Condensed heterocycles: Part I-Synthesis of pyrazolo, isoxazolo, pyrimido, pyranopyridinones and a novel bridgehead nitrogen heterocycle

Krishna A Rao, Jaywant N Gadre \& Suhas Pednekar*
Organic Chemistry Research Laboratory, Ramnarain Ruia College, Matunga, Mumbai 400 019, India

Received 12 August 1996; accepted 4 December 1996

Abstract

3-Cyano-5-formyl-6-hydroxy-1, 4-dimethyl-2(1H)-pyridinone 2 on reaction with hydrazine, phenyl hydrazine, hydroxylamine hydrochloride, urea and hippuric acid yields 1 -substituted-5-cyano-4, 7-dimethyl-1 $\mathrm{H}, 6 \mathrm{H}, 7 \mathrm{H}$-pyrazolo[3, 4-b]pyridin-6-one 3a, 3b, 5 -cyano-4, 7-dimethyl-6 $\mathrm{H}, 7 \mathrm{H}$ isoxazolo[5, 4-b]pyridine-6-one 4, 6-cyano-5, 8-dimethyl-1H, $2 \mathrm{H}, 7 \mathrm{H}, 8 \mathrm{H}$-pyrido[2, 3-d]pyrimidine2, 7 -dione 6 and 3-benzoylamino-6-cyano-5, 8-dimethyl-2H, $7 \mathrm{H}, 8 \mathrm{H}$-pyrano $[2,3$ - b]pyridin-2, 7 -dione 7 respectively. 3-Cyano-6-hydroxy-1, 4-dimethyl- $2(1 \mathrm{H})$-pyridinone 1 reacts with benzalacetophenone 8 to furnish 6 -cyano-5, 8 -dimethyl-2, 4-diphenyl- $4 \mathrm{H}, 7 \mathrm{H}, 8 \mathrm{H}$-pyran $[2,3$ - b]pyridin- 7 -one 9 in one step. 2-Carboxymethyl-4-ethoxymethylenyl-1, 2, 3, 4-tetrahydroisoquinolin-1, 3-dione 11 on reaction with hydrazine and phenyl hydrazine affords 3 -substituted-4-carboxymethyl-4, 5 -dihydropyrazolo $[3,4-c]$ isoquinolin-5-one 12a and 12b. 12a on refluxing in acetic anhydride forms a new nitrogen bridged heterocycle, $4 H, 5 H, 7 H$-pyrazolo $[4,3 ; 3,2: l . m \mid$ imidazo $[3,2-b]$ isoquinolin-4, 7-dione 13. The structures have been elucidated on the basis of IR and ' H -NMR spectral analysis.

Substituted 2-pyridinones have gained unique importance due to their wide applicability in the field of dyestuff ${ }^{1}$ and medicinal chemistry ${ }^{2}$. Pyrazoles, isoxazoles, pyrimidines and pyrans are also useful heterocyclic moieties as they possess a broad spectrum of biological activities such as antiviral ${ }^{3}$, CNS depressant ${ }^{4}$, bactericidal ${ }^{5}$, ulcer inhibitor ${ }^{6}$ etc. In view of this we report herein convenient syntheses of some new fused heteroycles incorporating the above moieties in 2-pyridinone ring system.

3-Cyano-6-hydroxy-1, 4-dimethyl-2(1H)-pyridinone $\mathbf{1}^{7}$ on reaction with triethyl orthoformate underwent formylation to produce 3-cyano-5-formyl-6-hydroxy-1, 4-dimethyl-2(1 H)-pyridinone 2 in good yield which when refluxed with hydrazine hydrate and phenyl hydrazine in a mixture of ethanol and acetic acid yielded 1 -substituted 5-cyano-4, 7 -dimethyl- $1 \mathrm{H}, 6 \mathrm{H}, 7 \mathrm{H}$-pyrazolo[3, $4-b$ pyridin-6-one 3a, 3b. Similarly the reaction of 2 with hydroxylamine hydrochloride, urea and hippuric acid gave 5-cyano-4, 7-dimethyl-6 $\mathrm{H}, 7 \mathrm{H}$ isoxozolo[5, 4-b]pyridin-6-one 4, 3-cyғno-1, 4-dimethyl-5-ureidomethylene-1 $\mathrm{H}, 2 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}$ -pyridin-2, 6-dione 5 and 3-benzoylamino-6-cyano-5, 8 -dimethyl-2H, 7H, $8 H$-pyrano[2, 3-b]pyridin-2, 7-dione 7, respectively (Scheme I).

Compound 5 on heating with phosphorus pentoxide under anhyd. conditions underwent cyclisa-
tion to furnish a fused ring system; 6-cyano-5, 8 -dimethyl- $1 \mathrm{H}, 2 \mathrm{H}, 7 \mathrm{H}, 8 \mathrm{H}$-pyrido[2,3 - d]pyrimi-dine-2, 7 -dione 6. Further, pyranopyridinone of the type 6-cyano-5, 8-dimethyl-2, 4-diphenyl-4H, $7 \mathrm{H}, 8 \mathrm{H}$-pyrono $[2,3$-b]pyridin- 7 -one 9 was also obtained in one pot synthesis from 1 by refluxing it with benzalacetophenone $\mathbf{8}$ in the presence of phosphorus pentoxide (Scheme I).

2-Carboxymethyl-1, 2, 3, 4-tetrahydroisoquinol-in-1, 3-dione $\mathbf{1 0}^{8}$ which contains an active methylene group at its 4-position was selected as another precursor to construct some more fused rings. 10 on refluxing with triethylorthoformate resulted in the formation of 2-carboxymethyl-4-ethoxymethylenyl-1, 2, 3, 4-tetrahydroisoquinolin1, 3-dione 11 which on heating with hydrazine hydrate and phenyl hydrazine in a mixture of ethanol and acetic acid yielded 3-substituted-4-carboxymethyl-4, 5 -dihydropyrazolo $[3,4-c]$ iso-quinolin-5-one 12a and $\mathbf{1 2 b}$. The reactive carboxymethyl grouping at the 4 -position of $\mathbf{1 2 a}$ was further exploited to obtain a new tetracyclic nitrogen bridged heterocycle, $4 \mathrm{H}, 5 \mathrm{H}, 7 \mathrm{H}$-pyrazo$\operatorname{lo}[4,3 ; 3,2: 1, m]$ imidazo $[3,2-b]$ isoquinolin- 4 , 7 -dione 13. This was achieved by heating 12a with acetic anhydride when intramolecular nucleophilic attack of $-\mathrm{NH}-$ on -COOH took place leading to cyclocondensation (Scheme II).

The spectral and elemental data of all the new

Scheme I
compounds are in conformity with the assigned structures and are given under the individual compounds in the Experimental Section.

Experimental Section

All the melting points are uncorrected and taken on Gallenkamp melting point apparatus. IR spectra were recorded on Jasco FTIR-5300 spectrometer and PMR spectra on VXR-300S Varian Supercon NMR spectrometer (300 MHz) using TMS as internal standard (chemical shift in δ, ppin).

3-Cyano-5-formyl-6-hydroxy-1, 4-dimethyl-2(1H)-pyridinone 2. A mixture of 3-cyano-6-hydroxy-1;4-dimethyl-2 (IH)-2-pyridinone 1 $(1.64 \mathrm{~g}, 0.01 \mathrm{~mole})$ and triethyl orthoformate (17 mL) was gently refluxed for 2 hr . On cooling the mixture the reddish pink product separated which was filtered, washed with hexane and crystallized from benzene-ethanol mixture, yield 85%, m.p. $153^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3445(\mathrm{OH}), 2226(-\mathrm{C} \equiv \mathrm{N})$, 1684 ($-\mathrm{CH}=\mathrm{O}$), 1616 ($2 \mathrm{C}=\mathrm{O}$, imidic); PMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right), 3.38(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 8.93(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 15.12(\mathrm{~s}, 1 \mathrm{H}$, OH) (Found: C, $56.26 ; \mathrm{H}, 4.15 ; \mathrm{N}, 14.56$. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 56.25 ; \mathrm{H}, 4.16 ; \mathrm{N}$, 14.58%).

5-Cyano-4, 7-dimethyl-1-phenyl-1 H, 6H, 7Hpyrazolo[3, 4-b]pyridin-6-one 3b. A mixture of 2 $(0.96 \mathrm{~g}, 0.005$ mole) and phenyl hydrazine (0.75 $\mathrm{ml}, 0.0075 \mathrm{~mole}$) was refluxed in ethanol-acetic acid mixture (15 mL) ($2: 1, \mathrm{v} / \mathrm{v}$) for 1 hr . The bright yellow product separated was filtered, washed with hot ethanol and crystallized from acetic acid, yield 92%, m.p. $214-15^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr})$: $2218(\mathrm{C} \equiv \mathrm{N}), 1628(\mathrm{C}=\mathrm{O})$; PMR (DMSO- $\left.d_{6}\right): \delta$ 2.4 (s, 3H, C $-\mathrm{CH}_{3}$), 3.2 (s, 3H, N $-\mathrm{CH}_{3}$), 6.77.3 (m, 5H, Ar-H), 8.3 (s, 1H, C ${ }_{3}-\mathrm{H}$) (Found: C , 68.2; H, 4.53; N, 21.23. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$ requires C, 68.18; H, 4.54; N, 21.21\%).

5-Cyano-4, 7-dimethyl-1 H, 6H, 7H-pyrazolo[3, 4-blpyridin-6-one 3a. It was prepared from 2 and hydrazine hydrate by using the above method, yield 88%, m.p. $>300^{\circ} \mathrm{C}$; IR (KBr): $3109(-\mathrm{NH})$, $2228(\mathrm{C} \equiv \mathrm{N}), 1616(\mathrm{C}=\mathrm{O})$ (Found: C, 57.43; H, 4.27; $\mathrm{N}, 29.76 . \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 57.44 ; \mathrm{H}$, 4.25; N, 29.78\%).

5-Cyano-4,7-dimethyl-6 $\boldsymbol{H}, 7 \boldsymbol{H}$-isoxazolo-3,4-blpy-

 ridin-6-one 4. A mixture of $2(0.96 \mathrm{~g}, 0.005$ mole) and hydroxylamine hydrochloride ($0.52 \mathrm{~g}, 0.0075 \mathrm{~mole}$) was refluxed in ethanol-acetic acid mixture (15 mL) ($2: 1 \mathrm{v} / \mathrm{v}$) for 1 hr . The product separated was filtered, washed with hot ethanol and crystallized from ethanol-dimethyl-formamide mixture, yield 92%, m.p. $213^{\circ} \mathrm{C}$; IR(KBr): $2214(\mathrm{C} \equiv \mathrm{N}), 1624(\mathrm{C}=\mathrm{O})$; PMR (DMSO- d_{6}): $\delta 2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right), 3.0\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 8.15(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{C}_{3}-\mathrm{H}$) (Found: C, 57.12; H, 3.71; N, 22.21. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $57.14 ; \mathrm{H}, 3.70 ; \mathrm{N}, 22.22 \%$).3-Cyano-1, 4-dimethyl-5-ureidomethylene-1 H, 5H-pyridin-2, 6-dione 5. A mixture of 2 (0.96, 0.005 mole) and urea ($0.45 \mathrm{~g}, 0.0075$ mole) was refluxed in ethanol-acetic acid mixture (15 mL) ($2: 1, \mathrm{v} / \mathrm{v}$) for 1 hr . The silky off-white product separated was filtered, washed with hot ethanol and crystallized from acetonitrile, yield 90%, m.p.
$290^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3362,3200$ and $3038\left(-\mathrm{NH}_{2}\right.$ and -NH$), 2226(\mathrm{C} \equiv \mathrm{N}), 1767,1670$ and 1628 (three $\mathrm{C}=\mathrm{O}$); PMR (DMSO- d_{6}): $\delta 2.48$ ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{C}-\mathrm{CH}_{3}\right), 3.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.65$ and 8.04 $\left(2 \mathrm{~s}, 2 \mathrm{H},-\mathrm{CO} . \mathrm{NH}_{2}\right), 8.47(\mathrm{~d}, 1 \mathrm{H},=\mathrm{CH}-\mathrm{N})$, 11.93 (d, 1H, NH) (Found: C, 51.27; H, 4.26; N, 23.95. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 51.28 ; \mathrm{H}, 4.27$; N , 23.93\%).

6-Cyano-5, 8-dimethyl-1 H, 2H, $\quad 7 \mathrm{H}, \quad 8 \mathrm{H}$ pyrido[2, 3-d]pyrimidine-2, 7-dione 6. A mixture of $5(0.2 \mathrm{~g})$ and phosphorus pentoxide $(0.4 \mathrm{~g})$ was fused in an oil-bath at $240^{\circ} \mathrm{C}$ for 1 hr . The fused mass was treated with water when the product separated. It was filtered, washed with water and crystallized from acetonitrile, yield 50%, m.p. $244-46^{\circ} \mathrm{C}$; IR(KBr): 3428 (NH), 2226 ($\mathrm{C} \equiv \mathrm{N}$), 1640 and 1601 (two C=O); PMR (DMSO- d_{6}): δ 2.49 (s, 3H, C-CH3), 3.18 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}$), 8.53 (s, 1H, CH = N), 9.85 (bs, 1H, NH) (Found: C, 55.52; H, 3.70; N, 25.93. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C , $55.55 ; \mathrm{H}, 3.70 ; \mathrm{N}, 25.92 \%$).

3-Benzoylamino-6-cyano-5, 8-dimethyl-2H, $7 \mathrm{H}, \mathbf{8 H}$-pyrano[2,3-b]pyridin-2,7-dione 7. A mixture of $2(0.96 \mathrm{~g}, 0.005$ mole) and hippuric acid ($1.34 \mathrm{~g}, 0.0075$ mole) in ethanol-acetic acid mixture (15 mL) (2:1, v/v) was refluxed for 1 hr . The separated product was filtered, washed with hot ethanol and crystallized from ethanol-dimethyl formamide mixture, yield 80%, m.p. $>300^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3408.5(-\mathrm{NH}), 2224(\mathrm{C} \equiv \mathrm{N})$, 1726 (pyrano $\mathrm{C}=\mathrm{O}$), 1665 (pyridino $\mathrm{C}=\mathrm{O}$), 1628 (amido C=O); PMR (DMSO- d_{6}): $\delta 2.59$ (s , $\left.3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right), 3.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 7.54$ and $7.96(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 10.0(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$) (Found: C, 64.49; H, 3.85; N, 12.52. $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 64.47$; $\mathrm{H}, 3.88 ; \mathrm{N}$, 12.53%).

6-Cyano-5, 8-dimethyl-2, 4-diphenyl-4H, 7H, 8 H -pyrano[2, 3-b]pyridin-7-one 9. A mixture of 1 ($0.492 \mathrm{~g}, .003 \mathrm{~mole}$), benzalacetophenone ($0.624 \mathrm{~g}, .003 \mathrm{~mole}$) and phosphorous pentoxide $(1 \mathrm{~g})$ in acetic acid ($10, \mathrm{~mL}$) was refluxed for 5 hr . The product separated out on cooling was filtered, washed with hot ethanol and crystallized from dimethyl formamide, yield 70%, m.p. $298^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 2218(\mathrm{C} \equiv \mathrm{N}), 1655 \quad(\mathrm{C}=\mathrm{O}) ; \quad$ PMR (DMSO- d_{6}): $\delta 2.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-\mathrm{CH}_{3}\right), 3.65(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{N}-\mathrm{CH}_{3}\right), 4.86\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 6.15(\mathrm{~d}, 1 \mathrm{H}$, $\mathrm{C}_{4}-\mathrm{H}$), 7.33-7.71 (m, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$) (Found: C, 80.57; H, 4.46; $\mathrm{N}, 6.95 . \mathrm{C}_{27} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~N}_{2}$ requires C , 80.59; H, 4.47; N, 6.96\%).

4-Ethoxymethylenyl-2-carboxymethyl-1, 2, 3, 4 -tetrahydroisoquinolin-1, 3-dione 11. A mixture
of 2-carboxymethyl-1, 2, 3, 4-tetrahydroisoquino-lin-1, 3-dione 10 ($2.19 \mathrm{~g}, 0.01$ mole) and triethyl orthoformate (17 mL) was gently refluxed for 2 hr. Yellow solid separated on cooling the reaction mixture was filtered, washed with hexane and crystallized from benzene-ethanol mixture, yield 82%, m.p. $203^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3134.6$ (OH), 1746, 1694 and 1651 (three $\mathrm{C}=\mathrm{O}$); PMR (DMSO- d_{6}): $\delta 1.43\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 4.55\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $4.60\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{COOH}\right), 7.46$ (dd, $1 \mathrm{H}, \mathrm{C}_{6} H$), $7.75(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}-H), 8.14\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{5}-H\right), 8.33(\mathrm{~d}$, $\left.1 \mathrm{H}, \mathrm{C}_{8}-\mathrm{H}\right), 8.23(\mathrm{~s} .1 \mathrm{H},=\mathrm{CH}-\mathrm{O}-), 12.94$ (bs, $1 \mathrm{H}, \mathrm{OH}$) (Found: C, 61.10; H, 4.73; N, 5.11. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{NO}_{5}$ requires $\mathrm{C}, 61.09 ; \mathrm{H}, 4.72 ; \mathrm{N}, 5.09 \%$).

4-Carboxymethyl-4, 5-dihydro-1 H -pyrazolo $[3$, 4-cjisoquinolin-5-one 12a. A mixture of 11 (1.37 $\mathrm{g}, 0.005 \mathrm{~mole})$ and hydrazine hydrate $(0.5 \mathrm{~mL}$, 0.0075 mole) in ethanol-acetic acid mixture (15 $\mathrm{mL})(2: 1 \mathrm{v} / \mathrm{v})$ was refluxed for 1 hr . The bright orange coloured product separated was filtered, washed with hot ethanol and crystallized from benzene-dimethyl formamide mixture, yield 86%, m.p. $>300^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3443(\mathrm{OH}), 3088(\mathrm{NH})$, 1734 (isoquinolinone $\mathrm{C}=\mathrm{O}$), 1663 (carboxy $\mathrm{C}=\mathrm{O}$); PMR (DMSO- \dot{u}_{6}): $\delta 4.67$ ($\mathrm{s}, 2 \mathrm{H}$, $\left.-\mathrm{CH}_{2}-\right), 7.27\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 7.62\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{C}_{7^{-}}\right.$ $\mathrm{H}), 7.98\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{9}-\mathrm{H}\right), 8.07\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}\right), 8.81$ (s, 1H, $-\mathrm{CH}=\mathrm{N}$) (Found: C, 59.29; H, 3.71; N, 17.27. $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 59.25 ; \mathrm{H}, 3.70 ; \mathrm{N}$, 17.28%).
4-Carboxymethyl-4, 5-dihydro-3-phenylpyrazolo $[3,4-c \mid$ isoquinolin-5-one 12b was prepared from 11 and phenyl hydrazine using the same method as above, yield 80%, m.p. $218^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3441 \quad(\mathrm{OH}), \quad 1682$ (isoquinolinone $\mathrm{C}=\mathrm{O}$), 1634 (carboxy $\mathrm{C}=\mathrm{O}$) (Found: C, 67.72; $\mathrm{H}, 4.08$; $\mathrm{N}, 13.15 . \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 67.71$; H, 4.07; N, 13.16\%).

4H, 5H, 7 H -pyrazolo[4, 3; 3, 2:1, mimidazo|3, 2 bjisoquinolin-4, 7 -dione 13. A mixture of $12 \mathrm{a}(1.12 \mathrm{~g}, 0.005$-mole) and acetic anhydride (20 mL) was refluxed for 1 hr . The product separated was filtered, washed with ethanol and crystallized from benzene-dimethyl formamide mixture, yield 75%, m.p. $>300^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}): 1842$ and 1750 (two $\mathrm{C}=\mathrm{O}$) (Found: C, 64.1; H, 3.11; N, 18.65. $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 3.11 ; \mathrm{N}, 18.66 \%$).

References

[^0]4 Nippon Kayaku Co. Ltd, Jpn Kokai Tokkyo Koho J P. 5862,177, 13 April, 1983; Chem Abstr, 99, 1983. P 158406r.
5 Prakash L, Sharma R, Shukla S \& Goyal R D, Pharmazie, 48, 1993, 221; Chem Abstr, 119, 1993, 95465t.

6 Heihachiro A, Katsuo S, Tomoshi A \& Shigeru U, Jpn Kokai Tokkyo Koho J P, 63,150,286, 22 June 1988; Chem Abstr, 110, 1989, P 23891v.
7 Bhatt A K, Ph.D. Thesis, University of Bombay, 1983.
8 Kanitkar P V, Ph.D. Thesis, University of Bombay, 1984.

[^0]: 1 Gunther Lamm, Ger Offen 2,025,427, 9 Dec. 1971; Chem Abstr, 76, 1972, P 72519t.
 2 McNamara D J, Cook P D \& Teepe A G, J Med Chem, 33. 1990, 2006.

 3 Sanghvi V S, Larson S B, Robinse R K \& Revankar G R, J Med Chem, 32, 1989, 945-51.

