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ABSTRACT 

 
 

Roles of Nanofiller Structure on Mechanical Behavior of Thermoplastic 

Nanocomposites. (August 2005) 

Jong Il Weon, B.S., Dongguk University; 

M.S., Sungkyunkwan University  

Chair of Advisory Committee: Dr. Hung-Jue Sue 
 
 
 

The roles of nanofiller structural parameters, such as filler shape, aspect ratio and 

orientation, on mechanical properties of thermoplastic nanocomposites have been 

studied. A commercial grade nylon-6/clay nanocomposite is subjected to a large-scale 

simple shear orientation process and the resulting morphology is investigated on various 

length scale levels. Both the orientation and the aspect ratio of nanoclays, which can be 

altered by the simple shear process, have been studied. The incorporation of well-

dispersed nanoclays into the nylon-6 matrix greatly reduces the chain mobility as well as 

the crystallinity of nylon-6. The exfoliated nanocomposites show that the global 

orientation of clay layers dictates the orientation of crystalline lamellae. Two types of 

lamellar orientation are observed, as revealed by small-angle X-ray scattering.  One type 

of lamellae is oriented ~41° away from the clay surface, whereas the simple shear 

process induces another weak preferred lamellar orientation nearly perpendicular to the 

clay surface. The formation of those lamellar orientations appears to be related to both 
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orientation of the clay in the nanocomposite and the simple shear process. It is found that 

the modulus, strength, and heat distortion temperature of the nanocomposites decrease as 

the clay aspect ratio and degree of orientation are reduced. The micromechanics-based 

models accurately describe the relationship between clay structural parameters and the 

corresponding moduli for exfoliated nanocomposites. The impact fracture mechanisms 

of polypropylene (PP)-calcium carbonate (CaCO3) nanoparticles have been investigated. 

A detailed investigation reveals that the CaCO3 nanoparticles act as stress concentrators 

to initiate massive crazes, followed by shear banding in the PP matrix.  
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CHAPTER I 

INTRODUCTION 

 

Polymer nanocomposites have been one of novel materials, which have attracted 

great interests in academia and industry due to exceptional reinforcement at extremely 

low nanofiller loading [1-10]. A variety of inorganic nanofillers, such as clay layers, 

calcium carbonate, zirconium phosphate and carbon nanotube, have been successfully 

used as second phases to improve the physical and mechanical properties. In addition, a 

nanoscopic filler technology capable of good dispersion into a polymer matrix has drawn 

considerable scientific and technological attention over the last decade. The efficiency of 

property enhancement strongly depends on the nanofiller structural parameters, e.g., 

filler shape, modulus, aspect ratio, orientation, volume fraction and interfacial adhesion 

[11-15].  

There are three types of nanofillers which are categorized by whether they have 

one-, two-, or three-dimensions in the nanometer range. One-dimensional nanofillers 

usually consist of the form of sheets with 1-3 nm in thickness and the other dimensions 

being two or more orders of magnitude larger. A variety of natural and synthetic 

inorganic fillers can be surface-treated to achieve intercalation and exfoliation [16].  

________________ 

Dissertation style and format follow that of Polymer. 
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Montmorillonite has been the most widely studied, because of its availability, ease of 

surface modification and relatively high cation exchange capacity (CEC) for property 

enhancement [16-18]. Two-dimensional nanofillers have two dimensions in the 

nanometer range, such as carbon nanotubes and cellulose whiskers. Such a 

nanocomposite has been extensively studied as multifunctional material that yields 

exceptional properties [19,20]. Three-dimensional nanofillers include isodimensional 

nanoparticles such as spherical calcium carbonate, and silica nanoparticles obtained via 

in-situ sol-gel methods. Semiconductor nanoclusters are included in this category [21] 

 

1.1 Polymer-Clay Nanocomposites 

Layered silicates consist of extremely thin (~1 nm), plate-like structures that 

have large surface areas and high aspect ratios. Polymer-layered silicate nanocomposites 

have been attractive potential for a more customized engineering application due to their 

exceptional properties even at very low clay content. These properties include enhanced 

modulus and strength [1-6], high heat distortion temperature [1,2], improved gas barrier 

property [22-25], good flame retardancy [26,27] and improved solvent and UV 

resistance [28,29]. All these improvements can be obtained by producing a nanoscopic 

system in which high-aspect-ratio clay particles are well exfoliated in a polymer matrix.  

 

1.2 Polymer-CaCO3 Nanocomposites 

Calcium carbonate (CaCO3) particles have a nearly isotropic particulate structure 

[30]. Typically, polymer-inorganic filler composites have shown an increase in modulus 

 



3 

but a decrease in toughness and ductility, because of the strong reinforcement effect of 

rigid filler phase. However, a few exceptions have also been reported in the literature.  In 

toughening polyethylene (PE), CaCO3 and chalk particles have been shown to be able to 

improve toughness of PE effectively [31-33]. For polypropylene (PP), Thio and Argon 

[34] found that the CaCO3-toughened PP composites could exhibit greatly improved 

impact strengths up to 40–50 kJ/m2, as compared to 2–8 kJ/m2 for that of neat PP. More 

recently, Chan et al. [30] showed that the fracture toughness of PP could be enhanced by 

over 300% by incorporating nanometer-sized (ca. 40 nm) CaCO3 particles. Therefore, 

the polymer-CaCO3 nanocomposites can offer an attractive way for improvement in both 

Young’s modulus and fracture toughness. 

 

1.3 Research Objectives and Significance 

The primary objective of this research is to fundamentally understand the roles of 

nanofiller structural parameters on mechanical behaviors of thermoplastic 

nanocomposites, with an emphasis on the effects of aspect ratio, orientation and shape of 

nanofiller for the property enhancement of semicrystalline nanocomposites. The 

significance of this dissertation is summarized as follows: 

• Evaluate the effectiveness of a large-scale simple shear process on alternation 

of nanofiller aspect ratio and orientation. 

• Investigate the morphological developments of both nanofiller and polymer 

crystalline in semicrystalline nanocomposites during a large-scale simple 

shear process. 
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• Correlate the morphological characterizations with the physical and 

mechanical properties in semicrystalline nanocomposites with variations in 

aspect ratio, orientation and shape of nanofiller. 

• Understand the toughening mechanisms responsible for the impressive 

toughening effect in a semicrystalline nanocomposite. 

 

1.4  Dissertation Outline 

First, background knowledge essential related to this research and general 

overview of relevant literature are provided (Chapter II).  

With the effectiveness of a large-scale simple shear process for altering nanofiller 

structural parameters (Chapter III), the first particular attention is given to the 

morphological characterizations of semicrystalline nanocomposites (Chapter IV). The 

morphological characterizations of both nanofiller and polymer crystalline will be 

studied at various length scales: 

 

• The micrometer level information is characterized by optical microscopy 

(OM): the spherulite size of semicrystalline polymer.   

• The nanometer level information is extracted from transmission electron 

microscopy (TEM) and small-angle X-ray scattering (SAXS): nanofiller 

aspect ratio, nano-filler orientation, correlation length between interlayers, 

lamellar orientation and long period. 
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• The crystallographic level information is revealed by wide-angle X-ray 

diffraction (WAXD) and differential scanning calorimetry (DSC): the 

formation of crystal phases, e.g., α-, γ- form nylon-6, and α-, β- form PP. 

 

The second part of this dissertation is focused on the property evaluation in the 

exfoliated semicrystalline nanocomposites with variations in nano filler orientation and 

aspect ratio (Chapter V).  Several physical and mechanical tests will be used. The 

micromechanics-based models will be implemented to account for the effect of the 

nanofiller structural parameters on the property enhancement of the nanocomposites.  

The third attention will be placed on studying the underlying fracture and 

toughening mechanisms in the calcium carbonate (CaCO3) nanoparticle-filled PP 

nanocomposite (Chapter VI). Double-notch four-point bending (DN-4PB) technique will 

be employed to gain the detailed fracture mechanism(s) observed in the PP/CaCO3 

nanocomposite.  

Finally, the overall concluding remarks of this dissertation and recommendations 

for future work are given (Chapter VII).  

In appendix, due to the micron-sized particle of talc, mechanical properties of 

talc- and CaCO3-reinforced high-crystallinity polypropylene composites will be studied. 
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Introduction 

Polymeric materials have been reinforced by inorganic nanofillers, termed 

polymer nanocomposites, to improve physical and mechanical properties. Owing to their 

remarkable property enhancement, low cost and good processability, polymer 

nanocomposites are of particular interest. 

The incorporation of second phase, novel nanofillers to a polymer matrix has 

been an attractive potential for a more customized engineering application. For instance, 

polyamide-6/clay nanocomposites have shown improvements in a variety of physical 

properties, such as modulus, strength, gas barrier properties, thermal stability, etc. 

Furthermore, such significant property enhancements are obtainable at very low 

nanoclay content. Shepherd et al. [35] proposed that single clay layers could be an ideal 

reinforcing nanofiller in 1974, due to their extremely high aspect ratio and the nanometer 

filler thickness. Clay layers have high cation exchange capacity (CEC), which allows 

surface modification of the clay interlayer to achieve better compatibility with a host 

polymer matrix. In addition to high CEC, clay is an abundant, inexpensive inorganic 

material. Those advantages have let to large-scale commercial uses. Moreover, an 

outstanding research by the Toyota group [36-38] has drawn forth efforts of many 

researchers on polymer-clay nanocomposites. 
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In this chapter, the morphological and structural characterizations of polymer 

nanocomposites will be reviewed. Continuum-based micromechanical models are 

presented in order to gain a better understanding with regard to the dependence of 

nanofiller structural parameters on the reinforcement effect of nanocomposites. The 

fundamentals related to toughness evaluation and toughening mechanisms for polymer 

nanocomposites will be reviewed. 

 

2.2 Characterization of Polymer Nanocomposites 

2.2.1 Structure of layered silicate 

The most common nanofillers used in polymer-clay nanocomposite are sodium 

montmorillonites, which consist of the 2:1 layered system of silicate platelets. Two outer 

tetrahedral layers, containing Si and O atoms, are fused to an inner octahedral layer, 

containing Al and Mg atoms that are bonded to oxygen or hydroxyl groups, resulting in 

a sandwich type structure. Fig. 2.1 illustrates the schematic structure of sodium 

montmorillonite. The isomorphous substitution of divalent Mg (Mg2+) for trivalent Al 

(Al3+) causes to an electrostatic imbalance within the clay layers, resulting in an excess 

negative charge: the excess negative charge is counterbalanced by the adsorption of 

cations, e.g., Na+ or Ca2+. The thickness of single layer montmorillonite is ~1 nm and the 

lateral dimensions can range from a few hundred angstroms to several microns. 

Exceptional property enhancements can be achieved by well dispersing the individual 

silicate platelets in a polymer matrix. However, the smectite structure of native clay may 

be one of the obstacles for good dispersion. To make the clays more compatible with 

 



 8

polymers, the cations in the clay are typically exchanged with alkyl ammonium ions to 

form a swollen hybrid structure, termed organoclay. 

 

 

 

Tetrahedral (Si, O)
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Fig. 2.1 Schematic structure of single sodium montmorillonite [39]. 

 

 

 

2.2.2 Dispersion of nanofillers in polymer matrix 

Basically, polymer/clay nanocomposites can be classified as immiscible, 

intercalated or exfoliated: 

(a) Immiscible: For these materials, polymer chains are unable to penetrate into 

the galleries of the organoclay layers, remaining originally stacked clay layers. The d-

spacing of the layer structures is nearly identical to their pristine state. The morphology 
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and property characterization of immiscible composites, therefore, remain the same as 

conventional microcomposites. 

(b) Intercalated: When several polymer chains diffuse into the galleries of the 

organoclay layers and then the clay layers expand, intercalated structures are formed. 

However, the interlayer d-spacing still remains a short range order (d001~ 20-80 Å).  

(c) Exfoliated: The exfoliated structures are predominantly composed of 

individual, ~1 nm-thin layers dispersed in a polymer matrix, and are a result of extensive 

penetration of the polymer and delamination of the clay layers. The correlation length 

between the dispersed clay layers results in a long range ordering (≥100Å), so that the 

interaction forces between the clay layers nearly diminish. Exfoliation has been the 

ultimate goal of most researchers in this area because this morphology is expected to 

lead to dramatic improvements in nanocomposite properties, with a much lower content 

of fillers than conventional composites.  

Transmission electron microscopy (TEM) and wide angle X-ray diffraction 

(WAXD) are used to characterize those clay layer structures of nanocomposites. Fig. 2.2 

illustrates the typical WAXD patterns for the three different nanocomposites. 

 

 

 

 

 

 

 



 10

 

Fig. 2.2 Typical WAXD patterns for the three different nanocomposites. 

 

 

 

 

 

 

 

 



 11

2.2.3 In-situ polymerization of nylon-6/clay nanocomposite 

Fujiwara et al. [40] reported in 1976 that the first polymer-clay nanocomposite 

was produced using an in-situ polymerization technique. However, early results yielded 

marginal property improvements. In the early 1980’s, the Toyota group [36-38] 

successfully produced superior nanocomposites using a modified version of the in-situ 

polymerization technique. The detailed description and the overall process for preparing 

the resin and the nanocomposite are documented in [36,41]. Briefly, organically surface-

modified montmorillonite was achieved by cation-exchange reaction with 12-

aminolauric acid. The resulting ion-exchanged montmorillonite (termed as 12-

montmorillonite) was mixed with ε-caprolactam. Ring-opening polymerization of the ε-

caprolactam by help of a small amount of 6-aminocaproic acid was initiated by the 

carboxyl ends (-COOH) on the 12-montmorillonite, resulting in the chains (~32% of 

nylon-6 chains) with cationic ammonium ends (-NH3
+) tethered to the surface of 

negatively charged layer silicate (Fig. 2.3). The growth of those chains, which were 

driven by the free energy of polymerization, forces the clay layers apart until they are 

fully exfoliated. 
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Fig. 2.3 Schematic of the in-situ polymerization process. 

 

 

 

2.3 Continuum-based Micromechanical Models 

Numbers of theoretical composite models have been developed for predicting the 

macroscopic mechanical properties of discontinuous second phase-filled composites in 

terms of the morphology of the composites [42-52]. Numerous assumptions inherent in 
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those micromechanical models are proposed. The detailed assumptions have been 

documented well in [53].  

 

2.3.1 Conventional filler-based micromechanical models 

In conventional micromechanical models, filler volume fraction (φf), filler aspect 

ratio (α), filler orientation (S) and filler modulus (Ef) or filler/matrix stiffness ratio (Ef 

/Em) are the most important factors for predicting the macroscopic composite properties. 

Tucker et al. [54] reviewed the application of several micromechanical models to 

discontinuous fiber-reinforced composites. They reported that the Halpin-Tsai theory 

[48-50] provided reasonable prediction for composite modulus, and for composites with 

relatively large aspect ratio of fillers, the models based on Mori-Tanaka theory [45,47] 

showed the best prediction.  The longitudinal engineering stiffness (E11) and the 

transverse engineering stiffness (E33) of the Halpin-Tsai and the Mori-Tanaka models are 

expressed in equations (2.1) and (2.2), respectively.  
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where l is the filler length and tp is the filler thickness. 
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where φf is the filler volume fraction, νm is the Poisson ratio of the matrix, A, A1, A2, A3, 

A4 and A5 are calculated from the matrix, filler properties and components of the Eshelby 

tensor [43], which depend on the filler aspect ratio (l/tp) (where l and tp are the major and 

minor diameters of an ellipsoidal disk-shaped inclusion) and dimensionless elastic 

constants of the matrix [45]. Fig. 2.4 shows the three principle orthogonal directions 

used to calculate composite stiffness corresponding (a) Halpin-Tsai and (b) Mori-Tanaka 

models. 

 

 

 

Fig. 2.4 Three principle orthogonal directions used to calculate nanocomposite modulus 
corresponding: (a) Halpin-Tsai and (b) Mori-Tanaka models. 
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2.3.2 Effective filler-based micromechanical models  

The dispersion of fillers in a polymer matrix is typically described in terms of 

exfoliation or intercalation. The fully exfoliated nanocomposites are considered to 

consist of single clay layers dispersed in a polymer matrix, while in the intercalated 

systems, inter-layer domains of fillers (e.g., clay particles) are penetrated by polymer 

chains and consequently stacked typically with an inter-layer spacing of 1-4 nm. 

However, conventional filler-based micromechanical models for predicting the 

macroscopic properties of nanocomposites were not considered those clay structural 

parameters, which regards that nanocomposites just consist of two homogeneous phases, 

fillers and matrix. In an earlier work by Sheng and Boyce [55], in order to explain the 

geometric natures of intercalated clay they proposed the effective particles, which 

consist of the clay layers and clay inter-layer galleries. Therefore, effective filler 

structural parameters, the number of silicate layers per stacked clay (n) and the silicate 

inter-layer spacing (d001), are used to assess macroscopic property enhancement of 

intercalated particle-filled nanocomposites. Mechanics-based models for intercalated 

clay structure are established by mapping of the effective filler structural parameters (n, 

d001) to the conventional filler structural parameters (α, φf, Ef /Em). 

The thickness of effective filler can be expressed in terms of n and d001 by the 

following equation [53]: 

p001eff )1( tdnt +−=        (2.3) 

where tp is the thickness of a silicate platelet. 

The number of platelets per effective filler thickness (κ) [55]: 
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where Vplatelet and Vf are the volumes of platelet in a stack and filler, respectively.  

Effective filler aspect ratio (αeff) of can be written as: 

p001eff
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The filler weight fraction (ψf) can be converted to filler volume fraction (φf) 

using the following equation: 
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where ρf and ρm  are the densities of filler and matrix, respectively. 

For an intercalated nanocomposite, the effective filler weight fraction (ψeff) is not 

equal to the filler weight fraction (ψf). 
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where ρplatelet  is the density of platelet. 

Substituting ψf  = δψeff into equation (2.7), 
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If ψeff is small, 
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where ρplatelet  and ρm is 2.83 and 1.14 (g/cm3) [53], respectively. 
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2.3.3 Shear lag model 

In particular, rigid particles are naturally resistant to relatively high stress or 

strain. When such particle-filled composites are subject to axial load, a significant 

portion of the load is transmitted from the surrounding matrix to the rigid particles 

through shear stress at the interface.  

Shear lag model [51] is employed to address the load-transfer efficiency on α, Ef /Em. 

 

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

λα

⎟
⎠
⎞

⎜
⎝
⎛ λα

−ε=σ
cosh

2cosh
1ff

l
x

E      (2.13) 

 

 



 18

( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

λα

⎟
⎠
⎞

⎜
⎝
⎛ λα

ελ
=τ

cosh

2sinh

2
f

i
l

x
E       (2.14) 

( )

2/1

ff

m

ln
4

⎥
⎦

⎤
⎢
⎣

⎡
φ

=λ
E

G         

where ε is the applied strain, x is the distance from the center of filler, τi is the interfacial 

shear stress along the filler length, and Gm is the shear modulus of the matrix. The shear 

lag model appears that large aspect ratio (α) and high Ef dominantly enable fillers to bear 

a large portion of the applied load. 

 

2.4 Fracture Behaviors of Polymer Nanocomposites  

2.4.1 Toughness evaluation  

Linear elastic fracture mechanics (LEFM) can been used to describe the fracture 

behavior of brittle polymer nanocomposites (e.g., nylon-6/clay nanocomposite) below 

their glass transition temperature. The test specimens of these brittle polymer 

nanocomposites can easily satisfy the plane strain requirement in specimen geometry. To 

obtain plane strain conditions, ASTM D 5045 requires the following size criteria: 

B, a, (W-a) > 2.5(KQ/σy)      (2.15)  

where B is the specimen thickness, a is the initial crack length, W is the specimen width, 

KQ is the conditional KIC and σy is the yield stress of the material tested. Those criteria 

effectively guarantee that the thickness will be at least an order of magnitude greater in 
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size than the plastic zone where small scale yielding occurs. However, the basic 

requirements and assumptions of LEFM are not satisfied in the case of a ductile polymer 

nanocomposite (e.g., PP/CaCO3 nanocomposite) at room temperature. The reason is that 

a large plastic zone is developed at the crack tip, and this requires extra energy needed 

for crack propagation.  

Another approach for the fracture behavior of ductile polymer nanocomposites is 

using the elastic plastic fracture mechanics (EPFM) by means of the J-integral, 

originally proposed by Rice [56,57].  

It is well known that the J-integral is a path-independent energy line integral, an 

energy-based parameter used to characterize the stress-strain field around a crack tip 

surrounded by a plastic zone. The J-integral is given by: 

∫
Γ
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i       (2.16) 

where w is the strain energy density, Ti are components of the traction vector, ui are the 

displacement vector, and ds is a length increment along the contour Γ. The strain energy 

density is defined as:   

∫
ε
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where σij and εij are the stress and strain tensors, respectively. 

Equation (2.16) can be simplified to the J-integral value was calculated using the 

following equation: 
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where η is a dimensionless constant, A is the area under the load-load line displacement 

curve, BN  is the net thickness of the specimen (for no side grooved specimen BN =B), b0 

is the initial ligament length. In order to obtain a J-R curve, the calculated J-values are 

plotted against the crack extension, ∆a. The JIC values are determined at the point of 

intersection between the J–R curve and the blunting line, J = 2σy∆a. 

ASTM D 813 also requires the following size criteria to obtain plane strain 

conditions: 

B, b0 > 25(JIC/σy)       (2.19)  

 

2.4.2 Toughening mechanism observation 

It is imperative to understand the fundamental parameters that govern the fracture 

behavior of polymer nanocomposites. To achieve these goals, unambiguous and 

effective methods have to be utilized to account for the crack evolution process in these 

nanocomposites. 

Optical microscopy (OM), scanning microscopy (SEM) and transmission 

electron microscopy (TEM) techniques have been widely used to observe the fracture 

mechanism of the deformed specimen [58-64]. 

 

SEM observation 

 SEM is the most common technique to characterize the nature of the fracture 

surface. However, there is a disadvantage that the information gained from SEM works 
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is limited to the fracture surface, which usually leads to an incomplete understanding or 

misleading information concerning the exact fracture mechanism. On the other hand, if 

the sub-damaged surface can be carefully prepared using an etching technique, crazing 

and shear banding can still be observed using SEM in some polymer materials [65,66].  

 

TOM observation 

 It has been shown that transmitted optical microscopy (TOM) can be used to 

detect deformation zone size, shear banding [63,64] and dilatational deformation such as 

crazing, cavitation and debonding [67], However, the details of the damage processes 

cannot be determined by TOM due to its low resolution, Therefore, TEM is the most 

frequently used tool to probe the cavitation, crazing and debonding.  

 

TEM observation 

 Rubber cavitation and matrix crazing of toughened polymers can be observed 

TEM [67]. Weon and co-workers [68] examined the toughening mechanism of the 

nanoscale calcium carbonate (CaCO3)-filled PP nanocomposite using TEM. They clearly 

observed massive crazes in the matrix and shear deformation near the crack surface. This 

indicates that TEM is a very effective technique that can be used to reveal cavitation 

processes around the CaCO3 particles.    

 

The DN-4PB technique is one of the most effective ways of generating a 

subcritical crack tip damage zone [58-60]. The key toughening mechanism(s) and the 
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sequence of toughening events can be unambiguously identified in the arrested crack tip 

damage zone region in polymer nanocomposites using a variety of microscopy 

techniques. The schematic of DN-4PB specimen is shown in Fig. 2.5(a). Two edge-

cracks of nearly equal length are generated on the same edge of a rectangular specimen. 

This specimen is loaded in a four-point bending geometry. The portion of the specimen 

between the two inner loading points is subjected to a constant bending moment. Thus 

the two cracks experience nearly identical stresses. When the load is applied, a plastic 

zone forms in front of the crack tips. Because the two cracks cannot be exactly identical, 

one crack will reach the critical state first and propagate unstably, thus leaving the 

remaining crack to develop a subcritical crack tip damage zone. The surviving crack can 

be used to probe the toughening mechanisms which occur at the crack tip and crack 

wake by means of thin-sectioning and various microscopy techniques (Fig. 2.5(b)).  
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(a) 

 

 

(b) 

Fig. 2.5 Schematic of DN-4PB specimen, and the regions for OM and TEM observation. 
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CHAPTER III 

EFFECTIVENESS OF A SIMPLE SHEAR PROCESS ON 

ALTERATION OF NANOFILLER STRUCTURES IN POLYMER 

NANOCOMPOSITES 

 

3.1 Introduction 

Equal channel angular extrusion (ECAE), a large-scale simple shear process, is a 

novel technique for fabricating bulk polymer with controlled levels of extreme plastic 

deformation [69-76].  The ECAE simple shear process alters the polymer microstructure 

and can improve properties [70].  Controlled anisotropy in polymers enhances physical 

and mechanical properties significantly [73]. ECAE applies a uniform simple-shear 

deformation through the thickness of a billet without changing the dimensions of the 

billet.  Since the billet shape is constant, multiple extrusion passes can be applied.  

It is nontrivial to alter the nanofiller structural parameters, e.g., filler aspect ratio 

and orientation, in a polymer matrix, and experimental efforts in this regard can rarely be 

found.  Therefore, there is a need to experimentally generate variations in nanofiller 

aspect ratio and orientation. Some prior research efforts show that the ECAE simple 

shear process can tailor micron- and nanometer-scale polymeric structures through 

different extrusion routes. It was found that a large-scale simple shear process could 

control the fiber orientation of glass fiber/polyacetal composites, depending on the  
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process route [69]. In a previous work by Xia [70], it was speculated that controlled 

nanofiller orientation could be easily achieved through a simple shear process.  

The main purpose of the current study is to examine the effectiveness of the 

ECAE process on the alternation of nanofiller structural parameters of polymer 

nanocomposites. The potential application of a simple shear process for tailoring the 

nanofiller geometry is discussed. 

 

3.2 Experimental 

3.2.1 Materials 

Pellets of nylon-6/montmorillonite clay (2 wt%) nanocomposite, which prepared 

by in-situ polymerization of ε-caprolactam in the presence of ion-exchanged 

montmorillonite, were provided by Ube Industries Ltd., Japan.  

 

3.2.2 Sample preparation 

Pellets of the nylon-6 and nylon-6/clay nanocomposite were dried at 100 °C for 

12 h and were then slowly injection molded into plaques (152.4 mm × 76.2 mm × 9.5 

mm) using a custom-built extrusion-injection molding machine powered by a 

HaakeBuchler Rheocord (system 40) machine with a screw revolving at 30 rpm. The 

temperature profiles of the extruder barrel were set at 235-245-255-260°C progressively 

toward the inlet of the injection mold, with the mold temperature set at 180 °C. After 
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molding, the samples were immediately sealed in a polyethylene bag and kept in a 

vacuum desiccator prior to use to avoid moisture absorption.  

  

3.2.3 ECAE process 

An integrated die system for processing plaques was built. The die design and the 

process of ECAE appear schematically in Fig. 3.1(a). The ECAE die is a block with two 

intersecting channels of identical cross-sections. A servo-hydraulic mechanical testing 

system (MTS-810) pressed the specimens through a die, which was attached to the 

hydraulic ram of the test machine. An anti-seize lubricant (Permantex Industrial Type 

80208) covered the internal die surfaces: it reduced friction between the polymer and the 

die. The testing system had a 490 kN load cell. A large-scale simple shear process was 

performed to alter the structural parameters of clay nanoparticles. This ECAE process 

was carried out at 60°C with an extrusion rate of 0.25mm/s. The samples before and 

after ECAE were categorized as follow: (1) Reference, (2) A1-received a single ECAE 

pass, and (3) C2-received two ECAE passes with a 180° rotation of the specimen 

between passes. The three orthogonal directions used to define the orientation of the 

specimen with respect to the processed plaque are the flow direction (FD), the transverse 

direction (TD), and the normal direction (ND) as shown in Fig. 3.1(b). A detailed 

description of the ECAE simple shear process can be found in [71-76].  
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(a) 

 

 

                              

(b) 

Fig. 3.1 The ECAE die used: (a) Schematic of the ECAE die and (b) the ECAE processing 
setup. 

 

 



 28

3.2.4 Sample annealing 

Annealing of the extrudate can relax the residual stresses, volumetric strains and 

thermal gradients to an acceptably low level by exposing the extrudate to an appropriate 

annealing temperature for a proper time. Conventional annealing has been done at or 

above the region of rapid crystallization temperature which is approximately halfway 

between the onset of glass transition (Tg) and the crystalline melting point (Tm) [77]. All 

samples were annealed at 150 ºC for 3h to relax molecular orientation and pre-existing 

morphology in the matrix due to processing loads [78-81].  Furthermore, the heating 

chamber was purged with nitrogen gas to minimize sample oxidation during annealing. 

Subsequently, the annealing test was carried out at the same conditions to confirm the 

effect of annealing using samples of 10 mm × 10 mm × 2 mm. Afterward, the 

dimensional changes of the samples were recorded. The annealing temperature was 

controlled in ± 1 ºC.  

 

3.2.5 Differential scanning calorimetry (DSC) measurement 

Non-isothermal crystallization behavior of the nylon-6 and nylon-6/clay 

nanocomposites was investigated using a Perkin-Elmer Pyris-1. All samples were sealed 

in aluminum pans and were protected in a nitrogen atmosphere during testing. The 

samples were first heated from 25 ºC to 300 ºC at a heating rate of 10 ºC/min, 

subsequently held for 1 minute at 300 ºC, and then cooled back to 25 ºC at a rate of 10 

ºC/min. Additional scans were performed while re-heating the sample to 300 °C at the 
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same rate to assess the effect of the previous cooling scan. Samples of ~10 mg in weight 

were excised from the core regions for DSC measurements. The heat of fusion (∆h) was 

determined from the heating scan while the crystallization temperature (Tc) was analyzed 

from the cooling scan. The heat of fusion was determined by integrating the exothermic 

peak from 150°C to 250°C. the peak was then normalized by subtracting the amount of 

clay in the nanocomposites. The heat of fusion (∆h) values used in this study were based 

on the amount of pure nylon-6 of the nanocomposites. 

 

3.2.6 Density measurement 

Density measurements were performed using the displacement method to 

observe a change of density before and after simple shear process and annealing for the 

nylon-6 systems used in this study. As described in ASTM-D792-00, the density of 

samples can be determined by measuring sample weights in air and in solvent, 

respectively. Sample weights in air and in ethyl alcohol (C2H5OH) (ρ= 0.789 g/cm3) 

were measured. For the nanocomposite systems, the resulting density was based on the 

amount of pure nylon-6 of the nanocomposites. 

 

3.2.7 Microscopy observation 

Transmission electron microscopy (TEM) observations were conducted on a 

JEOL 1200EX transmission electron microscope operating at an accelerating voltage of 

100 kV. Ultra-thin sections of ~90 nm in thickness were obtained under cryogenic 
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environment using a Reichert-Jung Ultracut E microtome with a diamond knife and 

placed on the 100-mesh Formvar/carbon-coated copper grids for TEM observation. 

Samples for TEM analysis were cut parallel to the flow direction (FD), as depicted in 

Fig. 3.2. 

 

 

 

 
 
 

Fig. 3.2 Schematic showing the thin section cut for TEM observation. 
 

 

 

3.3 Results and Discussion 

3.3.1 Sample annealing observation 

The annealing test results of simple-shear-processed nylon-6/clay 

nanocomposites show the extent of the shape recovery on annealing (Fig. 3.3).  The left 

sample, which was cut parallel to the ND-FD plane from the A1 nanocomposite, appears 

to fully recover toward its original shape after annealing, while the right sample, which 
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is cut perpendicular to the FD, only shows the changes in height and width (Fig. 3.3(b)).  

This is consistent with the annealing effect of the right-sample.  In order to ascertain that 

those geometry changes during annealing are due to simple shear process, a reference 

nanocomposite sample was also annealed under the same conditions.  However, no 

appreciable changes in size and shape could be found.  

 

 

 

 

(a) 

 

 

(b) 

Fig. 3.3 Annealing test results for the A1-ECAE processed nylon-6/clay nanocomposite: 
(a) before annealing and (b) after annealing. 
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3.3.2 DSC analysis and density measurement 

DSC analyses shown in Table 3.1 indicate that the melting enthalpy (∆h) is 

inversely affected by the addition of clay. It should be noted that the simple-shear-

processed but non-annealed, nanocomposites show that the melting enthalpy increases 

with simple shear process. This may be explained either by stress/strain-induced 

crystallization or by residual stress effect [70,75]. The incorporation of clay to nylon-6 

matrix also causes a drop in density relative to the nylon-6 (Table 3.2), which is in 

qualitative agreement with the DSC observation. These findings are related to a decrease 

in crystallinity observed when clay is added to nylon-6. Lower crystallinity shown in the 

annealed nanocomposites is likely due to the constraint of chain mobility. The 

introduction of the well-dispersed clay to the nylon-6 matrix may cause the restriction of 

molecular mobility and space for crystal growth, which limits the formation of large 

crystallites. In addition, the presence of clay does not affect the crystallization 

temperature (Tc) of nylon-6. However, it is interesting to note that the melting enthalpy 

and the density of three different nylon-6 nanocomposites annealed are almost identical. 

These results indicate that the annealing is a very effective means to nullify any pre-

exiting shear-induced morphology in the nylon-6 matrix due to simple shear process. 

Thus, any effect and morphology induced by a simple shear process may be minimized 

or nullified through an annealing process.  
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Table 3.1  

Thermal analysis for the nylon-6 and nylon-6/clay nanocomposites. 

Melting enthalpy 
∆h (J/g) 

Crystallization 
temperature 
Tc (°C) 

Crystallinity 
χc (%) 

 Annealing  
Sample 

Before After Before After Before After 

NC_Ref 65.1 67.4 181 181 26.6 27.5 

NC_A1 68.6 67.5 181 181 28.0 27.6 

NC_C2 65.5 67.1 182 181 26.8 27.4 

Nylon-6 74.9 80.2 182 182 31.2 33.5 

χc is calculated by the ratio of ∆h to ∆h0.  
∆h0 (heat of fusion with 100% crystalline nylon-6) is 240 J/g [82].  
∆h is calculated based on the amount of nylon-6 in the composites. 

 

Table 3.2  

Density analysis results for the nylon-6 and nylon-6/clay nanocomposites. 

Density* 
(g/cm3) 

Crystallinity 
χc (%) 

Annealing 
Sample 

Before After Before After 

NC_Ref 1.1165 1.1172 24.5 25.0 

NC_A1 1.1135 1.1169 22.3 24.8 

NC_C2 1.1133 1.1158 22.2 24.0 

Nylon-6 1.1272 1.1303 32.3 34.5 

* The average values were calculated after testing three specimens of each sample. 
Density of the montmorillonite clay is 2.83 g/cm3 [83]. 
Densities of 100% amorphous and crystalline nylon-6 are 1.084 and 1.230 g/cm3, 
respectively [84]. 
Density and crystallinity is calculated based on the amount of nylon-6 in the 
nanocomposites.  
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3.3.3 Microscopy investigation 

Fig. 3.4 shows the TEM micrographs that indicate different clay aspect ratio and 

orientation within the simple-shear-processed and annealed nanocomposites. The 

reference nylon-6/clay nanocomposite, which received no simple shear deformation, 

shows well-exfoliated clay structure along the flow direction (Fig. 3.4(a)). Also, it is 

observed that clay lengths and orientations of the A1 and C2 nylon-6/clay 

nanocomposites have been varied upon the simple shear process (Figs. 3.4(b) and (c)). 

Interestingly, careful observation indicates that the A1 process only reduces the clay 

aspect ratio, while the C2 route alters not only the clay aspect ratio but also the clay 

orientation.  

For the controlled nanofiller size and orientation, ECAE simple shear process 

appears to be powerful. Altering nanofiller structural parameters within a polymer 

matrix offers an attractive way to produce desirable properties for engineering 

applications. A simple shear process with various processing scenarios may be 

encouraged to achieve those fabrications.  
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)

Fig. 3.4 Typical TEM micrographs of the simple-shear-pr
6/clay nanocomposites (NC): (a) NC_Reference, (b) NC_A1
indicate the flow direction. 

 

(a

 

(b)
  

ocessed and annealed nylon-
 and (c) NC_C2. The arrows 
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(c)

Fig. 3.4 Continued. 

 

 

 

 
3.4 Summary 

The effectiveness of ECAE process on the alternation of nanofiller structural 

parameters of the nylo-6/clay nanocomposite was investigated. Sample annealing 

appears to minimize pre-existing morphology due to processing. The annealing effect is 

verified using the annealing test, differential scanning calorimetry and density 

measurement. Consequently, a large-scale simple shear process is recommended to be 

one available method for tailoring the nanofiller structural parameters, e.g., nanoclay 

aspect ratio and orientation, within a polymer matrix. 
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CHAPTER IV 

MORPHOLOGICAL CHARACTERIZATION OF NYLON-6 

NANOCOMPOSITE FOLLOWING A LARGE-SCALE SIMPLE 

SHEAR PROCESS  

 

4.1 Introduction 

Polymer/layered silicate nanocomposites are attractive for a number of structural 

and functional applications due to their exceptional properties even at very low clay 

content. These properties include enhanced modulus and strength [1-6], high heat-

distortion temperatures [1-2], improved gas barrier properties [22-25], and good flame 

retardancy [26-27]. All these improvements can be obtained by producing a nanoscopic 

system in which high-aspect-ratio clay particles are well exfoliated in the polymer 

matrix.  

The physical and mechanical properties of the polymer nanocomposites strongly 

depend upon the clay aspect ratio, clay orientation, and interfacial adhesion [11-15]. 

Dispersed platelets may also affect the semi-crystalline polymer matrix morphological 

features, such as crystal structure, crystallinity, lamellae orientation, and spherulite 

formation.   As a result, the clay layer structure can significantly affect the morphology 

and properties of nylon-6/clay nanocomposites [85]. 

It has been shown that, for semicrystalline polymer based nanocomposites,  

alignment of nano-size clay layers by injection-molding has an effect on the nanoscopic 
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orientation of crystalline lamellae. Earlier transmission electron microscopy (TEM) 

observations of injection-molded nylon-12/clay nanocomposite showed crystalline 

lamellae oriented perpendicularly to the surface of silicate layers [12]. X-ray diffraction 

studies by others have also revealed that the chain axes of nylon-6 crystallites are 

aligned parallel to the clay layers in the surface region of injection-molded articles, 

whereas the chain axes are oriented perpendicular to the surface of clay layers in the 

interior regions [86]. In addition, as pointed out by Kojima et al. [1] a large fraction of 

nylon-6 chains could also be tethered to the surface of clay layers through ionic bonding. 

From thermodynamic and kinetic standpoints, the polymer chain confinement introduced 

by the presence of nano-clays will impact both the final structure and the formation of 

the crystalline structures in semicrystalline polymers, thereby affecting the properties of 

the nanocomposite. 

In this paper, particular attention is given to the influence of the orientation and 

aspect ratio of nano-clays on the morphological development in exfoliated nylon-6/clay 

nanocomposites. Optical microscopy (OM), TEM, differential scanning calorimetry 

(DSC), wide angle X-ray diffraction (WAXD), and small angle X-ray scattering (SAXS) 

are employed to provide detailed information on crystalline and clay layer structure in 

the exfoliated nanocomposites with variation in clay orientation and aspect ratio. 

Morphologies, at both micrometer and nanometer length scales, of a commercial grade 

nylon-6/clay nanocomposite before and after a large-scale simple shear process are 

characterized and described in detail.   
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4.2 Experimental 

4.2.1 Materials 

A commercial grade nylon-6 nanocomposite (grade number-1022C2) with 2 wt% 

layered silicate and neat nylon-6 (grade number-1022B) was provided by Ube Industries 

Ltd, Japan. For comparison purpose, a virgin nylon-6 has also been studied.  Both the 

nylon-6/clay nanocomposite and neat nylon-6 pellets were dried under vacuum at 100 °C 

for 12 hrs.  The materials were then injection molded into plaques (152.4 mm × 152.4 

mm × 9.5 mm) by using a custom-built extrusion-injection molder powered by a 

HaakeBuchler Rheocord (system 40) machine operated at a screw speed of 30 rpm. The 

temperature profiles of the extruder barrel were set at 235-245-255-260°C (with the 

highest temperature at the inlet of the mold) and the mold temperature was set at 180 °C. 

The molded plaques were then sealed in a polyethylene bag and kept in a vacuum 

desiccator prior to use to avoid moisture absorption.   

A large-scale simple shear process, termed equal channel angular extrusion 

(ECAE) [71], was performed to alter the aspect ratio and orientation of the clay 

nanoparticles. ECAE was carried out at 60°C and at an extrusion rate of 0.25mm/s using 

a servo-hydraulic mechanical test system (MTS-810). Samples before and after ECAE 

were categorized as follows: (1) reference-no ECAE pass, (2) A1-received a single 

ECAE pass, and (3) C2-received two ECAE passes with a 180° rotation of the specimen 

between passes.  A detailed description of the ECAE simple shear process can be found 

in [69,70,71-76]. After the ECAE orientation, all samples were annealed at 150 ºC for 
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3hrs to minimize any pre-existing residual stresses due to processing [77-81].  The 

annealing chamber was purged with nitrogen gas to minimize sample oxidation during 

annealing. After annealing, specimens were cut from the center of the plates and 

polished to the desired dimensions for structural characterization. 

 

4.2.2 Morphology characterization 

Cross-polarized OM, performed on an Olympus BX60 optical microscope, was 

used to observe the change of spherulite structure within the samples. For OM 

observation, samples were polished to thin sections with a thickness of ~ 40 µm.  

TEM observations were conducted on a JEOL 1200 EX operated at an accelerating 

voltage of 100 kV. Ultra-thin sections (~90 nm in thickness) were obtained under a 

cryogenic environment using a Reichert-Jung Ultracut E microtome with a diamond 

knife. The thin section was stained in a vial containing 0.4% aqueous osmium tetraoxide 

(OsO4) for 24 hrs [87]. Samples for TEM analysis were cut parallel to the ND-FD plane, 

as depicted in Fig. 4.1.  The thin sections were then situated on the 100-mesh 

Formvar/carbon-coated copper grids for TEM observation. 

 

4.2.3 X-ray characterization  

WAXD experiments were performed at room temperature using a Bruker-AXS 

D8 powder diffractometer with a sealed X-ray source (Cu) in the standard vertical θ-2θ 

geometry (40 kV and 50mA).  A germanium incident beam monochromator was used to 
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produce Kα1 free radiation, and a Si(Li) detector was utilized for data collection. The 

wavelength of the incident X-ray was 1.54Å. Data were collected from 7° to 35° (2θ) at 

a scanning rate of 1°/min. 

SAXS measurements were conducted at room temperature using a Bruker-Nano-

star (40 kV and 35mA). SAXS samples were cut parallel to the flow direction (Fig. 4.1). 

The wavelength of the incident X-ray was 1.54 Å. The sample to detector distance was 

6430 mm. Two-dimensional SAXS images, with a resolution of 1024 by 1024 pixels, 

were collected to directly display distributions of crystalline lamellar orientation (via the 

long period) in the plane of the sample.  Samples with dimensions of 10 mm × 10 mm × 

0.2 mm were cut parallel to the ND_FD plane using a diamond saw.  All samples were 

marked to note the preferred long period orientation with respect to FD.  The samples 

were mounted in the SAXS instrument with the incident beam perpendicular to the plane 

of the sample surface.  In this geometry, the 2-D detector image directly showed the 

nano-scale orientation distributions in the plane of the sample.  

Plots showing preferred orientation, i.e. intensity (I) vs. azimuthal angle (χ), were 

produced from the 2-D SAXS profiles by integrating over the scattering angle (2θ).  The 

long period was determined from the Lorentz plots (q2I vs. q) [88,89] of the background-

corrected scattering data, where q = (2π/λ)sin(2θ), 2θ is the scattering angle and λ is the 

wavelength of the X-ray used.  It is worth noting that the Lorentz correction also tended 

to shift the maximum peak position to higher q values. 
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Fig. 4.1 Schematic of the specimens used for TEM and X-ray observations, and the clay 
orientation with respect to the ECAE processing and annealing. ND = normal direction, 
TD = transverse direction and FD = flow direction. 

 

 

 

4.2.4 DSC measurements 

Non-isothermal crystallization behavior of both nylon-6 and nylon-6/clay 

nanocomposites was investigated using a Perkin-Elmer Pyris-1 instrument. Samples 

weighing approximately 10 mg were excised from the center region of the plaque for 
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DSC measurements. All samples were sealed in aluminum pans and were situated in a 

nitrogen atmosphere during testing. Both DSC first heat and second heat scans were 

employed.  The first heat was performed by heating the samples from 25 ºC to 300 ºC at 

a heating rate of 10 ºC/min, subsequently held for 1 min at 300 ºC, and then cooled to 25 

ºC at a rate of 10 ºC/min. The second heat scan was performed while re-heating the 

sample to 300 °C at the same rate in order to assess the effect of the previous cooling 

scan.  

 

4.3 Results and Discussion 

4.3.1 Morphological characterization of nylon-6 nanocomposites  

The aspect ratio and orientation of nanoclays, before and after the ECAE process, 

are shown in Figs. 4.2 and 4.3. The reference nylon-6/clay nanocomposite, which 

received no ECAE processing, shows well-exfoliated clay layers with an orientation 

along the flow direction (FD) (Figs. 4.2(a) and 4.3(a)). However, the length and 

orientation of nano-clays in A1 and C2 nylon-6/clay nanocomposites have been changed 

by the ECAE process. A semi-automated image analysis scheme [53,90] is carried out to 

quantify the morphological variations in clay structures. Three different TEM 

micrographs from three different locations of each sample are used to ensure the 

statistical significance of the image analysis. The results of these analyses are given in 

Table 4.1. A detailed report of the image analyses can be found elsewhere [91].  

Based on clay morphological characterizations observed in TEM micrographs, a 

representation of clay orientation and aspect ratio with respect to the ECAE processing 
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direction can be ascertained (Fig. 4.1). It should be noted that after A1-ECAE process, 

the shortened clay layers [91] were aligned nearly parallel to the maximum simple shear 

direction [75], i.e. at an angle (θ) of 26° counterclockwise away from FD. Nevertheless, 

after annealing, the clay became oriented parallel to the FD. The annealed C2 composite 

exhibited a more random clay dispersion with lower aspect ratios. 

 

 

 

 

 

(a) 

Fig. 4.2 Typical TEM micrographs of the simple-shear-processed and non-annealed 
nylon-6/clay nanocomposites (NC) used for image analysis: (a) NC_Reference, (b) 
NC_A1 and (c) NC_C2. The arrows indicate the flow direction. 
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(b) 
 
 
 
 
 

 

 (c) 

Fig. 4.2 Continued. 
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(a) 
 
 
 
 
 

 

(b) 

Fig. 4.3 Typical TEM micrographs of the simple-shear-processed and annealed nylon-
6/clay nanocomposites (NC) used for image analysis: (a) NC_Reference, (b) NC_A1 and 
(c) NC_C2. The arrows indicate the flow direction. 
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(c) 

Fig. 4.3 Continued. 

 

 

 

4.3.2 Morphological characterizations of neat nyon-6 

Spheriulitical Scale 

Cross-polarized optical micrographs for the simple-shear-processed A1 

nanocomposite prepared before and after annealing are shown in Fig. 4.4.  All the 

samples are cut along the ND-FD plane with the viewing direction perpendicular to the 

ND-FD plane. Fig. 4.4(a) shows that the original spherulites are elongated into ellipsoids 

after the A1-ECAE process. However, the sample that was simple-sheared and then 

annealed (Fig. 4.4(b)) does not show much spherulite elongation, as shown in the 
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annealed reference nanocomposite (Fig. 4.4(c)). This implies that annealing has reduced 

the residual orientation in the matrix that was due to the ECAE simple shear process. 

For comparison purpose, the OM micrograph of the annealed neat nylon-6 

prepared under the same conditions is shown in Fig. 4.4(d). It is interesting to note that 

spherulite sizes found in the neat nylon-6 are much larger than those in their 

nanocomposite counterparts. This suggests that the introduction of the dispersed 

nanoclays to the nylon-6 matrix has possibly reduced the chain mobility and the 

spherulite size, leading to a decreased crystallinity in the nanocomposite systems (Table 

4.1). 

 

 

 

(a) 

Fig. 4.4 Cross-polarized OM micrographs of the nylon-6 and nylon-6/clay nanocomposites: 
(a) simple-shear-processed and non-annealed A1 nanocomposite, (b) simple-shear-
processed and annealed A1 nanocomposite, (c) non-simple shear processed and 
annealed reference nanocomposite and (d) non-simple shear processed and annealed 
neat nylon-6. 
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(b) 

 
 
 
 
 

 

(c) 

Fig. 4.4 Continued. 
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(d) 

Fig. 4.4 Continued. 
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Table 4.1  

Characteristic parameters of the neat nylon-6 and nylon-6/clay nanocomposites. 

NC_A1 NC_C2 

Annealing Property 
Nylon-6 
(Annealed) 
 

NC_Ref 
(Annealed)
 

Before After Before After 

TEM       

α platelet - 132±33 89±24 87±26 80±25 78±21 

S platelet (°) - 12 7 10 25 24 

ξplatelet (nm) - 51±20 45±15 49±17 48±19 48±15 

SAXS       

qmax (nm-1) 0.71 0.81 1.16 0.93, 0.78 0.86 0.88, 0.77 

Llamella (Å) 88.5 79.5 57.2 67.6, 80.6 73.1 71.4, 81.6 

ωlamella (°) - 41 42 45, 89 47 39, -10, 86

FWHH (°) - 40 30 30 70 40, 50 

WAXS       

χc (%) 39.2 29.2 28.4 29.0 27.8 28.7 

†: α platelet is the platelet aspect ratio (the platelet thickness was 0.94 nm [53]), S platelet is 
the degree of platelet from unidirectional reinforcement, ξplatelet is the correlation 
length between the dispersed platelets, Llamella is the long period (=2π/qmax), ωlamella is 
the lamellar orientation away from the flow direction, and χc is the crystallinity (the 
ratio of the areas of the crystalline reflections to that of total areas of the scattering 
curves). 
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Lamellar Scale 

Fig. 4.5(a) shows the as-collected 2-D SAXS profile and intensity (I) vs. 

azimuthal angle (χ) plot for the annealed reference nanocomposite, which received no 

ECAE processing. The presence of preferred orientation of the lamellae within the 

sample is evident from the anisotropic SAXS scattering pattern. In such a 2-D SAXS 

image, the scattering angle (2θ) is zero at the center and increases with increasing radius. 

Azimuthal angle (χ) was set to zero at the 6 o′clock position of the detector plane and 

increased counter-clockwise. The I vs. χ plots were generated by integrating over 

scattering angle (2θ) from 0.7° to 1.6°. When transformed into real space, those angles 

correspond to a d-spacing equals 55 Å to 126Å. This means that the strong scattering 

patterns observed in the I vs. χ plot should be assigned to the crystalline lamellae of 

nylon-6 since the diffraction from the low volume fraction (0.8 vol%) clay layers which 

is oriented parallel to the FD is nearly negligible at those scattering angles.  

Based on the I vs. χ plot, the annealed reference nanocomposite shows a pair of 

strongly oriented scatterings, which indicates that the long period lies along the direction 

of ~49° clockwise away from the clay orientation direction, i.e. the crystalline lamellae 

are oriented preferentially ~41° counter-clockwise away from the clay orientation. Note 

that the clay layers are oriented parallel to FD (Fig. 4.1). In comparison, for the neat 

nylon-6 under the same condition, no preferred orientation of nylon-6 crystalline 

lamellae (Fig. 4.5(b)) was found. It can thus be concluded that the incorporation of high-

aspect-ratio clay layers into the nylon-6 matrix has played an important role in the 

preferred orientation of nylon-6 crystallites. 
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 Figs. 4.5(c)-(f) show I vs. χ plots and as-collected 2-D SAXS profiles for the 

ECAE-processed nanocomposites before and after annealing. It is interesting to note that 

the non-annealed A1 nanocomposite (Fig. 4.5(c)) still exhibits a pair of preferred 

lamellar orientations along the direction of ~43° counter-clockwise away from the FD, 

despite the clay orientation shown in Fig. 4.1. A possible interpretation is that the 

crystalline lamellae are also aligned and closely packed to each other along the 

maximum simple shear plane since the interlamellar amorphous material is easily 

sheared and compressed during the A1-ECAE process [75]. It should be noted that the 

annealed A1 composite (Fig. 4.5(d)), which contains clay with a smaller aspect ratio and 

better alignment compared with those of the reference nanocomposite, exhibits another 

weak preferred lamellar orientation that is nearly perpendicular to the clay layers. This 

implies that the size of clay layers has an effect on the lamellar orientation of the nylon-6 

matrix. During in-situ polymerization of nylon-6/clay nanocomposites, a large fraction 

(~32%) of nylon-6 chains is subjected to end-tethering to the clay surface through ionic 

interactions [1]. Due to those confinements of the nylon-6 chains, lamellar orientation 

may be governed significantly by the clay orientation, unless the confinements are 

relaxed by external factors. A decrease in aspect ratio may be considered one of the 

external factors dictating relaxation. Therefore, the reduction of clay length by the A1-

ECAE process leads to increased relaxation of the constrained chains and provides 

enough room for lamella rearrangement. Moreover, the annealing step provides 

sufficient activation energy for the formation of weak preferred lamellae. Careful 

observation suggests that the weak preferred lamellar orientation is consistent with the 
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direction of recovery of closely packed lamellae during the annealing process. 

Additionally, the full width at half height (FWHH) value of the annealed A1 

nanocomposite is smaller than that of the annealed reference, indicating that the lamellae 

of the annealed A1 nanocomposite are better aligned than the control sample. This is in 

good agreement with results of TEM image analysis for clay orientation (Table 4.1). 

Furthermore, this observation can partially support the above conjecture that the clay 

orientation globally dictates the lamellar orientation due to interfacial interactions.  

The I vs. χ plots and 2-D SAXS profile of the non-annealed C2 nanocomposite 

show that the FWHH value increases after the C2-ECAE process (Fig. 4.5(e)). High 

FWHH values indicate broad orientation distribution.  Therefore, the second pass in the 

C2 ECAE process has removed some orientation introduced by the first pass in A1 

process.  As shown in the metal systems [71], the second pass in C2 process can lead to 

micro-, or nano-domain rotation.  In this study, it is possible that the second pass has led 

to the rotation of the nano-clays.  Depending on the rigidity of the nano-clay sheets, 

some of the clays may likely become fractured during the rotation and re-organization in 

C2 process [91]. In other words, the clay sheets have been rotated and shortened slightly 

during the C2-ECAE process with a 180° rotation of the sample. Furthermore, the 

annealing (Fig. 4.5(f)) helps to cause a secondary lamellar orientation, which is nearly 

parallel to the flow direction and originates from the translation of molecular chains 

tethered to the rotating clay surface. Fig. 4.6 shows the schematic of lamellar orientation 

with respect to the ECAE processing direction. 
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χ=0°χ=0°χ=0°χ=0°

 

(a) 
 
 
 
 
 

χ=0°χ=0°

 

(b) 

Fig. 4.5 The intensity (I) vs. azimuthal angle (χ) plots and the as-collected 2-D SAXS 
profiles for the nylon-6 and the nanocomposites: (a) annealed NC_Reference, (b) 
annealed nylon-6, (c) non-annealed NC_A1, (d) annealed NC_A1, (e) non-annealed 
NC_C2 and (f) annealed NC_C2. 
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Fig. 4.5 Continued. 
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Fig. 4.5 Continued. 
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Fig.  4.6 Schematic of the lamellar orientation with respect to the ECAE processing and 
annealing: (a) annealed NC_Reference, (b) annealed NC_A1 and (c) annealed NC_C2. 
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Fig. 4.7 shows the Lorentz plot for the annealed A1 nanocomposite, which has an 

anisotropic distribution of lamellae. The long period of the anisotropic sample is 

determined by integrating a wedge-shaped region spanning the FWHH of one of the 

preferred orientation lobes, while for the isotropic sample (e.g., the annealed neat nylon-

6), the entire 2-D profile is integrated over the whole range of azimuthal angles 

(0°≤χ≤360°). The annealed A1 nanocomposite shows that qmax is 0.78 nm-1, which 

yields a long period (Llamella) of 8.06 nm. The long periods were determined in this same 

manner for all samples investigated and are listed in Table 4.1. After the A1-ECAE 

process, the long period decreases slightly due to the packing of crystalline lamellae. 

Still, the annealing process has increased the long period: its value is almost equal to that 

of the annealed reference nanocomposite.   

Additional TEM observation was performed to confirm the SAXS results on the 

exfoliated nyon-6/clay nanocomposites. Fig. 4.8 is a TEM micrograph of the annealed 

reference nylon-6/clay nanocomposite that was cut from the center of plate. This 

demonstrates that the fine lamellae of the nylon-6 crystallites are oriented preferentially 

along the direction ~41° counter-clockwise from the clay orientation. This finding is in 

excellent agreement with the SAXS result. Interfacial ordering of crystalline lamellae 

may be a result of the interfacial interaction. As mentioned previously, the ends of 

nylon-6 chains are bound to the clay surface through ionic interactions. Once nylon-6 

molecules are densely tethered to clay surfaces, the chain segments are oriented 

perpendicularly to clay surfaces [41]. Thus, the crystalline lamellae formed from a 

bundle of these molecular chains are most likely oriented perpendicularly to the clay 
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surfaces, and the growing face of the lamellae (i.e. the hydrogen-bonded planes) is 

parallel to the interface if external stress does not affected the crystallization [86]. The 

samples, however, experience strong shear stresses during extrusion-injection molding, 

and the long-range ordering (~51 nm) of clay inter-spacing in the exfoliated 

nanocomposites may lead to easy shear deformation of nylon-6 chains during processing. 

These could be considered the primary reasons for diagonally oriented lamellar 

structures. Consequently, the orientation of crystalline lamellae is dictated by the global 

orientation of clay layers arising from extrusion-injection molding and the ECAE simple 

shear process: the lamellae orientation is, however, dependent upon the degree of post-

process annealing.  

 

 

 

 

 

Fig. 4.7 Lorentz plot of the annealed A1 nylon-6/clay nanocomposite. 
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Fig. 4.8 TEM micrograph showing the lamellar orientation of the reference 
nanocomposite. The arrows indicate the flow direction. 

 

 

 

Crystallographic scale 

WAXD profiles of the annealed nylon-6 and nanocomposite samples are shown 

in Fig. 4.9. The peaks at 2θ = 20.2 and 23.7°, shown in the neat nylon-6, imply that the 

material is dominantly crystallized into an α-form: while the reference nanocomposite, 

having peaks at 2θ = 10.6 and 21.4°, shows that a γ-form is dominant. These WAXD 

results are in good agreement with earlier work by Lincoln et al. [85]. The WAXD study 
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helps to validate the hypothesis that the addition of nanoclay hinders chain mobility and 

facilitates the formation of γ-form crystals. It should be noted that the annealed A1 and 

C2 nanocomposites exhibit relatively strong α-phase and γ-phase peaks, implying that 

the clay aspect ratios and orientations play important roles in the formation of the γ-form. 

A decrease in clay aspect ratio may cause relaxation of chain mobility restrictions 

imposed in the high-aspect-ratio systems. Furthermore, annealing helps to transform the  

meta-stable γ-phase into the stable α-crystalline phase [77]. The degree of crystallinity 

(χc) for the annealed nylon-6 and nanocomposites is defined as the ratio of the areas 

beneath the X-ray scattering curve of the crystalline reflection to the total areas of 

amorphous and crystalline reflection (Table 4.1).  

 

 

 

 
Fig. 4.9 WAXS profiles of the annealed nylon-6 and the nanocomposites. 
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DSC traces of the annealed samples of nylon-6 and nanocomposites show two 

melting peaks (Fig. 4.10). The high-temperature melting peak corresponds to the α-

crystalline phase and the low-temperature peak corresponds to the γ-form. A higher level 

of γ-crystalline phase is observed in the reference nanocomposite, which is consistent 

with Kojima’s study [1]. Interestingly, it is found that the amount of α-form increases as 

the clay aspect ratio and orientation decrease. These DSC results are also in good 

agreement with the WAXD results. 

 

 

 

 
 

Fig. 4.10 DSC fusion endotherms of the annealed nylon-6 and the nanocomposites. 
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The morphological parameters at different length scales in the nylon-6 and 

nylon-6 nanocomposites are listed in Table 4.1. Nam et al. [92] proposed a hierarchical 

structure for intercalated polypropylene/clay nanocomposites based on the characteristic 

parameters obtained. Fig. 4.11 illustrates such a structure of the exfoliated reference 

nylon-6/clay nanocomposite used in this study. Despite a variation in clay aspect ratio 

and orientation, the correlation length (ξplatelet) between the dispersed platelets and the 

long period (Llamella) are nearly constant when compared with the annealed 

nanocomposites.  

 
 
 

 

 

Fig. 4.11 Schematic of hierarchical structure and morphological parameters of the 
exfoliated reference nylon-6/clay nanocomposite. 
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Tethering of the polymer chains to the clay surface leads to a decrease in chain 

mobility and the confinement of lamellar orientation near clay layers. Reduced chain 

mobility may be responsible for smaller spherulites (Fig. 4.4(c)) and a decreased 

crystallinity (Table 4.1) of the nanocomposites compared with the neat nylon-6. This 

indicates that the effect of clay layers as nucleation sites is markedly suppressed during 

crystallization.  

 

4.4 Summary 

Experimental findings indicate that the morphological development of a semi-

crystalline polymer in a clay-reinforced nanocomposite depends significantly upon the 

clay structural parameters, such as clay orientation, aspect ratio, and interfacial 

interactions between the clay surface and polymer chains. It is concluded that the 

orientation of crystalline lamellae is affected by the orientation and the size of clay 

layers. In addition, the clay orientation and aspect ratio affect the formation of a 

crystalline phase. The correlation length and the long period appear to be independent of 

the clay orientation and aspect ratio. Tethering of the polymer chains to the clay surface 

has resulted in a decrease in chain mobility and confinement of lamellar orientation, 

thereby a significant reduction in crystallinity.  
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CHAPTER V 

EFFECTS OF CLAY ORIENTATION AND ASPECT RATIO ON 

MECHANICAL BEHAVIOR OF NYLON-6 NANOCOMPOSITE 

 

5.1 Introduction 

Filler-reinforced polymeric nanocomposite systems with well-dispersed 

inorganic nanoparticles typically exhibit significant improvements in physical and 

mechanical properties over their neat resin counterpart. The most commonly produced 

nanocomposite systems are polymer-layered silicate nanocomposites, which are of 

interest because of their exceptional reinforcement effects at very low clay loading. This 

characteristic has been exploited to prepare commercially viable structural components 

since minimized nanofiller loading results in a lighter structure, good  processability, and 

increased ductility.  Moreover, a negligible loss in fracture toughness is usually observed 

in such nanocomposite systems [1].  

Layered silicates are composed of extremely thin (~1 nm), plate-like structures 

that have large surface areas and high aspect ratios. In addition, the platelets have an 

exceptionally high modulus compared to that of the surrounding polymer matrix. The 

reinforcement effect of polymer nanocomposites strongly depends on the filler’s 

structural parameters, such as shape, aspect ratio, modulus, volume fraction, interfacial 

adhesion, surface characteristics and orientation [11-15]. Recent research efforts have 

focused on developing well-exfoliated nanocomposites using various processing 
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techniques (e.g., in-situ polymerization [24,36], emulsion polymerization [93,94], melt 

compounding [3,95,96], and sol-gel processing methods [37,97,98]): only limited 

success has been achieved [2,5,22,25,67,99-103]. Fornes et al. [103] investigated the 

effect of organic surfactant structure and molecular weights of nylon-6 on the 

mechanical properties of nylon-6 nanocomposites. Sue et al. [67] reported that, for α-

zirconium phosphate-based epoxy nanocomposites, surface modifiers had a significant 

effect on the thermal properties and toughening mechanisms of the nanocomposites.  

Using micromechanics-based composite models, a few of recent studies [53,55] 

have attempted to examine how the nanofiller structural parameters (e.g., shape, aspect 

ratio and orientation) affect the mechanical properties. Although these micro-mechanical 

models cannot be used to fully account for the exact mechanical behavior of polymer 

nanocomposites, it generally gives satisfactory correlations. Yet, there is no 

experimental effort within the literature to address how the aspect ratio and orientation 

of clay layered structures affect mechanical properties of polymer nanocomposites. This 

is partially owed to the fact that it is nontrivial to experimentally control the aspect ratio 

and orientation of nanoscopic fillers in a polymer matrix without simultaneously 

changing other material parameters. Therefore, there is a significant interest to 

experimentally prepare variations in nanofiller aspect ratios and orientations in polymer 

nanocomposites and study how they influence mechanical properties.   

It has been shown that the presence of clay layers may affect the nucleation and 

growth of crystalline lamellae in nylon, resulting in the formation of complex 

morphologies within the matrix. Kojima et al. [1] found that the γ-crystalline phase 
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would dominate when clay layers are dispersed in a nylon matrix, whereas neat nylon 

exhibits a high level of α-form crystalline structure. Because it has been well-established 

that lamellar orientation can greatly affect the mechanical properties of semi-crystalline 

polymers, it is important to determine the nanoscale morphological characteristics of 

crystalline lamellar orientation as well as the clay orientation in nylon-6/clay 

nanocomposite.  

The present paper attempts to study how the aspect ratio and orientation of clay 

layered structures affect the mechanical properties of nylon-6/clay nanocomposites. 

Characterization of nylon-6/clay nanocomposite morphology is presented elsewhere 

[104]. Creasy et al. [69] found that a large-scale simple shear process can control the 

fiber orientation of glass fiber/polyacetal composites, depending on the processing routes. 

Xia [71] also speculated that controlled nanoparticle orientation could be easily achieved 

through a simple shear process. The same simple shear process was, therefore, carried 

out to alter clay aspect ratios and orientations within the nylon-6 matrix. 

Both the Halpin-Tsai and Mori-Tanaka micromechanics-based composite models 

were implemented to account for the effect of the nanofiller structural parameters on the 

reinforcement of the nanocomposites. The fundamental structure-property relationship of 

polymer nanocomposites, based on this micromechanical model, is discussed.  

 

5.2 Continuum-based Micromechanical Models 

A number of micro-mechanical composite models have been developed to 

describe the macroscopic mechanical properties of discontinuous, filler-based 
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composites [42-52]. Many assumptions are inherent in these micromechanical models. 

The detailed description and discussion of assumptions of these micromechanical 

models have been documented [53]. In conventional micromechanical models, filler 

volume fraction (φf), aspect ratio (α), orientation (S), and modulus (Ef) are important 

factors for describing the macroscopic composite properties. Tucker et al. [54] reviewed 

the application of several composite models for fiber-reinforced composites. They 

reported that the Halpin-Tsai theory [48-50] offered reasonable predictions for 

composite modulus. The model proposed by Mori-Tanaka [45,47] exhibited better 

predictive capabilities for fillers with relatively high aspect ratios.  The longitudinal 

engineering modulus (E11) of the Halpin-Tsai and the Mori-Tanaka model are expressed 

in equations (1) and (2), respectively.  
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where φf is filler volume fraction, νm is the Poisson’s ratio of the matrix,  and A, A3, A4, 

and A5 are calculated from the matrix and filler properties and the components of the 

Eshelby tensor [43]. The above models were utilized to describe the clay reinforcement 

effect in nylon-6/clay nanocomposites. 

 

 



 70

5.3 Experimental 

5.3.1 Materials 

Commercially available nylon-6/clay nanocomposite pellets containing 2 wt% of 

layered silicate clay (commercial grade, 1022C2) and neat nylon-6 (commercial grade, 

1022B) were provided by Ube Industries, Japan. The detailed description and the overall 

process for preparing the resin and nanocomposite are documented in [36,41]. Briefly, 

organic, surface-modified montmorillonite clay was prepared via a cation-exchange 

reaction with 12-aminolauric acid. The resulting ion-exchanged montmorillonite clay 

(termed 12-montmorillonite) was mixed with ε-caprolactam. Ring-opening 

polymerization of the ε-caprolactam, with addition of a small amount of 6-aminocaproic 

acid, was initiated by carboxyl ends (-COOH) of the 12-montmorillonite clay, resulting 

in the chains (~32% of nylon-6 chains) with cationic ammonium ends (-NH3
+) tethered 

to the surface of negatively charged layer silicates. 

 

5.3.2 Sample preparation 

Pellets of the neat nylon-6 and nylon-6/clay nanocomposite were dried at 100 °C 

for 12 h, and were then slowly injection molded using a custom-built extrusion-injection 

molding machine powered by a HaakeBuchler Rheocord (system 40) machine with a 

screw revolving at 30 rpm. The temperature profiles of the extruder barrel were set at 

235-245-255-260°C progressively toward the inlet of the injection mold, with the mold 

temperature set at 180 °C. After molding, the samples were immediately sealed in a 
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polyethylene bag and kept in a vacuum desiccator prior to use to avoid moisture 

absorption.   

A large-scale simple shear process, termed equal channel angular extrusion 

(ECAE) [75,76], was performed to alter the aspect ratio and orientation of the clay 

nanoparticles. This ECAE process was carried out at 60°C and at an extrusion rate of 

0.25mm/s using a servo-hydraulic mechanical system (MTS-810). The samples before 

and after ECAE were categorized as follow: (1) Reference, (2) A1-received a single 

ECAE pass, and (3) C2-received two ECAE passes with a 180° rotation of specimen 

between the passes (Fig. 5.1). Detailed description of the ECAE simple shear process 

can be found in [71-76]. After the sample preparation, all samples were annealed at 150 

ºC for 3h to minimize any pre-existing molecular and clay orientation in the matrix due 

to processing [77-81].  Furthermore, the annealing chamber was purged with nitrogen 

gas to minimize sample oxidation during annealing. After annealing, the specimens were 

cut to an appropriate size and polished to desired dimensions for mechanical testing and 

structural characterizations. 

 

5.3.3 Microscopy and image analysis 

Transmission electron microscopy (TEM) observations were conducted on a 

JEOL JEM-2010A TEM operating at an accelerating voltage of 200 kV. Ultra-thin 

sections of ~90 nm in thickness of nylon-6/clay nanocomposite were obtained, under 

cryogenic condition, using a Reichert-Jung Ultracut E microtome. A diamond knife was 

used for the thin-sectioning, and the thin-sections were placed on 100-mesh 
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Formvar/carbon-coated copper grids for TEM observation. Note that samples for TEM 

analysis were cut parallel to the ND-FD plane, as depicted in Fig. 5.2. 

In order to determine the clay aspect ratio and degree of clay orientation in 

nylon-6/clay nanocomposites, a semi-automated image analysis procedure, described by 

Fornes et al. [53,103], was carried out. 

 

 

 

 

Shear plane

Same plate
orientation

Route-A, Pass One Route-A, Pass Two

Shear plane

Rotate 180°
around the
loading
direction

Route-C, Pass One Route-C, Pass Two

Shear plane

Shear plane

 

Fig. 5.1 Schematic of route A- and route C-ECAE processes. 
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Fig. 5.2 Schematic of the specimens used for tensile, KIC testing, and TEM observation, 
and the clay orientation with respect to the ECAE processing and annealing: ND = 
normal direction, TD = transverse direction and FD = flow direction. 

 

 

5.3.4 Mechanical testing 

Tensile properties were evaluated at room temperature according to ASTM-

D638-02.  The tensile specimens cut parallel to the flow direction (Fig. 5.2) were tested 
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using a screw-driven mechanical testing machine (Sintech II) at a constant crosshead 

speed of 0.085 mm/s (0.2"/min). An extensometer was used to measure the displacement 

in the gauge region. Young’s modulus was calculated at 1% strain, and yield stress and 

elongation at break were determined in accordance with the above ASTM standard. The 

average values and standard deviations were determined from testing five specimens of 

each sample. 

The stress intensity factor (KIC) of the samples was obtained according to ASTM-

D5045-99, with the KIC specimens in a single-edge-notch 3-point-bend (SEN-3PB) 

geometry.  By tapping a liquid-nitrogen-chilled razor blade into the wedge, thumb nail-

shaped sharp cracks were generated. The ratio of the initial crack length (a) to the 

specimen width (W), a/W, was fixed between 0.4 and 0.6.  The crack propagation was 

parallel to the transverse direction (Fig. 5.2). Five specimens from each sample were 

tested at room temperature and at a crosshead speed of 10 mm/min, using a screw-driven 

mechanical testing machine (Instron Model 1125).   

The dynamic mechanical analysis (DMA) tests were performed under torsional 

mode on a Rheometric Mechanical Spectrometer (RMS-800) at temperatures ranging 

from -140 to 250°C. The DMA specimens were cut parallel to the flow direction. 

Measurements were made at 5°C per step with 45s of soaking time.  The spectrometer 

was set to produce a sinusoidal wave function with a peak strain of 0.1% and frequency 

of 1 Hz. The storage moduli versus temperature and tan δ versus temperature profiles 

were recorded and reported.  The glass transition temperature, Tg, was determined based 

on the maximum tan δ peak temperature of the tan δ versus temperature curve. 
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5.4 Results and Discussion 

5.4.1 Microscopy investigation and image analysis 

The morphology characterization of nylon-6/clay nanocomposite before and after 

ECAE process, and before and after annealing, has been described elsewhere [104].  

Only the final morphologies of the nanocomposites are briefly reported here. 

Fig. 5.2 shows the schematic of clay orientation with respect to the ECAE 

processing direction. It should be noted that after a one-pass (A1) ECAE process which 

induced the maximum shear strain of 180%, the shortened clay layers are aligned nearly 

parallel to the maximum simple shear plane [75], i.e. at an angle (θ) of ~26° 

counterclockwise away from the flow direction (FD). However, after annealing, the clay 

orientation becomes parallel to the FD. This clay orientation recovery is most likely due 

to the thermally activated relaxation of molecular/lamellar orientation of the nylon-6 

matrix and the pre-existing residual stresses [75,76]. Figs. 5.3 and 5.4 show the TEM 

micrographs that indicate different clay aspect ratios and orientations of the ECAE-

processed nanocomposite samples before and after annealing. The reference nylon-

6/clay nanocomposite, which received no ECAE simple shear deformation, exhibits a 

well-exfoliated clay structure with an orientation along the FD (Figs. 5.3(a) and 5.4(a)). 

Also, it is observed that the clay lengths and orientations of the A1 and C2 nylon-6/clay 

nanocomposites have been altered upon the ECAE simple shear process.  

Fig. 5.5 shows the schematic of lamellar orientation with respect to the ECAE 

processing direction. The exfoliated nanocomposites exhibit a global orientation of clay 

layers, arising from the flow-induced alignment and local orientation of crystalline 
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lamellae caused by the clay particles. The annealed reference nanocomposite shows that 

the crystalline lamellae are oriented preferentially along ~41° counter-clockwise away 

from the clay orientation. For the annealed A1 and C2 nanocomposites, a reduction in 

clay aspect ratio helps to form another weak preferred lamellar orientation, which is 

almost perpendicular to the clay layer orientation. In addition, a misalignment in clay 

orientation leads to a more randomized lamellar orientation in the annealed C2 

nanocomposite. The detailed experimental procedure for obtaining the above 

morphological features is reported elsewhere [104]. 

 

 

 

 

(a) 

Fig. 5.3 Typical TEM micrographs of the simple-shear-processed and non-annealed 
nylon-6/clay nanocomposites (NC) used for image analysis: (a) NC_Reference, (b) 
NC_A1 and (c) NC_C2. The arrows indicate the flow direction. 
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(b) 

 
 
 
 

 

(c) 

Fig. 5.3 Continued. 

 



 78

 

(a) 

 
 
 
 

 

(b) 

Fig. 5.4 Typical TEM micrographs of the simple-shear-processed and annealed nylon-
6/clay nanocomposites (NC) used for image analysis: (a) NC_Reference, (b) NC_A1 and 
(c) NC_C2. The arrows indicate the flow direction. 
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(c) 

Fig. 5.4 Continued. 
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Fig. 5.5 Schematic of the lamellar orientation with respect to the ECAE processes and 
annealing: (a) annealed NC_Reference, (b) annealed NC_A1 and (c) annealed NC_C2. 

 

 

It is interesting to note that the C2-ECAE simple shear process can exert highly 

localized stresses to reduce the aspect ratio of clay. Fig. 5.6 shows the fractured clay 

layers after the C2-ECAE process, thus greatly reducing the aspect ratio of clay in the 

matrix.  

 



 81

A semi-automated image analysis scheme was performed to quantify these 

morphological variations.  It should be mentioned that three different TEM micrographs 

from three different locations of each sample were used to ensure the reliability of the 

image analysis.  The distribution and statistical boxplot of the platelet length for the 

annealed samples of the reference, A1, and C2 nanocomposites are shown in Fig. 5.7(a). 

The aspect ratios (α) of dispersed platelets are determined by:  

t
l

=α          (5.3)  

where l  is mean platelet length and t  is mean platelet thickness.  

It is well known that the commercial Ube nylon-6/clay nanocomposite used in 

this study is a fully exfoliated system. Thus, it is safe to take the mean platelet thickness 

to be 0.94 nm, which is the single layer thickness of the clay [29]. 

Fig. 5.7(b) shows the distribution and statistical boxplot of the degree of platelet 

orientation in the reference, A1, and C2 annealed nanocomposites. The degree of platelet 

orientation (S) is defined as  

N
S

n

i
i∑

=

Φ−Φ
= 1

2)(
       (5.4) 

(i.e. standard deviation), where iΦ  is the actual platelet orientation ( , °° ≤Φ≤ 900 ) Φ  is 

the mean platelet orientation, and N is total number of platelets counted. It should be 

noticed that the degree of platelet orientation was determined in relation to the uniaxial 

tension orientation on which the tensile tests were performed.   
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The results of the image analyses are summarized in Table 5.1. Interestingly, 

these results indicate that the A1 process only reduces the clay aspect ratio, while the C2 

route alters not only the clay aspect ratio but also the clay orientation due to the 

accumulated crisscross residual plastic deformation generated by an additional ECAE 

process with 180° rotation of the specimen (Fig. 1). It is noted that although there is little 

difference in clay aspect ratio, there is a slight variation in degree of orientation between 

the reference and annealed nanocomposites. This discrepancy may be caused by the 

relaxation of nylon-6 matrix during sample annealing.  The details of the morphological 

characterization can be found elsewhere [104].  

 

 

 

Fig. 5.6 TEM micrograph showing the fractured and shortened clays via an ECAE 
simple shear process. The arrows indicate the fractured clays. 
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(a) 
 
 
 
 
 

 

(b) 

Fig. 5.7 Quantitative TEM image analyses of the annealed nanocomposites: (a) clay 
length and (b) clay orientation (SD: standard deviation). 
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Table 5.1  

The results of TEM image analysis for the reference, A1, and C2 nanocomposites.  

Aspect ratio (α) Degree of orientation (S)* 

Annealing Sample 

Before After Before After 

NC_Ref 131±37 132±33 8° 12° 

NC_A1 89±24 87±26 7° 10° 

NC_C2 80±25 78±21 25° 24° 

* Degree of platelet orientation from unidirectional reinforcement. 

 

 

5.4.2 Mechanical properties 

Typical engineering stress-strain curves and their key tensile property 

dependence on clay aspect ratio and orientation are shown in Fig. 5.8 and Table 5.2. All 

of the specimens tested were annealed samples. A decrease in aspect ratio from 132 to 

87 causes an obvious reduction in modulus and yield stress. However, a slight increase 

in elongation at break is also observed.  In addition to the change in aspect ratio, the 

degree of clay orientation has an effect on tensile properties.  The annealed C2 

nanocomposite, which has a more randomly dispersed clay and lower aspect ratio, 

exhibits a much lower modulus (~19 %) and yield stress (~10 %) than those of the 

annealed reference nanocomposite. For comparison purposes, the Young’s modulus and 

the yield stress of non-annealed A1 nylon-6 are given to be 3.03±0.13 GPa and 77.2±1.7 
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MPa, respectively. These values are not much different from the annealed nylon-6 since 

the ECAE process on semi-crystalline polymers tends to only destroy spherulites and 

cause some lamellar orientation. No significant molecular orientation throughout the 

sample is observed [70,74-76].  Fig. 5.9 highlights the influences of clay aspect ratio and 

degree of clay orientation on the tensile properties. When normalized by the tensile 

modulus of the reference nanocomposite, a decrease in aspect ratio results in a 

distinctive decrease in Young’s modulus. On the other hand, a large decrease (100%) in 

alignment of clay, seen in the C2 nanocomposite, seems to have a relatively small effect 

(≈ 8%) on tensile modulus. Based on the above finding, the effect of clay aspect ratio on 

tensile properties appears to be more significant.  

 

 

 

 

Fig. 5.8 Typical engineering stress-strain curves for the annealed neat nylon-6 and 
nanocomposites. 
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Table 5.2  

Tensile properties of the neat nylon-6 and nylon-6/clay nanocomposites. 

Sample Young’s modulus* 
(GPa) 

Yield stress* 

(MPa) 
Elongation at break 
(%) 

NC_Ref 4.67±0.20 98.2±2.3 4.7 

NC_A1 4.09±0.18 93.0±1.3 5.3 

NC_C2 3.80±0.14 88.9±2.4 5.8 

Nylon-6 3.14±0.11 76.4±1.2 45 

*Standard deviation for the five samples tested.  
 

 

 

 

 

Fig. 5.9 Effect of clay aspect ratio and clay orientation on tensile properties for the 
ECAE processed and annealed nanocomposites. 
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The KIC values for the annealed nanocomposites are given in Table 5.3. A 

reduction in aspect ratio and alignment of clay results in an improved fracture toughness.  

It is interesting to note that the clay orientation perpendicular to the crack propagation 

direction does not seem to improve fracture toughness.  This suggests that the natural 

crack tip radius of the nylon-6/clay nanocomposite is too large compared to the clay 

dimensions to show an effect.    

 

 

Table 5.3  

Mechanical properties and heat distortion temperature of the neat nylon-6 and nylon-
6/clay nanocomposites. 

Storage modulus, G' (Pa) 
Sample 

at 25 °C  at 100 °C  

KIC
*

  
(MPa⋅m0.5) 

HDT  
(°C)   

NC_Ref 1.28E9 3.33E8 2.7±0.07 110 

NC_A1 1.12E9 2.89E8 3.1±0.13 90 

NC_C2 1.07E9 2.51E8 3.0±0.11 84 

Nylon-6 1.05E9 1.94E8 3.0a 75 

a The value is quoted from [105]. 
* Standard deviation for the five samples tested. 
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The dynamic mechanical properties for the annealed neat nylon-6 and 

nanocomposites are shown in Fig. 5.10.  There is virtually no difference in Tg variation 

among the nanocomposites investigated.  The addition of clay results in a significant 

increase in storage moduli throughout the whole temperature range studied (Table 5.3). 

The reinforcing effect of clay aspect ratio and orientation appears to be the highest at 

temperatures above Tg. This may be due to the fact that the exfoliated clay is most 

effective in resisting the mobility of the nylon-6 molecules above Tg.  

The heat distortion temperature (HDT), defined as a deflection-temperature at 

which polymeric materials undergo an arbitrary deformation under a constant load, is 

one of the key indicators that can address load-bearing capabilities at elevated 

temperatures. Fig. 5.10(b) illustrates HDT values obtained from the storage modulus vs. 

temperature curve of DMA results [106]. A significant increase in HDT is observed in 

the annealed reference nanocomposite (Table 5.3), implying that high aspect ratios of 

nanofillers yields a significant increases in HTD.  

It is noted that the lamellar orientations and crystallinity of nylon-6 [104] in the 

nanocomposites investigated remain more or less the same after annealing. Consequently, 

the ECAE process is unlikely to cause any significant changes in matrix properties.  The 

mechanical properties variations reported above should, therefore, be mainly due to the 

changes in clay aspect ratios and orientations. 
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(a) 
 

 

 

 

(b) 

Fig. 5.10 Dynamic mechanical spectra for the annealed neat nylon-6 and nanocomposites: 
(a) storage modulus and loss tangent and (b) the HDT estimated from the plot of log G' 
vs. temperature. 
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5.4.3 Effective filler-based micromechanical models  

The dispersion of fillers in a matrix is typically described in terms of exfoliation 

or intercalation. The fully exfoliated nanocomposites are considered to consist of single 

clay layers dispersed in a polymer matrix. While in the intercalated systems, inter-layer 

domains of fillers are typically penetrated by polymer chains and consequently stacked 

with an inter-layer spacing of 1-4 nm. However, conventional filler-based 

micromechanical models for predicting the modulus of nanocomposites do not consider 

the clay structural characteristics. Here, typical effective filler structural parameters are 

defined by the number of platelets per stacked clay (n) and the platelets inter-layer 

spacing (d001): these parameters can be used to account for mechanical property 

enhancement for both exfoliated and intercalated nanocomposites. The mechanics-based 

model for effective filler structure is established by mapping the effective filler structural 

parameters (n, d001) to the conventional filler structural parameters (α, φf, Ef ). 

The thickness of effective filler can be expressed in terms of n and d001 by the 

following equation [29]: 

p001eff )1( tdnt +−=        (5.5) 

The effective filler aspect ratio (αeff), volume fraction (φeff) and modulus ( ) 

can be written as [28]: 
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where ψeff is effective filler weight fraction and ρf and ρm  are the densities of the filler 

and matrix, respectively. The influence of filler effective aspect ratio (αeff) and 

orientation (S) on the modulus improvement was examined using the Halpin-Tsai (H-T) 

and Mori-Tanaka (M-T) theories. Similar trends are observed in the parametric study 

plots for both models (Fig. 5.11). The improved reinforcement efficiency is observed 

with the higher aspect ratio fillers. However, the Mori-Tanaka model is more 

conservative in estimation than the Halpin-Tsai model. This difference may originate 

from the discrepancies between assumptions inherent in the two models [53]. To 

compensate for these disparities, an adjustment of shape parameter (2l/tp) in the Halpin-

Tsai equation may be used. It should be noticed that E11/Em increases non-linearly with 

αeff for both models (Fig. 5.11(a)). This underlying phenomenon may be explained by 

the load-transfer mechanism. The nature of these physics was well addressed in [55] 

using the shear lag model [51]. It should be mentioned that when the aspect ratios are 87 

and 132, the clay length is sufficient for maximum load-transfer.  

Disk-shaped platelets provide the same reinforcement in the two orthogonal 

directions: E11 and E22. In the case of randomly oriented platelets, the following equation 

was proposed [107,108]: 
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3311
platelet

3Dradom 51.049.0 EEE +=−       (5.9) 

The effect of filler orientation (S) on modulus enhancement of nanocomposite 

was examined using the Halpin-Tsai and Mori-Tanaka theories (Fig. 5.11(b)). It was 

found that misalignment of unidirectional reinforcement leads to detectable modulus 

reductions. Experimental results are compared with model predictions from the Halpin-

Tsai and Mori-Tanaka theories (Fig. 5.11). In the case of the clay filler modulus, , it 

has been estimated to be 400 GPa based on molecular dynamic simulation [109]. The 

predictions of Mori-Tanaka model are in good agreement with the experimental data. 

Conversely, the Halpin–Tsai model slightly overpredicts the results. Note that the data 

for an aspect ratio of 78 in Fig. 5.11(a) needs to shift slightly to the left since the clay in 

the nanocomposite is more randomly oriented. It is also observed that the modulus of the 

C2 nanocomposite is in good agreement with the case for the radom-3D orientation. 

fE

Both experimental observations and micro-mechanical model predictions carried 

out in this study have clearly indicated that clay aspect ratio and orientation significantly 

affect the nanocomposite modulus. A high aspect ratio and unidirectional orientation 

lead to significantly improved moduli. Consequently, it is desirable to prepare polymer 

nanocomposites that exhibit full exfoliation with a preferred orientation along the tensile 

direction for maximum reinforcement effect.  
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(a) 

 
 
 
 
 

 

(b) 

Fig. 5.11 Effective filler-based model predictions of the Halpin-Tsai (H-T) and the Mori-
Tanaka (M-T) theories: (a) clay aspect ratio (α) and (b) clay orientation (S) on the 
modulus improvement of exfoliated nanocomposites. Experimental data (Enc) included.  
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5.5 Summary 

Effects of aspect ratio and orientation on mechanical properties of nylon-6/clay 

nanocomposites were investigated. The aspect ratio and orientation of clay layers in 

naylon-6 matrix appear to be responsible for variations in mechanical properties. 

Unidirectional reinforcement and higher aspect ratios can lead to significant 

improvements in modulus, strength and heat distortion temperature, with a marginal loss 

in ductility. The effective filler-based Mori-Tanaka model offers a reasonably accurate 

prediction to account for modulus enhancement of the nanocomposites, which is 

consistent with experimental findings. Further, the model may be used to predict elastic 

properties of other types of polymer nanocomposites. The ECAE simple process appears 

to be an effective method for tailoring clay aspect ratios and orientations in nylon-6. The 

clay aspect ratio and orientation are dominating factors responsible for mechanical 

property improvements of these polymer nanocomposites. 
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CHAPTER VI 

IMPACT TOUGHENING MECHANISMS OF CALCIUM 

CARBONATE-REINFORCED POLYPROPYLENE 

NANOCOMPOSITE 

 

6.1 Introduction 

It is well known that inorganic fillers are effective in improving stiffness, 

hardness, chemical resistance and dimension stability, as well as gas barrier properties of 

polymers [2,5,22,110-115]. Considerable literature can be found with focuses on 

improving mechanical properties of polypropylene (PP) using various kinds of fillers 

[30,34,114,115].  The effectiveness of inorganic fillers on improving physical and 

mechanical properties of PP strongly depend on the filler size, shape, aspect ratio, 

interfacial adhesion, surface characteristics and degree of dispersion [116-119].  

Calcium carbonate (CaCO3) particles have a nearly isotropic particulate structure 

[30].  The addition of such an inorganic rigid filler to a semi-crystalline polymer matrix 

may affect crystal structure, crystallinity, spherulite size, lamellar thickness and 

thickness of interlamella amorphous layers.  Typically, inorganic particle-filled polymer 

composites show an increase in modulus but a decrease in toughness and ductility, 

mainly because of the induced stress concentration, agglomeration, and confinement of 

matrix molecular mobility around the rigid filler phase.  However, a few exceptions have 

also been reported in the literature.  In toughening polyethylene, CaCO3 and chalk 
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particles have been shown to be able to improve toughness of PE effectively [31-33].   

For PP, Thio and Argon [34] found that the CaCO3-toughened PP composites could 

exhibit greatly improved impact strengths up to 40–50 kJ/m2, as compared to 2–8 kJ/m2 

for that of neat PP.  More recently, Chan et al. [30] showed that the fracture toughness of 

PP could be enhanced by over 300% by incorporating nanometer-sized (ca. 40 nm) 

CaCO3 particles.  

In this study, investigation will be focused on understanding the underlying 

toughening mechanisms responsible for the impressive toughening effect found in 

PP/CaCO3 nanocomposite.  Roles of CaCO3 nanoparticles on PP crystalline size, 

crystalline structure, and the observed toughening effect are also studied and discussed.  

 

6.2 Experimental 

6.2.1 Materials  

PP homopolymer, PD403 (density = 1.04 g/cc) from Basell USA, was used in 

this study.  CaCO3 nanoparticles were obtained from Guang Ping Nano Technology 

Group Ltd.  The average primary particle size of CaCO3 is about 44 nm.  Irganox 1010® 

(Ciba Specialty Chemicals) was used as an antioxidant.  The chemical composition of 

CaCO3 nanoparticles was measured by inductively coupled plasma spectroscopy (Perkin 

Elmer Optima 3000 ICP) and the content of carbon and hydrogen was determined by a 

carbon, hydrogen and nitrogen analyzer (Table 6.1).  The CaCO3 nanoparticles used in 

this study were surface-modified by stearic acid.  
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Table 6.1  

Chemical composition (wt%) of the CaCO3 nanoparticles.  

C O H Ca Mg Al 

12.9 44.2 0.5 41.6 0.6 0.2 

 

 

6.2.2 Sample preparation  

Prior to mixing, PP and CaCO3 were dried in an oven at 120 °C for an hour and 

then cooled to room temperature and kept in a desiccator.  Compounding was carried out 

at 180 °C with a rotor speed of 60 rpm in a batch mixer (Haake 40 System).  The content 

of CaCO3 nanoparticles in PP matrix was 9.2 vol%.   

The samples used in this study were injection-molded.  For comparison, neat PP 

sample was also prepared.  The detailed description of the sample preparation using 

injection-molding process has been documented [30].  Izod impact bars with dimensions 

of 64 mm × 12.7 mm × 3.2 mm were notched with a notch cutter (250 µm tip radius) to a 

notch depth of 3 mm, in accordance to ASTM D-256.  The double notch four-point 

bending (DN-4PB) specimens were first notched with a 250 µm radius notch cutter to a 

depth of 3 mm, followed by tapping two nearly identical sharp cracks ahead of the two 

notches using a liquid nitrogen-chilled razor blade.  Notched Izod impact test and DN-

4PB Charpy impact test were conducted at room temperature on a pendulum impact 

tester (Model TMI-43-02) with a single-head striker and a double-head striker, 

respectively.  
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6.2.3 Microscopy and toughening mechanism investigation 

Optical microscopy (OM) and transmission electron microscopy (TEM) were 

employed to observe the morphology and to determine the fracture mechanisms of the 

nanocomposite specimens after the impact tests.  The impact damage zones were cut 

along the crack propagation direction but perpendicular to the plane of fracture surface 

using a diamond saw.  The plane-strain core regions of the damage zone were prepared 

for OM and TEM observations (Fig. 6.1).  For OM investigations, the damage zones of 

the impact specimens were polished into thin sections with thicknesses of about 40 - 80 

µm, following the procedures described by Holik et al. [120].  These thin sections were 

investigated using an Olympus BX60 optical microscope, under both bright field and 

cross-polarization conditions, to observe the overall damage zone and features.  

For the TEM effort (JEOL JEM1200EX), the plane strain region of the damage 

zone was isolated and embedded in an epoxy mount and cured at room temperature to 

avoid thermally induced stress on the sample.  The cured epoxy bock was carefully 

trimmed to a size of 0.3 mm × 0.3 mm and then faced off using a diamond knife prior to 

staining. The face-off block were then stained with ruthenium tetraoxide (RuO4) and cut 

into thin sections using a Richard Chung Ultracut® microtome.  Staining with RuO4 was 

necessary to allow for better image contrast between CaCO3 particles and the PP matrix.  

The staining of RuO4 also helped harden the PP matrix and fill in the voids inside the 

craze bands, which stabilize the integrity of craze structure during microtoming.  In this 

study, thin-sections of about 90 nm in thickness were prepared and placed on 100-mesh 

Formvar/carbon-coated copper grids for TEM observation. 
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Fig. 6.1 Schematic of the impact specimens used for OM and TEM observation: (a) 
notched Izod impact specimen and (b) DN-4PB Charpy impact specimen. 

 

 

 

6.3 Results and Discussion 

The incorporation of CaCO3 nanoparticles in PP matrix can greatly affect the 

morphology of the PP matrix, which may influence the ductility and toughenability of 

PP.  As shown in Fig. 6.2, the sizes of spherulites (< 30 µm) found in the PP/CaCO3 

nanocomposite are much smaller than those found in neat PP (> 50µm).  This suggests 

that CaCO3 nanoparticles are effective nucleating agents for PP [30].  A decrease in 

spherulite size should positively contribute to the toughenability of semi-crystalline 

polymers [121,122].  In a previous work by Chan et al. [30], their differential scanning 
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calorimetry (DSC) results indicated the presence of a small amount of β-phase PP after 

the addition of CaCO3 nanoparticles.  Labour et al. [123] found that, since the β-phase 

has a less crystal density than that of the α phase, the β-phase PP exhibits a lower 

modulus by about 10 % and a reduced hardness by 15%, respectively, than the α phase 

PP.  The presence of the β-phase crystal around the CaCO3 particles in PP may greatly 

affect the operative toughening mechanisms in the PP/CaCO3 nanocomposite, as well.  

 

6.3.1 Study of Fracture process based on the DN-4PB Charpy impact specimens 

The DN-4PB Charpy impact test was employed to investigate the detailed 

toughening mechanism in the PP/CaCO3 nanocomposite.  The DN-4PB technique is one 

of the most effective ways of generating a subcritical crack tip damage zone [58-60].  

The key toughening mechanism(s) and the sequence of toughening events can be 

unambiguously identified in the arrested crack tip damage zone region using a variety of 

microscopy techniques.  
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(a) 

 

 

 

 

(b) 

Fig. 6.2 TOM under cross-polarized field: (a) neat PP and (b) PP/CaCO3 nanocomposite. 
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When OM is conducted, massive crazing (Fig. 6.3(a)) and birefringent plastic 

deformation (Fig. 6.3(b)) around the arrested crack tip are observed.  The intensive 

plastic deformation is evidenced by the presence of a birefringent zone encapsulated by a 

larger light scattering cavitation zone, indicating that shear yielding mechanism occurs 

along the crack wake. These damage features are similar to the damage features 

observed in other toughened polymers [58-62], suggesting that massive crazing is 

effective in facilitating plastic deformation of PP matrix. TEM study is further employed 

to confirm the above conjecture. 

To learn about the early stages of the toughening process, it is necessary to 

investigate the damage feature far away from the crack tip, but inside the damage zone.  

TEM observation at about 120 µm above the crack tip region has been made and found 

the presence of small, but widespread crazes (Fig. 6.4(a)).  Interestingly, these crazes 

appear to be initiated by the CaCO3 nanoparticles.  This indicates that the CaCO3 

nanoparticles act as effective stress concentrators, which help trigger craze formation 

and growth.  However, based on the TEM finding, it is unclear whether or not CaCO3 

nanoparticles have debonded from the PP matrix to allow for craze growth.  It is possible 

that since the specimen being analyzed has been unloaded, any prior debonding process 

during loading would have been recovered from the snap-back of the PP matrix upon 

unloading, especially when the scale of plastic deformation is small, i.e. away from the 

crack tip region. 
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(a) 

 

 

 

 

(b) 

Fig. 6.3 TOM of DN-4PB Charpy impact damage zone of PP/CaCO3 nanocomposite: (a) 
bright field and (b) cross-polarized field. The crack propagates from left to right. 
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In the region at the transition between the light-scattering craze zone and the 

birefringent shear banding zone, the crazes appear to be more diffuse and slightly 

distorted (Fig. 6.4(b)).   This finding is consistent with our earlier observation on the 

toughening mechanisms found in nylon 6,6/polyphenylene ether and PP/Noryl systems 

[59,60].  However, no sign of CaCO3 nanoparticles debonding is observed in this region, 

either. 

To check whether or not possible debonding of CaCO3 nanoparticles from the PP 

matrix has taken place, TEM micrographs were taken immediately below the fracture 

surface near the crack tip (Fig. 6.4(c)).  The crazes were further smeared by the shear 

banding process, making the crazes even more defused and less well-defined.  Careful 

observation reveals that some of the CaCO3 nanoparticles have debonded from the PP 

matrix (See arrows in Fig. 6.4(c)).  This finding is consistent with the recent work of 

Chan et al., who have shown that CaCO3 nanoparticles can be easily debonded from the 

PP matrix upon tensile loading [30].  For reference, the morphology of the intact, 

undeformed PP/CaCO3 is shown in Fig. 6.4(d).   

Fig. 6.5 summarizes the operative toughening mechanisms found in PP/CaCO3 

nanocomposite based on the above microscopy study.  The CaCO3 nanoparticles appear 

to be effective stress concentrators to help initiate and grow massive crazes.  Therefore, 

the cavitational process, which is a prerequisite process for promoting shear banding 

mechanism in the plane strain region [61-64], is triggered by massive crazing at the 

crack tip region.   
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It should be noted that judging from the fact that the crazes are initiated near the 

equatorial region of the CaCO3 nanoparticles and/or their small aggregates, particle-

matrix debonding and/or splitting of aggregated nanoparticles should have taken place 

before the formation of crazes. This is simply because the maximum stress concentration 

site around an inclusion is located at the equatorial region if the inclusion phase is softer 

than the matrix phase. Since the CaCO3 nanoparticles are much harder than the PP 

matrix, the CaCO3 nanoparticles should have been debonded and/or split between the 

aggregated particles before the crazes were initiated.   

 

 

 

 

(a) 

Fig. 6.4 TEM of DN-4PB Charpy impact-tested PP/CaCO3 specimen taken from: (a) 120 
µm above the crack surface, (b) 60 µm above the crack surface, (c) immediately above 
the crack surface and (d) undamaged region. The arrow indicates the crack propagation 
direction. 
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(b) 

 

 

 

 

(c) 

Fig. 6.4 Continued. 
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(d) 

Fig. 6.4 Continued. 
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Fig. 6.5 Schematic of the deformation mechanism in the DN-4PB Charpy impact-tested 
PP/CaCO3 specimen. The regions of the TEM taken in Fig. 6.4 are marked. 

 

 

 

6.3.2 Study of fracture process based on the Izod impact specimens 

The incorporation of CaCO3 in PP has significantly increased the Izod impact 

strength of the PP matrix (Table 6.2).  As shown in Fig. 6.6, neat PP, under bright field 

OM, exhibits brittle and featureless failure without any sign of significant plastic 

deformation. On the other hand, the PP/CaCO3 nanocomposite exhibits extensive 

microcracking and/or crazing on the subsurface damage zone (Fig. 6.7). This behavior 

results in a higher impact strength for PP/CaCO3 nanocomposite. 
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Unfortunately, the specimens after the Izod impact tests do not preserve 

information regarding the sequence of toughening events upon impact fracture.  The 

advancing crack during the impact test has obliterated the operative fracture mechanisms 

along the crack tip and crack wake.  No useful information can be extracted from further 

microscopy investigation using TEM.  Comparison of results obtained between the DN-

4PB Charpy impact tests and the Izod impact tests clearly indicates the usefulness of the 

DN-4PB Charpy impact tests for deciphering the impact toughening sequence of events 

of polymeric materials. Therefore, the DN-4PB impact test is recommended for 

identification and fundamental understanding of toughening mechanisms of polymers 

upon impact fracture. 

 

 

 

 

Table 6.2  

Impact strengths of the PP and PP/CaCO3 nanocomposites.  

Sample Impact strength (J/m) 

Neat PP 55.2±2.0 

PP/CaCO3
* 128.6±9.9 

* 9.2 vol% of CaCO3 nanoparticle with mixing time of 30 min.  

 
 

 



 110

 

(a) 

 

 

 

  

(b) 

Fig. 6.6 TOM of neat PP: (a) bright field and (b) cross-polarized field. The arrow 
indicates the crack propagation direction. 
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(a) 

 

 

 

 

 

(b) 

Fig. 6.7 TOM of PP/CaCO3 nanocomposite: (a) bright field and (b) cross-polarized field. 
The arrow indicates the crack propagation direction.  
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The present study shows that debonding and splitting of the aggregated CaCO3 

nanopa

It is noted that CaCO3 particles are quite effective in initiating crazes in this 

study (

initiate and grow. The above conjectures, though plausible, still await further verification. 

rticles, which lead to massive crazing in PP, have helped trigger crack tip shear 

banding of PP matrix.  The impact strength of PP is thus significantly improved.  The 

present study also suggests that it is possible to use nanometer-sized rigid filler to 

toughen PP matrix and in the meantime increase the modulus of PP.  Although the 

CaCO3 nanoparticles do not appear to exhibit strong adhesion to PP matrix, the 

thermally-induced contraction of PP against the CaCO3 nanoparticles upon cooling 

during molding of specimens produces sufficiently strong interfacial adhesion to prevent 

premature debonding between PP and the CaCO3 nanoparticles. Thus, CaCO3 

nanoparticles turn out to be effective for improving both modulus and impact strength of 

PP. 

Fig. 6.4(a)).  Even for particles as small as 40-50 nm in size, signs of craze 

formation around those small particles are still present.  This finding is in direct 

contradiction to many of the rubber [63-64] and rigid polymer [61] toughened PP 

systems we have investigated in the past, where only particles of a size of 300 nm or 

higher would show effectiveness in initiating crazes.  One possible explanation to 

account for the discrepancy is that the CaCO3 particles have helped to nucleate the 

formation of β-phase PP around the CaCO3 particles, making it much easier to trigger 

the formation of crazes.  Another possibility is that, during loading, the voids formed by 

debonding from the CaCO3 particles grow to a significant size to allow for crazes to 
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6.4 Summary 

The morphology and impact toughening mechanisms in PP/CaCO3 

nanocomposite were investigated using OM and TEM techniques.  It is clearly observed 

that the addition of CaCO3 nanoparticles positively altered the spherulite size, crystal 

structure and toughenability in PP matrix. In this study, the main toughening 

mechanisms of the PP/CaCO3 nanocomposite are massive crazing, followed by shear 

banding of the matrix.  This leads to impressive improvements in both impact strength 

and modulus of PP matrix. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS 

 

The roles of nanofiller structure on morphological characterizations and 

mechanical behaviors of thermoplastic nanocomposites have been studied in this 

dissertation. Various experimental techniques have been utilized to account for the 

evolution of morphology within semicrystalline nanocomposites. These techniques 

include optical microscopy (OM), small-angle X-ray scattering (SAXS), wide-angle X-

ray scattering (WAXS), differential scanning calorimetry (DSC) and transmission 

electron microscopy (TEM). Several mechanical tests and the micromechanics-based 

models have also been performed to investigate the effect of the nanofiller structural 

parameters on the property enhancement of the nanocomposites. 

 

7.1 Morphological Characterizations of the Nylon-6 Nanocomposites 

At spheriulitical scale, the incorporation of the well-dispersed nanoclays to the 

nylon-6 matrix reduces the chain mobility and the spherulite size of nylon-6, leading 

lower crystallinity in the nanocomposites: at lamellar scale, the exfoliated 

nanocomposites exhibit that the global orientation of clay layers, arising from extrusion-

injection molding and simple shear process, dictates the orientation of crystalline 

lamellae. One of key observations is that the annealed reference nanocomposite shows 
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that the crystalline lamellae are oriented preferentially along ~41° counter-clockwise 

away from the clay orientation direction, which is confirmed by transmission electron 

microscopy (TEM) observations. A reduction in clay aspect ratio helps to form another 

weak preferred lamellar orientation, which is almost perpendicular to the clay layers. In 

addition, a misalignment in clay orientation strongly leaded to a more randomized-

lamellar orientation: at crystallographic scale, wide-angle X-ray diffraction (WAXD) 

and differential scanning calorimetry (DSC) results reveal that the addition of nanoclay 

hinders chain mobility and promotes, therefore, the formation of γ-form. A decrease in 

clay aspect ratio and orientation leads to an increase the level of α-form by help of 

annealing. It is found that a large-scale simple shear process is an effective means to 

tailor the nanoscale structures within nylon-6 matrix. Based on the morphological 

parameters obtained from above observations, the possible molecular mechanisms 

leading to the final morphology of the nylon-6/clay nanocomposite are also discussed. 

  

7.2 Effect of Clay Aspect Ratio and Orientation on Mechanical Behaviors of the 

Nylon-6 Nanocomposites  

 The mechanical properties of nylon-6/clay nanocomposites with variations in 

clay aspect ratio and orientation are studied. A large-scale simple shear process is 

utilized to alter the clay aspect ratio and orientation within the reference nanocomposite.  

It is found that the modulus, strength, and heat distortion temperature of the 

nanocomposites decrease as the clay aspect ratio and degree of orientation are reduced.  

Furthermore, the reduction of clay aspect ratio and orientation leads to an increase in 
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fracture toughness and ductility. The Halpin-Tsai and Mori-Tanaka micromechanics-

based models are implemented to gain a better understanding with regard to the 

dependence of clay structural parameters, i.e. aspect ratio and orientation, on the 

reinforcement effect of the nanofillers. The micromechanical models can accurately 

describe the relationship between clay structural parameters and the corresponding 

moduli for exfoliated nanocomposites.  

 

7.3 Impact Toughening Mechanisms in the PP/CaCO3 Nanocomposite 

The impact fracture mechanisms of polypropylene (PP) containing 9.2 vol% of 

calcium carbonate (CaCO3) nanoparticles are investigated using optical microscopy and 

transmission electron microscopy. The incorporation of CaCO3 nanoparticles reduces the 

size of spherulites and induces the formation of β-phase crystallites, which leads to a 

more ductile PP matrix.  Double-notch four-point bending (DN-4PB) Charpy impact 

specimens and notched Izod impact specimens were utilized to study the fracture 

mechanism(s) responsible for the observed toughening effect. A detailed investigation 

reveals that the CaCO3 nanoparticles act as stress concentrators to initiate massive crazes, 

followed by shear banding in PP matrix.  These toughening mechanisms are responsible 

for the observed improved impact strength.  A comparison of the fracture mechanisms 

observed between DN-4PB Charpy and Izod impact tests is also made to show the 

effectiveness of DN-4PB for investigation of impact fracture mechanisms of polymeric 

systems. 
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7.4 Recommendations for Future Work 

The roles of nanofiller structure on morphological features and mechanical 

properties of polymer nanocomposites have comprehensively been investigated in this 

dissertation. More research efforts are still needed to further understand the complex 

nanofiller structure effect and to gain a more fundamental understanding of polymer 

nanocomposites. Some suggestions for further study are presented as follows;  

 

7.4.1 Effect of nanofiller orientation and aspect ratio on property enhancement 

Variations of nanofiller structural parameter have an effect on morphological 

characterizations and mechanical properties of polymer nanocomposites. Semicrystalline 

nanocomposites with unidirectional reinforcement and high aspect ratios show 

exceptional modulus improvement in the direction of orientation. However, it is still not 

clear which factors, nanofiller aspect ratio and orientation, strongly influence the 

mechanical properties. It is nontrivial to achieve a variety of conditioned specimens with 

different aspect ratio and orientation of nanofiller. Based on this dissertation work, a 

large-scale simple process is recommended as an available tool for tailoring the 

nanofiller aspect ratio and orientation via schemed processing scenarios. It is found that 

the A1-ECAE process only reduces the nanofiller aspect ratio, while the C2-ECAE route 

alters not only the nanofiller aspect ratio but also the nanofiller orientation [91,104].  
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7.4.2 Effect of dispersion of layer-structured nanofiller on reinforcement 

efficiency   

In an earlier work by Sheng and Boyce [55], in order to explain the geometric 

natures of intercalated clay they proposed the effective nanoparticle concept, which 

consists of the clay layers and clay inter-layer galleries. In other words, effective clay 

structures were defined as the number of platelet per stacked clay (n) and the platelet 

inter-layer spacing (d001) and were used to evaluate the mechanical property 

enhancement using the continuum-based micromechanical models: a increase in 

reinforcement efficiency related to decreasing the number of platelet a stack resulted 

from increase in effective clay aspect ratio and modulus, whereas a increase in 

reinforcement efficiency associated with to increasing inter-layer spacing resulted from 

increase in effective clay volume fraction. It was found that the fully exfoliated 

nanocomposite (n=1) did not show a significant increase in reinforcement efficiency. 

Furthermore, in order to evaluate exact reinforcement efficiency of exfoliated 

nanocomposites, the appearance of exfoliated nanoclay should be considered since its 

effect on modulus improvement is also strong. In particular, TEM micrographs show 

that exfoliated clay layer is much slightly curved shape than that of intercalated layers 

[91,104]. Those curvatures of clay layers may negatively have an effect on modulus of 

polymer nanocomposites. Therefore, it may not be necessary for an increase in modulus 

of polymer nanocomposites to achieve a nearly perfect exfoliation and dispersion of 

layer-structured nanofiller into a polymer matrix, when especially considering its 

processing difficulties and efforts. Instead, the optimal condition regarding modulus 
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enhancement could be determined by compromising effective filler structural parameters 

(n, d001 and the curvatures of layer) via numerical simulations. 

 

7.4.3 Fabrication of desirable properties in terms of modulus and toughness in 

nanocomposites 

In present research, the PP/CaCO3 nanocomposite has shown an attractive way to 

improve both modulus and toughness, as well as damping property due to effective roles 

of CaCO3 nanoparticles in toughenability of PP matrix. On the other hand, the nylon-

6/clay nanocomposites exhibited significant improvement in modulus, while little loss in 

fracture toughness. Tzika et al. [124] found the elastic constants of transcrystallized 

nylon-6 induced by inclusion of rubber particles: the longitudinal modulus of 

transcrystalline nylon-6 (E11,tc) improved by ~30% compared to neat nylon-6. Based on 

those results, they performed a FEM simulation of nylon-6/clay nanocomposites with 

three phases, i.e. clay, isotropic matrix and transcrystallized anisotropic matrix. The 

results showed that the contribution of orientation of polymer crystalline to the 

reinforcement of nanocomposites was minor compared to modulus enhancement by 

nanofillers, implying that the clay particle is still a dominant reinforcing phase. In the 

other hand, the effect of crystalline orientation on fracture toughness in PET was 

investigated [75,76]. Weon et al. [76] found that the molecular chain orientation 

significantly affected the fracture toughness of PMMA. The highest fracture toughness 

(KIC) was found when the crack propagated perpendicular to the crystalline and 

molecular orientation direction. This suggests that an increase in fracture toughness of 
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polymer nanocomposites can be achieved by altering its fibrillar and molecular 

orientation. This result may be applied to the nanocomposite technology to improve the 

fracture toughness of polymer nanocomposite [34,124]. Consequently, the addition of 

nanofillers to polymer matrix leads to an increase in modulus, while a proper alteration 

of crystalline orientation results in an improvement in fracture toughness of polymer 

nanocomposites, which can also be achieved by a large-scale simple shear process. 
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APPENDIX 

MECHANICAL PROPERTIES OF TALC- AND CACO3-

REINFORCED HIGH-CRYSTALLINITY POLYPROPYLENE 

COMPOSITES  

 

A.1 Introduction 

The main attraction of polypropylene (PP) is its high performance-to-cost ratio. 

PP can also be easily modified to achieve greatly enhanced properties.  With regard to 

reinforcement effects, considerable research can be found in recent literature [1-13] on 

improving mechanical properties of PP using various kinds of inorganic fillers. It is now 

well recognized that the use of inorganic fillers is a useful tool for improving stiffness, 

toughness, hardness, chemical resistance, dimension stability, and gas barrier properties 

of PP [1-4]. The effects of inorganic fillers on the mechanical and physical properties of 

the PP composites strongly depend on the filler size, shape, aspect ratio, interfacial 

adhesion, surface characteristics and degree of dispersion [5-10].  Typically, the physical 

and mechanical properties of the polymers that contain nano-sized particles are superior 

to those containing micron-sized particles of the same filler type [11-13]. 

Talc and CaCO3 are among the most commonly used fillers for PP reinforcement. 

CaCO3 particles have an isotropic particulate structure, while talc has a plate-like 

structure [14]. In general, the introduction of inorganic fillers to PP leads to an increase 
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in modulus but a decrease in toughness and ductility. However, it is well known that 

most semicrystalline polymers can be effectively toughened by incorporation of well-

dispersed secondary phase(s) in the matrix [15-19]. Blending PP with rubber particles is 

an attractive way to improve toughness. However, the significant drawback of rubber 

toughening is loss of Young’s modulus and strength, which can greatly limit its 

engineering applications. Therefore, there is considerable interest to simultaneously 

improve both the stiffness and toughness of the polymer matrix. Several studies have 

demonstrated an increase in both stiffness and toughness of PP and high-density 

polyethylene (HDPE) using rigid particles [20-29]. 

Bartczak et al. [27] used calcium stearate modified-CaCO3 particles with average 

diameters of 3.50, 0.70 and 0.44 µm to toughen HDPE. They found that the Izod impact 

toughness of HDPE could be improved from about 50 J/m to 800 J/m, depending on the 

size and loading of CaCO3 utilized. Thio et al. [21] reported that the introduction of 

micrometer-scale CaCO3 particles led to an improvement in the Izod impact strength of 

PP by up to four times. It was found that the main toughening mechanisms were crack 

deflection and interfacial debonding and plastic deformation of interparticle matrix 

ligaments. Recently, Chan et al. [11] reported that the fracture toughness, termed JIC, of 

PP increased five-fold by incorporating nanometer-scale (ca. 40 nm) CaCO3 particles, 

and the CaCO3 nanoparticles acted as stress concentrators to promote toughening 

mechanisms. 

This study, which is part of a larger effort to improve the stiffness and toughness 

of high-crystallinity PP (hcPP) systems to replace glass fiber-filled PP for engineering 
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applications, is to gain fundamental understanding on the mechanical behavior of 

hcPP/talc and hcPP/CaCO3. It is hoped that, through this study, approaches for 

simultaneously improving toughness and stiffness of hcPP for structural applications can 

be established. A number of mechanics and microscopy techniques, such as the double-

notch four-point-bending (DN-4PB) technique [23,28-33], transmission optical 

microscopy (TOM),  transmission electron microscopy (TEM), differential scanning 

calorimetry (DSC) and wide-angle X-ray diffraction (WAXD), were employed to 

investigate the micro-plastic deformation in the hcPP composite systems. To elucidate 

the dependency of strain rate on the operative toughening mechanisms in hcPP, both the 

J-integral method under a quasi-static loading condition and the Izod impact test in a 

dynamic loading regime were carried out. Toughening mechanisms responsible for the 

observed toughness improvements under both quasi-static loading and dynamic loading 

conditions for hcPP/talc and hcPP/CaCO3 composite systems are described. Approaches 

for strengthening and toughening of hcPP are also discussed. 

 

A.2 Experimental Procedure 

A.2.1 Sample preparation  

In this study, the hcPP (BP Chemicals, Accpro® 9346), which possesses a high 

isotacticity and high heat resistance, has a melt flow rate of 2.16 kg at 230°C and a 

density of 0.906 g/cc. The two inorganic fillers chosen in this study are (1) surface-
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modified talc (ρ=2.780 g/cc; ~2 µm in size; Luzenac® R7 talc) and (2) CaCO3 

nanoparticles (ρ =2.660 g/cc; ~44 nm in size; Guang Ping Nano Technology Group Ltd).  

The hcPP resin was compounded, using twin-screw extruders, with talc (11.7 

vol%) and CaCO3 (11.9 vol% ) by Luzenac North America and Hong Kong University 

of Science and Technology, respectively.  Test specimens were injection-molded into 

ASTM Standard tensile and rectangular bars for mechanical testing. 

  

A.2.2 DSC analysis 

Non-isothermal crystallization behavior of the neat hcPP and hcPP composites 

was performed on a Perkin-Elmer Pyris-1 DSC. All tests were executed in a nitrogen 

atmosphere with a sample quantity of ~10 mg. The samples were first heated from 25 to 

250 °C at a rate of 10 °C /min. Subsequently, the samples were annealed for one minute 

at 250°C and then cooled to 25 °C at the same rate. The melting temperature (Tm) was 

determined from the heating curve, while the crystallization temperature (Tc) was 

determined from the cooling curve. 

 

A.2.3 X-ray characterization  

WAXD experiments were performed at room temperature using a Bruker-AXS 

D8 powder diffractometer with a sealed X-ray source (Cu) in the standard vertical θ-2θ 

geometry (40 kV and 50mA).  A germanium incident beam monochromator was used to 

produce Kα1 free radiation, and a Si(Li) detector was used for data collection. The 
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wavelength of the incident X-ray was 1.54 Å. Data were collected from 7° to 35° (2θ) at 

a scanning rate of 1°/min. 

 

A.2.4 Mechanical property measurement 

For the dynamic mechanical analysis, specimens with dimensions of 42.0 mm × 

12.5 mm × 3.5 mm were cut from injection-molded tensile bars and dried under vacuum 

at room temperature for 24 hrs. The tests were performed under torsional mode on a 

Rheometric Mechanical Spectrometer (RMS-800) through a temperature range of -140 

to 180 °C. The heating chamber was purged with nitrogen gas to minimize sample 

degradation during the test.  Auto-tension and auto-strain were applied to ensure the 

quality of data.  Measurements were made at 5 °C intervals with 45 s of soaking time.  

The spectrometer was set to produce a sinusoidal wave function with the peak strain of 

0.1 %. The glass transition temperature (Tg) was assigned to be the maximum tan δ peak 

temperature. 

Tensile properties were evaluated according to ASTM D 638. Specimens were 

“dog-bone” shaped and had dimensions of 63.5 mm × 25.4 mm × 5.2 mm in the gauge 

length region. The gripping regions at both ends were 12.7 mm wide. The tensile 

specimens parallel to the flow direction (FD), as shown in Fig. A.1, were tested using a 

screw-driven mechanical testing machine (Sintech II) at a constant crosshead speed of 

0.085 mm/s at room temperature. An extensometer was attached to the gage length 

region to measure the displacement during deformation. The Young’s modulus was 
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calculated at 0.5 % strain and the yield stress was determined in accordance with the 

ASTM Standard. The average values and standard deviations were calculated after 

testing five specimens of each sample. 

The J-integral values were obtained according to the plane strain fracture 

toughness standard ASTM E 813. A single-edge-notch 3-point-bend (SEN-3PB) 

specimen geometry was chosen for the J-integral test. The specimens had dimensions of 

65.0 mm × 12.5 mm × 3.5 mm. According to ASTM E 813, the maximum load for pre-

cracking should be limited to prevent the influence of plastic deformation in the case of a 

quasi-static fracture test. Under this load limit, the ratio of the initial crack length (ai) to 

the specimen width (W), ai/W, was controlled to be approximately 0.5 by tapping a 

liquid nitrogen-chilled razor blade to wedge open the initial crack. The crack 

propagation direction was parallel to the transverse direction (TD), as depicted in Fig. 

A.1. A screw-driven mechanical testing machine (Instron Model 1125) was used to 

conduct the testing at a constant crosshead speed of 0.5 mm/min at room temperature, 

and the multiple specimen technique was employed for the measurement. The JIC values 

were determined at the point of intersection between the J–R curve and the blunting line, 

J = 2σy∆a (where σy is the yield stress).  

Notched Izod impact tests were conducted according to ASTM D 256 on a 

pendulum impact tester (Model TMI 43-02). Before the testing, the width and the depth 

of the specimens were measured using a micrometer. The impact strength was 

determined by dividing the absorbed energy by the initial cross-sectional area under the 
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notch.  Five specimens of each sample were tested and then the average values and 

standard deviations were calculated and reported. 
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Fig. A.1 Schematic of injection molded specimens: (a) dispersed talc particles are oriented 
along the injection molding direction (FD) and (b) the hcPP/CaCO3 nanocomposite.   

 

 

A.2.5 Microscopy and toughening mechanism investigation 

The morphology and toughening mechanisms in neat hcPP and hcPP composite 

systems were investigated using the DN-4PB technique [23,28-33], TOM, and TEM. 

The DN-4BP samples were machined into dimension of 63.5 mm × 12.7 mm × 3.5 mm. 
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DN-4BP bars were notched with a 250 µm radius notch cutter to a depth of 3.18 mm. 

The distance between two notches of DN-4BP bars was 11.2 mm. Sharp cracks were 

then generated by a fresh blade which had been chilled in liquid nitrogen. The details of 

the DN-4PB test specimen are shown in Fig. A.2. The DN-4PB tests were performed 

using a screw-driven mechanical testing machine (Instron Model 1125). Cross-head 

speeds of 0.508 and 50.8 mm/min at room temperature were applied to generate sub-

critical fracture of the hcPP samples. The DN-4PB Charpy impact tests were conducted 

on a pendulum impact tester (Model TMI 43-02) with a modified double-head striker. 

The DN-4-PB damage zone of the subcritically propagated crack was cut along the crack 

propagation direction but perpendicular to the fracture surface using a diamond saw. The 

plane strain core region of the crack tip damage zone was prepared for both TOM and 

TEM investigations.  

In the TOM investigation, the damage zones were polished into thin sections 

with thicknesses of ~40 µm. These thin sections were observed using an Olympus BX60 

optical microscope under both bright field and cross-polarization conditions to observe 

the overall damage zone size and features. 

For the TEM experiments, the plane strain core regions of the damage zone and 

the intact region were carefully trimmed to an appropriate size (an area of 5 mm × 5 

mm) and embedded in DGEBA epoxy/diethylenetriamine. The epoxy was cured at room 

temperature overnight. The cured block was further trimmed to about 0.3 mm × 0.3 mm. 

The trimmed block was faced off by a diamond knife and then stained with RuO4.  The 

faced-off block was exposed to the vapor of an aqueous RuO4 solution (0.5% by weight) 
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for 3 h. Ultra-thin sections, ranging from 60 to 90 nm, were obtained using a Reichert-

Jung Ultracut E microtome with a diamond knife at room temperature. The thin sections 

were placed on 200 mesh formvar-coated copper grids and examined using a Zeiss-10C 

transmission electron microscope at an accelerating voltage of 80 kV. 

 

 

 

Fig. A.2 Details of the DN-4PB test specimen. 

 

 

A.3 Results and Discussion  

A.3.1 Dispersion in hcPP composites 

Figs. A.3 and A.4 are TEM micrographs of the hcPP/talc and the hcPP/CaCO3, 

respectively. It is found that the talc particles have an average aspect ratio of ~31 and are 
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well dispersed. In addition, the layered particles of talc are seen to be aligned along the 

injection-molding direction (FD), which may help contribute to good mechanical 

properties along the FD. On the contrary, significant amounts of aggregates are observed 

in the hcPP/CaCO3 nanocomposite. Our earlier work [23] showed that a good dispersion 

could be obtained in the hcPP/CaCO3 if the CaCO3 loading is below 9.2 vol%. High 

CaCO3 volume fraction may have caused the coalescence of CaCO3 nanoparticles 

because of their high surface energy.  The effect of the agglomeration of CaCO3 fillers 

on hcPP mechanical properties will be discussed in detail later. 

 

 

 

 

Fig. A.3 TEM micrograph of the hcPP/talc. The arrow indicates the flow direction. 
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Fig. A.4 TEM micrograph of the hcPP/CaCO3. 

 

 

 

 

A.3.2 Crystallization of the hcPP composites 

The DSC thermographs of the neat hcPP and hcPP composites are shown in Fig. 

A.5. The weight percentage crystallinity is calculated by integrating the area under the 

DSC melting endothermic peak (from 120 to 200°C) and dividing by the heat of fusion 

with 100% crystalline PP (∆h0 ≈ 209 J/g) [19]. In the case of the hcPP composites, the 

heat of fusion needs to be normalized to the actual weight of hcPP. Table A.1 gives the 

summary of the DSC test results. It should be noted that the addition of talc particles to 
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the hcPP matrix did not have any significant effect on Tm, Tc, or crystallinity (χc). 

Whereas, when the CaCO3 nanoparticle was dispersed in hcPP, a drop of 8°C in Tc and a 

slight decrease in χc were observed. Those findings are in direct contradiction to earlier 

work by Chan et al. [11], wherein the incorporation of the same size and type of CaCO3 

has increased Tc by 10 °C for a general purpose PP. The reason for the delayed 

hcPP/CaCO3 nanocomposite crystallization might be due to an unusual interaction 

between hcPP and CaCO3 nanoparticles. In general, crystallization starts at chain folds 

to minimize the Gibbs free energy state. However, the presence of CaCO3 nanoparticles 

in hcPP, which has a much higher isotacticity index, may have restricted chain mobility 

thereby inducing the formation of less-stable β-phase crystals [34,35]. In other words, 

the incorporation of CaCO3 nanoparticles into hcPP can decrease the Tc and χc by 

introducing a kinetic hindrance [36]. A reduction in chain mobility by kinetic hindrance 

results in the formation of imperfect crystallites (β-phases) and low heat of fusion, and 

thus, the crystal growth of hcPP is retarded [35,37]. 

To further validate the presence of the β-phase crystals in hcPP, WAXD 

experiments were performed.  Fig. A.6 shows the WAXD pattern of the neat hcPP and 

hcPP/CaCO3 nanocomposite. Except for the strong crystallite peaks observed for α-

phase crystals, a weak peak at 2θ = 16.0° that corresponds to the (300) crystal plan of β-

phase crystals is observed.  Therefore, this confirms that β-phase is formed due to the 

presence of CaCO3 nanoparticles in the hcPP matrix. It is known that the β-phase is 

rarely formed unless β-nucleating agents are used [38,39]. Zhang et al. [24] found that 
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the amount of β-phase PP increases as the content of surface modifier of CaCO3 particles 

is increased.  This means that the β-phase crystals are probably formed at or near the 

interface of the surface-modified CaCO3 particles.  In other words, the CaCO3 particles 

may be encapsulated by the β-phase crystals. If so, it may significantly affect the 

toughening mechanisms and the mechanical behavior of hcPP/CaCO3 nanocomposite. 

Additional study is needed to validate this conjecture. 

 

 

 

 

 

(a) 

Fig. A.5 DSC spectra of neat hcPP and hcPP composites: (a) the melting curve and (b) 
the cooling curve. The arrow indicates the β-form PP. 
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(b) 

Fig. A.5 Continued. 

 

 

 

Fig. A.6 X-ray diffractions of neat hcPP and hcPP/CaCO3 composite. 
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Table A.1  

Summary of thermal properties of neat hcPP and hcPP composites. 

Sample Tm (°C) Tc (°C) χc (%) T0 (°C) tc (min) Tg
 (°C) 

Neat hcPP 167 129 48.2 136 0.7 6 

hcPP/talc 167 130 48.1 136 0.6 7 

hcPP/CaCO3 151a, 165 121 46.7 127 0.6 8 

Tm: peak meting temperature, a: Tm of β-crystals, Tc: peak crystallization temperature, 
χc: wt% crystallinity, T0: onset of crystallization temperature, tc: overall time of non-
isothermal crystallization ( RTT C /0 −= ), R is the cooling rate [40], and Tg: glass 
transition temperature obtained from DMA. 

 

 

 

 

A.3.3 Mechanical properties 

The effects of temperature on the dynamic mechanical properties of the neat 

hcPP and hcPP composites are shown in Fig. A.7. The addition of talc and CaCO3 

particles into the hcPP matrix have resulted in a considerable increase in stiffness 

throughout the entire range of temperature scanned, as shown by the plots of storage 

moduli (G') against temperature. This increase in G' is due to the reinforcing effect of 

talc and CaCO3 particles. It is interesting to note that the hcPP/CaCO3 nanocomposite 

shows a higher loss tangent delta curve throughout the entire temperature range 

investigated. This means that the hcPP/CaCO3 nanocomposite exhibits unusual 
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molecular damping characteristics that may be due to the presence of the β-phase 

crystals around the CaCO3 nanoparticles. These unique characteristics may have 

contributed to the improved toughening effects observed, as discussed below. 

 

 

 

 

 

Fig. A.7 Dynamic mechanical spectra of neat hcPP and hcPP composites. 

 

 

 

 

Typical engineering stress-strain curves are shown in Fig. A.8. The neat hcPP 

exhibits a relatively ductile tensile drawing as compared to the hcPP composites. The 

key tensile properties of the hcPP and hcPP composites are reported in Table A.2. As 
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expected, the hcPP composites exhibit higher Young’s moduli and a slightly lower yield 

stress but a significant reduction in elongation at break. The hcPP/talc composite has a 

more significant increase in modulus than that of hcPP/CaCO3 nanocomposite, due to the 

higher aspect ratio of talc and the talc orientation that arises from flow alignment found 

in the hcPP/talc composite (Fig. A.3). The large increase in modulus suggests an 

efficient stress transfer from polymer matrix to inorganic fillers. The decrease of yield 

stress is likely due to the debonding between inorganic fillers and the hcPP matrix at 

large deformations [21]. In particular, a higher drop in yield stress is observed for 

hcPP/CaCO3, possibly due to the splitting of aggregated particles as well as debonding 

between CaCO3 particles and the hcPP matrix [23]. 

The fracture toughnesses of the neat hcPP and hcPP composites were determined 

in terms of the J-R curve and JIC. The J-R curve with blunting lines and exclusion lines 

for the hcPP/CaCO3 is representatively given in Fig. A.9. Table A.3 shows the JIC values 

for the neat hcPP and the hcPP/CaCO3. It is noted that the hcPP/CaCO3 exhibits a 

significant increase in fracture toughness by about 450%. In the case of the hcPP/talc 

composite, the addition of talc results in a slight decrease in J-integral value, which is 

due to the strong molecular confinement effect of talc. It should be mentioned that the 

hcPP/CaCO3 does not break during the J-integral test conducted at a slow rate: one the 

other hand, the neat hcPP and hcPP/talc exhibit brittle unstable fracture when the crack 

extension is beyond 1.5 mm. 

The results from the notched Izod impact strength tests, performed at room 

temperature, are listed in Table A.3. Macroscopically, all samples show signs of brittle 
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impact fracture behavior, which shows no stress-whitening or signs of plastic 

deformation on the fracture surface. The addition of CaCO3 particles to hcPP does not 

seem to improve the notched Izod impact strength. It is well known that the 

toughenability of polymeric materials depends on both loading rate and temperature of 

testing. A higher testing rate may suppress the occurrence of some toughening 

mechanisms, such as crazing and shear yielding, thus causing embrittlement of the 

polymer. The detailed investigations of the corresponding fracture mechanisms of 

hcPP/CaCO3 under slow and fast rates are described below. 

 

 

 

 

 
 

 

Fig. A.8 Typical stress-strain curve of neat hcPP and hcPP composites. 
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Table A.2  

Mechanical properties of neat hcPP and hcPP composites.  

Sample 
Young’s 
modulus 
(GPa) 

Storage 
modulus at 25°C 
(GPa) 

Yield 
stress 
(MPa) 

Elongation 
at break 
(%) 

Neat hcPP 2.10±0.11 0.80 38.1±0.18 290 

hcPP/talc 4.31±0.39 1.73 34.9±0.28 4 

hcPP/CaCO3 2.84±0.10 1.04 31.3±0.75 9 

 

 

 

 

 

 

Fig. A.9 Representative J-R curves of hcPP/CaCO3 composite. 
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Table A.3  

J-integral and Izod impact strength of neat hcPP and hcPP composites.  

Sample JIC  
(kJ/m2) 

Impact strength 
(kJ/m2) 

Neat hcPP 2.3 2.4±0.09 

hcPP/talc 1.8 2.4±0.12 

hcPP/CaCO3 10.7 2.6±0.24 

 

 

 

 

 

A.3.4 Fracture mechanism investigation 

Toughening mechanism in neat hcPP 

For comparison purposes, the toughening mechanism investigation of the neat 

hcPP is carried out first using TOM. Fig. A.10 shows the micrographs of a DN-4PB 

tested specimen. As expected, the damage zone around the crack tip shows nearly 

featureless crack tip damage (Fig. A.10): no sign of plastic deformation is observed. This 

fracture mechanism corresponds well to the observed low toughness value [41,42]. 
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(a) 
 

 

 

 

 

  

(b) 

Fig. A.10 TOM of DN-4PB (0.508 mm/min) neat hcPP specimen taken under: (a) bright 
field and (b) cross-polarized light. The crack propagates from left to right.  
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Toughening mechanism in hcPP/talc 

TOM micrographs of the DN-4PB specimen of the hcPP/talc show crack 

deflection, microcracking, and bifurcation as the crack extends toward the edge of the 

specimen (Fig. A.11(a)). This phenomenon may be due to the edge effect within the 

specimen, where a higher degree of molecular orientation as well as talc orientation is 

commonly observed. No sign of birefringence is observed in the crack tip damage zone 

under cross-polarized light (Fig. A.11(b)). This implies that talc enbrittles the hcPP 

matrix and leads to a lower fracture toughness. Only when the crack grows toward the 

highly oriented region will the less effective crack deflection, microcracking, and 

bifurcation mechanisms to become operative.   

The TEM study performed in the sub-fracture surface zone clearly shows that the 

fracture behavior in hcPP/talc is in a brittle fashion (Fig. A.12). Stacked layer structure 

of talc is found throughout the sample. Debonding between talc particles and the hcPP 

matrix is also observed, indicating that the interfacial bonding is weak. Talc particles 

appear to be effective in generating crack deflection, bifurcation, and microcracking. 

These fracture mechanisms are promoted due to the dispersion and orientation of talc 

along the injection molded direction (Fig. A.3).  
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(a) 
 
 

 

 

 

 

 

(b) 

Fig. A.11 TOM of DN-4PB (0.508 mm/min) hcPP/talc specimen taken under: (a) bright 
field and (b) cross-polarized light. The crack propagates from left to right. 
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(a) 
 
 

 

(b) 

Fig. A.12 TEM micrographs of DN-4PB hcPP/talc composite taken at: (a) the crack tip 
and (b) undamaged region. The arrow indicates the crack propagation direction. 
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Toughening mechanism in hcPP/CaCO3 

The detailed toughening mechanisms of general purpose PP/CaCO3 

nanoco

te on fracture behavior of 

hcPP/C

ticles 

appear to be capable of serving as nucleating agent to grow long lamellae in the hcPP 

mposite, which exhibit significant crazing and shear banding, has been described 

elsewhere [11,23]. TOM micrographs of DN-4PB of hcPP/CaCO3 nanocomposite, tested 

at a rate of 0.508 mm/min (slow regime), exhibit intense crazing (Fig. A.13(a)) [7,15,23]. 

The presence of a birefringence zone under cross-polarized light indicates that shear 

yielding mechanisms have also occurred around the crack tip and crack wake (Figs. 

A.13(b) and A.13(c)) [7,15,23].  It is noted that at slow testing speed, the toughening 

mechanisms observed in hcPP/CaCO3 the same as those observed in general purpose 

PP/CaCO3, but having a much smaller damage zone size.   

In order to study the dependency of strain ra

aCO3 nanocomposite, additional DN-4PB tests under a testing speed of 50.8 

mm/min and an impact speed of 3.4 m/s (i.e. Charpy impact test) were performed. At a 

testing speed of 50.8 mm/min, it is found that a much smaller light scattering crazing 

zone and an accompanying birefringent zone are formed (Fig. A.14). When the DN-4PB 

Charpy impact test (3.4 m/s) is performed, only a small microcrack and/or crazing zone 

around the arrested crack tip is observed (Fig. A.15(a)). Insignificant birefringence, if 

any, at the crack tip damage zone is observed (Fig. A.15(b)). As a result, a low Izod 

impact strength value for the hcPP/CaCO3 nanocomposite is found. The above study 

suggests that the fracture behavior of hcPP/CaCO3 is very sensitive to testing rate.  

It is interesting to note that, as shown in Fig. A.16, the CaCO3 nanopar
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matrix.

 hcPP/CaCO3.  There are 

three k

 These lamellae may be those of the β-phase crystals observed from the WAXS 

and DSC results. If true, the main reason for the effectiveness of CaCO3 nanoparticles in 

strengthening and toughening of PP and hcPP [11,21,23,24] may be its ability to 

nucleate the β-phase crystals around the CaCO3 nanoparticles. 

Based on the above results, the toughening process for hcPP/CaCO3 is proposed.  

Fig. A.17 illustrates a schematic of the morphological features in

ey roles that the CaCO3 nanoparticles have played to account for the stiffening and 

toughening of hcPP/CaCO3 nanocomposite: (1) the high stiffness of CaCO3 particles, which 

are responsible for modulus improvement, (2) the nucleation of β-crystals around the 

hcPP/CaCO3 particles to increase the ductility of hcPP [43-46], and (3) the promotion of 

massive crazing and the subsequent shear banding (for the slow rate testing case). Therefore, 

any kind of inorganic filler particles that can help nucleate the formation of β-phase crystals 

would potentially improve both modulus and toughness of general purpose PP and hcPP. 

 

 

(a) 

Fig. A.13 TOM micrographs of DN-4PB (0.508 mm/min) hcPP/CaCO composite taken 
under: (a) bright field, (b) cross-polarized l  and (c) a higher magnification of (b). The 
crack propagates from left to right. 

3 
ight
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(b) 

 

 

 

 

 

(c) 

Fig. A.13 Continued. 
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(a) 
 
 
 
 
 
 

 

 
 

(b) 

Fig. A.14 TOM micrographs of DN-4PB (50.8 mm/min) hcPP/CaCO3 composite taken 
under: (a) bright field and (b) cross-polarized light. The crack propagates from left to 
right.  
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(a) 
 
 
 
 
 
 

 

(b) 

Fig. A.15 TOM micrographs of DN-4PB Charpy impact hcPP/CaCO3 composite taken 
under: (a) bright field and (b) cross-polarized light. The crack propagates from left to 
right.  
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(a) 
 
 
 
 

 

(b) 

Fig. A.16 TEM micrographs taken from different regions showing the crystalline 
lamellae around the CaCO3 particles of the hcPP/CaCO3 composite. 
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Fig. A.17 Schematic of the proposed morphological features of the hcPP/CaCO3 
composite and toughening mechanisms. 

 

 

 

 

A.4 Summary 

Strengthening and toughening mechanisms of talc and CaCO3 reinforced hcPP-

based composites have been examined. The high aspect ratio and high degree of 

orientation of talc along the tensile direction are responsible for the observed dramatic 

improvement in modulus. The fracture toughness of hcPP is significantly affected by the 

addition of CaCO3 at slow testing speeds.  It is believed that CaCO3 nanoparticles act as 

 



 159

effective nucleation sites to trigger massive crazing and shear yielding in the hcPP 

matrix. Our results suggest that the incorporation of CaCO3 nanoparticles into hcPP can 

produce attractive polymer nanocomposite with improved modulus and toughness. 
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