Note

Lipid constituents from Artemisia nilagirica : A GC-MS investigation[†]

Riaz A Khan, Ajay K Gupta, Anil K Singh & Pawan K Agrawal* Central Institute of Medicinal and Aromatic Plants, Lucknow 226 015, India Received 20 September 1996; accepted 18 December 1996

The lipid constituents of the hexane extract of the leaves of *Artemisia nilagirica* have been investigated using GC-MS analysis. Among the nineteen components, sixteen having chain length ranging between C₉ and C₂₅ have been Identified. The principal components are *n*-pentacose-3-ene (28%) and *n*-tetracosane (27%).

In recent years Artemisia species have been the subject of intensive studies due to chemical and biological interests.^{1.4} We initiated our phytochemical investigations on two Artemisia species, A. Annua⁵⁻⁹ and A. nilagirica¹⁰. Previous work on A. nilagirica reported thr occurrence of an insecticidal principle capilline¹¹, a carba sugar, L-2-O-methyl-chiro-inositol¹⁰ and chemical composition leaves¹². the essential from the of oil Chromatographic fractionation of the hexane soluble concentrate of the leaves which was devoid of essential oil, afforded a lipid fraction, the GC-MS analysis of which is reported herein.

GC analysis showed that the lipid fraction was a mixture of 19 components having retention times (RT) ranging from 26.2 to 100.95 min. Characterization of the individual component was carried out on the basis of MS fragmentation pattern¹³⁻¹⁵ observed in GC-MS data (Table I). The GC peaks eluting at 32.55, 35.3, 45.1, 47.6, 53.85 and 92.6 min corresponded to n-alkanes^{13,14} having an odd number of carbon atoms ranging between C_{11} and C_{24} and comprised about 32% of the total lipid fraction. The GC peaks appearing at RT 26.2, 42.55 and 91.7 min representing about 28% of lipids were identified as n-non-1-ene, cyclopentanodec-5-ene and n-pentacos-3-ene, respectively. Rest of the peaks at RT 29.95, 50.45, 57.9, 69.65, 77.3 and 100.95 min constituting about 28% of the total lipid, were identified as isoalkanes. Among isoalkanes, 3-methylalkanes were found to be the major constituents and one each was identified as 2- methylalkane and 2ethylalkane. The peaks at RT 44.15, 50.1 and 47.6 min representing about 4% of the total lipid could not be identified. The GC-MS analysis thus suggested that *n*-tetracosane and *n*-pentacos-3-ene are the major constituents of the lipid fraction of A. Nilagirica. With regard to aliphatic compounds, acetylenic compounds have been so far identified from varrious Artemisia species^{1,16} and the presence

			•	0
Peak No.	RTª	Area (%)	Fragment ion (Relative abundance)	Identification
1.	26.2	0.22	43(80), 44(100), 55(66), 69(50), 83(34), 97(28), 111(14), 126(5)	Non-1-ene
2.	29.95	0.24	44(80), 57(100), 71(70), 85(22), 99(10), 113(11), 127(4), (M ⁺ -Me)	2-Methylnonane
3.	32.55	0.54	43(99), 57(100), 71(60), 85(27), 99(10), 113(6), 127(2.5), 141(1.2), (M ⁺ – Me)	<i>n</i> -Undecane
4.	35.3	0.61	43(90), 57(100), 71(55), 85(30), 99(9), 113(4), 127(3), 141(2.8), 155(2.2), 169(2), (M ⁺ – Me)	n-Tridecane
5.	40.4	0.97	43(90), 57(100), 71(60), 85(34), 99(10), 113(6.6), 127(3), 141(2.7), 155(2), 169(1.9), 183(1), 197(1.1), $(M^{+} - Me)$	n-Pentadecane
6.	42.55	0.3	43(100), 57(87), 69(60), 83(50), 97(49), 111(22.5), 125(10.0), 139 (3.1), 207(1), 208(0.4)	Cyclopentanodec-5-ene
7.	44.15	0.4	44(60), 57(40), 77(30), 104(16), 133(17), 149(100), 207(16), 263 (22), 264(4)	Unidentified
8.	45.10	1.37	43(90), 57(100), 71(60), 85(35), 99(10), 113(6), 127(4), 141(3), 155(2), 169(1.7), 183(1), 197(1), 211(0.9), 225(0.8), (M ⁺ – Me)	n-Heptadecane
				Contd.

Table I— Constituents of the lipid fraction from hexane extracts of the leaves of Artemisia nilagirica.

*Part 47 of the series 'Studies on Medicinal Plants'. For part 46 see ref. 9,. CIMAP publication No. 95-78J.

	Table I Constituents of the lipid fraction from hexane extracts of the leaves of Artemisia nilagirica (Contd.)						
9.	47.60	1.70	43(83), 57(100), 71(60), 85(37), 99(13), 113(7), 127(4.5), 141(2.7), 155((2), 169(1.7), 183(1.3), 197(1), 211(0.9), 225(0.8), 239(0.5), 253(0.4), (M ⁺ – Me)	n-Nonadecane			
10.	50.10	0.19	44(100), 57(17.5), 69(15), 73(13), 81(6), 97(5), 114(4), 133(4.5), 147(5), 191(5.5), 207(18), 208(5), 209(6), 281(12),	Unidentified			
11.	50.45	2.20	43(74), 57(100), 71(65), 85(36), 99(12), 113(7), 127(4), 155(3), 169(1), 183(1), 197(0.9), 211(0.9), 225(0.9), 239(0.8), 281(1), 295(0.8), ($M^+ - Me$)	3-Ethylcosane			
12.	53.85	1.45	43(76), 57(100), 71(60), 85(39), 99(12.5), 113(7.5), 127(3.2), 155(2.8), 169(2), 183(1.8), 197(1), 225(1), 281(1.8), (M ⁺ - Me)	n-Heneicosane			
13.	57.90	2.88	43(82), 57(100), 71(60), 85(40), 99(15), 113(8), 127(5), 141(2), 155(1.8), 169(1.5), 183(1.4), 197(1.4), 211(1.2), 225(1.0), 239(1.0), 253(0.9), 267(0.8), 281(0.6), 323(0.7), ($M^{+} - Me$)	3-Methyltricosane			
14.	69.95	12.78	43(72), 57(100), 71(60), 85(40), 99(14), 113(9), 127(5), 141(4), 155(2.7), 169(0.4), 183(1.6), 197(1.3), 211(1.2), 225(0.8), 253(0.7), 267(0.6), 281(0.6), 295(0.37), 304(0.35), 323(0.35), 338(0.33)	12-Methyltricosane			
15.	47.60	2.09	43(95), 57(100), 69(54), 83(56), 97(55), 111(27), 125(13), 139(6), 153(3.6), 167(2.4), 181(2), 195(1.3), 209(1.0), 223(0.5), 251(0.6),	Unidentified			
16.	77.30	5.58	43(82), 57(100), 71(64), 85(40), 99(20), 113(12), 127(5), 141(3), 155(2.6), 169(2), 183(1.8), 197(1.6), 211(1.5), 225(1.4), 239(1.3), 253(1.3), 267(1.3), 281(1.5), 295(1.3), 309(0.7), ($M^{\dagger} - Me$)	3-Methyldocosane			
17.	91.70	27.86	43(70), 55(98), 57(100), 71(60), 85(30), 99(12), 113(8), 127(6), 141(4), 155(2.5), 169(2), 183(1.4), 197(1), 211(0.9), 225(0.8), 239(0.7), 253(0.6), 267(0.6), 281(0.5), 295(0.4), 309(0.4), 323(0.3), 338(0.3)	n-Pentacos-3-ene			
18.	92.60	26.79	43(70), 57(100), 71(68), 85(45), 99(18), 113(12), 127(7), 141(5), 155(3.6), 169(3), 183(2.5), 197(1.5), 211(1.2), 225(1), 239(0.9), 253(0.7), 267(0.6), 281(0.6), 295(0.5), 309(0.4), 323(0.3), 338(0.3), 350 (0.2)	n-Tetracosane			
19.	100.95	5.9	43(73), 57(100), 71(65), 85(40), 99(13), 127(6), 141(4), 155(2.7), 169(2.1), 183(1.7), 197(1.4), 211(1), 225(0.7), 239(0.7), 253(0.6), 267(0.6), 281(0.7), 295(0.3), 323(0.32), 338(0.3)	2-Methyltricosane			
^a Retention time (in minutes).							

of keto and alcoholic derivatives of isoalkanes have been recently reported from A. $annua^{17}$.

Experimental Section

The leaves (4.0 kg) of *A. nilagirica*, collected from CIMAP field station, Pantnagar (UP) were shadow dried and extracted with hexane. The hexane extract was concentrated (12 g) and chromatographed over silica gel with hexane. The fractions 1-10 (250 mL each) yielded a low melting (50°C) white material showing a single spot on TLC which was subjected to GC-MS analysis on a Shimadzu 24-QP-2000 GC-MS system at ionization energy 70 eV and temperature ion source 250°C on GC column.

Acknowledgement

We are thankful to Dr R P Sharma, Head, Phytochemical Division and Dr Sushil Kumar, Director, CIMAP for laboratory facilities and constant encouragement. R A K and A K G are thankful to CSIR, New Delhi for the award of research associateship and junior research fellowship respectively.

References

1 Marco J A & Barbera O, Stud Nat Prod Chem, 7a, 1990, 201.

- 2 Duke S O, Paul R N (Jr) & Leu S M, ASC Symp Ser, 380, 1988, 318.
- 3 White N H, Trans Roy Soc Trop Med Hyg, 88 (Supplement 1), 1994, 3.
- 4 Woerdenbag H J, Pras N, van Uden W, Wallaart T E, Beekman, A C & Lugt C B, Pharm Weekbl Sci, 16, 1994, 169.
- 5 Agrawal P K, Vishwakarma R A, Jain D C & Roy R, Phytochemistry, 30, 1990, 3469.
- 6 Agrawal P K, Singh A K, Bhakuni R S & Jain D C, Curr Res Med Arom Pl, 17, 1995, 321.
- 7 Agrawal P K & Bishnoi V, J Sci Indust Res, 55, 1996, 17.
- 8 Agrawal P K & Bishnoi V, Indian J Chem, 35B, 1996, 86.
- 9 Singh A K, Pathak V & Agrawal P K, Phytochemistry, 44, 1997, 555.

- 10 Agrawal P K & Singh A K, Indian J Chem, 33B, 1994, 803.
- 11 Banerji A, Luthra D L & Kokate S D, Indian J Exp Biol, 28, 1990, 588.
- 12 Uniyal G C, Singh A K, Shah N C & Naqvi A A, Planta Medica, 51, 1985, 457.
- 13 Silverstein R M, Basseler G C & Morril T C, Spectromettric identification of organic compounds, 5th Edn (Wiley, New York) 1991.
- 14 Bentley K W, Elucidation of structure by physical and chemical methods, Part I (Interscience, New York) 1963.
- 15 Burchfield H P & Storrs S E, Biochemical application of gas chromatography (Academic Press, New York) 1962.
- 16. Bohlmann F, Bukhardt T & Zdero C, Naturally occurring acetylenes (Academic Press, New York) 1973, p. 427.
- 17 Bhakuni R S, Jain D C, Shukla Y N & Thakur R S, J Indian Chem Soc, 67, 1990, 1004.