

INTELLIGENT POTHOLE REPAIR VEHICLE

A Thesis

by

RUZBEH ADI MINOCHER HOMJI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2005

Major Subject: Mechanical Engineering

INTELLIGENT POTHOLE REPAIR VEHICLE

A Thesis

by

RUZBEH ADI MINOCHER HOMJI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Won-jong Kim
Committee Members, Make McDermott
 Aniruddha Datta
Head of Department, Dennis O’Neal

August 2005

Major Subject: Mechanical Engineering

 iii

ABSTRACT

Intelligent Pothole Repair Vehicle. (August 2005)

Ruzbeh Adi Minocher Homji, B.E., Marine Engineering & Research Institute

Chair of Advisory Committee: Dr. Won-jong Kim

 This thesis presents an endeavor to design and construct a prototype of an

automated road repair vehicle called the Intelligent Pothole Repair Vehicle (IPRV). The

IPRV is capable of automatically detecting and filling potholes on road surfaces without

operator assistance. An easy-to-construct mechanical means of pothole detection was

employed to reduce costs and complexity that have thus far been the primary

disadvantage of automated road repair vehicles. A network interface to an Ethernet was

designed based on the transmission control protocol (TCP) to enable remote operability

of the IPRV. A laptop computer was used onboard the IPRV for control and interfacing

using a data-acquisition card installed on it. The Visual Basic® programming language

and the Windows application programming interface (API) were used for all the

programming requirements of this thesis. The IPRV employs feedback mechanisms for

position control and path following. Operation has been designed to incorporate safety

mechanisms that ensure that the IPRV automatically stops in the case of a loss of

communication link or large network delays. Experiments were performed to test and

calibrate the IPRV. The IPRV was designed to detect potholes that have a maximum

depth greater than 2 cm.

 iv

To my wife Shweta

 v

ACKNOWLEDGMENTS

 I would like to take this opportunity to express my sincere gratitude to my

advisor, Dr. Won-jong Kim, for the immense confidence that he showed in my abilities.

I would also like to thank him for the invaluable time and guidance that I received from

him throughout the course of this thesis research.

 I wish to extend my thanks to Dr. Aniruddha Datta and Dr. Make McDermott for

serving on my thesis committee. I truly appreciate their time and effort in reviewing my

thesis.

 A special thanks goes to my good friend Yusuke Kawato for providing a helping

hand whenever I needed it and for his invaluable suggestions. I would also like to thank

Dr. Shobhit Verma, Adam Rogers, and Kun Ji for their help and support.

 Most of all, I would like to thank my wife and best friend, Shweta, without

whose love, understanding and encouragement this thesis would never have become a

reality. I promise to make up for all the times I have neglected her for my thesis.

 Lastly I would like to thank my mother, Harjeet Homji, who is solely responsible

for my being where I am today. She has supported and encouraged me at every step of

my life. Thank you.

 vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION………………………………………………… 1

 1.1 Introduction………………………………………………..... 1
 1.2 Potholes – causes and repair methodology………………….. 2
 1.2.1 Pothole formation……………………………………... 2
 1.2.2 Pothole repair methodology…………………………... 4
 1.2.3 Spray injection patching…………………………….... 6
 1.3 Thesis objectives……………………………………………. 9
 1.4 Thesis contributions………………………………………… 9
 1.5 Thesis organization…………………………………………. 10

II LITERATURE REVIEW………………………………………..... 12

 2.1 Introduction…………………………………………………. 12
 2.2 Pothole repairing materials and techniques…………………. 12
 2.3 Pothole detection……………………………………………. 15
 2.4 Automated road repair vehicles……………………………... 15

III IPRV DESIGN……………………………………………………. 18

 3.1 Introduction…………………………………………………. 18
 3.2 Stage I – Semiautonomous mobile vehicle design………….. 18
 3.2.1 Position control……………………………………...... 21
 3.2.2 Brake-assembly removal……………………………… 23
 3.3 Stage II – Pothole-detection module design……………….... 24
 3.4 Stage III – Pothole-filling module design…………………... 26

IV DATA ACQUISITION AND INTERFACING………………....... 28

 4.1 Introduction…………………………………………………. 28
 4.2 The PCMDIO data acquisition card………………………… 28
 4.3 Interfacing the motor controller…………………………….. 30
 4.3.1 Joystick operation and interface……………………..... 31
 4.3.2 Laptop/motor controller interface…………………...... 34
 4.4 Interfacing the filler valve…………………………………... 38
 4.5 Interfacing the sensors………………………………………. 39

 vii

CHAPTER Page

 4.6 Prototyping board and circuit design……………………….. 40

V SOFTWARE DESIGN…………………………………………..... 42

 5.1 Introduction…………………………………………………. 42
 5.2 Programming language……………………………………... 42
 5.3 Hardware control……………………………………………. 43
 5.3.1 Performing data acquisition…………………………... 45
 5.3.2 Motion control……………………………………….... 49
 5.3.3 Pothole detection……………………………………… 52
 5.4 Networking………………………………………………….. 54
 5.4.1 Update of global variables…………………………….. 56
 5.4.2 IPRV going out of range……………………………… 57
 5.5 Graphical user interface…………………………………….. 57

VI OPERATION AND TESTING………………………………….... 60

 6.1 Introduction…………………………………………………. 60
 6.2 IPRV operation…………………………………………….... 60
 6.3 IPRV testing and calibration………………………………... 64
 6.3.1 Determination of the maximum sampling

 frequency available………………………………….... 64
 6.3.2 Determination of the threshold value

 for pothole detection………………………………....... 66
 6.3.3 Test of the pothole-detection module………………..... 66
 6.3.4 Determination of the upper-limit of

 wheel rotations per minute……………………………. 68
 6.3.5 Determination of the position control parameters…...... 69
 6.3.6 Determination of the position control algorithm………

71

VII CONCLUSIONS………………………………………………...... 72

 7.1 Introduction…………………………………………………. 72
 7.2 Conclusions…………………………………………………. 72
 7.3 Limitations………………………………………………….. 74
 7.4 Future work…………………………………………………. 74

REFERENCES…………………………………………………………………… 76

APPENDIX A…………………………………………………………………..... 79

 viii

 Page

APPENDIX B……………………………………………………………………. 123

VITA…………………………………………………………………………….... 133

 ix

LIST OF FIGURES

FIGURE

 Page

1.1 A pothole caused by fatigue failure…………………………………...

3

1.2 The throw-and-roll procedure – material placement………………….

5

1.3 Spray injection device – self-contained unit…………………………..

8

2.1 The ACSM developed by the AHMCT at UC Davis………………….

16

3.1 Front view of the IPRV………………………………………………..

19

3.2 Side view of the IPRV………………………………………………...

20

3.3 IPRV position control feedback mechanism………………………….

22

3.4 Electromagnetic brake-assembly……………………………………...

23

3.5 Pothole-detection module…………………………………………......

25

3.6 Pothole-filling module………………………………………………...

26

4.1 The PCMDIO card with the CP-1037 adapter cable…………………..

29

4.2 Invacare wheelchair schematic wiring diagram……………………….

31

4.3 Joystick/motor controller interface……………………………………

32

4.4 Circuit to interface the laptop with the motor controller……………...

35

4.5 Voltage follower or buffer…………………………………………….

36

4.6 ±9-V DC supply……………………………………………………….

37

4.7 Filler valve interface…………………………………………………..

38

4.8 Sensor interface………………………………………………………..

40

4.9 Circbord® with interface design………………………………………. 41

 x

FIGURE

 Page

5.1 PCMDRIVE configuration utility……………………………………..

44

5.2 Algorithm of function singleDigitalInput……………………………..

48

5.3 Algorithm used for direction control………………………………….

50

5.4 Position control speed signal versus time……………………………..

51

5.5 Encoder state-transition diagram when rotation is clockwise…………

53

5.6 Algorithm used to distinguish between potholes and bumps…………. 54

5.7 Network layout………………………………………………………... 55

5.8 Client-side GUI during remote maneuvering…………………………. 58

6.1 Server-side remote maneuvering mode algorithm................................. 62

6.2 Server-side semiautonomous mode algorithm....................................... 63

6.3 Experimental platform………………………………………………... 67

6.4 IPRV dimensions for position calculation……………………………. 70

 xi

LIST OF TABLES

TABLE

 Page

4.1 Analog voltage range across Channel 1……………………………….

33

4.2 Analog voltage range across Channel 2……………………………….

34

5.1 IPRV PCMDIO channel configuration………………………………..

44

6.1 Programmed versus observed sampling times………………………... 65

6.2 Pothole-detection module test results………………………………… 67

 1

This thesis follows the style of IEEE Transactions on Automatic Control.

CHAPTER I

INTRODUCTION

1.1 Introduction

Vehicular traffic has been rapidly growing over the recent years with more privately

owned vehicles taking to the streets each day. Today, trucks weigh significantly more

than ever before and are capable of carrying much larger payloads. The situation is

further exacerbated by the decline of railroads. These factors in conjunction with

inclement weather result in a major challenge that transportation departments throughout

the country face – road damage in the form of potholes.

 Potholes are not only the cause of significant damage to vehicle suspension

systems but may, in severe cases, result in serious accidents and permanent injury. Year-

round pothole repairs are also a major reason for the depletion of state funds. The United

States alone spends billions of dollars every year on pavement maintenance. Thus there

is an impending need for pothole repair techniques that are cost effective as well as long

lasting.

 This chapter begins with a description of the causes for pothole formation in

Section 1.2. This is followed by a description of the types of materials and techniques

commonly used for pothole repair. The spray injection technique of pothole repair is

discussed in some detail leading to the need for an automated pothole repair vehicle.

Section 1.3 delineates the research objectives of this thesis. Section 1.4 lists the major

 2

contributions of this thesis. The final section provides an overview of the organization of

the thesis.

1.2 Potholes – causes and repair methodology

“A pothole is any pavement defect involving the surface or the surface and base, to the

extent that it causes significant noticeable impact on vehicle tires and vehicle handling.

All potholes are the result of the interaction of water and traffic on pavement. Most are

found on local road and street systems: 80% of the nation’s roads are local roads and are

more apt to have “just grown” rather than being planned from the start and are much

more likely to have water, gas and other utilities underneath. [1]”

1.2.1 Pothole formation

The development of potholes is due to the simultaneous presence of two factors, water

and traffic. These factors may cause potholes in two basic ways. Fatigue failure occurs

due to excessive flexing of the pavement. Water due to melting snow, rainfall, or bad

drainage weakens the soil below the pavement. In this weakened condition, traffic on the

pavement causes the pavement to start flexing. This flexing eventually leads to cracks

followed by breakage. Thinner pavements are more prone to this type of potholing [2].

Figure 1.1 shows a pothole cause by fatigue failure.

 Raveling failure occurs when water on the pavement washes away the adhesive

asphalt films that hold the stone aggregate together. Traffic on such pavements causes a

gradual raveling away of the stone particles. Such a condition occurs when water has a

 3

chance to permeate a pavement that lacks sufficient density to prevent water penetration

[2].

 The best way to minimize road damage is to follow a carefully planned

preventive maintenance system. This includes the laying-out of well-planned roads,

using proper resurfacing methods, ensuring adequate drainage facilities, regularly

checking drains for blocks, and carrying out road repairs as soon as possible to prevent

further deterioration.

Figure 1.1. A pothole caused by fatigue failure
(Source: dot.ci.tucson.az.us/streets/normal.htm)

Despite the best measures taken by state transport authorities, the development of

potholes is inevitable. Preventive maintenance can at best delay their occurrence. It is

thus essential to simultaneously focus on continuously improving pothole repair

methods.

 4

1.2.2 Pothole repair methodology

Current research on pothole repair can be divided into two broad categories.

1) Repair Materials – Typically the different types of mixes that are used for pothole

patching are hot-mixes, cold-mixes, heated cold-mixes, and recycled mixes. Hot-mixes

from an asphalt plant are the best material for patching potholes [2–3]. However the use

of hot-mixes is limited due to their unavailability in the winter season as asphalt plants

are closed at the time. Also, hot-mixes do not perform satisfactorily when used in wet

potholes [3].

 Most agencies make use of one or more of three types of cold asphalt mixes that

are available to them – cold-mixes produced by local asphalt plants using locally

available aggregate and binder, cold-mixes produced according to agency specifications

including acceptable types of aggregate and asphalt, and proprietary cold-mixes that use

specifically formulated binders [4–5]. The latter two types of cold-mixes have to be

checked for the compatibility of the binder and the aggregate. Proprietary cold-mixes

include high-performance mixes with anti-stripping and adhesive agents. While being

more expensive, these high-performance mixes significantly increase the service life of

the repair and are a better alternative for pothole repair [6–7].

2) Repair Techniques – Four types of repair techniques are commonly utilized for

pothole patching as described in [4–5].

a) Throw-and-roll – This method consists of placing the patching material into the

pothole and then compacting the patch using truck tires. The compacted patch must have

 5

a crown between 3 mm and 6 mm. Figure 1.2 shows the filling stage of the throw-and-

roll method.

Figure 1.2. The throw-and-roll procedure – material placement
(Source: [5])

b) Semi-permanent – This method consists of removing the water and debris from the

pothole. The sides of the patch area are then squared-up and the mixture is placed into

the pothole. This is followed by compacting the mixture.

c) Spray Injection – This method consists of blowing water and debris from the pothole.

The sides and bottom of the pothole are then sprayed with a tack coat of binder. Next,

aggregate is simultaneously premixed with heated asphalt emulsion and sprayed into the

pothole, and finally the patched area is covered with a layer of aggregate. The spray

injection method does not require compacting.

 6

d) Edge Seal – Like throw-and-roll, this method consists of placing the mixture in the

pothole and compacting it using truck tires. Once the patch has dried, a ribbon of

asphaltic tack material is placed on the patch edge and a layer of sand is placed on the

tack material.

 Another method often used is the throw-and-go method [4–5]. This involves the

placing of mixture into potholes followed by little or no compaction. While this is the

most expedient way of pothole repair, it is also the least effective. The throw-and-go

method can significantly increase long term expenditures and must not be used as a

means for pothole repair.

 The throw-and-roll method has proved to be very effective when performed

using high-performance mixes. With high quality mixes the throw-and-roll method has

been shown to be as effective as the semi-permanent method and is also comparatively

less labor intensive [8]. The semi-permanent method also has higher equipment cost and

lower productivity [6].

 The spray injection method is a very effective and widely accepted method for

pothole patching. It offers potential for greater productivity and efficiency and can

operate in extreme cold weather [9]. Along with the throw-and-roll method it produces

the highest quality repairs and is the most cost effective in the long run [6].

1.2.3 Spray injection patching

There are three types of units used for spray injection pothole patching as described in

[9].

 7

1) Trailer-Type Unit – In this unit, a dump truck pulls a trailer and feeds aggregate

through a modified tailgate into the trailer unit. A minimum of two people are required.

One person works behind the trailer to control a delivery hose suspended from a boom

on the rear of the unit [9].

2) Modified-Truck Unit – Here the patching equipment is mounted on the chassis of an

existing Department of Transportation (DOT) truck. The need for a trailer is eliminated;

the spray injection hose and boom are still operated from the rear of the truck [9].

3) Self-Contained Unit – Only one person is required to patch the pothole. The spray

injection equipment is built into the truck chassis. Patching is carried out by the truck

operator using a joystick to remotely control the spraying operations. The boom and

attached hose extend from the front of the truck [9]. Figure 1.3 shows a self-contained

unit.

 The self-contained unit has been found to perform extremely satisfactorily in all

conditions. However, a major disadvantage of this type of unit is the initial capital

expenditure in the range of $120,000 [9]. This is off-set if long term operational costs are

taken into account. The “IDOT (Illinois Department of Transportation) has estimated

that using one self-contained truck unit in seven maintenance districts would result for

each district, in a labor savings of 53 person years over a 10-year cycle; material and

equipment savings would be $1.05 million. [9]”

 8

Figure 1.3. Spray injection device – self-contained unit
(Source: www.tfhrc.gov/focus/archives/focus399/0399cal.htm)

 As is evident from the preceding discussion, over the years, advancement in

technology has played a tremendous role in increasing the lifetime of repair patches

while at the same time reducing costs. High-performance materials and equipment (like

self-contained units) are replacing conventional repair methods. The next logical

advancement in pothole repair techniques is the automation of road repair. Automation

will eliminate the need for expensive labor and produce consistent results. Cost savings

that can be derived by using an automated road repair process are estimated in [10].

Thus far, impediments in the success of automated road repair vehicles have been their

high initial cost and the complexity of pothole detection.

 9

 This thesis describes the design and construction of a novel prototype road-repair

vehicle that automates road repair providing an easy-to-construct, cost-effective

mechanical means of pothole detection.

1.3 Thesis objectives

The key objective of this thesis is the design and construction of a semiautonomous

mobile vehicle capable of automatically detecting and filling potholes on road surfaces.

The vehicle is called the Intelligent Pothole Repair Vehicle (IPRV) and is capable of

being maneuvered remotely over a wireless local-area network (LAN). The main

objective of this thesis can further be broken down into the following objectives:

1. design and construction of the autonomous vehicle

2. design and construction of a pothole detection and filling mechanism

3. design of an interface to control the position and direction of the IPRV

4. development of a software platform to control the IPRV hardware

5. writing of an algorithm to automatically detect and fill potholes encountered by the

IPRV

6. interfacing the IPRV with a LAN

7. selection of a transport protocol to be used for the network interface

1.4 Thesis contributions

The most significant contributions of this thesis are listed below.

1. The IPRV is remotely operable over a wireless LAN. It is also capable of

semiautonomous operation wherein it detects and fills potholes without operator

 10

assistance. Thus far, all existing automatic road repair vehicles have required an operator

inside the vehicle.

2. The IPRV uses an easy-to-construct, mechanical means of pothole detection. This

significantly reduces the processing requirements of the controller, which in turn reduces

construction costs. Automated vehicles in the past used video image processing to detect

potholes, which is a computationally intensive method requiring large processing

capabilities.

1.5 Thesis organization

Chapter I describes the causes of pothole formation and the most common repair

materials and techniques used in pothole repair. It provides a brief comparison among

the various materials and techniques available in terms of pothole repair lifetime

expectancy and cost effectiveness. The spray injection technique is described in some

detail leading to the need for automation in pothole repair.

 Chapter II presents all the relevant literature reviewed by the author. The

literature review is divided into 3 categories, pothole repair materials and techniques,

pothole detection, and automated road repair vehicles.

 Chapter III describes in detail the mechanical design of the IPRV. The description

is categorized according to the 3 stages of development of the IPRV: Semi-autonomous

mobile vehicle design, pothole detection module design, and pothole-filling module

design.

 Data acquisition and interfacing is described in Chapter IV. This chapter begins

with an introduction section followed by a description of the PCMDIO data acquisition

 11

card being used. The next three sections describe the interfacing of the laptop computer

with the motor controller, the filler valve, and the onboard sensors.

 Chapter V describes in detail the software design. The choice of the programming

language for the thesis is discussed followed by a detailed description of the algorithms

employed for controlling the various components of the IPRV hardware. This is

followed by a description of the network interface designed to remotely control the

IPRV. The final section describes the client-side user interface.

 Chapter VI starts with a description of the operation of the IPRV as a single unit

integrating all the aspects of the design. The next section contains all the experiments

conducted for the measurement, calibration, and testing of the IPRV.

 Chapter VII summarizes the achievements of this thesis. The current limitations of

the IPRV are provided and future work towards further developing the IPRV is

proposed.

 12

CHAPTER II

LITERATURE REVIEW

2.1 Introduction

Potholing presents a major challenge for all national and state agencies involved in the

maintenance of roads and pavements. This has motivated a significant amount of

research for the development of higher-quality materials and better techniques to combat

road damage and increase road-repair life expectancy.

 In 1987, the U.S. Congress established a 5-year applied research program called

the Strategic Highway Research Program (SHRP). The SHRP functioned as a unit of the

National Research Council, with its goal being to improve the performance, safety, and

efficiency of the nation’s highway system. Relevant projects of the SHRP are reviewed

in this chapter. In addition, this chapter also reviews previous work done in the field of

pothole detection and automated road repair vehicles.

2.2 Pothole repairing materials and techniques

The U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory

(CRREL) in 1981 sponsored the preparation of a manual to assist in the understanding

and management of pothole problems in asphalt pavements. The manual by Eaton et al.

was revised in 1989 [2]. This manual describes the factors that contribute to the increase

in pothole occurrence. These include factors such as lack of financing, traffic growth,

weather and insufficient drainage facilities. The two mechanisms, fatigue failure and

raveling failure that lead to pothole development are described. The use of preventive-

 13

maintenance programs and pavement inventories are recommended to ensure an

organized and cost-effective way to preserve, repair, and restore roadway systems.

 Smith et al. presented the research conducted under the SHRP Project H-105,

Innovative Materials and Equipment for Pavement Surface Repairs [3]. This research

effort was divided into five categories: asphalt concrete (AC) pothole repair, AC crack

repair, Portland cement concrete (PCC) spall repair, PCC joint resealing, and PCC crack

sealing. Proprietary bituminous mixes were found to have a life expectancy significantly

longer than conventional cold-mixes. It was found that proprietary mixes are more

advantageous over conventional mixes in colder conditions as compared with warmer

conditions. The use of permanent hot-mixes in dry potholes was found to have the

longest life expectancy; however, hot-mixes did not perform satisfactorily when placed

in wet potholes.

 Preliminary findings of the SHRP project H-106, Innovative Materials

Development and Testing, are presented by Evans et al. in [8]. Four main areas were

investigated, pothole repair in asphalt pavements, crack treatment in asphalt pavements,

joint sealing in PCC pavements, and spall repair in PCC pavements. It was found that the

throw-and-roll technique was as effective as the semi-permanent procedure when using

high-performance cold-mixes. The spray injection method was found to be a viable

method for pothole repair in asphalt pavements.

 Wilson et al. conducted an extensive pothole-repair experiment as part of the

SHRP project H-106 [6]. Tests were focused on cold-mix asphalt patching materials, the

most commonly used materials for winter- and spring-time pothole repairs. The goal of

 14

this project was to identify the most cost-effective materials and techniques. Twelve-

hundred-and-fifty pothole patches were placed at eight test sites across the United States

and Canada. These patches were placed using different types of cold-mixes and different

installation techniques. Patches placed in the dry-freeze region performed better than

those placed in the wet-freeze region. The throw-and-roll technique was found to be as

effective as the semi-permanent technique for the same materials. The throw-and-roll

and spray injection methods produced the highest-quality repairs in all cases and were

found to be the most cost-effective. The choice of the material proved to have a dramatic

effect on the life of the patch, and it was recommended using only high-performance

cold-mixes.

 Based on the SHRP research projects H-105 and H-106, Wilson et al. prepared a

compendium of good practices for pothole repair [4]. The manual describes the different

types of cold-mixes available and the procedures used for pothole repair in asphalt

surfaced pavements. Guidelines have been provided to calculate the expected average

life and overall cost effectiveness of the various repair materials and techniques.

 Following the SHRP research projects, the Federal Highway Administration’s

(FHWA) Long Term Pavement Performance (LTPP) program conducted five years of

additional research on pothole repair. Wilson et al. in [5] prepared an update to [4] that

further validated the repair materials and techniques described in [4].

 Griffith conducted a literature search and survey of nine transportation agencies

to determine the kinds of specialized equipment being used to perform pothole repair

[9]. The results showed that spray injection patching was a very effective and widely

 15

accepted method of pothole repair. The report also described three types of spray

injection patching equipment: trailer-type units, modified-truck units, and self-contained

units.

2.3 Pothole detection

Karuppuswamy et al. used a non-contact vision approach to detect potholes [11]. In their

approach, a histogram of the environment is used to determine a brightness threshold to

determine if a pothole is within the field of view. Large white potholes more than 2 feet

in diameter were detected.

Matthies et al. demonstrated the use of thermal signature for night-time negative

obstacle (pothole) detection [12]. Their work is based on the fact that interiors of

negative obstacles generally remain warmer than the surrounding terrain throughout the

night.

2.4 Automated road repair vehicles

In 1992, the department of civil engineering at Carnegie Mellon University developed a

prototype for an automatic crack-filling robot [13]. The robot utilized video imaging to

identify areas of potential cracks and range sensing, with an infra-red laser range sensor,

was used to confirm the location of the cracks. An onboard air lance was then used to

clean the cracks, and a sealant wand was used to fill the cracks. In field trials, the located

cracks were filled with an accuracy of less than 1 cm. However, the frame of view was

narrow, thus requiring multiple runs over the same area. The robot was also very slow,

requiring two minutes to complete a range scan of a captured frame.

 16

 The Advanced Highway Maintenance and Construction Technology Research

Center (AHMCT) at UC Davis developed an Automated Crack Sealing Machine

(ACSM) in 1993 as part of SHRP project 107A [14]. The ACSM is shown in Figure 2.1.

According to the report by Velinsky, the machine comprised of two systems, one for

longitudinal cracks and joints and the other for random or transverse cracks and joints. A

vision system was used for crack detection. Once the crack was located, hot blowing and

sealing were performed automatically. The ACSM was dismantled in 1998 due to

complexities in running and maintenance.

Figure 2.1. The ACSM developed by the AHMCT at UC Davis
(Source: www.ahmct.ucdavis.edu)

 The Basic Industries Research Laboratory (BIRL) of Northwestern University

developed an Automated Pavement Repair Vehicle (APRV) in a 28-month research

project as part of SHRP project 107B [10]. The final report by Blaha describes the

 17

fabrication and testing of the APRV. The driver located the potholes to be repaired and

used a pavement cutter operated by a joystick to cut and shape the holes if required.

Next, a vision system scanned the area to be repaired and a telescoping robotic arm used

a vacuum nozzle to clear the pothole of water and debris. The robotic arm then used a

hot-air lance to heat the surface and bonding edges. This was followed by automatic

spray patching of the pothole. The Northwestern University BIRL study did not achieve

the anticipated results. “The prototype machine was not effective in field trials. It

operated slowly and was costly to use. [9]”

 Mara of Sandia National Laboratories patented the design of a Rapid Road

Repair Vehicle in June 1998 [15]. According to his design, on-board image processing

would be used to distinguish between holes, bumps, and manhole covers or cracks. Next,

nozzles would pass over the pothole delivering the filling material. “The mixture would

be tamped into place, dusted with grit to provide traction, and vacuumed. Finally,

another row of scanners would check the quality of the repair. [15]” He estimated the

cost of his vehicle to be between $300,000 and $325,000.

 18

CHAPTER III

IPRV DESIGN

3.1 Introduction

The IPRV was designed in three stages. The first stage involved the design of a semi-

autonomous mobile vehicle capable of being maneuvered remotely over a wireless LAN.

Once this was achieved, the second stage involved the addition and testing of the

pothole-detection module. The final stage involved the addition and testing of the

pothole-filling module and overall system integration.

 This chapter describes in detail the mechanical design of the IPRV. It also

highlights the considerations that motivated the selection of various components of the

IPRV. The description is organized according to the stages of development mentioned

above.

3.2 Stage I – Semiautonomous mobile vehicle design

The first consideration in the design of the prototype was the determination of its size.

Several factors influenced this decision. The IPRV must be robust to be able to operate

satisfactorily in field tests. It must be able to carry significant loads (filler material). It

should also be large enough to house a laptop computer to be used for control. Keeping

these factors in mind, it was decided to use an electric powered wheelchair (EPW) as the

building block for the IPRV.

The IPRV is built upon the base frame of an Invacare Ranger II™ electric

powered wheelchair. The frame is 66-cm long, 46-cm wide, with a maximum height of

 19

52.5 cm. It is capable of supporting a weight of approximately 100 kg. Figures 3.1 and

3.2 show the front and side views of the IPRV.

Figure 3.1. Front view of the IPRV

 As depicted in the figures, motion is provided by two independently driven 24-V

DC motors with built-in reduction gears that provide a maximum speed of 6 km/hr. Two

12-V DC deep-cycle marine gel batteries are housed within the entablature and provide 5

 20

to 9 hours of typical operation. An Invacare MKIV RII motor controller is used for

motion control and is mounted on the frame. The IPRV has pneumatic front wheels that

are 31.75 cm in diameter. Two 18-cm-diameter caster wheels in the rear provide support

to the vehicle. The vehicle is front-wheel driven to ensure that the traction wheels

negotiate the terrain first.

Figure 3.2. Side view of the IPRV

 A sheet-metal box is mounted on the upper frame of the IPRV and forms a

housing for the electronics. An on/off switch, a 1-kΩ potentiometer and two light

 21

emitting diodes (LEDs) are mounted on one side of the housing. A Fujitsu Lifebook

laptop with an AMD-K6™ 451-MHz processor and 192 MB of RAM serves as the

controller for the IPRV and is placed on the metal box. The IPRV also has a mechanism

to provide feedback for position control and to ensure that it proceeds in a straight path

when being operated semi-autonomously. This mechanism is described below.

3.2.1 Position control

Once a pothole is detected during the operation of the IPRV, it must be capable of

automatically positioning its filling-tank valve over the pothole. Thus there is a need for

a real-time feedback mechanism that can provide closed-loop position control.

 Also, the IPRV uses a differential drive system for steering. Turning is achieved

by rotating one of the drive motors at a different speed than the other. Even the slightest

difference in speeds between the two motors will result in the vehicle not following a

straight course. These differences may arise due to dissimilar tire pressures, wear

differences in the carbon brushes, bearings, or gears of the two motors. Thus a real-time

feedback mechanism is also required to ensure that both motors rotate at the same rate

when the IPRV moves in a straight direction.

 To achieve closed-loop position control and to ensure an accurate drive system, a

Hall-effect switch was mounted on the rear casing of both the motors as suggested in

[16]. A disc with magnets attached to half of its periphery was mounted on the rotor

shaft. This disc rotates with the rotor. Figure 3.3 shows the feedback assembly being

used.

 22

A pulse is generated by the Hall-effect switch on every rotation of the motor

shaft and is input to a data acquisition card installed on the laptop. When the IPRV is

following a straight path, the distance moved by it is proportional to the number of

rotations of the motor shaft. Thus a feedback signal is available to position the IPRV

with a resolution equal to half the distance moved by it in one rotation of the motor. This

resolution was found to be 1.554 cm. It should be noted that the resolution can be

improved by changing the distribution of the magnets. The algorithm used to achieve

closed-loop position control is described in Chapter V.

Figure 3.3. IPRV position control feedback mechanism

 23

 In order to mount the position-control feedback assembly, it was necessary to

remove the brake-assembly installed on the rear casing of the motors. The procedure for

its removal is described below.

3.2.2 Brake-assembly removal

As a safety feature, all electric powered wheelchairs are provided with braking

mechanisms. In the Invacare wheelchair used for this thesis, the brake mechanism was

located on the rear end of each motor. Figure 3.4 shows the original brake-assembly.

Figure 3.4. Electromagnetic brake-assembly

 When the wheelchair power is off or the wheelchair joystick is in the neutral

position, two springs force a plate against the motor shaft preventing the wheelchair

 24

from rotating. On displacing the joystick from its neutral position, 24-V DC voltage is

applied across the electromagnet to energize it. The plate is retracted by the

electromagnet, and the brake is released.

 This safety feature was not required for the operation of the IPRV and was

removed, making room for mounting the feedback mechanism described in the previous

section. However, it was found that the wheelchair motor controller prevented the

wheelchair from being operated when the brake-assembly was disconnected. This

problem was overcome by placing a resistor across the 24-V DC supply from the motor

controller to make the motor controller ‘believe’ that the brake-assembly was still in

place. The resistance and wattage of the resistor to be used was determined as follows.

Voltage across the electromagnet, Vmag = 24 V; Resistance of the electromagnet = 70 Ω

=> Power generated at the electromagnet =
R

Vmag
2

 = 8.23 W

 Based on availability, two 200-Ω, 5-W resistors wired in parallel are being used

in the IPRV to emulate each brake-assembly’s impedance. This provides an equivalent

100-Ω, 10-W resistor that satisfies the power requirements calculated above.

3.3 Stage II – Pothole-detection module design

The IPRV employs a mechanical means for pothole detection as shown in Figure 3.5.

The pothole detection module consists of a swinging link in the front end of the IPRV.

One end of this link has a wheel attached to it that rolls along the road surface. The other

end is fixed to an incremental optical shaft encoder. The encoder generates 256 pulses

per revolution thus providing a resolution of 1.4°.

 25

Figure 3.5. Pothole-detection module

 During operation, the wheel follows the road surface contour. On encountering a

pothole the swinging link rotates depending on the depth of the pothole. This rotation

causes pulses to be generated by the encoder which are input to a data acquisition card

installed on the laptop computer. The pulse count is used to determine the position of the

deepest encountered part of the pothole. The IPRV is then positioned over the calculated

location, and the filling operation begins.

 The encoder uses quadrature encoding, which makes it possible to determine the

direction of rotation. The direction-of-rotation information enables the IPRV to

distinguish between potholes and bumps, and it ignores the bumps. A detailed

description of the algorithm used to determine the direction of rotation of the encoder is

provided in Chapter V.

 26

3.4 Stage III – Pothole-filling module design

A filler tank is mounted on the rear end of the IPRV. This tank contains water that is

used for simulation purposes, in place of filler material, to fill the potholes. A 12-V DC

solenoid valve is mounted on the filler tank outlet pipe and is used to start and stop the

pothole filling operation. Figure 3.6 shows the pothole-filling module being used.

Figure 3.6. Pothole-filling module

 27

 Once a filling operation is in progress, additional information must be available

to determine when to close the filler valve. This information may be in the form of the

volume of the pothole or some other feedback mechanism. By their very nature, potholes

are highly irregular in shape and size making volumetric analysis very complex. The

IPRV uses an infrared distance sensor mounted on the filler tank to provide feedback

indicating the end of a filling operation. The infrared sensor is positioned such that it

undergoes a transition in state when the water level in the pothole reaches the road

surface level. This state transition triggers the closing of the filler valve.

 28

CHAPTER IV

DATA ACQUISITION AND INTERFACING

4.1 Introduction

In order to operate and control the IPRV, an interface was developed between the laptop

and the individual components of the IPRV described in the last chapter. This chapter

describes in detail the developed interface. Section 4.2 describes the PCMDIO data-

acquisition card used for all input/output (I/O) functions, Section 4.3 describes the

laptop/motor controller interface developed followed by a description of the filler valve

interface in Section 4.4. The sensor interface is discussed in Section 4.5 and the final

section describes the prototyping board used and the circuit designed to implement the

interfaces.

4.2 The PCMDIO data-acquisition card

A Superlogics PCMDIO 24-channel digital I/O type II Personal Computer Memory Card

International Association (PCMCIA) card is installed on the Fujitsu laptop and is used to

perform all data acquisition and control functions. A CP-1037 adapter cable is used to

convert the PCMDIO’s 33-pin 0.8-mm I/O connector to an industry standard D-37

connector. Figure 4.1 shows the PCMDIO card with the CP-1037 adapter cable. The

main features of the PCMDIO card are listed below.

1. The PCMDIO has 24 transistor-transistor-logic (TTL)-compatible buffered digital-

I/O channels individually programmable as either input or output. These digital-I/O

channels are grouped into three different ports with each port containing eight channels.

 29

These ports are controlled via the Data Port A, Data Port B, and Data Port C control

registers, respectively. In all three registers, each bit corresponds to one data line. A

detailed description of the registers is provided in [17].

2. The eight Port C I/O channels may also be configured as interrupt sources. The

interrupts may be configured in four ways: level-sensitive active-low interrupt, level-

sensitive active-high interrupt, high-to-low transition-edge-sensitive interrupt, and low-

to-high transition-edge-sensitive interrupt [17].

Figure 4.1. The PCMDIO card with the CP-1037 adapter cable

 Individual channels of the PCMDIO are configured using the PCMDRIVE

configuration utility described in Chapter V. The PCMDIO performs the following

functions.

 30

1. interfacing the laptop and the motor controller for IPRV speed and direction control

2. interfacing the laptop and the filler valve to start or stop the pothole filling operation

3. interfacing the laptop with all onboard sensors

These functions are described in the following sections.

4.3 Interfacing the motor controller

The IPRV has an onboard Invacare MKIV RII motor controller with a joystick for

motion control. Power to the motor controller is supplied by two 12-V DC batteries. The

motor controller uses pulse width modulation (PWM) to drive the two 24-V DC motors.

The schematic wiring diagram of the Invacare wheelchair is shown in Figure 4.2.

 To enable semiautonomous operation of the IPRV, an interface was required

between the laptop and the DC motors. Two choices were available for the construction

of this interface.

1. Develop an interface between the laptop and the motor controller. This interface

would emulate the functioning of the joystick and would be used to provide speed and

direction commands to the motor controller. The motor controller would drive the

motors.

2. Develop a circuit that would use PWM signals generated by the laptop to drive the

motors directly.

 Option 1 was chosen as the preferred method as it allowed the use of the motor

controller specifically designed to drive the DC motors. It also reduced the

computational demands on the laptop’s processor. To emulate the joystick, it was

 31

necessary to understand the operation of the joystick and how it interfaced with the

motor controller. This is described below.

M M

JOYSTICK

RIGHT DC MOTORLEFT DC MOTOR

Motor coil

Electromagnetic
brake

15-A fuse

Connector for
charger

80-A fuse

12-V DC BATTERY 12-V DC BATTERY

4 5 6 7

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

80-A fuse

1 2 3891011

1
2
3

MOTOR CONTROLLER

Figure 4.2. Invacare wheelchair schematic wiring diagram

4.3.1 Joystick operation and interface

The Invacare joystick is a two-axis, spring-return analog resistive joystick. It has two

potentiometers mounted to spring-loaded bails that are moved on deflecting the joystick

 32

handle. One potentiometer is used for the x-axis (Left-Right direction control) and the

other for the y-axis (Forward-Reverse speed control). The voltage across each

potentiometer is measured by the motor controller and is used to determine the required

speed and direction. Figure 4.3 shows the joystick/motor controller interface circuit.

On/Off Switch

Rx Ry Rpot

LED

JOYSTICK

From the motor
controller

1

2

3

4

5

6

7

8

9

Figure 4.3. Joystick/motor controller interface

 In the figure above, Rx and Ry are the two potentiometers of the joystick. These

provide 2 analog input channels to the motor controller as described above. The

joystick/motor controller interface also has a potentiometer, Rpot, that provides a third

analog input channel to the motor controller. The input from this channel is used to set

 33

the maximum speed of the wheelchair. Once the maximum speed is set, the joystick

speed control channel is used to vary the speed of the wheelchair within the set bounds.

 The interface also has the following components.

1. an on/off switch to power the wheelchair

2. an LED to indicate power to the wheelchair is on. The LED also flashes as a visual

indication of low battery levels.

3. an LED to indicate an error detected by the motor controller

 Voltages across the two analog input channels from the joystick were measured

to determine the range of voltage change when the joystick handle was moved from one

extremity to the other. The results are shown in Tables 4.1 and 4.2.

Table 4.1. Analog voltage range across Channel 1

Voltage across Channel 1
Joystick handle
position

Voltage across the
channel (V)

Neutral 2.487

Maximum Forward 3.865

Maximum Reverse 0.995

Maximum Left 2.510

Maximum Right 2.477

 34

Table 4.2. Analog voltage range across Channel 2

Voltage across Channel 2
Joystick handle
position

Voltage across the
channel (V)

Neutral 2.489

Maximum Forward 2.490

Maximum Reverse 2.510

Maximum Left 0.800

Maximum Right 4.195

 From the tables above it can be seen that analog input Channel 1 determines the

speed of the wheelchair while Channel 2 determines the direction. An interface was thus

developed to emulate the joystick and enable the laptop to control the speed and

direction of the IPRV. This is described below.

4.3.2 Laptop/motor controller interface

Figure 4.4 shows the designed circuit that provides an interface between the laptop and

the motor controller and replaces the joystick.

 Channel 0 of the PCMDIO card is configured as an output channel. This channel

provides an 8-bit output that is converted to an analog signal (0–5-V range) by the Quad

8-bit digital-to-analog converter (DAC). Channel 1 of the PCMDIO card is configured as

a 2-bit output channel that determines which channel of the DAC is being set. In this

way both speed and direction of the IPRV can be controlled by setting the appropriate

 35

bits of Channels 0 and 1 of the PCMDIO. The description of individual components

follows.

AD7225LN

VoutB
VoutA
Vss
VrefB
VrefA
AGND
DGND
LDAC
DB7
DB6
DB5
DB4

VoutC
VoutD

Vdd
VrefC
VrefD

A0
A1

WR
DB0
DB1
DB2
DB3

1O
U

T

1I
N

-

1I
N

+

V
cc

-

V
cc

+

2O
U

T

2I
N

-

2I
N

+

TL
07

2A

1O
U

T

1I
N

-

1I
N

+

V
cc

-

V
cc

+

2O
U

T

2I
N

-

2I
N

+

TL
07

2A

1O
U

T

1I
N

-

1I
N

+

V
cc

-

V
cc

+

2O
U

T

2I
N

-

2I
N

+

TL
07

2A

1O
U

T

1I
N

-

1I
N

+

V
cc

-

V
cc

+

2O
U

T

2I
N

-

2I
N

+

TL
07

2A

1O
U

T

1I
N

-

1I
N

+

V
cc

-

V
cc

+

2O
U

T

2I
N

-

2I
N

+

TL
07

2A

PCMDIO
Channel 0

(8-bit)

PCMDIO
Channel 1

(2-bit)

+12 V +9 V -9 V

MOTOR
CONTROLLER

CH B
CH A
GND
+5 V

Figure 4.4 Circuit to interface the laptop with the motor controller

 36

1) TL072A operational amplifier (op-amp) - Each TL072A comprises of two op-amps.

Here, the op-amps are used as buffers or voltage followers as shown in Figure 4.5.

+

_

V+

V-

Vout
Vin

Figure 4.5 Voltage follower or buffer

 The non-inverting (+) input is connected to the voltage source (Vin = 5 V) and

the output (Vout) is connected to the inverting (–) input. Thus the gain is unity and Vout

= Vin. The voltage follower is being used to isolate the PCMDIO from the output of the

op-amp that is input to the DAC. Hence very little power is drawn from the PCMDIO

avoiding ‘loading’ effects.

2) AD7225LN Quad 8-bit DAC - The AD7225LN has four 8-bit DACs with output

amplifiers. Each of the 4 channels has two registers: an input register and a DAC

register. Data held in the DAC registers determine the analog outputs of the converters.

Only two channels of the DAC are being used, one for speed control and the other for

direction control of the IPRV as described previously. Pins WR and LDAC are grounded

rendering all the DAC registers and the selected input register transparent. This enables

 37

the output to follow the input data for the selected channels. The latching capability of

the DACs is not being used as the output of each channel of the PCMDIO is latched.

3) Voltage supplies - The laptop/motor controller interface circuit has three different

voltage supplies. +5-V DC is supplied by the motor controller and is the input reference

voltage to the DAC. +12-V DC is supplied from one of the wheelchair batteries and

forms the supply voltage (Vdd) to the DAC. ±9-V DC is supplied by a set of four 9-V

DC batteries as shown in Figure 4.6. This forms the supply voltage to the op-amps.

+9 V -9 V

9-V DC Battery 9-V DC Battery

Figure 4.6. ±9-V DC supply

 It was initially considered to supply the op-amps with ±12-V DC which could be

made available using the two 12-V DC wheelchair batteries. This would have required

the connection between the two batteries to serve as ground (zero potential). However, it

was found that the motor controller ground was the same as the negative terminal of

Battery 2 shown in Figure 4.1. Thus the two grounds would have had a potential

difference of 12 V and hence an independent voltage supply had to be provided to

operate the op-amps.

 38

 In addition to the components described above, 2 LEDs and a 1-KΩ

potentiometer are mounted on one side of the electronics housing and perform the same

functions as the joystick LEDs and potentiometer as described in Section 4.3.1.

4.4 Interfacing the filler valve

The IPRV filler valve is a Delrin direct-acting 12-V DC solenoid valve. The valve is

normally-closed (NC) and does not require a minimum differential pressure to operate.

When energized, the valve is open and draws a continuous current of 1.22 A. Figure 4.7

shows the circuit designed to operate the filler valve using the laptop computer.

Figure 4.7. Filler valve interface

 Output Channel 5 (1-bit) of the PCMDIO is used to open and close the filler

valve. The filler valve is connected across the normally-open (NO) contacts of an AZ821

 39

double-pole double-throw (DPDT) relay. One end of the relay coil is connected to a 5-V

DC supply while the other end is connected to the open-collector (OC) output of a

ULN2803 eight Darlington-transistor array. A high output from the PCMDIO Channel 5

drives the ULN2803 thus energizing the relay coil and opening the filler valve. The

ULN2803 has a built-in flyback diode to be connected across the relay coil and prevents

damage due to inductive kickback from the coil. A TL072A op-amp is configured as a

voltage follower and is used to isolate the PCMDIO from the rest of the circuit.

4.5 Interfacing the sensors

An MC7805C three-terminal positive voltage regulator is used to convert 12-V DC from

a wheelchair battery into a 5-V DC supply to all the sensors onboard the IPRV. These

sensors include the following:

1. incremental optical shaft encoder

2. two Hall-effect switches

3. infrared distance sensor

 Outputs of the sensors are connected to the input channels of the PCMDIO. The

designed interface is shown in Figure 4.8. As can be seen from the figure, bypass

capacitors are applied across the voltage regulator’s input and output terminals to

suppress any voltage transients and obtain a stable, fixed output. Each supply has a

switch so that individual supplies may be switched on and off according to requirement

without affecting the rest of the circuit.

 40

Figure 4.8. Sensor interface

4.6 Prototyping board and circuit design

An 8016 Vectorbord® Circbord® was used to design the circuit that implements all the

interfaces described in this chapter. Figure 4.9 shows this circuit.

 One side of the Circbord is used for all the outputs from the PCMDIO while the

other side is used of all the sensor inputs. None of the sensors are permanently fixed to

the prototyping board, but connectors are provided for all the interfaces facilitating

removal or exchange of any circuit component. All power supplies have inline switches;

this makes it possible to isolate any part of the circuit and is useful for fault detection.

 41

Figure 4.9 Circbord® with interface design

 42

CHAPTER V

SOFTWARE DESIGN

5.1 Introduction

Programming the IPRV required the writing of diverse applications including hardware

control, networking, and providing a user with a friendly graphical user interface (GUI).

This chapter describes the various issues that arose during the programming phase along

with their solutions. The first section describes the programming language being used,

the next section describes the software designed to control the hardware, followed by a

description of the software designed for networking. The final section describes the GUI.

5.2 Programming language

The Microsoft® Windows® Visual Basic® 6.0 – for 32-bit Windows Development (VB6)

environment is being used for all the programming requirements of the IPRV. Visual

Basic is an ‘event-driven’ programming language wherein the program is divided into

procedures and functions executed in response to a stream of events. Visual Basic

provides a powerful and flexible environment, enabling rapid Windows application

development. It provided a single platform to write programs for all the diverse

applications of the IPRV.

 The Microsoft Windows application programming interface (API) was utilized to

develop the application to control the PCMDIO digital-I/O card. The use of the

Windows API provides direct access to the dynamic-link-library (DLL) files that contain

 43

the functions, data structures, and constants required to operate the PCMDIO card.

Further detail is provided in the next section.

 Two programs were written to operate the IPRV. One is executed from the laptop

and is called the ‘server-side’ program. The other can be executed on any computer on

the same LAN as the IPRV and is called the ‘client-side’ program. Actual source code

for the server- and client-side programs are available in Appendices A and B,

respectively.

5.3 Hardware control

As described in the previous chapter, the PCMDIO digital-I/O card is used for all data

acquisition and control functions within the IPRV. Along with the PCMDIO card, the

vendor also provides the PCMDRIVE® Data Acquisition Software. The PCMDRIVE

software includes the following components.

1. PCMDRIVE Configuration Utility - This utility is used to edit the PCMDIO hardware

configuration file, pcmdio.dat. This file contains the setup of the 24 individual I/O

channels of the PCMDIO card into logical channels. Using the configuration utility, the

logical channels can be set as single-bit channels or multiple-bit channels by clicking on

the current logical channel number [18]. Once all the logical channels have been

assigned, each channel may be configured as either an input channel or an output

channel. The PCMDRIVE configuration utility with the first 16 data lines is shown in

Figure 5.1. For the IPRV, the PCMDIO was configured to have 14 logical channels.

Table 5.1 lists the detailed channel configuration being used.

 44

Figure 5.1. PCMDRIVE configuration utility

Table 5.1. IPRV PCMDIO channel configuration

Logical
Channel (CH)

Number of
bits/channel

Channel type
(Input/Output) Function

CH 0 8 Output Data bits to the DAC
CH 1 2 Output Logic bits to the DAC
CH 2 1 Output Spare
CH 3 1 Output Spare
CH 4 1 Output To an LED for ‘Hole found’ indication
CH 5 1 Output To open/close the filler valve
CH 6 1 Output Spare
CH 7 1 Input Spare
CH 8 1 Input Spare
CH 9 1 Input Spare
CH 10 1 Input From the distance sensor
CH 11 1 Input Spare
CH 12 1 Input From the left-motor Hall-effect switch
CH 13 1 Input From the right-motor Hall-effect switch
CH 14 2 Input From the pothole-detection optical encoder

 45

2. Device driver – The PCMDRIVE software provides a two-part driver. The first part

contains the Window API and is also responsible for memory management, file I/O, and

other hardware-independent functions. The second part of the driver is hardware-

dependent and is responsible for implementing the requested operations on the

PCMDIO.

 The Windows API provides an interface among the pcmdio.dat file, the device

driver, and the server-side program. The procedure to be used to perform data

acquisition is described in [18]. Highlights of the procedure follow in the next section.

5.3.1 Performing data acquisition

“PCMDRIVE uses a ‘data defined’ rather than a ‘function defined’ interface. [18]” Each

data-acquisition operation is defined by a series of configuration parameters. These

parameters are contained in a data structure and are collectively referred to as a request

or a request structure. In order to perform an input or output operation using the

PCMDIO, the following sequence of steps is required [18].

1. Define the hardware configuration. – Explained in Section 5.3.

2. Open the hardware device. – Before an application program can use the PCMDIO, it

must first ‘open’ it. If this is successful, PCMDRIVE assigns a logical device number

used for all future references to the PCMDIO.

3. Allocate the request structure and data buffers. – Once the PCMDIO is open, memory

is allocated and locked to be used to store the request structure and data buffers.

 46

4. Define the request structure and data buffers. – The request structure contains

information such as the channel number, trigger source, and a pointer to the data buffer.

The data buffer contains the status of the buffer, the buffer size, and a pointer to the data

storage area.

5. Request the operation. – This step is used to validate the contents of the request

structure and to determine if the operation is supported by the hardware. If the request is

valid and the operation supported, a request handle is issued to identify the

configuration. Once the request handle is issued, the channel(s) specified in the request

structure is allocated for use by this request.

6. Write data to the locked data buffer. – This step is used only if requesting an output

and copies data from the Visual Basic array created in Step 4 to the locked PCMDRIVE

data buffer created in Step 3.

7. Arm the request. – By arming the request, the hardware is programmed and any

system resources required for the request are allocated and assigned to the request.

8. Trigger the request. – Triggering the request starts the requested operation

9. Wait for completion. – Once the operation has been started, the application waits for

the request to be completed. Completion is indicated by the triggering of an event on the

change of the request status to ‘complete.’

10. Read data from the locked data buffer. – This step is used only if requesting an input

and copies data from the locked PCMDRIVE data buffer created in Step 3 to the Visual

Basic array created in Step 4.

 47

11. Release the configuration. – After the operation is completed, the channel(s) used by

the request is freed.

12. Close the hardware device. – Once all required operations have been performed, the

PCMDIO is closed. “System integrity can not be guaranteed if the application program

exits without closing the hardware device. [18]”

 For this thesis, 5 functions were specially created in order to simplify the use of

the PCMDIO for digital I/O operations. The functions are briefly described below, and

the source code for these functions is available in Appendix A

1. Function openDevice – used to define the hardware configuration and open the

PCMDIO

2. Function singleDigitalInput – used to input a single value from a single input channel

of the PCMDIO

3. Function multipleDigitalInput – used to input a single value from multiple input

channels of the PCMDIO

4. Function singleDigitalOutput – used to output a single value to a single output channel

of the PCMDIO

5. Function multipleDigitalOutput – used to output a single value to multiple output

channels of the PCMDIO

 The latter four functions perform Steps 3 through 11 of the above-mentioned

steps. Since they do not close the hardware, these functions can be used a multiple

number of times by the application program. The algorithm for the function

singleDigitalInput is shown in Figure 5.2.

 48

Define the ‘Allocate Request’
data structure

Allocate and lock memory for
the digital input

Error?

Define the digital input
request structure

Send a digital input request
to the PCMDRIVE

Error?

Arm the request

Error?

Trigger the request

Error?

Wait for completion or error

Complete?

Copy input value to VB array

Error?

Release the request

Error?

Return input value

End function

No

Return error codeYes

Free the requestYes

No

Release the requestYes

Yes

Yes

Yes

Yes

No

No

No

No

No

Figure 5.2. Algorithm of function singleDigitalInput

 49

 The IPRV application programs use the PCMDIO data acquisition functions

described above to control the onboard hardware. Sections 5.3.2, 5.3.3, and 5.3.4

describe the key elements involved in the software design for controlling various aspects

of the hardware.

5.3.2 Motion control

The IPRV can be operated in two distinct modes.

1) Remote Maneuvering Mode – In this mode a remote user can give direction and speed

commands to be executed by the IPRV. The motion is open loop as no feedback

mechanism is provided. Operation in this mode is similar to joystick control wherein the

vehicle needs to be continuously controlled by the operator.

 The IPRV can only be started in the remote maneuvering mode. When started,

the voltage across the two analog channels to the motor controller must be 2.5 V

indicating that the joystick is in the neutral position (Refer to Sections 4.3.1 and 4.3.2).

This corresponds to an output value of 128 of the 8-bit PCMDIO channel 0.

 The operator issues direction/speed commands using the client-side GUI (Section

5.5). These commands are sent as messages to the server-side program. Five motion-

control messages may be sent: forward, reverse, left, right, and stop. On receiving a

message, the server-side program first determines if the command requested is within the

operational range of the IPRV (Refer to Tables 4.1 and 4.2). If out of range, the message

is ignored; if the message is within the range, the program updates the speed/direction

variable by incrementing/decrementing it by a fixed value. The updated variable

 50

determines the new output across Channel 0. The complete algorithm for the remote

maneuvering mode is provided in Chapter VI.

2) Semiautonomous Mode – In this mode, the IPRV follows a straight path looking for

potholes. The remote user can start or stop the IPRV but has no control over its speed

and direction. As described in Section 3.2.1, feedback from two Hall-effect switches is

available and used to ensure that the IPRV moves in a straight direction. The algorithm

for direction control is shown in Figure 5.3.

Sample the left and right motor sensor input
Count the number of state transitions

Is the
right motor count =

10?

Is the
left motor count

= 10?

Is the
left motor count

> 10?

Decrease the direction-control
variable by a fixed amount

No

Yes

No No

Yes

Increase the direction-control
variable by a fixed amount

Output the new direction to the
motor controller

Set both counters to 0

Yes

Figure 5.3. Algorithm used for direction control

 Both the Hall-effect switches are continuously sampled at a sampling frequency

of approximately 400 Hz. Changes of state of the inputs are counted, thus every rotation

 51

of the motor shaft increments the count by 2. For the IPRV to move in a straight

direction, both motors must rotate at the same rate. Hence, keeping the right-motor count

as a reference, both counts are compared at regular intervals (every 10 right-motor

counts) and the direction of the IPRV is changed by a fixed amount to compensate for

the difference if any.

 On switching the IPRV to the semiautonomous mode, the IPRV moves at a

constant speed till a pothole is detected. Once a pothole is detected, it calculates the

distance between the deepest encountered part of the pothole and its filler valve. The

expression to calculate the distance is derived in Chapter VI. To position the filler valve

over the calculated location, a real-time position control algorithm was implemented

using feedback from the right-motor Hall-effect switch.

Speed signal to
motor controller

Time

Error = 0

Start of position control Speed reduction triggered

Figure 5.4 Position control speed signal versus time

 The distance to be moved is proportional to the number of rotations of the motor

shaft when the IPRV is moving in a straight direction. Thus the number of counts to be

 52

moved is calculated and forms the set point for the position control. Figure 5.4 shows the

speed signals generated by the position control algorithm. Initially the IPRV is moved at

a constant speed till the error (difference between the set point and the current count)

reaches a certain predetermined value. At this point the position control algorithm starts

to reduce the speed signal proportional to the reduction in error such that the IPRV is

brought to a halt when the error equals 0. Due to friction, the IPRV comes to rest before

the speed signal is 0. Thus the reduction in speed signal is calibrated to ensure that the

IPRV does not stop prematurely.

5.3.3 Pothole detection

The IPRV uses an incremental optical encoder in conjunction with a swinging link and

roller to detect potholes as explained in Section 3.3. Rotation of the swinging link causes

a series of pulses to be generated across the two channels of the encoder. These pulses

will also be generated if the swinging link encounters a bump on the road. Thus an

algorithm has been implemented to distinguish between potholes and bumps.

Figure 5.5 shows the pulses generated across the 2 channels of the encoder.

Channel A leads Channel B by 90° in all rotations for clockwise rotation of the encoder

shaft. Hence for clockwise rotation, the 2-bit input channel to the PCMDIO exhibits the

state-transition pattern of 0-1-3-2 for every pulse cycle. Similarly for counter-clockwise

rotation the state-transition pattern is 0-2-3-1 for every pulse cycle.

 53

Channel A

Channel B

0

1

0

1

0 1 23 02-bit channel input

(Clockwise rotation)

1

Figure 5.5. Encoder state-transition diagram when rotation is clockwise

 An algorithm was implemented to distinguish between potholes and

bumps by following this transition pattern as well as to calculate the change in the angle

of the swinging link. The algorithm is shown in Figure 5.6. An additional variable is

used by the server-side program in order to determine the deepest encountered part of

the pothole. Due to its irregular nature, a single pothole may have several undulations

each having a local maximum depth. The additional variable continuously monitors the

swinging link angle and disregards the local maximum values that are below its value.

The knowledge of the maximum depth also enables the IPRV to avoid initiating a

pothole filling operation every time minor surface asperities are encountered. A

minimum threshold value for the maximum depth is set below which all irregularities are

ignored.

 54

Set variable AngleCounter = 0

Input 2-bit value from the optical encoder.
Set variable OldValue = input value

Input 2-bit value from the optical encoder.
Set variable NewValue = input value

Is
OldValue =
NewValue ?

Yes

Case
OldValue = 0

No

Case
OldValue = 1

Case
OldValue = 2

Is
NewValue = 2?

Is
NewValue = 0?

Is
NewValue = 3?

Is
NewValue = 1?

Rotation is counterclockwise

AngleCounter = AngleCounter +1

Set OldValue = NewValue

Yes

Yes

Yes

Rotation is clockwise

AngleCounter = AngleCounter -1

Yes

YesYesYes

No No No

NoNoNoNo

Figure 5.6 Algorithm used to distinguish between potholes and bumps

5.4 Networking

Remote operability of the IPRV is provided by interfacing the IPRV with a LAN using a

wireless LAN card installed on the laptop. This is shown in Figure 5.7. The IPRV acts as

 55

a server and executes the server-side program. Any remote terminal on the same LAN

can be used to remotely operate the IPRV. The remote terminal forms the client and

executes the client-side program.

The transport layer protocol used for sending and receiving data is the

Transmission Control Protocol (TCP). The IPRV is operated remotely, so it is of utmost

importance that when a command to ‘stop’ the vehicle is sent across the network, it must

arrive at the IPRV. There is thus a need for a transport protocol that provides

applications with a ‘connection-oriented, reliable’ service. TCP satisfies these

requirements with a connection-oriented, reliable, in-sequence, byte-stream service [19].

The Microsoft Winsock Control 6.0 ActiveX control is used for the implementation of

the TCP sockets within Visual Basic 6.0.

Figure 5.7. Network layout

 56

 All commands to the IPRV are sent as strings of data. On receiving data, the

server-side program compares the data string with a list of messages that it recognizes. If

there is a match then the code corresponding to the particular message is executed. The

use of a network to control the IPRV raised two significant safety issues. The issues

along with their solutions are discussed below.

5.4.1 Update of global variables

Two global variables are used on the server-side as well as the client-side program to

keep track of the current speed and direction of the IPRV. While the variables in the

server-side are responsible for the actual speed and direction of the IPRV, the variables

on the client-side are used to provide the operator a visual indication of the current status

of the IPRV. It is thus extremely important that the variables within both programs have

the same value.

 Initially the two programs were written to update the global variables based on

the number of commands sent or received. However, a wireless network is inherently

prone to data-packet losses, and it was found that the variables within the two programs

would tend to have different values over a period of time. The rate of packet loss was

found to increase on increasing the transmission rate.

 In order to eliminate this problem, the IPRV application programs employ a

feedback mechanism. The server-side program on receiving a message updates its global

variables and returns an acknowledgment of the message received to the client-side

program. This acknowledgment is appended with the current value of the 2 global

variables. On receiving the acknowledgment, the client-side uses the values of the global

 57

variables sent to update its own variables. Thus at all times the operator is provided with

an accurate representation of the IPRV’s current speed and direction.

5.4.2 IPRV going out of range

The other significant issue anticipated was that the IPRV may fall out of range of the

wireless network during its operation. Another problem is excessive network delays. In

both cases the IPRV goes beyond the control of the operator and becomes a serious

threat to road safety. It is thus essential that the IPRV be brought to a stop as soon as one

of the above conditions occurs.

 To achieve this, the server-side program sends a ‘check communication’ message

every 2 seconds to the client-side program. This message is appended with a random

integer. As soon as the client-side receives this message, it returns the identical message

along with the same random number. Before the next message is sent, the server-side

program checks to ensure that the previous message was returned by the client-side. If

the message has not been returned or the number received is incorrect then the server-

side program stops the IPRV and displays a message indicating that the communication

link is down. The use of random numbers ensures that the server-side program does not

mistake delayed or resent data packets as valid replies.

5.5 Graphical user interface

In order to facilitate the operation of the IPRV, the client-side program provides an easy-

to-use GUI for the operator. Figure 5.7 shows the GUI during the remote maneuvering

mode. The GUI is composed of the following 5 elements.

 58

Figure 5.8 Client-side GUI during remote maneuvering

1. Message frame – This is used to inform the operator of the current status of the

network connection. It also informs the operator if the run mode is semiautonomous or

remote maneuvering.

 59

2. Commands text box – This is used to provide the operator with a visual indication of

the IPRV’s current speed and direction. A positive speed indicates that the direction of

motion is forward, and a positive direction indicates that the direction of motion is to the

right. Reverse and left movements are indicated by negative speed and direction values,

respectively.

3. Network communication frame – Once the server-side program has been initiated and

the server is listening for an incoming connection, this frame can be used to connect or

disconnect the client and the server. In order to prevent multiple connection requests

from being initiated by a user, the ‘connect’ button is disabled once a connection has

been established and is only enabled if this connection is terminated by either the client-

side or the server-side.

4. Run-mode frame – Once a connection is established, the IPRV by default starts in the

remote maneuvering mode. The user can use the buttons in this frame to switch between

the remote maneuvering and semiautonomous modes. The button for the current run-

mode is disabled to prevent multiple initiations.

5. Controls frame – This frame contains the buttons used to send speed and direction

commands to the IPRV server-side program. All the buttons are enabled during the

remote maneuvering mode. In the semiautonomous mode only the ‘stop’ and ‘FWD’

buttons are enabled as the operator can only stop or start the IPRV in this mode.

 In addition to the GUI explained above, the client- and server-side programs also

provide visual indications in the form of messages for any error or loss of

communication that may occur.

 60

CHAPTER VI

OPERATION AND TESTING

6.1 Introduction

The design of the IPRV involved work in three major areas: hardware design, interface

design, and software design. These were explained in detail in the previous chapters.

This chapter describes how these three designs come together to make the IPRV function

as a single unit capable of automating the process of pothole repair. Section 6.2

describes the typical operation of the IPRV when deployed at a work site. Section 6.3

describes the complete set of experiments carried out for the measurement, calibration,

and testing of the IPRV.

6.2 IPRV operation

The first step to starting the IPRV is executing the server-side program after switching

on power to the motor controller and the individual sensors onboard. On executing the

server-side program, the PCMDIO card is opened and the speed and direction of the

IPRV are set to 0 (neutral position). The ‘Open Connection’ button is enabled on the

server-side GUI. On clicking this button, a TCP socket is created and it ‘listens’ for an

incoming connection request. The ‘Close Connection’ button can now be clicked at any

time to close the TCP socket.

 Next, the client-side program is executed at a workstation on the same LAN. On

clicking the ‘Connect’ button on the client-side GUI, a connection request is sent to the

server side. If no other connection is currently open, the server accepts the connection

 61

request and a TCP connection is established between the client and server. The client can

terminate the connection at any time by clicking the ‘Disconnect’ button.

 On establishing a connection, the IPRV is by default in the remote maneuvering

mode. In this mode, the operator controls the speed and direction of the IPRV using the

control buttons on the client-side GUI. The speed and direction values available for

output are restricted to a finite set of values. This is because digital output is being used

to drive the IPRV. Hence, every control command increases or decreases the output

signal by a fixed amount. The algorithm used for this mode is shown in Figure 6.1.

 The operator uses the remote maneuvering mode to position the IPRV at the

work site. Once this is done, the operator switches to the semiautonomous mode. The

IPRV now runs at a constant speed in a straight direction looking for potholes. Feedback

signals from the Hall-effect switches is used maintain the direction (Refer to Sections

3.2.1 and 5.3.2). The wheel at the lower end of the swinging link follows the road

contour. If any bumps are encountered by the wheel, the swinging link rotates clockwise

and no action is taken by the IPRV. On entering a pothole, the swinging link rotates

counter-clockwise. The IPRV now tracks the maximum pothole depth encountered by

counting the pulses generated by the optical encoder. A minimum threshold value for the

count is set to prevent the pothole filling operation from being initiated for minor

potholes that do not need immediate repair. This threshold was determined empirically

and has a value of 8 corrosponding to a maximum depth of 2 cm.

 62

Open Device

Set analog channels to
neutral position

Open a TCP socket
and ‘listen’ for an

incoming connection
request

Establish a TCP
connection with the

client

On the arrival of a connection request

Wait for data arrival
from the client

On data arrival

Case
Fwd/Rev

Is speed
max/min?

Increase/decrease
current speed by a

fixed amount

Case
Left/Right

Is direction
max/min?

Increase/decrease
current direction value

by a fixed amount

Case
Halt

Reset analog channels
to neural position

Case
Check
Comm

Is
connection

active?

Stop vehicle by
resetting channels to

neutral position

No No No Case
Auto

No

Yes YesYesYesYes

Yes

No

Yes Yes

No

Switch to remote
maneuvering mode

Reset analog channels
to neural position

Send updated speed
and direction

information to the client

No

No

Figure 6.1. Server-side remote maneuvering mode algorithm

 Once the swinging link is out of the pothole, the IPRV uses the maximum depth

recorded and the number of motor rotations after the maximum depth to calculate the

location of the pothole maximum depth. It then proceeds to position its filler valve over

this location. Position control is achieved using feedback signals from the right-motor

Hall-effect sensor (Refer to Sections 3.2.1 and 5.3.2). The IPRV comes to a halt once it

has reached the desired location and the filling operation is initiated by opening the filler

valve.

 63

 An infrared sensor mounted on the filling tank continuously monitors the filling

operation. When the filler material (water used for simulation purposes in this thesis)

reaches the road surface, the infrared sensor undergoes a transition in state (high-to-low).

This transition is sensed by the server-side program and the filling operation is

terminated by closing the filler valve. The IPRV now resumes running at a constant

speed in a straight direction until another pothole is detected. Figure 6.2 shows the

algorithm for the semiautonomous mode.

Run the IPRV at a constant
speed in a straight line

Continue till pothole is detected

Is pothole
size >

threshold?

No

Position the filler valve over the
pothole and come to a halt

Open the filler valve and wait for
completion signal from distance

sensor

On pothole detection

Yes

Shut the filler valve
On completion

Figure 6.2. Server-side semiautonomous mode algorithm

 If required, the operator can stop the IPRV at any stage during the

semiautonomous operation. If the IPRV is stopped during a filling operation, the IPRV

 64

will close the filler valve automatically before stopping. However, on resuming

semiautonomous operation all the pothole detection variables within the server-side

program are reset and the pothole will have to be detected again.

 In addition to the operation explained above, the IPRV also implements the

following safety features.

1. automatic stop on termination of the TCP socket by the client

2. automatic stop on losing connection with the wireless network

3. automatic stop on experiencing network delays longer than 2 seconds

6.3 IPRV testing and calibration

During the various stages of development of the IPRV, many experiments were

conducted in order to test the individual components used onboard, determine any

operational limitations, and calibrate the control algorithms being used within the

application programs. This section describes these experiments along with the results

obtained.

6.3.1 Determination of the maximum sampling frequency available

Knowledge of the maximum sampling frequency available is crucial to avoid ‘aliasing’

when sampling sensor input signals. For the IPRV a program was written to perform 100

consecutive input operations using a single channel. The start and stop time for each set

of operations was recorded and used to calculate the average sampling time. The time

interval between the operations was gradually reduced to obtain an upper-limit on the

achievable sampling frequency. The experiment was performed thrice to check for

 65

deviations in the average time for individual time periods. The results obtained are

shown in Table 6.1. The maximum sampling frequency was found to be approximately

400 Hz corresponding to a sampling time of 2.5 ms. The experiment was also performed

using multiple channels for output, and the results were found comparable.

Table 6.1. Programmed versus observed sampling times

Observed sampling time (ms)
Programmed

sampling time
(ms) Set 1 Set 2 Set 3

20 20.5 20.4 20.4

10 10.2 10.5 10.5

1 2.8 2.8 3.21

0.5 2.1 2.4 3.0

0.1 2.1 2.2 2.41

0 2.2 2.4 2.2

 Significant discrepancies were observed between average time values recorded

for the same time intervals. These discrepancies are due to the use of the Visual Basic

‘DoEvents’ function within the timer function written by the author. The DoEvents

function is used to transfer control to the operating system while a program is waiting for

a change of status. This enables other events to be processed in the background.

However, the time taken by the operating system to return control to the program is not

fixed and hence the discrepancy. Use of the DoEvents function was necessary to ensure

that the IPRV can be stopped even if it is in a wait loop.

 66

6.3.2 Determination of the threshold value for pothole detection

As mentioned before, a minimum threshold value is set for the number of pulses

generated by the optical encoder on entering a pothole. The purpose of this threshold is

to prevent the initiation of a pothole-filling operation every time a small surface

irregularity is encountered. There is no defined depth beyond which a pothole must be

filled and state transport departments make their own rules with regards to the correct

time for pothole repair. For this thesis, the IPRV has been set to repair potholes that have

a maximum encountered depth of more than 2 cm. This depth corresponds to a threshold

value of 8.

6.3.3 Test of the pothole-detection module

A program implementing the algorithm explained in Section 5.3.3 was written to test the

pothole-detection module. A wooden platform, shown in Figure 6.3, was constructed for

the experiment. Two potholes with the same maximum depth of 4 cm were used. One

pothole had a gradual decline to the maximum depth while the other had a sharp fall.

Multiple runs were conducted and the results are shown in Table 6.2.

 67

Figure 6.3. Experimental platform

Table 6.2. Pothole-detection module test results

 Pothole with gradual decline Pothole with sharp fall

 Max. count
recorded

Count at
pothole exit

Max. count
recorded

Count at
pothole exit

Test 1 16 0 9 1

Test 2 17 1 9 0

Test 3 16 0 10 1

As seen in the above table, a significant number of pulses from the optical

encoder were lost when the swinging link dropped into a pothole with a steep edge. This

 68

is because in the latter case the available sampling time of 2.5–3 ms was not fast enough

to record all the encoder counts. However, so long as the maximum count recorded

exceeds the minimum threshold, the primary function of pothole detection remains

unaffected because an infrared distance sensor is used for end-point detection. Also, due

to the very nature of pothole formation described in Chapter I, potholes tend to have

gradually sloping edges and are usually bowl shaped.

6.3.4 Determination of the upper-limit of wheel rotations per minute

The number of rotations of the motor shaft for one rotation of the front wheel was found

to be 32. Hence the gear ratio of the motor gear-reduction box is 32:1. The Hall-effect

sensors are mounted on the motor shaft and provide two counts per shaft revolution.

Three magnets were attached to the disc periphery (Refer to Figure 3.3) to increase the

signal pulse duration so that the feedback signal would be in the low and high state for

approximately half a revolution each. Let the angular speed of the wheel in rpm be R and

the sampling period, T = 2.5 ms. Then,

1 wheel rotation = 64 counts

=> Sampling frequency, Ωs = ππ 8002
=

T
 rad/s

From the Nyquist theorem, the Hall-effect switch signal frequency, Ωh <
2

sΩ

=> Ωh < π400 rad/s

Now the wheel frequency, Ωw =
64

hΩ

=> Ωw =
64

400
60

2 ππ
<

R

 69

=> R < 187.5 rpm

Hence the output shaft speed of the IPRV motor must be less than 187.5 rpm to

avoid aliasing. The IPRV has a maximum output shaft speed of 180 rpm therefore

aliasing is avoided at all speeds.

6.3.5 Determination of the position control parameters

At the moment that the swinging link comes out of a pothole (assuming that the

threshold value has been exceeded), the following information in the form of two

variables is available to the server-side program.

1) intMaxAngle – This variable stores the value of the maximum count generated by the

optical encoder within the pothole and represents the maximum change in the angle of

the swinging link.

2) intRpmCount – This variable stores twice the number of rotations taken by the motor

shaft after the maximum depth was encountered and represents the distance of the point

of maximum depth from the edge of the pothole.

 The distance between the point of maximum depth and the filler valve is required

to position the IPRV for the filling operations. This is calculated using the variables

defined above as follows.

Number of counts per wheel rotation = 64

Distance moved by the IPRV in one wheel rotation = 99.5 cm

=> The number of counts/cm =
5.99

64 = 0.6432

 70

Figure 6.4 shows the swinging link in three positions: (1) just before the pothole,

(2) at the maximum depth of the pothole, and (3) just after the pothole.

Figure 6.4. IPRV dimensions for position calculation

From the figure, D is the distance the IPRV has to be moved to position the filler

valve over the maximum depth, L is the distance from the filler valve to the point of

rotation of the swinging link, R is the length of the swinging link, h is the distance

between a horizontal line passing through the center of the encoder and the road surface,

θ is the initial angle of the swinging link from the horizontal axis, and φ is the angle of

the swinging link when it is at the maximum depth.

For the IPRV it was found that:

L = 98 cm = 64 counts, R = 29 cm = 18.65 counts, and h = 18 cm.

Thus o366.38sin 1 =⎟
⎠
⎞

⎜
⎝
⎛= −

R
hθ

Resolution of the optical encoder = o40625.1
256
360

= , therefore,

Change in swinging link angle = φ – θ = intMaxAngle * 1.40625˚

 71

=> φ = (38.366 + intMaxAngle * 1.40625)˚

Now D = L – Rcos φ – intRpmCount

=> D = 63 – 18.65 * cos(38.366 + intMaxAngle * 1.40625) – intRpmCount

The equation above is used to position the IPRV once the swinging link comes

out of the pothole. It should also be noted that the resolution of the position control is

equal to the distance traveled by the IPRV in half a rotation of the motor shaft. Thus,

Position control resolution = 554.1
64

5.99
= cm

6.3.6 Determination of the position control algorithm

In the previous section, an expression was evaluated for D, the distance in counts that the

IPRV has to move to position its filler valve over the maximum encountered depth of the

pothole. The IPRV has significant inertia and to ensure that it stops exactly when the

half-rotation count equals D, an algorithm has been implemented wherein the speed of

the IPRV is continuously decreased as the desired location comes nearer (Refer to

Section 5.3.2). However, due to friction, the IPRV comes to a complete halt at a

commanded speed well above 0. Thus the algorithm was modified to reduce the speed

up to a value slightly greater than the least speed required to keep the IPRV moving.

This value was determined purely by observation of the IPRV at different running

speeds. The minimum value was found to be 20, which corresponds to an analog voltage

of 2.89 V across the speed control channel.

 72

CHAPTER VII

CONCLUSIONS

7.1 Introduction

During the course of this thesis, the IPRV was successfully constructed and tested.

Section 7.2 summarizes the accomplishments of the thesis. Section 7.3 discusses the

current limitations of the IPRV, and in Section 7.4 future work is proposed to enhance

the functionality of the IPRV and mitigate the current limitations.

7.2 Conclusions

The IPRV has been successful in achieving its key objective of automating the pothole

repair process. It is capable of automatically detecting and filling potholes on road

surfaces. It was designed to detect potholes greater than 2 cm in depth. The IPRV is also

capable of distinguishing between potholes and bumps and ignores the bumps. A

significant advantage of the IPRV is that it is remotely operable over a LAN thus

eliminating the need for an operator onboard. Once in its semiautonomous mode, the

operator is only required to start and stop the IPRV at the beginning and end of each run.

 Road safety has been of primary importance throughout the development of the

IPRV. In order to ensure a reliable means of network communication, TCP was chosen

as the transport protocol for the network interface. In addition, the IPRV employs safety

mechanisms that ensure that the vehicle is automatically stopped in the cases of

connection termination, loss of communication, or network delays longer than 2

seconds.

 73

 Another feature unique to the IPRV is its use of a mechanical means for pothole

detection. This provided an easy-to-construct and significantly cheaper solution for

pothole detection. This pothole-detection method is also less computationally intensive

when compared with the video image processing methods employed in the past by other

researchers.

 The IPRV employs a feedback mechanism to achieve position control when

operating in the semiautonomous mode. The position resolution is 1.554 cm,

significantly smaller than the potholes that require filling. In addition to position control,

the IPRV also uses feedback to ensure that it follows a straight path during

semiautonomous operation. If the need arises, the IPRV can be brought to an

immediate stop at any stage of its operation. If the IPRV is stopped in the midst of a

filling operation, it automatically shuts the filler valve first.

 The IPRV was designed for possible future expansion. Thus the electrical

interfaces have been designed such that none of the sensors are permanently mounted

but rather interfaced using connectors. This allows the easy replacement of any faulty

sensors as well as the provision of adding functionality to the IPRV with minimal of

effort. Power supplies to each sensor are routed through a switch. This allows the

isolation of any part of the circuit as well as aids in fault detection.

 Visual Basic was found to be an appropriate choice for the development of all the

IPRV software application programs. The Windows API was used for controlling the

data-acquisition card within the Visual Basic environment.

 74

7.3 Limitations

The IPRV in its current form has the following limitations.

1. Limited processor speed has prevented the use of a webcam to send live streaming

images to the client side. Real-time video capability is a fundamental requirement for

any remotely operable system. This limitation has restricted the use of the IPRV to

within a visual distance of the operator.

2. The maximum sampling frequency available to the IPRV was found to be 400 Hz.

This proves to be insufficient in cases where a pothole has steep edges or sharp falls.

Thus in such circumstances, aliasing occurs and filler-valve positioning may be offset.

3. The motion of the IPRV is restricted to a straight line during the semiautonomous

operation. This in turn implies that multiple runs are required to cover an area that is

wider than the wheel base of the IPRV.

4. The size and location of the IPRV limits accurate detection. For a pothole to be

detected, it must lie within the wheel base of the IPRV in such a way that the swinging

link is deflected to a point beyond the minimum threshold value.

7.4 Future work

The following is proposed as future work to enhance the functionality of the IPRV and

mitigate the current limitations.

1. Use of a second processor to send live streaming images to the client computer.

 75

2. Use of a 1 MHz external clock to sample sensor signals. This can lead to a sampling

period of 1 µs, which is a dramatic improvement to the current 2.5 ms.

3. Implementation of path-planning and collision-avoidance, artificial-intelligence, or

other adaptive algorithms with an aim to fully automate the IPRV and eliminate the need

for remote supervision.

 76

REFERENCES

[1] Pothole Patching Resources, U.S. Army Engineer Research and Development

Center (ERDC). http://www.erdc.usace.army.mil, Accessed on May 2005.

[2] R. A. Eaton, R. H. Joubert, and E. A. Wright, “Pothole Primer – A Public

Administrator’s Guide to Understanding and Managing the Pothole Problem,”

CRREL Special Report 81-21 (revised December 1989). Available at

http://www.crrel.usace.army.mil/research/Pothole_Primer.pdf.

[3] K. L. Smith, D. G. Peshkin, E. H. Rmeili, T. V. Dam, K. D. Smith, and M. I.

Darter, “Innovative Materials and Equipment for Pavement Surface Repairs –

Volume I: Summary of Material Performance and Experimental Plans,” Report

No. SHRP-M/UFR-91-504, contract H-105, February 1991.

[4] T. P. Wilson and A. R. Romine, “Materials and Procedures for Repair of Potholes

in Asphalt-surfaced Pavements – Manual of Practice,” Report No. SHRP-H-348,

August 1993.

[5] T. P. Wilson and A. R. Romine, “Materials and Procedures for Repair of Potholes

in Asphalt-surfaced Pavements – Manual of Practice,” Report No. FHWA-RD-99-

168, February 2001.

[6] T. P. Wilson and A. R. Romine, “Innovative Materials Development and Testing –

Volume 2: Pothole Repair,” Report No. SHRP-H-353, contract H-106, October

1993.

[7] A. Heydorn, “The Future of Pothole Repair,” Pavement, vol. 18, issue 7, pp. 34–

36, October 2003.

 77

[8] L. D. Evans, C. G. Mojab, A. J. Patel, A. R. Romine, K. L. Smith, and T. P.

Wilson, “Innovative Materials Development and Testing – Volume 1: Project

Overview,” Report No. SHRP-H-352, contract H-106, October 1993.

[9] A. Griffith, “Improved Winter Pothole Patching,” State Planning and Research,

Project Number 538, Oregon Department of Transportation, August 1998.

[10] J. R. Blaha, “Fabrication and Testing of Automated Pothole Patching Machine,”

Report No. SHRP-H-674, contract H-107B, October 1993.

[11] J. Karuppuswamy, V. Selvaraj, M. M. Ganesh, and E. L. Hall, “Detection and

Avoidance of Simulated Potholes in Autonomous Vehicle Navigation in an

Unstructured Environment,” Proceeding of SPIE, vol. 4197, Intelligent Robots and

Computer Vision XIX: Algorithms, Techniques and Active Vision, pp. 70–80

October 2000.

[12] L. Matthies and A. Rankin, “Negative Obstacle Detection by Thermal Signature,”

Proceedings of the 2003 IEEE International Conference on Intelligent Robots and

Systems, pp. 906–913, October 2003.

[13] “Investigation of a Pavement Crack Filling Robot,” Department of Civil

Engineering, Carnegie Mellon University, Report No. SHRP-ID/UFR-92-616,

contract ID-017, November 1992.

[14] S. A. Velinsky, “Fabrication and Testing of an Automated Crack Sealing

Machine,” Report No. SHRP-H-659, contract H-107A, August 1993.

[15] “Sandian’s Rapid Road Repair Vehicle Would Fix Potholes on the Fly,” June

1998, http://www.sandia.gov/media/pothole.htm.

 78

[16] B. Graham and K. McGowan, Build Your Own All-Terrain Robot, New York:

McGrawHill, 2004.

[17] Superlogics PCMDIO Users Manual. Available at http://www.SuperLogics.com.

[18] Superlogics PCMDRIVE® Data Acquisition Software User’s Manual. Available at

http://www.SuperLogics.com.

[19] RFC 793, J. Postel (ed.), “Transmission Control Protocol: DARPA Internet

Program Protocol Specification,” September 1981.

 79

APPENDIX A

SERVER-SIDE PROGRAM

The server-side program is a Visual Basic project consisting of the following forms and

modules.

1. IprvMainForm.frm – This form provides the GUI of the server-side program.

Additionally, the code within this form defines all the event-driven procedures used by

the server-side program.

2. PCMMain.bas – Execution of the server-side program starts with this module. The

IprvMainForm.frm is executed within this module. This module also contains the

functions used for the semiautonomous mode.

3. PCMUserFunc.bas – This module contains the designed to simplify the operation of

the PCMDIO data-acquisition card.

4. PCMDrvFunc.bas – This module was provided with the PCMDIO card and is freely

downloadable at www.Superlogics.com. The module contains the API function

declarations required for controlling the PCMDIO card.

5. PCMData.bas – This module was also provided with the PCMDIO card and is freely

downloadable at www.Superlogics.com. The module contains the API data structures

and constants required to control the PCMDIO card.

 80

1. IprvMainForm.frm

Option Explicit

Private Sub Form_Load()
 Dim strInfo As String

 cmdListen.Enabled = True
 cmdDisconnect.Enabled = False

 'Disable the timer till a connection is established
 tmrCheckComm.Interval = 2000 ' 2 seconds
 tmrCheckComm.Enabled = False

 strInfo = vbCrLf & vbCrLf & "To start listening for an incoming
client request, " & _
"click on the Open Connection button" & vbCrLf & vbCrLf & _
"Click on the Disconnect button anytime to disconnect the TCP
connection"

 lblInfo.Caption = strInfo

End Sub

Private Sub cmdListen_Click()

 ' Set up the local port and wait for a connection request
 tcpIprvServer.LocalPort = 10101
 tcpIprvServer.Listen

 cmdListen.Enabled = False
 cmdDisconnect.Enabled = True
 txtCommands.Text = ""
 lblInfo.Caption = "The IPRV is now waiting to receive an incoming
connection request."

End Sub

Private Sub cmdDisconnect_Click()
 'Close the socket after checking the status
 If tcpIprvServer.State <> sckClosed Then
 Call tcpIprvServer.Close
 End If

 'Stop the IPRV and disable the timer
 Call resetDacChannels
 tmrCheckComm.Enabled = False

 cmdListen.Enabled = True
 cmdDisconnect.Enabled = False
 lblInfo.Caption = "Connection has been closed by the Server. " &
vbCrLf & vbCrLf & _
"Click on Open Connection to start listening for a new connection."

End Sub

 81

Private Sub Form_Unload(Cancel As Integer)
 Call resetDacChannels

 If tcpIprvServer.State <> sckClosed Then
 Call tcpIprvServer.Close
 End If

End Sub

Private Sub tcpIprvServer_ConnectionRequest(ByVal requestID As Long)
 'First ensure that the tcpIprvServer is closed
 'If not, close the connection before accepting the new connection

 If tcpIprvServer.State <> sckClosed Then
 Call tcpIprvServer.Close
 End If

 Call tcpIprvServer.Accept(requestID) 'accept the incoming
connection

 'The connection will always start in the Remote Maneuvering Mode
 gblnRunModeAuto = False
 gblnRunIprv = False

 cmdDisconnect.Enabled = True
 txtCommands.Text = ""

 lblInfo.Caption = "Connection from IP address: " &
tcpIprvServer.RemoteHostIP & vbCrLf & _
 "Name: " & tcpIprvServer.RemoteHost & vbCrLf & _
 "Port #: " & tcpIprvServer.RemotePort & vbCrLf & vbCrLf

 'The connection is now established, the timer is now enabled
 tmrCheckComm.Enabled = True

End Sub

Private Sub tcpIprvServer_DataArrival(ByVal bytesTotal As Long)
 Dim strInputData As String
 Dim intStatus As Integer
 Dim strMessage As String
 Dim strCommand() As String
 Dim intCheckCommValue As Integer

 Call tcpIprvServer.GetData(strInputData)

 strCommand() = Split(strInputData, , -1)

 Select Case strCommand(0)
 Case "Forward"
 If gbytFwdRev < MAX_FWD_REV_CH_VALUE Then
 gbytFwdRev = gbytFwdRev + 5

 82

 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_LOGIC_CHANNEL, CHANNEL_FWD_REV)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_DATA_CHANNEL, gbytFwdRev)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 End If
 Case "Reverse"
 If gbytFwdRev > MIN_FWD_REV_CH_VALUE Then
 gbytFwdRev = gbytFwdRev - 5
 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_LOGIC_CHANNEL, CHANNEL_FWD_REV)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_DATA_CHANNEL, gbytFwdRev)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 End If
 Case "Right"
 If gbytLeftRight < MAX_LEFT_RIGHT_CH_VALUE Then
 gbytLeftRight = gbytLeftRight + 5
 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_LOGIC_CHANNEL, CHANNEL_LEFT_RIGHT)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_DATA_CHANNEL, gbytLeftRight)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 End If
 Case "Left"
 If gbytLeftRight > MIN_LEFT_RIGHT_CH_VALUE Then
 gbytLeftRight = gbytLeftRight - 5
 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_LOGIC_CHANNEL, CHANNEL_LEFT_RIGHT)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_DATA_CHANNEL, gbytLeftRight)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 End If

 Case "Halt"

 83

 Call resetDacChannels
 Case "Auto"
 'Start IPRV in SemiAutonomous mode after bringing it to a
complete halt.
 Call resetDacChannels
 gblnRunModeAuto = True
 gblnRunIprv = True
 lblInfo.Caption = "The IPRV is now in Semi Autonomous
mode." & vbCrLf & vbCrLf & _
 "All operations will now run
automatically. Only Start/Stop can be performed remotely."
 Call runIPRV
 Case "Remote"
 'Stop the IPRV and switch to Remote Maneuvering mode
 Call resetDacChannels
 gblnRunModeAuto = False
 lblInfo.Caption = "The IPRV is now in the Remote
Maneuvering Mode." & vbCrLf & vbCrLf

 Case "CheckComm"
 'if the value of CheckComm does not match the expected
 'value, then stop the IPRV
 intCheckCommValue = Format(strCommand(1))
 If intCheckCommValue <> gintCheckComm Then
 Call resetDacChannels
 Exit Sub
 End If
 gintCheckComm = 0
 'Debug.Print "Communication link good"
 Exit Sub
 Case Else
 Exit Sub
 End Select

 strMessage = "Fwd " & gbytFwdRev & " Rev " & gbytLeftRight
 Call tcpIprvServer.SendData(strMessage)

 txtCommands.Text = txtCommands.Text & "Client" & " >>> " & _
 "Speed " & gbytFwdRev - 128 & vbTab & "Direction
" & gbytLeftRight - 128 & vbCrLf & vbCrLf
 txtCommands.SelStart = Len(txtCommands.Text)

End Sub

Private Sub tcpIprvServer_Close()

 If tcpIprvServer.State <> sckClosed Then
 Call tcpIprvServer.Close
 End If

 'If the client closes the connection, stop the IPRV by resetting
 'the values of the Forward/Reverse and Left/Right channels

 84

 Call resetDacChannels
 tmrCheckComm.Enabled = False

 lblInfo.Caption = "Client closed connection." & vbCrLf & vbCrLf & _
 "Ready to receive a new connection."
 cmdListen.Enabled = True

 txtCommands.Text = txtCommands.Text & "Client" & " >>> " & _
 "Speed " & gbytFwdRev - 128 & vbTab & "Direction
" & gbytLeftRight - 128 & vbCrLf & vbCrLf

 ' Set up local port and wait for a connection request
 tcpIprvServer.LocalPort = 10101
 tcpIprvServer.Listen

 cmdListen.Enabled = False
 cmdDisconnect.Enabled = True

End Sub

Private Sub tcpIprvServer_Error(ByVal Number As Integer, Description As
String, ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As
String, ByVal HelpContext As Long, CancelDisplay As Boolean)
 Call resetDacChannels

 MsgBox Source & ": " & Description, vbOKOnly, "IPRV Communication
Error"
 Unload Me
End Sub

Private Sub tmrCheckComm_Timer()
 Dim strCheckComm As String

 'Every 2 seconds the value of gintCheckComm is checked.
 'If the connection is still established then a new random number
 'is generated and sent to the client.
 'if the value of gintCheckComm is not 0, it implies that either
 'the connection is broken or there is a delay > 2 secs over the
network
 'In either case the IPRV is stopped.

 If gintCheckComm <> 0 Then
 Call resetDacChannels
 MsgBox "Lost Communication with the Client.", vbOKCancel +
vbExclamation
 If tcpIprvServer.State <> sckClosed Then
 tcpIprvServer.Close
 End If
 tmrCheckComm.Enabled = False
 gintCheckComm = 0

 'Wait for a new incoming connection
 tcpIprvServer.LocalPort = 10101

 tcpIprvServer.Listen

 85

 lblInfo.Caption = "Connection Closed." & vbCrLf & vbCrLf & _
 "Ready to receive a new connection."
 Else
 gintCheckComm = Round(100 * Rnd())
 strCheckComm = "CheckComm " & gintCheckComm
 tcpIprvServer.SendData (strCheckComm)

 End If
End Sub

 86

2. PCMMain.bas

Option Explicit

'Define Output Channels

Global Const DAC_DATA_CHANNEL = 0 'Data0 - Data7
Global Const DAC_LOGIC_CHANNEL = 1 'Data8 - Data9
Global Const RESERVED_CHANNEL1 = 2 'Data10
Global Const RESERVED_CHANNEL2 = 3 'Data11
Global Const LED_HOLEFOUND_CHANNEL = 4 'Data12
Global Const SOLENOID_VALVE_CHANNEL = 5 'Data13

'Define Input Channels

Global Const DIST_SENSOR_CHANNEL = 10 'Data18
Global Const LEFT_MOTOR_SENSOR_CHANNEL = 12 'Data20
Global Const RIGHT_MOTOR_SENSOR_CHANNEL = 13 'Data21
Global Const INCREMENTAL_ENCODER_CHANNEL = 14 'Data22 - Data23

'Define DAC Control Logic bits

Global Const CHANNEL_FWD_REV = 0
Global Const CHANNEL_LEFT_RIGHT = 1
Global Const CHANNEL_SPARE1 = 2
Global Const CHANNEL_SPARE2 = 3

'Define min and max value of DAC channel outputs

Global Const MIN_FWD_REV_CH_VALUE = 51
Global Const MAX_FWD_REV_CH_VALUE = 195
Global Const MIN_LEFT_RIGHT_CH_VALUE = 40
Global Const MAX_LEFT_RIGHT_CH_VALUE = 215

Global Const IPRV_MAX_AUTO_RUN_VALUE = 190
Global Const HOLE_DETECTION_THRESHOLD = 4

Public gintLogicalDevice As Integer
Public gbytFwdRev As Byte
Public gbytLeftRight As Byte
Public gintCheckComm As Integer
Public gblnRunModeAuto As Boolean
Public gblnRunIprv As Boolean

Private Sub main()

 Dim frmMain As New frmIprvMain
 Dim intStatus As Integer

 On Error GoTo errUnknown

 gintLogicalDevice = 0

 87

 'Open the PCMDIO digital I/O card and get a
 'logical device number

 gintLogicalDevice = openDevice()

 'Initialize the Forward/Reverse channel and the
 'Left/Right channel

 Call resetDacChannels

 'Display the main form that is used to communicate with a client

 frmMain.Show vbModal

 End

errPcmdioError:
 Call errorMessage(intStatus)
 Call PCMCloseDeviceVB(gintLogicalDevice)
 End

errUnknown:
 Call unknownErrorMessage
 End

End Sub

Public Sub pcmdioError(ByVal LogicalDevice As Integer, ByVal ErrorCode
As Integer)
 Call errorMessage(ErrorCode)
 Call PCMCloseDeviceVB(LogicalDevice)
End Sub
'Function used to stop the IPRV - it sets the speed and direction
channels to 128
'which corresponds to a value of 2.5V across each channel.
'Additionally, it also makes sure the solenoid valve is shut and the
hole
'found LED is off.

Public Sub resetDacChannels()
 Dim intStatus As Integer

 gbytFwdRev = 128
 gbytLeftRight = 128

 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_LOGIC_CHANNEL, CHANNEL_FWD_REV)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_DATA_CHANNEL, gbytFwdRev)

 88

 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_LOGIC_CHANNEL, CHANNEL_LEFT_RIGHT)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_DATA_CHANNEL, gbytLeftRight)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 intStatus = singleDigitalOutput(gintLogicalDevice,
LED_HOLEFOUND_CHANNEL, 0)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 If (gblnRunModeAuto = True) Then
 gblnRunIprv = False
 intStatus = singleDigitalOutput(gintLogicalDevice,
SOLENOID_VALVE_CHANNEL, 0)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 End If

End Sub

'This function is used to increase/decrease the speed of the IPRV

Public Sub iprvSpeed(ByVal bytSpeed As Byte)
 Dim intStatus As Integer
 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_LOGIC_CHANNEL, CHANNEL_FWD_REV)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_DATA_CHANNEL, bytSpeed)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

End Sub

'This function is used to change the direction of the IPRV

 89

Public Sub iprvDirection(ByVal bytDirection As Byte)
 Dim intStatus As Integer
 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_LOGIC_CHANNEL, CHANNEL_LEFT_RIGHT)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 intStatus = singleDigitalOutput(gintLogicalDevice,
DAC_DATA_CHANNEL, bytDirection)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

End Sub

'This is the function that controls the IPRV in the semiautonomous mode

Public Sub runIPRV()

 Dim intStatus As Integer
 Dim intAngleCounter As Integer
 Dim intMaxAngle As Integer
 Dim intRpmCounter As Integer
 Dim bytInputSensorNew(2) As Byte
 Dim bytInputSensorOld(2) As Byte
 Dim bytInputData(2) As Byte
 Dim intChannels(2) As Integer
 Dim intArrayLength As Integer
 Dim intArraySize As Integer
 Dim intHoleFull As Integer
 Dim blnCountRpm As Boolean
 Dim i As Integer
 Dim intPosition As Integer
 Dim lngPosition As Long
 Dim bytNewPosition As Byte
 Dim bytOldPosition As Byte
 Dim bytNewDist As Byte
 Dim intRightCounter As Integer
 Dim intLeftCounter As Integer
 Dim intChannel(1) As Integer
 Dim bytOldValue(1) As Byte
 Dim bytNewValue(1) As Byte
 Dim bytInputValue(1) As Byte

 intChannels(0) = LEFT_MOTOR_SENSOR_CHANNEL
 intChannels(1) = RIGHT_MOTOR_SENSOR_CHANNEL
 intChannels(2) = INCREMENTAL_ENCODER_CHANNEL

 intArrayLength = 3
 Debug.Print "Starts Here"

 While (gblnRunIprv = True)

 90

 DoEvents
 If gblnRunIprv = False Then
 Exit Sub
 End If

 'Debug.Print "Running"

 '--
 'Run the IPRV at a constant speed in a straight line
 '--

 'the initial direction compensates for differences in tire
pressures
'and other motor components that make one motor turn at a

different
'rate than the other. This compensatory value was determined

emperically

 gbytFwdRev = IPRV_MAX_AUTO_RUN_VALUE
 gbytLeftRight = 128

 Call iprvSpeed(gbytFwdRev)
 Call iprvDirection(gbytLeftRight)

 '--
 'Look for potholes
 '--

 intStatus = multipleDigitalInput(gintLogicalDevice,
intChannels(), intArrayLength, bytInputData())
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 'Initialize values
 For i = 0 To 2
 bytInputSensorOld(i) = bytInputData(i)
 Next i
 intMaxAngle = 0
 intAngleCounter = 0
 intRpmCounter = 0

 'While looking for a pothole, interations should continue until

 'the pothole has been detected AND the swinging link is out of
the pothole

 While (intMaxAngle < HOLE_DETECTION_THRESHOLD) Or
(intAngleCounter > 3)
 DoEvents
 If gblnRunIprv = False Then
 Exit Sub
 End If

 91

 intStatus = multipleDigitalInput(gintLogicalDevice,
intChannels(), intArrayLength, bytInputData())
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 For i = 0 To 2
 bytInputSensorNew(i) = bytInputData(i)
 Next i

 'Debug.Print bytInputSensorNew(i)

 If bytInputSensorOld(0) <> bytInputSensorNew(0) Then
 intLeftCounter = intLeftCounter + 1
 End If

 If bytInputSensorOld(1) <> bytInputSensorNew(1) Then
 intRightCounter = intRightCounter + 1

'Count the motor rotations only after a hole has been
detected

 If (intMaxAngle >= HOLE_DETECTION_THRESHOLD) Then
 intRpmCounter = intRpmCounter + 1
 End If
 End If

 If intRightCounter = 5 Then
 If intLeftCounter > 5 Then
 gbytLeftRight = gbytLeftRight - 2
 Call iprvDirection(gbytLeftRight)
 Debug.Print "Move to the left"
 intLeftCounter = 0
 intRightCounter = 0
 ElseIf intLeftCounter < 5 Then
 gbytLeftRight = gbytLeftRight + 2
 Call iprvDirection(gbytLeftRight)
 Debug.Print "Move to the right"
 intLeftCounter = 0
 intRightCounter = 0
 Else
 intLeftCounter = 0
 intRightCounter = 0
 End If
 End If

 'Check if swinging link has rotated
 If (bytInputSensorNew(2) <> bytInputSensorOld(2)) Then
 Select Case bytInputSensorOld(2)
 Case 0
 If bytInputSensorNew(2) = 2 Then
 intAngleCounter = intAngleCounter + 1
 Else
 intAngleCounter = intAngleCounter - 1
 End If
 Case 1

 If bytInputSensorNew(2) = 0 Then

 92

 intAngleCounter = intAngleCounter + 1
 Else
 intAngleCounter = intAngleCounter - 1
 End If
 Case 2
 If bytInputSensorNew(2) = 3 Then
 intAngleCounter = intAngleCounter + 1
 Else
 intAngleCounter = intAngleCounter - 1
 End If
 Case Else
 If bytInputSensorNew(2) = 1 Then
 intAngleCounter = intAngleCounter + 1
 Else
 intAngleCounter = intAngleCounter - 1
 End If

 End Select

 Debug.Print intAngleCounter

'intMaxAngle will find the max depth encountered by the
swinging
'link. A pothole may have several local maximas but we
need the
'maximum value of all maximas. Everytime a new maxvalue
is encountered

 'the rpm counter must be reset

 If intMaxAngle < intAngleCounter Then
 intMaxAngle = intAngleCounter
 intRpmCounter = 0
 End If
 End If
 For i = 0 To 2
 bytInputSensorOld(i) = bytInputSensorNew(i)
 Next i

 Wend

 'Out of the loop implies that a pothole has been located
 'The pothole holefound LED can now be lit

 intStatus = singleDigitalOutput(gintLogicalDevice,
LED_HOLEFOUND_CHANNEL, 1)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 'At this point, the swinging link is out of the pothole and
 'the value of intMaxAngle and intRpmCounter is known

 'Thus we have the max depth encountered and the distance from
the

 'maximum depth

 93

 'Debug.Print intMaxAngle
 'Debug.Print intAngleCounter

 lngPosition = 63 - 18.65 * Cos((38.36 + 1.40625 * intMaxAngle)
* 3.141 / 180) - intRpmCounter
 intPosition = Round(lngPosition)
 Debug.Print intPosition

 'once the location has been calculated, the right motor sensor
signal is used

 'for position the IPRV over the calculated point

 intChannel(0) = LEFT_MOTOR_SENSOR_CHANNEL
 intChannel(1) = RIGHT_MOTOR_SENSOR_CHANNEL
 intArraySize = 2

 intStatus = multipleDigitalInput(gintLogicalDevice,
intChannel(), intArraySize, bytInputValue())
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 bytOldValue(0) = bytInputValue(0)
 bytOldValue(1) = bytInputValue(1)
 intLeftCounter = 0
 intRightCounter = 0

 While (intPosition >= 1)

 DoEvents
 If gblnRunIprv = False Then
 Exit Sub
 End If
 intStatus = multipleDigitalInput(gintLogicalDevice,
intChannel(), intArraySize, bytInputValue())
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If
 bytNewValue(0) = bytInputValue(0)
 bytNewValue(1) = bytInputValue(1)

 If bytNewValue(0) <> bytOldValue(0) Then
 intLeftCounter = intLeftCounter + 1
 bytOldValue(0) = bytNewValue(0)
 End If

 If bytNewValue(1) <> bytOldValue(1) Then
 intRightCounter = intRightCounter + 1
 intPosition = intPosition - 1
 Debug.Print "right counter" & intRightCounter
 Debug.Print "position counter" & intPosition
 If (intPosition < 25) Then
 gbytFwdRev = gbytFwdRev - 1

 Call iprvSpeed(gbytFwdRev)

 94

 End If
 bytOldValue(1) = bytNewValue(1)
 End If

 If intRightCounter = 5 Then
 If intLeftCounter > 5 Then
 gbytLeftRight = gbytLeftRight - 2
 Call iprvDirection(gbytLeftRight)
 Debug.Print "Move to the left"
 intLeftCounter = 0
 intRightCounter = 0
 ElseIf intLeftCounter < 5 Then
 gbytLeftRight = gbytLeftRight + 2
 Call iprvDirection(gbytLeftRight)
 Debug.Print "Move to the right"
 intLeftCounter = 0
 intRightCounter = 0
 Else
 intLeftCounter = 0
 intRightCounter = 0
 End If
 End If
 Wend

 'Once the error has reached zero, implies that the filler valve
is over the pothole maximum depth. The IPRV is now stopped and
the filling operation now begins

 gbytFwdRev = 128
 gbytLeftRight = 128

 Call iprvSpeed(gbytFwdRev)
 Call iprvDirection(gbytLeftRight)
 Call iprvSpeed(gbytFwdRev)

 intStatus = singleDigitalOutput(gintLogicalDevice,
SOLENOID_VALVE_CHANNEL, 1)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 intHoleFull = 0

 While (intHoleFull <= 10)
 DoEvents
 If gblnRunIprv = False Then
 Exit Sub
 End If

 intStatus = singleDigitalInput(gintLogicalDevice,
DIST_SENSOR_CHANNEL, bytNewDist)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)

 End If

 95

 Debug.Print bytNewDist
 If bytNewDist = 1 Then
 intHoleFull = intHoleFull + 1
 Else
 intHoleFull = 0
 End If
 Call waitTime(100)
 Wend

 'Coming out of the loop implies that the hole has been filled

 'the value of intHoleFull is checked 3 times to ensure that
splashing water was not the reason for a 'full' indication by the
distance sensor

 'Now the solenoid valve and the LED can be shut

 intStatus = singleDigitalOutput(gintLogicalDevice,
SOLENOID_VALVE_CHANNEL, 0)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 intStatus = singleDigitalOutput(gintLogicalDevice,
LED_HOLEFOUND_CHANNEL, 0)
 If intStatus <> 0 Then
 Call pcmdioError(gintLogicalDevice, intStatus)
 End If

 Wend

End Sub

 96

3. PCMUserFunc.bas

Option Explicit

Public gstrDeviceType As String
Public gstrDllName As String
Public gstrConfigFile As String

'**
' Function: openDevice
' Purpose: Define the hardware configuration and open the
' hardware device
' Returns: The Logical Device number
'**

Public Function openDevice() As Integer
 Dim intStatus As Integer
 Dim intLogicalDevice As Integer

 On Error GoTo errUnknown

 intLogicalDevice = 0

 'Define the device type, dll and config files

 gstrDeviceType = "PCMDIO"
 gstrDllName = "pcmdio32.dll"
 gstrConfigFile = "C:\Program Files\SuperLogics\PCMCfg\PCMDIO.dat"

 intStatus = PCMOpenDeviceVB(gstrDllName, intLogicalDevice,
gstrDeviceType, gstrConfigFile)

 'Debug.Print "Open Device status = " & intStatus

 If intStatus <> 0 Then
 Call errorMessage(intStatus)
 End
 End If

 openDevice = intLogicalDevice

 Exit Function

errUnknown:
 Call unknownErrorMessage
 End

End Function

 97

'**
' Function: singleDigitalInput
' Purpose: Input a single value from a single input channel
' of the PCMDIO digital I/O card
' Inputs:
' LogicalDevice: the Logical Device number
' Channel: The channel variable
' InputValue: pointer to the variable that will contain the
' input value
'Returns: the status of the input request
'**

Public Function singleDigitalInput(ByVal LogicalDevice As Integer, _
 ByVal Channel As Integer, _
 InputValue As Byte) As Integer
 Dim intStatus As Integer
 Dim intRequestHandle As Integer
 Dim udtDigioRequest As DigioRequest
 Dim udtDataBuffer As PCMDriveBuffer
 Dim udtAllocateRequest As allocate_request

 Dim lngRetChannelAdd As Long
 Dim lngRetBufferAdd As Long

 Dim blnCompleteStatus As Boolean
 Dim lngEventMask As Long
 Dim errorcode As Integer

 On Error GoTo errUnknown

 intRequestHandle = 0
 blnCompleteStatus = False

 '--
 'Allocate and lock memory for the Digital Input
 '--

 With udtAllocateRequest
 .request_type = DIGIN_TYPE_REQUEST
 .channel_array_length = 1
 .number_of_buffers = 1
 .buffer_size = 1
 .buffer_attributes = RING_BUFFER
 End With

 intStatus = PCMAllocateRequestVB(LogicalDevice, udtAllocateRequest)

 If intStatus <> 0 Then
 singleDigitalInput = intStatus
 Exit Function
 End If

 'Debug.Print "Allocate Request Status = " & intStatus

 98

 '--
 'Prepare the Digital Input Request Structure
 '--

 lngRetChannelAdd = PCMGetAddressOfVB(Channel)
 lngRetBufferAdd = PCMGetAddressOfVB(udtDataBuffer)

 With udtDigioRequest
 .ChannelArrayPtr = lngRetChannelAdd
 .ArrayLength = 1
 .DigioBufferptr = lngRetBufferAdd
 .NumberOfScans = 1
 .IOMode = ForegroundCPU
 .TriggerSource = InternalTrigger
 .ScanEventLevel = 0
 .RequestStatus = NoEvents
 End With

 '--
 'Send a digital input request to the PCMDrive
 '--

 intStatus = PCMDigitalInputVB(LogicalDevice, udtDigioRequest,
intRequestHandle)

 If intStatus <> 0 Then
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalInput = intStatus
 Exit Function
 End If

 'Debug.Print "Handle request status = " & intStatus
 'Debug.Print "Request Handle = " & intRequestHandle

 '--
 'Arm the request
 '--

 intStatus = PCMArmRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalInput = intStatus
 Exit Function
 End If

 'Debug.Print "Arm Request Status = " & intStatus

 99

 '--
 'Trigger the Request
 '--

 intStatus = PCMTriggerRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalInput = intStatus
 Exit Function
 End If

 'Debug.Print "Trigger Request Status = " & intStatus

 '--
 'Wait for completion or error
 '--

 lngEventMask = CompleteEvent Or RuntimeErrorEvent
 While (blnCompleteStatus = False)
 If (udtDigioRequest.RequestStatus And lngEventMask) <> 0 Then
 If (udtDigioRequest.RequestStatus And CompleteEvent) <> 0
Then
 intStatus = PCMReadBufferVB(intRequestHandle, 0,
InputValue)
 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalInput = intStatus
 Exit Function
 End If
 blnCompleteStatus = True
 End If
 Else
 intStatus = PCMGetRuntimeErrorVB(intRequestHandle,
errorcode)
 MsgBox "Run Time Error." & vbCrLf & "Error code " &
errorcode, vbOKOnly, "PCMDIO Run Time Error"
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 Call PCMCloseDeviceVB(LogicalDevice)
 End
 End If
 Wend

 '--
 'Release the Request if operation is completed
 '--

 intStatus = PCMReleaseRequestVB(intRequestHandle)

 100

 If intStatus <> 0 Then
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalInput = intStatus
 Exit Function
 End If

 'Debug.Print "Release Request Status = " & intStatus

 singleDigitalInput = intStatus

 Exit Function

errUnknown:
 Call unknownErrorMessage
 Call PCMCloseDeviceVB(LogicalDevice)
 End

End Function

'**
' Function: multipleDigitalInput
' Purpose: Input a single value from multiple input channels
' of the PCMDIO digital I/O card
' Inputs:
' LogicalDevice: the Logical Device number
' Channel: pointer to the channel array
' ArrayLength: the length of the channel array
' InputValue: pointer to the array that will contain the
' input values
'Returns: the status of the input request
'**

Public Function multipleDigitalInput(ByVal LogicalDevice As Integer, _
 Channel() As Integer, _
 ByVal ArrayLength As Integer, _
 InputValue() As Byte) As Integer
 Dim intStatus As Integer
 Dim intRequestHandle As Integer
 Dim udtDigioRequest As DigioRequest
 Dim udtDataBuffer As PCMDriveBuffer
 Dim udtAllocateRequest As allocate_request

 Dim lngRetChannelAdd As Long
 Dim lngRetBufferAdd As Long

 Dim blnCompleteStatus As Boolean
 Dim lngEventMask As Long
 Dim errorcode As Integer

 On Error GoTo errUnknown

 101

 intRequestHandle = 0
 blnCompleteStatus = False

 '--
 'Allocate and lock memory for the Digital Input
 '--

 With udtAllocateRequest
 .request_type = DIGIN_TYPE_REQUEST
 .channel_array_length = ArrayLength
 .number_of_buffers = 1
 .buffer_size = ArrayLength
 .buffer_attributes = RING_BUFFER
 End With

 intStatus = PCMAllocateRequestVB(LogicalDevice, udtAllocateRequest)

 If intStatus <> 0 Then
 multipleDigitalInput = intStatus
 Exit Function
 End If

 'Debug.Print "Allocate Request Status = " & intStatus

 '--
 'Prepare the Digital Input Request Structure
 '--

 lngRetChannelAdd = PCMGetAddressOfVB(Channel(0))
 lngRetBufferAdd = PCMGetAddressOfVB(udtDataBuffer)

 With udtDigioRequest
 .ChannelArrayPtr = lngRetChannelAdd
 .ArrayLength = ArrayLength
 .DigioBufferptr = lngRetBufferAdd
 .NumberOfScans = 1
 .IOMode = ForegroundCPU
 .TriggerSource = InternalTrigger
 .ScanEventLevel = 0
 .RequestStatus = NoEvents
 End With

 '--
 'Send a digital input request to the PCMDrive
 '--

 intStatus = PCMDigitalInputVB(LogicalDevice, udtDigioRequest,
intRequestHandle)

 If intStatus <> 0 Then
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)

 multipleDigitalInput = intStatus

 102

 Exit Function
 End If

 'Debug.Print "Handle request status = " & intStatus
 'Debug.Print "Request Handle = " & intRequestHandle

 '--
 'Arm the request
 '--

 intStatus = PCMArmRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 multipleDigitalInput = intStatus
 Exit Function
 End If

 'Debug.Print "Arm Request Status = " & intStatus

 '--
 'Trigger the Request
 '--

 intStatus = PCMTriggerRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 multipleDigitalInput = intStatus
 Exit Function
 End If

 'Debug.Print "Trigger Request Status = " & intStatus

 '--
 'Wait for completion or error
 '--

 lngEventMask = CompleteEvent Or RuntimeErrorEvent
 While (blnCompleteStatus = False)
 If (udtDigioRequest.RequestStatus And lngEventMask) <> 0 Then
 If (udtDigioRequest.RequestStatus And CompleteEvent) <> 0
Then
 intStatus = PCMReadBufferVB(intRequestHandle, 0,
InputValue(0))
 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)

 multipleDigitalInput = intStatus

 103

 Exit Function
 End If
 blnCompleteStatus = True
 End If
 Else
 intStatus = PCMGetRuntimeErrorVB(intRequestHandle,
errorcode)
 MsgBox "Run Time Error." & vbCrLf & "Error code " &
errorcode, vbOKOnly, "PCMDIO Run Time Error"
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 Call PCMCloseDeviceVB(LogicalDevice)
 End
 End If
 Wend

 '--
 'Release the Request if operation is completed
 '--

 intStatus = PCMReleaseRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 multipleDigitalInput = intStatus
 Exit Function
 End If

 'Debug.Print "Release Request Status = " & intStatus

 multipleDigitalInput = intStatus

 Exit Function

errUnknown:
 Call unknownErrorMessage
 Call PCMCloseDeviceVB(LogicalDevice)
 End

End Function

'**
' Function: singleDigitalOutput
' Purpose: Output a single value to an output channel
' of the PCMDIO digital I/O card
' Inputs:
' LogicalDevice: the Logical Device number
' Channel: The channel variable
' OutputValue: pointer to the variable that contains the output
' value
'Returns: the status of the output request

'**

 104

Public Function singleDigitalOutput(ByVal LogicalDevice As Integer, _
 ByVal Channel As Integer, _
 ByVal OutputValue As Byte) As
Integer
 Dim intStatus As Integer
 Dim intRequestHandle As Integer
 Dim udtDigioRequest As DigioRequest
 Dim udtDataBuffer As PCMDriveBuffer
 Dim udtAllocateRequest As allocate_request

 Dim lngRetChannelAdd As Long
 Dim lngRetBufferAdd As Long

 Dim lngEventMask As Long
 Dim errorcode As Integer

 On Error GoTo errUnknown

 intRequestHandle = 0

 '--
 'Allocate and lock memory for the Digital Input
 '--

 With udtAllocateRequest
 .request_type = DIGOUT_TYPE_REQUEST
 .channel_array_length = 1
 .number_of_buffers = 1
 .buffer_size = 1
 .buffer_attributes = RING_BUFFER
 End With

 intStatus = PCMAllocateRequestVB(LogicalDevice, udtAllocateRequest)

 If intStatus <> 0 Then
 singleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Allocate Request Status = " & intStatus

 '--
 'Prepare the Digital Output Request Structure
 '--

 lngRetChannelAdd = PCMGetAddressOfVB(Channel)
 lngRetBufferAdd = PCMGetAddressOfVB(udtDataBuffer)

 With udtDigioRequest
 .ChannelArrayPtr = lngRetChannelAdd
 .ArrayLength = 1
 .DigioBufferptr = lngRetBufferAdd

 .NumberOfScans = 1

 105

 .IOMode = ForegroundCPU
 .TriggerSource = InternalTrigger
 .ScanEventLevel = 0
 .RequestStatus = NoEvents
 End With

 '--
 'Send a digital output request to the PCMDrive
 '--

 intStatus = PCMDigitalOutputVB(LogicalDevice, udtDigioRequest,
intRequestHandle)

 If intStatus <> 0 Then
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Handle request status = " & intStatus
 'Debug.print "Request Handle = " & intRequestHandle

 '--
 'Copy output data to the PCM drive allocated buffer
 '--

 intStatus = PCMWriteBufferVB(intRequestHandle, 0, 1, OutputValue)

 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalOutput = intStatus
 Exit Function
 End If

 '--
 'Arm the request
 '--

 intStatus = PCMArmRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Arm Request Status = " & intStatus

 106

 '--
 'Trigger the Request
 '--

 intStatus = PCMTriggerRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Trigger Request Status = " & intStatus

 '---
 'Wait for completion or error
 '---

 lngEventMask = CompleteEvent Or RuntimeErrorEvent
 While (udtDigioRequest.RequestStatus And lngEventMask) = 0
 DoEvents
 Wend

 If (udtDigioRequest.RequestStatus And RuntimeErrorEvent) <> 0 Then
 intStatus = PCMGetRuntimeErrorVB(intRequestHandle, errorcode)
 MsgBox "Run Time Error." & vbCrLf & "Error code " & errorcode,
vbOKOnly, "PCMDIO Run Time Error"
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 Call PCMCloseDeviceVB(LogicalDevice)
 End
 End If

 '--
 'Release the Request if operation is completed
 '--

 intStatus = PCMReleaseRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 singleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Release Request Status = " & intStatus

 singleDigitalOutput = intStatus

 Exit Function

 107

errUnknown:
 Call unknownErrorMessage
 Call PCMCloseDeviceVB(LogicalDevice)
 End

End Function

'**
' Function: multipleDigitalOutput
' Purpose: Output a single value to multiple output channels
' of the PCMDIO digital I/O card
' Inputs:
' LogicalDevice: the Logical Device number
' Channel: pointer to the channel array
' ArrayLength: the length of the channel array
' OutputValue: pointer to the array that contains the output
' values
'Returns: the status of the output request
'**

Public Function multipleDigitalOutput(ByVal LogicalDevice As Integer, _
 Channel() As Integer, _
 ByVal ArrayLength As Integer, _
 OutputValue() As Byte) As Integer
 Dim intStatus As Integer
 Dim intRequestHandle As Integer
 Dim udtDigioRequest As DigioRequest
 Dim udtDataBuffer As PCMDriveBuffer
 Dim udtAllocateRequest As allocate_request

 Dim lngRetChannelAdd As Long
 Dim lngRetBufferAdd As Long

 Dim lngEventMask As Long
 Dim errorcode As Integer

 On Error GoTo errUnknown

 intRequestHandle = 0

 '--
 'Allocate and lock memory for the Digital Input
 '--

 With udtAllocateRequest
 .request_type = DIGOUT_TYPE_REQUEST
 .channel_array_length = ArrayLength
 .number_of_buffers = 1
 .buffer_size = 2 * ArrayLength
 .buffer_attributes = RING_BUFFER

 End With

 108

 intStatus = PCMAllocateRequestVB(LogicalDevice, udtAllocateRequest)

 If intStatus <> 0 Then
 multipleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Allocate Request Status = " & intStatus

 '--
 'Prepare the Digital Output Request Structure
 '--

 lngRetChannelAdd = PCMGetAddressOfVB(Channel(0))
 lngRetBufferAdd = PCMGetAddressOfVB(udtDataBuffer)

 With udtDigioRequest
 .ChannelArrayPtr = lngRetChannelAdd
 .ArrayLength = ArrayLength
 .DigioBufferptr = lngRetBufferAdd
 .NumberOfScans = 1
 .IOMode = ForegroundCPU
 .TriggerSource = InternalTrigger
 .ScanEventLevel = 0
 .RequestStatus = NoEvents
 End With

 '--
 'Send a digital output request to the PCMDrive
 '--

 intStatus = PCMDigitalOutputVB(LogicalDevice, udtDigioRequest,
intRequestHandle)

 If intStatus <> 0 Then
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 multipleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Handle request status = " & intStatus
 'Debug.print "Request Handle = " & intRequestHandle

 '--
 'Copy output data to the PCM drive allocated buffer
 '--

 intStatus = PCMWriteBufferVB(intRequestHandle, 0, 1,
OutputValue(0))

 If intStatus <> 0 Then

 Call PCMReleaseRequestVB(intRequestHandle)

 109

 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 multipleDigitalOutput = intStatus
 Exit Function
 End If

 '--
 'Arm the request
 '--

 intStatus = PCMArmRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 multipleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Arm Request Status = " & intStatus

 '--
 'Trigger the Request
 '--

 intStatus = PCMTriggerRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMReleaseRequestVB(intRequestHandle)
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 multipleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Trigger Request Status = " & intStatus

 '---
 'Wait for completion or error
 '---

 lngEventMask = CompleteEvent Or RuntimeErrorEvent
 While (udtDigioRequest.RequestStatus And lngEventMask) = 0
 DoEvents
 Wend

 If (udtDigioRequest.RequestStatus And RuntimeErrorEvent) <> 0 Then
 intStatus = PCMGetRuntimeErrorVB(intRequestHandle, errorcode)
 MsgBox "Run Time Error." & vbCrLf & "Error code " & errorcode,
vbOKOnly, "PCMDIO Run Time Error"
 Call PCMReleaseRequestVB(intRequestHandle)

 110

 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 Call PCMCloseDeviceVB(LogicalDevice)
 End
 End If

 '---
 'Release the Request if operation is completed
 '---

 intStatus = PCMReleaseRequestVB(intRequestHandle)

 If intStatus <> 0 Then
 Call PCMFreeRequestVB(LogicalDevice,
udtAllocateRequest.memory_handle, udtAllocateRequest.memory_pointer)
 multipleDigitalOutput = intStatus
 Exit Function
 End If

 'Debug.print "Release Request Status = " & intStatus

 multipleDigitalOutput = intStatus

 Exit Function

errUnknown:
 Call unknownErrorMessage
 Call PCMCloseDeviceVB(LogicalDevice)
 End

End Function

'**
' Procedure: waitTime
' Purpose: Waits for a time specified in milliseconds
' Inputs:
' MilliSec: wait time in milliseconds
'**

Public Sub waitTime(ByVal MilliSec As Long)
 Dim oldTime As Long

 oldTime = Timer() * 1000
 Do
 DoEvents
 Loop Until ((Timer() * 1000 - oldTime) >= MilliSec)

End Sub

 111

'**
' Procedure: unknownErrorMessage
' Purpose: In the case of a non PCMDIO error the procedure
' displays a message box that describes the nature
' of the error
'**

Public Sub unknownErrorMessage()
 Dim errmsg As String

 errmsg = "Error # " & Str(Err.Number) & " was generated by " _
 & Err.Source & vbCrLf & vbCrLf & Err.Description
 MsgBox errmsg, vbOKOnly + vbExclamation, "PCMDIO Error"

End Sub

'***
'Procedure: errorMessage
'Purpose: In the case of a PCMDIO error the procedure displays
' a message box that describes the nature of the error
'***

Public Sub errorMessage(ByVal errorcode As Integer)
 Dim errmsg As String
 Dim errDesc As String

 Select Case errorcode
 Case 10
 errmsg = "Error opening configuration file."
 Case 11
 errmsg = "File is not a valid PCMDRIVE configuration file."
 Case 12
 errmsg = "Configuration file invalid for specified adapter
type."
 Case 13
 errmsg = "Error reading configuration file."
 Case 14
 errmsg = "End-Of-File encountered reading configuration
file."
 Case 15
 errmsg = "Invalid configuration file version."
 Case 18
 errmsg = "Unable to write device parameters to registry."
 Case 30
 errmsg = "Error loading DLL."
 Case 31
 errmsg = "Cannot locate the PCMDRIVE DLL open command."
 Case 35
 errmsg = "Cannot locate the PCMDRIVE TSR driver."
 Case 39

 errmsg = "PCMDRIVE is out of date."

 112

 Case 50
 errmsg = "Auto-configuration support not available."
 Case 51
 errmsg = "Invalid device type."
 Case 52
 errmsg = "Auto Configuration Failure."
 Case 60
 errmsg = "Configuration file error."
 Case 70
 errmsg = "Configuration file error."
 Case 71
 errmsg = "Configuration file error."
 Case 72
 errmsg = "Configuration file error."
 Case 73
 errmsg = "Configuration file error."
 Case 74
 errmsg = "Configuration file error."
 Case 100
 errmsg = "Invalid logical device number."
 Case 120
 errmsg = "No logical devices defined."
 Case 150
 errmsg = "Invalid request handle."
 Case 200
 errmsg = "No interrupt level defined for adapter."
 Case 201
 errmsg = "Interrupt in-use by another device."
 Case 205
 errmsg = "Internal interrupt error."
 Case 250
 errmsg = "No DMA channedl defined for adapter."
 Case 251
 errmsg = "DMA channel in-use by another device."
 Case 255
 errmsg = "Internal DMA error."
 Case 300
 errmsg = "Memory allocation error."
 Case 310
 errmsg = "Memory release error."
 Case 400
 errmsg = "Channel in-use by another request."
 Case 410
 errmsg = "Timer in-use by another request."
 Case 450
 errmsg = "Hardware dependent resource in-use by another
device."
 Case 500
 errmsg = "Invalid procedure call for a request that is not
configured."
 Case 600
 errmsg = "Invalid procedure call for a request that is not
armed."

 Case 650

 113

 errmsg = "Invalid procedure call for a request that is
armed."
 Case 700
 errmsg = "Trigger command invalid with specified trigger
source."
 Case 800
 errmsg = "Invalid re-configuration request."
 Case 1000
 errmsg = "Requested function not supported by targer
hardware."
 Case 1050
 errmsg = "Invalid operation in multi-user mode."
 Case 1100
 errmsg = "Invalid channel number"
 Case 1101
 errmsg = "Invalid array length."
 Case 1150
 errmsg = "Duplicate entries in channel list."
 Case 1160
 errmsg = "Invalid channel sequence."
 Case 1280
 errmsg = "Invalid gain."
 Case 1300
 errmsg = "Invalid data buffer length."
 Case 1320
 errmsg = "Invalid output value."
 Case 1350
 errmsg = "DMA mode data buffer crosses page boundary."
 Case 1351
 errmsg = "DMA mode data buffer defined on odd address."
 Case 1352
 errmsg = "Internal DMA error."
 Case 1400
 errmsg = "Invalid trigger source."
 Case 1401
 errmsg = "Trigger source not supported."
 Case 1410
 errmsg = "Invalid trigger slope."
 Case 1411
 errmsg = "Trigger slope not supported."
 Case 1420
 errmsg = "Invalid trigger channel."
 Case 1430
 errmsg = "Invalid analog trigger voltage."
 Case 1500
 errmsg = "Invalid data transfer mode."
 Case 1600
 errmsg = "Invalid clock source."
 Case 1601
 errmsg = "Clock source not supported."
 Case 1650
 errmsg = "Invalid sampling rate."
 Case 1700

 errmsg = "Invalid calibration mode."

 114

 Case 1710
 errmsg = "Adapter does not support auto-calibration."
 Case 1720
 errmsg = "Adapter does not support auto-zero."
 Case 3000
 errmsg = "Hardware failure."
 Case 3010
 errmsg = "A/D converter failure."
 Case 3020
 errmsg = "D/A converter failure."
 Case 3030
 errmsg = "Digital I/O failure."
 Case 3040
 errmsg = "Counter/timer failure."
 Case 5000
 errmsg = "Buffer overrun."
 Case 5010
 errmsg = "Buffer under-run."
 Case 5100
 errmsg = "FIFO overrun."
 Case 5110
 errmsg = "FIFO under-run."
 Case 5200
 errmsg = "Request time-out."
 Case 5300
 errmsg = "User break."
 Case Else
 errmsg = "Unknown Error."
 End Select

 errmsg = "Error code " & errorcode & vbCrLf & vbCrLf & errmsg
 MsgBox errmsg, vbOKOnly + vbExclamation, "PCMDIO Error"

End Sub

 115

4.PCMDrvFunc.bas

'PCMdrive operation
Declare Function PCMOpenDeviceVB Lib "PCMDrvVB.DLL" (_
 ByVal dllname As String, _
 logical_device As Integer, _
 ByVal DeviceType As String, _
 ByVal ConfigFile As String) As Integer

Declare Function PCMResetDeviceVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer) As Integer

Declare Function PCMCloseDeviceVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer) As Integer

Declare Function PCMGetAddressOfVB Lib "PCMDrvVB.DLL" (_
 pointer As Any) As Long

Declare Function PCMAllocateRequestVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 pAllocReqs As allocate_request) As Integer

Declare Function PCMFreeRequestVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 ByVal memory_handle As Long, _
 ByVal memory_ptr As Long) As Integer

Declare Function PCMReadBufferVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer, _
 ByVal curBuf As Integer, _
 databuf As Any) As Integer

Declare Function PCMWriteBufferVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer, _
 ByVal curBuf As Integer, _
 ByVal cycles As Long, _
 databuf As Any) As Integer

Declare Function PCMReadBufferFlagVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer, _
 ByVal curBuf As Integer, _
 pBufferStatus As Integer) As Integer

Declare Function PCMWriteBufferFlagVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer, _
 ByVal curBuf As Integer, _
 ByVal BufferStatus As Integer) As Integer

'I/O operation
Declare Function PCMDigitalInputVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 ByRef Request As DigioRequest, _
 ByRef handle As Integer) As Integer

 116

Declare Function PCMDigitalOutputVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 Request As DigioRequest, _
 handle As Integer) As Integer

Declare Function PCMSingleDigitalInputVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 ByVal Channel As Integer, _
 Value As Any) As Integer

Declare Function PCMSingleDigitalInputScanVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 Channel As Integer, _
 ByVal Length As Integer, _
 Value As Any) As Integer

Declare Function PCMSingleDigitalOutputVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 ByVal Channel As Integer, _
 Value As Any) As Integer

Declare Function PCMSingleDigitalOutputScanVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 Channel As Integer, _
 ByVal Length As Integer, _
 Value As Any) As Integer

Declare Function PCMArmRequestVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer) As Integer

Declare Function PCMReleaseRequestVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer) As Integer

Declare Function PCMStopRequestVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer) As Integer

Declare Function PCMTriggerRequestVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer) As Integer

Declare Function PCMGetRuntimeErrorVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer, _
 errorcode As Integer) As Integer

Declare Function PCMNotifyEventVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer, _
 ByVal NotifyProc As Long, _
 ByVal EventMask As Long) As Integer

Declare Function PCMUserBreakVB Lib "PCMDrvVB.DLL" (_
 ByVal request_handle As Integer, _
 BreakProc As Any)

Declare Function PCMGetDeviceCfgInfoVB Lib "PCMDrvVB.DLL" (_

 117

 ByVal logical_device As Integer, _
 CfgInfo As DeviceConfiguration) As Integer

Declare Function PCMGetDigioCfgInfoVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 ByVal Digio As Integer, _
 CfgInfo As DigioConfiguration) As Integer

Declare Function PCMVersionNumberVB Lib "PCMDrvVB.DLL" (_
 ByVal logical_device As Integer, _
 PCMVersion As Single, _
 SoftVersion As Single, _
 FirmVersion As Single) As Integer

Declare Sub PCMWordsToBytesVB Lib "PCMDrvVB.DLL" (_
 Words As Integer, _
 Bytes As Integer, _
 ByVal Length As Long)

Declare Sub PCMBytesToWordsVB Lib "PCMDrvVB.DLL" (_
 Bytes As Integer, _
 Words As Integer, _
 ByVal Length As Long)

 118

5. PCMData.bas

'Attribute VB_Name = "PCMData"

'**
'* PCMDRIVE data buffer structure
'**

Option Base 0

Type PCMDriveBuffer
 BufferStatus As Integer ' current buffer status
 DataBufferptr As Long ' offset of data points
 BufferLength As Long ' data_buffer length in
 ' number of points
 BufferCycles As Long ' number of cycles of this
 ' buffer (output only)
 NextStructureptr As Long ' address of next structure
End Type

'**
'* Digital I/O request structure
'**

Type DigioRequest
 ChannelArrayPtr As Long ' address of channel scan list
 ReservedArray0(3) As Integer ' reserved for future
 ' expansion
 ArrayLength As Integer ' length of chan & gain arrays
 DigioBufferptr As Long ' address of PCMDRIVE_buffer
 ReservedArray1(3) As Integer ' reserved for future
 ' expansion
 TriggerSource As Integer ' trigger source
 TriggerMode As Integer ' continuous / one-shot
 ' trigger
 TriggerSlope As Integer ' rising / falling edge
 ' trigger
 TriggerChannel As Integer ' trigger channel number
 ' analog or digital trigger)
 TriggerVoltage As Double ' trigger voltage (analog
 ' trigger)
 TriggerValue As Long ' value for trigger (digital
 ' trigger)
 ReservedArray2(3) As Integer ' reserved for future
 ' expansion
 IOMode As Integer ' input mode
 ' = 0 poll
 ' = 1 IRQ
 ' = 2 DMA with CPU status

 ' = 3 DMA with IRQ status

 119

 ClockSource As Integer ' clock source (0 = internal)
 ClockRate As Double ' clock rate (if not internal)
 SampleRate As Double ' input sampling rate (Hz)
 ReservedArray3(3) As Integer ' reserved for future
 ' expansion
 NumberOfScans As Long ' number of channel scans
 ScanEventLevel As Long ' generate event each
 ' scan_event_level
 ' scans (0 = disable)
 ReservedArray4(7) As Integer ' reserved for future
 ' expansion
 TimeoutInterval As Integer ' timeout interval (in sec)
 RequestStatus As Long ' request event status
End Type

'**
'* Allocate Request Structure
'**

Type allocate_request
 request_type As Long
 channel_array_length As Integer
 number_of_buffers As Integer
 buffer_size As Long
 buffer_attributes As Long
 memory_pointer As Long
 memory_handle As Long
End Type

'**
'* Device configuration structure
'**

Type DeviceConfiguration
 BaseAddress As Integer ' base I/O address
 IRQ As Integer ' IRQ level (-1 = none)
 DMA1 As Integer ' primary DMA (-1 = none)
 DMA2 As Integer ' secondary DMA (-1 = none)
 ADCDevices As Integer ' number of A/D devices
 DACDevices As Integer ' number of D/A devices
 DigioDevices As Integer ' number of digital I/O chans
 TimerDevices As Integer ' number of C/T channels
End Type

'**
'* Digital I/O configuration structure
'**

 120

Type DigioConfiguration
 DataSize As Integer ' digital I/O width (in bits)
 IOMode As Integer ' input / output mode
End Type

'**
'* Counter / timer configuration structure
'**

Type TimerConfiguration
 DataSize As Integer ' timer data width (in bits)
 InternalClockRate As Double ' rate of internal clock (Hz)
 MinRate As Double ' minimum output rate
 MaxRate As Double ' maximum output rate
End Type

'**
'* Define channel types
'**

Global Const ADC_TYPE_REQUEST = &H0
Global Const DAC_TYPE_REQUEST = &H1
Global Const DIGIN_TYPE_REQUEST = &H2
Global Const DIGOUT_TYPE_REQUEST = &H3

'**
'* Define flags
'**

Global Const SEQUENTIAL_BUFFER = &H0
Global Const RING_BUFFER = &H1

'**
'* Define buffer status constants
'**

Global Const BufferFull = &H1 ' data buffer full status
Global Const BufferEmpty = &H2 ' data buffer empty status

'**
'* Define calibration constants
'**

 121

Global Const NoCalibration = &H0 ' disable calibration
Global Const AutoCalibrate = &H1 ' enable auto-calibration
Global Const AutoZero = &H2 ' enable auto-zero

'**
'* Define trigger constants
'**

Global Const InternalTrigger = 0 ' selects internal trigger
Global Const TTLTrigger = 1 ' selects TTL trigger
Global Const AnalogTrigger = 2 ' selects analog trigger
Global Const DigitalTrigger = 3 ' selects digital value trigger

Global Const ContinuousTrigger = 0 ' selects cont. trigger mode
Global Const OneShotTrigger = 1 ' selects one-shot trigger mode

Global Const RisingEdge = 0 ' selects rising edge trigger
Global Const FallingEdge = 1 ' selects falling edge trigger

'**
'* Define acquisition modes
'**

Global Const ForegroundCPU = 0 ' perform task using CPU polling
Global Const BackgroundIRQ = 1 ' perform task using interrupts
Global Const ForegroundDMA = 2 ' perform task using DMA
 ' transfers
 ' CPU monitors DMA (foreground)
Global Const BackgroundDMA = 3 ' perform task using DMA
transfers
 ' IRQ monitors DMA (background)

'**
' Define timer clock sources
'**

Global Const InternalClock = 0 ' selects internal clock source
Global Const ExternalClock = 1 ' selects external clock source

'**
'* Define event mask / status bits
'**

Global Const NoEvents = &H0
Global Const TriggerEvent = &H1
Global Const CompleteEvent = &H2
Global Const BufferEmptyEvent = &H4

Global Const BufferFullEvent = &H8

 122

Global Const ScanEvent = &H10
Global Const UserBreakEvent = &H20000000
Global Const TimeoutEvent = &H40000000
Global Const RuntimeErrorEvent = &H80000000

'**
'* Define event types
'**

Global Const EventTypeTrigger = 0
Global Const EventTypeComplete = 1
Global Const EventTypeBufferEmpty = 2
Global Const EventTypeBufferFull = 3
Global Const EventTypeScan = 4
Global Const EventTypeUserBreak = 29
Global Const EventTypeTimeout = 30
Global Const EventTypeRuntimeError = 31

 123

APPENDIX B

CLIENT-SIDE PROGRAM

The client-side program is a Visual Basic project consisting of the following forms and

modules.

1. modIprvClientMain.bas - Execution of the server-side program starts with this

module. All the other forms in this project are executed within this module.

2. IprvClientMain.frm – This form contains the client-side GUI described in Section

5.5.

The client-side program also has three other forms. One is used as a splash

screen, the second is used for password protection, and the last is used to input control

keys that the operator may prefer to use for IPRV speed and direction control instead of

the control buttons provided on the GUI.

 124

1. ModIprvClientMain.bas

Option Explicit

Public gintKeyFwd As Integer
Public gintKeyRev As Integer
Public gintKeyLeft As Integer
Public gintKeyRight As Integer

Global Const MIN_FWD_REV_VALUE = 51
Global Const MAX_FWD_REV_VALUE = 195
Global Const MIN_LEFT_RIGHT_VALUE = 40
Global Const MAX_LEFT_RIGHT_VALUE = 215

Private Sub main()

 Dim dblTimeDelay As Double
 Dim dblCounter As Double

 Dim frmLogin1 As frmLogin
 Dim frmDirection1 As frmDirection
 Dim frmMain1 As frmIprvClientMain

 Load frmSplash
 Call frmSplash.Show

 ' Creating a delay of 1 second
 dblTimeDelay = Timer()
 Do
 dblCounter = Timer() - dblTimeDelay
 DoEvents
 Loop While (dblCounter < 1)

 Set frmLogin1 = New frmLogin
 With frmLogin1
 .Show vbModal
 If .LoginSucceeded = False Then
 Set frmLogin1 = Nothing
 Unload frmSplash
 End
 End If
 End With

 Set frmLogin1 = Nothing
 Unload frmSplash

 Set frmDirection1 = New frmDirection
 With frmDirection1
 .Show vbModal
 If .DirectionSucceeded = False Then

 125

 Set frmDirection1 = Nothing
 End
 End If
 End With

 Set frmDirection1 = Nothing

 Set frmMain1 = New frmIprvClientMain
 frmMain1.Show vbModal

End Sub

 126

2. IPRVClientMain.frm

Option Explicit

Public mintFwdRev As Integer
Public mintLeftRight As Integer
Public mintCheckComm As Integer
Public mblnRunModeAuto As Boolean

Private Sub Form_Load()
 Dim i As Integer
 Dim strInfo As String

 mintFwdRev = 128
 mintLeftRight = 128

 For i = 1 To 2
 cmdFwdRev(i).Enabled = False
 cmdLeftRight(i).Enabled = False
 Next i
 cmdHalt.Enabled = False
 cmdConnect.Enabled = True
 cmdDisconnect.Enabled = False
 cmdAuto.Enabled = False
 cmdRemote.Enabled = False

 mblnRunModeAuto = False 'Initialize to start in Remote Maneuvering
Mode

 txtCommands.Text = ""

 strInfo = "Click on the connect button to connect to the IPRV" &
vbCrLf & vbCrLf & _
 "Use the Fwd,Rev,Left,Right buttons to remotely control
the IPRV" & vbCrLf & vbCrLf & _
 "To stop the IPRV at any time press Disconnect."

 lblInfo.Caption = strInfo

End Sub

Private Sub Form_Unload(Cancel As Integer)
 'Ensure that the TCP connection is closed before unloading
 If tcpIprvClient.State <> sckClosed Then
 Call tcpIprvClient.Close
 End If

End Sub

Private Sub cmdConnect_Click()
 'Before connecting, ensure current state of connection is closed
 If tcpIprvClient.State <> sckClosed Then

 Call tcpIprvClient.Close

 127

 End If
 'Define connection parameters and send a connection request
 tcpIprvClient.RemoteHost = "iprv"
 tcpIprvClient.RemotePort = 10101 'server port

 Call tcpIprvClient.Connect ' connect to remotehost address
 cmdFwdRev(1).TabIndex = 0

End Sub

Private Sub cmdDisconnect_Click()

 'Close the connection
 If tcpIprvClient.State <> sckClosed Then
 Call tcpIprvClient.Close
 End If

 Dim i As Integer
 For i = 1 To 2
 cmdFwdRev(i).Enabled = False
 cmdLeftRight(i).Enabled = False
 Next i
 cmdHalt.Enabled = False
 cmdConnect.Enabled = True
 cmdDisconnect.Enabled = False
 cmdRemote.Enabled = False
 cmdAuto.Enabled = True

 mintFwdRev = 128
 mintLeftRight = 128

 txtCommands.Text = txtCommands.Text & tcpIprvClient.LocalHostName &
" >>> " & "Speed " & mintFwdRev - 128 & vbTab & _
 "Direction " & mintLeftRight - 128 & vbCrLf &
vbCrLf
 txtCommands.SelStart = Len(txtCommands.Text)
 lblInfo.Caption = "Connection has been closed by the Client" &
vbCrLf & vbCrLf

End Sub

Private Sub tcpIprvClient_Connect()
 Dim i As Integer
 For i = 1 To 2
 cmdFwdRev(i).Enabled = True
 cmdLeftRight(i).Enabled = True
 Next i
 cmdHalt.Enabled = True
 cmdConnect.Enabled = False
 cmdDisconnect.Enabled = True
 cmdAuto.Enabled = True

 128

 mblnRunModeAuto = False 'On establishing connection, mode should be
Remote Maneuvering

 txtCommands.Text = ""

 ' when connection occurs, display a message
 lblInfo.Caption = "Connected to IP address: " &
tcpIprvClient.RemoteHostIP & vbCrLf & _
 "Name: " & tcpIprvClient.RemoteHost & vbCrLf &
_
 "Port #: " & tcpIprvClient.RemotePort & vbCrLf
& vbCrLf
End Sub

Private Sub tcpIprvClient_DataArrival(ByVal bytesTotal As Long)
 Dim strInputData As String
 Dim strMessage As String
 Dim strCommand() As String

 Call tcpIprvClient.GetData(strInputData)
 'Split the received data into commands and values
 strCommand = Split(strInputData, , -1)

 Select Case strCommand(0)
 Case "Fwd"
 'Check the integrity of the received data and assign values
to variables
 If strCommand(2) = "Rev" Then
 If strCommand(1) > MIN_FWD_REV_VALUE And strCommand(1)
< MAX_FWD_REV_VALUE Then
 If strCommand(3) > MIN_LEFT_RIGHT_VALUE And
strCommand(3) < MAX_LEFT_RIGHT_VALUE Then
 mintFwdRev = strCommand(1)
 mintLeftRight = strCommand(3)
 End If
 End If
 End If
 Case "CheckComm"
 'Return the CheckComm message with the random number
received
 strMessage = "CheckComm " & strCommand(1)
 Call tcpIprvClient.SendData(strMessage)
 Exit Sub
 Case Else 'for completion of code only
 End Select

 txtCommands.Text = txtCommands.Text & tcpIprvClient.LocalHostName &
" >>> " & "Speed " & mintFwdRev - 128 & vbTab & _
 "Direction " & mintLeftRight - 128 & vbCrLf &
vbCrLf
 txtCommands.SelStart = Len(txtCommands.Text)

End Sub

 129

Private Sub tcpIprvClient_Close()

 'Close the connection
 Call tcpIprvClient.Close

 Dim i As Integer
 For i = 1 To 2
 cmdFwdRev(i).Enabled = False
 cmdLeftRight(i).Enabled = False
 Next i
 cmdHalt.Enabled = False
 cmdConnect.Enabled = True
 cmdDisconnect.Enabled = False
 cmdRemote.Enabled = False
 cmdAuto.Enabled = True

 mintFwdRev = 128
 mintLeftRight = 128

 txtCommands.Text = txtCommands.Text & tcpIprvClient.LocalHostName &
" >>> " & "Speed " & mintFwdRev - 128 & vbTab & _
 "Direction " & mintLeftRight - 128 & vbCrLf &
vbCrLf
 txtCommands.SelStart = Len(txtCommands.Text)

 lblInfo.Caption = "Server Closed Connection"

End Sub

Private Sub tcpIprvClient_Error(ByVal Number As Integer, Description As
String, ByVal Scode As Long, ByVal Source As String, ByVal HelpFile As
String, ByVal HelpContext As Long, CancelDisplay As Boolean)
 MsgBox Source & ": " & Description, vbOKOnly, "TCP/IP Error"
 Unload Me
End Sub

Private Sub cmdFwdRev_Click(Index As Integer)
 Dim strCommand As String

 Select Case Index
 Case 1
 'The Fwd button performs different functions in different
running modes
 'In the Remote Maneuvering mode, Fwd is used to increase
the speed of the IPRV
 'In the Semiautonomous mode, Fwd is used to start the IPRV
 If mblnRunModeAuto = False Then
 If mintFwdRev < MAX_FWD_REV_VALUE Then
 strCommand = "Forward"
 End If
 Else
 strCommand = "Auto"
 cmdFwdRev(1).Enabled = False

 cmdHalt.Enabled = True

 130

 End If
 Case 2
 If mintFwdRev > MIN_FWD_REV_VALUE Then
 strCommand = "Reverse"
 End If
 End Select

 Call tcpIprvClient.SendData(strCommand)

End Sub

Private Sub cmdFwdRev_KeyPress(Index As Integer, KeyAscii As Integer)
 Dim strCommand As String
 Select Case KeyAscii
 Case gintKeyFwd
 If mblnRunModeAuto = False Then
 If mintFwdRev < MAX_FWD_REV_VALUE Then
 strCommand = "Forward"
 End If
 Else
 strCommand = "Auto"
 cmdFwdRev(1).Enabled = False
 cmdHalt.Enabled = True
 End If
 cmdFwdRev(1).TabIndex = 0
 Case gintKeyRev
 If mintFwdRev > MIN_FWD_REV_VALUE Then
 strCommand = "Reverse"
 End If
 cmdFwdRev(2).TabIndex = 0
 Case gintKeyRight
 If mintLeftRight < MAX_LEFT_RIGHT_VALUE Then
 strCommand = "Right"
 End If
 cmdLeftRight(2).TabIndex = 0
 Case gintKeyLeft
 If mintLeftRight > MIN_LEFT_RIGHT_VALUE Then
 strCommand = "Left"
 End If
 cmdLeftRight(1).TabIndex = 0
 Case Else
 Exit Sub
 End Select

 ' send data to server
 Call tcpIprvClient.SendData(strCommand)

End Sub

Private Sub cmdLeftRight_Click(Index As Integer)
 Dim strCommand As String
 Select Case Index
 Case 1

 If mintLeftRight > MIN_LEFT_RIGHT_VALUE Then

 131

 strCommand = "Left"
 End If
 Case 2
 If mintLeftRight < MAX_LEFT_RIGHT_VALUE Then
 strCommand = "Right"
 End If

 End Select
 ' send data to server
 Call tcpIprvClient.SendData(strCommand)

End Sub

Private Sub cmdLeftRight_KeyPress(Index As Integer, KeyAscii As
Integer)
 Dim strCommand As String
 Select Case KeyAscii
 Case gintKeyFwd
 If mblnRunModeAuto = False Then
 If mintFwdRev < MAX_FWD_REV_VALUE Then
 strCommand = "Forward"
 End If
 Else
 strCommand = "Auto"
 cmdFwdRev(1).Enabled = False
 cmdHalt.Enabled = True
 End If
 cmdFwdRev(1).TabIndex = 0
 Case gintKeyRev
 If mintFwdRev > MIN_FWD_REV_VALUE Then
 strCommand = "Reverse"
 End If
 cmdFwdRev(2).TabIndex = 0
 Case gintKeyRight
 If mintLeftRight < MAX_LEFT_RIGHT_VALUE Then
 strCommand = "Right"
 End If
 cmdLeftRight(2).TabIndex = 0
 Case gintKeyLeft
 If mintLeftRight > MIN_LEFT_RIGHT_VALUE Then
 strCommand = "Left"
 End If
 cmdLeftRight(1).TabIndex = 0
 Case Else
 Exit Sub
 End Select

 ' send data to server
 Call tcpIprvClient.SendData(strCommand)

End Sub

Private Sub cmdHalt_Click()

 132

 If mblnRunModeAuto = True Then
 cmdFwdRev(1).Enabled = True
 cmdHalt.Enabled = False
 End If

 ' send data to server
 Call tcpIprvClient.SendData("Halt")

End Sub

Private Sub cmdAuto_Click()
 'On clicking the SemiAutonomous mode only remote start and stop is
possible
 'The IPRV will run automatically in all other aspects

 mblnRunModeAuto = True

 cmdAuto.Enabled = False
 cmdRemote.Enabled = True
 cmdFwdRev(1).Enabled = False
 cmdFwdRev(2).Enabled = False
 cmdLeftRight(1).Enabled = False
 cmdLeftRight(2).Enabled = False
 cmdHalt.Enabled = True

 ' send data to server
 Call tcpIprvClient.SendData("Auto")

End Sub

Private Sub cmdRemote_Click()
 'On clicking the Remote Maneuvering mode the IPRV stops and waits
for commands

 mblnRunModeAuto = False

 cmdAuto.Enabled = True
 cmdRemote.Enabled = False
 cmdFwdRev(1).Enabled = True
 cmdFwdRev(2).Enabled = True
 cmdLeftRight(1).Enabled = True
 cmdLeftRight(2).Enabled = True
 cmdHalt.Enabled = True

 ' send data to server
 Call tcpIprvClient.SendData("Remote")
End Sub

 133

VITA

Name: Ruzbeh Adi Minocher Homji

Address: Department of Mechanical Engineering, 3123 TAMU, College Station,
 TX 77843-3123

Email Address: rhomji@yahoo.com

Education: B.E. Marine Engineering, Marine Engineering & Research Institute,
 Kolkata, India, 1999
 M.E. Mechanical Engineering, Texas A&M University, 2005

