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ABSTRACT

Sensitivity of the Mueller Matrix to the Optical and Microphysical

Properties of Cirrus Clouds.  (August 2005)

Ryan Lee Lawless, B.S., Texas A&M University

Chair of Advisory Committee:   Dr. Ping Yang

An adding-doubling method is employed to calculate the reflected Stokes

parameters for cirrus cloud layers composed of different habits and effective sizes. The

elements of the Mueller matrix are determined from the reflected Stokes parameters by

considering four different incident polarization states. The sensitivity of these elements is

observed by comparing different ice crystal habits, effective sizes, and optical depth. The

Mueller elements are strongly dependent on habit. The three habits, aggregate, bullet

rosette, and plate, are observed and the 

! 

M
12
/M

11
, 

! 

M
43
/M

11
 and 

! 

M
44
/M

11
 elements are

discussed. The wavelength used is 

! 

" = 0.532µm , which is the lidar wavelength used on

the CALIPSO satellite. The linear depolarization ratio is also discussed. The method of

subtracting the two depolarization ratios, 

! 

"
h
#"

v
, is noted as another way to possibly

better distinguish ice crystal habits.

The sensitivity of the Mueller matrix to effective size is also observed. For three

size distributions, the Mueller elements indicate no strong dependence. This may be due

to the assumption of randomly oriented ice. Also, using an absorbing wavelength might

provide dependence. Finally, the Mueller elements are dependent on optical depth. For a

greater optical depth, the strength of reflection increases while the polarization decreases.

As the optical depth increases, any peak-like features become non-existent.
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CHAPTER I

INTRODUCTION AND HISTORY

Cirrus clouds are spatially abundant and temporally persistent across the Earth.

Despite their abundance and the avid determination to define their properties, the total

influence and range of their radiative forcing is not well identified.1,2,3 The lack of

knowledge about cirrus clouds is attributed to the vast range of cirrus cloud properties,

both macro-physical and microphysical, and their uncertainty.4 One step in this direction,

is to use radiative transfer to gain information about cirrus clouds. The reflected and

transmitted beam due to interaction with the cirrus cloud is dependent on the cirrus cloud

properties. By using the intensity and polarization of light and a radiative transfer model,

the Mueller matrix is determined. The Mueller matrix offers 15 more opportunities,

compared to the intensity, to focus in on the constituents of the cirrus cloud. In this study,

the Mueller matrix is analyzed to understand its dependence on cirrus cloud properties.

Single-Scattering Properties

The single-scattering properties for a population of ice crystals are needed to

calculate the radiative properties of a cirrus cloud layer. To calculate the single-scattering

properties for a population of cirrus clouds, specific size distributions and habit

distributions are required. These are obtained by field experiments.

It has been shown that the ice crystals that form cirrus clouds are non-spherical5

and in the middle latitudes consist mainly of bullet rosettes, aggregates, hollow columns,

and plates.6,7,8 The First International Satellite Cloud Climatology Project (ISCCP)

This thesis follows the style of Applied Optics.
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Regional Experiment (FIRE) helped confirm the abundance of these specific habits in the

middle latitudes, and along with the Atmospheric Radiation Measurement (ARM)

program, increased our understanding of cirrus microphysical and radiative properties at

a local level.9,10 A true representation of cirrus clouds requires complete experimental

coverage across the entire Earth, which is not currently possible. Heymsfield11 used

aircraft measurements to determine that cirrus clouds are highly variable in size and

shape.

Twenty-one size distributions were taken from various experiments for the middle

latitudes. Included are those from Heymsfield11 for cirrostratus and cirrus uncinus. Also,

size distributions from Heymsfield and Platt6 are used: two distributions for modified

warm and cold cirrus clouds, and the rest determined at various temperature ranges in the

atmosphere.  Size distributions also come from the more recent and intense two phase

FIRE campaign: FIRE I and FIRE II. FIRE II used instruments able to collect data for ice

crystals as small as 10 µm. FIRE I, used two probes to observe ice crystals from 25 µm to

above 2000 µm.9 Fu12 used all these size distributions to calculate the single-scattering

properties using a ray-tracing technique. Finally, the last two sets considered come from

Mitchell et al.13

A habit distribution is used to determine the average and bulk scattering

properties for a sample of ice crystals composed of different habits. Although, field

campaigns (FIRE I and II, ARM, etc.) have done an extensive job observing ice crystal

habits in cirrus clouds, detailed information regarding habit distribution and habit

percentage per size distribution is still unavailable. Despite the lack of habit information,

habit percentages based on data collected during FIRE II were used in to calculate the
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average and bulk properties in Baum et al.14 Those same percentages will be used in this

research for a mixed habit ice cloud. The four most common habits found in cirrus

clouds, aggregate, bullet rosette, plate, and hollow column, are used in these scattering

models.

Although, there are many methods specifically developed to describe the

scattering of light through an ice crystal,15,16,17 modeling the single-scattering properties of

ice crystals is nonetheless quite difficult and often time consuming. Currently, there is not

an exact solution for light scattering by non-spherical ice crystals that cover all shapes

and sizes.18

In the first scattering calculations, Mie scattering was considered to describe

radiative interactions. The Lorenz-Mie theory exactly explains the scattering of a

spherical particle. However, the field experiments, noted above, concluded that this

theory inadequately describes the scattering properties of ice crystals.12 Also, Takano and

Liou19 previously recognized that the Lorenz-Mie theory was inapplicable to the optical

phenomena produced by hexagonal ice crystals.

Cai and Liou15 developed the conventional geometric ray tracing technique,

including polarization, for randomly oriented hexagonal ice crystals. The total electric

field vector was determined by adding the outgoing electric fields in the same direction.

Takano and Liou19 extended this ray tracing technique to include ice crystal size

distributions, birefringence, and a proper treatment of the !-function transmission. Yang

and Liou17 further refined the conventional method to appropriately model the extinction

efficiency. Two of their methods were also compared: finite difference time domain and a

geometric optics code. The Improved Geometric Optics Method (IGOM) is found to



4

compare well with FDTD for size parameters larger than 20 µm. IGOM is based on ray

tracing, and only approximately calculates the surface field. Because of its relatively

good results and availability, IGOM is used to construct the single-scattering properties

for randomly oriented ice crystals in a cirrus cloud.

Radiative Transfer History

In the early 20th century, astrophysicists worked on the subject of radiative

transfer in stellar media. Chandrasekhar20 extended radiative transfer to plane-parallel

systems and specifically determined the exact solution, including polarization, for

Rayleigh scattering. Coulson et al.21 used Chandrasekhar’s formulation of radiative

transfer for Rayleigh scattering to calculate the Stokes vectors for the diffuse reflected

and transmitted radiation, i.e. the diffuse upward and downward radiation. van de Hulst22

worked through the reflection and transmission functions, which can be applied to the

radiative transfer problem.  The adding-doubling method23 calculates the reflection and

transmission matrices to determine the scattered polarized radiation due to plane-parallel

layers.

Polarization

In the paper by Stokes,24 the polarization of light was presented as a set of values

known today as Stokes parameters. The Stokes parameters are additive so long as no

permanent phase relationships between the individual beams hold; therefore, the beams

are incoherent. This is crucial to the use of the Stokes parameters, because the total

intensity and polarization in a given direction due to different beams, i.e. multiple

scattering, can be added together.
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Chandrasekhar25 first included the Stokes parameters in the radiative transfer

problem. The radiative transfer equation, including the vector representation of light, is

the vector radiative transfer equation (VRTE), which the Stokes parameters are a

solution. The inclusion of polarization is necessary to accurately determine the interaction

of radiation with a medium and to possibly gain more information about that medium.

Lenoble26 gives brief explanations of many methods, both scalar and vector, for

solving the radiative transfer problem. Plass and Kattawar27 used a Monte Carlo approach

to calculate the scattering of visible light through a horizontally stratified water cloud.

Multiple scattering and an anisotropic scattering function are taken into account. Takano

and Liou19 applied the adding-doubling method to calculate reflected and transmitted

intensities and polarization for randomly and horizontally oriented ice crystals. In this

study, an adding-doubling method23 is used to model the reflected radiation field due to a

cirrus cloud layer. This method can calculate the scattered Stokes parameters.
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CHAPTER II

RADIATIVE TRANSFER

The concept of radiative transfer can be applied to any absorbing, emitting and/or

scattering medium. The radiation field that is induced by the interaction of some incident

radiation with a medium is determined by solving the radiative transfer problem.

Information about the medium is contained in the induced radiation field, which is

particularly useful to remote sensing.

Electromagnetic radiation can propagate through almost any medium and unlike

sound waves; it can propagate in a vacuum. As radiation propagates through a medium,

interactions occur between the incident radiation beam and the constituents of the

medium. For instance, both scattering and absorption can take place, weakening the

incident beam. Scattering redirects some fraction of the incident radiation in to all other

directions according to the properties of the medium. Absorption, or “true absorption”

from Chandrasekhar,20 is the process that removes some other fraction of the incident

beam and transforms that energy into other energy forms or into energy at other

frequencies.

Equations

Consider a volume element with thickness 

! 

ds and cross sectional area 

! 

dA. The

amount of incident intensity, 

! 

I" , is weakened as it traverses the volume element. As

shown in Fig. 1, the outgoing intensity becomes the incident intensity plus some change

in the intensity, 

! 

dI", due to the medium. The subscript 

! 

"  indicates monochromatic

radiation.
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Fig. 1.    Energy Incident on a Volume Element.    This simplified model shows the very basic

idea of the medium removing energy from the incident direction.

The change in intensity depends on the thickness, 

! 

ds, density, 

! 

" , and the mass extinction

coefficient, 

! 

"
e# , of the volume element. The mass extinction coefficient denotes the

amount of energy removed from the incident beam per mass of the volume element

(cm2 g-1). Here, extinction of the energy is due to scattering and absorption. The change in

energy of the radiation beam traversing the volume element is defined28 as

! 

dE " = #$
e" % I" cos& ds d" dA d' dt . (1)

It is dependent on the incident intensity, 

! 

I" , defined as the energy per wavelength per

time per area perpendicular to the direction of propagation per steradian. In radiative

transfer, the radiation is confined to a pencil of radiation, so the solid angle, 

! 

d" ,

indicates the intensity is dependent on direction. The energy is in the specified
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wavelength interval, 

! 

"  to 

! 

" + d" . For the case where the incident energy is not

perpendicular to the surface, 

! 

dA, the cosine of the angle 

! 

"  from the perpendicular is

included, as in Eq. (1).

Now, the extinction of radiation due to scattering will be regarded. Eq. (1) is

formulated to include the phase function, 

! 

P(cos"), which describes the angular

distribution of scattered energy. The amount of energy scattered at an angle, 

! 

", from the

incident direction and into a solid angle, 

! 

d", is expressed by

! 

dE " = #$
s" 

I"
P(cos%)d&

4'
dm d" d( dt

, (2)

where the scattering coefficient 

! 

"
s# , due to scattering only, has the same units as the

extinction coefficient. The differential mass, 

! 

dm = "dsdA . Figure 2, similar to Tynes,28

depicts a pencil of radiation traversing a volume element, which is incident at some angle

! 

"  to the surface 

! 

dA and is scattered into the direction 

! 

d".

Energy may also be gained in a specified direction. The processes that contribute

to an increase in energy are the emission of radiation by the constituents of the medium

and the scattering from all other directions of the medium at the same wavelength into the

solid angle of interest. The change in energy due to emission is

! 

dE " = j" dm d"d# dt , (3)

such that the mass emission coefficient, 

! 

j" , denotes the amount of energy contributing

into the direction of consideration. Eq. (3) defines the change in energy in the wavelength

interval 

! 

"  to 

! 

" + d" , due to emission from the elemental mass, 

! 

dm , into the solid angle

! 

d"  in a time 

! 

dt . Notice, the solid angle 

! 

d"  is the outgoing direction.
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Fig. 2.   Traversing Pencil of Radiation.    A beam of radiation incident at an angle 

! 

"  to the

volume element is scattered at an angle

! 

" from the incident direction (adapted from Tynes,

2001).

Consider a scattering and absorbing medium. The increase of energy into the solid

angle 

! 

d"  is due to the scattering by the medium from all other directions. The radiation

propagating from the direction 

! 

(" ',#')  contributes energy into the direction 

! 

(",#)  in the

amount

! 

dE " =#
s"

P($,%,$ ',%')d&'

4'
I"($ ',%')dm d" d( dt

. (4)

The 

! 

(" ',#')  and 

! 

(",#)  directions are used to determine the scattering angle, 

! 

". Therefore,

the phase function becomes 

! 

P(cos") . In radiative transfer problems, the phase function is

normalized to one,

! 

1

4"
P(cos#)d$ =

1

2
P(cos#)

0

"

%
4"
% sin#d# =1

. (5)
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Upon setting Eq. (4) equal to Eq. (5) and integrating over all incident directions,

! 

j"  is found to be

! 

j" =
# s"

4$
P(%,&,% ',&') 

0

$

'
0

2$

' I"(%',& ')sin% 'd%'d& '
. (6)

This is the mass emission coefficient due only to scattering, such that scattering from all

directions into the solid angle 

! 

d"  of consideration is possible.

Now, examine the energy contribution to the beam due to material emission.

Consider a non-scattering medium assumed to be in local thermodynamic equilibrium,

i.e. all energy that is absorbed is emitted. The increase of energy into 

! 

d"  is due entirely

to blackbody emission, defined by the Plank function, 

! 

B(T) . This term will be left out of

the radiative transfer equation, because it is insignificant when considering solar energy

at 

! 

" # 3.5 µm .18 Consequently, the change in energy of the incident beam is due solely to

absorption and scattering in to and out of the pencil of radiation.

Finally, consider a volume element of thickness 

! 

ds and cross-section area 

! 

dA,

similar to Fig. 1. The incident energy is perpendicular to 

! 

dA, (

! 

cos" =1), and traverses the

distance 

! 

ds of the volume element to emerge perpendicular to the opposite face with

some change in energy. The difference in energy, 

! 

dE , due to extinction, Eq. (1), and

emission, Eq. (4), is

! 

dE " = #$e" I" % ds d" d& d' dt + j" % ds d" d& d' dt . (7)

Emission is due to scattering alone. The total energy difference across 

! 

ds is proportional

to the change in intensity across 

! 

ds as

! 

dE " =
dI"

ds
ds d" d# d$ dt

. (8)

  Finally, the radiative transfer equation takes the very general form
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! 

dI"

#
e"$ ds

= %I" + J"

, (9)

where 

! 

J" is the source function defined as

! 

J" =
j"

#e" . (10)

The first term on the right-hand side of the radiative transfer equation (9) is the intensity

in the direction 

! 

(",#)  due to extinction and the second term is the intensity scattered into

the direction 

! 

(",#)  from all other directions. At this point, the subscript 

! 

"  is omitted

from the terms in the transfer equation for brevity. However, it is understood that the

energy is defined in the wavelength interval 

! 

"  to 

! 

" + d" .

The radiative transfer equation includes the, direct and diffuse intensity, such that

the total intensity, 

! 

I, is

! 

I = Idir + Idif . (11)

Typically, in radiative transfer problems, the diffuse intensity is sought. In this research,

the direct intensity is not considered. The source function is defined by diffuse intensity

events and therefore must be kept in the transfer equation. The radiative transfer equation

is now defined as

! 

dI

"
e
#ds

= $I + J

, (12)

which includes multiple scattering and only diffuse intensity.

Plane-Parallel Model

An adding-doubling method23 is used to solve the radiative transfer problem for a

plane-parallel atmosphere. The plane-parallel model contains stratified layers, where the

only change in the properties of each layer is in the vertical. It is apparent that in the real
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atmosphere, especially in observing clouds, this very simplified model may not be

completely accurate. However, for our purposes it is an adequate model in which to study

the sensitivity of cirrus cloud properties.

In the plane-parallel model, it is quite convenient to consider distances in the

vertical. The vertical distance, 

! 

dz , can be determined from the relationship

! 

dz = cos" ds (13).

The height, 

! 

z , is measured upward from the lower boundary of the medium. The angle 

! 

"

is calculated from the positive 

! 

z -direction. The azimuth angle,

! 

" , is measured clockwise

from a plane including the 

! 

z -axis and another axis, often designated as the

! 

x-axis, when

looking with the positive 

! 

z -direction.  It is noted that the azimuth angle in this model is

represented as the difference in the incident and scattered azimuth angles, 

! 

" # "' . The

direction cosine, 

! 

u = "cos# , and the absolute value, 

! 

µ = u , are defined. The layer is

horizontally infinite and vertically finite, with an optical depth of 

! 

" ' . The plane-parallel

system is shown in Fig. 3. Now Eq. (12) depends on 

! 

z , and is defined according to the

geometry of the system as

! 

cos"
dI(z,",#)

$
e
%dz

= &I(z,",#) + J(z,",#)
. (14)

Eq. (14) is further modified, by using 

! 

u = "cos# , so that

! 

u
dI(",u,#)

d"
= $I(",u,#) + J(",u,#) . (15)

The optical thickness of the system is

! 

" = #
e

z

$

% &dz . (16)
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The optical thickness is measured downward from the upper boundary. By Eq. (15), the

radiative transfer equation is fully described, including its coordinates, for the plane-

parallel model.

Fig. 3.    Plane-Parallel Model.    The direction of propagation of the radiation beam is in the 

! 

s -

direction.    The component, 

! 

dz , in the 

! 

z -direction is determined by considering 

! 

cos"  and the

distance 

! 

ds.
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CHAPTER III

POLARIZATION

Vector Form of Radiation

Thus far, the radiative transfer equation has been built in scalar form. To properly

define the transfer of radiation in a medium, the vector form of radiation must be

included. A vector is defined by its magnitude and direction, and can be described by two

components with possibly different complex amplitudes. As shown by Maxwell’s

equations,29 light is a transverse wave consisting of electric and magnetic field vibrations

perpendicular to the direction of radiation propagation, referred to as electromagnetic

radiation. The plane wave solution to Maxwell’s equations is essential to the formulation

of the vector radiative transfer equation (VRTE). Therefore, to fully explain the nature of

electromagnetic radiation, the intensity and the orientation of the radiation must be

considered. The orientation of the electromagnetic field as the radiation propagates refers

to the polarization state of the radiation field. The terms radiation and light are used

interchangeably in place of electromagnetic radiation throughout the text.

Experiments using light initiated the belief that light has orientation. For instance,

Malus’ experiment30 revealed that when plane-polarized light was reflected off a

galvanized mirror, the orientation of the mirror in reference to the beam of light

determined the strength of the reflection. Therefore, the intensity of light varied with

respect to the orientation of the mirror. So, the reflection strength depends on the

direction of the electric field fluctuations and how they are aligned to the reflection

direction due to the mirror orientation. Thus, light must also be defined by its orientation.
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Either the electric field component or the magnetic field component can be used

to describe light, because one can be determined from the other. Traditionally, the electric

field is used and consequently is considered here for the complete description. Any vector

can be defined uniquely as a sum of two vectors. The equation describing the planar

electric field is

  

! 

r 
E =

r 
E // +

r 
E " = [E //

ˆ # + E"
ˆ $ ]exp %i(k ˆ n &

r 
r %'t){ }. (16)

The unit vector 

! 

ˆ n  is the propagation direction of the radiation and is in the meridional

plane. The meridional plane is the plane that includes the 

! 

+z -direction and the

propagation direction. The vector   

! 

r 
r  connects the origin of the local reference frame to

the observation point. The unit vectors, 

! 

ˆ "  and 

! 

ˆ " , are perpendicular to the direction of

propagation, such that 

! 

ˆ n = ˆ " # ˆ $ , where 

! 

ˆ "  is in the meridional plane and 

! 

ˆ "  is

perpendicular to the meridional plane as shown in Fig. 4. 

! 

E
//
 and 

! 

E"
 are the complex

amplitudes for each component. The complex amplitudes are defined by the amplitudes,

! 

a
//
 and 

! 

a" , and the phases, 

! 

"
//
 and 

! 

"# , of each electric field component. Therefore, Eq.

(16) can be written as

  

! 

r 
E = [a// exp("i#// )

ˆ $ + a% exp("i#% ) ˆ & ]exp "i(k ˆ n '
r 
r "(t){ }. (17)

The complex amplitudes of the electric field are actually space and time dependent. As

the radiation propagates, fluctuations in these components consistently occur.20 The

correlation of these two components is discussed in the next section.

Polarization States

As radiation propagates in some direction in time, the magnitude and direction of

the electric field varies. In general, this variation can be described by a state of

polarization called elliptical polarization. This idea of elliptical polarization is illustrated
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in Fig. 5, such that the electric field vector revolves around the propagation axis

producing an elliptical pattern as viewed looking into the propagating direction.  “Into the

propagation direction”, means the beam is propagating out of the page.

Fig. 4.    Electric Field Local Coordinate System.    The local coordinate system defines the

geometry for describing the propagation direction and orientation of the radiation beam.



17

The state of polarization of the electric field is described by the amplitudes of the

two components and the phase difference, 

! 

" = "
//
#"$ , between the two components. The

different states of polarization are listed in Table 1.

Table 1.    Components of the Polarization States.

Polarization States Amplitude Components Phase Difference

! 

" = "
//
#"$

Elliptical

! 

a
//
" a#

! 

" 0

" ±n2#             n =1,$

Linear

! 

a
//
" a#  or   a

//
= a#

! 

= 0

= ±n2"             n =1,#

Circular

! 

a
//

= a"

! 

= ±(2n +1)
"

2
    n = 0,#

The electric field components distinguish the polarization states by their amplitudes and phase

differences of the electric field components.    These values can be entered into Eq. (17), to derive

the total electric field.

To have a polarized beam, the variations in the phases and amplitudes must be so

that the phase difference, 

! 

" , and the ratio of the two amplitudes, 

! 

a
//
a" , remain constant

in time as the radiation propagates.31 Therefore, the two components are correlated.  If the

components are uncorrelated as the wave propagates, then there is no preferred state of

polarization and the light is unpolarized.
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Fig. 5.    Elliptical Polarized Beam.    The electric field components, 

! 

E
//
 and 

! 

E"
, define

the electric field vector,   

! 

r 
E .    The electric field vector traces out an ellipse in the

clockwise direction as the radiation propagates in time (the propagation direction is out of

the page).
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Light from the sun is considered unpolarized. Birge32 describes unpolarized light

“as a mixture of elliptically polarized components, the ellipses being in every possible

shape.” Again, unpolarized light has no preference to the state of polarization. The

electric field vector traces out an ellipse whose shape varies with time, so that at any

given instant the orientation and eccentricity of the ellipse is different than at a previous

instant in time. The Stokes parameters provide a simplified way to define polarized and

unpolarized light.

Stokes Parameters

A radiation beam can be completely characterized by its intensity and state of

polarization. Therefore it would be ideal for us to represent these two characteristics in a

form that can be easily introduced into the radiative transfer equation. However,

traditional instruments used in light experiments cannot measure the persistent

oscillations of the electric and magnetic fields. Instead, these devices measure the time

averages of the oscillations in a form that has units of intensity.20,31 Consequently,

representing the polarization state of the radiation beam in the same units is desired.

The set of four parameters introduced by Stokes24 will be denoted as I, Q, U, and

V. These parameters depend on the orientation and amplitude of the electric field vector

and are a measurable form of the intensity that includes polarization. They may also be

included in radiative transfer problems. The scalar intensity, in the radiative transfer

equation, is replaced by the 

! 

4 "1 vector, of the Stokes parameters, 

! 

I, 

! 

Q, 

! 

U, and 

! 

V. The

Stokes parameters are real values and can be developed from Eq. (16) as
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! 

I = E
//
E
//

*
+E"E"

*

Q = E
//
E
//

*
- E"E"

*

U = E
//
E"

*
+E"E//

*

V = i(E
//
E"

*
- E"E//

*
) . (18)

If the radiation beam is completely polarized, than the relationship

! 

I
2

=Q
2

+U
2

+V
2

(19)

exists. The Stokes parameters, using the definitions of the complex amplitudes in Eq. (17)

and the definition of Stokes parameters in Eq. (18) may be written as

! 

I = a//
2

+ a"
2

Q = a//
2
# a"

2

U = 2a//a" cos$

V = 2a//a" sin$ . (20)

By using the relationships from Table 1, the different states of polarization are defined by

the Stokes parameters. For example, consider the case where the radiation propagates in

the 

! 

+z -direction and the intensity of light is unity, so that 

! 

I =1. If 

! 

a" = 0, i.e. no

component in the 

! 

ˆ " -direction, then the Stokes vector 

! 

(I,Q,U,V) takes the form (1,1,0,0).

Therefore, the beam is linearly polarized and the vibration of the electric vector is

completely in the 

! 

ˆ " -direction.

The polarization state for the ellipse, as traced by the oscillating electric field

vector, can also be described by its geometric form. The ellipse is described by its

ellipticity and orientation by the angles 

! 

"  and 

! 

"  in Fig. 6. The Stokes parameters in the

geometric form are thus
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! 

I = a
2

Q = a
2
cos2" cos2#

U = a
2
cos2" sin2#

V = a
2
sin2" . (21)

The electric field vector that describes this definition of the state of polarization is

  

! 

r 
E = aˆ p cos" sin(#t $ k ˆ n %

r 
r +&) + a ˆ q sin" cos(#t $ k ˆ n %

r 
r +&), (22)

where 

! 

ˆ p  and 

! 

ˆ q  are the vectors along the long and short axes of the ellipse, respectively.

Eq. (22) is derived from a rotation of the axes from the parallel and perpendicular

components, 

! 

ˆ "  and 

! 

ˆ " , of the electric field vector. The intensity is 

! 

a
2  and 

! 

"  is an

arbitrary phase angle. The angle 

! 

"  describes the orientation of the ellipse measured from

the positive 

! 

ˆ "  direction to the 

! 

ˆ p  direction. The angle is measured in the clockwise

direction (radiation propagating out of the page) and has values, 

! 

0 " # < $ . The angle

! 

"

describes the ellipticity and ranges from 

! 

"# 4  to 

! 

" 4 .

Polarization states for the geometric representation can also be defined. Consider

a beam of unit intensity propagating in the 

! 

+z -direction. If 

! 

" = 0, one can easily see that

the electric field vector is only oriented in the 

! 

ˆ p -direction and therefore, is linearly

polarized. This corresponds to 

! 

Q = cos2" ,

! 

U = sin2" , and 

! 

V = 0 . If 

! 

" = #$ 4 , then the

radiation is left-handed circularly polarized and the Stokes parameters are 

! 

(1,0,0,"1) .

Consider the ellipse in Fig. 6, and insert the previous two values of 

! 

"  for the ellipticity

angle. It is instantly recognized that linear and circular polarization are special cases of

elliptical polarization. For right-handed polarization, 

! 

"  is positive and for left-handed
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Fig. 6.    Geometric Form of the Ellipse.    The electric field vector rotates around the

propagation axis in the clockwise direction.    This is known as left-handed elliptically

polarized radiation. The propagation direction is out of the page.    For this case 

! 

" < 0.
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(a)     (b)    (c)     (d)

(e)     (f)    (g)     (h)

(i)      (j)

Fig. 7.    Polarization States Using Stokes Parameters.    The top row and bottom row are

elliptical and circular polarization, respectively, of different orientations and handedness.

The middle row is linear polarization of different orientations.    For graphs (a) and (e),

! 

" = 3# 4  and for graphs (b) and (f), 

! 

" = # 4 .    The Stokes parameters for each figure

are:    (a) 

! 

Q = 0  U < 0  V > 0,  (b) 

! 

Q = 0  U > 0  V < 0, (c) 

! 

Q < 0  U = 0  V > 0 , (d)

! 

Q > 0  U = 0  V < 0 , (e) 

! 

Q = V = 0  U = -I,  (f) 

! 

Q = V = 0  U = I,  (g) 

! 

U = V = 0  Q = -I,

(h) 

! 

U = V = 0  Q = I,  (i) 

! 

Q = U = 0  V = I,  (j) 

! 

Q = U = 0  V = -I.
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polarization 

! 

"  is negative, as viewed looking into the beam. Therefore, the electric field

vector rotates counter-clockwise for right-handed polarization and clockwise for left-

handed polarization. One must be careful when using Stokes parameters, particularly for

the definition of handedness. Figure 7 presents more cases of the different states of

polarization. Figure 7 is similar to the figures presented by Mishchenko and Travis;31

however, their definitions of the Stokes parameters are different.

So far, the amplitudes and phases of the components are assumed to have no time

dependence. In actuality, small fluctuations occur in the complex amplitudes of the

electric field and vary slower than the period of vibration, but frequent enough to be

undetectable by measurement. Therefore, optical instruments are unable to detect the

instantaneous Stokes parameters, but instead detect a time average of millions of simple

waves of independent phases. The time average is denoted with brackets as described by

Hansen and Travis.33 Now, because of these fluctuations, Eq. (19) becomes

! 

I
2
"Q

2
+U

2
+V

2

. (23)

Therefore, light is generally partially polarized, where the beam is a mixture of polarized

and unpolarized light. The equality only holds if the components of the electric field are

correlated, i.e., completely polarized.

The Stokes vector for unpolarized light makes more sense when considering the

average. As mentioned in the Polarization States section, there is no dominant state of

polarization. So, the complex amplitudes vary with time and are not correlated.

Therefore, the phases of the components are not related, and the time averages of 

! 

cos"

and 

! 

sin"  from Eq. (20) equal zero. Also, the average amplitudes of the two components
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in time are equivalent, 

! 

a
//

= a" . The Stokes vector for a beam of unpolarized light is

thus 

! 

(1,0,0,0,).

The Stokes parameters by the principle of optical equivalence34 are the complete

set of quantities necessary to characterize the intensity and state of polarization of light.

Consequently, any two beams with the same Stokes parameters are equivalent. Their

intensity and state of polarization are the same, despite possible differences in the phases

of their components, which are experimentally indistinguishable. Even if two beams are

produced by two different media, optical analysis is unable to further differentiate these

beams.

Finally, what makes Stokes parameters so desirable is the ability to add them

together when considering incoherent beams of light. If each beam is independent of

another beam in the same direction, so that their phases are independent, Stokes

parameters are additive. Their application is quite useful in experimental work where the

incident Stokes parameters are altered by the interaction with the optical medium to

produce the outgoing or scattered Stokes parameters. This relationship, is of the form

! 

I =

I
s

Q
s

U
s

V
s

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=M

I
0

Q
0

U
0

V
0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
. (24)

The Mueller matrix, 

! 

M , is a 

! 

4 " 4  matrix that completely describes the optical

instrument or some physical process, such as scattering35 by its optical properties, and

transforms the incident Stokes parameters into the scattered Stokes parameters.34 The

Mueller matrix is determined in this research to possibly gain information about the

medium of transfer.
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Mueller Matrix

Again, the Mueller matrix completely describes the system one is considering.

Therefore, if the Mueller matrix is known for the cirrus cloud layer, than all the

information that describes the cirrus cloud is known because it is found in the Mueller

matrix. Consequently, information about the constituents, the microphysical properties,

and the optical properties are available. The Mueller matrix provides 15 more elements of

information than are available by just considering the scalar intensity of the scattered

beam. For these reasons and to encourage future work in remote sensing, the Mueller

matrix is described and studied as a method to help distinguish cirrus cloud properties.

In experimental work,36 the elements of the Mueller matrix for a medium can be

calculated by considering 49 different vector intensity measurements. In this research, the

Mueller matrix is determined by illuminating the ice crystal layer with only four different

incident states of polarization. The four incident states of polarization are: linearly

polarized 

! 

(1,1,0,0), linearly polarized at 
  

! 

" = 45
o  

! 

(1,0,1,0), right-circularly polarized

! 

(1,0,0,1) and unpolarized 

! 

(1,0,0,0) radiation. The Mueller matrix is

! 

M(µ,µ'," # "') =

M
11

M
12

M
13

M
14

M
21

M
22

M
23

M
24

M
31

M
32

M
33

M
34

M
41

M
42

M
43

M
44

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
, (25)

 where each element is determined by rearranging Eq. (24) as

! 

M(µ,µ'," # "') =
I
s

I
0 , (26)
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and applying each incident polarization state. The Mueller matrix is dependent on the

geometry of the system. It also depends on the properties of the system, which is evident

in the next section.

Vector Radiative Transfer Equation

To describe the scattering process of any medium, consider a sample of the

constituents of that medium, represented by some size distribution. Now, the scattering

process of the sample is described by a 

! 

4 " 4matrix, 

! 

P(") , known as the average

scattering matrix. The scattering matrix is defined in the scattering plane, which contains

the incident beam and scattered beam. Since, the Stokes parameters are defined in the

meridian plane of the system, which includes the direction of propagation and the 

! 

+z -

direction, the necessary rotations must be performed on the scattering matrix. The phase

matrix is defined as

! 

Z(",#;"',# ') = L($ %&
2
)P(')L(%&

1
), (27)

where the incident meridian plane is rotated into the scattering plane at the angle 

! 

"
1
 and

then rotated into the scattered meridian plane at the angle 

! 

"
2
. The rotation matrix takes

the general form

! 

L(") =

1 0 0 0

0 cos2" sin2" 0

0 #sin2" cos2" 0

0 0 0 1

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
, (28)

The rotation angles and the scattering angle are determined using the geometry of the

scattering system.37

Now, the radiative transfer equation defined in Eq. (15), can be written in vector

form as
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! 

u
dI(",u,#)

d"
= $I(",u,#) + J(",u,#)

, (29)

which now includes polarization. The source function becomes

! 

J(",µ,#) =
$

4%
Z(u,u',#

&1

1

'
0

2%

' & # ')I(",u',# ')du'd#'
 , (30)

where the phase matrix is dependent on 

! 

u , 

! 

u' , and 

! 

" # "'  and the single-scattering

albedo,

! 

" , is introduced. The single-scattering albedo is the fraction of scattered energy

to the total amount of energy removed from the incident beam. Eq. (29) describes the

change in the radiation due to a medium and now includes polarization. It is known as the

vector radiative transfer equation (VRTE).

Adams and Kattawar38 show that, in a medium where Rayleigh scattering occurs,

there are significant differences between the scalar intensity, without polarization, and

vector intensity, including polarization. Lenoble26 documents errors of up to 10% for

Rayleigh scattering. Hansen39 discusses more radiative transfer models and shows errors

in intensities up to 1% for spherical droplets of sizes on order of or larger than the

wavelength, via an adding-doubling method. It is believed that similar errors occur for

non-spherical particles. Although, the errors are small for larger particles, the state of

polarization of the scattered light yields information about the medium of transfer.

Therefore, the radiative transfer equation shall be formulated to include polarization.
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CHAPTER IV

CIRRUS CLOUDS AS A MEDIUM FOR TRANSFER

Before the VRTE is solved, the single-scattering properties must be derived. First,

the light scattering properties of a small volume of randomly oriented ice crystals will be

calculated. Second, bulk and average scattering properties for a collection of particles are

determined. Third, the average scattering properties are applied to the VRTE to calculate

the total reflected radiation field of the medium. First, certain assumptions must be

considered in calculating the single-scattering properties for an ice crystal.

Geometrical Optics

In light scattering with an ice crystal, assumptions can be made about the light

interaction with that ice crystal. If the particle is much larger than the wavelength of light,

than the geometrical optics approach may be used to approximately compute the angular

distribution of scattered light. This approach assumes that light can be separated into

localized rays parallel to the propagation direction. Geometric optics provides asymptotic

approximations of the fundamental electromagnetic theory for light scattering,18 such that

the results are more accurate as the size to wavelength ratio goes to infinity.

Consider a plane wave incident on some arbitrary particle (Fig. 8). The plane

wave is divided into many small increments along the wave front and the propagation of

the wave is normal to the wave front. Each increment of the plane wave, if considered a

ray, is allowed to pursue its own rectilinear path through the particle as determined by

Snell’s law. The wave front of a plane wave can be visualized as many points that act as a

source of wavelets. These wavelets propagate forward in spherical waves and produce a

new wave front at the envelope of the wavelets, where the phase is constant. This is
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known as Huygens’ principle. This definition of the plane wave is convenient when

considering reflection and refraction due to an interface separating different media.

The geometric optics approach requires the size of the obstructing particle to be

much larger than the wavelength of the incident light. Also, the width of the increment

for each ray must be larger than the wavelength, but smaller than the particle. This

assumption allows one to consider the plane wave solution to describe each ray. There

are four geometrical optics laws: rectilinear propagation, reflection, refraction, and

reversibility. Rectilinear propagation assumes that light always proceeds in a straight line.

Therefore, diffraction is neglected. Huygens’ principle helps to explain the laws of

reflection and refraction: at each point on the surface of the particle where reflection and

refraction occur, source wavelets are initiated. The propagation of the these wavelets

create a wave front in a different direction from the incident beam depending on the angle

of incidence and the index of refraction. Finally, the reversibility law requires that if the

incident direction is reversed than the light will follow the same path it traveled before it

was reversed but in the opposite direction. Although, diffraction is not a part of geometric

optics, it definitely must be incorporated.

Diffraction is important because it occurs in any experiment using light. We will

consider two parts to diffraction in a scattering process. First, consider the assumption

that the width of the ray must be larger than the wavelength. If the width of the ray is too

small, the individual rays cannot be approximated as a plane wave and the diffraction due

to the phase interferences across the wave is quite strong. Basically, if there is any

limitation to the width of the beam, there will be diffraction.30 Second, the light that

passes near a particle is diffracted, such that the energy is removed from that
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Fig. 8.    Plane Wave Incident on a Particle.    The propagation direction of the plane

wave is denoted by 

! 

ˆ n .    The plane wave is divided into many rays propagating in the

same direction as 

! 

ˆ n .    The wavelength, 

! 

" , is much smaller than the width of the rays.

As each ray interacts with the particle, it is allowed to pursue its own path, reflected away

from or refracted through the particle.
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light wave. Diffraction becomes more significant as the particle size to wavelength ratio

gets larger. The presence of the particle bends the light passing close to the particle so

that it is concentrated in a narrow lobe in the forward direction. It is this diffraction that

creates the scattered energy maximum in the forward direction, portrayed by the phase

function of an ice crystal (Fig. 9).

To calculate the complete scattering field due to an ice crystal, other aspects of

light interaction must be included. First, it is noted that even for large widths, interactions

of the wavelets cause phase interferences. Yang and Liou40 describe this divergence of

the energy from the forward direction. Second, the polarization state of the ray must be

acknowledged because any interaction with the ice crystal interface can induce a change

in polarization. Finally, larger ice crystals create significant diffraction such that

rectilinear propagation breaks down, and light is bent around the outside of the crystal.

According to Yang and Liou,17 their geometric optics model allows accurate

calculation of the phase functions and scattering efficiencies for size parameters as small

as 20. Yang and Liou40 extended their method to calculate the scattering matrix,

extinction efficiency and single-scattering albedo for the 3-D case. The above geometric

optics method by Yang and Liou17,40 and the combined ray-by-ray algorithm41 are known

as the Improved Geometric Optics Method (IGOM). IGOM combines geometric optics,

diffraction, and polarization to calculate the single-scattering properties for ice crystals.

IGOM is used in this research to calculate those properties for various ice crystal sizes

and habits.
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Fig. 9.    Phase Function Including Forward Peak.    The phase function of plate is

displayed determined by IGOM for 

! 

" = 0.532 µm  and 

! 

D
e

=100.25 µm .    The diffraction

peak in the forward direction is of magnitude seven times stronger than the

backscattering direction.
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Average Single-Scattering Properties

If the medium is a cirrus cloud than the single-scattering properties are

determined by considering the ice crystals that make up the cloud. Given a wavelength of

light and the polarization of the incident beam, as well as, the size, shape, and the

orientation of an ice crystal, and with a formulating idea of scattering through that ice

crystal, the single-scattering properties can be obtained. The properties necessary as input

into the radiative transfer model are the optical depth, single-scattering albedo and

scattering matrix. The albedo and scattering matrix are determined using IGOM.

Generally, light that is scattered is polarized. The following equations, therefore,

describe the scattered electric field including polarization. van de Hulst34 describes, very

well, the transformation from an incident light wave with respect to some reference plane

to a scattered light wave with respect to another reference plane by the transformation

matrix, 

! 

S, which is made of four complex amplitude functions dependent on the incident

and outgoing directions. The complex amplitude functions are

! 

S =
S
2
S
3

S
4
S
1

" 

# 
$ 

% 

& 
' 
. (31)

These functions describe the amplitude and phase of the scattered wave and hence its

polarization.

The general equation for the electric field is described by Eq. (16) in Section III.

Most observations of the scattered field are obtained in the far field, where 

! 

kr >>1.18

With reference to the definition of the electric field vector in Eq. (16) and Eq. (31), the

scattered wave in the far field becomes

! 

E//

s

E"
s

# 

$ 
% 

& 

' 
( =
exp()ikr + ik*)

ikr

S2 S3

S4 S1

# 

$ 
% 

& 

' 
( 
E//

i

E"
i

# 

$ 
% 

& 

' 
( 
. (32)
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The transformation matrix depends on the directions of incidence and scattering and the

orientation the ice crystal. The term 

! 

" is an arbitrary propagation direction of the incident

beam and is often denoted in the literature18,34 as 

! 

z , being in the 

! 

+z -direction.

The scattered Stokes parameters are calculated using Eq. (32) and the definition

of the Stokes parameters in Eq. (18). The scattered Stokes parameters for light incident

on a single ice crystal becomes

! 

I
s

Q
s

U
s

V
s

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 

=
(
s
P

4) r
2

I
0

Q
0

U
0

V
0

" 

# 

$ 
$ 
$ 
$ 

% 

& 

' 
' 
' 
' 
. (33)

The single-scattering matrix, P, describes the angular distribution of light scattered by the

ice crystal and is derived directly from the complex amplitude functions. Notice the

similarities to the Mueller matrix first defined in Eq. (24). The scattering matrix and the

Mueller matrix are proportional for the case of single-scattering. The scattering cross

section, 

! 

"
s
, is the amount of energy that is removed from the incident beam due to

scattering and figuratively represents an isotropic redistribution of that energy on the

surface of a sphere with some radius from the center of an ice crystal.18 The scattering

cross section is the integration over all scattering angles of the first element of the

scattering matrix:

! 

"
s

=
1

k
2

(E //

s

0

#

$
0

2#

$ E//

s*
+ E%

s
E%

s*
)sin& d& d'

. (34)

The basic setup of the scattering matrix is



36

! 

P(",#,$) =

P
11

P
12

P
13

P
14

P
21

P
22

P
23

P
24

P
31

P
32

P
33

P
34

P
41

P
42

P
43

P
44

% 

& 

' 
' 
' 
' 

( 

) 

* 
* 
* 
* 
, (35)

where it depends on the scattering angle 

! 

" and on the ice crystal orientation with respect

to the incident beam. To simplify Eq. (35), consider a small sample volume, of randomly

oriented particles of all the same size. The scattering matrix of this sample is obtained by

integrating over all orientations for each ice crystal:

! 

P(") =
1

2#$ s

P("
0

#
2%

0

2#

% ,&,')$ s(&,')sin& d& d'
. (36)

This form of the scattering matrix is no longer dependent on the direction of the incident

wave. Similarly, the scattering cross section is found to be

! 

"
s
=

1

2#
"
s
($,%)

0

#

&
0

2#

& sin$ d$ d%
. (37)

Further simplifications of the scattering matrix are obtained by assuming symmetry

relationships exist. van de Hulst34 describes three orientations of a particle that can be

related to some initial position, in which two orientations have a mirror particle. If we

further assume that a sample of randomly oriented ice crystals have an equal number of

their mirror images, Eq. (35) simplifies to

! 

P(") =

P
11

P
12

0 0

P
12

P
22

0 0

0 0 P
33

-P
43

0 0 P
43

P
44

# 

$ 

% 
% 
% 
% 

& 

' 

( 
( 
( 
( 
. (38)

Now, there are only six independent elements in the scattering matrix. The first element,

! 

P
11

, the phase function is normalized by Eq. (5). The other elements of the scattering

matrix are normalized, for instance as
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! 

P
12

P
11

"1

. (39)

Now, the scattering properties for a population of ice crystals may be sought.

To calculate the average and bulk scattering properties, representative size

distributions and habit distributions of cirrus clouds are needed. The single-scattering

properties of individual ice crystals are averaged together using size distributions and

habit distributions for different sizes and shapes. The bulk scattering properties are used

to define a spatial volume that describes cirrus clouds in a GCM grid box.10 Therefore, an

average over size and habits must be taken.

An average size for each size distribution is defined by the effective size, 

! 

D
e
,

where the volume, V, projected area, A, and size distribution, n, depend on the ice crystal

maximum dimension, 

! 

L . The effective size as defined by Yang et al.42 and used in this

study is

! 

D
e

=
3

2

V(L)n(L)dL
Lmin

Lmax

"

A(L)n(L)dL
Lmin

Lmax

"
 . (40)

Also, the mean extinction and absorption efficiency are defined as

! 

Q
e,a =

Q
e,a (L)A(L)n(L)dL

Lmin

Lmax

"

A(L)n(L)dL
Lmin

Lmax

"
, (41)

where 

! 

e  and 

! 

a  indicate the extinction and absorption efficiency, respectively. 

! 

Q
e
 is

defined as the extinction cross section divided by the projected area of the particle. The

single-scattering albedo is related to the extinction and scattering efficiency as

! 

" =1#
Q

a

Q
e . (42)
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Notice, if 

! 

Q
a

= 0, then 

! 

" =1 and all extinction of the incident beam is due to scattering.

The average scattering matrix is determined using the following equation:

           

! 

P(") =
P(",L)(Q

e
(L) #Q

a
(L))A(L)(L)n(L)dL

Lmin

Lmax

$

(Q
e
(L) #Q

a
(L))A(L)n(L)dL

Lmin

Lmax

$
. (43)

! 

P(",L) is the scattering matrix calculated in Eq. (36) for each size ice crystal.

Now, that the scattering properties and scattering model are defined, consider the

initial input into the model and the results that were obtained. The single-scattering

properties for 38 size bins at 

! 

" = 0.532µm  for four habits, aggregate, bullet rosette, plate

and hollow column were determined. The average properties were then computed using

the size distributions mentioned in Section II. The mixed habit percentages used by Baum

et al. are display in Table 2. These percentages are for the middle latitudes taken from

data collected during the FIRE campaigns. 

! 

Lavg  is the average length of the ice crystal for

each size bin, where the minimum length and the maximum length are averaged together.

Table 2.    Mid-Latitude Habit Percentages for a Mixed Habit Cirrus Cloud.

Habits

! 

Lavg < 70µm

! 

Lavg > 70µm

Bullet Rosette 50% 30%

Aggregate 0% 30%

Plate 25% 20%

Hollow Column 25% 20%
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CHAPTER V

THE ADDING-DOUBLING METHOD

The equations for the adding-doubling method, including multiple scattering,

were presented by van de Hulst.22 In the second paper by Takano and Liou,19 the transfer

of radiation including polarization in an anisotropic medium of randomly oriented and

oriented ice crystals is computed for incident solar radiation by an adding method. In the

next couple of chapters, the reflected vector intensities are calculated for various optical

depths, incident solar angles, viewing angles, and different ice crystal habits and effective

sizes, using an adding-doubling method by Haan et al.23

Concept

Consider a plane-parallel layer, slab 1, with optical thickness 

! 

"
1
 and another layer,

slab 2, of optical thickness 

! 

"
2
, immediately below slab 1 in the atmosphere. If the

reflection and transmission matrices for slab 1, 

! 

(R
1
,T
1
) , and for slab 2, 

! 

(R
2
,T
2
) , are

known, then the reflection and transmission matrices, 

! 

(R
c
,T

c
) , for the combined layer

can be determined (Fig. 10) by a system of adding equations. The combined layer has

optical depth, 

! 

"
1
+ "

2
. From these matrices the intensity throughout the layer may be

determined. The matrices of the combined layer include the infinite number of reflections

occurring between slab 1 and slab 1, therefore incorporating multiple scattering.

These two layers may be vertically inhomogeneous of different composition and

optical depth. If the matrices are not known, then each layer is divided into many smaller

optically thin layers so to approximate one or two orders of scattering and to obtain a

homogeneous layer. Now the reflection and transmission matrices are determined for the
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Fig. 10.    Basic Adding of Two Layers.    Radiation is incident on the top of layer 1 and

then proceeds to reflect from and transmit through both layers 1 and 2.    (a)    The

reflection and transmission matrices define the properties for each layer.    (b)    The

reflection and transmission matrices for the combined layer are determined from those of

the two layers, 1 and 2.
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optically thin homogeneous layer. The matrices are applied to the adding equations to

find those matrices for a combined layer. After adding many layers, eventually the

matrices for the entire layer are calculated.

Another approach to determine the properties of the entire layer is the doubling

method. If the two layers are identically homogeneous, then the doubling method is

applied. Consider, the reflection and transmission matrices for the optically thin layers,

determined before, but the optical depth of each layer is the same. If many homogeneous

layers are calculated then the doubling method is faster than the adding method, because

repeated calculations of the initial reflection and transmission matrices for each layer is

not necessary. The process of doubling the optical thickness is performed until the optical

thickness of the initial layer, before the layer is divided, is met.

In this research, there is no dependence of the scattering properties of the medium

on the optical thickness. Therefore, each thin layer is identical and homogenous.

Therefore, the doubling method is used to compute the scattering properties of the entire

cirrus cloud layer.

The Adding Equations

Before submitting the adding equations, it must be understood what is desired

from these equations. To explain the propagation of radiation upwards and downwards at

any depth in the atmosphere, two matrices, 

! 

U(",µ,µ',# $ # ')and 

! 

D(",µ,µ',# $ # ')  are

considered. These matrices are defined by the equations

! 

I(",µ,#) =
1

$
D(",µ,µ',# % # ')I(0,µ',# ')µ'dµ'd# '

0

1

&
0

2$

&

                              +  exp[%" / µ] I(0,µ,#) (44)

and
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! 

I(",#µ,$) =
1

%
U(",µ,µ',$ # $')I(0,µ',$')µ'dµ'd$'
0

1

&
0

2%

&
, (45)

where 

! 

I(0,µ',"')  is the intensity incident at the top of the layer. The equations give the

intensity of radiation traveling downwards, 

! 

I(",µ,#), and upwards, 

! 

I(",#µ,$) , at an

optical depth, 

! 

" , as an integration over all possible incident geometries at the top of the

layer. The upward and downward matrices for light incident from below the layer are

defined in a similar manner. The adding equations are used to determine 

! 

U and 

! 

D .

If the light emerging from the layer is desired, either from the top or the bottom,

then 

! 

U and 

! 

D  are defined by their boundary values. These are the reflection and

transmission matrices corresponding to light incident at the top of the layer:

! 

T(µ,µ'," # " ') = D($ ',µ,µ'," # " ')

R(µ,µ'," # " ') = U(0,µ,µ'," # " ') . (46)

The transmission and reflection matrices for light incident from below at the bottom of

the layer are

! 

T* (µ,µ'," # " ') = D* (0,µ,µ'," # "')

R* (µ,µ'," # " ') = U* ($ ',µ,µ'," # "') . (47)

The asterisk indicates light is incident from below. The optical depth of the entire layer is

! 

"'. As before, the layer is divided into many layers of 

! 

" <<1. If there is no reflecting

surface and multiple scattering can be neglected, then the reflection and transmission

matrices may be determined by these equations:

! 

R(µ,µ'," # " ') =
$

4(µ + µ')
Z(µ,µ'," # "') 1# exp[#% '( 1µ + 1

µ' )]{ }
(48)

and
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! 

T(µ,µ'," # " ') =
$

4(µ #µ')
Z(µ,µ'," # "') exp[#% '( 1

µ )]# exp[#% '( 1
µ '

)]{ }         if µ & µ'

T(µ,µ'," # " ') =
$% '

4µ2
Z(µ,µ'," # "')exp[#% '( 1

µ )]

 .(49)

The complete derivations are given in Hansen.39 These approximated reflection and

transmission matrices are now applied to the adding equations to calculate the reflection

and transmission matrices of the combined layer. Notice the single-scattering properties.

The reflection and transmission matrices for the combined layer for light incident

from above begin to be determined by the following relationships:

! 

Q1 (µ,µ'," # "') =
1

$
R

0

1

%
0

2$

% * (µ,µ' '," # " ' ')R(µ' ',µ'," ' '#" ')µ' 'dµ' 'd" ' '

Qn+1 (µ,µ'," # "') =
1

$
Q1 (µ,µ' '," # "' ')

0

1

%
0

2$

%  Q
n
(µ,µ' '," # " ' ')µ' 'dµ' 'd" ' '

Q(µ,µ'," # "') = Q
n
(µ,µ'," # " ')

n=1

&

'
. (50)

The matrix 

! 

Q
1
, for the combined layer, is an integration of the reflection matrix of the

bottom layer due to incidence from above, 

! 

R, times the reflection matrix of the top layer

due to incidence from below, 

! 

R
*, over the appropriate solid angles for all possible

multiple scattering contributions into the direction 

! 

(µ,"). Note that the two layers are

identically homogeneous. The summation of 

! 

Q  adds all the repeated reflections (multiple

reflections) between the two layers and 

! 

n indicates the number of times the radiation

crosses the combined layer going up. The prime indicates radiation coming from the top

layer. The double prime indicates radiation from the bottom layer.

The multiple reflections contribute to the upward and downward propagation of

radiation at any depth in the combined layer as
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! 

D = T+Qexp["#1(
1
µ '
)]+QT

U = Rexp["#1(
1
µ '
)]+RD

, (51)

where this simplified notation has been implemented. Any product of matrices is actually

the integration of the two matrices as in the form of the top equation in Eq. (50). It must

be kept in mind that the bold quantities are matrices and matrix multiplication is not

commutative.

Because layers 1 and 2 are identically homogenous, such that 

! 

"
1

= "
2
, the

reflection and transmission matrices for the combined layer, 

! 

R
c
 and 

! 

T
c
, of optical depth

! 

2"
1
 are finally found to be

! 

R
c
(µ,µ'," # "') =R(µ,µ'," # " ') +U($1,µ,µ'," # " ') % exp[#$1(

1
µ
)]

     +
1

&
T*

0

1

'
0

2&

' (µ,µ' '," # " ' ') %U($1,µ' ',µ'," ' '#" ')µ' 'dµ' 'd" ' '
(52)

and

! 

T
c
(µ,µ'," # "') = T(µ,µ'," # " ')exp[#$1(

1
µ '

)] +D($1,µ,µ'," # " ')exp[#$1(
1
µ
)]

     +
1

%
T

0

1

&
0

2%

& (µ,µ' '," # " ' ')D($1,µ' ',µ',"' '#"')µ' 'dµ' 'd"' '
. (53)

The adding equations are further simplified by acknowledging the symmetries according

to the phase matrix for a homogeneous layer.43 The reflection matrices are

! 

R* (µ,µ'," # " ') =R(µ,µ',"'#"). (54)

The transmission matrix, T*, can be related to the transmission matrix, T, as

! 

T* (µ,µ'," # " ') = T(µ,µ',"'#"). (55)

The above use of the doubling equations can be repeated for increasing depths of

homogeneous layers until the desired optical depth is attained.
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Truncation of the Scattering Matrix

The scattering phase function for atmospheric particulates is strongly peaked in

the forward scattering direction, 

! 

" = 0°. For example, ice crystals have a forward peak

five to six orders or more magnitude greater than the side or backward directions. This

strong peak is due to diffraction of light. It is this peak that causes problems when trying

to model cirrus clouds in radiative transfer.

Typically, in radiative transfer the phase function is expanded in Legendre

polynomials. The Legendre expansion is particularly useful because the Legendre

polynomials obey an addition theorem37 and the expansion coefficients are determined

using the Legendre polynomial orthogonality properties. The phase function defined by

the addition theorem is applied to the radiative transfer equation. However, for ice

crystals thousands of expansion coefficients are needed to properly represent the phase

function. Using this many coefficients consumes much computing time and storage

space.44 Figure 11 displays the actual phase function, the phase function approximated by

250 coefficients, and the phase function approximated by 10000 coefficients. Obviously,

using 10000 coefficients in a radiative transfer problem would not be practical.

Therefore, truncation is performed on the phase function to reduce the strength of

the diffracted energy in the forward direction and hence reduce the number of expansion

coefficients. The truncated method used is that developed by Hu et al.45 referred to as !-

fit. This method is similar to the Delta-M method,44 but uses a weighted least-squares

fitting procedure to better approximate the phase function, especially at larger scattering
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Fig. 11.    Actual Phase Function to Expanded Phase Function.    The blue line is the phase

function expanded using 250 coefficients.    The phase function expanded using 10000

coefficients approximates the actual phase function quite well.    However, using thousands of

coefficients in numerical calculations is very costly.

angles. The !-fit method calculates the Legendre coefficients that best minimize the

relative difference between the actual phase function and the approximate phase function.

Upon truncation of the phase function, the rest of scattering matrix elements must

also be modified properly. Scaling the other elements preserves the degree of

polarization. The other elements are scaled to the form that was used by Chami et al.46

For example, 

! 

P
22
(") becomes 

! 

P
22

"
(#) by using the expression
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! 

P
22

"
(#) =

P
22
(#)

P
11
(#)

P
11

"
(#)

(56)

where the asterisk,

! 

", indicates the new scaled element. The other single-scattering

properties also must be modified according to the similarity principle,18,44 such that the

properties of the system are altered equivalently. To obtain similar results as those for the

case if the phase function had not been truncated, the single-scattering albedo and optical

depth are scaled according to:

! 

"#
=
(1$ f )"

(1$"f )

%# = (1$"f )% (57)

where f is the fraction of scattered energy due to the truncated peak. The truncated phase

function and the other elements of the scattering matrix are now easily defined by less

than 350 coefficients. From now on, the notation “scattering matrix” refers to the

truncated scattering matrix.

Fourier Expansion

The adding-doubling method expands all functions dependent on the azimuth

angle in a Fourier series. A Fourier expansion over the azimuth angle is applied to reduce

the numerical computation time and storage space.42 Specifically, by making these

expansions the number of integrations are reduced.23 The adding-doubling method

requires the expansion coefficients of the scattering matrix as input. These expansion

coefficients are input into the Fourier expansion to calculate the Fourier coefficients, for

the phase matrix. For example, Haan et al.23 expands the phase matrix into infinite sine

and cosine series as
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! 

Z(µ,µ'," # "') = (2 #$
m0)[Z

cm

m= 0

%

& (µ,µ')cosm(" # "')

                          +Z
sm

(µ,µ')sinm(" # " ')] . (58)

This method provides a way to examine each term independently.

Due to symmetry relationships37 the expansion can be simplified and the Fourier

coefficients 

! 

Z
cm  and 

! 

Z
sm  are related to the Fourier coefficient 

! 

Z
m . To determine the

Fourier coefficients, 

! 

Z
m . an expansion method,

! 

Z
m
(±µ,µ') = ("1)m P

m

l

l=m

#

$ (±µ)SlP
m

l
(µ)

, (59)

is introduced involving, 

! 

P
m

l , which is the matrix composed of generalized spherical

functions. The matrix 

! 

S
l  contains the expansion coefficients of the scattering matrix,

! 

P(") . The superscript 

! 

l denotes the degree of the polynomials in the generalized

spherical functions. The generalized spherical functions are used to expand the scattering

matrix and determine the expansion coefficients. Generalized spherical functions provide

nice symmetry relationships and orthogonality properties. There use is particularly

helpful when Stokes parameters and the scattering matrix are considered to be complex.

They also have an addition theorem such that separation of variables may be applied.

There is basis in their definition in angular momentum theory and they are discussed in

greater detail in Hovenier and van der Mee.37

Validation (Rayleigh Scattering)

 The code is validated with Coulson et al.21 and also compared with results

computed by a Monte Carlo code.28 Coulson et al. 21 uses Chandrasekhar’s formulation of

the X and Y functions to calculate the reflected and transmitted polarized radiation due to

Rayleigh scattering at the top and bottom of the layer, respectively. The results are
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Fig. 12.    Validation of Adding-Doubling Code.    (a)     The intensity of the reflected

radiation at the top of the atmosphere at 
  

! 

" = 0
o and 

  

! 

" =180
o.    (b)-(c)    The Q and U

parameters are viewed at the angles 
  

! 

" = 30
o  and 

  

! 

" =150
o.
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tabulated in the form of the Stokes parameters, 

! 

I, 

! 

Q, 

! 

U, and the degree of polarization,

! 

P. The incident radiation is unpolarized solar radiation.

The results computed by the adding-doubling method compare extremely well

with Coulson et al. 21 Figure 12 displays three graphs for the radiation measured at the top

of the atmosphere. In the system there is a reflective Lambertian surface, such that the

reflectivity, 

! 

A = 0.8 . The incident net flux of the solar energy is 

! 

"F
0

= " . The optical

depth of the system is 

! 

" =1. Finally, the incoming solar zenith angle is   

! 

"'= 53.13o . The

Monte Carlo code by Hatcher28 performs very well for the back scattering regions from

! 

µ =1 to approximately

! 

µ = 0.3.
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CHAPTER VI

RESULTS

The equations of the adding-doubling method are used to obtain the vector

intensity of the light that is reflected out of the top of the layer. A detector resides above

the layer and measures the intensity over many viewing angles, 

! 

(",# $ #'), as depicted in

Fig. 13. The reflection and transmission matrices are calculated within the code for all

viewing angles and used to calculate the reflected Stokes parameters for each viewing

angle. The incident Stokes parameters are normalized by the flux, F, of incident light

which for this case 

! 

F =1. Therefore, the Stokes parameters actually become unit-less.

Some of the following figures display polar plots of the Mueller matrix. Figure

14 is an example of such a polar plot. The relative azimuth viewing angles 

! 

(" # " ')  are

displayed from   

! 

0
o  to   

! 

360
o and are measured in the counter-clockwise direction. The

zenith viewing angles are measured in the radial direction such that   

! 

" = 0
o  is at the center

of the figure such that the detector is looking straight down.   

! 

" = 90
o  is at the edge of the

plot such that the detector is viewing in the horizontal direction.  Actually, the polar plots

are of the reduced Mueller matrix, where all elements, except 

! 

M
11

, are normalized by

dividing by 

! 

M
11

.

There are four cases examined. The first case is for a mixed habit cirrus cloud.

The habit percentages are those listed in Table 2. In the second case, three cirrus cloud

layers are compared. Each cirrus cloud layer is composed of only one type of ice crystal.

The comparison is made for the largest effective size of each habit. In the third case the

effective sizes are compared for bullet rosette. Three effective sizes are considered. The

fourth case examines the linear depolarization ratio for the different habits.
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Fig. 13.    Detector Viewing.    In this example the incident radiation is at 

! 

"'= 0 .    The

radiation exiting at the top of the layer, viewed by the detector, is defined by the angles 

! 

"

and 

! 

" # "' .    The incident radiation is that of a beam, everywhere incident at the top of

the layer at 

! 

"'= 0 .    Therefore, it is not a point source as the picture may advertise.

! 

" = 0

! 

" '=1

! 

+z

! 

"

! 

" # "'

! 

"'
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Fig. 14.    Polar Plot Example of Mueller Matrix.

" = 0°

" = 90°

! 

µ'

! 

0

! 

180
! 

µ

! 

" # "'
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Case 1

A cirrus cloud of different habits with different percentages is displayed in Case

1. Table 3 lists the parameters of input to calculate single-scattering properties.

Combining the habit percentages from Table 2, the size distributions, and the parameters

in Table 3 give the average scattering matrix and bulk scattering properties. For this

particular case, the largest effective size was studied. The doubling conditions in Table 3

give the properties of the cirrus cloud layer studied in Case 1.

Table 3.    Case 1.
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M
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! 

M
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! 

M
31
"M
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! 

M
41
"M
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Fig. 15.    Mueller Matrix for a Mixed Habit Cirrus Cloud.    The Mueller matrix is for all orders of scattering at 

! 

D
e

=147.55µm .



56

Figure 15 is the 

! 

4 " 4  Mueller matrix computed for the mixed habit cirrus cloud. The

first element of the Mueller matrix, 

! 

M
11

, is the element in the upper left hand corner. The

rest of the elements follow from left to right and top to bottom. The Mueller matrix in

Fig. 15 describes all orders of scattering that occur throughout the optical depth, 

! 

" =1. A

slight peak is found at the viewing angle 
  

! 

(" = 30
o
,# $ #'=180)  for 

! 

M
11

 that corresponds

to the backscattering peak found in the scattering matrix at  

! 

" =180
o. Figure 16 is the

scattering matrix for Case 1.

The 

! 

M
44
M

11
 element reflects the 

! 

P
44
P
11

 elements of the scattering quite well.

The smallest value near 
  

! 

(" = 30
o
,# $ #'=180)  is approximately found in the

backscattering direction of 

! 

P
44
P
11

. The first and the last element of the reduced Mueller

matrix is the easiest to understand using the scattering matrix, because they are not

affected by the rotations of incident reference planes.

According to Hovenier and van der Mee37 the phase matrix after two rotations of

the reference plane contains zeroes in the upper right and lower left elements. The

Mueller is proportional to phase matrix. However, the Mueller matrix in Fig. 15 is a

product of multiple scattering contributions and is determined by incident light at

  

! 

"'= 30o . Therefore, values found in the elements 

! 

M
14
M

11
 and 

! 

M
41
M

11
 are possibly due

to a combination of multiple scattering and oblique incidence. Notice, these values are

quite small and when compared to other cases of increased optical depth and/or incident

angle they only vary slightly.

For the most part, the elements of the scattering matrix are relatively smooth. Of

course, the major halo peaks of the phase function located at   

! 

" # 22
o  and   

! 

" # 46
o are

still apparent, although not as pronounced because of the presence of aggregates.
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Fig. 16.    Scattering Matrix for a Mixed Habit Cirrus Cloud.
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The 

! 

P
33
P
11

 element becomes less positive from the forward scattering angle to the

backward scattering angle with a peak at   

! 

" =150
o, similar to the one at 

! 

P
44
P
11

. This

peak is described further by Takano and Jayaweera.47 The values of 

! 

-P
12
P
11

 and 

! 

"P
43
P
11

vary across the zero line, where 

! 

-P
12
P
11

 has a significant peak at   

! 

" #177
o . This peak is

described further in Case 2.

The elements of the reduced Mueller matrix provide information about the

medium. In the next three cases, the sensitivity of the habit, effective size and optical

depth is examined.

Case 2

In this case, each cirrus cloud layer is composed of only one type of habit. The

sensitivity of the Mueller matrix due to these different habits can be observed by making

comparisons. For each cirrus cloud layer, consider all properties to be the same, except

for the scattering matrix that corresponds to each habit. Of course, the size distribution,

which is the basis of comparison, must also be the same. However, due to the different

volume to area ratio of each habit the effective sizes for the same size distribution will be

different. Table 4 lists the conditions for this case. The size distribution number is an

index for the distribution used. The smallest effective size is determined using the size

distribution number of 1, and the largest is the size distribution number of 21.

Figure 17 displays several elements of the Mueller matrix for all orders of

scattering for aggregate, bullet rosette, and plate. These elements were chosen because of

their noticeable pattern difference between the habits. The values of the Mueller elements

are proportional to the scattering matrix. By using Eq. (48), for calculating the single-



59

Table 4.    Case 2.

Optical Depth:                      

! 

" =1

Single-Scattering Albedo:    

! 

" =1

Incident Zenith Angle:               

! 

"'= 0o

Size Distribution Number:       21

Aggregate Bullet Rosette Plate

Effective Size, 

! 

D
e

! 

231.79µm

! 

91.99µm

! 

100.25µm

The effective size for each habit is different due to the different volume to area ratios of each

habit.    The other properties of the system are also listed.

scattering reflection matrix and Eq. (27), which computes the phase matrix, one sees the

relationship between the scattering matrix and the Mueller matrix for single-scattering.

For a system with incident radiation from   

! 

"'= 0o, the first rotation of the incidence

reference plane to the scattering plane is along the azimuthal angle 

! 

" # "' . In this

particular case, the scattering plane is also the meridian plane of the scattered beam.

By using Eq. 27 and the azimuthal rotation, the phase matrix becomes

! 

Z =

P11 P12 cos2(" # " ') P12 sin2(" # " ') 0

P12 P22 cos2(" # " ') P22 sin2(" # " ') 0

0 -P33 sin2(" # "') P33 cos2(" # " ') -P43

0 -P43 sin2(" # "') -P43 cos2(" # " ') P44

$ 

% 

& 
& 
& 
& 

' 

( 

) 
) 
) 
) 
. (60)

This phase matrix is proportional to the Mueller matrix for single-scattering. Because of

this direct relationship, we will look at the single-scattering Mueller matrix compared to
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Fig. 17.    Mueller Elements for All Orders of Scattering.    The elements, 

! 

M
12
M

11
, 

! 

M
13
M

11
, 

! 

M
42
M

11
, and 

! 

M
43
M

11
.    The patterns

in these elements as compared for each habit reveal some noticeable differences.
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the scattering matrix for the different habits. Figure 18, displays the 

! 

-P
12
P
11

 scattering

element and 

! 

M
12
/M

11
.

The patterns of 

! 

M
12
/M

11
 can be explained by the 

! 

-P
12
P
11

 element. There is a

peak and consequently the largest polarization located at about   

! 

" =125
o of 

! 

-P
12
P
11

 for

plate. This peak is not apparent in the other two habits. In the 

! 

M
12
/M

11
 element for plate,

the broad peak of the highest value at 
  

! 

" # "'= 90o is due to this peak. Also, there is a

peak of high negative polarization of almost 50% for plate at   

! 

" #177
o. This peak is not

as strong for bullet rosette and is practically non-existent for aggregate. This peak,

reviewed in Takano and Jayaweera,47 comes from the amplitude scattering matrix of two

types of rays, known as the near spatial skew rays and the near plane skew rays, for the

near backscattering direction. The near spatial skew rays split upon interaction with the

ice crystal and rotate reference planes, and the plane skew rays do not. The plane skew

rays do not change the polarized direction. The first component, 

! 

S
2

 of the amplitude

scattering matrix in the scattering plane becomes greater than 

! 

S
1

 due to the coordinate

system rotation. From the derivation of the transformation matrix,34 

! 

"P
12
P
11

 is

correspondingly negatively polarized.

Aggregate and bullet rosette have less of this feature because of their rough

surfaces and the presence of branches, respectively. This peak is located at the center of

! 

M
12
/M

11
 as a star-like pattern. Finally, at the   

! 

90
o  scattering angle, plate increase and

bullet rosette actually decreases. Aggregate remains close to zero for the 

! 

M
12
/M

11
, with

only slight deviations.
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! 

M
12
M

11

                 

Fig.  18.    Single-Scattering Mueller Element 

! 

M
12
M

11
.    The scattering matrix element

! 

"P
12
P
11

 compared to the Mueller matrix element 

! 

M
12
M

11
, for aggregate, bullet rosette,

and plate.    

! 

M
12
M

11
 depends on the azimuth direction and 

! 

"P
12
P
11

.
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Figure 19 displays the 

! 

"P
43
P
11

 scattering element and 

! 

M
43
/M

11
. There are

some very interesting peaks below the   

! 

50
o  scattering angle associated with the   

! 

22
o  and

  

! 

46
o haloes, but we are only concerned about the scattering angles at and above   

! 

90
o . In

the 

! 

"P
43
P
11

 element, none of the habits significantly differ in polarization. However, the

fluctuations of the peaks are different. The 

! 

M
43
/M

11
 element for the plate has two quite

noticeable peaks in the azimuth direction of   

! 

90
o , whereas bullet rosette and aggregate

produce more fluctuations over a smaller scattering angle region. One major difference

is the strength of polarization between the habits near the   

! 

90
o  scattering direction. Plate

produces a polarization strength of ~40%. It seems possible to use the 

! 

M
43
/M

11
 element

to distinguish between complicated geometry systems, such as aggregate, and less

complicated systems, such as plate, by noting these fluctuations. Particularly between

the scattering region of   

! 

~ 120
o  and   

! 

150
o , aggregate has many minor peaks, whereas,

bullet rosette has one negatively polarized peak, and plate remains quite smooth with no

negatively polarized peak.

Finally, the 

! 

P
44
P
11

 element and 

! 

M
44
/M

11
 are observed. There is no azimuthal

dependence of the 

! 

M
44
/M

11
 element. The main characteristic to note is that plate is the

only habit to have negative values of polarization. When considering circularly polarized

incident light, the 

! 

P
44
P
11

 element describes the handedness of the scattered electric

field. So, if the values of 

! 

P
44
P
11

 are negative, than the handedness of the scattered

electric field will be opposite of the incident field. The 

! 

P
44
P
11

 element, as are the other
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! 

M
43
/M

11
                                            

! 

M
44
/M

11

                           

                           

                 
Fig. 19.    The 

! 

M
43
/M

11
 and 

! 

M
44
/M

11
 Mueller Elements.    The scattering matrix elements

! 

"P
43
P
11

 and 

! 

P
44
P
11

 are used to distinguish the features found in the Mueller element.
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elements, comes from the product of the amplitude scattering functions34,47 which are

related to the Fresnel reflection coefficients. The negative values come from the opposite

signed reflection coefficients due to the externally reflected rays of different incident

angles less than the Brewster angle. The maxima at   

! 

" #155
o  are due to three or more

internal reflections.

By considering just these three elements of the single-scattering Mueller matrix,

! 

M
12
/M

11
, 

! 

M
43
/M

11
, and 

! 

M
44
/M

11
, it is possible to distinguish between habits when

radiation is incident at   

! 

"'= 0o. The polarization values produced by plate mainly vary

from the other habits in the location of peaks and the strength and existence of negative

polarization. The very simple geometry of plate and its smooth symmetrical structure

creates regions of strong peaks and minimal fluctuations. Bullet rosette for some angular

regions, coincide with plate, but with smaller values of polarization. Takano and Liou16

have noted the reduction of polarization across all scattering elements due to the reentry

of rays into the branches of bullet rosette. This is noticeable in all elements of the

scattering matrix. Finally, aggregate yields quite monotonic features, except that 

! 

-P
12
P
11

displays many fluctuations of the polarization about zero. Also, the values for aggregate

for 

! 

M
43
/M

11
 have many ripples that are probably due to the multiple reflections within

aggregate. The rough surface of aggregate, which was initialized in the IGOM code,

tends to ‘wash out’ any peak-like features and hence the curves for aggregate are rather

smooth. These elements when used together provide a way to distinguish habits of

complicated geometry.
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Unfortunately, no information can really be deciphered from the multiple

scattering elements of the Mueller matrix. The distinguishable patterns apparent in

single-scattering are effectively smoothed over by multiple scattering. Therefore, using

the total Mueller matrix, which includes all orders of scattering, to observe habit

sensitivity is also difficult.

Case 3

In Case 3, similar to Case 2, each cirrus cloud layer is composed of only one type

of habit. However, for this case a comparison is made for different particle sizes.

Since, the scattering matrix is averaged over all crystal lengths for each number density

we essentially compare particle effective sizes. Consider Table 5, which lists the

conditions that went into the adding-doubling code for computation. For this case, we

look at an incident angle of   

! 

"'= 30o . Bullet rosette is observed.

Table 5.    Case 3.

Optical Depth:                      

! 

" =1

Single-Scattering Albedo:    

! 

" =1

Incident Zenith Angle:       

! 

"'= 30o

Habit:                               Bullet Rosette

Effective Size, 

! 

D
e

! 

20.19µm

! 

42.89µm

! 

91.99µm

The properties for a bullet rosette cirrus cloud.
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Figure 20 displays the three size distributions used. Each effective size is

produced by a different size distribution. The number index 6 contains crystals of

maximum dimension exceeding 1000, but with very small density. The number index 21

produces the largest effective size because it has a larger number density for longer

maximum lengths.

Fig. 20.    Size Distributions.    The size distribution index 6 corresponds to the smallest effective

size and the index 21 corresponds to the largest effective size.
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Figure 21 displays the scattering matrix for all three effective sizes for bullet

rosette. The phase function is very similar for all three effective sizes. The only

difference is that for 

! 

D
e

= 20.19µm  the peaks are not as sharp. However, more energy is

diffracted in the forward scattering direction for 

! 

D
e

= 91.99µm . This intense diffraction,

takes away energy from the other scattering directions. The main differences are found

in the other elements of the scattering matrix.

In the 

! 

"P
12
P
11

 element, each size essentially produces the same patterns, except

the strengths of polarization are different, where 

! 

D
e

= 20.19µm  generally produces the

smallest deviating polarization values. The 

! 

P
22
P
11

 element, is approximately similar,

except for the backscattering angles. The same goes for the 

! 

P
44
P
11

 element.

Approximately, from the angles   

! 

165
o
" # "180

o, the peaks for each size vary in strength

and location.

Both the single-scattering Mueller matrix and the total scattering Mueller matrix

were calculated for this case. The Mueller matrix for all orders of scattering, does not

yield much information about the different effective sizes for bullet rosette, i.e. the

features found in the scattering matrix are harder to detect. Figure 22 compares the

single-scattering Mueller matrix with the all orders of scattering Mueller matrix for the

two largest effective sizes. The patterns are quite similar, but notice the ‘star-like’

patterns for the single-scattering Mueller are definitely distinguishable from the all
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Fig. 21.    Scattering Matrix for Bullet Rosette.    The three effective sizes are quite

similar, particularly for the phase function.    The other elements show small deviations.
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! 

M
22
/M

11                   

! 

D
e

= 42.89µm                        

! 

D
e

= 91.99µm

                         

                                

Fig. 22.    Mueller Element 

! 

M
22
/M

11
 for All Orders and Single-Scattering.    The top row is for

all orders of scattering and the bottom row corresponds to single-scattering.

orders of scattering Mueller matrix. The Mueller matrix for all orders of scattering

includes all multiple scattering that occurs in the layer, whereas the single-scattering

Mueller is just the first reflection of the top of the layer into the detector. Therefore, the

single- scattering Mueller matrix will be used here, for further analysis.
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Now, consider some elements of the single-scattering Mueller matrix for

! 

D
e

= 20.19µm  and 

! 

D
e

= 91.99µm . The patterns of the scattering matrix are easily

distinguishable in the 

! 

M
11

 and 

! 

M
44
/M

11
 elements (Fig. 23). This is a consequence of

their invariance from the rotations of the reference planes. However, due to the changing

incident zenith angle, these elements now depend on the relative azimuth. In 

! 

M
11

, a

strong peak is located at   

! 

" = 30
o which is associated with the backscattered intensity of

the phase function at   

! 

" =180
o. The maximum values at   

! 

" = 90
o  and 

  

! 

" # "'= 0o are from

the increasing intensity values going from   

! 

" #135
o  to   

! 

90
o . The circular polarization

element 

! 

M
44
M

11
 noticeably follows the 

! 

P
44
P
11

 element, as well.

! 

M
23
M

11
 and 

! 

M
32
M

11
 are affected by the rotations of the reference planes and

are dependent on both 

! 

P
22
P
11

 and 

! 

P
33
P
11

 of the scattering matrix. In 

! 

M
23
M

11
, there are

peak patterns occurring in the backscattering direction at the viewing angle of   

! 

" = 30
o,

which occur for the larger effective size. There are larger values of polarization found

for 

! 

D
e

= 20.19µm  in the near side scattering regions where the relative azimuth is

approximately   

! 

280
o
" 320

o and   

! 

40
o
" 80

o. In general, from   

! 

" = 0
o
~ 110

o the smaller

effective size exhibits more positive values of polarization for both elements. However,

throughout all elements, except 

! 

-P
43
P
11

, 

! 

D
e

= 91.99µm  varies more in the values of

polarization. I would anticipate this is due to more internal reflections occurring within

larger particles.

Nothing has been said about the other two habits and their polarization values

due to each effective size. Aggregate produces almost no differences in polarization as
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! 

D
e

= 20.19µm                                    

! 

D
e

= 91.99µm

! 

M
11

                              

! 

M
23
M

11
                           

! 

M
32
M

11
                            

! 

M
44
M

11
                            

Fig. 23.     Mueller Elements for Single-Scattering Bullet Rosette.
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viewed in the Mueller matrix, which is expected when comparing the scattering matrices

of each effective size. They are almost identical. This can be attributed to the rough

surface of aggregate and its complex internal reflections, virtually eliminating any

distinguishing features.

Plate is quite similar to bullet rosette. Except for the strength of the intensity and

polarization, the first and last elements are almost identical, and the other two elements

compared in Fig. 23 for plate differ in the same regions as bullet rosette. Comparing

effective sizes for a specific habit does not yield much information about their sizes.

However, this is only a minute representation of the of all the possible size distributions.

Therefore, this may not be the case for all effective sizes. Of course, considering random

orientation and even averaging over size distribution eliminates some determining

features unique to some crystal sizes.

Case 4

Now, we will take a look at the depolarization ratio for the three different habits.

The depolarization ratio is obtained through lidar measurements and is a useful

technique to distinguish between water and ice clouds.18 Particularly, we would like to

show the differences in the different habits for single-scattering. The depolarization

ratio, 

! 

" , is

! 

" = P # /P 
//, (61)

where 

! 

P"  and 

! 

P
//
 represent the perpendicular and parallel components of power with

respect to the source axis.48 The source emits either a vertically or horizontally polarized
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beam so that the measured perpendicular component is perpendicular to the orientation

of the emitted beam and the parallel component oscillates in the same direction as that of

the emitted beam.

The depolarization ratio is basically a measure of how much linear polarization is

being modified due to interactions with some medium. In theory, spherical water

droplets should produce ratio values equal to zero, but observations reveal values near

zero.48 At the incident angle   

! 

"'= 0o, for ice crystals, ratio values near the forward

scattering direction are zero and typically range between zero and one for all other

scattering angles.

The depolarization ratios are computed here by considering the two incident

states of polarization. First, consider the incident Stokes parameters of 

! 

(1,1,0,0), where

the incident electric field oscillates only along the axis of the source, and corresponds to

Fig. 7(h). In this case, consider the axis to be the horizontal component. The

depolarization ratio 

! 

"
h
, where the incident is only along the horizontal component, can

be defined using the scattered Stokes parameters as calculated from the incident Stokes

parameters 

! 

(1,1,0,0) as

! 

"
h

=
I
s
#Q

s

I
s
+Q

s , (62)

where the subscript (s) denotes the scattered parameters. This can be reduced further to

truly understand how the electric field components are involved by considering the

definition of the Stokes parameters in Eq. (18), such that Eq. (62) becomes
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! 

"
h

=
E#E#

*

E
//
E
//

*

. (63)

Consequently, Eq. (63) is truly a measure of the intensity in the perpendicular direction

to the intensity in the parallel direction. By using Eq. (33) and Eq. (38), Eq. (62)

becomes

! 

"
h

=
P
11
#P

22

P
11

+ 2P
12

+ P
22 , (64)

where the depolarization ratio is dependent on the scattering elements. This equation

describes the depolarization of the incident beam from the incident parallel direction due

to single-scattering.

Second, consider the incident Stokes parameters of 

! 

(1,"1,0,0) , where the incident

electric field oscillates corresponding to Fig. 7(g). In this case, consider the axis to be the

vertical component. The depolarization ratio 

! 

"
v
, where the incident is only along the

vertical component and has the incident Stokes parameters 

! 

(1,"1,0,0)  is defined as

! 

"
v

=
I
s
+Q

s

I
s
#Q

s

. (65)

The linear depolarization ratio, 

! 

"
v
, is expressed by the scattering elements as

! 

"
v

=
P
11
#P

22

P
11
# 2P

12
+ P

22 . (66)

Consider the scattering matrix for three habits, aggregate, bullet rosette, and

plate. Figure 24 displays all three habits for the largest effective size. The effective sizes

correspond to those used in Case 2. The depolarization ratio, 

! 

"
h
, decreases for plate from
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! 

~ 120
o  to   

! 

177
o  and makes a drastic increase and finally peaks at   

! 

180
o . These features

were discussed in Case 2. The depolarization ratio, 

! 

"
v
, closely matches 

! 

"
h
 in the forward

scattering region. The backscattered linear depolarization ratio for both 

! 

"
v
 and 

! 

"
h
 is

smaller for plates than for the other two habits. These ratios were discussed in Takano

and Jayaweera,47 and seem to come from the difference in backscattered symmetrical

skew rays and plane skew rays. Plate has more plane skew rays that are backscattered

than symmetrical spatial skew rays. The plane skew rays do not rotate upon interaction

with an ice crystal and therefore are reflected in the backscattering direction with the

same electric field orientation. Bullet rosette and aggregate have a more complicated

geometry such that plane skew rays are not as abundant causing stronger depolarization.

Also, with more internal reflections possible, due to the bullet rosette branches, there is

greater depolarization. The depolarization ratio curve for aggregate is quite smooth

because of the rough surfaces. The bottom graph of Fig. 24 is the difference, 

! 

"
h
#"

v
, in

the two linear depolarization ratios. Notice for most scattering angles bullet rosette has

the greatest difference. Aggregate shows minimal differences, which can be attributed to

the complex structure of aggregate. Aggregate does not produce dominating

depolarization values for either ratio. Both ratios are almost equally determined by the

complex internal ray paths due to internal reflections: such that neither symmetrical

spatial skew rays nor plane skew rays dominate to give peak features.
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Fig. 24.    Habit Depolarization Ratios.    The graph on the left (right) is the ratio of the

measured vertical (horizontal) component to the measured horizontal (vertical)

component, where horizontally (vertically) polarized light is incident.    The

depolarization ratio is highly dependent on scattering angle.    The bottom graph displays

the difference, 

! 

"
h
#"

v
, of the top two graphs.    This graphs shows a strong dependence

of the polarization of light with respect to habits.
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In the top graphs, the depolarization ratio for plate reveals a sharp decrease near

the backscattering angle   

! 

" =178
o, associated with the backscattered skew rays. This

feature is found in the scattering element 

! 

"P
12
P
11

 for aggregate and bullet rosette, but is

not obvious in these graphs. The bottom graph confirms this feature. Also, the bottom

graph clearly distinguishes the peaks at   

! 

" #125
o  for plate and   

! 

" #150
o  for bullet

rosette.

This method, 

! 

"
h
#"

v
, closely resembles the 

! 

"P
12
P
11

 element. The 

! 

"P
12
P
11

element and 

! 

"
h
#"

v
 are graphed together in Fig. 25 to show their resemblance. It is

interesting to note that 

! 

"
h
#"

v
 follows quite close to 

! 

"P
12
P
11

 for the side and back

scattering directions. It does not follow the pattern in the forward directions because

diffraction of the ice crystal dominates over internal reflections, therefore yielding

similar values for both linear depolarization ratios and hence giving zero.

If both depolarization ratios can be calculated, then this method may be applied.

By matching the correct 

! 

"P
12
P
11

 element to this difference in depolarization ratios gives

a very useful way to determine particle shape. The increase in the depolarization values

in the side and backward directions come from multiple scattering events within the ice

crystal which dominant over the forward diffraction.48

It is obvious just from these graphs that polarization of the scattered beam is

dependent on habit. Lidar provides a method for determining these polarization

differences and consequently distinguishing particle shape, particularly, in the side and

back scattering regions of   

! 

90
o

<" #180
o.
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Fig. 25.    Depolarization Ratios with Linear Degree of Polarization.    The subtraction of

the linear depolarization ratios gives a pattern that closely resembles 

! 

"P
12
P
11

 for each

habit.
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In Case 3, an attempt was made to distinguish ice crystal effective size for bullet

rosette. Figure 26 is the same as Fig. 24 but comparing the different effective sizes for

bullet rosette. Unfortunately, the three effective sizes displayed in this form give us no

more information.

Now, consider the scenario where a cirrus cloud of some optical depth is viewed

from directly overhead, so that scattering angles are between   

! 

90
o  and   

! 

180
o .  We can

compare the depolarization ratios above for different optical depths to understand how

multiple scattering effects the polarization. This method cannot be compared to that used

by lidar. Lidar is a point source, whereas, the depolarization ratios determined from the

adding-doubling code come from a beam of light. However, a comparison is still made

between different optical depths using the radiative transfer code.

In Fig. 27, a thin ice crystal layer, only contributing to single-scattering, and an

ice crystal layer of optical depth, 

! 

" =1 are compared for aggregate, bullet rosette and

plate. As expected, the increasing optical depth causes linear depolarization to increase.

Increased internal reflections in an ice crystal cause increased depolarization ratios as is

apparent by the dependence of the depolarization ratio on the scattering angle (Fig. 27).

Now, multiple scattering throughout the cirrus cloud layer, analogous to increased

internal reflections, increases the linear depolarization ratios.

For all cases, linearly polarized radiation is incident at 

! 

"'= 0 . Notice, the

depolarization ratios for the increased optical depths approximately parallel the single-



81

Fig. 26.    Depolarization Ratios for Three Effective Sizes.    Three effective sizes for

bullet rosette are compared.    No absolutely indistinguishable differences between

effective sizes are observed.
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Fig. 27.    Depolarization Ratios and Optical Depth.    The depolarization ratio increases

for increasing optical depth for all habits.
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scattering depolarization ratios. However, the distinct peak features that occur in the

single-scattering cases for all habits are smoothed over by the increase in multiple

scattering in the layer. With more reflections throughout the layer, and consequently

more rotations of the incident reference plane per reflection, the incident beam becomes

more depolarized.

Again, Fig. 28 confirms the dependence of the linear depolarization ratio on the

optical depth. For 

! 

" = 5, linear depolarization values exceed those for 

! 

" =1 and single-

scattering. The features due to single-scattering are less evident for 

! 

" =1 and are

completely indistinguishable for 

! 

" = 5. For all cases, the depolarization ratio increases

with increasing optical depth.
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Fig. 28.    Depolarization Ratio for Different Optical Depths: Bullet Rosette.
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CHAPTER VII

SUMMARY

Polarization has been included in the solution of the scattered radiation field due

to interaction with a cirrus cloud. An adding-doubling method, particularly the doubling

method, was used to determine the reflected Stokes parameters at the top of the cirrus

cloud layer. Four polarization states of incident light were introduced into the cirrus

cloud layer. These four polarization states are related to the measured scattered Stokes

parameters by the Mueller matrix, which completely describes the properties of the

cirrus cloud. The Mueller matrix is a very important tool possibly giving more

information about the medium. In this method multiple scattering was included.

In Case 1, the 

! 

4 " 4  Mueller matrix is displayed for a mixed habit cirrus cloud.

This relationship between the Mueller matrix and scattering matrix elements are noted.

Particularly, for first element, 

! 

M
11

, and the last element, 

! 

M
44
M

11
, the relationship is

noticeable because of their invariance to the rotations of the reference plane. Of course

in radiative transfer where polarization is neglected, 

! 

M
11

 is the only element available.

Therefore, polarization provides more information, available in the other elements of the

Mueller matrix, where shape, size, optical depth, and other properties of the constituents

that make up the cirrus cloud may be distinguished.

In Case 2, three different cirrus clouds of 

! 

" =1, each composed of a single habit

were studied. The single-scattering Mueller matrix is found to be the best method for

distinguishing characteristics between habits where the incident angle is   

! 

" = 0
o . The
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! 

M
12
M

11
, 

! 

M
13
M

11
, 

! 

M
42
M

11
, and 

! 

M
43
M

11
 elements are all found to have great

dependence on habit. Here 

! 

M
12
M

11
 and 

! 

M
43
M

11
 are studied in greater detail. The

scattering element 

! 

-P
12
P
11

 is closely related to 

! 

M
12
M

11
. The features found in 

! 

-P
12
P
11

are produced by rays that undergo specific internal reflections. For bullet rosette and

aggregate, the peaks are less pronounced. This is possibly due to increased internal

reflections through the branches of bullet rosette and the more complicated structure and

rougher surface of aggregate.

The peaks found in 

! 

M
43
M

11
 for plate are very distinct and have strong

polarization. Bullet rosette is less distinct with smaller fluctuations. Aggregate appears

quite smooth, showing more fluctuations, but not as amplified. These distinctions

between these three habits, of such different structure possibly provide a means for

determining ice crystals of complicated structure.

Finally, it is recognized that plate is negatively polarized for the 

! 

M
44
M

11

element. Neither bullet rosette nor aggregate show this feature. Combining 

! 

M
12
M

11
,

! 

M
43
M

11
, and 

! 

M
44
M

11
, provide a way to distinguish between these three habits. Of

course the idea is to use radiative transfer, where multiple scattering within a layer is

occurring. This becomes a little more difficult because the peak features are lost as the

optical depth increases. However, with more study of these elements for different

scenarios and making use of all the elements, the possibility of determining the

properties of a cirrus cloud using remote sensing will increase.
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Case 3 was an attempt to make a distinction of effective sizes using the Mueller

matrix. For the most part, there are very little differences in the scattering matrix

elements between the three effective sizes for bullet rosette. The only major differences

occur in the strength of the polarization found in some elements. Plate varied in the same

manner as bullet rosette. However, aggregate provided not even a slight distinction

between effective sizes. This is possibly a consequence of the rough surfaces of

aggregate.

Despite, the lack of information provided by examining the effective sizes it must

be understood that this comparison only looked at three effective sizes for a specific

experiment in the middle latitudes. Size distributions for ice crystals range across the

earth, from the polar latitudes to tropical latitudes. These size distributions are not

completely representative. Also, the ice crystals are considered to be randomly oriented.

It is believed that ice crystals that are oriented in a specific direction will provide more

information regarding their size.

In Case 4, the depolarization ratios are defined and studied for the three habits,

effective sizes and optical depths. The depolarization ratios are definitely dependent on

the habit. The depolarization ratios are calculated using two different incident

polarization states. A comparison of the habits is made, by combining the depolarization

ratios using 

! 

"
h
#"

v
. This method brings out the 

! 

-P
12
P
11

 element, which is quite different

between the habits. Therefore, if 

! 

"
h
#"

v
 is obtained from measurement and the 

! 

-P
12
P
11

element is known than this is a very effective way to distinguish habits.



88

Again, an attempt was made to distinguish effective sizes by using the

depolarization ratios. The 

! 

-P
12
P
11

 element does not vary much between these effective

sizes and therefore the depolarization ratios do not vary much either. The 

! 

"
h
#"

v
 method

was used, but the only differences are found in the strengths of these two ratios

compared to effective size.

For all habits, the depolarization ratio increases for increasing optical depth. The

effect of increased multiple scattering, increases the depolarization ratio. This is due to

increased reflections and increased rotations of the incident plane. Something else to

consider, which I did not, is examining the properties using a different wavelength, for

instance, near-infrared. This would provide more information about cirrus clouds and

could be used along with that discussed above to obtain a better understanding of cirrus

clouds. Yang and Liou,40 concluded that results for polarization using an absorbing

wavelength, 

! 

" = 3.7µm , vary greatly with size parameter. A greater distinction of the

effective sizes is likely when using the near-infrared wavelength.

To better understand the role cirrus clouds have in the overall energy budget of

our earth, the microphysical and optical properties of cirrus clouds must be accurately

resolved. Using the polarization of light can help gain more information, distinguishing

information, about cirrus clouds and their constituents. Using the visible wavelength,

! 

" = 0.532µm , provides distinguishing information for habits. The Mueller matrix does

not show much dependence on these three effective sizes for the visible wavelength.

Finally, the depolarization ratio is quite dependent on the optical depth. Polarization
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techniques such as the Mueller matrix and depolarization ratio provide a means for

making these distinctions. Therefore, the Mueller matrix, by more observation, may

provide much improved knowledge of the cirrus clouds we want to define.
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