 5 4 3 3
8 7 6 6 5 5 4 3 3 3
9 7 6 7 5 5 4 3 2 2
10 6 5 6 5 4 4 3 3 2

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 5 5 5 4 4 3 2 2 2
4 5 5 5 4 4 3 3 2 2
5 5 5 4 4 4 3 3 2 2
6 5 5 4 4 3 3 3 2 2
7 4 4 4 4 3 3 3 2 2
8 4 4 4 4 3 3 3 2 2
9 4 4 4 3 3 3 2 2 2
10 3 3 3 3 2 2 2 2 2

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 3 3 3 3 2 2 2 2 2
4 3 3 3 3 2 2 2 2 2
5 3 3 3 2 2 2 2 2 2
6 3 3 3 2 2 2 3 2 2
7 3 3 3 2 2 2 2 2 2
8 2 2 2 2 2 3 2 2 2
9 2 2 2 2 2 2 2 2 2
10 2 2 2 3 2 2 2 2 2

166
Table E.7 Average contiguous measure for 1,000 story element set

Table E.8 Average contiguous measure for 2,500 story element set

Table E.9 Average contiguous measure for 5,000 story element set

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 6.3244 5.1345 5.2027 5.094 5.3016 4.1985 4.2082 3.6812 3.4792
4 6.7261 6.0138 5.4838 4.1209 4.8113 3.1892 3.9549 2.9125 3.0734
5 6.1849 5.8172 5.2953 5.3018 4.2185 4.013 2.8778 2.154 2.0987
6 5.8876 5.2873 5.1276 4.3298 4.8573 3.5828 3.0718 2.3957 2.1478
7 5.5783 5.4989 5.1263 5.2987 4.3859 3.0852 2.8573 2.1275 2.1876
8 5.2348 4.6983 4.8705 4.1037 4.0765 3.6742 2.386 2.1594 2.0852
9 5.472 5.1983 5.8982 3.8854 3.9522 3.0286 2.2957 1.6885 1.5894
10 4.9458 4.5039 4.6582 3.9087 3.6749 3.1947 2.2398 1.9674 1.4

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 3.4824 3.2459 3.1921 2.8253 2.3598 2.0825 1.354 1.5438 1.682
4 3.101 3.0684 3.1244 3.1761 2.7614 2.4647 2.4807 1.8068 1.7614
5 3.3426 3.7631 2.9981 2.1635 2.8102 2.1216 1.7338 1.0284 1.144
6 3.2655 3.4896 3.1875 2.475 1.9366 1.5795 1.3675 1.0727 0.9487
7 3.3756 3.258 2.7495 3.1486 2.0743 1.9573 1.5063 0.8524 0.4898
8 3.2071 3.1086 2.8208 3.0149 2.7983 2.3075 1.7466 1.1852 0.5876
9 2.3833 2.2571 2.9175 2.6723 1.4594 1.2386 0.9592 0.5832 0.3566
10 2.1759 1.8957 1.5847 1.8763 1.1493 0.9473 1.0655 0.6703 0.473

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 2.0174 1.7388 1.2875 1.1985 0.9873 0.7499 0.5987 0.4792 0.4866
4 1.9376 1.8462 1.3957 1.2987 1.0776 0.7536 0.6365 0.4074 0.3898
5 1.7784 1.4083 1.8574 0.9738 0.7589 0.5112 0.4126 0.5693 0.5887
6 2.491 1.949 1.6585 1.1383 0.5786 0.5191 0.4757 0.5098 0.4927
7 1.2765 0.9742 1.9674 0.9927 0.8764 0.624 0.5276 0.4988 0.3706
8 1.4775 0.5877 1.1875 0.7679 0.7509 0.5168 0.6388 0.377 0.2376
9 1.3652 0.8345 0.9372 0.7092 0.8988 0.7392 0.5876 0.3582 0.3873
10 1.1005 0.6508 0.7699 0.6699 0.4728 0.4896 0.4512 0.5987 0.3728

167
Table E.10 Lower and upper bounds of the 1,000 story element set

Table E.11 Lower and upper bounds of the 2,500 story element set

dis tribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 4.6488 4.269 4.4054 4.188 4.6032 3.397 3.4164 3.3624 2.9584
3 6.3244 5.1345 5.2027 5.094 5.3016 4.1985 4.2082 3.6812 3.4792

3U 8 6 6 6 6 5 5 4 4
4L 5.4522 5.0276 4.9676 2.2418 3.6226 1.3784 2.9098 1.825 2.1468
4 6.7261 6.0138 5.4838 4.1209 4.8113 3.1892 3.9549 2.9125 3.0734

4U 8 7 6 6 6 5 5 4 4
5L 5.36978 5.6345 4.5906 4.6037 3.4371 3.026 1.7556 0.308 1.1974
5 6.18489 5.8172 5.2953 5.3018 4.2185 4.013 2.8778 2.154 2.0987

5U 7 6 6 6 5 5 4 4 3
6L 4.7752 4.5746 4.2552 3.6596 4.7146 3.1656 2.1435 0.7914 1.2956
6 5.8876 5.2873 5.1276 4.3298 4.8573 3.5828 3.0718 2.3957 2.1478

6U 7 6 6 5 5 4 4 4 3
7L 4.1566 3.9978 4.2526 4.5974 3.7718 1.1704 1.7146 1.255 1.3752
7 5.5783 5.4989 5.1263 5.2987 4.3859 3.0852 2.8573 2.1275 2.1876

7U 7 7 6 6 5 5 4 3 3
8L 3.4696 3.3966 3.741 3.2074 3.153 3.3484 1.7719 1.3188 1.1704
8 5.2348 4.6983 4.8705 4.1037 4.0765 3.6742 2.386 2.1594 2.0852

8U 7 6 6 5 5 4 3 3 3
9L 3.944 4.3966 4.7964 2.7708 2.9044 2.0571 1.5914 1.377 1.1787
9 5.472 5.1983 5.8982 3.8854 3.9522 3.0286 2.2957 1.6885 1.5894

9U 7 6 7 5 5 4 3 2 2
10L 3.8916 4.0078 3.3164 2.8175 3.3499 2.3894 1.4796 0.9348 0.8
10 4.9458 4.5039 4.6582 3.9087 3.6749 3.1947 2.2398 1.9674 1.4

10U 6 5 6 5 4 4 3 3 2

dis tribut ion/
branc hing 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 1.9648 1.4918 1.3842 1.6506 0.7196 1.165 0.708 1.0876 1.364
3 3.4824 3.2459 3.1921 2.8253 2.3598 2.0825 1.354 1.5438 1.682

3U 5 5 5 4 4 3 2 2 2
4L 1.202 1.1368 1.2488 2.3522 1.5228 1.9294 1.9614 1.6136 1.5228
4 3.101 3.0684 3.1244 3.1761 2.7614 2.4647 2.4807 1.8068 1.7614

4U 5 5 5 4 4 3 3 2 2
5L 1.6852 2.5262 1.9962 0.327 1.6204 1.2432 0.4676 0.0568 0.288
5 3.3426 3.7631 2.9981 2.1635 2.8102 2.1216 1.7338 1.0284 1.144

5U 5 5 4 4 4 3 3 2 2
6L 1.53096 1.9792 2.375 0.95 0.8733 0.159 0 0.1453 0
6 3.26548 3.4896 3.1875 2.475 1.9366 1.5795 1.3675 1.0727 0.9487

6U 5 5 4 4 3 3 3 2 2
7L 2.75118 2.516 1.499 2.2972 1.1486 0.9145 0.0125 0 0
7 3.37559 3.258 2.7495 3.1486 2.0743 1.9573 1.5063 0.8524 0.4898

7U 4 4 4 4 3 3 3 2 2
8L 2.4142 2.2171 1.6416 2.0298 2.5966 1.6151 0.4932 0.3704 0
8 3.2071 3.1086 2.8208 3.0149 2.7983 2.3075 1.7466 1.1852 0.5876

8U 4 4 4 4 3 3 3 2 2
9L 0.7666 0.5142 1.835 2.3446 0 0 0 0 0
9 2.3833 2.2571 2.9175 2.6723 1.4594 1.2386 0.9592 0.5832 0.3566

9U 4 4 4 3 3 3 2 2 2
10L 1.3518 0.7914 0.1694 0.7526 0.2985 0 0.1309 0 0
10 2.1759 1.8957 1.5847 1.8763 1.1493 0.9473 1.0655 0.6703 0.473

10U 3 3 3 3 2 2 2 2 2

168
Table E.12 Lower and upper bounds of the 5,000 story element set

Table E.13 Matching element measure for 1,000 story elements set (25% forward

branching probability)

dis tribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 1.03479 0.4775 0 0 0 0 0 0 0
3 2.0174 1.7388 1.2875 1.1985 0.9873 0.7499 0.5987 0.4792 0.4866

3U 3 3 3 3 2 2 2 2 2
4L 0.8752 0.6924 0 0 0.1553 0 0 0 0
4 1.9376 1.8462 1.3957 1.2987 1.0776 0.7536 0.6365 0.4074 0.3898

4U 3 3 3 3 2 2 2 2 2
5L 0.5568 0 0.7148 0 0 0 0 0 0
5 1.7784 1.4083 1.8574 0.9738 0.7589 0.5112 0.4126 0.5693 0.5887

5U 3 3 3 2 2 2 2 2 2
6L 1.98208 0.8979 0.3169 0.2766 0 0 0 0 0
6 2.49104 1.949 1.6585 1.1383 0.5786 0.5191 0.4757 0.5098 0.4927

6U 3 3 3 2 2 2 3 2 2
7L 0 0 0.9348 0 0 0 0 0 0
7 1.2765 0.9742 1.9674 0.9927 0.8764 0.624 0.5276 0.4988 0.3706

7U 3 3 3 2 2 2 2 2 2
8L 0.9549 0 0.375 0 0 0 0 0 0
8 1.47745 0.5877 1.1875 0.7679 0.7509 0.5168 0.6388 0.377 0.2376

8U 2 2 2 2 2 3 2 2 2
9L 0.7304 0 0 0 0 0 0 0 0
9 1.3652 0.8345 0.9372 0.7092 0.8988 0.7392 0.5876 0.3582 0.3873

9U 2 2 2 2 2 2 2 2 2
10L 0.201 0 0 0 0 0 0 0 0
10 1.1005 0.6508 0.7699 0.6699 0.4728 0.4896 0.4512 0.5987 0.3728

10U 2 2 2 3 2 2 2 2 2

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 653711 488972 362312 328091 287236 177765 142642 118762 86434
4 598273 487433 347843 293837 283464 165983 118474 98483 65553
5 541234 447370 354954 275933 265044 145949 94983 78398 78472
6 489243 388348 298931 248999 224339 158328 103375 77477 69273
7 429821 358395 264950 219831 193803 149874 83873 75763 66112
8 352875 319832 228733 187534 163593 127653 92727 72321 59742
9 309276 279439 234932 176453 157463 118872 81624 72029 62874
10 251937 234984 218723 173622 128745 127323 88234 71024 65884

169
Table E.14 Matching element measure for 1,000 story elements set (50% forward

branching probability)

Table E.15 Matching element measure for 1,000 story elements set (75% forward

branching probability)

Table E.16 Matching element measure for 2,500 story elements set (25% forward

branching probability)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 559844 499183 325483 293834 232834 152432 126533 89433 68373
4 483838 442545 300563 276353 217645 128564 95874 67372 70658
5 418776 398741 294985 247663 176685 128749 78780 50383 49569
6 386736 375333 266512 218495 165034 118764 78223 47273 45487
7 328544 319858 277854 208212 159875 109568 59683 53291 51028
8 257404 271007 252556 182165 140987 92876 83872 61276 47493
9 217446 183876 198744 176040 110955 78765 61452 52835 44875
10 177487 156872 179856 149600 103754 85642 66342 50198 41049

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 483801 374945 305894 281221 201289 128713 85291 52389 38487
4 369873 339890 270951 222875 176450 119832 75914 50412 35142
5 295990 289813 259545 206978 154663 90466 74009 48134 33235
6 249853 250980 222985 195932 166984 105858 72198 46453 33985
7 203876 195576 176761 145941 129839 97546 77749 47983 30548
8 175988 151311 139879 130027 110098 89842 69833 45090 31953
9 149586 130958 128585 110493 120851 94872 75872 48493 30562
10 157623 146798 120985 110107 104099 93154 65878 47876 31094

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 46298 40219 37334 34997 32376 29885 27765 26609 24433
4 44095 41767 38987 34841 32048 28513 25876 24614 24119
5 42191 39865 37352 33984 31576 28908 25652 23548 20987
6 38897 36874 35587 32041 30487 27921 24987 21158 19754
7 36164 33598 32090 29187 27717 25873 23398 20958 18876
8 31216 29001 28843 27741 25116 23017 21006 19481 17743
9 27897 25471 24409 23386 22059 21995 18365 17736 17998
10 23855 22099 22294 20335 21476 19687 19874 18853 18123

170
Table E.17 Matching element measure for 2,500 story elements set (50% forward

branching probability)

Table E.18 Matching element measure for 2,500 story elements set (75% forward

branching probability)

Table E.19 Matching element measure for 5,000 story elements set (25% forward

branching probability)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 43549 40348 36761 32216 30762 27520 25190 23951 20731
4 42085 39090 35923 31176 28472 25582 23783 21950 19747
5 40731 37487 33195 30465 26563 23763 21656 20489 19037
6 36701 35876 32013 27853 24987 23865 19583 18738 17467
7 32509 31987 28933 25476 22012 20304 17573 16693 15651
8 28175 26411 24840 23865 19927 18484 16320 16923 15018
9 24762 22989 21053 20031 18587 16473 15733 14859 14902
10 21468 20074 19234 18473 18853 17983 16368 15873 14387

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 38987 38239 36540 31764 28233 25571 24402 20853 18458
4 38065 37341 32542 28561 26674 23654 20803 17465 16539
5 35461 30487 34453 28969 25455 21982 19687 16552 17574
6 31154 28583 29068 28594 24759 19934 17463 17462 16487
7 28547 25576 27658 26852 22950 18763 16709 15863 15549
8 25986 23545 24051 23359 20905 16543 15638 15087 14876
9 23805 20954 19510 20941 16251 16257 15820 14873 13846
10 19948 16754 17609 15674 14875 15989 13865 14542 13098

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 16546 15012 14866 14732 13982 12428 10729 9965 9238
4 15874 15195 13659 13887 11295 12129 9284 9015 8744
5 15963 13811 11850 9988 9431 8965 8385 8526 8251
6 14092 13751 9051 8746 8351 8455 8481 8365 7865
7 12254 11903 9184 8882 8165 8076 7913 7814 7243
8 9643 8642 7916 8164 8047 7781 7853 7609 6916
9 8244 7951 7434 7585 7494 7293 7509 7375 7016
10 7587 7581 7265 7364 7065 6893 6716 6991 6887

171
Table E.20 Matching element measure for 5,000 story elements set (50% forward

branching probability)

Table E.21 Matching element measure for 5,000 story elements set (75% forward

branching probability)

Table E.22 Longest contiguous element measure for 1,000 story elements set (25%

forward branching)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 14741 12766 10875 10573 9552 10736 9653 9870 9615
4 12865 11058 9636 10875 9814 9766 9565 9225 9184
5 10927 9892 9754 9456 9044 9221 8982 9043 8874
6 9544 9565 9307 9176 8674 8867 8724 8241 8542
7 8423 8487 8417 8296 8147 8071 7554 7221 7061
8 7534 7368 7264 7074 7154 6943 6817 6961 6873
9 7003 7149 7048 7184 7008 6812 6859 6515 6156
10 6761 6354 6606 6476 6073 5960 5835 5901 5886

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 13788 11659 10965 9712 10545 9856 9524 9038 8656
4 12063 10873 9970 9542 9351 9156 8838 8434 8362
5 9872 9771 9245 9003 8843 8456 8056 7380 7066
6 7365 7528 7276 7105 7038 7154 7197 7217 6873
7 8246 7983 7828 7714 7525 7396 7058 6997 6567
8 7060 7116 7065 6846 6641 6550 6372 6375 6121
9 6491 6228 6277 6182 6039 5823 5636 5739 5736
10 5963 5823 6056 5576 5719 5825 5681 5788 5712

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 7 6 6 5 5 5 4 4 4
4 7 6 6 5 5 5 4 3 3
5 7 7 6 5 4 5 4 3 3
6 7 6 5 6 5 4 4 3 3
7 7 7 6 5 5 4 3 3 3
8 6 6 5 5 5 4 3 3 2
9 7 5 5 5 4 4 3 2 2
10 6 5 5 5 4 4 3 2 2

172
Table E.23 Longest contiguous element measure for 1,000 story elements set (50%

forward branching)

Table E.24 Longest contiguous element measure for 1,000 story elements set (75%

forward branching)

Table E.25 Longest contiguous element measure for 2,500 story elements set (25%

forward branching)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 7 7 6 6 5 5 4 3 3
4 7 7 6 5 5 5 4 3 3
5 7 6 6 6 5 5 4 4 3
6 6 6 6 6 5 5 4 3 3
7 6 6 6 5 5 4 3 3 2
8 6 6 5 5 5 4 3 3 2
9 6 5 5 5 5 4 4 3 2
10 5 5 5 5 4 4 3 2 2

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 6 6 5 5 4 4 4 3 3
4 6 6 6 5 4 4 4 3 3
5 6 6 6 5 4 4 3 3 3
6 6 6 5 4 4 4 3 3 3
7 6 6 6 5 4 3 3 3 2
8 5 5 5 5 4 3 3 3 2
9 5 5 5 5 4 3 3 3 2
10 5 4 4 4 3 2 3 2 2

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 5 5 4 4 4 3 3 2 2
4 5 4 4 4 3 2 3 2 2
5 4 4 4 3 3 3 2 2 2
6 4 4 4 3 3 3 2 2 2
7 4 4 4 4 3 3 2 2 2
8 4 3 4 3 3 3 2 2 2
9 3 3 3 2 2 2 2 2 2
10 3 3 3 3 2 2 2 2 2

173
Table E.26 Longest contiguous element measure for 2,500 story elements set (50%

forward branching)

Table E.27 Longest contiguous element measure for 2,500 story elements set (75%

forward branching)

Table E.28 Longest contiguous element measure for 5,000 story elements set (25%

forward branching)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 5 4 4 4 3 3 3 2 2
4 4 4 4 3 3 3 2 2 2
5 5 5 4 4 3 3 2 2 2
6 4 4 4 3 3 2 3 2 2
7 4 3 3 3 3 2 2 2 2
8 3 3 2 3 2 2 2 2 2
9 3 3 3 3 3 2 2 2 2
10 3 3 3 3 2 2 2 2 2

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 5 5 4 4 3 3 3 3 2
4 4 4 4 3 3 3 2 2 2
5 4 4 4 3 3 2 2 2 2
6 4 4 3 3 2 2 2 2 1
7 5 5 4 2 3 2 2 2 2
8 3 3 4 3 2 2 2 2 2
9 3 3 2 3 2 2 2 2 1
10 3 3 3 3 2 2 2 1 1

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 3 3 3 2 2 2 2 2 2
4 3 3 3 2 2 2 2 1 2
5 2 2 3 2 2 2 2 2 2
6 2 2 2 2 2 2 2 2 2
7 2 2 2 2 2 3 2 2 1
8 2 2 3 2 2 2 2 2 2
9 2 2 2 2 2 2 2 2 2
10 2 3 2 2 2 2 2 1 1

174
Table E.29 Longest contiguous element measure for 5,000 story elements set (50%

forward branching)

Table E.30 Longest contiguous element measure for 5,000 story elements set (75%

forward branching)

Table E.31 Average contiguous measure for 1,000 story element set (25% forward

branching)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 3 3 2 2 2 2 2 2 2
4 2 3 3 2 2 2 2 2 2
5 3 2 2 3 2 2 2 2 2
6 2 2 2 2 3 2 2 2 1
7 2 2 2 2 2 2 2 2 2
8 2 2 2 2 2 1 2 2 2
9 2 2 2 2 2 2 2 2 2
10 3 2 2 3 2 2 1 2 2

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 3 2 2 2 2 2 2 2 2
4 3 2 2 2 2 2 2 2 2
5 2 2 2 2 3 2 3 2 2
6 2 2 2 3 2 2 2 2 2
7 3 2 2 2 2 2 2 2 2
8 2 2 2 2 2 2 2 2 2
9 2 2 2 2 2 2 2 1 2
10 2 2 2 2 1 2 2 1 2

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 5.13004 5.0895 5.0775 4.9504 4.66 3.8213 2.8212 2.6609 2.8
4 5.1706 5.1622 5.0224 4.8163 4.2056 3.998 3.5446 2.1629 2.4349
5 5.05676 4.9241 4.9407 4.8272 3.1817 3.8685 3.169 2.754 2.2096
6 5.06744 4.938 4.2207 4.8156 4.0732 3.8169 3.3712 2.1517 2.1145
7 4.98939 4.8599 4.8164 4.3157 4.2078 2.9171 2.563 2.122 2.0726
8 4.81832 4.7628 4.3819 4.3843 3.9126 2.8127 2.6547 1.6123 1.6298
9 4.9712 4.717 4.286 4.1435 3.8723 3.024 2.4012 1.4512 1.4349
10 4.83081 4.2178 4.6501 4.377 3.2562 3.1889 2.101 1.4374 1.0962

175
Table E.32 Average contiguous measure for 1,000 story element set (50% forward

branching)

Table E.33 Average contiguous measure for 1,000 story element set (75% forward

branching)

Table E.34 Average contiguous measure for 2,500 story element set (25% forward

branching)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 5.10324 5.1004 4.8702 4.7337 4.3995 4.3548 3.0707 2.6949 1.9421
4 5.3457 5.1645 4.9473 4.3252 4.0695 4.1835 3.487 2.3953 2.1723
5 5.1402 5.1039 4.8294 4.5151 4.1375 3.6593 3.0445 2.8196 2.1511
6 4.9191 4.8694 4.7635 4.6253 3.9563 3.6063 3.2236 1.888 1.2509
7 4.8935 4.7868 4.862 3.9421 3.6398 2.806 2.4657 1.6939 1.2299
8 4.871 4.3389 4.3222 3.5117 3.7063 2.7931 2.1865 1.7758 1.3516
9 4.7324 4.2036 4.2159 3.2289 3.256 2.8654 2.626 1.9496 1.2087
10 4.10707 4.102 4.0939 3.8263 3.0594 2.4173 2.1632 1.2947 1.2224

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 4.72025 4.3637 3.8866 3.716 3.2212 3.0232 2.8472 2.6946 2.0615
4 4.5442 4.2066 4.2265 3.7891 3.0419 2.8737 2.8244 1.7101 1.9071
5 4.30441 4.2304 4.5977 3.6982 2.8659 2.9686 2.2278 2.1469 1.973
6 4.31747 4.2262 3.7168 3.0051 2.9815 2.7323 2.1313 2.2065 1.8969
7 4.10042 4.0255 4.4122 3.2214 2.7837 2.2248 1.7775 1.3133 1.2237
8 4.02176 3.8304 4.0578 3.1959 2.3228 2.0784 1.7874 1.6568 1.3406
9 3.91267 3.1646 3.6805 3.2478 2.8365 1.8643 1.4932 1.3667 1.2694
10 4.02025 3.0206 3.1304 2.99 2.6862 1.3322 2.0164 1.1247 1.371

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 4.1198 3.8426 3.3764 3.2804 2.8683 2.0308 1.6613 1.3815 1.2221
4 4.2758 3.2758 3.445 3.1756 2.1065 1.4106 1.5886 1.3184 1.2014
5 3.2265 3.1454 3.1054 2.497 2.3089 1.7758 1.4631 1.3159 1.3075
6 3.0568 2.7655 2.8145 2.7132 2.1894 1.861 1.318 1.2256 1.2457
7 2.8427 3.0792 3.0011 3.1273 1.9168 1.8883 1.3921 1.2882 1.3083
8 2.7585 2.2931 2.6065 2.1486 1.8459 1.5924 1.202 1.308 1.2357
9 1.9842 2.0132 2.1145 1.6104 1.3089 1.2468 1.2411 1.1853 1.2167
10 1.878 2.1166 1.9319 2.0356 1.2337 1.2918 1.3263 1.2723 1.2358

176
Table E.35 Average contiguous measure for 2,500 story element set (50% forward

branching)

Table E.36 Average contiguous measure for 2,500 story element set (75% forward

branching)

Table E.37 Average contiguous measure for 5,000 story element set (25% forward

branching)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 4.17521 3.2106 2.7438 3.1253 2.1778 1.9688 2.0775 1.6604 1.5753
4 3.8159 2.9728 2.8086 2.4746 2.0178 2.0175 1.7188 1.514 1.5273
5 3.97572 3.238 2.6574 3.0521 2.1968 2.1634 1.6711 1.5129 1.464
6 3.2358 3.0454 2.7281 2.6366 2.1047 1.4697 1.6321 1.3628 1.4183
7 3.1686 2.2125 1.9812 2.0394 2.1178 1.7843 1.4229 1.5329 1.5046
8 2.0752 1.8505 1.6423 2.181 1.4196 1.6065 1.3711 1.3813 1.6007
9 1.8868 1.7282 1.638 1.802 1.8803 1.7773 1.6241 1.6115 1.3273
10 1.68612 1.7632 1.5742 2.1181 1.571 1.5383 1.5348 1.4117 1.3814

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 4.3894 4.2138 3.4273 3.348 2.7446 2.5369 2.4144 2.1473 1.5249
4 3.7317 3.4521 3.2112 2.6978 2.5823 2.6973 1.5632 1.5529 1.6382
5 3.5974 3.1127 3.0141 2.7018 2.445 1.4852 1.4048 1.3876 1.524
6 3.446 3.1413 2.6336 2.5361 1.5823 1.3009 1.3272 1.4071 0.8906
7 4.1407 3.9655 3.7021 1.5339 2.3697 1.6092 1.6272 1.5529 1.4737
8 2.2132 2.365 2.9602 2.3319 1.382 1.446 1.4104 1.679 1.3752
9 2.2865 2.2133 1.4923 2.2283 1.4611 1.5377 1.3729 1.417 0.7375
10 2.4125 2.273 2.2323 2.1116 1.3385 1.4887 1.3892 0.8392 0.729

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 2.4079 2.3448 2.119 1.6289 1.5898 1.6573 1.5026 1.7502 1.7707
4 2.4443 2.2326 2.0534 1.7325 1.7138 1.6779 1.4806 0.5368 1.6255
5 1.8252 1.6332 2.1265 1.782 1.6248 1.5014 1.7172 1.6371 1.6084
6 1.7941 1.6302 1.8326 1.6782 1.6812 1.5544 1.7937 1.7172 1.6315
7 1.6843 1.5187 1.6238 1.5438 1.5502 2.5617 1.5513 1.6937 0.7183
8 1.5825 1.4109 2.2655 1.3469 1.3008 1.5736 1.4806 1.5518 1.4593
9 1.5203 1.658 1.782 1.5306 1.5173 1.524 1.5718 1.536 1.52
10 1.4079 2.4685 1.7809 1.6398 1.6798 1.4261 1.4793 0.5695 0.6842

177
Table E.38 Average contiguous measure for 5,000 story element set (50% forward

branching)

Table E.39 Average contiguous measure for 5,000 story element set (75% forward

branching)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 2.4911 2.4303 1.471 1.4321 1.5642 1.6777 1.6034 1.4323 1.4401
4 1.6896 2.2317 2.5424 1.8003 1.6324 1.6434 1.4668 1.539 1.5923
5 2.758 1.7113 1.7611 2.4906 1.7386 1.4921 1.4361 1.4638 1.3823
6 1.6973 1.6508 1.5344 1.6143 2.428 1.5306 1.5668 1.6739 0.758
7 1.6367 1.5071 1.4526 1.5224 1.7867 1.601 1.6068 1.5441 1.5982
8 1.7095 1.6752 1.6091 1.4427 1.5836 0.8043 1.4819 1.6345 1.6782
9 1.6114 1.5303 1.5982 1.5932 1.6078 1.5908 1.6371 1.5737 1.5061
10 2.4754 1.6982 1.7159 1.7061 1.6432 1.6336 0.7364 1.6348 1.7017

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3 2.2465 1.7489 1.761 1.6102 1.7481 1.5809 1.6223 1.5092 1.4336
4 2.328 1.6771 1.5975 1.5593 1.4205 1.6147 1.4183 1.4637 1.4659
5 1.5018 1.689 1.4194 1.5006 2.6976 1.7141 2.7508 1.689 1.4423
6 1.6976 1.6285 1.7287 2.6056 1.6247 1.5482 1.5277 1.5203 1.4204
7 2.7124 1.599 1.4911 1.4654 1.4502 1.55 1.5061 1.4209 1.404
8 1.5671 1.4343 1.4871 1.5873 1.4668 1.4286 1.4537 1.5919 1.5175
9 1.6779 1.6743 1.6218 1.6371 1.5112 1.4236 1.3393 0.8133 1.366
10 1.5674 1.5109 1.5216 1.5591 0.7903 1.3849 1.4173 0.7657 1.3402

178
Table E.40 Lower and upper bounds of the 1,000 story element set (25% forward

branching)
distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 3.26007 4.179 4.155 4.9008 4.3199 2.6426 1.6424 1.3218 1.6
3 5.13004 5.0895 5.0775 4.9504 4.66 3.8213 2.8212 2.6609 2.8
3U 7 6 6 5 5 5 4 4 4
4L 3.3412 4.3244 4.0449 4.6326 3.4112 2.996 3.0892 1.3258 1.8698
4 5.1706 5.1622 5.0224 4.8163 4.2056 3.998 3.5446 2.1629 2.4349
4U 7 6 6 5 5 5 4 3 3
5L 3.11352 2.8481 3.8813 4.6543 2.3634 2.737 2.338 2.508 1.4192
5 5.05676 4.9241 4.9407 4.8272 3.1817 3.8685 3.169 2.754 2.2096
5U 7 7 6 5 4 5 4 3 3
6L 3.13488 3.876 3.4414 3.6312 3.1463 3.6338 2.7424 1.3034 1.229
6 5.06744 4.938 4.2207 4.8156 4.0732 3.8169 3.3712 2.1517 2.1145
6U 7 6 5 6 5 4 4 3 3
7L 2.97878 2.7198 3.6328 3.6314 3.4156 1.8342 2.126 1.244 1.1452
7 4.98939 4.8599 4.8164 4.3157 4.2078 2.9171 2.563 2.122 2.0726
7U 7 7 6 5 5 4 3 3 3
8L 3.63663 3.5256 3.7638 3.7686 2.8252 1.6254 2.3094 0.2246 1.2596
8 4.81832 4.7628 4.3819 4.3843 3.9126 2.8127 2.6547 1.6123 1.6298
8U 6 6 5 5 5 4 3 3 2
9L 2.9424 4.434 3.572 3.287 3.7447 2.048 1.8024 0.9024 0.8698
9 4.9712 4.717 4.286 4.1435 3.8723 3.024 2.4012 1.4512 1.4349
9U 7 5 5 5 4 4 3 2 2
10L 3.66162 3.4356 4.3002 3.754 2.5124 2.3778 1.202 0.8748 0.1924
10 4.83081 4.2178 4.6501 4.377 3.2562 3.1889 2.101 1.4374 1.0962
10U 6 5 5 5 4 4 3 2 2

179
Table E.41 Lower and upper bounds of the 1,000 story element set (50% forward

branching)

distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 3.20648 3.2008 3.7404 3.4674 3.7991 3.7095 2.1414 2.3898 0.8842
3 5.10324 5.1004 4.8702 4.7337 4.3995 4.3548 3.0707 2.6949 1.9421
3U 7 7 6 6 5 5 4 3 3
4L 3.6914 3.329 3.8947 3.6503 3.139 3.367 2.974 1.7906 1.3446
4 5.3457 5.1645 4.9473 4.3252 4.0695 4.1835 3.487 2.3953 2.1723
4U 7 7 6 5 5 5 4 3 3
5L 3.2804 4.2077 3.6588 3.0302 3.275 2.3186 2.089 1.6392 1.3022
5 5.1402 5.1039 4.8294 4.5151 4.1375 3.6593 3.0445 2.8196 2.1511
5U 7 6 6 6 5 5 4 4 3
6L 3.8382 3.7387 3.5271 3.2506 2.9126 2.2126 2.4472 0.776 -0.498
6 4.9191 4.8694 4.7635 4.6253 3.9563 3.6063 3.2236 1.888 1.2509
6U 6 6 6 6 5 5 4 3 3
7L 3.787 3.5736 3.724 2.8842 2.2796 1.612 1.9314 0.3878 0.4598
7 4.8935 4.7868 4.862 3.9421 3.6398 2.806 2.4657 1.6939 1.2299
7U 6 6 6 5 5 4 3 3 2
8L 3.742 2.6777 3.6444 2.0234 2.4125 1.5862 1.373 0.5516 0.7032
8 4.871 4.3389 4.3222 3.5117 3.7063 2.7931 2.1865 1.7758 1.3516
8U 6 6 5 5 5 4 3 3 2
9L 3.4648 3.4072 3.4318 1.4578 1.512 1.7308 1.252 0.8992 0.4174
9 4.7324 4.2036 4.2159 3.2289 3.256 2.8654 2.626 1.9496 1.2087
9U 6 5 5 5 5 4 4 3 2
10L 3.21414 3.204 3.1878 2.6526 2.1188 0.8346 1.3264 0.5894 0.4448
10 4.10707 4.102 4.0939 3.8263 3.0594 2.4173 2.1632 1.2947 1.2224
10U 5 5 5 5 4 4 3 2 2

180
Table E.42 Lower and upper bounds of the 1,000 story element set (75% forward

branching)
distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 3.4405 2.7273 2.7732 2.432 2.4424 2.0463 1.6944 2.3892 1.123
3 4.72025 4.3637 3.8866 3.716 3.2212 3.0232 2.8472 2.6946 2.0615
3U 6 6 5 5 4 4 4 3 3
4L 3.0884 2.4132 2.453 2.5782 2.0838 1.7473 1.6488 0.4202 0.8142
4 4.5442 4.2066 4.2265 3.7891 3.0419 2.8737 2.8244 1.7101 1.9071
4U 6 6 6 5 4 4 4 3 3
5L 2.60882 2.4609 3.1953 2.3963 1.7318 1.9372 1.4556 1.2938 0.9459
5 4.30441 4.2304 4.5977 3.6982 2.8659 2.9686 2.2278 2.1469 1.973
5U 6 6 6 5 4 4 3 3 3
6L 2.63494 2.4523 2.4336 2.0102 1.963 1.4646 1.2627 1.413 0.7938
6 4.31747 4.2262 3.7168 3.0051 2.9815 2.7323 2.1313 2.2065 1.8969
6U 6 6 5 4 4 4 3 3 3
7L 2.20084 2.051 2.8244 1.4428 1.5674 1.4496 0.555 -0.373 0.4474
7 4.10042 4.0255 4.4122 3.2214 2.7837 2.2248 1.7775 1.3133 1.2237
7U 6 6 6 5 4 3 3 3 2
8L 3.04352 2.6608 3.1156 1.3917 0.6456 1.1567 0.5748 0.3136 0.6813
8 4.02176 3.8304 4.0578 3.1959 2.3228 2.0784 1.7874 1.6568 1.3406
8U 5 5 5 5 4 3 3 3 2
9L 2.82534 1.3292 2.361 1.4956 1.673 0.7286 -0.014 -0.267 0.5389
9 3.91267 3.1646 3.6805 3.2478 2.8365 1.8643 1.4932 1.3667 1.2694
9U 5 5 5 5 4 3 3 3 2
10L 3.0405 2.0412 2.2608 1.98 2.3724 0.6644 1.0328 0.2495 0.742
10 4.02025 3.0206 3.1304 2.99 2.6862 1.3322 2.0164 1.1247 1.371
10U 5 4 4 4 3 2 3 2 2

181
Table E.43 Lower and upper bounds of the 2,500 story element set (25% forward

branching)
distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 3.2396 2.6852 2.7528 2.5608 1.7366 1.0616 0.3226 0.763 0.4442
3 4.1198 3.8426 3.3764 3.2804 2.8683 2.0308 1.6613 1.3815 1.2221
3U 5 5 4 4 4 3 3 2 2
4L 3.5516 2.5516 2.89 2.3512 1.213 0.8212 0.1772 0.6368 0.4028
4 4.2758 3.2758 3.445 3.1756 2.1065 1.4106 1.5886 1.3184 1.2014
4U 5 4 4 4 3 2 3 2 2
5L 2.453 2.2907 2.2108 1.994 1.6178 0.5516 0.9262 0.6318 0.615
5 3.2265 3.1454 3.1054 2.497 2.3089 1.7758 1.4631 1.3159 1.3075
5U 4 4 4 3 3 3 2 2 2
6L 2.1136 1.531 1.629 2.4264 1.3787 0.722 0.636 0.4512 0.4914
6 3.0568 2.7655 2.8145 2.7132 2.1894 1.861 1.318 1.2256 1.2457
6U 4 4 4 3 3 3 2 2 2
7L 1.6854 2.1584 2.0022 2.2546 0.8336 0.7766 0.7842 0.5764 0.6166
7 2.8427 3.0792 3.0011 3.1273 1.9168 1.8883 1.3921 1.2882 1.3083
7U 4 4 4 4 3 3 2 2 2
8L 1.517 1.5862 1.213 1.2972 0.6918 0.1848 0.404 0.616 0.4714
8 2.7585 2.2931 2.6065 2.1486 1.8459 1.5924 1.202 1.308 1.2357
8U 4 3 4 3 3 3 2 2 2
9L 0.9684 1.0264 1.2291 1.2208 0.6178 0.4936 0.4822 0.3706 0.4334
9 1.9842 2.0132 2.1145 1.6104 1.3089 1.2468 1.2411 1.1853 1.2167
9U 3 3 3 2 2 2 2 2 2
10L 0.756 1.2332 0.8638 1.0712 0.4674 0.5836 0.6526 0.5445 0.4716
10 1.878 2.1166 1.9319 2.0356 1.2337 1.2918 1.3263 1.2723 1.2358
10U 3 3 3 3 2 2 2 2 2

182
Table E.44 Lower and upper bounds of the 2,500 story element set (50% forward

branching)
distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 3.35042 2.4212 1.4876 2.2506 1.3556 0.9376 1.155 1.3208 1.1506
3 4.17521 3.2106 2.7438 3.1253 2.1778 1.9688 2.0775 1.6604 1.5753
3U 5 4 4 4 3 3 3 2 2
4L 3.6318 1.9456 1.6172 1.9492 1.0356 1.0349 1.4376 1.028 1.0546
4 3.8159 2.9728 2.8086 2.4746 2.0178 2.0175 1.7188 1.514 1.5273
4U 4 4 4 3 3 3 2 2 2
5L 2.95144 1.476 1.3148 2.1042 1.3936 1.3268 1.3422 1.0258 0.928
5 3.97572 3.238 2.6574 3.0521 2.1968 2.1634 1.6711 1.5129 1.464
5U 5 5 4 4 3 3 2 2 2
6L 2.4716 2.0908 1.4562 2.2732 1.2093 0.9394 0.2641 0.7256 0.8366
6 3.2358 3.0454 2.7281 2.6366 2.1047 1.4697 1.6321 1.3628 1.4183
6U 4 4 4 3 3 2 3 2 2
7L 2.3372 1.425 0.9624 1.0789 1.2357 1.5686 0.8458 1.0658 1.0092
7 3.1686 2.2125 1.9812 2.0394 2.1178 1.7843 1.4229 1.5329 1.5046
7U 4 3 3 3 3 2 2 2 2
8L 1.1504 0.7009 1.2847 1.362 0.8392 1.213 0.7422 0.7626 1.2014
8 2.0752 1.8505 1.6423 2.181 1.4196 1.6065 1.3711 1.3813 1.6007
8U 3 3 2 3 2 2 2 2 2
9L 0.7736 0.4564 0.276 0.604 0.7606 1.5546 1.2482 1.223 0.6546
9 1.8868 1.7282 1.638 1.802 1.8803 1.7773 1.6241 1.6115 1.3273
9U 3 3 3 3 3 2 2 2 2
10L 0.37224 0.5264 0.1484 1.2362 1.142 1.0765 1.0696 0.8234 0.7628
10 1.68612 1.7632 1.5742 2.1181 1.571 1.5383 1.5348 1.4117 1.3814
10U 3 3 3 3 2 2 2 2 2

183
Table E.45 Lower and upper bounds of the 2,500 story element set (75% forward

branching)
distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 3.7788 3.4276 2.8546 2.696 2.4892 2.0738 1.8288 1.2946 1.0498
3 4.3894 4.2138 3.4273 3.348 2.7446 2.5369 2.4144 2.1473 1.5249
3U 5 5 4 4 3 3 3 3 2
4L 3.4634 2.9042 2.4224 2.3956 2.1646 2.3946 1.1264 1.1058 1.2764
4 3.7317 3.4521 3.2112 2.6978 2.5823 2.6973 1.5632 1.5529 1.6382
4U 4 4 4 3 3 3 2 2 2
5L 3.1948 2.2254 2.0282 2.4036 1.89 0.9704 0.8096 0.7752 1.048
5 3.5974 3.1127 3.0141 2.7018 2.445 1.4852 1.4048 1.3876 1.524
5U 4 4 4 3 3 2 2 2 2
6L 2.892 2.2826 2.2672 2.0722 1.1646 0.6018 0.6544 0.8142 0.7812
6 3.446 3.1413 2.6336 2.5361 1.5823 1.3009 1.3272 1.4071 0.8906
6U 4 4 3 3 2 2 2 2 1
7L 3.2814 2.931 3.4042 1.0678 1.7394 1.2184 1.2544 1.1058 0.9474
7 4.1407 3.9655 3.7021 1.5339 2.3697 1.6092 1.6272 1.5529 1.4737
7U 5 5 4 2 3 2 2 2 2
8L 1.4264 1.73 1.9204 1.6638 0.764 0.892 0.8208 1.358 0.7504
8 2.2132 2.365 2.9602 2.3319 1.382 1.446 1.4104 1.679 1.3752
8U 3 3 4 3 2 2 2 2 2
9L 1.573 1.4266 0.9846 1.4566 0.9222 1.0754 0.7458 0.834 0.475
9 2.2865 2.2133 1.4923 2.2283 1.4611 1.5377 1.3729 1.417 0.7375
9U 3 3 2 3 2 2 2 2 1
10L 1.825 1.546 1.4646 1.2232 0.677 0.9774 0.7784 0.6784 0.458
10 2.4125 2.273 2.2323 2.1116 1.3385 1.4887 1.3892 0.8392 0.729
10U 3 3 3 3 2 2 2 1 1

184
Table E.46 Lower and upper bounds of the 5,000 story element set (25% forward

branching)
distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 1.8158 1.6896 1.238 1.2578 1.1796 1.3146 1.0052 1.5004 1.5414
3 2.4079 2.3448 2.119 1.6289 1.5898 1.6573 1.5026 1.7502 1.7707
3U 3 3 3 2 2 2 2 2 2
4L 1.8886 1.4652 1.1068 1.465 1.4276 1.3558 0.9612 0.0736 1.251
4 2.4443 2.2326 2.0534 1.7325 1.7138 1.6779 1.4806 0.5368 1.6255
4U 3 3 3 2 2 2 2 1 2
5L 1.6504 1.2664 1.253 1.564 1.2496 1.0028 1.4344 1.2742 1.2168
5 1.8252 1.6332 2.1265 1.782 1.6248 1.5014 1.7172 1.6371 1.6084
5U 2 2 3 2 2 2 2 2 2
6L 1.5882 1.2604 1.6652 1.3564 1.3624 1.1088 1.5874 1.4344 1.263
6 1.7941 1.6302 1.8326 1.6782 1.6812 1.5544 1.7937 1.7172 1.6315
6U 2 2 2 2 2 2 2 2 2
7L 1.3686 1.0374 1.2476 1.0876 1.1004 2.1234 1.1026 1.3874 0.4366
7 1.6843 1.5187 1.6238 1.5438 1.5502 2.5617 1.5513 1.6937 0.7183
7U 2 2 2 2 2 3 2 2 1
8L 1.165 0.8218 1.531 0.6938 0.6016 1.1472 0.9612 1.1036 0.9186
8 1.5825 1.4109 2.2655 1.3469 1.3008 1.5736 1.4806 1.5518 1.4593
8U 2 2 3 2 2 2 2 2 2
9L 1.0406 1.316 1.564 1.0612 1.0346 1.048 1.1436 1.072 1.04
9 1.5203 1.658 1.782 1.5306 1.5173 1.524 1.5718 1.536 1.52
9U 2 2 2 2 2 2 2 2 2
10L 0.8158 1.937 1.5618 1.2796 1.3596 0.8522 0.9586 0.139 0.3684
10 1.4079 2.4685 1.7809 1.6398 1.6798 1.4261 1.4793 0.5695 0.6842
10U 2 3 2 2 2 2 2 1 1

185
Table E.47 Lower and upper bounds of the 5,000 story element set (50% forward

branching)
distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 1.9822 1.8606 0.942 0.8642 1.1284 1.3554 1.2068 0.8646 0.8802
3 2.4911 2.4303 1.471 1.4321 1.5642 1.6777 1.6034 1.4323 1.4401
3U 3 3 2 2 2 2 2 2 2
4L 1.3792 1.4634 2.0848 1.6006 1.2648 1.2868 0.9336 1.078 1.1846
4 1.6896 2.2317 2.5424 1.8003 1.6324 1.6434 1.4668 1.539 1.5923
4U 2 3 3 2 2 2 2 2 2
5L 2.516 1.4226 1.5222 1.9812 1.4772 0.9842 0.8722 0.9276 0.7646
5 2.758 1.7113 1.7611 2.4906 1.7386 1.4921 1.4361 1.4638 1.3823
5U 3 2 2 3 2 2 2 2 2
6L 1.3946 1.3016 1.0688 1.2286 1.856 1.0612 1.1336 1.3478 0.516
6 1.6973 1.6508 1.5344 1.6143 2.428 1.5306 1.5668 1.6739 0.758
6U 2 2 2 2 3 2 2 2 1
7L 1.2734 1.0142 0.9052 1.0448 1.5734 1.202 1.2136 1.0882 1.1964
7 1.6367 1.5071 1.4526 1.5224 1.7867 1.601 1.6068 1.5441 1.5982
7U 2 2 2 2 2 2 2 2 2
8L 1.419 1.3504 1.2182 0.8854 1.1672 0.6086 0.9638 1.269 1.3564
8 1.7095 1.6752 1.6091 1.4427 1.5836 0.8043 1.4819 1.6345 1.6782
8U 2 2 2 2 2 1 2 2 2
9L 1.2228 1.0606 1.1964 1.1864 1.2156 1.1816 1.2742 1.1474 1.0122
9 1.6114 1.5303 1.5982 1.5932 1.6078 1.5908 1.6371 1.5737 1.5061
9U 2 2 2 2 2 2 2 2 2
10L 1.9508 1.3964 1.4318 0.4122 1.2864 1.2672 0.4728 1.2696 1.4034
10 2.4754 1.6982 1.7159 1.7061 1.6432 1.6336 0.7364 1.6348 1.7017
10U 3 2 2 3 2 2 1 2 2

186
Table E.48 Lower and upper bounds of the 5,000 story element set (75% forward

branching)
distribution/
branching 10% 20% 30% 40% 50% 60% 70% 80% 90%

3L 1.493 1.4978 1.522 1.2204 1.4962 1.1618 1.2446 1.0184 0.8672
3 2.2465 1.7489 1.761 1.6102 1.7481 1.5809 1.6223 1.5092 1.4336
3U 3 2 2 2 2 2 2 2 2
4L 1.656 1.3542 1.195 1.1186 0.841 1.2294 0.8366 0.9274 0.9318
4 2.328 1.6771 1.5975 1.5593 1.4205 1.6147 1.4183 1.4637 1.4659
4U 3 2 2 2 2 2 2 2 2
5L 1.0036 1.378 0.8388 1.0012 2.3952 1.4282 2.5016 1.378 0.8846
5 1.5018 1.689 1.4194 1.5006 2.6976 1.7141 2.7508 1.689 1.4423
5U 2 2 2 2 3 2 3 2 2
6L 1.3952 1.257 1.4574 2.2112 1.2494 1.0964 1.0554 1.0406 0.8408
6 1.6976 1.6285 1.7287 2.6056 1.6247 1.5482 1.5277 1.5203 1.4204
6U 2 2 2 3 2 2 2 2 2
7L 2.4248 1.198 0.9822 0.9308 0.9004 1.1 1.0122 0.8418 0.808
7 2.7124 1.599 1.4911 1.4654 1.4502 1.55 1.5061 1.4209 1.404
7U 3 2 2 2 2 2 2 2 2
8L 1.1342 0.8686 0.9742 1.1746 0.9336 0.8572 0.9074 1.1838 1.035
8 1.5671 1.4343 1.4871 1.5873 1.4668 1.4286 1.4537 1.5919 1.5175
8U 2 2 2 2 2 2 2 2 2
9L 1.3558 1.3486 1.2436 1.2742 1.0224 0.8472 0.6786 0.6266 0.732
9 1.6779 1.6743 1.6218 1.6371 1.5112 1.4236 1.3393 0.8133 1.366
9U 2 2 2 2 2 2 2 1 2
10L 1.1348 1.0218 1.0432 1.1182 0.5805 0.7698 0.8346 0.5314 0.6804
10 1.5674 1.5109 1.5216 1.5591 0.7903 1.3849 1.4173 0.7657 1.3402
10U 2 2 2 2 1 2 2 1 2

187

VITA

Name: Teong Joo Ong

Address: Department of Computer Science

Texas A&M University

College Station, TX 77843-3112

Email Address: teongjoo@gmail.com

Education: B.S., Computer and Information Science, University of Oregon, 1998

M.C.S., Computer Science, Texas A&M University, 2001

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	1. INTRODUCTION
	1.1 Background and Literature Review
	1.2 Combining Evolutionary Algorithms and Fuzzy Logic for Dynamic Story Generation
	1. Exploit the optimum search ability of evolutionary algorithms to synthesize and optimize fuzzy systems [73];
	2. Use a fuzzy knowledge base [3] to detect the emergence of a solution and dynamically tune the parameters of the evolutionary algorithms [8, 48];
	3. Embed fuzziness into the evolutionary algorithm itself, such as sacrificing precision in the calculation of fitness to save computational resources by defining a fuzzy fitness criteria or fuzzifying the genetic operators [63].

	1.3 Motivation and Scope
	1.4 Scenarios of Use
	1.5 Objectives of Research

	2. ARCHITECTURE OF THE INTERACTIVE STORYTELLING ENGINE
	Figure 1. The overall system architecture and subsystems’ relationships
	Figure 2. Generating a story component
	1. At Time(t), The author manipulates/creates story building blocks that are stored in the knowledge base with the authoring tools in the Integrated Authoring Environment (IAE):
	i. A main story thread that serves both as a guideline and evaluation schema for the storytelling engine (Section 4.4.7, Story.xml)
	ii. Story templates that describe how story elements, such as agent actions (Section 4.4.2, Actions.xml) can be combined to form story elements (Section 4.4.8, Templates.xml)
	iii. Rules (Section 4.4.5, Rules.xml) and story variables (Section 4.4.4, Objects.xml) that are used to generate emergent properties of a dynamic story
	iv. Dialogues (Section 4.4.9, Textstrings.xml) to be spoken by the agent characters (Section 4.4.3, Agents.xml) and their corresponding behavior scripts (Section 4.4.6, Scripts.xml)

	2. With all of the necessary story building blocks available from the knowledge base, the story generation process starts with i...
	3. At Time(t+2), Fuzzy rules stored in the knowledge base are resolved by the FDBS based on performance of the GA in the current execution cycle (Section 2.1.2, Fuzzy Logic).
	4. At Time(t+3), state of the story is checked based on rules and story conditions provided from the knowledge base to determine...
	5. At the end of the generation process (Time(t+4)), state of the story is recorded in the knowledge base for bookkeeping purposes. The information is recorded to allow readers to “rewind” the story to any arbitrary point in time.
	6. At Time(t+5), results from the generation process are sent to the agent architecture and text-to-speech engines for processing.
	7. Lastly, at Time(t+6), the agent architecture and text-to-speech engines execute the appropriate agent scripts or rendition of the story scene in IAE.
	8. Go back to step 2.

	2.1 Genetic Algorithm and Fuzzy System
	Figure 3. The standard GA crossover operators
	Figure 4. Mutation that changes the encoding of a gene
	2.1.2 Fuzzy Logic
	Figure 5. A partially true and false situation in fuzzy logic
	1. If Laundry Quantity is Large AND Laundry Softness is Hard then Wash Cycle is Strong
	2. If Laundry Quantity is Medium AND Laundry Softness is Soft then Wash Cycle is Normal

	Figure 6. Fuzzy sets for laundry softness
	Figure 7. Fuzzy sets for laundry quantity
	Figure 8. Fuzzy sets for washing cycle
	Figure 9. The inference and defuzzification processes of the fuzzy controller
	2.2 Design of the Evolutionary Fuzzy System
	Figure 10. Symmetric fuzzy sets in HEFTI’s FDBS
	Figure 11. Regions in the domain of an input variable
	Figure 12. Adjusted fitness function with R = 0.1
	Figure 13. Adjusted fitness function with R = 0.5
	Figure 14. Adjusted fitness function with R = 0.75
	1. Rule 1 is used to control the selection criteria to avoid the event of too much population variability (b is AVERAGE) in the ...
	2. Rule 2 is used to control the mutation and crossover rate of GA. Mutation and crossover rates [72] are one of the factors tha...
	3. Rule 3 is just the complement of Rule 2, and it is used to increase the convergence rate of GA.
	4. Rule 4 is used to adjust the mutation and crossover rates and the selection criteria of the GA when it is somewhere in the mi...

	3. CONSTRUCTING STORIES
	3.1 Encoding the Story Components
	Figure 15. Encoding story elements into a chromosome
	Figure 16. Gene representation of story elements
	3.2 Decoding the Story Components
	Figure 17. Decoding a chromosome into story scripts
	Figure 18. Hierarchical combination of story elements at various levels with a story template to form a story component
	3.3 Stories Controlled by Rules

	4. THE INTERACTIVE AUTHORING ENVIRONMENT (IAE)
	4.1 Agent Characters
	Figure 19. Microsoft agent character editor’s properties tab page
	Figure 20. The word balloon tab page
	Figure 21. The voice tab page
	Figure 22. Assigning image frames to an animation
	Figure 23. Building a character agent

	4.2 Text-to-Speech (TTS) Engines
	Figure 24. The speech properties dialog box

	4.3 The IAE Interfaces
	4.3.1 The Authoring Interface
	Figure 25. The authoring interface
	4.3.2 The Reading Interface
	Figure 26. The reading interface

	4.4 Syntax and Semantics of the XML Tags
	4.4.1 Replaying a Story
	4.4.2 Actions.xml
	4.4.3 Agents.xml
	4.4.4 Objects.xml
	4.4.5 Rules.xml
	4.4.6 Scripts.xml
	4.4.7 Story.xml
	4.4.8 Templates.xml
	4.4.9 Textstrings.xml

	5. AUTHORING AN INTERACTIVE, DYNAMIC STORY
	Figure 27. A high level story flow graph for the three little pigs’ story
	1. The Start stage initializes various variables and agent characters.
	2. The Introduction stage provides all necessary story background for the reader. This guides the reader smoothly into the next stage of the story.
	3. The Wolf’s Threat stage introduces one of the main characters, namely the wolf agent, into the story. This indicates the start of the main story body.
	4. The Wolf’s Attack and Wolf’s Plan stages depict interactions between the pigs and the wolf as they engage in a series of acti...
	5. Finally, the story will reach the Conclusion stage when the wolf manages to eat all of the pigs or was cooked by one of the pigs, thus ending the story.
	1. The story stage before Wolf’s Threat, namely Introduction, should provide an entry point for the wolf agent into the story. S...
	2. The Wolf’s Threat stage serves more functionality than merely introducing the wolf agent. More variations of the story can be...
	3. In the Wolf’s Attack stage, the wolf agent engages in various endeavors to break into a pig’s house and there are only two po...

	5.1 Case Study: A Simple Three Little Pigs’ Story
	1. Once upon a time, there was an old pig with three little pigs. {act_1} |scene_1|
	2. $set(currenthouse.value,obj_3.name) $set(currentpig.value,ag_2.id) The {ag_2.personality} {ag_2.name} pig {pigpick}
	3. $set(currenthouse.value,obj_2.name) $set(currentpig.value,ag_3.id) The {ag_3.personality} {ag_3.name} pig {pigpick}
	4. $set(currenthouse.value,obj_1.name) $set(currentpig.value,ag_4.id) The {ag_4.personality} {ag_4.name} pig {pigpick}
	Table 1. Story elements referenced in template one
	1. One day, |scene_6| {act_4} $set(currentpig.value,ag_2.id) {act_3} $set(currentpig.value,ag_3.id) {act_3} $set(currentpig.value,ag_4.id) {act_3}

	Table 2. New story elements referenced in tmplt_2
	1. {act_13} and prepares to attack |scene_8|

	Table 3. Story elements referenced in tmplt_3
	1. $set(currentpig.value,{randompig}),$set(currenthouse.value,currentpig.value .owns) {act_17} and {wolfpick}

	Table 4. Story elements referenced in tmplt_4
	Table 5. Story elements referenced in the conclusion templates
	Figure 28. Story’s introduction
	Figure 29. Wolf terror
	Figure 30. Wolf attack
	Figure 31. Wolf’s plan
	Figure 32. Pigsconclusion
	Figure 33. Wolfsconclusion

	5.2 Editing the Story Elements
	Figure 34. A collapsible sub-tree embedded within a template numbered 1
	Figure 35. Tree view of the action editor
	Figure 36. Tree view of the agent editor
	Figure 37. Manipulating a top level tree node
	Figure 38. Manipulating a tree leaf
	Figure 39. Attribute editor and the list of story elements

	5.3 Authoring Stories with the Drag-and-Drop Interface
	Figure 40. Visualizing a story component as a collection of story elements
	Figure 41. Placing a story element at an indicated location
	Figure 42. Deleting and rearranging a story element in the drag and drop interface
	Figure 43. Attribute box that allows authors to edit a story component attribute

	6. STORY STATES AND BRANCHES IN A DYNAMIC STORY
	Figure 44. Several variants of the three little pigs’ story
	Figure 45. The pigs are having fun together with the mother pig
	Figure 46. The wolf agent shows up in front of the pigs and the pigs scramble to safety
	Figure 47. The straw house of the pink pig collapses!
	Figure 48. The pig failed to escape from the wolf and becomes wolf’s lunch
	Figure 49. The gray pig cooks the wolf after he falls down the chimney of the wooden house
	Figure 50. The pigs celebrate as the wolf rises to the heavens

	7. AUTHORING A TEXT BASED STORY
	7.1 The Interface
	Figure 51. Authoring interface of the text-based IAE
	7.1.1 Authoring a Story
	Figure 52. Timestep menu
	Figure 53. Template menu
	Figure 54. Element menu
	Figure 55. Editing a story element
	7.1.2 Story Element Distribution
	Figure 56. The statistical tool that complements the functionalities of the authoring interface
	Figure 57. Advanced parameters for the generate statistics tool
	7.1.3 Comparing the Story Elements
	Figure 58. Story distribution form with its ordered list view
	Figure 59. The story distribution form’s affinity list visualization
	7.1.4 Visualizing Distribution of Story Elements
	1. Distribution of story elements for a particular timestep
	2. Distribution of story elements for a particular story thread
	3. Distribution of story elements for all of the story threads
	4. Show difference of story elements between two story threads

	Figure 60. Story elements distribution bar graph
	Figure 61. Story elements distribution bar graph for all of the story threads
	Figure 62. The story thread differences dialog box
	7.1.5 Affinity Measure of Story Elements and Story Threads
	1. Real-valued shape-space: the attribute strings are real-valued vectors
	2. Integer shape-space: composed of attribute strings built out of a finite alphabet of length k
	3. Hamming shape-space: composed of attribute strings built out of a finite alphabet of k
	4. Symbolic shape-space: usually composed of different types of attribute strings where at least one of them is symbolic, such as a “name”, a “color”

	7.1.6 Hamming Distance Affinity Measure
	1. Nothing is added to the end result if a subsequence of story elements with length 1 =x = m (where m is the length of the list of story elements in a particular story thread/timestep) matches another subsequence in story thread B
	2. A value 1 is added to the end result if no match is found between a given subsequence in story thread A with story thread B

	Figure 63. Process of computing the affinity measure for subsequence of length 1 and 2 between two story threads
	7.1.7 Multiple Contiguous Bit Affinity Measure
	1. Since a story thread is divided into multiple timesteps this measure will be computed for each of the timesteps independently...
	2. All of the possible alignments of the story elements in a given list will be used due to the fact that story components are c...
	3. This measure will be used mainly to assess how different the story components are across different story threads. Therefore, the higher the value the bigger the story thread differences are.

	Figure 64. Process of computing the multiple contiguous bit affinity measure for story threads A and B
	7.1.8 Run-time Complexity

	8. EVALUATION
	8.1 Evaluation of the Interactive Authoring Environment (IAE)
	1. How similar is the IAE to the various integrated development tools and the command line compiling tools the test subjects have used? Why?
	2. How much does the IAE help the test subjects in completing the assigned tasks?
	3. What are the features most used by the test subjects and how can we improve upon them?
	4. What are the features that hinder the test subjects’ ability to properly carry out their authoring activities? Why?
	5. What are the features missing from the IAE that may help or simplify the authoring activities?
	6. How long does it take for the test subjects to get acquainted with the IAE and complete the tasks?
	8.1.1 Profile of the Test Subjects
	8.1.2 Research Procedures
	8.1.3 Observations and Analyses
	1. Introduction
	2. RedRidingHoodMeetsTheWolf
	3. WolfVisitsGranny
	4. RedRidingHoodVisitsGranny
	5. Conclusion

	8.1.4 Desirable Features
	8.1.5 Undesirable Features
	8.1.6 Future Improvements
	8.1.7 Conclusions

	8.2 Evaluation of the Storytelling Engine
	8.3 Affinity Measures
	Figure 65. Sequences of story elements grouped by story timesteps
	Figure 66. Affinity for story elements considering different alignments

	8.4 Setup
	Figure 67. A non-linear story with multiple branching points
	8.4.1 Linear Story
	Figure 68. Graphing the series in Table E.1
	Figure 69. Graphing the series in Table E.2
	Figure 70. Graphing the series in Table E.3
	Figure 71. Graphing the longest contiguous element measure in Table E.4
	Figure 72. Graphing the longest contiguous element measure in Table E.5
	Figure 73. Graphing the longest contiguous element measure in Table E.6
	Figure 74. Graphing the average contiguous measure in Table E.7
	Figure 75. Graphing the average contiguous measure in Table E.8
	Figure 76. Graphing the average contiguous measure in Table E.9
	8.4.2 Non-linear Story
	Figure 77. Number of forward branches for different story stages.
	Figure 78. Graphing the series in Table E.13
	Figure 79. Graphing the series in Table E.14
	Figure 80. Graphing the series in Table E.15
	Figure 81. Graphing the series in Table E.16
	Figure 82. Graphing the series in Table E.17
	Figure 83. Graphing the series in Table E.18
	Figure 84. Graphing the series in Table E.19
	Figure 85. Graphing the series in Table E.20
	Figure 86. Graphing the series in Table E.21

	9. CONCLUSION AND FUTURE WORK
	REFERENCES
	[1] E. J. Aarseth, Cybertext: Perspectives on Ergodic Literature, Johns Hopkins University Press, Baltimore, MD, 1997.
	[2] Animal Blocks. http://gn.www.media.mit.edu/groups/gn/projects/animalblocks/ [viewed on May 14, 2006]
	[3] S. Arnone, M. Dell’Orto and A. Tettamanzi, Toward a fuzzy government of genetic populations, in: Proceedings of the 6th IEEE Conference on Tools with Artificial Intelligence (TAI-1994), New Orleans, LA, 1994, pp. 585-591.
	[4] R. Aylett, Narrative in Virtual Environments - Towards Emergent Narrative, in: Proceedings of the American Association for Artificial Intelligence Fall Symposium on Narrative Intelligence (AAAI-1999), Menlo Park, CA, 1999, pp. 83-86.
	[5] T. Bäck , D. B. Fogel and Z. Michalewicz, Evolutionary Computation 1, Basic Algorithms and Operators, Institute of Physics Publishing, London, United Kingdom, 2000.
	[6] B. Barry, Story Beads: A wearable for distributed and mobile storytelling, MIT Masters Thesis, 2000. http://ic.media.mit.edu/icSite/icpublications/Thesis/barbaraMS.html [viewed on May 14, 2006]
	[7] W. Bender, The Electronic Publishing project, 2002. http://ep.media.mit.edu/ [viewed on May 14, 2006]
	[8] A. Bergmann, W. Burgard and A. Hemker, Adjusting parameters of genetic algorithms by fuzzy control rules, in: New Computing Techniques in Physics Research III, K.H. Becks and D. Perret-Gallix (Eds.), World Scientific Singapore, Singapore, 1993.
	[9] M. Bernstein, Patterns of hypertext, in: Proceedings of the ACM conference on Hypertext and Hypermedia (SIGWEB-1998), Pittsburgh, PA, 1998, p. 21-29.
	[10] M. Bernstein, M. Joyce and D. B. Levine, Contours of Constructive Hypertext, in: Proceedings of the ACM conference on Hypertext and Hypermedia (SIGWEB- 1992), Milan, Italy, 1992, pp. 161-170.
	[11] M.U. Bers and J. Cassell, Interactive Storytelling Systems for Children: Using Technology to Explore Language and Identity, Journal of Interactive Learning Research 9 (2) (1998) 183-215.
	[12] T. Bickmore and J. Cassell, Small Talk and Conversational Storytelling in Embodied Interface Agents, in: Proceedings of the AAAI Fall Symposium on Narrative Intelligence (AAAI-1999), Cape Cod, MA, 1999, pp. 87-92.
	[13] J. D. Bolter, Writing Space: Computers, Hypertext, and the Remediation of Print, Lawrence Erlbaum Association, Mahwah, NJ, 2001.
	[14] K. M. Brooks, Metalinear Cinematic Narrative: Theory, Process, and Tool,MIT Ph.D. Dissertation, 1999. http://ic.media.mit.edu/icSite/icpublications/Thesis/ brooksPHD.html [viewed on May 14, 2006]
	[15] J. Cassell, The Gesture and Narrative Language Group. http://gn.www.media.mit.edu/groups/gn/ [viewed on May 14, 2006]
	[16] J. Cassell and T. Bickmore: Negotiated Collusion: Modeling Social Language and Its Relationship Effects in Intelligent Agents, User Modeling and Adaptive Interfaces 12 (2002) 1-44.
	[17] J. Cassell, Y. Nakano, T. Bickmore, C. Sidner and C. Rich, Annotating and Generating Posture from Discourse Structure in Em...
	[18] J. Cassell, H. Vilhjalmsson and T. Bickmore, BEAT: the Behavior Expression Animation Toolkit, in: Proceedings of the Conference in computer graphics and interactive techniques (SIGGRAPH-2001), Los Angeles, CA, 2001, pp. 477-486.
	[19] M. Cavazza, R. Aylett, K. Dautenhahn and C. Fencott, Interactive Storytelling in Virtual Environments: Building the Holodec...
	[20] M. Cavazza, F. Charles and S. J. Mead, Intelligent Virtual Agents, in: Lecture Notes in Artificial Intelligence vol. 2190, De Antonio, Aylett, & Ballin (Eds.), Springer- Verlag, Berlin, Germany, 2001.
	[21] M. Cavazza, F. Charles and S. J. Mead, AI-based Animation for Interactive Storytelling, in: Proceedings of Computer Animation, IEEE Computer Society Press, Bologna, Italy, 2001, pp. 318-325.
	[22] M. Cavazza, F. Charles and S. J. Mead, Characters in Search of an Author: AI- Based Virtual Storytelling, in: Proceedings of the International Conference on Virtual Storytelling, Avignon, France, 2001, pp. 145-154.
	[23] M. Cavazza, F. Charles and S. J. Mead, Interacting with virtual characters in interactive storytelling, in: Proceedings of the First International Joint Conference on Autonomous Agents and Multi-Agent Systems, Bologna, Italy, 2002, pp. 318-325.
	[24] S. Coles and K. Dautenhahn, A robotic story-teller, in: 8th International Symposium on Intelligent Robotic Systems (SIRS-2000), Reading, United Kingdom, 2000, pp. 18-20.
	[25] J. Dakss, S. Agamanolis, E. Chalom and V.M. Bove, Jr., HyperSoap, 2002. http:// www.media.mit.edu/hypersoap/ [viewed on May 14, 2006]
	[26] J. Dakss and V. M. Bove, Jr., ISIS, a programming language for responsive media, 2002. http://web.media.mit.edu/~stefan/isis/ [viewed on May 14, 2006]
	[27] C. Danis, L. Comerford, E. Janke, K. Davies, J. DeVries and A. Bertrand, Storywriter: A Speech Oriented Editor, in: Proceedings of the ACM Conference on Human Factors in Computing Systems (CHI-1994), Boston, MA, 1994, pp. 277- 278.
	[28] C. Darwin, The Origin of Species, Modern Library Paperback, New York, NY, 1998.
	[29] K. Dautenhahn, Story-Telling in Virtual Environments, in: Intelligent Virtual Environments workshop, European Conference on Artificial Intelligence (ECAI-1998), Brighton, UK, 1998, pp. 39-48.
	[30] K. Dautenhahn, Embodiment in Animals and Artifacts, Papers from the AAAI Fall Symposium, Technical report FS-96-02, AAAI Press, Cambridge, MA, 1996, pp. 27-32.
	[31] G. Davenport, Interactive Cinema, 2002. http://ic.media.mit.edu/ [viewed on May 14, 2006]
	[32] G. Davenport and M. Murtaugh, Automatist storyteller systems and the shifting sands of story, IBM Systems Journal, 36 (3) (1997) 446 - 456.
	[33] L. N. De Castro and J. I. Timmis, Artificial Immune Systems: A New Computational Intelligence Approach, Springer-Verlag, Berlin, Germany, 2002.
	[34] DirectX Documentations, 2006.
	[35] E. Edmonds, G. Fischer, J. Mountford, F. Nake, D. Riecken and R. Spence, Creativity: Interacting with Computers, in: Proceedings of ACM Conference on Human Factors in Computing Systems (CHI-1995), Denver, CO, 1995, pp. 185-186.
	[36] D. C. Engelbart, Augmenting Human Intellect: A Conceptual Framework, Summary Report AFOSR-3223 under Contract AF 49(638)-1024, SRI Project 3578 for Air Force Office of Scientific Research, Stanford Research Institute, October 1962.
	[37] J. D. Foley, A. van Dam, S. K. Feiner and J. F. Hughes, Computer Graphics: Principles and Practice in C - 2nd Edition, Addison-Wesley Publishing Co., Boston, MA, 1995.
	[38] E. M. Forster, Apects of the Novel, Harvest Books, Fort Washington, PA, 1985.
	[39] A. S. Glassner, Active Storytelling, in: Computer Graphics International (CGI- 1999), Canmore, Alberta, Canada, 1999, pp. 2-9.
	[40] A. S. Glassner, Interactive Storytelling: People, Stories, and Games, in: International Conference on Virtual Storytelling, Avignon, France, 2001, pp. 51-60.
	[41] D. Grabson and N. Braun, A Morphological Approach to Interactive Storytelling, in: Proceedings of on Artificial Intelligence and Interactive Entertainment, Living in Mixed Realities, Sankt Augustin, Germany, 1996, pp. 337-340.
	[42] B. Hayes-Roth, R. van Gent and D. Huber, Acting in Character, in: Creating Personalities for Synthetic Actors, R. Trappl and P. Petta (Eds.), Springer-Verlag, New York, NY, 1997.
	[43] J. Horowitz-Murray, Hamlet on the Holodeck : The Future of Narrative in Cyberspace, Free Press, New York, NY, 1998.
	[44] Humanities Informatics Project, TAMU University and TAMU Libraries. http://hi.tamu.edu/index.html [viewed on May 14, 2006]
	[45] J. E. Hunt and D. E. Cooke, Learning using an artificial Immune System, Journal of Network and Computer Applications: Special Issue on Intelligent Systems: Design and Application 19 (1996) 189-212.
	[46] B. Laurel, Computers as Theatre. Addison-Wesley Publishing Co., Boston, MA, 1993.
	[47] B. Laurel, T. Oren and A. Don, Issues in Multimedia Interface Design: Media Integration and Interface Agents, in: Proceedings of ACM Conference on Human Factors in Computing Systems (CHI-1990), Seattle, WA, 1990, pp. 133-139.
	[48] M. Lee and H. Takagi, Dynamic control of genetic algorithms using fuzzy control techniques, in: Proceedings of the Fifth International Conference on Genetic Algorithms, S. Forrest (Ed.), Morgan Kaufmann, San Mateo, CA, pp. 76-83, 1993.
	[49] J. C. R. Licklider, Man-Computer Symbiosis, I.R.E. Transactions on Hunman Factors in Electronics, HFE-1 (1960) 4-10.
	[50] D. Lodge, The Art of Fiction, Viking/Penguin Books, New York, NY, 1993.
	[51] I. Machado, A. Paiva, and P. Brna, Real Characters in Virtual Stories (Promoting Interactive Story-Creation Activities), in: Proceedings of the First International Conference on Virtual Storytelling (ICVS 2001), Avignon, France, 2001, pp. 127- 134.
	[52] E. Maffre, J. Tisseau and M. Parenthoën, Virtual Agents' Self-Perception in Story Telling, in: Proceedings of the First International Conference on Virtual Storytelling (ICVS 2001), Avignon, France, pp. 155-160.
	[53] E. Mallen, Online Picasso Project
	[54] M. Mateas and P. Sengers, Narrative Intelligence, in: Proceedings of the American Association for Artificial Intelligence Fall Symposium on Narrative Intelligence (AAAI-1999), Menlo Park, CA, 1999, pp. 1-10.
	[55] M. Mateas and A. Stern, A Behavior Language for Story-Based Believable Agents, in: Working notes of Artificial Intelligence and Interactive Entertainment, Ken Forbus and Magy El-Nasr Seif (Eds.), AAAI Press. Menlo Park, CA, 2002.
	[56] M. Michell, An Introduction to Genetic Algorithms, The MIT Press, Cambridge, MA, 1999.
	[57] Microsoft Agent home page.
	[58] R. Nakatsu and N. Tosa, Interactive Movies, Handbook of Internet and Multimedia - Systems and applications, B. Furht (Ed), CRC Press and IEEE Press, Sound Parkway, NW, 1999.
	[59] T. Nelson, Literary Machine, Mindful Press, Sausalito, CA, 1982.
	[60] J. Roschelle, J. J. Kaput, SimCalc MathWorlds for the mathematics of change, Communications of the ACM, 39 (8) (1996) 97-99.
	[61] D. Rutkowska, Neuro-Fuzzy Architectures and Hybrid Learning, Physica-Verlag, Heidelberg, Germany, 2002.
	[62] K. Ryokai, C. Vaucelle and J. Cassell, Literacy Learning by Storytelling with a Virtual Peer, in: Proceedings of Computer Support for Collaborative Learning Conference, Boulder, CO, 2002, pp. 352-360.
	[63] E. Sanchez and P. Pierre. Fuzzy logic and genetic algorithms in information retrieval, in: 3rd International Conference on Fuzzy Logic, Neural Networks and Soft Computing, Lizuka, Japan,1994, pp. 29-35.
	[64] P. Sengers, Narrative Intelligence, in: Human Cognition and Social Agent Technology, K. Dautenhahn (Ed.), John Benjamins Publishing Company, Amsterdam, The Netherlands, 2000, pp.1-26.
	[65] N. M. Sgouros, Supporting Audience and Player Interaction during Interactive Media Performances, in: IEEE International Conference on Multimedia and Expo (ICME-2000), New York, NY, 2000, pp. 1367-1370.
	[66] N. M. Sgouros and S. Kousidou, Authoring and execution environments for multimedia applications featuring robotic actors, in: Proceedings of the ninth ACM international conference on Multimedia, Ottawa, Canada, 2001, pp. 540-542.
	[67] N. M. Sgouros and S. Kousidou, Generation and Implementation of Mixed-Reality, Narrative Performances Involving Robotic Actors, in: Proceedings of the International Conference on Virtual Storytelling, Avignon, France, 2001, pp. 69-80.
	[68] N. M. Sgouros, G. Papakonstantinou and P. Tsanakas, A Framework for Plot Control in Interactive Story Systems, in: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI-96), Portland OR, AAAI/MIT Press, 1996, pp. 162- 167.
	[69] F. Shipman, R. Airhart, H. Hsieh, P. Maloor, J.M. Moore and D. Shah, Visual and Spatial Communication and Task Organization...
	[70] R. Stuart and P. Norvig, Artificial Intelligence: A Modern Approach - 2nd Edition, Prentice Hall, Upper Saddle River, NJ, 2002.
	[71] W. Swartout, R. Hill, J. Gratch, W. L. Johnson, C. Kyriakakis, C. LaBore, R. Lindheim, S. Marsella, D. Miraglia, B. Moore, ...
	[72] A. Tettamanzi, Evolutionary algorithms and fuzzy logic: A two-way integration, in: Proceedings of the 2nd Annual Joint Conference on Information Sciences, Wrightsville Beach, NC, 1995, pp. 464-467.
	[73] A. Tettamanzi and M. Tomassini, Soft computing: Integrating Evolutionary, Neural and Fuzzy Systems. Springer-Verlag, Berlin, Germany, 2001.
	[74] E. Urbina and R. Furuta, Proyecto Cervantes 2001.
	[75] WatchPoint Media. http://www.watchpointmedia.com [viewed on May 14, 2006]
	[76] J. Yen and R. Langari, Fuzzy Logic, Intelligence, Control and Information, Prentice Hall, Upper Saddle River, NJ, 1998.
	[77] M. R.Young, An Overview of the Mimesis Architecture: Integrating Narrative Control into a Gaming Environment, in: AAAI Spring Symposium in Artificial Intelligence and Interactive Entertainment, AAAI Press, Menlo Park, 2001.
	[78] M. R.Young, Creating Interactive NarrativeStructures: The Potential for AI Approaches, in: AAAI Spring Symposium in Artificial Intelligence and Interactive Entertainment, AAAI Press, Menlo Park, 2000.
	[79] C. Zimmer, Evolution: The Triumph of an Idea, Harper Perennial, London, United Kingdom, 2001.
	APPENDIX A STORY AND AGENT SCRIPTING FUNCTIONS
	A.1 Functions
	1. set(<variable>, <value>) - Assigns <value> to <variable>
	2. getuserinput(<random variable>, <value>) - Provides an input box for user to select an element from the random variable.
	3. do(<action instance>) - Executes a particular action instance
	4. remove(<variable>,<random variable>) - Removes <variable> from the list in <random variable>
	5. randf() - Generates a random floating point number between 0 and 1
	6. rand() - Generates a random integer value
	7. add(<variable>,<random variable>) - Appends <variable> into the list in <random variable>

	A.2 Agent Control Functions
	1. $anim(<agent_name>, 0, <animation>,<synchronization>,<numbers>) or $anim(<agent_name>,<animation>) - Agent animation functions that can be used to play a predefined animation of the agent.
	2. $moveto(<agent_name>,x,y) - Moves an agent from its current location to x, y.
	3. $relative_move(x,y) - Moves an agent by x pixels and y pixels from its current position
	4. $show(<agent_name>, x, y) - Makes the <agent_name> visible on the screen at the screen coordinate x, y
	5. $delay(<agent_name>, m) - Pauses <agent_name> by m milliseconds before executing the next action script
	6. $say(<agent_name>,<text>) - Makes <agent_name> speaks <text>
	7. $hide(<agent_name>) - Hides the <agent_name>
	8. $playsong(<filename or string reference>) - Plays the given song as the background music for this scene.
	9. $setbackground(<filename or string reference>) - Sets the image that is to be used as background scene.
	10. $getParam(<offset>) - Allows author to retrieval scene parameters that are referenced in various story elements.
	11. $getPosX(<agent_name>), $getPosY(<agent_name>) - Retrieves the x and y coordinates of an agent.

	APPENDIX B TASK SHEET FOR THE USABILITY STUDY
	1. Story elements
	2. Story templates
	3. Story thread
	4. Agent characters
	5. Story rules
	6. The authoring interface
	7. Functions
	8. Executing the Three Little Pigs’ story
	9. Spend a few minutes exploring the authoring tools and understanding the story elements in the given story (e.g. inspecting attributes of the various story elements)
	1. Open the story stored in folder SubjectID\VariationA
	2. Create a random variable and name it randomhouse
	3. Set the elements attribute of randomhouse to reference the ID of the house objects (obj_1,obj_2 and obj_3).
	4. Create a new attribute owns in the pig agent objects (agt_2, agt_3 and agt_4). This will be used to associate a house object to the particular pig agent.
	5. Locate story template 2 (ID: tmplt_2) in the IAE.
	6. In sequence 2, 3 and 4 of tmplt_2, initialize the owns attribute of each of the pig agents with the randomhouse variable. (hint: use the $set function to set the owns attribute of the pig agents to an element from the randomhouse variable).
	7. Modify story text in sequence 2 of tmplt_2 so that the materials used to build the houses are read by the narrator. (hint: use the ‘{‘ & ‘}’ operators to dereference an object or attribute).
	8. Run the story and observe the story variations.
	9. Save your work in the same folder: SubjectID\VariationA.
	1. Open the story stored in folder SubjectID\VariationB.
	2. II. Create three action elements and name them act_buildHouse, act_buyHouse, and act_findHouse.
	3. III. Populate the action elements (act_buildHouse, act_buyHouse, and act_findHouse) with story text and variables to describ...
	4. Create a random variable and name it buildingRandomHouse.
	5. Set the elements attribute of buildingRandomHouse to reference the ID of the action elements created in step IV (namely act_buildHouse, act_buyHouse, and act_findHouse)
	6. Modify Sequence 2, 3 and 4 of Story template 1 (tmplt_1):
	7. Run the story and observe the story variations.
	8. Save your work in the same folder: SubjectID\VariationB.
	1. Open the story stored in folder SubjectID\VariationC.
	2. Create a new story template in the Introduction story stage and assign tmplt_99 as its ID.
	3. Set tmplt_2’s type attribute as Introduction.
	4. Create four template sequences in tmplt_2.
	5. Copy the layout of the story elements in tmplt_1.
	6. Alter the story text in tmplt_2.
	7. Run the story and observe the story variations.
	8. Save your work in the same folder: SubjectID\VariationC.
	1. There are four story stages (Introduction, RedRidingHoodMeetsTheWolf, WolfVisitsGranny and Conclusion). Determine the story text that goes in the story stages.
	2. Name the agent characters in your story: Little red riding hood, her mother, her grandmother, the wolf, and the hunter.
	3. Briefly think about the story elements for your story, for example:
	4. Briefly think about the story rules you want to use, for example:
	1. Load the empty story folder: SubjectID\NewStory.
	2. Create the 5 agent characters (little red riding hood, her mother, her grandmother, wolf, and the hunter) and assign each of them a unique ID.
	3. Create the story elements and rules you have listed in part 1.
	4. Create four story templates for the four story stages and create a template sequence for each story paragraph:
	5. Populate the story templates with story text and story elements.
	6. Run the story.
	7. Save your work in the folder: SubjectID\NewStory.

	APPENDIX C QUESTIONNAIRE FOR THE USABILITY STUDY
	1. Please briefly describe the steps/processes you went through in planning your story variation.
	2. The authoring tools in the IAE helped me visualize the story elements.
	3. It was easy for me to modify the given story after receiving sufficient training about the authoring tools.
	4. It was easy to locate the attributes/properties of a certain story element referenced in the story with the authoring tools.
	5. It was easy for me to visualize and understand the given story structure (plots, events and character interactions) with the IAE.
	6. Would you use the IAE to read interactive stories that others have written? Why or why not?
	7. What features in the authoring tools were helpful in authoring your story variation?
	8. What new features would help the IAE to allow the authors to better visualize and understand others’ interactive stories?
	1. Please briefly describe the steps/processes you go through in planning your story.
	2. The display of story templates in panels of different color allows me to plan my story in terms of various story stages.
	3. Organization of the various types of story elements (agents, objects, scripts and rules) in the IAE allows me to locate the information I need.
	4. Was authoring your story more like computer programming or building a web page with a visual editor (such as Microsoft Frontpage)? Please explain.
	5. What kind of authoring activity could you not perform with the authoring tools? Please explain.
	6. Is there a particular form of story that could not be expressed using the current IAE features? Please explain.
	7. What are the features that you like about the authoring tools in IAE? Please explain.
	8. What are the features that you dislike about the authoring tools in IAE? Please explain.
	9. I enjoyed authoring stories with the IAE.

	APPENDIX D USABILITY STUDY RESULTS
	Table D.1 Minutes it took the test subjects to complete the assigned tasks

	APPENDIX E TEST RESULTS FROM EVALUATION
	Table E.1 Matching elements measure for 1,000 story elements set
	Table E.2 Matching elements measure for 2,500 story elements set
	Table E.3 Matching elements measure for 5,000 story elements set
	Table E.4 Longest contiguous element measure for 1,000 story elements set
	Table E.5 Longest contiguous element measure for 2,500 story elements set
	Table E.6 Longest contiguous element measure for 5,000 story elements set
	Table E.7 Average contiguous measure for 1,000 story element set
	Table E.8 Average contiguous measure for 2,500 story element set
	Table E.9 Average contiguous measure for 5,000 story element set
	Table E.10 Lower and upper bounds of the 1,000 story element set
	Table E.11 Lower and upper bounds of the 2,500 story element set
	Table E.12 Lower and upper bounds of the 5,000 story element set
	Table E.13 Matching element measure for 1,000 story elements set (25% forward branching probability)
	Table E.14 Matching element measure for 1,000 story elements set (50% forward branching probability)
	Table E.15 Matching element measure for 1,000 story elements set (75% forward branching probability)
	Table E.16 Matching element measure for 2,500 story elements set (25% forward branching probability)
	Table E.17 Matching element measure for 2,500 story elements set (50% forward branching probability)
	Table E.18 Matching element measure for 2,500 story elements set (75% forward branching probability)
	Table E.19 Matching element measure for 5,000 story elements set (25% forward branching probability)
	Table E.20 Matching element measure for 5,000 story elements set (50% forward branching probability)
	Table E.21 Matching element measure for 5,000 story elements set (75% forward branching probability)
	Table E.22 Longest contiguous element measure for 1,000 story elements set (25% forward branching)
	Table E.23 Longest contiguous element measure for 1,000 story elements set (50% forward branching)
	Table E.24 Longest contiguous element measure for 1,000 story elements set (75% forward branching)
	Table E.25 Longest contiguous element measure for 2,500 story elements set (25% forward branching)
	Table E.26 Longest contiguous element measure for 2,500 story elements set (50% forward branching)
	Table E.27 Longest contiguous element measure for 2,500 story elements set (75% forward branching)
	Table E.28 Longest contiguous element measure for 5,000 story elements set (25% forward branching)
	Table E.29 Longest contiguous element measure for 5,000 story elements set (50% forward branching)
	Table E.30 Longest contiguous element measure for 5,000 story elements set (75% forward branching)
	Table E.31 Average contiguous measure for 1,000 story element set (25% forward branching)
	Table E.32 Average contiguous measure for 1,000 story element set (50% forward branching)
	Table E.33 Average contiguous measure for 1,000 story element set (75% forward branching)
	Table E.34 Average contiguous measure for 2,500 story element set (25% forward branching)
	Table E.35 Average contiguous measure for 2,500 story element set (50% forward branching)
	Table E.36 Average contiguous measure for 2,500 story element set (75% forward branching)
	Table E.37 Average contiguous measure for 5,000 story element set (25% forward branching)
	Table E.38 Average contiguous measure for 5,000 story element set (50% forward branching)
	Table E.39 Average contiguous measure for 5,000 story element set (75% forward branching)
	Table E.40 Lower and upper bounds of the 1,000 story element set (25% forward branching)
	Table E.41 Lower and upper bounds of the 1,000 story element set (50% forward branching)
	Table E.42 Lower and upper bounds of the 1,000 story element set (75% forward branching)
	Table E.43 Lower and upper bounds of the 2,500 story element set (25% forward branching)
	Table E.44 Lower and upper bounds of the 2,500 story element set (50% forward branching)
	Table E.45 Lower and upper bounds of the 2,500 story element set (75% forward branching)
	Table E.46 Lower and upper bounds of the 5,000 story element set (25% forward branching)
	Table E.47 Lower and upper bounds of the 5,000 story element set (50% forward branching)
	Table E.48 Lower and upper bounds of the 5,000 story element set (75% forward branching)

	VITA

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

