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ABSTRACT 
 
 

The Bipyridyl Herbicide Paraquat-Induced Toxicity in  

Human Neuroblastoma SH-SY5Y Cells:  

Relevance to Dopaminergic Pathogenesis. (August 2005) 

Wonsuk Yang, B.S., Yonsei University; 

M.S., Yonsei University 

Chair of Advisory Committee: Dr. Evelyn Tiffany-Castiglioni 
 
 
 

Paraquat (PQ) is a cationic non-selective bipyridyl herbicide widely used in 

agriculture to control weeds and grasses. Epidemiologic studies indicate that exposure to 

pesticides can be a risk factor in the incidence of Parkinson`s disease (PD). A strong 

correlation has been reported between exposure to paraquat and PD incidence in Canada, 

Taiwan, and United States. This correlation is supported by animal studies showing that 

paraquat produces toxicity in dopaminergic neurons of the rat and mouse brain. However, 

it is unclear how paraquat triggers toxicity in dopaminergic neurons. Based on the 

previous reports, it was hypothesized that paraquat may induce oxidative stress and 

proteasomal dysfunction-mediated toxicity in dopaminergic neurons. To explore this 

possibility, dopaminergic SH-SY5Y human neuroblastoma cells were treated with 

paraquat, and several biomarkers of oxidative stress or proteasomal dysfunction were 

investigated. First, a specific dopamine transporter inhibitor GBR12909 significantly 

protected SY5Y cells against the toxicity of paraquat, indicating that paraquat exerts its 

toxicity by a mechanism involving the dopamine transporter (DAT). Second, paraquat 
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increased the levels of reactive oxygen species (ROS) in SY5Y cells, but decreased the 

levels of glutathione. Third, paraquat inhibited glutathione peroxidase activity, but did 

not affect glutathione reductase activity. On the other hand, paraquat increased GST 

activity by 24 hr, after which GST activity returned to the control value at 48 hr. Fourth, 

paraquat decreased mitochondrial transmembrane potential (MTP). Fifth, paraquat 

produced the increases in malondialdehyde (MDA) and protein carbonyls, as well as 

DNA fragmentation, indicating oxidative damage to major cellular components. Sixth, 

paraquat decreased proteasomal activity, the activities of mitochondrial complex I and V, 

and intracellular ATP levels, but increased the activities of caspase 3 and 9, indicating 

that proteasomal inhibition is linked to mitochondrial dysfunction accompanied by the 

activation of apoptotic signaling pathway. Seventh, paraquat increased the protein levels 

of heme oxygenase-1 (HO-1), p53, Bax, α-synuclein and ubiquitinated proteins. Eighth, 

paraquat induced nuclear condensation. Taken together, these findings support the 

hypothesis that paraquat produces oxidative stress and proteasomal dysfunction-

mediated toxicity in SY5Y cells. Thus, current findings suggest that paraquat may 

induce the pathogenesis of dopaminergic neurons through oxidative stress and 

proteasomal dysfunction.  
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CHAPTER I 

 

INTRODUCTION 

 

Incidence, clinical symptoms and pathological features of Parkinson`s disease (PD) 

           Parkinson`s disease (PD) was first described by James Parkinson in 1817. PD is 

second only to Alzheimer`s disease (AD) as the most common idiopathic 

neurodegenerative disorder affecting roughly 1-2% of the current population over the 

age of 65, further increasing in incidence at older ages (de Rijk et al., 1995). Its 

incidence has been reported to range from 4.5 to 21 new cases per 100,000 populations 

per year and its prevalence to vary from 18 to 328 per 100,000 people (Tanner, 2003). 

PD is more common among men than women, although gender-specific differences 

show more variability worldwide than increasing age (Tanner & Yaov, 1999). The 

clinical symptoms of PD are tremor, rigidity, bradykinesia, gait disturbance, postural 

instability, excessive sweating, depression, and loss of facial expression (Fahn, 2003). 

PD is characterized pathologically by a specific and massive loss (50-70%) of 

dopaminergic neurons in the A9 area of human brain known as the substantia nigra pars 

compacta (SNpc), which is accompanied by a dramatic reduction of striatal dopamine 

levels (Lang & Lozano, 1998). An additional important pathological feature of PD is the 

 

This dissertation follows the style of Journal of Toxicology and Environmental Health 
Part A. 
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presence of intracytoplasmic inclusions called Lewy bodies in neuronal cell body and 

Lewy neurites in neuronal processes of the remaining dopaminergic neurons (Forno, 

1996).  

 

Mechanisms of dopaminergic neuronal death 

          The mechanisms involved in the progressive degeneration of nigrostriatal 

dopaminergic neurons are of major interest in PD research. Recently, particular attention 

has focused on several conceptually distinct mechanisms, including oxidative stress, 

mitochondrial dysfunction, excitotoxicity, neurotrophic factors, neuroinflammation, viral 

infection, proteasomal dysfunction, and apoptosis.  It may be possible that they all 

interact and amplify each other, leading to dopaminergic neuronal death in PD brains 

(Dunnett & Bjorklund, 1999). Each of thses potential mechanisms of dopaminergic 

neuronal death in PD will be briefly reviewed in the following sections.  

 

Oxidative stress   

            Reactive oxygen species (ROS) including superoxide anions, hydrogen peroxide, 

and hydroxyl radicals are normally generated through cellular metabolism and most of 

them are neutralized by cellular antioxidant GSH and antioxidant enzymes including 

superoxide dismutase (SOD) and glutathione peroxidase (GPx) (Dringen, 2000). 

Oxidative stress occurs as a consequence of the imbalance between the production of 

ROS and antioxidant capacity. The brain is specifically at risk for oxidative damage 

(Figure 1). Furthermore, dopaminergic neurons are inherently predisposed to oxidative 
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Figure 1. Schematic presentation illustrating how brain is at risk of oxidative damage 
(Floyd & Hensley, 2002). ROS are produced and interact with cellular targets producing 
unique oxidation products which in turn, may exert oxidative stress upon the tissue, too. 
Abbreviations and ROS include H2O2, hydrogen peroxide; OH., hydroxyl free radical; 
O2

.−, superoxide; LOOH, lipid hydroperoxide; Fe, iron ion; Cu, copper ion; NO, nitric 
oxide; ONO2−, peroxynitrite; SOD, superoxide dismutase; GSHPx, glutathione 
peroxidase; GSH, glutathione; HNE, 4-hydroxy-2-nonenal; and 8-OHdG, 8-hydroxy-2′-
deoxyguanosine. 
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stress because the metabolism of dopamine produces toxic dopamine quinones, 

superoxide anions, hydroxyl radicals, and hydrogen peroxide (Stokes et al., 1999; Blum 

et al., 2001). Indeed, studies of PD brains demonstrate that dopaminergic neurons are 

under oxidative stress condition as evidenced by the accumulation of iron (Good et al., 

1992), the decrease of GSH (Pearce et al., 1997), and the increase of protein carbonyl 

(Alam et al., 1997a).  In addition, the increase of malondialdehyde (MDA) (Dexter et al., 

1994), 4-hydroxynonenal (4-HNE) (Yoritaka et al., 1996), and the increase of 8-

hydroxyguanosine (Alam et al., 1997b) were observed in the surviving dopaminergic 

neurons. 

 

Mitochondrial dysfunction 

           In addition to oxidative stress, mitochondria play a critical role in the health and 

survival of cells by providing ATP that fuels the maintenance, repair, and turnover of 

cellular components. Five respiratory chain complexes of mitochondria regulate the 

synthesis of ATP (Figure 2). One of those is complex I, which controls the transfer of 

one electron from NADPH to the coenzyme Q and the transfer of two protons to the 

mitochondrial intermembrane space. These protons are then used by complex V to 

synthesize ATP from ADP (Beal, 1992). Significantly, a selective 30-40% decrease in 

complex I activity of the mitochondrial respiratory chain has been found in SNpc of PD 

patients (Schapira et al., 1990). This defect has also been found in platelets and skeletal 

muscle of PD patients (Mann et al., 1992). Strong support for a mitochondrial DNA-

encoded defect comes from studies showing that complex I defects from PD platelets are 
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Figure 2. Mitochondrial generation and detoxification of reactive oxygen species 
(Fiskum et al., 2003). The site of mitochondrial ROS production most widely implicated 
in Parkinson's disease is complex I of the electron transport chain. Indirect evidence for 
involvement of complex I includes the observations that neurotoxicants capable of 
inducing Parkinson's symptoms and neuropathology in vivo, such as MPP+ and rotenone, 
are inhibitors of complex I and stimulate ROS generation in vitro. However, these same 
agents result in inhibition of the overall enzyme activity of α-ketoglutarate 
dehydrogenase complex (αKGDC), a multisubunit complex that can also catalyze 
superoxide (O2

.−) and consequently H2O2 production. The ROS metabolites most likely 
to mediate oxidative injury to mitochondria and other cellular constituents are hydroxyl 
radical (OH•) and peroxynitrite (HNOO-). These agents can cause oxidative damage and 
inhibition of mitochondrial enzyme activities, including those of complex I and KGDC. 
This inhibition can lead to metabolic failure through impairment of electron transport-
dependent generation of the proton-motive force that drives the synthesis of ATP at 
complex V (F1F0 ATP synthetase). Complete detoxification of superoxide depends on 
the enzymes superoxide dismutase (SOD), glutathione peroxidase (GPX), and 
glutathione reductase (GR) together with glutathione and a sufficiently reduced redox 
state of NAD(P)H to drive the reduction of glutathione and consequently the reduction 
of H2O2 to H2O. 
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transferable into mitochondrial-deficient cell lines (Gu et al., 1998). These defects are 

associated with the additional generation of free radicals, the impairement of 

mitochondrial calcium buffering, the decrease of ATP synthesis, and the opening of 

permeability transition pore resulting in apoptosis (Nicholls, 2002). 

 

Excitotoxicity 

           Glutamate-induced excitotoxicity is thought to represent a major mechanism in 

ischemia (Rothman & Olney, 1986) and epilepsy (Olney et al., 1986), and might play a 

role in PD (Rodriguez et al., 1998). Excess glutamate changes the permeability of cells 

to calcium ions (Ca2+) by acting on and through N-methyl--aspartate (NMDA) receptors 

ultimately leading to neuronal death (Mody & MacDonald, 1995). Calcium-dependent 

NMDA neurotoxicity is based on both excessive nitric oxide formation (Jenner, 2003b) 

and mitochondrial dysfunction (Schinder et al., 1996). First, the extensive influx of 

calcium ions causes an activation of nitric oxide synthase, which converts L-arginine to 

citrulline and nitric oxide. Excess NO is in part responsible for glutamate neurotoxicity. 

It is likely that the neurotoxic actions of NO are mediated by peroxynitrite (ONOO−). 

Peroxinitrite is the reaction product from NO and superoxide anion (Dawson & Dawson, 

1996). Second, the excess Ca2+ entry accompanying NMDA-receptor activation is 

largely accumulated by the intracellular mitochondria, with effects on mitochondrial 

membrane potential, ATP synthesis, glycolysis, and ROS generation, leading to failures 

in cytoplasmic Ca2+ homeostasis and thus promoting cell death (Nicholls & Budd, 1998). 

Dopaminergic nigrostriatal neurons are rich in glutamate receptors and receive an 
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extensive glutamatergic innervation from the cortex and the subthalamic nucleus 

(Olanow & Tatton, 1999). Whereas the substantia nigra receives rich glutamatergic 

inputs, it has been speculated that glutamate-induced excitotoxicity may be involved in 

cell death in PD (Dunnett & Bjorklund, 1999). In support of a role for glutamate 

mediated excitotoxicity in PD, it has been reported that NMDA antagonists protect 

against loss of dopaminergic neurons resulting from 1,2,3,6-methyl-phenyl-

tetrahydropyridine (MPTP) treatment in rats (Turski et al., 1991) and primates 

(Greenamyre et al., 1994). In addition, human studies indicate that the glutamatergic 

system may contribute to PD. The evaluation of glutamate binding sites in control and 

PD-diseased brains by autoradiography has revealed a reduction in NMDA-receptors as 

well as in -amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) binding sites, 

whereas the metabotrophic binding sites seemed to be unaltered in the SNpc (Difazio et 

al., 1992). A decreased platelet glutamate uptake has also been evidenced in PD patients 

(Ferrarese et al., 2001).  

 

Neurotrophic factors 

           In the normal adult central nervous system (CNS), neurotrophic factors are 

constitutively expressed at low levels, but abnormally high or low levels are associated 

with the brain pathology. Sublethal neuronal damage in adult rats induces reactive 

astrocytes with the upregulation of neurotrophic factors such as ciliary neurotrophic 

factor (CNTF) and fibroblast growth factor (FGF) (Chadi et al., 1994; Asada et al., 

1995). Reactive astrocytes are found in SNpc regions of PD brains (McGeer et al., 1988), 
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but an in situ hybridization study found no detectable levels of glial-derived 

neurotrophic factor (GDNF) mRNA in brains obtained from PD patients or age-matched 

controls (Hunot et al., 1996). In contrast, low levels of BDNF and basic fibroblast 

growth factor (bFGF) are found in the surviving dopaminergic neurons of PD brains 

(Tooyama et al., 1994; Mogi et al., 1999; Howells et al., 2000). Thus, dopaminergic 

neuronal death may be associated with the decrease and loss of neurotrophic factors 

because neurotrophic factors are known to protect dopaminergic neurons from toxic 

insults. Three lines of evidence support this hypothesis. First, brain-derived neurotrophic 

factor (BDNF) increases the survival of cultured dopaminergic neurons and protects 

them from exposure to MPTP (Hyman et al., 1991). Second, GDNF and ciliary 

neurotrophic factor (CNTF) protect SNpc neurons in rats from transection of 

nigrostriatal axons (Hagg and Varon, 1993; Lin et al., 1993). Third, GDNF has been 

shown to increase the survival and sprouting of dopaminergic neurons in dopamine-

lesioned rodents and primates (Tomac et al., 1995; Gash et al., 1995) and to reverse 

parkinsonian features in MPTP-treated primates (Lapchak et al., 1997).  

 

Neuroinflammation  

           There is increasing evidence that neuroinflammation may contribute to 

dopaminergic pathogenesis (Figure 3). The substantia nigra has the highest density of 

microglia in the brain (Kim et al., 2000) and reactive microglia have been found in the 

striatum and substantia nigra of PD patients (McGeer et al., 1988). Significantly, marked 

increases of proinflammatory cytokines including tumor necrosis factor-α (TNF-α), inter 
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Figure 3. Potential involvement of glial cells in the pathogenesis of Parkinson s disease 
(Teismann et al., 2004). Activated microglial cells may contribute to dopaminergic 
neurodegeneration by releasing cytotoxic compounds such as cytokines (TNF-α, IFN-γ, 
IL-1β) which can induce CD23 expression and trigger iNOS expression with subsequent 
NO release. Cytokines may exert a direct effect on dopaminergic neurons by activating 
caspases, NF- B mediated transduction pathways that lead to the activation of 
deleterious enzymes (COX-2, iNOS) resulting in oxidative stress or, alternatively, by 
direct induction of COX-2 within dopaminergic neurons. NO is membrane permeable 
and can diffuse to neighboring dopaminergic neurons where it can react with superoxide 
O2

.– to form peroxynitrite (ONOO–). COX-2 or direct inhibition of complex I of the 
respiratory chain are possible pathways of O2

.– origin. Additionally activated microglia 
can release O2

.– due to activated NADPH-oxidase (shown gp91phox upregulation). All of 
the described machinery leads ultimatively to the demise of the neuron. Astrocytes might 
have a protective effect by releasing neurotrophic factors, or metabolizing dopamine by 
monoamino oxidase-B (MAOB) and catechol-O-methyl transferase (COMT), or 
eliminating free radicals by GPx. 
 
 



                                                                                                                                                   10
 
                                                                                                                                            
 
feron-γ (IFN-γ), interleukin-1β (IL-1β), and interleukin–6 (IL-6) have been found in the 

substantia nigra, the striatum and the cerebrospinal fluid (CSF) of PD patients (Nagatsu 

et al., 2000). Furthermore, cyclooxygenase-2 (COX-2) is upregulated in dopaminergic 

neurons of PD patients (Teismann et al., 2003). Also, high levels of COX-2 and 

inducible nitric oxide synthase (iNOS) are found in glial cells of PD brains (Knott  

et al., 2000). Each enzyme is known to produce nitric oxide, superoxide anions and 

peroxinitrite, ultimately leading to the damage of surrounding dopaminergic neurons 

(Teismann & Schulz, 2004).  

 

Viral infection 

            Some clinical reports and epidemiological data suggest that a virus may play a 

role in the etiology of PD. Indeed, an encephalitis virus induces postencephalitic 

parkinson-like symptoms in the patients (Duvoisin and Yahr, 1965; Kusano et al., 1966). 

In addition, the AIDS virus causes dopamine deficits in the patients (Sarder et al., 1996). 

Furthermore, influenza A virus has been suspected to contribute to the incidence of PD 

(Takahashi and Yamada, 2001). In support of these observations in humans, animal 

studies indicate that Theiler`s virus and mouse hepatitis have a predilection for and can 

severely damage the substantia nigra (Fishman et al., 1985; Simas et al., 1996). 

Significantly, Oliver et al. (1997) showed that Theiler`s virus specfically infects and 

destroys dopaminergic neurons in the substantia nigra of stereotaxically inoculated 

mouse. 
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Proteasomal dysfunction 

           Protein degradation is one of the essential mechanisms in the regulation of 

cellular proteins involved in cell cycle, development, growth, cell signaling, and antigen 

processing (De Martino & Slaughter, 1999). The ubiquitin-26S proteasome system 

(UPS) is a major pathway involved in detoxification and targeting of damaged proteins 

for degradation (Ciechanover & Brundin, 2003). Therefore, the dysfunction of UPS 

might cause the accumulation and aggregation of toxic proteins in the cell. Low 

chymotryptic-, tryptic-, and post-acidiclike hydrolyzing 20S/26S proteasomal activities 

have been found in the substantia nigra but not in the cortex or striatum of PD patients 

(McNaught & Jenner, 2001). Furthermore, the levels of α subunits not but β subunits of 

20S are markedly reduced in dopaminergic neruons of SNpc (McNaught et al., 2002). 

Also, the proteasome activator 19S/PA700 is decreaed in SNpc of PD pateints 

(McNaught et al., 2003). Thus, these human brain studies suggest that the impairment of 

UPS might contribute to the formation of Lewy bodies, resulting in the dopaminergic 

pathogenesis of PD (Figure 4).  

 

Apoptosis 

           Apoptosis is a morphologically and biochemically defined mode of cell death 

characterized by nuclear and cytoplasmic condensation, loss of mitochondrial 

transmembrane potential, DNA fragmentation, dilation of endoplasmic reticulum, 

blebbing of plasma membrane, formation of apoptotic bodies, and lack of an 

inflammatory reaction (Majno & Joris, 1995). It is triggered by the intrinsic suicidal 



                                                                                                                                                   12
 
                                                                                                                                            
 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.  Degradation of abnormal proteins by the ubiquitin–proteasome system and 
impairments that lead to the development of Parkinson's disease (McNaught et al., 2001). 
The first step is ATP-dependent identification and labeling of toxic proteins with 
multiple ubiquitin molecules (ubiquitination) as a signal for ATP-dependent degradation 
by the 26S proteasome. The second step is the attachment of polyubiquitinated proteins 
to the 19S proteasome and subsequent degradation of those by the 20S proteasome. The 
final step is the recovery (de-ubiquitination) and subsequent recycling of ubiquitin 
molecules from polyubiquitin chains that are released from proteins immediately before 
their translocation into the proteasome. Many studies have revealed defects in several 
components of the ubiquitin–proteasome system in sporadic Parkinson's disease (PD). 
These alterations could be significant in the initiation, development and/or progression 
of the neurodegenerative process in PD, and indicate that impaired protein clearance due 
to misfolding or proteasomal defects might be a common theme underlying the different 
etiologies of PD. 
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Figure 5. Schematic for premitochondrial signaling for apoptosis in the PD nigra (Tatton 
et al., 2003). The schematic illustrates the key role of the proapoptotic protein BAX in 
the induction of increased mitochondrial membrane permeability that allows the release 
of the different factors that signal for apoptotic degradation. Two possibly 
interdependent signaling pathways have been shown to activate BAX and/or its 
antagonists, BCL-2, and BCL-XL. The signaling elements that have been shown by 
immunocytochemistry of PD postmortem nigra are enclosed in boxes: (1) the p53-
GAPDH-BAX pathway; and 2) the FAS receptor-FADD-caspase 8-BAX pathway. UPS 
(ubiquitin-proteasomal system); SMase (sphingomyelinase)  
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machinery of the cell, as well as environmental stimuli, including irradiation, oxidative 

stress, viruses, and withdrawal of neurotrophic support (Wyllie et al., 1980). There have 

been several reports indicating that apoptotic neuronal death is a major pathway of 

dopaminergic pathogenesis in PD (Figure 5). In fact, DNA fragmentation (Mochizuki et  

al., 1997; Tatton et al., 1998), activated forms of caspase-8, -9, -3 (Andersen, 2001), the 

upregulation of Bax (Tatton, 2000), p53 (de la Monte et al., 1998), and NF-kB (Hunot et   

al., 1997) have been demonstrated in dopaminergic neurons of PD patients. 

 

Etiologic factors 

           PD can be classified into sporadic and familial PD, which account for 

approximately 90 or 10% of total PD cases, respectively (Tanner et al., 1999). As a 

result, it has been debated whether environmental factors or genetic factors are primary 

contributors in the incidence of PD among human populations. Currently, it is 

commonly believed that PD is triggered by the gene-environment and aging-

environment interaction (Le Couter et al., 2002; Tsang & Soong, 2003). 

 

Aging  

          Aging has long been considered to be the most unequivocal etiologic factor of PD 

because PD is rare before 50 years of age and its incidence increases with age thereafter. 

Aging is the progressive and irreversible decline of the different physiological functions 

of the organism during the last part of its life and it is a complex process that is under 

genetic control and influenced by environment (Albers & Beal, 2000). Aging-dependent 
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increases of protein carbonyl, malondialdehyde (MDA), and 8-hydroxy-2-

deoxyguanosine are found in human brain (Oliver et al., 1987; Mecocci et al., 1993). 

Correspondingly, these indicators of damage are also reported in the substantia nigra of 

PD brain (Jenner, 2003). In addition, studies show that an aging-related change in 

xenobiotic metabolism might contribute to PD incidence (Irwin et al., 1992; Steventon et 

al., 2001). 

 

Genetic factors       

           There has been considerable interest in the potential role of genetic factors in the 

etiology of PD (Golbe, 1993). Approximately 5-10% of PD patients have a familial form 

of PD with an autosomal-dominant pattern of inheritance. Large pedigrees have been 

identified where members in different generations suffer from PD. In addition, the 

incidence of PD is greater in family members than in age-matched controls (Plante-

Bordeneuve et al., 1995). A twin study revealed no difference in concordance between 

monozygotic and dizygotic twins of PD patients aged 60 years or older but a 

significantly increased incidence was observed in monozygotic twins who developed PD 

at less than 50 years of age (Tanner et al., 1999). These findings suggest that genetic 

factors are important in early-onset patients but are not likely to play a major role in 

sporadic PD. To date, mutations have been identified in α-synuclein, nuclear receptor-

related 1 (Nurr 1), DJ-1, ubiquitin C-terminal hydrolase L1 (UCH-L1), neurofilament 

medium subunit protein (NF-M), and parkin among PD patients. In addition, a number 

of studies suggest that functional polymorphisms in genes of dopamine metabolism and 
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transport, iron homeostasis, inflammation, mitochondrial abnormalities, and exogenous 

or endogenous toxin metabolism might play a role in PD incidence.  

           α-synuclein gene was identified in a large Italian–American family with 

autosomal dominant early-onset PD (Golbe et al., 1990). Linkage to markers on 

chromosome region 4q21–q23 was demonstrated and a missense mutation A53T in exon 

4 of the gene encoding α-synuclein identified. This mutation was also found in affected 

members of three Greek families with PD (Polymerropoulos et al., 1997) and cellular 

localization studies revealed that α-synuclein abnormally deposited in Lewy bodies, the 

major pathologic hallmark of idiopathic PD (Spillantini et al., 1998). A second mutation 

(A30P) was later found in a small German family with PD (Kruger et al., 1998). It had 

been thought that mutations in the α-synuclein gene might be rare because extensive 

studies in multiple ethnic PD families and sporadic cases did not find mutations in this 

gene (Chan et al., 1998; Warner et al., 1998). However, a third mutation (E46K) has now 

been found in a Spanish family (Zarranz et al., 2004), and α-synuclein gene triplication 

identified in two independent families (Singleton et al., 2003; Farrer et al., 2004). These 

studies emphasize that either mutations or an increase in the amount of cellular α -

synuclein is important for the pathogenesis of PD.  

            α-synuclein is a 140 amino acid soluble protein with unknown function, which is 

abundant in neurons and especially concentrated in presynaptic terminals. α-synuclein is 

a molecular chaperone mediating multiple protein–protein and protein–lipid interactions 

(Kim et al., 2000). α-synuclein binds to multiple proteins (Figure 6A) such as synphilin-

1 (Engelender et al., 1999), tubulin (Alim et al., 2002), microtubule-associated protein 
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Figure 6. α-synuclein is a major protein component of Lewy bodies in dopaminergic 
neurons of PD patients (Lücking & Brice, 2000). A. Putative functions of α-synuclein. 
The binding partners of α-synuclein are marked by arrow. Positive (+) and negative (-) 
indicate the activation or inhibition by α-synuclein. PA (phosphatidic acid); PLD2 
(phospholipase D2); PKC (protein kinase C); PKA (protein kinase A); ERK 
(extracellular-regulated kinase).  B. Structure of α-synuclein and its domains interacting 
with the binding partners. α-synuclein has three major domains. The seven 11-mer 
repeats that are able to form five helixes are numbered and hatched. The two PD-linked 
mutations (A30P and A53T) are indicated. The sites of interaction between α-synuclein 
and the representative partners are indicated by double-headed arrows.  
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tau (MAPT) (Jensen et al., 1999), 14-3-3 protein, protein kinase C (PKC), Bcl-2-

associated death proteins, extracellular regulated kinases (Ostreova et al., 1999), and 

unphosphorylated tyrosine hydroxylase (TH) (Perez et al., 2002). The 102-103 N-

terminal residues of α-synuclein are responsible for lipid binding (Figure 6B).  

            α-synuclein  has limited structure in the absence of lipid and adopts a helical 

structure in the presence of phospholipid (Conway et al., 1998). The α-synuclein mutants 

(A53T and A30P) linked to early-onset PD show enhanced oligomerization of amyloid 

intermediates (Conway et al., 2000). These mutants have altered lipid-binding properties, 

which may modulate amyloid deposition in vivo (Perrin et al., 2000).  

            Genetic polymorphisms in the promoter of α-synuclein have been identified as 

PD susceptibility markers. The genetic variability in the α-synuclein promoter is thought 

to influence its transcriptional regulation. NACP-Rep1 is a polymorphic complex 

microsatellite located approximately 10kb upstream of the translation start site of the α-

synuclein gene. Four successive dinucleotide repeat regions give rise to five alleles that 

differ in size by two nucleotides (Xia et al., 1996). The repeat composition in NACP-

Rep1 contributes to a significant variation in α-synuclein expression level (Chiba-Falek 

et al., 2001) and susceptibility to sporadic PD (Farrer et al., 2001). Two other common 

polymorphisms, 116C/G and 668T/C substitution, in the promoter region of the α-

synuclein gene have also been investigated. There is significantly higher expression of 

the 668C/116G haplotype than the other two haplotypes (668T/116G or 668T/116C) in 

the population (Holzmann et al., 2003). However, these polymorphisms are not 

significantly associated with PD (Pastor et al., 2001). The 668C/116G haplotype is more 
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common in some populations of PD patients, suggesting some environmental and/or 

polygenetic interaction. In a single study, an alternative polymorphism (770C/A) is 

considered to be part of a risk haplotype for PD (Holzmann et al., 2003). These studies 

suggest that variation in the regulation and expression of α-synuclein gene is important 

determinants in the risk of developing PD. 

            The I93M mutation in the ubiquitin carboxy terminal hydrolase-L1 (UCH-L1) 

gene was identified in a single German PD family with a reduced penetrance inheritance 

pattern (Leroy et al., 1998). Both patients presented with typical resting tremor at around 

age of 50. Pathologic confirmation of idiopathic PD is yet to be made. This gene 

mutation is not found in multiple ethnic PD families and sporadic PD patients, and is 

therefore an extremely rare cause of disease or possibly a harmless substitution 

(Hasegawa et al., 2001; Shi and Tao 2003). However, recent proteomic evidence reveals 

that full-length UCH-L1 is a major target of oxidative damage and UCH-L1 is 

downregulated in the brains of patients with either Alzheimer's disease or PD (Choi et al., 

2004). UCH-L1 hydrolyzes small C-terminal adducts of ubiquitin to generate the 

ubiquitin monomer, making it an important component of the ubiquitin–proteasome 

system. Besides hydrolase activity, UCH-L1 also exhibits dimerization-dependent 

ubiquityl ligase activity (Liu et al., 2002), suggesting multiple functions in this system. 

Expression of UCH-L1 is highly specific to neurons and to cells of the diffuse 

neuroendocrine system (Doran et al., 1983). It represents 1 to 2% of total soluble brain 

protein and is found in Lewy bodies and other protein aggregations (Wilkinson et al., 

1989). UCH-L1 gene spans 10 kb and has nine coding exons and a high GC content 
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between exons 1 and 3 (Day et al., 1990). A polymorphism in exon 3 of the UCH-L1 

gene (S18Y) is associated with a reduced susceptibility to PD in some populations. The 

S18Y polymorphism is relatively rare in the European population (allele frequency is 

14–20%) but common in the Japanese (39–54%) and Chinese (~50%) populations 

(Levecque et al., 2001; Lincoln et al., 1999; Maraganore et al., 1999; Momose et al., 

2002; Satoh & Kuroda, 2001; Toda et al., 2003). In addition to PD, UCH-L1 has been 

implicated in spinocerebellar ataxia (SCA), in which a UCH-L1 mutant is a genetic 

enhancer of degeneration in animal models, and Huntington's disease, in which the 

UCH-L1 S18Y polymorphism is linked to age of onset (Ciechanover & Brundin, 2003; 

Kim et al., 2003). Although these neurodegenerative diseases also have protein deposits, 

the protein deposits are considered neuroprotective in these genetic disorders with 

overwhelming evidence that cellular apoptosis is responsible for the neurodegeneration 

(Evert et al., 2000; Ciechanover & Brundin, 2003). 

           Autosomal recessive juvenile Parkinsonism (ARJP) is a relatively rare syndrome 

with a very early onset, a slow clinical course extending over decades, and a loss of 

dopamine neurons in the ventral substantia nigra but no Lewy bodies or Lewy neurites at 

autopsy. It has only one of the two pathological hallmarks of idiopathic PD. By 

positional cloning in a Japanese ARJP patient with a deletion of 6q, the closely linked 

marker D6S305 isolated a gene, which was designated as parkin (Kitada et al., 1998; 

Matsumine et al., 1997). Homozygous parkin mutations are found in nearly half the 

patients presenting with ARJP and perhaps 5% of young adults with PD (Lucking et al., 

1998). To date, over 1000 single nucleotide variants have been identified in the national 
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center for biotechnology information (NCBI) database. Some parkin gene 

polymorphisms are not related to ARJP or idiopathic PD (Oliveira et al., 2003), while 

some heterozygous parkin mutations are considered as susceptibility alleles. Those 

mutations lying in exon 7 of the parkin gene (Arg256Cys, Arg275Trp, Cys253Trp, 

Cys253Tyr, and Asp280Asn) are especially predisposing to the late-onset form of PD 

due to a variable functional reduction in parkin (Oliveira et al., 2003). Lewy body 

pathology has been found in a single ARJP case with an exon 7 substitution of 

Arg275Trp and deletion of exon 3 (Farrer et al., 2001). Parkin, however, colocalizes 

with α -synuclein in the brain and is found in Lewy bodies in sporadic PD 

(Schlossmacher et al., 2002). A hypothesis of partial loss of parkin function associated 

with PD and Lewy body formation has been proposed (Hardy & Cookson, 2003). Parkin 

is expressed primarily in the nervous system and is one member of a family of E3 

ubiquitin ligases, which attach short ubiquitin chains to proteins and tag them for 

degradation through the proteasome pathway. Four identified substrates for the 

ubiquitin-ligase function of parkin include 22 kilodalton glycosylated form of α -

synuclein (Shimura et al., 2001), parkin-associated endothelin receptor-like receptor, 

(Imai et al., 2001), CDCrel-1 involved in cytokinesis that may influence synaptic vesicle 

function (Zhang et al., 2000) and synphilin-1 (Chung et al., 2001). 

            DJ-1 was recently identified as causal for ARJP (Bonifati et al., 2003). The locus 

for this form was first localized to 1p36 in a genetically isolated community in the 

Netherlands (Van Duijn et al., 2001). The DJ-1 gene contains eight exons spanning 24 

kb encoding a 189 amino acid (20 kDa) protein. The first two exons (1A and 1B) are 
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noncoding and alternatively spliced. A large homozygous chromosomal deletion 

removing 4 kb of genomic DNA, including the exon encoding the start codon, has been 

identified in one Dutch kindred, while in an Italian family, affected individuals are 

homozygous for the L166P point mutation. In both pedigrees, only homozygous 

individuals are affected. Recently, six additional mutations of DJ-1 gene have been 

discovered in ARJP patients. In particular, M26I, IVS6-1G/C, c.56delC, and c.67G/A 

are thought to be causative and these pathogenic mutations account for approximately 

1% of early onset PD (Abou-Sleiman et al., 2003; Golbe & Mourdian, 2004). There have 

been no pathological studies to date. Unlike the other monogenetic PD genes, 

polymorphisms in the DJ-1 gene do not appear to predispose to late onset sporadic PD 

(Morris et al., 2003). In the brain, DJ-1 expression is ubiquitous, with higher levels of 

the transcript in subcortical regions, such as the caudate nucleus, thalamus, substantia 

nigra, and hippocampus, which are more often affected in PD (Bonifati et al., 2003). DJ-

1 is localized to both the nucleus and cytoplasm of different cell types, and is 

particularly prominent in astrocytes in human brain tissue. Unlike α -synuclein and 

parkin, DJ-1 is not an essential component of Lewy bodies and Lewy neurites 

(Bandopadhyay et al., 2004; Rizzu et al., 2004). DJ-1 has multiple protein–protein 

interactions and multiple possible functions. For example, first, it interacts with c-myc 

and increases cell transformation in the presence of myc or h-ras (Nagakubo et al., 1997). 

Second, it interacts with the protein inhibitor of activated signal transducer and activator 

of transcription (STAT) [PIASx ] (Takahashi et al., 2001). PIASx  interacts with the 

androgen receptor, inhibiting gene expression. DJ-1 binds to PIASx, thereby positively 
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regulating androgen receptor-controlled genes. PIASx is an E3-like enzyme that adds 

SUMO-1 (ubiquitin-related protein) to target proteins. Third, it can be sumoylated at 

K130. Fourth, it has been found to shift to a more acidic isoform (pI 5.8) after treatment 

of cells with the herbicide paraquat, causing α-synuclein upregulation and aggregation 

by oxidizing proteins (Manning-Bog et al., 2002; Mitsumoto & Nakagawa, 2001). 

           Nuclear receptor-related factor 1 (Nurr1 or NR4A2) is a requisite gene in the 

differentiation and maintenance of dopamine neurons (Law et al., 1992). The Nurr 1 is a 

member of the nuclear orphan receptor superfamily that also functions as a zinc finger 

transcription factor (Law et al., 1992). Due to its function, previous studies had already 

suggested Nurr1 to be a candidate gene for PD (Zetterstrom et al., 1997). Recently, two 

heterozygous mutations (−291T del and −245 T to G) were revealed in 10 out of 107 

individuals with familial PD, but not in 94 individuals with sporadic PD or in 221 age-

matched unaffected controls (Le et al., 2003). Both mutations affect a noncoding exon 

(exon 1) of the gene and lead to a marked decrease in Nurr1 mRNA levels. The clinical 

phenotype of patients with mutated Nurr1 is concordant with typical late-onset PD. 

Radiological or neuropathological data are not yet available (Deckker et al., 2003). The 

Nurr1 gene contains eight exons and spans 8.3kb (Ichinose et al., 1999). The frequency 

of the 7048insG polymorphism in intron 6 of the Nurr1 gene is higher in sporadic PD 

than in controls. The significance of heterozygosity for the polymorphism between 

patients and controls is disputed (Tan et al., 2003; Zheng et al., 2003). Nurr1 involves 

the regulation of corticotropin-releasing hormone and the regulation of gene 

transcription encoding tyrosine hydroxylase (TH) and dopamine transporter (DAT) (Le 
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et al., 2003). The transcriptional activation of Nurr1 is regulated by NF-κB and cAMP 

response element-binding protein (CREB) (McEvoy et al., 2002). 

           The neuronal intermediate filament cytoskeleton consists of neurofilament (NF) 

proteins. NFs are composed of a triplet of proteins of various molecular weights, i.e., 

high, medium (NF-M), and low (Al-Chalabi & Miller, 2003). Together with other axonal 

components such as microtubules, they are important for axonal transport and stability. 

Rearrangement of NF components is charateristic of cellular pathology linked with 

neurodegeneration, including neurofibrillary tangles, neuritic plaques, and Lewy bodies 

and neuritis (Al-Chalabi & Miller, 2003). A down-regulation of mRNA encoding NF-M 

and the accumulation of hyperphosporylated neurofilaments are the common features of 

Alzheimer's disease and PD (Julien & Mushynski, 1998; Wang et al., 2001). A missense 

mutation of NF-M G1747A has been identified in a single French–Canadian family with 

a reduced penetrance of 25% at age 44 (Lavedan et al., 2002). The proband had an onset 

of PD at 16 years of age, suggesting that abnormal NF-M may directly induce PD. NF-M 

gene screening in large populations has excluded the possibility that the G1747A variant 

(Gly336Ser) is a polymorphism associated with PD (Lavedan et al., 2002). Further 

detailed mutational analyses of the NF-M gene in 322 families and sporadic PD patients 

found a Pro725Gln substitution in a sporadic case and a deletion in position 829 in a 

patient with familial PD.  However, this NF-M sequence did not cosegregate with PD in 

this family (Kruger et al., 2003). Two other common polymorphisms in NF-M do not 

appear to predispose to PD, although there was a significant twofold increase in their 

frequencies in PD compared to controls (Kruger et al., 2003). These studies suggest that 
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rare variants in the NF-M gene increase the susceptibility to PD and suggest that 

cytoskeletal elements play a role in the disease process. 

          Dopamine is metabolized by dopamine β -hydroxylase (DBH), catechol-O-

methyltransferase (COMT) and monoamine oxidases (MAO) to produce norepinephrine, 

3-methoxytyramine (3-MT), 3,4-dihydroxyphenylacetic acid (DOPAC), and 3-methoxy-

4-hydroxyphenylethanol (MOPET) respectively, and eventually homovanillic acid 

(HVA) (Figure 7). A DBH gene promoter polymorphism (C-1021T) has been 

demonstrated to regulate plasma DBH activity. Genetically determined low serum DBH 

activity (genotype T/T) has a protective role against PD (Healy et al., 2004). COMT 

degrades dopamine extraneuronally. A common polymorphism in COMT, Val158Met, 

which results in a form of the enzyme with low activity, increases the relative risk for 

PD (Yoritaka et al, 1997; Wu et al., 2001). Stratification analysis suggests that the 

COMT-Val158Met polymorphism is associated with PD in younger female subjects 

(Goudreau et al., 2002). MAO is classified as A or B on the basis of differential substrate 

specificity and differential sensitivity to inhibitors (Weinshilboum, 1983). MAO-B 

inhibition is associated with enhanced activity of dopamine, as well as with decreased 

production of hydrogen peroxide, a source of ROS. There is an increased risk of PD with 

longer length GT dinucleotide repeats in intron 2 of the MAO-B gene as well as with the 

intron 13G MAO-B genotype (Chekoway et al., 1998; Costa et al., 1997; Mellick et al., 

2000).  

           Cytochrome P450 (CYP) enzymes are a large group of monooxygenase enzymes 

responsible for the metabolism of toxic hydrocarbon. Nicotinamide adenine dinucleotide 
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Figure 7. Metabolic pathways of dopamine (Elsworth & Roth, 1997; Stokes et al., 1999). 
Several different pathways of dopamine metabolism exist in dopaminergic neurons. In 
noradrenergic neurons, dopamine serves as precursor for norepinephrine (NE) and 
epinephrine (EPI). Dopamine can be metabolized by monoamine oxidase (MAO), 
catechol-O-methyltransferase (COMT), aldehyde dehtdrogenase (ALD-D), aldehyde 
reductase (ALR), and alcohol dehydrogenase (ADH). In brain, dopamine is mainly 
metabolized into DOPAC and HVA, with less formation of DOPET and MOPET. 
Dopamine metabolism produces dopamine quinone and reactive oxygen species (ROS), 
both of which are very toxic in cells.         
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phosphate (NADPH) provides the reducing power for this chemical reaction and O2 used 

as a substrate.  

          The name cytochrome P450 comes from its wavelength of light (450 nm) that is 

absorbed by the isoenzymes. The cytochrome P450 (CYP) enzymes are located on the 

smooth endoplasmic reticulum of cells throughout the body, but the highest 

concentrations are found in the liver and small intestine. These enzymes are responsible 

for the oxidative (phase I) metabolism of a wide number of compounds, including drugs, 

environmental toxicants, dietary components, and endogenous components such as 

steroids and prostaglandins. Because PD may have an environmental cause, cytochrome 

P450s, which detoxify many potential neurotoxic xenobiotics, have been investigated 

exhaustively. Many studies have focused on CYP2D6 and CYP1A1 with controversial 

and inconclusive results (Amstrong et al., 1992; Riedl et al., 1998; Chan et al., 2002).  

           Glutathione S-transferases (GST) are phase II detoxification enzymes, and are 

involved in the detoxification of endogenous or exogenous toxins, which may play a role 

in the pathogenesis of PD. GST is also an important cellular antioxidative enzyme 

against catecholamine-derived quinones as a consequence of catecholamine metabolism. 

Oxidative stress is widely thought to contribute significantly to the pathogenesis of PD, 

and GST activity is reduced in the substantia nigra of PD (Sian et al., 1994). Four 

genotypes (GSTT1, GSTM1, GSTP1, and GSTZ1) of GSTs have been tested in several 

PD association studies (Rahbar et al., 2000; Harada et al., 2001; Kelada et al., 2003). 

The distribution of the GSTP1 genotypes differ significantly between patients and 

controls exposed to pesticides (Menegon et al., 1998). The polymorphisms of the 
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GSTM1 and GSTT1 loci arise from the complete deletion of each gene, and can 

substantially affect the metabolism of some substances (Pemble et al., 1994; Seidegard 

& Pero, 1988). The polymorphisms at the GSTP1 (Ile104Val and Ala113Val) and 

GSTZ1 (Lys32Glu and Arg42Gly) loci result in amino acid substitutions that may affect 

substrate selectivity and stability. Genotype GSTP1 may play a role in sporadic cases of 

PD without pesticide exposure, but neither GSTM1 nor GSTT1 is associated with PD 

(Kelada et al., 2003). The GSTO1 genotype influences the age at onset of PD, with the 

less common Asp allele for GSTO1 SNP7, which is associated with a later onset of PD 

(Li et al., 2003). This effect is thought to be due to a decreased efficacy in IL-1 

posttranslational processing, thereby dampening inflammatory responses and 

neurodegeneration (Li et al., 2003). 

         

Environmental factors           

Most PD occurs as sporadic and idiopathic cases, which have no recognizable 

genetic defects. As mentioned earlier, a recent twin study showed that concordance rates 

of PD incidence were similar in monozygotic and dizygotic pairs. This finding suggests 

that heredity is not a major etiologic factor of sporadic PD (Tanner et al., 1999). Instead, 

several epidemiologic studies have shown that environmental factors including farming, 

rural living, well-water drinking, and exposure to heavy metals and pesticides (Gorell et 

al., 1998; Priyadarshi et al., 2001; Lai et al., 2002) might play an important role in PD 

incidence. In particular, some exogenous chemicals have been associated with 

Parkinsonism, including iron, manganese, copper, rotenone, maneb, dieldrin, paraquat, 
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and polychlorinated biphenyls (PCBs). In addition, tetrahydroisoquinolines (TIQ) and β-

carbolines (β-C) have been suspected as both endogenous and exogenous neurotoxins, 

which might contribute to PD incidence. The potential contributions of each of these 

environmental factors to PD will be discussed in the next sections.  

    

Metals 

          Metals have been investigated as potential risk factors on the basis of their 

accumulation in the substantia nigra and their participation in harmful oxidative 

reactions. However, metal-induced symptoms are significantly different from idiopathic 

PD. For example, the Parkinsonism caused by manganese does not respond to L-DOPA 

treatment and the primary target of manganese toxicity seems to be the globus pallidus 

rather than the nigrostriatal system (Pal et al., 1999). In idiopathic PD, experimental 

work with metals has mostly focused on the potential role of iron and other transition 

elements. Iron is unevenly distributed throughout the brain, but it reaches particularly 

high concentrations in the basal ganglia (Zecca et al., 1994). Increased iron in the brains 

of PD patients was first reported by Earle (1968) and subsequent studies have confirmed 

this accumulation in the substantia nigra pars compacta (Sofic et al., 1988; Dexter et al., 

1989b). Dexter et al. (1990) have also measured decreased levels of ferritin in the nigral 

tissue of patients with Parkinson’s disease. Ferritin is the primary intracellular protein 

capable of keeping iron bound in a non-reactive status. Thus, iron accumulation together 

with decreased binding capability may enhance the risk for iron-mediated toxic reactions 

in PD. In particular, the Fenton reaction could generate the highly toxic hydroxyl radical 
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in the presence of iron and hydrogen peroxide, thus leading to oxidative stress and 

possibly neurodegeneration.  

            If metals such as iron play a role in nigrostriatal injury, the source and 

mechanisms of their accumulation remain to be identified, and the possibility that 

environmental exposures to metals may represent risk factors for idiopathic PD should 

be considered. Epidemiological evidence supporting this possibility is suggestive but 

still inconclusive (Semchuck et al., 1993; Seidler et al., 1996). In a population-based 

case-control study, the potential role of metals as risk factors for PD was evaluated in the 

occupational setting in which the effects of metals would be expected to be magnified by 

greater and prolonged exposures (Gorell et al., 1997). Increased risk for PD was only 

found in workers exposed to metals for more than 20 years, suggesting a long latency 

and/or slowly progressive mechanism of accumulation and toxicity. Also, enhanced risk 

was shown as a result of combined metal exposures, i.e. lead–copper, lead–iron and 

iron–copper, raising the possibility that metal may act additively in contributing to 

nigrostriatal degeneration. Based on these data, the effects of prolonged exposures and 

interactions should become a focus of future studies investigating the relationship 

between exposure to metals and PD incidence. 

 

Pesticides 

            Since World War II, numerous pesticides including insecticides, herbicides, 

fungicides, rodenticides, and fumigants have been widely used. Exposure to pesticides 

may be due to direct contact with the skin, intake of contaminated food and water, or 
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aspiration of sprayed pesticides or fumigants. In the last decade, a number of 

epidemiologic studies of the relationship between exposure to pesticides and PD 

incidence have been conducted around the world (Seidler et al., 1996; Gorell et al., 

1998). Most of these studies reported a positive association of PD with overall exposure 

to pesticides. The odds ratio (OR) for positive association ranged from 1.02 to 7.0. For 

example, Priyadarshi`s group performed a meta-analysis of 19 studies published between 

1989 and early 1999 to examine the association between PD incidence and exposure to 

pesticide. They found a significant heterogenicity among studies and calculated a 

combined OR of 1.94 (Priyadashi et al., 2000). Their findings showed a positive 

correlation between PD and the duration of pesticide exposure. Exposure to pesticide 

may influence the mortality of patients with PD. In California, mortality with PD as the 

underlying cause of death has been shown to be higher in agricultural pesticide-use 

counties than in non-use counties (Ritz & Yu, 2000).  

           Maneb is a widely used fungicide, which is known to damage the dopaminergic 

system. Exposure to maneb can induce neurologic alterations in humans, such as 

postural tremor, cerebellar signs, and bradykinesia (Ferraz et al., 1988). Chronic 

exposure to maneb is known to induce parkinson-like symptoms (Meco et al., 1994). 

Based on the neurochemical and behavioral changes and its apparently selective 

disruption of the nigrostriatal system, maneb is assumed to be able to cross the blood- 

brain barrier (Thiruchelvam et al. 2002). Maneb contains a major active fungicidal 

component manganese ethylene-bis-dithiocarbamate (Mn–EBDC), and belongs to the 

dithiocarbamate (DTC) fungicide family. In experimental models, maneb appears to 



                                                                                                                                                   32
 
                                                                                                                                            
 
decrease locomotor activity (Morato et al. 1989), potentiates MPTP effects on locomotor 

activity and catalepsy (Takahashi et al. 1989), and modulates the toxicity of paraquat.     

            However, commercial maneb contains not only Mn–EBDC but also many other 

minor reagents without clearly defined functions. Other constituents of maneb, rather 

than the fungicidal Mn–EBDC, may be responsible for maneb-mediated neurotoxicity, 

as is the case of MPTP-contaminated synthetic heroin. Alternatively, the neurotoxic 

effect might be attenuated by the combined action of several constituents of maneb. 

Furthermore, Mn–EBDC, being relatively stable in vitro, could potentially degenerate to 

manganese and EBDC in vivo, both of these compounds being potentially neurotoxic. 

Indeed, manganese is known to be relatively non-toxic to the adult organism except to 

the brain, where it causes PD-like symptoms when inhaled, even at moderate amounts 

over longer periods of time (Carpenter, 2001; Gerber et al. 2002).  

           Occupational exposure to manganese occurs mainly in mining, alloy production, 

processing, ferro-manganese operations, welding, and work with agrochemicals. Among 

the neurologic effects is an irreversible parkinsonian-like syndrome, manganism (Levy 

& Nassetta, 2003; Takeda, 2003). However, although the neurological signs of 

manganism have received close attention because they resemble several clinical 

disorders collectively described as extrapyramidal motor system dysfunction and in 

particular, idiopathic PD and dystonia, there are well-established distinct dissimilarities 

between idiopathic PD and manganism. Therefore, whether manganese plays an 

etiologic role in idiopathic PD remains to be determined (Aschner, 2000). On the other 

hand, the non-manganese moiety of maneb, EBDC component has been suggested to 
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contribute to toxicity. This conclusion follows from the finding that both mancozeb 

(Mn–Zinc–EBDC) and zineb (Zinc–EBDC) produce neurotoxicity in cell cultures (Soleo 

et al. 1996). Indeed, EBDC per se enhances MPTP-induced neurotoxicity (McGrew et al. 

2000). The direct involvement of manganese ethylene-bis-dithiocarbamate (Mn–EBDC) 

in selective dopaminergic neurodegeneration was recently demonstrated in the adult 

male Sprague-Dawley rats, in which Mn–EBDC was directly delivered to the lateral 

ventricles (Zhang et al., 2003). This model has shown that Mn–EBDC is able to induce 

extensive striatal dopamine efflux comparable with that induced by MPP+. Furthermore, 

Mn–EBDC preferentially inhibits mitochondrial complex III. As mitochondrial 

dysfunction is pivotal in the pathogenesis of PD, these results support the proposal that 

exposure to pesticides such as maneb, or other naturally occurring compounds that 

inhibit mitochondrial function, may contribute to PD development (Zhang et al., 2003).   

           Dieldrin is an organochlorine insecticide that has been widely used to control soil 

pests such as termites, grasshoppers, locusts, beetles and textile pests around the world 

until the mid-1970s, and is still used in several developing countries. A recent study 

indicates that dairy products and meats are the primary sources of human exposure to 

dieldrin, and the daily intake level of dieldrin through these contaminated foods was 

estimated at 0.059 g per average person (Doong et al., 1999). Whereas the half-life of 

dieldrin in human blood is estimated to be around 300 days (de Jong, 1991), prolonged 

exposure to dieldrin through food may greatly increase the accumulation of dieldrin in 

the brain and other lipophilic tissues. Evidence from several lines of research, ranging 

from studies of postmortem pathology to cultured neurons, has implicated dieldrin in the 
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etiology of Parkinson’s disease in humans. Fleming`s group first measured the amounts 

of various organochlorine pesticides in human postmortem brain samples from 

Parkinson’s disease patients, Alzheimer’s disease patients, and age-matched controls. 

Dieldrin was detected in 6 of 20 brains from Parkinson’s disease patients, but in none of 

the 14 age-matched control brains (Fleming et al., 1994). Corrigan`s group has also 

found significantly higher levels of dieldrin in the caudate nucleus from PD patients as 

compared to controls (0.515 μg/g versus 0.283 μg/g lipid) (Corrigan et al., 1998). 

Chronic exposure to dieldrin in a mesencephalic cell cultures shows that dopaminergic 

neurons are more susceptible than other neurons to dieldrin toxicity (Sanchez-Ramos et 

al., 1998). In addition, in vivo studies reported massive dopamine depletions in brains 

following chronic exposure to dieldrin (Sharma et al., 1976; Heinz et al., 1980). These 

results suggest that chronic exposure to highly lipophilic dieldrin (Suwalsky et al., 1997) 

could selectively destroy dopaminergic neurons in substania nigra pars compacta (SNpc) 

and could be a risk factor for Parkinson’s disease. In addition to dieldrin, heptachlor is 

another organochlorine insecticide of particular interest for PD incidence. Heptachlor 

has been found to cause the alteration of dopamine transporter (DAT) expression, which 

might enhance the vulnerability of dopaminergic neurons to degeneration (Miller et al., 

1999).  

           Rotenone is a naturally occurring toxin and commonly used insecticide. 

Unfortunately, clinical evidence for parkinson-like symptoms attributed to rotenone 

exposure is lacking. However, rotenone exposure might to be relevant to the decreased 

activity of mitochondrial complex I in the substantia nigra of PD patients (Schapira, 
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1994) because rotenone is a mitochondrial toxin that selectively inhibits the 

mitochondrial complex I at the same site as MPP+. In contrast to MPP+, rotenone is 

highly lipophilic and does not depend on dopamine transporters for cellular entry and 

furthermore, is not sequestered into synaptic terminals. In 1985, it was reported that 

stereotaxic administration of both MPP+ and rotenone caused damage to the 

dopaminergic nigrostriatal pathway in animals (Heikkila et al., 1985). Later it was found 

that infusion of rotenone alone also induces those effects (Sherer et al., 2003). Inhibition 

of complex I by rotenone results in highly selective nigrostriatal dopaminerergic 

degeneration (involving caspase 3-mediated apoptosis) (Ahmadi et al., 2003) and α-

synuclein positive cytoplasmic aggregates in nigral neurons (Uversky et al., 2001). 

Furthermore, an increased striatal dopamine turnover (Thiffault et al., 2000) and reduced 

tyrosine hydroxylase (TH) levels in the caudate putamen of rodents were observed 

(Alam & Schmidt, 2002).  

 

Polychlorinated biphenyls (PCBs) 

           Polychlorinated biphenyls (PCBs) are members of the organic class of 

halogenated aromatic hydrocarbons that also include 2,3,7,8-tetrachlorodibenzo-p-dioxin 

and 2,3,7,8-tetrachlorinated dibenzofuran (Tilson & Kodavanti, 1997). PCBs are 

synthetic compounds that, despite their ban in 1977, are ubiquitous in the environment 

due to their improper disposal and resistance to degradation intrinsic to their chemical 

properties. As a result, PCBs are taken up by marine animals, whereby they 

preferentially bioaccumulate and biomagnify in higher trophic levels of the food chain 
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(Senthilkumar et al., 2001). Evidence for a role of PCBs in neurodegeneration was 

provided in a study that revealed a selective accumulation of PCBs in the caudate 

nucleus in Parkinson’s disease brain tissues (Corrigan et al., 1998). Many previous 

studies have characterized the effects of PCBs on brain neurotransmitter systems and 

have implicated the dopaminergic system as a preferential and sensitive target of PCB 

exposure. For example, the selective depletion of dopamine was found in the caudate 

nuclei and lateral olfactory bulbs of rats exposed acutely to a mixture of Aroclor 1254, a 

PCB mixture (Seegal et al., 1985; Chrishti et al., 1996). There have also been studies 

with PC12 cells that demonstrated a larger time and concentration dependent increase in 

dopamine depletion with Aroclor 1254 (Seegal et al., 1989). Thus, it was suggested that 

PCBs might inhibit dopamine synthesis via the inhibition of TH activity, the rate-

limiting enzyme involved in the synthesis of dopamine. However, when PCBs were 

added to soluble TH preparations from rat brain, none of the PCB congeners had any 

effect on its activity, indicating that PCBs indirectly inhibits dopamine synthesis (Choksi 

et al., 1997).  

 

Tetrahydroisoquinolines (TIQs) and β-carboline (β-C) derivatives 

          Some of heterocyclic alkaloid molecules have been suspected as potential 

endogenous and exogenous parkinsongenic agents, and tetrahydroisoquinoline (TIQ) and 

β-carboline (β-C) derivatives have been the most studied. TIQs and β-Cs are naturally 

occurring alkaloids present in a variety of foods (Makino et al., 1988). However, they 

can also be generated within the brain by reactions involving biogenic amines, such as 
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condensation of the amine group of dopamine with the reactive carbonyl groups of 

aldehydes and α-ketoacids (Collins & Origitano, 1983). Interestingly, both TIQs and β-

Cs have been detected in the human brain (Niwa et al., 1987; Matsubara et al., 1993) as 

well as in the cerebrospinal fluid of patients with Parkinson’s disease (Kotake et al., 

1995; Matsubara et al., 1995). They have also been reported to cause nigrostriatal 

damage in experimental animals, including nonhuman primates (Nagatsu & Yoshida, 

1988; Matsubara et al., 1998).  

           However, the identification and characterization of TIQs and β-Cs as etiologic 

neurotixicants involed in Parkinson’s disease has provoked a number of important 

questions. For instance, the selective toxicity of these compounds to the dopaminergic 

system is not yet proven, because TIQs, β-Cs and their metabolites are weak substrates 

for DAT (Drucker et al., 1990; Sayre et al., 1991; Kawai et al., 1998). Furthermore, in 

vivo studies show that TIQs and β-Cs are less effective than MPTP, raising the concern 

that natural exposure to these compounds may not induce toxicity in dopaminergic 

neurons. Nevertheless, it can be still hypothesized that long-term exposure to low levels 

of TIQs and β-Cs damage the nigrostriatal system, particularly in the aging brain. It is 

also possible that combinations of TIQs and β-Cs may contribute to neurodegeneration 

through novel synergistic mechanisms. Finally, a different generation of TIQs and β-Cs 

within specific brain areas may account for selective toxicity to dopaminergic neurons 

(Gearhart et al., 2000). 
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Paraquat (PQ) 

         Paraquat (methyl viologen, 1, 1’-dimethyl-4, 4’ bipyridium dichloride) is widely 

used as a cationic non-selective bipyridyl herbicide (Figure 8) to control weeds and 

grasses in many agricultural and non-agricultural areas (Cremlyn, 1991). Paraquat is not 

mobile and biologically active after it has been sprayed in the field, because it is strongly 

bound to soil particles or is decomposed into a non-toxic product by soil bacteria and 

sunlight (Roberts et al., 2002). However, active paraquat is highly toxic to humans and 

many cases of acute poisoning and death have been reported over the past few decades 

(Onyon & Volans, 1987; Bismuth et al., 1990).  

         The most frequent routes of exposure to paraquat, either accidentally or 

intentionally, in humans and animals are by ingestion or through direct skin contact. In 

addition, people may be exposed to residues of paraquat through the diet, and thus, the 

US EPA established maximum residue limits (or tolerances) of paraquat in foods. For 

example, 0.1 ppm is for sorghum, 0.25 ppm is for soybeans, and 0.5 ppm is for hops and 

ruminant kidney. If ingested, paraquat induces a burning sensation of the mouth and 

throat, followed by gastrointestinal irritation, subsequently resulting in abdominal pain, 

loss of appetite, nausea, vomiting and diarrhea (Vale et al., 1987). Direct contact with 

paraquat solutions or aerosol mists may cause skin burns and dermatitis (Spiewak, 2001). 

Paraquat splashed in the eyes can irritate, burn or cause corneal damage and scarring of 

the eyes. Due to its low vapor pressure and the formation of large droplets, the inhalation 

of paraquat spray used in the open environment has not been shown to cause any 

significant systemic toxicity. However, the inhalation of paraquat in confined space is 
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Figure 8. Chemical structures of MPTP, MPP+, and paraquat (Shimizu et al., 2001; 
Kalivendi et al., 2003). The possibility that paraquat might contribute to PD incidence is 
based on the observation that its chemical structure closely resembles it of MPP+. MPP+ 
is the toxic metabolite of a syntheic heroin MPTP, which has been found to cause 
parkinsonian symptoms in drug users.         

 
 
 
 
 
 
 
 
 



                                                                                                                                                   40
 
                                                                                                                                            
 
known to be associated with fatal pulmonary disease (Howard, 1983). 

          Regardless of its route of administration in mammalian systems, paraquat is 

rapidly distributed in most tissues, with the highest concentration found in the lungs 

andand kidneys (Rose et al., 1976). The compound accumulates slowly in the lung, 

where paraquat is accumulated through polyamine transporters in the Clara cells and 

alveolar type I and II epithelial cells (Rose et al., 1974). The paraquat-induced lung 

injury is morphologically characterized by an early destructive phase, in which the 

alveolar type I and type II epithelial cells are damaged; and a second proliferative phase 

defined by alveolitis, pulmonary edema and infiltration of inflammatory cells (Smith & 

Heath, 1975). Excretion of paraquat, in its unchanged form, is biphasic, owing to lung 

accumulation, and occurs largely in the urine and, to a limited extent, in the bile. In 

general, the biotransformation of paraquat is poor in all species studied and the excreted 

compound is unchanged (Chan et al., 1997; Yang et al., 2000).  

           Severe damage to brain has been observed in the patients who died of paraquat 

poisoning (Grant et al., 1980; Hughes, 1988). Of particular concern, paraquat is 

suggested as a potential etiologic factor in Parkinson`s disease (PD) (Andersen, 2003), 

because its chemical structure is similar to 1-methyl-4phenylpyridium ion (MPP+), the 

active metabolite of MPTP. Significantly, paraquat-induced Parkinsonism has been 

observed in a 32-year old citrus farmer who used paraquat for 15 years in the United 

States (Sanchez-Ramos et al., 1987). In addition, a strong correlation has been reported 

between exposure to paraquat and the incidence of PD in Canada (Hertzman et al., 1990). 

In Taiwan, where paraquat is commonly sprayed on rice fields, the odds ratio for PD 
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incidence was 6.4 among subjects who had been exposed to this herbicide for more than 

20 years (Liou et al., 1997). These epidemiologic reports and case studies are supported 

by animal studies showing that paraquat produces characteristic pathological features of 

PD in the rat and mouse brain, including the increase of lipid peroxidation (Tawara et al., 

1996), the aggregation of α-synuclein (Manning-Bog et al., 2002), the depletion of 

striatal dopamine (Liou et al., 1996), the reduction of motor activity (Brooks et al., 1999), 

and the selective loss of dopaminergic neurons (McCormack et al., 2002).  

 

Study aims 

             In this study, the human neuroblastoma SK-N-SH-SY5Y cell line (hereafter 

designated SY5Y) was used as an in vitro model. This cell line is a subclone of the SK-

N-SH cell line, which was originally derived from bone marrow of a female tumor 

patient in the early 1970s (Ross et al., 1983). The cell line has a stable nearly diploid 

karyotype and its doubling time is 48 hours (Biedler et al., 1978). In the undifferentiated 

state, SY5Y cell line shows two distinctive morphologies, a small spiny cell with 

multiple neurites and a large epithelial-like cell. In the differentiated state, the SY5Y 

cells stop proliferation and extend long neurites accompanied by pseudoganglia 

assembly and neurite bundle recruitment (Perez-Polo et al., 1979). Thus, this cell line 

has been selected as a model to study neuronal differentiation and neurite outgrowth 

induced by nerve growth factor (NGF) (Ridge et al., 1996). In addition, it is used as a 

cholinergic and adrenergic model system because it develops a cholinergic or adrenergic 
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phenotype in response to retinoic acid (RA) (Adem et al., 1987) or 12-O-tetradecanoyl-

13-phorbol acetate (TPA) (Pahlman et al., 1981), respectively.  

           Significantly, the SY5Y cell line expresses several dopaminergic characteristics 

including tyrosine hydroxylase (TH), dopamine transporter (DAT), vesicular 

monoamine transporter-2 (VMAT-2), dopamine receptor 2 (D2R), and monoamine 

oxidase-A/B (MAO-A/B) (Klegeris and McGeer, 2000; Gómez-Santos et al., 2002; 

Maňáková et al., 2004; Presgravesn et al., 2004). In addition, dopamine and dopamine 

metabolites are detected in this cell line (Legros et al., 2004). Thus, the SY5Y cell line 

has been widely selected as a cellular PD model to study dopaminergic pathogenesis 

(Lai & Yu, 1997; Lee et al., 2000; Masayo et al., 2003; Shavali et al., 2004). In 

particular, this cell line has been used to characterize pathological functions of genes 

involved in the dopaminerigc pathogenesis of PD such as α-synuclein, ubiquitin carboxy 

terminal hydrolase-L1 (UCH-L1), parkin (or ubiquitin E3 ligase), and DJ-1 (Ardley et al., 

2004; Taira et al., 2004; Machida et al., 2005). Furthermore, toxic mechanisms of 

parkinsogenic chemicals, including dopamine, 6-hydroxydopamine (6-OHDA), MPP+, 

salsolinol, and rotenone have been extensively investigated to elucidate dopaminergic 

pathogenesis in this cell line (Dennis and Bennett, 2003; Ben-Shachar et al., 2004; 

Wanpen et al., 2004; Tirmenstein et al., 2005; Wang and Xu, 2005).  

            In addition to SY5Y cell line, several other cell lines such as PC12, MN9D, 

MES23.5, N27, B65 and SN4741 are currently used to study dopaminergic pathogenesis 

(Son et al., 1999; Diaz-Corrales et al., 2004; Lo et al., 2004; Kweon et al., 2004; Zhou et 

al., 2004; Zhou and Freed, 2004). However, dopaminergic phenotypes are not fully 
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characterized and confirmed in these cell lines and they are derived from animals, not 

humans. For these reasons, SY5Y cell line was selected as an in vitro model in this study. 

The mechanisms of paraquat toxicity include the formation of ROS mediated by 

cytochrome P450 reductases and subsequent damage of ROS to cellular macromolecules 

(Farrington et al., 1973). In the presence of oxygen and ferric ions, the paraquat radical 

is rapidly reoxidized into paraquat and thus, this redox cycling reaction of paraquat can 

produce a large amount of ROS, which is known to cause lipid peroxidation, protein 

oxidation, DNA damage, mitochondrial dysfunction, and protein aggregation (Figure 9). 

Indeed, ROS generated by paraquat causes apoptosis in the developing brain and the 

adult rat hippocampus (Melchiorri et al., 1998; Barone et al., 2000). In addition, paraquat 

induces both the upregulation of α-synuclein and the accelerated formation of α-

synuclein fibrils in dopaminergic neurons (Manning-Bog et al., 2002; Uversky et al., 

2002).  

            These toxic properties of paraquat give rise to two fundamental questions with 

regard to dopaminergic pathogenesis. First, does paraquat cause oxidative stress-

mediated toxicity in dopaminergic neurons? This toxic event is highly possible because 

ROS generated by paraquat metabolism might cause and aggravate oxidative stress 

conditions in dopaminergic neurons. Inherently, dopaminergic neurons are exposed to 

ROS induced by dopamine metabolism (Asanuma et al., 2003). Second, does paraquat 

cause proteasomal dysfunction-mediated toxicity in dopaminergic neurons? Most 

unwanted proteins are degraded by proteasome dependent pathway. Thus, proteasomal 

dysfunction might directly result in the cellular accumulation of toxic proteins. From this 



                                                                                                                                                   44
 
                                                                                                                                            
 
  

     

PQNADPH

 NADP+

 OH.

 PQ.+

 H2O2

 O2

PQ PQ
 PQ.+

 O2
.-

OH-

Fe 3+

 Fe 2+

 Singlet O2

Lipid peroxidation

Protein oxidation
Mitochondrial
 dysfunction

     DNA damage
Protein aggregation

P450 reductases

 

    

Figure 9. Proposed mechanisms of ROS-induced neuronal damage by paraquat (Yang & 
Sun, 1998). This figure is modified compared to the original one. Paraquat is first 
metabolized into paraquat radicals by P450 reductases and NADPH. Then, paraquat 
radicals react with oxygen to generate superoxide radicals (O2

.-), which can dismutate 
simultaneously or enzymatically to hydrogen peroxides (H2O2). H2O2 is readily reduced 
to form toxic hydroxyl radicals (OH.) by the conversion of iron from its ferrous (Fe2+) to 
ferric (Fe3+) state. The generated superoxide is able to reduce a bound transition metal 
such as copper or iron in its complex to the corresponding cuprous or ferrous state. 
Subsequently, the reduced bound metals can react locally with hydrogen peroxides to 
produce the additional hydroxyl radicals. The generated ROS might cause mitochondrial 
dysfunction, lipid peroxidation, protein oxidation and aggregation, and DNA damage, 
ultimately resulting in cell death. 
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viewpoint, the formation of intraneuronal aggregates (Manning-Bog et al., 2002) might 

reflect the disruption of the proteasome by paraquat. Thus, studies were undertaken to 

determine whether paraquat produces the biochemical pathology of oxidative stress and 

proteasomal dysfunction observed in dopaminergic neurons of PD brain. 

To this aim, two hypotheses were tested.  

           The first hypothesis was that paraquat induces oxidative stress-mediated toxicity 

in SY5Y cells. The following objectives were carried out to test oxidative stress: 

1. ROS and GSH were measured because they are initial biomarkers of oxidative stress 

condition. 

2. Activities of GSH-related enzymes were measured because the change of ROS and 

GSH might be associated with dysregulation of their activities. For example, GPx 

and GST mainly consume GSH to detoxify ROS or exogenous toxicants, 

respectively. GR involves redox cycling of GSH to maintain phyiological levels of 

GSH in cells.  

3. Mitochondrial transmmbrane potential was measured because oxidative stress is 

known to disrupt the normal gating of permeability transition pore resulting in the 

decrease of mitochondrial transmembrane potential. 

4. Lipid peroxidation, protein oxidation, and DNA fragmentation were investigated to 

confirm paraquat-induced oxidative damage to intracellular macromolecules. 

5. The protein levels of HO-1 were investigated because HO-1 is highly upregulated in 

response to oxidative stress.  
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             The second hypothesis tested was that paraquat induces proteasomal 

dysfunction-mediated toxicity in SY5Y cells. The following objectives were carried out 

to address this hypothesis:  

1. Proteasomal activity was measured because oxidative stress by toxicants might 

inhibit proteasomal activity directly or indirectly. 

2. Activities of mitochondrial complex I and V were measured because the decrease of 

complex I activity has been suggested to contribute to proteasomal dysfunction in 

PD. 

3. ATP levels were measured to correlate activities of complex I and V with ATP 

synthesis or to correlate the change of ATP levels with proteasomal function because 

19S proteasomal subunits consume ATP to bind to polyubiquitinated proteins for 

protein degradation. 

4. The protein levels of proteasomal subunits were investigated because loss or 

decrease of certain proteasomal subunits can cause structural instability leading to 

proteasomal dysfunction. 

5. The protein levels of α-synuclein and ubiquitinated proteins were investigated 

because proteasomal dysfucntion has shown to induce the accumulation of those. 

6. The protein levels of p53 and Bax were investigated because their turnover is 

directly mediated by proteasome-dependent pathway and proteasomal dysfunction 

has shown to cause the accumulation of both proteins. 



                                                                                                                                                   47
 
                                                                                                                                            
 
7. Activities of capase-3/-9 were investigated because proteasomal dysfunction has 

shown to increase their activities and they are downstream intermediates of 

mitochondrial-dependent cell death pathway regulated by p53 and Bax. 

8. Nuclear morphology was investigated because proteasomal dysfunction has shown to 

induce nuclear condensation as an indicator of apoptotic cell death.   

The overall aim of this study was to correlate the relationship between paraquat toxicity 

and dopaminergic pathogenesis.             
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CHAPTER II 

 

MATERIALS AND METHODS 

Sources of materials  

          T-75 flasks and culture dishes (60 × 15 mm) were purchased from Corning Inc 

(NY, USA). 24-well and 96-well plates were purchased from Beckton Dickson (Franklin 

Lakes, NJ, USA). Fetal bovine serum (FBS) was purchased from Gemini (Woodland, 

CA, USA). 2’,7’-Dichlorofluorescein diacetate (DCF-DA), monochlorobimane (MCB), 

and tetramethylrhodamine ethyl ester (TMRE) were purchased from Molecular Probes 

Inc (Eugene, OR, USA). The CellTiter 96 non-radioactive assay kit and DNA marker 

were purchased from Promega (Madison, WI, USA). A Glutathione peroxidase assay kit 

was purchased from Calbiochem (San Diego, CA, USA). Glutathione S-transferase and 

ATP assay kits were purchased from Cayman (Ann Arbor, MI, USA). A DNA 

purification kit was purchased from Gentra (Minneapolis, MN, USA). A Caspase-3 or -9 

colorimetric assay kit was purchased from BioVision (Mount view, CA, USA). A 

polyclonal heme oxygenase-1 (HO-1) antibody was purchased from Stressgen (Victoria, 

BC, Canada). A polyclonal tyrosine hydroxylase (TH) antibody was purchased from 

Zymed (San Francisco, CA, USA). A polyclonal proteasome 20S α- or β-subunit 

antibody was purchased from Calbiochem (San Diego, CA, USA). 20S proteasome assay 

kit was purchased from Boston Biochem (Cambridge, MA, USA). A polyclonal 

proteasome 19S subunit antibody was purchased from Affinity Bioreagents (Golden, CO, 

USA). A polyclonal p53 or Bax antibody was purchased from Cell Signaling Technology 
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(Beverly, MA, USA). A monoclonal α-synuclein, ubiquitin, β-actin antibody and anti-

mouse second antibody were purchased from Sigma (St Louis, MO, USA). An anti-

rabbit second antibody was purchased from Santa Cruz (Santa Cruz, CA, USA). Western 

Lightning chemiluminescent reagent was purchased from Perkinelmer Life Sciences 

(Boston, MA, USA). Dulbecco`s modified Eagle`s medium (DMEM), F-12 HAM, 

glutathione reductase assay kit, and all other chemicals were purchased from Sigma (St 

Louis, MO, USA).    

 

Cell culture and chemical treatment 

           The human neuroblastoma SH-SY5Y cell line from American Type Culture 

Collection was cultured in Dulbecco's modified Eagle's medium (DMEM) containing F-

12 (1:1) and 10% fetal bovine serum (FBS) at 37°C in humidified 5% CO2 and 90% O2. 

SH-SY5Y cells have been used to characterize different effects of organophosphorous 

compounds (Ehrich et al., 1994; Ehrich & Correll, 1998; Cho & Tiffany-Castigloni, 

2004), and polycyclic aromatic hydrocarbons (Tang et al., 2003). In addition, the cell 

line is used as a model to study dopaminergic pathogenesis (Takahashi et al., 1994; Chen 

et al., 1997; Hasegawa et al., 2003), because it expresses some of representative 

dopaminergic phenotypes including tyrosine hydroxylase (Shaul et al., 2003), dopamine 

transporter (Manakova et al., 2004), and dopamine metabolism (Legros et al., 2004). 

Stock cultures of SY5Y cells (passages 26 to 30) were routinely maintained in T-75 

flasks. Except as noted, 5 × 105 cells were first seeded in culture dishes (60 × 15 mm), 

and then grown until they were 70% - 80% confluent for 3 days before chemical 
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treatment. To study oxidative stress and proteasomal dysfunction-mediated toxicity, cells 

were treated with paraquat for different time periods (0 - 48 hr). As a positive control, a 

natural insecticide rotenone was used to confirm the increase of ROS, the dissipation of 

mitochondrial transmembrane potential, the change of intracellular ATP level and 20S 

proteasome α- or β-subunit level. Also, caspase 3 or 9 activity, DNA fragmentation, and 

nuclear condensation were assayed in SY5Y cells exposed to rotenone (Nakamura et al., 

2000; Wang et al., 2002; Molina-Jimenez et al., 2003; Shamoto-Nagai et al., 2003; 

Newhouse et al., 2004; Watabe and Nakai, 2004). Further, a specific inhibitor of γ-GCS, 

L-buthionine sulfoximine (BSO) and hemin were employed to test for GSH depletion 

(Cao et al., 2004) or the induction of heme oxygenase-1 (HO-1) (Nakaso et al., 2003), 

respectively in SY5Y cells. A specific proteasome inhibitor MG 132 was also used to 

assay the increase of p53, Bax, α-synuclein and ubiquitinated proteins (Biasini et al., 

2004; Nakaso et al., 2004).     

 

Trypan blue exclusion 

           Trypan blue exclusion was performed as previously described (Storch. et al., 

2000; Cho and Tiffany-Castiglioni, 2004). Cells grown in culture dishes (60 × 15 mm) 

were treated with paraquat (0.05 - 1.0 mM) or co-treated with paraquat (0.05 - 1.0 mM) 

and 1 μM GBR12909 for 48 hr. After treatment, cells were washed and harvested with 

sterile PBS. The cell suspension was mixed at the ratio of 4:1 with 0.4 % trypan blue 

solution and incubated for 5 min. The viable cells were counted in a hemocytometer with 

an inverted-phase contrast microscope (Nikon Coporation, Model TMS, Tokyo, Japan). 
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3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay    

          The MTT assay was performed with a Celltier 96 non-radioactive kit. MTT is 

metabolically converted into formazan by mitochondrial dehydrogenases of healthy and 

live cells (Denizot & Lang, 1986). Briefly, cells (2 × 104) were seeded into each well of 

96-well plate and in next day, treated with paraquat (0.05 - 1.0 mM) or co-treated with 

paraquat (0.05 - 1.0 mM) and 1 μM GBR12909 for 48 hr.  After treatment, 15 μl of dye 

solution was added and continued to incubate at 37oC for 4 hr in a humid CO2 incubator. 

After 4 hr, 100 μl of solubilization/stop solution was added to each well. Following 

incubation of one hour at 37oC, the absorbance was measured at 590 nm with a Fluostar 

Optima microplate reader (BMG labtech Inc., Durham, NC, USA).   

 

Measurement of lactate dehydrogenase (LDH) release 

          The amount of LDH released into culture medium was measured as an indicator of 

cell membrane integrity (Moldeus et al., 1978). Briefly, cells grown in culture dishes (60 

× 15 mm) were treated with paraquat (0.05 - 1.0 mM) or co-treated with paraquat (0.05 - 

1.0 mM) and 1 μM GBR12909 for 48 hr. After treatment, the media containing detached 

cells were collected and centrifuged at 1000xg, 4oC for 10 min. The supernatants were 

added to 0.1 M potassium phosphate buffer (pH 7.4) containing 0.15 mM NADH, 0.2 M 

NaCl, and 0.09 mM sodium pyruvate in a final volume of 1 ml. The absorbance coupled 

with the reduction of pyruvate to L-lactate and the oxidation of NADH to NAD+ was 

measured at 340 nm for 5 min with a DU 640 spectrophotometer (Beckman Instrument 

Inc., Fullerton, CA, USA). 
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Measurement of reactive oxygen species (ROS)  

         The production of ROS was measured with a nonpolar compound 2’,7’-

dichlorofluorescein diacetate (DCF-DA) that readily enter the cells, where it is cleaved 

to form nonfluorescent 2’,7’-dichlorofluorescein (DCFH) by endogenous esterases. 

DCFH reacts with reactive oxygen species to produce a fluorescent compound 2’,7’-

dichlorofluorescein, which is trapped inside the cells and indicates the intracellular ROS 

level (Oubrahim et al., 2001; Lee et al., 2003). To measure ROS, cells were treated with 

0.5 mM paraquat for different time periods (0 - 48 hr) or 5 μM rotenone for 6 hr and then, 

cells were loaded with 50 μM for 30 min at 37oC. After unloaded dye was removed out, 

cells washed with Hank`s balanced buffer and lysed in 0.1 M Tris (pH 7.5) containing 

1% Triton X-100 (v/v). The cell lysates were centrifuged at 10,000xg, 4oC for 10 min, 

and the supernatants were applied to 24 well plates to measure the DCF fluorescence at 

an excitation wavelength of 485 nm and an emission wavelength of 530 nm with a 

Fluostar Optima microplate reader. The fluorescence intensity obtained was normalized 

with on the protein concentration of individual extracts used.    

 

Measurement of intracellular glutathione (GSH) 

         Monochlorobimane (MCB) is a fluorescent dye used to determine intracellular 

GSH levels. Within viable cells, GSH is specifically conjugated with MCB to form a 

fluorescent bimane-GSH adduct, which is catalyzed by glutathione S-transferases 

(Shrieve et al., 1988). To measure the intracellular levels of GSH, cells grown in culture 

dishes (60 × 15 mm) were first treated with 0.5 mM paraquat for different time periods 
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(0 - 48 hr) or 100 μM L-buthionine sulfoximine (BSO) for 24 hr, and then, cells were 

loaded with 40 μM MCB in serum-free medium at 37oC for 30 min. After excess dye 

was washed off, cells were harvested and sonicated in Ca2+/Mg2+ free PBS. The broken 

cells were centrifuged at 10,000xg, 10 min at 4oC and the supernatants of 100 μl were 

applied to 24-well plates to measure fluorescence signals at an excitation wavelength of 

380 nm and an emission wavelength of 485 nm with a Fluostar Optima microplate 

reader. The fluorescence signal obtained was normalized with protein concentration of 

individual extracts used.  

 

Measurement of glutathione-related enzyme activity  

          For enzyme activity assays, cells grown in culture dishes (60 × 15 mm) were 

treated with 0.5 mM paraquat for different time periods (0 - 48 hr). After treatment, cells 

were washed twice with PBS, harvested, and homogenized in cold lysis buffer of 100 μl 

containing 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, and 1 mM DTT. The lysates were 

centrifuged at 10,000xg, 4oC for 20 min and the supernatants were assayed for enzyme 

activity.  

 

 Glutathione peroxidase (GPx)  

GPx activity was measured with a cellular glutathione peroxidase assay kit 

according to the manufacturer`s protocol. Briefly, the lysates were mixed with 900 μl of 

reaction buffer containing 1 mM GSH, 0.2 mM NADPH, 0.22 mM tert-butyl 

hydroperoxide, and 0.4 units/ml glutathione reductase. The absorbance change coupled 
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with NADPH oixdation was monitored at 340 nm for 5 min. GPx activity was defined as 

nmol NADPH oxidized min/mg protein by use of the molar extinction coefficient of 

6.22 × 103 M/cm. 

 

Glutathione reductase (GR)  

GR activity was measured with a glutathione reductase assay kit according to the 

manufacturer`s protocol. The lysates were first mixed with 50 μl of 2mM oxidized GSH 

and 900 μl reaction buffer of 100 mM potassium phosphate buffer (pH 7.5) including 1 

mM EDTA, and then the reaction was initiated by adding 50 μl of 2 mM NADPH. The 

total volume of the mixture was 1 ml. The absorbance change was recorded by 

measuring the oxidation of NADPH at 340 nm for 5 min. GR activity was calculated as 

nmol NADPH oxidized min/mg protein using the molar extinction coefficient of 6.22 × 

103 M/cm. 

 

Glutathione S-transferase (GST)  

GST activity was measured with a glutathione S-transferase assay kit according 

to the manufacturer`s protocol slightly modified. The reaction mixtures consisted of 100 

μl cell lysates, 100 μl reduced GSH, 50 μl 1-chloro-2,4-dinitrobenzene (CDNB), and 750 

μl assay buffer containing 100 mM potassium phosphate (pH 6.5), and 0.1% (v/v) Triton 

X-100. The absorbance change was recorded by measuring the formation of a 

dinitrophenyl thioether at 340 nm for 5 min. GST activity was calculated as nmol CDNB 

conjugate formed min/mg protein using a molar extinction coefficient of 9.6 × 103 M/cm. 



                                                                                                                                                   55
 
                                                                                                                                            
 
Measurement of mitochondrial transmembrane potential (MTP) 

           Tetramethylrhodamine ethyl ester (TMRE) is a cationic dye, which is rapidly 

accumulated by mitochondria, due to their membrane potential and thus, damaged 

mitochondria cannot retain TMRE (Krohn et al., 1999). To measure MTP, cells grown in 

culture dishes (60 × 15 mm) were treated with 0.5 mM paraquat for different time 

periods (0 - 48 hr) or 5 μM rotenone for 12 hr and then were incubated in serum-free 

media containing 200 nM TMRE at 37oC for 15 min. After unloaded dye was removed 

out, cells were washed twice with PBS, harvested, and lysed in 100 μl of cold buffer 

containing 0.1 M Tris-Cl (pH 7.5) and 10% sodium dodecyl sulfate (w/v). The lysates 

were applied to 24-well plates to measure the TMRE signal at an excitation wavelength 

of 500 nm and an emission wavelength of 540 nm with a Synergy HT Multi-Detection 

microplate reader (Bio-Tek Instruments Inc., Winooski, VT, USA). The fluorescence 

signals obtained were normalized with protein concentration of each lysate used.  

 

Lipid peroxidation 

           The lipid peroxidation end product malondialdehyde (MDA) was measured by the 

thiobarbituric acid (TBA) test as previously described (Wilber et al., 1949). Cells grown 

in culture dishes (60 × 15 mm) were treated with 0.5 mM paraquat for different time 

periods (0 - 48 hr). After treatment, cells were washed twice with PBS, harvested, and 

sonicated in 100 μl of cold lysis buffer consisting of 0.1 M Tris-Cl (pH 7.5), and 1 mM 

EDTA. Cell homogenates were mixed with 20% (v/v) trichloroacetic acid (TCA), 

vortexed, and then centrifuged at 12,000xg, 4oC for 10 min. 0.67% (w/v) TBA 
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containing glacial acetic acid was added to the supernatants. The mixture was boiled at 

100oC for 10 min, then cooled on ice. MDA levels were determined in the samples at 

530 nm with a DU 640 spectrophotometer (Beckman Instrument Inc., Fullerton, CA, 

USA). The absorbance values were normalized with the protein concentration of each 

supernatant used. 

 

Protein oxidation 

           The protein oxidation end product carbonyl was measured as previously described 

(Jurma et al., 1997). Cells grown in culture dishes (60 × 15 mm) were treated with 0.5 

mM paraquat for different time periods (0 - 48 hr). After treatment, cells were washed 

twice with PBS, harvested, and then sonicated in 100 μl of cold homogenizing buffer 

consisting of 50 mM potassium phosphate buffer (pH 7.4), 1 mM EDTA, 5 μg/ml 

leupeptin, 5 μg/ml aprotinin, and 40 μg/ml phenylmethylsulfonyl fluoride (PMSF). The 

homogenates were then centrifuged at 10,000xg, 4oC, for 10 min to remove cell debris. 

Supernatants were mixed with 10 mM of 2,4-dinitrophenyl hydrazine (DNPH) dissolved 

in 2 M HCL and incubated at room temperature for 60 min, with vortexing every 15 min. 

20% (v/v) trichloroacetic acid (TCA) was added to supernatants, which were then 

centrifuged at 15,000xg, 4oC, for 10 min. The precipitates were washed 3 times for 10 

min each with ethanol /ethyl acetate (1:1, v/v) and then dissolved in 6 M guanidine HCL, 

pH 2.3, adjusted with TCA, by incubating at 37 oC for 15 min. Carbonyl levels were 

measured at 375 nm with a DU 640 spectrophotometer. The absorbance value was then 

normalized with protein concentrations of precipitates used. 
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DNA fragmentation 

          After treatment with 0.5 mM paraquat for up to 48 hr or 0.5 μM rotenone for 24 hr, 

respectively, cells in T-75 flasks were washed twice with PBS (pH 7.4), harvested, and 

centrifuged at 10,000xg for 5 min. Total genomic DNA was isolated from the same 

numbers of cells (5×106) with a Puregene DNA purification kit. Briefly, the collected 

cells were lysed with lysis solution, and treated with RNase A (40 μg/ml in a final 

concentration) at 37oC for 60 min. Protein precipitation solution was then added to the 

lysates, which were then vortexed vigorously and centrifuged at 16,000xg for 5 min. 

Supernatants were mixed with 100% isopropanol, inverted 20 times, and centrifuged at 

15,000xg for 5 min to precipitate DNA. After being washed with cold 70% ethanol, 

DNA precipitates were air-dried in hood, dissolved in DNA hydration solution, and 

treated with proteinase K (0.4 mg/ml in a final concentration) at 55oC overnight. Finally, 

20 μl of DNA were subject to electrophoresis on a 1.2% agarose gel, and DNA 

fragmentation was visualized under UV light after staining with ethidium bromide.  

 

Measurement of proteasomal activity  

          Proteasomal activity was measured with a proteasome assay kit according to 

manufacturer`s protocol slightly modified. Briefly, cells grown in culture dishes (60 × 15 

mm) were treated with 0.5 mM paraquat for various time periods (0 - 48 hr) or 0.5 μM 

rotenone for 12 hr. After treatment, cells were harvested, washed twice with PBS, and 

lysed for an hour in a cold buffer containing 50 mM HEPES (pH 7.6), 50 mM NaCl, 1 

mM DTT. After centrifugation at 15,000xg for 30 min, 100 μl of supernatant was 
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aliquoted into 96-well plate. Then, 10 μl of 10 mM succinyl-leucine-leucine-valine-

tyrosine-7-amino-4-methylcoumarin (Suc-LLVY-AMC) and 3% SDS were added to 

monitor the fluorescence signal released from free AMC at an excitation wavelength of 

380 nm and an emission wavelength of 460 nm with a Fluostar Optima microplate 

reader. The specific 20S proteasomal activies were calculated as total activity minus 

remaining activity of lysates in the presence of 20 μM proteasome inhibitor MG132 

(Höglinger et al., 2003).  

 

Measurement of mitochondrial complex I and V activity 

          For enzyme activity assays, cells grown in culture dishes (60 × 15 mm) were 

treated with 0.5 mM paraquat for different time periods (0 - 48 hr). After treatment, cells 

were harvested, washed twice with PBS, and suspended in 100 μl of cold isotonic buffer 

containing 250 mM sucrose, 1 mM EDTA, and 10 mM HEPES (pH 7.4).  The cell 

suspension was subjected to three cycles of freezing and thawing in liquid nitrogen. The 

lysates were centrifuged at 1000xg, 4oC for 10 min and the supernatants were assayed 

for enzyme activity by use of a DU 640 spectrophotometer. 

 

Mitochondrial complex I (NADH-ubiquinone oxidoreductase) 

Complex I activity was determined by measuring the rate of NADH oxidation as 

previously described (Clementi et al., 1998; Hölinger et al., 2003). The isolated 

mitochondrial fractions were added to 1 ml of reaction solution containing 10 mM 

potassium phosphate buffer (pH 8.0), 2.5 mg/ml bovine serum albumine (fraction V), 
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100 μM decylubiquinone, and 200 μM NADH. The absorbance change was monitored at 

340 nm for 5 min in the presence and absence of 2 μM rotenone. Rotenone-sensitive 

absorbance was considered to represent a specific complex I activity. 

 

Mitochondrial complex V (F1F0 ATPase)  

Complex V activity was determined by measuring the rate of NADH oxidation as 

previously described (Barrientos et al., 1998; Theron et al., 2000). The isolated 

mitochondrial fractions were added to 1 ml of reaction solution containing 100 mM Tris-

HCl (pH 8.0), 5 mM MgCl2, 10 mM KCl, 25 mM ATP, 0.2 mM NADH, 4 units of 

pyruvate kinase and lactate dehydrogenase. The absorbance change was monitored at 

340 nm for 5 min in the presence and absence of 3 μM oligomycin. Oligomycin-

sensitive absorbance was considered to represent a specific complex V activity.        

 

Measurement of intracellular ATP  

           Intracellular ATP levels were measured with an ATP assay kit, which utilizes 

luciferase to catalyze the formation of luminescence from ATP and luciferin. Briefly, 

cells grown in culture dishes (60 × 15 mm) were treated with 0.5 mM paraquat for 

different time periods (0 - 48 hr) or 0.05 μM rotenone for 24 hr, respectively. After 

treatment, cells were harvested, washed twice with PBS and 104 cells were lyzed in 100 

μl of nuclear releasing buffer provided by manufacturer. After centrifugation at 

10,000xg, 4oC for 10 min, the supernatants were subjected to 96-well plate. Then, 1 μl of 

ATP monitoring enzyme was added to measure the luminescence with a Fluostar Optima 
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microplate reader. The luminescence value was then normalized with protein 

concentration of each supernatant used. 

 

Measurement of caspase 3 and 9 activity  

         Caspase 3 and 9 activity were measured with a caspase-3/-9 colorimetric assay kit 

according to manufacturer`s protocol. Briefly, cells grown in culture dishes (60 × 15 

mm) were treated with 0.5 mM paraquat for different time periods (0 - 48 hr) or 5 μM 

rotenone for 24 hr. After treatment, cells were harvested, washed twice with PBS, and 

suspended in 100 μl of cold lysis buffer containing 5 mM Tris-HCl (pH 8.0), 20 mM 

EDTA, and 0.5% Triton X-100 for 30 min. After centrifugation at 10,000xg for 10 min, 

200 μg of supernatant and 50 μl of reaction buffer containing 10 mM DTT were 

aliquoted into a 96-well plate. Then, DEVD-pNA and LEHD-pNA were added as a 

substrate of caspase 3 or 9, respectively. The absorbance released from free pNA was 

monitored at 400 nm with a Fluostar Optima microplate reader for an hour.  

 

Nuclear morphology 

           The morphological changes of nucli were observed with the nuclear dye Hoechst, 

which permeates nuclear membranes and yields blue chromatin (Gómez et al., 2001).  

Viable cells show normal nucleus size and chromatin density, whereas apoptotic cells 

display condensed chromatin with Hoechst staining. Briefly, cells grown in culture dish 

(60 × 15 mm) were first treated with 0.5 mM paraquat for various time periods (0 - 48 

hr) or 0.1 μM rotenone for 24 hr. Then, cells were washed with warm PBS two times, 
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stained with 50 μM Hoechst and incubated at 37oC incubator for 30 min. After excess 

dye was washed off, nuclear images were captured through 20X objective lens via 

Olympus IX 70 inverted fluorescence microscope (Olympus America Inc, Melville, NY, 

USA). Light emitted from the Hoechst dye was detected at an emission wavelength > 

420 nm with an excitation 330- 385 nm. 

 

Western blotting  

After treatment of cells grown in culture dishes (60 × 15 mm) with 0.5 mM 

paraquat for up to 48 hr, 50 μM hemin for 12 hr, or 10 μM MG132 for 24 hr, 

respectively, cells were washed with PBS and harvested. Cells were lyzed with protein 

isolation buffer (0.1 M NaCl, 0.5 M Tris¯HCl, pH 7.5, 10% SDS, 1% Triton X-100, 20 μ

g/ml aprotinin, 20 μg/ml leupeptin) on ice for 40 min. After centrifugation at 15,000xg 

for 30 min at 4°C, supernatants were collected and protein concentration was determined 

by the Bradford assay.  Isolated cytosolic proteins (40 - 50 μg) were run on a 12% 

sodium dodecyl sulfate polyacrylamide gel with 70 V for 3 hr. After electrophoresis, the 

separated proteins were transferred onto a PVDF membrane with 290 mA, 10 V for 65 

min. The membrane was blocked with 5% (w/v) non-fat dry milk solution in Tris-

buffered saline (TBS) for 2 hr and then incubated with primary antibodies (1:1000) at 

4°C for 12 hr. After incubation, the membrane was washed three times with Tris-

buffered saline¯0.05% Tween 20 (TBS-T) at room temperature for 10 min and incubated 

with horseradish peroxidase-conjugated second antibodies (1:1000) for 4 hr at room 

temperature. The membrane was four times washed with TBS-T at room temperature for 
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10 min. After four final washing steps, protein bands were visualized on Kodak X-

OMAT blue autoradiography film (Eastman Kodak Company, Rochester, NY, USA) 

with Western Lightning Chemiluminescence reagent. ImageJ version 1.33 (NIH, 

Maryland, MA, USA) was used to quantitate each protein band of western blot.    

 

Statistical analysis 

All experiments were performed 3 - 6 times and results are presented as mean ± 

SEM. Statistical significance was determined between untreated groups and treated 

groups at each time point, with the one-way analysis of variance (ANOVA) and the 

Dunnett`s test (GraphPad Software Inc., San Diego, CA, USA). A value of p < 0.05 was 

considered to be significant.  
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CHAPTER III 

   

RESULTS 

 

Effects of paraquat and GBR12909 on cell viability 

             To examine the adverse effects of paraquat, SY5Y cells were treated with 

various concentrations (0.05 - 1 mM) of paraquat for 48 hr and cell viability was assayed 

by trypan blue exclusion (Figure 10), MTT (Figure 11), and LDH (Figure 12). Paraquat 

decreased cell viability in a concentration-dependent manner. In particular, 0.5 and 1 

mM paraquat significantly decreased viability to 56.2 ± 7.9 % or 42.8 ± 9.4 % of control, 

respectively. To investigate whether the adverse effects of paraquat were mediated by a 

dopamine transporter, SY5Y cells were co-incubated with a specific dopamine 

transporter inhibitor GBR12909 (1 μM) and various concentrations of paraquat (0.05 - 1 

mM) for 48 hr and cell viability was checked. GBR12909 significantly protected SY5Y 

cells against the cytotoxicity of lower concentrations of paraquat (0.05 - 0.5 mM) and 

partially attenuated the toxicity of higher concentrations of paraquat (0.5 - 1.0 mM) 

(Figure 10-12). Based on the viability data, 0.5 mM paraquat was selected as a minimum 

effective concentration for other experiments. SY5Y cells were treated with 0.5 mM 

paraquat and cell morphology was examined in a time dependent manner (Figure 13). 

No significant changes were observed until 12 hr, whereas the shrinkage of neurites was 

seen at 24 hr and most cells were seriously damaged at 48 hr. Likewise, severe damage 

was observed in cells exposed to 0.1 μM rotenone for 24 hr. 
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Figure 10. Effect of paraquat on trypan blue exclusion. Cells in culture dishes (60 × 15 
mm) were exposed to various concentrations (0.1 - 1 mM) of paraquat or GBR12909 (1 
μM) for 48 hr and viability was measured by trypan blue exclusion. Data are expressed 
as mean % of untreated control ± SEM for 4 independent experiments (n = 4). Statistical 
significance was determined by the one-way analysis of variance (ANOVA) and the 
Dunnett`s test; * p < 0.05 and ** p < 0.01 when compared to untreated control.  
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Figure 11. Effect of paraquat on formazan reduction. Cells in culture dishes (60 × 15 
mm) were exposed to various concentrations (0.1 - 1 mM) of paraquat or GBR12909 (1 
μM) for 48 hr and viability was determined by formazon reduction. Data are expressed 
as mean % of untreated control ± SEM for 4 independent experiments (n = 4). Statistical 
significance was determined by the one-way analysis of variance (ANOVA) and the 
Dunnett`s test; * p < 0.05 and ** p < 0.01 when compared to untreated control. 
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Figure 12. Effect of paraquat on LDH release. Cells in culture dishes (60 × 15 mm) 
were exposed to various concentrations (0.1 - 1 mM) of paraquat or GBR12909 (1 μM) 
for 48 hr and toxicity of paraquat was determined by the release of latactate 
dehydrogenase. Data are expressed as mean % of untreated control ± SEM for 4 
independent experiments (n = 4). Statistical significance was determined by the one-way 
analysis of variance (ANOVA) and the Dunnett`s test; * p < 0.05 and ** p < 0.01 when 
compared to untreated control.  
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Figure 13. Effect of paraquat on the morphology of SY5Y cells. Cells in culture dishes 
(60 ×15 mm) were exposed to paraquat (0.5 mM) up to 48 hr or rotenone (0.1 μM) for 
24 hr and after treatment, cell morphology was captured through 100X objective lens of 
phase-contrast light microscope. Each micrograph is representative of 6 fields.  
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Effect of paraquat on the levels of ROS and reduced GSH 

           A potent prooxidant, paraquat is known to generate reactive oxygen species 

(ROS) via the cytochrome P-450-mediated redox cycling reaction (Suntres, 2002). Thus, 

studies were carried out to determine whether ROS was generated from SY5Y cells 

treated with paraquat (Figure 14). Cells were treated with 0.5 mM paraquat for up to 48 

hr or 5 μM rotenone for 6 hr and ROS levels were determined by measuring DCF 

fluorescence at each time point. Paraquat at 0.5 mM did not increase peroxide levels 

until 12 hr, whereas 5 μM rotenone significantly increased peroxide levels to 138 ± 

7.62% of control within 6 hr. At 24 hr and 48 hr, 0.5 mM paraquat significantly 

increased peroxide levels to 129.8 ± 5.63 % and 151.1 ± 8.03% of control, respectively. 

Levels of intracellular GSH were measured because GSH is a major antioxidant for 

detoxifying ROS (Figure 15). SY5Y cells were treated with 0.5 mM paraquat for up to 

48hr or with 100 μM L-buthionine sulfoximine (BSO) for 24 hr and GSH levels were 

determined by measuring MCB fluorescence at each time point. Paraquat at 0.5 mM did 

not significantly decrease GSH levels until 12 hr, but 100 μM BSO markedly decreased 

GSH levels to 47.3 ± 5.29% of control at 24 hr. At 24 hr and 48 hr, 0.5 mM paraquat 

reduced GSH levels to 59.4 ± 13.7 % or 38.5 ± 8.43% of control, respectively.   

 

Effects of paraquat on the activities of GPx, GR, and GST 

GPx, GR, and GST are antioxidant enzymes involved in scavenging of reactive 

oxygen species or conjugation of metabolites with GSH (Hayes & Strange, 1995; 

Griffith & Mulcahy, 1999). Thus, if these enxymes are inhibited, cells may suffer from 
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Figure 14. Effect of paraquat on ROS level. Cells in culture dishes (60 × 15 mm) were 
first exposed to paraquat (0.5 mM) for up to 48 hr or rotenone (5 µM) for 6 hr. After 
exposure, cells were loaded with DCF-DA (50 μM), and broken to isolate cytosol 
containing DCF. Levels of peroxides were determined by measuring the fluorescence of 
DCF cleaved from DCF-DA. Data are expressed as mean % ± SEM for 6 independent 
experiments done at each time point (n = 6). Statistical significance was determined by 
the one-way analysis of variance (ANOVA) and the Dunnett`s test; * p < 0.05 and ** p 
< 0.01 when compared to untreated control.   
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Figure 15. Effect of paraquat on intracellular GSH level. Cells in culture dishes (60 × 15 
mm) were exposed to paraquat (0.5 mM) for up to 48 hr or BSO (L-buthionine 
sulfoximine, 100 μM) for 24 hr. After exposure, cells were loaded with MCB (40 µM), 
and broken to isolate cytosol containing MCB. GSH levels were determined by 
measuring GSH-MCB adducts.fluorescence with a microplate reader. Data are expressed 
as mean % of untreated control ± SEM for 6 independent experiments done at each time 
point (n = 6). Statistical significance was determined by the one-way analysis of 
variance (ANOVA) and the Dunnett`s test; * p < 0.05 and ** p < 0.01 when compared to 
untreated control. 
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oxidative stress. The activities of these enzymes were therefore investigated in SY5Y 

cells treated with 0.5 mM paraquat for up to 48 hr (Figure 16). GR activity was not 

significantly affected by 0.5 mM paraquat. GST activity increased by 12 hr and reached 

its highest value (193.26 ± 14.21% of control) at 24 hr, before returning to the control 

value at 48 hr. On the other hand, GPx activity decreased in a time dependent manner: 

50.9 ± 16.1% and 21.23 ± 6.18% of control at 24 hr or 48 hr, respectively.   

 

Effect of paraquat on MTP 

            MTP is disrupted by pathological conditions such as oxidative stress, ATP 

depletion, Ca2+ overload, and high pH of the mitochondrial matrix (Škárka & Oštadál, 

2002). Thus, given that paraquat increased reactive oxygen species (ROS) (Figure 14), 

but decreased GSH levels (Figure 15), it is conceivable that paraquat decreases MTP. 

SY5Y cells were treated with 0.5mM paraquat for up to 48 hr or 5 μM rotenone for 12 hr 

and MTP was determined by measuring TMRE fluorescence (Figure 17). Paraquat at 0.5 

mM had no effect at 12 hr, though 5 μM rotenone greatly decreased MTP to 31.74 ± 

1.71% of control. However, 0.5 mM paraquat significantly reduced MTP to 69.8 ± 

2.98% and 54.3 ± 3.59% of control at 24 or 48 hr, respectively. 

 

Oxidative damage of paraquat to intracellular macromolecules  

           Reactive oxygen species (ROS) are highly toxic and thus may harm cellular 

components including membrane lipids, cellular proteins, and DNA (Halliwell & 

Gutteridge, 1984). As shown in figure 14, paraquat markedly increased ROS levels. 
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Figure 16. Effect of paraquat on the activities of GSH-related enzymes. Cells in culture 
dishes (60 × 15 mm) were exposed to paraquat (0.5 mM) for up to 48 hr and at each time 
point, enzyme activities were assayed in cell homogenates. GPx or GR activity was 
determined by measuring NADPH oxidized per min per mg protein, whereas GST 
activity was determined by measuring CDNB conjugate formed per min per mg protein. 
Data are expressed as mean % of untreated control ± SEM for 4 independent 
experiments done at each time point (n = 4). Statistical significance was determined by 
the one-way analysis of variance (ANOVA) and the Dunnett`s test; * p < 0.05 and ** p 
< 0.01 when compared to untreated control.  
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Figure 17. Effect of paraquat on MTP. Cells in culture dishes (60 × 15 mm) were 
exposed to paraquat (0.5 mM) for up to 48 hr or rotenone (2 µM) for 12 hr. After 
exposure, cells were loaded with TMRE (200 nM) and lysed to isolate cytosol 
containing TMRE. MTP was determined by measuring fluorescence of TMRE with a 
microplate reader. Data are expressed as mean % of untreated control ± SEM for 6 
independent experiments done at each time point (n = 6). Statistical significance was 
determined by the one-way analysis of variance (ANOVA) and the Dunnett`s test; * P < 
0.05 and ** p < 0.01 when compared to untreated control.  
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Thus, studies investigated whether paraquat would produce ROS-mediated damage to 

lipids, proteins, and DNA from SY5Y cells. 0. 5 mM paraquat significantly increased the 

concentration of malondialdehyde (MDA), a product of lipid peroxidation, in a time 

dependent manner (Figure 18). In particular, it elevated MDA levels to 194.2 ± 3.67% or 

241.8 ± 4.7% of control at 24 hr and 48 hr, respectively. Likewise, cellular proteins 

sustained oxidative damage by 0.5 mM paraquat. Protein carbonyls significantly 

increased to 167.9 ± 9.5% and 188.1 ± 15.9% of control at 24 hr or 48 hr, respectively 

(Figure 19). Furthermore, 0.5 mM paraquat and 0.5 μM rotenone induced DNA 

fragmentation at 48 hr or 24 hr, respectively (Figure 20).    

 

Effect of paraquat on the protein levels of TH and HO-1 

            TH is a specific biomarker of dopaminergic neurons (Kim et al., 2003) and heme 

oxygenase-1 (HO-1) is strongly induced in response to oxidative stress (Leon et al., 

2003).  Thus, it was tested whether the protein levels of TH, and HO-1 are affected by 

paraquat. SY5Y cells were treated with 0.5 mM paraquat or 50 μM hemin for up to 48 hr 

or for 12 hr, respectively, and the protein levels of TH and HO-1 were checked by 

western blotting. Paraquat did not significantly change the protein level of TH. However, 

paraquat significantly increased the protein level of HO-1 to 169.23 ± 8.3% or 193.98 ± 

10.5% of 0 hr at 24 hr and 48 hr, respectively (Figure 22). Similarly, hemin greatly 

increased HO-1 protein level to 305.41 ± 13.4% of 0 hr at 12 hr. 
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Figure 18. Effect of paraquat on malondialdehyde (MDA) level. Cells in culture dishes 
(60 × 15 mm) were exposed to paraquat (0.5 mM) for up to 48 hr and lysed to isolate 
cytosol containing oxidatively damaged lipids. The degree of lipid peroxidation was 
determined by measuring levels of MDA with a spectrophotometer. Data are expressed 
as mean % of untreated control ± SEM for 6 independent experiments done at each time 
point (n = 6). Statistical significance was determined by the one-way analysis of 
variance (ANOVA) and the Dunnett`s test; * p < 0.05 and ** p < 0.01 when compared to 
untreated control. 
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Figure 19. Effect of paraquat on carbonyl level. Cells in culture dishes (60 × 15 mm) 
were exposed to paraquat (0.5 mM) for up to 48 hr and lysed to isolate cytosol 
containing oxidatively damaged proteins. The degree of protein oxidation was 
determined by measuring levels of protein carbonyls with a spectrophotometer. Data are 
expressed as mean % of untreated control ± SEM for 6 independent experiments done at 
each time point (n = 6). Statistical significance was determined by the one-way analysis of 
variance (ANOVA) and the Dunnett`s test; * p < 0.05 and ** p < 0.01 when compared to 
untreated control.   
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Figure 20. Paraquat-induced DNA fragmentation in SY5Y cells. Cells in T-75 flasks 
were exposed to paraquat (0.5 mM) for 6 hr (lane 3), 12 hr (lane 4), 24 hr (lane 5), and 
48 hr (lane 6), respectively, or RT (0.5 μM rotenone, lane 7) for 12 hr. 0 hr group is 
shown in lane 2 and 1.0 Kb DNA size markers are shown in lane 1 and 8. DNA isolated 
from the same numbers of cells (5 × 106) was subjected to 1.2% agarose gels. After 
electrophoresis, gels were stained by ethidium bromide and the fragmented DNA was 
visualized under UV light. The result is representative from 4 independent experiments. 
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Effect of paraquat on proteasomal activity  

            Proteasomal activity is important in determining neuronal survival and death 

(Lopes et al., 1997; Pasquini et al., 2000). Some parkinsonian chemicals including 

maneb, 6-OHDA, dopamine, and neuromelanin have shown to decrease the activity of 

the proteasome (Keller et al., 2000; Elkon et al., 2004; Shamoto-Nagai et al., 2004; Zhou 

et al., 2004). Thus, study examined whether paraquat affects proteasomal activity. SY5Y 

cells were treated with 0.5 mM paraquat for up to 48 hr or 0.5 μM rotenone for 12 hr and 

proteasomal activity was measured at each time point (Figure 23). Paraquat moderately 

decreased proteasomal activity by 12 hr, though 0.5 μM rotenone greatly decreased 

proteasomal proteasomal activity to 18.2 ± 8.1% of control at 12 hr. However, at 24 hr 

and 48 hr, paraquat significantly decreased proteasomal activity to 40.1 ± 12.9% or 22.8 

± 10.2% of control, respectively.           

 

Effect of paraquat on the activities of mitochondrial complex I and complex V  

           ROS production and ATP synthesis are physiologically modulated by complex I 

or complex V of mitochondrial electron transport chains, respectively (McLennan et. al., 

2000; Zheng & Ramirez et al., 2000).  The inhibition of complex I have been suggested 

to cause proteasomal dysfunction (Höglinger et. al., 2003). Thus, in congunction with 

proteasomal dysfunction, experiments were carried out to test whether paraquat affects 

mitochondrial complex I and V function (Figure 24). Paraquat did not significantly 

affect the activity of complex I by 12 hr, whereas at 24 hr and 48 hr, it markedly 

decreased the activity of complex I to 52.2 ± 10.5% or to 25.9 ± 7.9% of control. 
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Figure 21. Effects of paraquat on the protein level of tyrosine hydroxylase (TH). Cells 
were exposed to paraquat (0.5 mM) for up to 48 hr. 50 μg of cytosolic proteins isolated 
at each time point were used to analyze TH by western blotting. (A) Representative 
immunoblot of TH from two separate experiment (B) TH level was quantified by 
densitometric analysis of each band of TH and normalized on the level of β-actin. The 
quantified TH level is expressed as % of 0 hr.  
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Figure 22. Effects of paraquat on the protein level of heme oxygenase-1 (HO-1). Cells 
were exposed to paraquat (0.5 mM) for up to 48 hr or hemin (HE) (50 μM) for 24 hr. 50 
μg of cytosolic proteins isolated at each time point were used to analyze HO-1 by 
western blotting. (A) Representative immunoblot of HO-1 (B) HO-1 level was 
quantified by densitometric analysis of each band of HO-1 and normalized on the level 
of β-actin. The quantified HO-1 level is expressed as % of 0 hr. Values represent mean ± 
SEM for 4 independent experiments (n =4). Statistical significance was determined by 
the one-way analysis of variance (ANOVA) and the Dunnett`s test; ** p < 0.01 when 
compared to 0 hr.  
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Figure 23. Effect of paraquat on proteasomal activity. Cells in culture dishes (60 × 15 
mm) were exposed to paraquat (0.5 mM) for up to 48 hr or rotenone (5 μM) for 12 hr. At 
each time point, proteasomal activity was determined by measuring the fluorescence 
signal released from free AMC. The specific proteasomal activity was calculated as total 
activity minus remaining activity of lysates in the presence of a proteasome inhibitor 
MG 132 (20 μM). Data are expressed as mean % of untreated control ± SEM for 6 
independent experiments done at each time point (n = 6). Statistical significance was 
determined by the one-way analysis of variance (ANOVA) and the Dunnett`s test; * p < 
0.05 and ** p < 0.01 when compared to untreated control. 
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proteasomal dysfunction, experiments were carried out to test whether paraquat affects 

mitochondrial complex I and V function (Figure 24). Paraquat did not significantly 

affect the activity of complex I by 12 hr, whereas at 24 hr and 48 hr, it markedly 

decreased the activity of complex I to 52.2 ± 10.5% or to 25.9 ± 7.9% of control, 

respectively. Likewise, paraquat did not affect the activity of complex V by 24 hr, but it 

significantly decreased the activity of complex V to 59.8 ± 13.9% of control at 48 hr. 

 

Effect of paraquat on intracellular ATP level 

           ATP depletion is relevant to neuronal death and proteasomal dysfunction (Krieger 

& Duchen 2002; Hashimoto et al., 2003). ATP is required for the assembly of 20S 

proteasome and 19S PA 700 activator to form 26S proteasome complex (McNaught & 

Olanow, 2003). Thus, in connection with the proteasomal dysfunction, experiments were 

conducted to examine whether paraquat affects the level of ATP. The experiment was 

designed to correlate any change of ATP level with the decrease of proteasomal activity 

(Figure 23). SY5Y cells were treated with 0.5 mM paraquat for up to 48 hr or 0.05 μM 

rotenone for 24 hr and ATP level was measured at each time point (Figure 25). Paraquat 

significantly decreased ATP levels to 76 ± 5.9% or 38.8 ± 4.8% of control, respectively 

at 24 hr and 48 hr. Similarly, 0.5 μM rotenone greatly decreased the ATP level to 20.9 ± 

2.9% of control at 24 hr.  

 

Effect of paraquat on the levels of proteasomal subunits 

            The 26S proteasome is a large protease complex, which consists of 20S catalytic 
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Figure 24. Effect of paraquat on the activities of mitochondrial complex I and V. Cells 
in culture dishes (60 × 15 mm) were exposed to paraquat (0.5 mM) for up to 48 hr. The 
specific activities of complex I and V were determined in the isolated mitochondrial 
fractions by measuring the absorbance change caused by NADH oxidation in the 
presence or absence of rotenone and oligomycin, respectively. Data are expressed as 
mean % of untreated control ± SEM for 6 independent experiments done at each time 
point (n = 6). Statistical significance was determined by the one-way analysis of 
variance (ANOVA) and the Dunnett`s test; * p < 0.05 and ** p < 0.01 when compared to 
untreated control. 
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Figure 25. Effect of paraquat on the intracellular ATP level. Cells in culture dishes (60 × 
15 mm) were exposed to paraquat (0.5 mM) for up to 48 hr or rotenone (0.5 μM) for 24 
hr. After exposure, cells were broken and mixed with ATP monitoring enzyme. ATP 
levels were determined by measuring luminescence from ATP/luciferin binding. Data 
are aexpressed as mean % of untreated control ± SEM for 6 independent experiments 
done at each time point (n = 6). Statistical significance was determined by the one-way 
analysis of variance (ANOVA) and the Dunnett`s test; ** p < 0.01 when compared to 
untreated control.  
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core subunits and 19S regulatory subunits called PA 700. The 20S core is composed of α 

and β subunit, and 19S component consist of ATPase and non-ATPase subunits (Roos-

Mattjus & Sistonen, 2004). Structural defects in the proteasomal complex may cause 

proteasomal dysfunction (Carrad et al., 2002). In this study, we investigated whether 

paraquat affects the levels of proteasomal subunits. SY5Y cells were treated with 0.5 

mM paraquat for up to 48 hr and the levels of proteasomal subunits were checked at 

each time point by western blotting (Figure 26). Paraquat did not affect the protein levels 

of 20S α and β subunits, whereas paraquat significantly decreased the protein level of 

19S subunits to 32.54 ± 12.21% of 0 hr at 48 hr.  

 

Effect of paraquat on the levels of α-synuclein and ubiquitinated proteins 

            α-synuclein is linked both to normal synaptic function and neurodegeneration  

 (Vekrellis et al., 2004), and ubiquitin plays a pivotal role in tagging unnecessary 

proteins for degradation by proteasome complex (Hyun et al., 2004). In a transgenic 

mouse model, neuronal expression of human α-synuclein results in progressive 

accumulation of α-synuclein and ubiquitin-immunoreactive inclusions in neurons of the 

neocortex, hippocampus, and substantia nigra which contained elevated levels of α-

synuclein and ubiquitin (Masliah et al., 2000). In addition, proteasomal dysfunction has 

shown to form protein aggregates including α-synuclein and ubiquitin (Ross & Pickart, 

2004). Thus, the current study examined whether paraquat affects the protein level of α-

synuclein and causes the accumulation of ubiquitinated proteins. First, SY5Y cells were 

treated with 0.5 mM paraquat for up to 48 hr or 10 μM MG132 for 24 hr, respectively 
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Figure 26. Effects of paraquat on the protein levels of proteasomal subunits. Cells were 
exposed to paraquat (0.5 mM) for up to 48 hr. 50 μg of cytosolic proteins isolated at 
each time point were used to analyze proteasomal subunits by western blotting. (A) 
Representative immunoblot of proteasomal subunit (B) The levels of proteasomal 
subunits were quantified by densitometric analysis of each band of proteasomal subuints 
and normalized on the level of β-actin. The quantified levels of proteasomal subunits are 
expressed as % of 0 hr. Values represent mean ± SEM for 4 independent experiments (n 
=4). Statistical significance was determined by the one-way analysis of variance 
(ANOVA) and the Dunnett`s test; * P < 0.05 when compared to 0 hr.  
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and the levels of α-synuclein and ubiquitinated proteins were checked at each time point 

by western blotting (Figure 27). Paraquat significantly significantly increased the level 

of ubiquitinated proteins to 154.34 ± 17.81% and 166.81 ± 0.13% of 0 hr at 24 hr or 48 

hr, respectively (Figure 27A). Likewise, paraquat increased the protein level of α-

synuclein to 202.54 ± 27.93%, 235.78 ± 22.58%, or 305.21 ± 15.46% of 0 hr at 12hr, 24 

hr, or 48hr, respectively (Figure 27B). Similarly, 10 μM MG132 highly elevated the 

levels of α-synuclein and ubiquitinated proteins to 635.29 ± 30.51 or 258.13 ± 18.92% of 

0 hr at 24 hr, respectively.  

 

Effect of paraquat on the protein levels of p53 and Bax 
 
          A tumor suppressor transcription factor p53 activates Bax to induce apoptosis and 

both 53 and Bax are degraded by proteasome-dependent pathway (Yang & Yu, 2003; Li 

& Dou, 2000). Thus, proteasomal dysfunction might cause the stabilization of p53 and 

Bax, resulting in the promotion of apoptosis. Based on the above finding that paraquat 

decreased proteasomal activity, we investigated whether paraquat affects the protein 

levels of p53 and Bax (Figure 28) through proteasomal dysfunction. SY5Y cells were 

treated with 0.5 mM paraquat for up to 48 hr or 10 μM MG132 for 24 hr, respectively 

and the levels of p53 and Bax were checked at each time point by western blotting 

(Figure 28). Paraquat markedly increased the protein level of p53 to 350.21 ± 10.23%, 

354.55 ± 22.81% or 375.76 ± 17.32% of 0 hr at 12 hr, 24 hr or 48 hr, respectively 

(Figure 28A). Correspondingly, paraquat significantly increased the protein level of Bax  

to 241.57 ± 19.71%, 268.54 ± 24.41% or 301.12 ± 16.42% of 0 hr at 12 hr, 24 hr, or 48 
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Figure 27. Effects of paraquat on the levels of ubiquitinated protein and α-synuclein. 
Cells were exposed to paraquat (0.5 mM) for up to 48 hr or MG132 (10 μM) for 24 hr. 
50 μg of cytosolic proteins isolated at each time point were used to analyze ubiquitinated 
protein and α-synuclein by western blotting. (A) Representative immunoblot of 
ubiquitinated protein and α-synuclein (B) The levels of ubiquitinated protein and α-
synuclein were quantified by densitometric analysis of each band of ubiquitinated 
protein and α-synuclein and normalized on the level of β-actin. The quantified levels of 
ubiquitinated protein and α-synuclein are expressed as % of 0 hr. Values represent mean 
± SEM for 4 independent experiments (n =4). Statistical significance was determined by 
the one-way analysis of variance (ANOVA) and the Dunnett`s test; * P < 0.05 and ** p 
< 0.01 when compared to 0 hr.  
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Figure 28. Effects of paraquat on the protein levels of p53 and Bax. Cells were exposed 
to paraquat (0.5 mM) for up to 48 hr or MG132 (10 μM) for 24 hr. 50 μg of cytosolic 
proteins isolated at each time point were used to analyze p53 and Bax by western 
blotting. (A) Representative immunoblot of p53 and Bax (B) The levels of p53 and Bax 
were quantified by densitometric analysis of each band of p53 and Bax and normalized 
on the level of β-actin. The quantified levels of p53 and Bax are expressed as % of 0 hr. 
Values represent mean ± SEM for 4 independent experiments (n =4). Statistical 
significance was determined by the one-way analysis of variance (ANOVA) and the 
Dunnett`s test; ** p < 0.01 when compared to 0 hr.  
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hr, respectively (Figure 28B). 

 

Effect of paraquat on the activities of caspase 3 and 9 

           Mitochondrial dependent apoptosis requires the sequential activation of caspase 9 

and 3, both of which are regulated by p53 and Bax (Moll & Zaika, 2001; Ohtsuka et al., 

2004). A number of studies show that the activation of caspase 3 and 9 is associated with 

proteasomal inhibition (Almond et al., 2001; Lu et al., 2003; Jana et al., 2004). Thus, in 

connection with proteasomal dysfunction, studies examined whether paraquat affects the 

activities of caspase 3 and 9 (Figure 29). SY5Y cells were treated with 0.5 mM paraquat 

for up to 48 hr or 5 μM rotenone for 24 hr and the activities of caspase 3 and 9 were 

measured at each time point. Paraquat increased the activities of caspase 3 and 9 in a 

time dependent manner. In particular, paraquat significantly increased the activities of 

caspase 3 and 9 to 208.26 ± 21.45% or 181.35 ± 3.25% of control, respectively at 48 hr.  

A positive control rotenone markedly increased the activities of caspase 3 and 9 at 12 hr. 

 

Nuclear condensation     

            Nuclear condensation appears at the late stage of apoptosis, which can be 

triggered by numerous factors including death receptor-mediated signals, oxidative 

stress, ionizing radiation, virus, and withdrawal of growth factors (Kannan & Jain, 2000).  

Proteasomal inhibition is implicated in nuclear condensation (Rideout et al., 2001, 2002; 

Sang et al., 2002). Thus, in connection with proteasomal dysfunction, the current study 

investigated whether paraquat causes nuclear condensation. SY5Y cells were treated 
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with 0.5 mM paraquat for up to 48 hr or 0.1 μM rotenone for 24 hr and nuclear 

morphology was examined at each time point (Figure 30). Paraquat did not change 

nuclear mophology by 24 hr but it significantly caused visible nuclear condensation at 

48 hr. Likewise, rotenone clearly induced nuclear condensation at 24 hr.  
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Figure 29. Effect of paraquat on the activities of caspase 3 and 9. Cells grown in culture 
dishes (60 × 15 mm) were treated with paraquat (0.5 mM) for up to 48 hr or rotenone (5 
μM) for 24 hr. After treatment, cells were lysed and mixed with DEVD-pNA and 
LEHD-pNA as a substrate of caspase 3 or 9, respectively. The activities of caspase 3 and 
9 were determined by measuring absorbance released from free pNA. Data are 
aexpressed as mean % of untreated control ± SEM for 6 independent experiments done 
at each time point (n = 6). Statistical significance was determined by the one-way 
analysis of variance (ANOVA) and the Dunnett`s test; * P < 0.05 and ** p < 0.01 when 
compared to untreated control. 
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Figure 30. Paraquat-induced nuclear condensation in SY5Y cells. Cells were treated 
with paraquat (0.5 mM) for up to 48 hr or rotenone (0.5 μM) for 24 hr. After treatment, 
cells were stained with Hoechst and then, nuclear images were captured through 20X 
objective lens via an inverted fluorescence microscope. Each picture is representative of 
6 fields.  
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CHAPTER IV 

 
DISCUSSION AND CONCLUSIONS  

            Data from the current study demonstrated that paraquat produces oxidative stress 

and proteasomal dysfunction-mediated toxicity in dopaminergic SY5Y cells. There is 

extensive evidence that oxidative stress and proteasomal dysfunction are associated with 

neurodegenerative diseases such as PD, AD, HD, ALS, and Prion disease (Ciechanover 

& Brundin, 2003; Barnham et al., 2004). In particular, human postmortem studies of PD 

patient show that PD brains are in a state of oxidative stress (Olanow & Tatton, 1999). In 

addition, protein aggregates called Lewy bodies are observed in PD brains (Chung et al., 

2001). Such oxidative stress and proteasomal dysfunction may be due to an abnormal 

endogenous process in dopamine metabolism (Olanow, 1993; Keller et al., 2000), or the 

action of exogenous and environmental neurotoxicants, notably, pesticides (Banerjee et 

al., 2001; Shamoto-Nagai et al., 2003; Abdollahi et al., 2004; Zhou et al., 2004). Thus, 

the hypotheses were tested that the bipyridyl herbicide paraquat produces oxidative 

stress-mediated toxicity and induces proteasomal dysfunction in dopaminergic SY5Y 

cells.  

           The trypan blue exclusion, MTT, and LDH assay were performed to examine the 

effect of paraquat or a specific dopamine transporter inhibitor GBR12909 on the 

viability of SY5Y cells. First, paraquat (0.5 mM - 1 mM) significantly reduced trypan 

blue exclusion and formazan reduction into less than 60 % of control (Figure 10, 11), 

and it significantly increased LDH release (Figure 12).  Thus, 0.5 mM was selected as a 

minimum effective concentration to investigate the toxicity of paraquat in other in vitro 
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experiments and the toxic effect of paraquat was confirmed by the analysis of cell 

morphology (Figure 13). Second, GBR12909 (1 μM) significantly protected SY5Y cells 

against the toxicity of paraquat (0.05 - 0.25 mM) and partially attenuated the toxicity of 

paraquat (0.5 - 1 mM). Paraquat crosses the blood-brain barrier (BBB) through neutral 

amino acid transporters (McCormack & Di Monte, 2003) and then exerts its toxicity to 

dopaminergic neurons through a dopamine transporter (DAT) (Shimizu et al., 2003). 

Thus, this finding confirms the conclusion that the toxicity of paraquat is mediated by 

DAT and supports a previous report showing that a dopaminergic phenotype DAT is 

expressed in SY5Y cells (Manakova et al., 2004) (Figure 31).  

           The generation of ROS was measured in SY5Y cells exposed to paraquat (0.5 

mM), because the redox cycling reaction of paraquat leads to the production of ROS 

including hydrogen peroxide, superoxide, and hydroxyl radicals, resulting in oxidative 

stress (Bus et al., 1974; Suntres, 2002). Current data confirmed that paraquat produced 

an increase of ROS in SY5Y cells in a time dependent manner (Figure 14). This finding 

is in agreement with the report that paraquat (0.01 - 1 mM) increases ROS in rat cortical 

neurons (Schmuck et al., 2002). Given that ROS-mediated oxidative damage is a 

prominent feature of dopaminergic pathogenesis (Cohen, 1986; Sinha et al., 1986; 

Chacon et al., 1987), current data suggest that paraquat may induce oxidative stress in 

dopaminergic neurons through the production of ROS.  In this study, paraquat (0.5 mM)       

significantly decreased GSH levels in SY5Y cells at 24 and 48 hr (Figure 15). Similarly, 

Schmuck et al (2002) showed that paraquat (0.01 - 1 mM) markedly depletes GSH in rat 

cortical neurons even within 1 hr. In general, GSH functions as a cellular antioxidant and  
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Figure 31. Proposed entry pathways and targets of paraquat in dopaminergic neruons 
(McCormack & Di Monte, 2003; Shimizu et al., 2003; Manakova et al., 2004). This 
figure is modified from the original. Paraquat first crosses blood-brain barrier (BBB) 
through neutral amino acid transporter and then enters dopaminergic neurons via 
dopamine transporter (DAT). Within dopaminergic neurons, paraquat can disrupt 
mitochondiral function, synaptic vesicles, and intracellular processes, ultimately leading 
to dopaminergic pathogenesis.     
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and a decrease of GSH levels may predispose cells to oxidative stress-mediated toxicity 

(Meister & Anderson, 1983). In fact, a decrease of GSH levels has been found in the 

remaining dopaminergic neurons of the PD brain, potentially rendering them more 

vulnerable to oxidative stress (Pearce et al., 1997). Thus, our finding indicates that 

depletion of GSH by paraquat may produce and aggravate oxidative stress in 

dopaminergic neurons.  

           The current study shows that paraquat (0.5 mM) decreased GPx activity in a time 

dependent manner, but did not significantly change GR activity. GST activity 

continuously increased for 24 hr, and then returned to basal level at 48 hr (Figure 16).  A 

similar effect of paraquat (0.1 mM) on these enzymes was observed in pulmonary 

endothelial cells (Tsukamoto et al., 2002). No apparent change of activities in these 

enzymes was reported in PD brain (Marttila et al., 1988; Sian et al., 1994). However, 

these studies do not specifically reflect activities of these enzymes in dopaminergic 

neurons, because their results are from substantia nigra tissue, including both glial cells 

and dopaminergic neurons. Thus, our data can be used as a basis to determine activities 

of these enzymes in dopaminergic neurons of PD brain under oxidative stress. 

Furthermore, the current findings indicate that altered activities of GPx and GST by 

paraquat partially contributed to the increase of ROS (Figure 14) and depletion of GSH 

(Figure 15), because these two enzymes consume GSH to scavenge ROS or to detoxify 

xenobiotics and their metabolites (Dringen, 2000), respectively.  

           In the current study, paraquat (0.5 mM) significantly decreased MTP at 24 and 48 

hr (Figure 17). This result is in agreement with the finding by Ding and Keller (2001) 
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that MTP is reduced in SY5Y cells exposed to paraquat (0.2 mM). In addition, paraquat 

(20 mM) dissipates complex I-dependent MTP in rat hepatocyte mitochondria (Vincente 

et al., 2001). MTP is decreased by oxidative stress, including the increase of ROS 

(Skulachev, 1996) and the depletion of GSH (Schulz et al., 2000). Indeed, the depletion 

of mitochondrial and cytoplasmic GSH depolarizes MTP in PC12 cells (Wüllner et al., 

1999; Seyfried et al., 1999). Another type of free radical, reactive nitrogen species 

(RNS) also reduces MTP in SY5Y cells (Moriya et al., 2000) and rat cortical neurons 

(Solenski et al., 2003). Thus, our data indicate that MTP reduction represents 

mitochondrial damage by paraquat-induced increase of ROS (Figure 14) and decrease of 

GSH (Figure 15).  

          The current study demonstrates that paraquat (0.5 mM) produced a time dependent 

increase of malondialdehyde (MDA) (Figure 18) and protein carbonyls (Figure 19) and 

DNA fragmentation (Figure 20) in SY5Y cells. Similarly, others have shown that 0.2 

and 0.5mM paraquat increases lipid peroxidation (Yang & Sun, 1998) and DNA 

fragmentation (Li & Sun, 1999) in PC12 cells. These indicators of oxidative damage are 

also found in dopaminergic neurons of PD brains (Dexter et al., 1989a; Yoritaka et al., 

1996; Alam et al., 1997b; Floor & Wetzel, 1998; Zhang et al., 1999). Thus, current data 

indicate that paraquat may produce oxidative damage to dopaminergic neurons, and 

furthermore, extend our hypothesis to the possibility that paraquat may induce apoptotic 

cell death of dopaminergic neurons identified in PD brains (Mochizuki et al., 1996; 

Anglade et al., 1997; Tatton et al., 1998). The finding that increased MDA was the 
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earliest measurable response to paraquat of the endpoints measured suggests that 

paraquat also induced extracellular damage. 

          In this study, paraquat (0.5 mM) significantly increased the protein levels of heme 

oxygease-1 (HO-1) at 12 hr and its level continued to increase by 48 hr (Figure 21B). 

HO-1 is induced in response to oxidative stress (Leon et al., 2003) and the intense 

staining of HO-1 was observed in dopaminergic neurons of PD patients (Schipper et al., 

1998). Thus, current finding indicates that SY5Y cells suffer from oxidative stress 

induced by paraquat. On the other hand, the protein levels of TH did not change in 

exposure to paraquat (Figure 21A). TH is a biomarker of dopaminergic neurons (Kim et 

al., 2003) and SY5Y cells are known to express it (Shaul et al., 2003). This finding 

confirms that a dopaminergic phenotype TH is expressed in SY5Y cells.  

           The current study shows that paraquat significantly decreased proteasomal 

activity (Figure 22). In general, the decrease of proteasomal activity might eventually 

lead to the formation of toxic protein aggregates. Both decreased proteasomal activity 

and protein aggregates called Lewy bodies are observed in the substantia nigra or 

dopaminergic neurons of PD brains, respectively (McNaught & Jenner, 2001). 

Significantly, parkinsogenic pesticides rotenone and maneb cause the decrease of 

proteasomal activity and the aggregation of α-synuclein in SY5Y cells or MES 23.5 cells, 

respectively (Shamoto-Nagai et al., 2003; Zhou et al., 2004). Consistently, rotenone was 

found to decrease proteasomal activity in SY5Y cells used in this study. Thus, current 

data suggest that paraquat might decrease proteasomal activity accompanied by protein 

aggregation in dopaminergic neurons.   
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           In the current study, paraquat caused the decreases of mitochondrial complex I 

and V activity (Figure 23) and the depletion of ATP (Figure 24). Such a decrease of 

complex I activity is reported in the substantia nigra, platelets, muscles, fibroblasts, and 

lymphocytes of PD patients and mutation of mitochondrial genes is believed to 

contribute to the decrease of complex I (Swerdlow et al., 1996; Gu et al., 1998; Mizuno 

et al., 1998).  The inhibition of complex I results in the increase of ROS and the decrease 

of ATP and this pathologic condition is known to cause oxidative stress (Tretter et al., 

2004). Significantly, mitochondrial dysfunction accompanied by an impaired supply of 

ATP has been suggested to contribute to proteasomal dysfucntion. In support of this 

hypothesis, the parkinsogenic chemicals rotenone, maneb, dopamine, MPP+ inhibiting 

proteasomal activity (Keller et al., 2000; Shamoto-Nagai et al., 2003; Zhou et al., 2004), 

reduce complex I activity or ATP level in cell lines and animals (Höglinger et al., 2003; 

Zhang et al., 2003; Ben-Schachar et al., 2004). Thus, our data indicate that paraquat 

might decrease proteasomal activity through the aditional mechanism of mitochondrial 

dysfunction-induced ATP depletion. Given that mitochondria are major sources of ROS 

and the inhibition of complex I leads to the generation of large amount of ROS (Lenaz, 

2001), it is also possible that abnormally generated ROS by mitochondrial dysfunction 

might inhibit proteasomal activity through oxidation of proteasomal subunits. Indeed, 

oxidative modifications of proteasomal subunits reduce proteasomal activity in cell lines 

and animals (Reinheckel et al., 1998; Bulteau et al., 2001).   

           The current study demonstrates that paraquat selectively decreased 19S subunits 

at 48 hr (Figure 25). In general, 19S subunits involve stabilization of 20S proteasome 
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complex and unfolding, recognition, transfer, and elimination of polyubiquitinated 

proteins (Vigouroux et al., 2004). Low levels of 19S subunits are reported in substantia 

nigra and this defect has been suggested to be relevant to the impaired proteasomal 

activity in PD patients (McNaught et al., 2003). In support of this hypothesis, a 

parkinsogenic neurotoxin neuromelanin inhibiting proteasomal activity reduces the 

protein levels of 19S sunbunits in SY5Y cells (Shamoto-Nagai et al., 2003). Thus, 

current data suggest that the reduction of 19S subunit levels by paraquat might cause the 

structural and functional instability of the 20S complex, contributing to the decrease of 

proteasomal activity (Figure 22). However, it remains to be determined whether such a 

decrease represents the downregulation or the enhanced turnover of 19S subunits by 

paraquat.  

           In this study, paraquat significantly increased the levels of α-synuclein and 

ubiquitinated proteins (Figure 26).  The increases of those proteins may be relevant to 

some features of dopaminergic neuronal death. Protein aggregates called Lewy bodies 

are observed in dopaminergic neurons of PD patients and α-synuclein is a major 

component of those (Dev et al., 2003; Vekrellis et al., 2004). Proteasomal inhibition 

induces both the increase of α-synuclein and ubiquitin levels and the formation of 

intracellular protein inclusions in vitro and in vivo (Biasini et al., 2004; McNaught et al., 

2002, 2004). Consistently, the parkinsogenic chemicals, rotenone, maneb, dopamine and 

6-OHDA inhibit proteasomal activity (Keller et al., 2000; Shamoto-Nagai et al., 2003; 

Elkon et al., 2004; Zhou et al., 2004), cause the increase of α-synuclein levels, and 

induce the formation of protein aggregates in cell lines and animals  (Elkon et al., 2001: 
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Gómez-Santos et al., 2003; Sherer et al., 2003; Zhou et al., 2004; Yoshimoto et al., 

2005). In agreement with these results, our data indicate that paraquat might induce a 

proteasomal inhibition-mediated increase of α-synuclein and accumulation of 

ubiquitinated proteins in dopaminergic neurons. However, it can not be ruled out that the 

increase of α-synuclein might include an upregulation triggered by paraquat. 

Furthermore, the accumulation of ubiquitinated proteins might be caused by 

modification of amino acids in proteins. In fact, a lipid peroxidation product 4-

hydroxynonenal (HNE) has shown to oxidize proteins, which, in turn, become 

aggregated. HNE-modified proteins are resistant to proteasomal degradation, resulting in 

the accumulation of protein inclusions in cells (Hyun et al., 2003; Grune & Davies, 

2003). Furthermore, the accumulation of protein inclusions might be triggered 

secondarily by the inhibition of proteasomal activity, as protein aggregation inhibits 

proteasomal activity followed by accumulation of ubiquitin conjugates (Bence et al., 

2001; Snyder et al., 2003; Lindersson et al., 2004).  

            The current study shows that paraquat significantly increased the protein levels 

of p53 and Bax at 12 hr and the level of Bax continued to increase by 48 hr (Figure 27B). 

A chief tumor suppressor, p53 and its downstream target gene Bax induce apoptosis, 

through which the formation of tumors is inhibited and the development of organs 

normally proceeds (Moll & Zaika, 2001; Fridman & Lowe, 2003; Chipuk & Green, 

2004). The turnover of p53 and Bax is mediated by proteasome-dependent pathway, and 

thus, proteasomal dysfunction has been suggested to cause the accumulation of p53 

followed by the increase of Bax, resulting in the acceleration of apoptosis (Wojcik, 
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1999). In support of this idea, proteasomal inhibition has shown to increase the protein 

levels of p53 and Bax in SY5Y cells and primary neurons (Kikuchi et al., 2003; Nakaso 

et al., 2004). In addition, the parkinsogenic drugs dopamine and 6-OHDA inhibiting 

proteasomal activity (Keller et al., 2000; Elkon et al., 2004), increase the protein levels 

of p53 and Bax in SY5Y cells or PC12 cells (Blum et al., 1997; Haque et al., 2003; 

Puttonen et al., 2003; Maňáková et al., 2004). These increases of p53 and Bax are 

reported in dopaminergic neurons of PD patients (de la Monte et al., 1998; Tatton, 2000; 

Horowitz et al., 2003). Thus, our data indicate that paraquat might induce proteasomal 

inhibition-mediated increases of p53 and Bax in dopaminergic neurons. However, it 

cannot be ruled out that their increases might also contribute to other paraquat-induced 

toxic events. For example, oxidative stress is known to increase the protein levels of p53 

and Bax (Jang & Surh, 2003; Tamagno et al., 2003) and it has been previously 

demonstrated that paraquat causes oxidative stress in SY5Y cells. 

           In the current study, paraquat significantly increased the activities of caspase 3 

and 9 at 24 and 48 hr (Figure 28). The activation of caspase 3 and 9 is reported in 

dopaminergic neurons of PD patients (Anderson, 2001). In general, caspase 9 is an 

intermediate of the mitochondrial dependent apoptotic pathway, and all apoptotic signals 

from the death receptor and mitochondria converge on caspase 3, which in turn activates 

other caspases to ultimately induce apoptosis (Bratton et al., 2000). Of interest, the 

parkinsogenic chemicals dopamine and rotenone inhibiting proteasomal activity (Keller 

et al., 2000; Shamoto-Nagai et al., 2003), increase the activity of caspase 9 or caspase 3 

in SY5Y cells (Junn & Mouradian, 2001; Molina-Jimenez et al., 2003). In addition, 
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proteasomal inhibition has been shown to activate caspase 3 in Neuro2a cells and 

primary neurons (Qiu, et al., 2000; Lang-Rollin et al., 2003; Sawada et al., 2004). Thus, 

our data suggest that paraquat might cause proteasomal inhibition-mediated activation of 

caspase 3 and 9 in dopaminergic neurons. Furthermore, the current finding provides 

evidence that the activation of caspase 3 and 9 might be directly associated with 

paraquat-induced increases of p53 and Bax (Figure 27), because their activation is 

regulated by p53 and Bax (Moll & Zaika, 2001; Ohtsuka et al., 2004).  

            The current study demonstrates that paraquat apparently induced nuclear 

condensation at 48 hr (Figure 29). Nuclear condensation is a representative characteristic 

of apoptosis and is observed in dopaminergic neurons of PD patients (Anglade et al., 

1997; Tatton et al., 1998). Proteasomal inhibition has been shown to induce caspase 3-

mediated nuclear condensation in primary neurons (Qiu et al., 2000; Lang-Rollin et al., 

2004).  In agreement with these results, the parkinsogenic chemicals dopamine, 6-

OHDA and rotenone inhibiting proteasomal activity (Keller et al., 2000; Shamoto-Nagai 

et al., 2003; Elkon et al., 2004), cause nuclear condensation in SY5Y cells (Haque et al., 

2003; Gómez-Santos et al., 2003; Newhouse et al., 2004). Thus, our data suggest that 

paraquat might cause proteasomal inhibition-mediated nuclear condensation in 

dopaminergic neurons. In addition, this finding can be understood as an endpoint of a 

paraquat-activated cascade including proteasomal dysfunction, upregulation of p53/ Bax, 

activation of caspase 9/3, and apoptotic death.  

            Animal studies suggest a link between paraquat exposure and dopaminergic cell 

death in the substantia nigra. Dopaminergic pathogenesis has been reported in male 



                                                                                                                                                   105
 
                                                                                                                                            
 
C57BL/6 adult mice that received 3 intraperitoneal injections of 10 mg/kg (equivalent to 

15.8 μmol/kg) of paraquat dichloride for 3 consecutive weeks (Brooks et al., 1999; 

Manning-Bog et al., 2002; McCormack et al., 2002), as well as in male Wistar rats 

receiving intranigral injections of various concentrations of paraquat dichloride (2.5 - 10 

nmole) for two weeks (Liou et al., 2001). The brain concentrations of paraquat in the 

brain and substantia nigra were not measured in these studies. Furthermore, brain 

concentrations of paraquat have not been determined in humans exposed to paraquat 

who developed parkinsonian symptoms, nor is it known what exposure periods and 

concentrations of paraquat might be relevant to PD incidence in human populations. 

Thus, the concentrations of paraquat that might enhance the risk for the development of 

overt dopaminergic pathogenesis or the clinical manifestation of PD under the certain 

exposure periods remain to be measured.  

            In conclusion, current findings suggest that paraquat might trigger dopaminergic 

pathogenesis through oxidative stress and proteasomal dysfunction (Figure 32). 

Furthermore, given that oxidative stress induces proteasomal dysfunction and conversely, 

proteasomal dysfunction causes oxidative stress, both mechanisms might interact to 

cause and exacerbate dopaminergic pathogenesis in response to paraquat. Thus, the 

characterization of novel mechanisms involving paraquat toxicity might contribute 

substantially to an understanding of how environmental neurotoxicants including 

pesticides might contribute to the incidence of PD in human populations. In addition, 

such an approach should provide a useful map to prevent and delay dopaminergic 

pathogenesis and eventually to develop therapeutics to treat PD patients.   
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Figure 32. Proposed pathway of paraquat-induced toxicity in SY5Y cells. (A) Oxidative 
stress-mediated toxicity by paraquat. (B) Proteasomal dysfunction-mediated toxicity by 
paraquat. Both oxidative stress and proteasomal dysfunction can contribute to toxicity to 
SY5Y cells by paraquat.        
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Further studies 

          In this study, undifferentiated SY5Y cells with several dopaminergic properties 

were examined in order to explore a hypothetical link between paraquat-induced 

oxidative stress and proteasomal dysfunction and dopaminergic pathogenesis. These 

hypotheses were well supported by current findings. However, several avenues of 

research still need to be further investigated and confirmed by use of other dopaminergic 

cells, primary dopaminergic neurons, or midbrain slices of animals.  

           One promising area for future investigation is other characteristics of SY5Y cell 

line that might be involved in paraquat toxicity. SY5Y cell line expresses dopamine β-

hydroxylase, which converts dopamine into norepinephrine (Thibault et al., 2000). Thus, 

it cannot be ruled that this adrenergic characteristic of SY5Y cells is involved in 

paraquat toxicity. In addition, differentiated SY5Y cells express more of TH, DAT, and 

D2R (Presgravesn et al., 2004) and show much stronger resistance against drug 

treatment than undifferentiated SY5Y cells used in this study. Considering that nearly all 

neurons including dopaminergic neurons are fully differentiated in adult humans, 

paraquat might be less toxic in differentiated SY5Y cells than in undifferentiated SY5Y 

cells. Furthermore, paraquat toxicity can be addressed in terms of function of 

transcription factors involved in dopaminergic neurogenesis, such as nuclear receptor-

related factor 1 (Nurr 1), pituitary homeobox 3 (Pitx3), lim-homeodomain transcription 

factor 1B (Lmx b1), and engrailed 1 /2 (En1/2) (Wallen and Perlmann, 2003). In 

particular, Nurr 1 is expressed constitutively in dopaminergic neurons ranging from very 

early stages to the fully differentiated state, and this transcription factor is known to 
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participate significantly in both the fate and maintenance of normal function of 

dopaminergic neurons (Castillo et al., 1998; Saucedo-Cardenas et al., 1998). Thus, it can 

not be excluded that paraquat interferes with Nurr 1, resulting in dopaminergic 

pathogenesis.  

            Another promising avenue for future research is to address whether oxidative 

stress is triggered by metabolism of paraquat, dopamine or both. Given that metabolism 

of paraquat or dopamine is mediated by mitochondrial NADH oxidoreductase (or 

complex I), P450 reductases, MAO-A/B, and COMT, it is possible that paraquat affects 

those enzymes, in terms of their activities and expressions. Also, γ-glutamylcysteinyl 

synthetase and HO-1 have to be studied because the former produces a major antioxidant 

GSH used to scavenge ROS and the latter is exquisitively upregulated by oxidative stress. 

In fact, HO-1 was induced by paraquat in this study, but its function and mechanism of 

its upregulation remains to be characterized.  

              A third area for future research is the identification of signaling intermediates 

and transcription factors in death or survival pathways that are affected by paraquat-

induced oxidative stress and proteasomal dysfunction. Oxidative stress activates death 

signaling pathways consisting of signaling intermediates p38, JNK and transcription 

factors AP-1, NF-κB, and p53, most of which are degraded by proteasome-dependent 

pathway. However, it is unclear that oxidative stress affects the survival pathway 

consisting of signaling intermediates PI3K, AKT (or PKB), Erk 1/2 and a transcription 

factor CREB.  
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       Other areas that are attractive for future research are mechanisms of paraquat-

induced proteasomal dysfunction and the possible involvement of lysosomal degradation. 

Proteasomal dysfunction might be induced by the oxidative modification of amino acids 

of proteasomal subunits, and 19S subunits are known to be more resistant to oxidative 

modification than 20S subunits. Thus, it should be addressed whether paraquat-induced 

ROS actually oxidizes proteasomal subunits and if so, which subunits is a preferentially 

modified by paraquat-induced ROS. In addition, proteins might also undergo a 

lysosomal pathway for degradation and thus, it remains to be explored whether paraquat 

might cause lysosomal dysfunction-mediated accumulation of α-synuclein and 

ubiquitinated proteins.  
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