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ABSTRACT

Parameterized Algorithms and Computational Lower

Bounds: A Structural Approach. (August 2005)

Ge Xia, B.Arch., Tongji University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Jianer Chen

Many problems of practical significance are known to be NP-hard, and hence, are un-

likely to be solved by polynomial-time algorithms. There are several ways to cope with

the NP-hardness of a certain problem. The most popular approaches include heuristic

algorithms, approximation algorithms, and randomized algorithms. Recently, para-

meterized computation and complexity have been receiving a lot of attention. By

taking advantage of small or moderate parameter values, parameterized algorithms

provide new venues for practically solving problems that are theoretically intractable.

In this dissertation, we design efficient parameterized algorithms for several well-

known NP-hard problems and prove strong lower bounds for some others. In doing

so, we place emphasis on the development of new techniques that take advantage of

the structural properties of the problems.

We present a simple parameterized algorithm for Vertex Cover that uses poly-

nomial space and runs in time O(1.2738k + kn). It improves both the previous

O(1.286k + kn)-time polynomial-space algorithm by Chen, Kanj, and Jia, and the

very recent O(1.2745kk4 + kn)-time exponential-space algorithm, by Chandran and

Grandoni. This algorithm stands out for both its performance and its simplicity. Es-

sential to the design of this algorithm are several new techniques that use structural

information of the underlying graph to bound the search space.

For Vertex Cover on graphs with degree bounded by three, we present a still
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better algorithm that runs in time O(1.194k + kn), based on an “almost-global”

analysis of the search tree.

We also show that an important structural property of the underlying graphs –

the graph genus – largely dictates the computational complexity of some important

graph problems including Vertex Cover, Independent Set and Dominating Set.

We present a set of new techniques that allows us to prove almost tight compu-

tational lower bounds for some NP-hard problems, such as Clique, Dominating Set,

Hitting Set, Set Cover, and Independent Set. The techniques are further extended

to derive computational lower bounds on polynomial time approximation schemes for

certain NP-hard problems. Our results illustrate a new approach to proving strong

computational lower bounds for some NP-hard problems under reasonable conditions.
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CHAPTER I

INTRODUCTION

Many important problems that arise in real-world applications are NP-hard and ac-

cording to NP-Completeness theory, are unlikely to be solved efficiently. However,

this fact does not obviate the need for solving them due to their practical significance.

Several ways have been proposed to cope with the NP-hardness of a certain problem.

The classical approaches include heuristic algorithms [1], approximation algorithms

[2], and randomized algorithms [3]. However, these approaches appear to be unsat-

isfactory in finding exact solutions to many important optimization problems arising

in areas such as database systems, bioinformatics, and communication networks.

For example, consider the Vertex Cover problem: given a graph G, find a min-

imum size set of vertices in G such that every edge in G is incident on at least one

vertex in the set. This problem has applications in constructing multiple sequence

alignments, which is a fundamental problem in computational biology [4, 5]. Vertex

Cover is well-known to be NP-hard [6]. Even though there exists a simple ratio-2

approximation algorithm for Minimum Vertex Cover [6], finding a polynomial-time

approximation algorithm for it with a constant ratio less than 2 has been notoriously

difficult. In fact, it has been proven that minimum vertex cover is not approximable

to a constant ratio less than 1.36 unless P=NP, and it is conjectured that approxi-

mating it within a constant ratio less than 2 is NP-hard [7]. Therefore, approximation

algorithms are not satisfactory if exact or close to optimal solutions are desired. For

the minimum vertex cover problem in general, heuristic algorithms and randomized

algorithms do not seem to be very helpful.

The journal model is IEEE Transactions on Automatic Control.
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Recently, there has been considerable interest in developing improved exact al-

gorithms for solving well-known NP-hard problems under certain constraints [8, 9].

This line of efforts was motivated by both practical and theoretical research in com-

putational sciences.

Practically, there are certain applications that require solving NP-hard prob-

lems precisely [10] and these problems are often presented under certain constraints

in practice. For example, for the previously mentioned Vertex Cover problem, the

instances arising from the application of constructing multiple sequence alignments

usually have the property that the size of the vertex cover is much smaller than the

size of the graph. Therefore, one may ask if there exists an algorithm for solving this

problem whose running time depends mainly on the size of the vertex cover rather

than the size of the input. Such an algorithm is called a fixed-parameter tractable

algorithm (or FPT algorithm) and study on such problems has led to a new line of

research called theory of fixed-parameter tractability [11] which is concerned with the

design of efficient parameterized algorithms for computationally difficult problems.

For example, despite the difficulty faced by heuristic algorithms, approximation algo-

rithms, and randomized algorithms in finding a minimum vertex cover of small size

in a large graph, parameterized algorithms have proven to be particularly suitable for

this problem. For example, the best known parameterized algorithm can decide if a

graph of n vertices has a vertex cover of size at most k in time O(1.286k + kn) [12].

This algorithm appears to be quite practical for parameter values up to k = 400 [13].

Theoretically, this line of research may lead to a deeper understanding of the

structure of NP-hard problems [14, 11, 15, 16]. For many well-known NP-hard prob-

lems such as Clique, Dominating Set, and Set Cover, finding efficient parameterized

algorithms with even small parameter values has been difficult. Study on such prob-

lems has motivated the theory of fixed-parameter intractability [11]. Research on
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parameterized computation not only provides a toolkit of developing efficient algo-

rithms for some important optimization problems, but also proves computational

lower bounds for other problems. For example, by proving that the query evaluation

problem belongs to the class of W[1]-hard problems, Papadimitriou and Yannakakis

[17] provided strong evidence that this problem is unlikely to be solved efficiently even

if the query size is small. As another example, Cesati and Trevisan [18] proved that

a problem does not have an efficient polynomial-time approximation scheme unless it

is fixed-parameter tractable. This essentially tells us that polynomial-time approxi-

mation schemes are unlikely to be practically useful for a problem if the problem is

not fixed-parameter tractable.

A. Parameterized Computation

A parameterized problem Q is a decision problem consisting of instances of the form

(x, k), where the integer k ≥ 0 is called the parameter. For example, the parameter-

ized Vertex Cover problem is to decide, given a pair (G, k) where G is a graph and k

is a non-negative integer, whether G has a set of at most k vertices such that every

edge of G is incident on at least one vertex in the set.

Certain NP-hard parameterized problems become much easier if the parameters

are small. In the case of Vertex Cover, the parameter is the size of the vertex set.

In particular, there is an algorithm that runs in time O(1.286k + kn) and outputs a

vertex cover of size at most k [12]. It suggests that the dominant factor in the time

complexity, for this particular problem, is the size of the solution set, rather than the

size of the input set. Therefore, the Vertex Cover problem is practically solvable if

the size of the solution set is bounded by a small constant, which is often the case for

real problems.

Unfortunately, not every problem has such favorable behavior. Many other NP-
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hard parameterized problems remain inherently difficult with even small parameter

values. For example, the Independent Set problem is not believed to be solvable in

time f(k)nO(1), for any function f .

To capture the striking difference between these two types of problems, Downey

and Fellows introduced the class of the fixed-parameter tractable problems denoted by

FPT and the class of the fixed-parameter intractable problems which is contained in

the various levels of W-hierarchy [11].

The class FPT contains problems that are solvable by parameterized algorithms

in time f(k)nO(1), where k is given as a parameter, n is the size of the input, and f

is a recursive function 1. Vertex Cover belongs to this class, along with many well

known problems such as Cutwidth [19], Treewidth [20], Longest Path [21], and so on.

The W-hierarchy
⋃

t≥0 W[t] has been introduced to characterize the inherent

level of intractability of parameterized problems. The 0th level of the hierarchy is

the class FPT, and the ith level is denoted by W [i] for i > 0. A parameterized

complexity preserving reduction (the fpt-reduction) has been defined as follows. A

parameterized problem Q is fpt-reducible to another parameterized problem Q′ if there

is an algorithm of running time f(k)|x|O(1) that on an instance (x, k) of Q produces

an instance (x′, g(k)) of Q′, such that (x, k) is a yes-instance of Q if and only if

(x′, g(k)) is a yes-instance of Q′, where the functions f(k) and g(k) depend only on

k. A parameterized problem Q is W [i]-hard if every problem in W [i] is fpt-reducible

to Q, and is W [i]-complete if in addition Q is in W [i]. In particular, if any W [i]-hard

problem is in FPT, then W [i] = FPT, which, to the common belief, is very unlikely.

The W[1]-hardness of a parameterized problem provides a strong evidence that the

problem is not fixed-parameter tractable, or equivalently, cannot be solved in time

1In this dissertation, we always assume that complexity functions are “nice” with
both domain and range being non-negative integers and the values of the functions
and their inverses can be easily computed.
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f(k)nO(1) for any function f . It is widely believed that the W-hierarchy does not

collapse to FPT unless an important NP-complete problem – Circuit Satisfiability

– is solvable in subexponential time, which is widely deemed to be unlikely (for a

more complete treatment on FPT and W-hierarchy, refer to the book by Downey and

Fellows [11]).

A large number of parameterized problems have been proved to be hard or com-

plete for various levels in the W-hierarchy [11]. For example, Independent Set and

Clique are complete for the class W[1], Dominating Set and Set Cover is complete for

the class W[2], and t-Normalized Circuit Satisfiability is complete for the class W[t]

for any t ≥ 3.

B. This Dissertation

In the dissertation, we expand the frontiers of the research on parameterized com-

putation in several directions. Our contribution is twofold. On one hand, we design

efficient parameterized algorithms that improve the upper bounds for several well-

known NP-hard problems. On the other hand, we strengthen the lower bounds for

some NP-hard problems based on the framework of parameterized computation. In

doing so, we place emphasis on the development of new techniques that may lead to

further improvements in future research. These techniques share the common feature

that they take advantage of the structural properties of the problems.

1. Parameterized Algorithms

In the first half of this dissertation, we present improved computational upper bounds

for some of the most well-known graph problems including Vertex Cover, Independent

Set, and Dominating Set.

In Chapter II, we present a parameterized algorithm for Vertex Cover that is
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simpler and more efficient than any of the previous algorithms. Vertex Cover is a

canonical NP-hard problem. In recent years, significant progress has been made in

developing parameterized algorithms for this problem [22, 12, 23, 24, 25, 26, 27].

Most of these algorithms are based on case by case branching according to the local

structures of the graph, and hence are difficult to improve. Instead of accumulatively

improving the previous algorithms, we take a different approach by emphasizing the

simplicity of algorithms. We start by developing new techniques that use structural

information of the underlying graph to bound the search space of the algorithm. We

introduce the notion of “tuple” to capture structural information of the graph that is

generated during the branching process. A similar notion was used by Robson [28] in

the context of finding maximum independent set, but our approach is more systematic

and general. We also introduce a generalization of the “folding” technique that was

commonly used in previous results [12]. We also applied a technique called “struction”

introduced by [29]. These new techniques allow us to avoid tedious case-by-case

branching and present an extremely simple and uniform parameterized algorithm

that uses polynomial space and runs in time O(1.2738k + kn). This algorithm stands

out for both its simplicity and its performance. In fact, this algorithm not only

improves the previous best polynomial-space algorithm of running time O(1.286k+kn)

[12], but also surpasses the previous best exponential-space algorithm of running time

O(1.2745kk4 + kn) [30].

In Chapter III, we extend our study on Vertex Cover. This time, we focus our

attention on the techniques of analyzing branch-and-bound algorithms. We introduce

a new way to analyze the search tree of branch-and-bound algorithms that is based

on global conditions instead of local constraints. The key observation behind this

technique is that less efficient branches remove more edges from the graph comparing

to more efficient ones. Therefore, by assigning amortized cost to the number of edges
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and vertices removed from the graph and keeping track of the edge-to-vertex ratio as

the graph changes, we were able to balance a small number of less efficient branchings

in the search tree with many efficient ones. This leads to a simple algorithm with

running time O(1.194k + n) for the parameterized Vertex Cover problem on degree-

3 graphs, and a simple algorithm with running time O(1.1254n) for the Maximum

Independent Set problem on degree-3 graphs. Both algorithms improve the previous

best algorithms for the problems.

In contrast to the Vertex Cover problem, Independent Set and Dominating Set

in general are believed to be intractable for parameterized algorithms. In Chapter IV,

we approached these problems by exploring an important structural property of the

underlying graphs – the graph genus. Using various graph coloring and planarization

techniques, we showed that graph genus largely dictates the computational complexity

of these problems [31]. More precisely, we presented some exact genus thresholds that

determine the parameterized complexity, the subexponential time computability, and

the approximability of these problems. These results show that it is possible to design

efficient parameterized algorithms for Independent Set on graphs of genus bounded

by o(n2), and for Dominating Set on graphs of genus bounded by no(1). Previously

known efficient parameterized algorithms for these two problems only exist on planar

graphs and graphs of genus bounded by O(1), respectively [32, 33].

2. Computational Lower Bounds

In the second half of this dissertation, we turn our attention to proving problems

computationally hard based on the framework of parameterized computation.

Due to its nature, proving strong computational lower bounds is a fundamental

and difficult task in theoretical computer science. The known lower-bound results are

sporadic and far from being tight. For example, consider the Clique problem which
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asks whether a given graph has a complete subgraph of k vertices. This problem has

a trivial brute-force algorithm that enumerates all possible solutions in time O(nk).

A fundamental open question is whether we can expect a significant improvement

over this brute-force algorithm. For example, is there an algorithm for this problem

that runs in time O(n
√

k)?

In Chapter V, we develop a set of new techniques that allowed us prove almost

tight computational lower bounds based on parameterized intractability hypotheses.

We proved that unless an unlikely collapse occurs in parameterized complexity theory,

Clique is not solvable in time f(k)no(k) for any function f , even if we restrict the

parameter values to be bounded by an arbitrarily small function of n. Similar strong

lower bounds on the computational complexity were also derived for other NP-hard

problems including Weighted Satisfiability, Dominating Set, Hitting Set, Set Cover,

and Independent Set. Essential to our techniques is an important structural property

of the Circuit Satisfiability problem and its variants – their variables can be encoded

or decomposed into different forms. This property allows us to design a series of

reductions among different variants of the Circuit Satisfiability problem that lead to

the lower bound results.

The approximation algorithms for many important problems are closely related

to parameterized algorithms for these problems. We extended our lower bounds

techniques to prove computational lower bounds on polynomial time approxima-

tion schemes for NP-hard optimization problems. For example, we prove that the

NP-hard Distinguishing Substring Selection problem, for which a polynomial time

approximation scheme has been recently developed, has no polynomial time approx-

imation scheme that can give solutions within a factor of (1 + ε) of optimal in time

f(1/ε)no(1/ε) for any function f , unless an unlikely collapse occurs in parameterized

complexity theory. This implies that polynomial time approximation schemes are un-
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likely to be practically useful for this problem, because their running time has to take

the form f(1/ε)nO(1/ε) and the hidden constant in the exponent of n is usually quite

large. Our results illustrate a new approach for proving almost tight computational

lower bounds for some NP-hard problems under reasonable conditions.

C. Preliminaries

In the rest of this chapter, we give a concise introduction to most of the terms that

will be used in the later chapters. Other terms will be introduced later in their proper

setting. Most of the notations given here can be found in graph theory textbooks,

such as [34].

A graph G is a pair (V,E), where V is a set of elements referred to as vertices of

G and E ⊆ V ×V is a binary relation on V . The elements of E are 2-element subsets

of V , which are referred to as edges of G.

A graph G is called a directed graph or digraph if the elements of E are ordered

pairs of vertices of G, otherwise it is called an undirected graph. Unless otherwise

stated, the graph we consider in this dissertation are all undirected graphs.

The number of vertices of a graph G is its order (or size), written as |G| (or |V |).

The number of edges of a graph is written as |E|. A vertex v is incident with an edge

e if v ∈ e. If e = {u, v} is an edge of G, the vertices u and v are called endpoints (or

ends) of e and they are considered to be adjacent.

Let v be a vertex of a graph G. The vertices that are adjacent to v are called

its neighbors. The set of neighbors of v is denoted by NG(v) (or simply by N(v) if

the reference is clear). The set N [v] denotes N(v) ∪ v. More generally, for a set of

vertices U ⊆ V , the neighbors in V − U of vertices in U are called neighbors of U

and denoted by N(U). N [U ] denotes N(U) ∪ U . The degree of v, denoted by dG(v)

(or d(v) if the reference is clear), is the number of edges that v is incident with, or
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equivalently, the number of vertices in N(v). A vertex of degree 0 is isolated. If all

vertices of G have the same degree k, then G is k-regular, or simply regular.

Let G = (V,E) and H = (V ′, E ′) be two graphs. If V ′ ⊆ V and E ′ ⊆ E, then

H is a subgraph of G. If in addition, H contains all edges in G that have both ends

in V ′, H is an induced subgraph of G that is induced by V ′. For a subgraph G′ of

G, denote by G − G′ the subgraph of G obtained by removing all vertices in G′ and

incident edges.

A path in a graph G is a sequence of vertices (v0, v1, . . . , vk) such that (vi, vi+1) ∈

E for i = 0, 1, . . . , k − 1. A path is simple if all vertices in it are distinct. Unless

otherwise stated, all the paths we consider in this dissertation are simple. A cycle in

a graph G is a path (v0, v1, . . . , vk) such that v0 = vn. A graph is acyclic is no cycle

exists in the graph.

A non-empty graph G = (V,E) is called connected if for any two vertices u, v ∈ V ,

there is a path (v0, v1, . . . , vk) in G such that v0 = u and vk = v. A maximal connected

subgraph of G is called a connected component (or simple component) of G.

A set C of vertices in G is a vertex cover for G if every edge in G has at least

one endpoint in C. Denote by τ(G) the size of a minimum vertex cover of the graph

G. A set I of vertices in G is a independent set if no two vertices in I are joined by

an edge in E. A set D of vertices in G is a dominating set for G if for any vertex

u ∈ V − D there is a vertex v ∈ D such that (u, v) ∈ E.

In the following, we give formal definitions of three parameterized problems that

are the main topics of this dissertation.

Vertex Cover: given a pair (G, k) where G is a graph and k is a non-

negative integer, decide whether G has a vertex cover C of at most k

vertices.
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Independent Set: given a pair (G, k) where G is a graph and k is a non-

negative integer, decide whether G has an independent set I of at least k

vertices.

Dominating Set: given a pair (G, k) where G is a graph and k is a non-

negative integer, decide whether G has a dominating set D of at most k

vertices.
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CHAPTER II

IMPROVED UPPER BOUNDS FOR VERTEX COVER

In this chapter, we present an O(1.2738k + kn)-time polynomial-space algorithm for

Vertex Cover improving both the previous O(1.286k + kn)-time polynomial-space

algorithm by Chen, Kanj, and Jia [12], and the very recent O(1.2745kk4 + kn)-time

exponential-space algorithm, by Chandran and Grandoni [30]. Most of the previous

algorithms rely on exhaustive case-by-case analysis, and an underlying conservative

worst-case-scenario assumption. The contribution of this algorithm lies in its extreme

simplicity, uniformity, and obliviousness of the algorithm presented. Several new

techniques are introduced to take advantage of the rich structural properties of the

problem, including: general folding, struction, tuples. The algorithm also induces

improvement on the upper bound for the Independent Set problem on graphs of

degree bounded by 6.

A. A New Approach to Improving Upper Bounds

Deriving upper bounds for NP-hard problems is important from both the practical

and theoretical perspectives. Practically, an algorithm of running time O(1.01n)

(n is the input size) could render an NP-hard problem computational feasible for

most practical instances (say for n ≤ 1000) as opposed to an O(2n) algorithm for

the problem. Theoretically, deriving upper bounds for an NP-hard problem helps

studying the inherent structural complexity of the problem which can lead to a deeper

understanding of the problem itself, and in general, of the structure of NP-hard

problems. As a result, the study of exact algorithms for NP-hard problems has been

attracting a lot of attention recently [8, 9, 35]. In particular, for many well-known

NP-hard problems with important applications such as Satisfiability, Independent Set,
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Vertex Cover, and Graph Coloring, exact algorithms have been extensively studied

and developed.

This chapter focuses on the parameterized Vertex Cover problem, abbreviated

VC henceforth. There are ample reasons to start our exposition with this problem.

Vertex Cover was amongst the first few problems that were shown to be NP-hard [6].

In addition, the problem has been a central problem in the study of parameterized

algorithms [11], and has applications in areas such as computational biochemistry

and biology [13]. Since the development of the first parameterized algorithm for the

problem by Sam Buss which runs in O(2kk2k+2 + kn) time [36], there has been an

impressive list of improved algorithms for the problem [22, 12, 23, 24, 25, 26, 27]. The

most recent algorithm for the problem running in polynomial space, was presented in

1999 and gives the best time upper bound of O(1.286k + kn) [12]. Algorithms using

exponential space for the problem have also been proposed [30, 12, 26], amongst

which the best runs in time O(1.2745kk4 + kn) [30]. Most of the previous algorithms

rely on exhaustive case-by-case analysis, and work under a conservative worst-case-

scenario assumption. The analysis of these algorithms would consider the worst-case

branch over numerous combinatorial cases, and derive an upper bound accordingly.

In particular, the design phase of these algorithms (usually) did not provide the

appropriate tools that the analysis phase could take advantage of to derive better

upper bounds than the ones claimed. Consequently, to improve the upper bounds,

larger and larger sets of local structures had to be examined and processed differently.

Examining these numerous structures and processing them differently on a case-by-

case basis became very meticulous, rendering the verification and implementation of

these algorithms very complicated and unpractical.

On the other hand, progress has been recently made on deriving computational

lower bounds for the problem. It has been shown that unless all problems in the
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complexity class SNP are solvable in sub-exponential time, there is a constant c0 > 1

such that Vertex Cover cannot be solved in time ck
0n

O(1) [37, 38]. Therefore, from

both the algorithmic and the complexity points of view, it becomes important to

study how far we can push to lower the constant c > 1, such that the VC problem

can be solved in time cknO(1).

In this chapter we adopt a different approach to improve the time upper bound

for the VC problem. Our goal was to design an algorithm that is simple and uniform,

and that provides the tools and the ground for an insightful analysis of its running

time. We came up with an algorithm that is extremely simple. The algorithm keeps a

list of prioritized “advantageous” structures. At each stage it will pick the structure of

highest priority (most advantageous structure). Picking such a structure can be easily

done following few simple rules. When this structure is picked, the algorithm processes

this structure very uniformly, and obliviously, in a way that is almost independent

of what the structure is. As a matter of fact, there are only two different ways for

processing any structure – that is, only two different branches – that the algorithm

needs to distinguish. All the other operations performed by the algorithm are non-

branching operations that process certain simple structures in the graph such as

degree-1 and degree-2 vertices, and that set the stage for the subsequent branch

performed by the algorithm to be efficient. The interleaving and ordering of these

operations in the algorithm is crucial, and is fully exploited by the analysis phase.

To be able to carry out all the above, a set of new techniques and generalization

of some well-known and classical techniques have been introduced. A graph operation

that is a generalization of the folding operation [12], and a graph operation that is

a specialization of the struction operation [29], have been developed. These opera-

tions help the algorithm remove several simple structures from the graph without the

need to perform any branching. This makes analyzing the two branching operations
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performed in the resulting graph more insightful. The notion of a tuple, which was

implicitly used by Robson [28], has been fully developed and exploited to prune the

search space. Finally we perform a “local” amortized analysis to balance expensive

branching operations by combining them with more efficient operations. Being able

to perform this local amortized analysis is indebted to the careful interleaving and

ordering of the operations in the algorithm, and not to the different way of processing

each structure.

The presented algorithm runs in polynomial space, and has its running time

bounded by O(1.2738k + kn). This is a significant improvement over the previous

polynomial-space algorithm for the problem which runs in O(1.286k +kn) time. This

also improves the exponential space O(1.2745kk4 + kn)-time algorithm by Chandran

and Grandoni [30]. As a by-product of this algorithm, we obtain a polynomial-

space O(1.224n)-time algorithm for the Independent Set problem on graphs of degree

bounded by 6, improving the previous best polynomial-space algorithm of running

time O(1.227n) by Robson [28] on such graphs.

B. Struction and Folding

Recall that τ(G) denotes the size of a minimum vertex cover of G. The following

proposition from [12] is based on a theorem by Nemhauser and Trotter [39].

Proposition II.1 ([12]) There is an algorithm of running time O(kn + k3) that,

given an instance (G, k) of the VC problem where |G| = n, constructs another instance

(G1, k1) of VC with k1 ≤ k and |G1| ≤ 2k1, such that τ(G) ≤ k if and only if

τ(G1) ≤ k1.

We say that the instance (G1, k1) is the kernel of the instance (G, k). Proposi-

tion II.1 allows us to assume, without loss of generality, that in an instance (G, k) of
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the VC problem the graph G contains at most 2k vertices.

For two vertices u and v we say that {u, v} is an anti-edge in G if (u, v) is not an

edge in G. Let v0 be a vertex in G with a set of neighbors {v1, · · · , vp}. Construct a

graph G′ as follows: (1) remove the vertices {v0, v1, · · · , vp} from G and introduce a

new node vij for every anti-edge {vi, vj} in G where 0 < i < j ≤ p; (2) add an edge

(vir, vis) if i = j and (vr, vs) is an edge in G; (3) if i 6= j add an edge (vir, vjs); and

(4) for every u /∈ {v0, · · · , vp}, add the edge (vij, u) if (vi, u) or (vj, u) is an edge in

G. This completes the construction of G′. We say that the graph G′ is obtained from

G by applying the struction operation to the vertex v0 in G [29] (see Figure 1 for an

illustration). We have the following lemma.
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Fig. 1. The struction operation.

Lemma II.2 Let v0 be a vertex in G with a set of neighbors {v1, · · · , vp}. Suppose

that there are at most p− 1 anti-edges among the vertices {v1, · · · , vp}, and let G′ be

the graph obtained from G by applying the struction operation to the vertex v0. Then

τ(G′) ≤ τ(G) − 1.
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Proof. Let α(G) and α(G′) denote the size of a maximum independent set in

G and G′, respectively. It was shown in [29] that α(G′) = α(G) − 1. Let n and

n′ denote the number of vertices in G and G′, respectively. Since there are at most

p − 1 anti-edges among the vertices {v1, · · · , vp}, the number of newly introduced

vertices in G′ is at most p − 1. Since p + 1 vertices were removed from G, namely

{v0, v1, · · · , vp}, we have n′ ≤ n−2. It is well-known [6] that for any graph H we have

α(H)+ τ(H) = |H|. Therefore τ(G′) = n′−α(G′) ≤ (n−2)− (α(G)−1) = τ(G)−1.

This completes the proof.

Lemma II.2 gives a generic setting in which the application of the struction

operation reduces the size of the minimum vertex cover of the graph. This operation

turns out to be very useful in the algorithm presented in this chapter. Two possible

scenarios in which the operation will be applied are illustrated in Figure 1. We

will assume that we have a subroutine called Struction() that applies the struction

operation to a vertex v in G. Note that the time spent by this operation on a vertex

v is proportional to |N(v)|.

Remark II.3 When the struction operation is applied to a degree-3 vertex u in G

with neighbors v, w, and z, and with an edge between v and w, the only vertices

removed from G are u, v, w, and z, and the only vertices of G in the resulting graph

whose degree could have increased are the neighbors of z.

Next we present an operation that generalizes the folding operation introduced

in [12].

Lemma II.4 Let I be an independent set in G and let N(I) be the set of neighbors

of I. Suppose that |N(I)| = |I| + 1, and that for every S ⊂ I, S 6= ∅, we have

|N(S)| ≥ |S| + 1.
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1. If the graph induced by N(I) is not an independent set, then there exists a

minimum vertex cover in G that includes N(I) and excludes I.

2. If the graph induced by N(I) is an independent set, let G′ be the graph obtained

from G by removing I∪N(I) and adding a vertex uI , then connecting uI to every

vertex v ∈ G′ such that v was a neighbor of a vertex u ∈ N(I) in G. That is,

add an edge (uI , v) for every v ∈ N(N(I))− I to G′. Then τ(G′) = τ(G)− |I|.

Proof. We first prove the following claim: There exists a minimum vertex cover

C for G such that C contains I and excludes N(I), or such that C contains N(I) and

excludes I. To see why this is true, suppose that C∩I = X 6= ∅ and C∩N(I) = Y 6= ∅.

Since C is a vertex cover for G, we have N(I − X) ⊆ Y . If (I − X) 6= ∅, |Y | ≥

|N(I−X)| ≥ |I−X|+1 = |I|−|X|+1, from the statement of the lemma. If I−X = ∅,

since Y 6= ∅, we also have |Y | ≥ |I|− |X|+1. Therefore |Y |+ |X| ≥ |I|+1 = |N(I)|.

Since I is an independent set, if we replace Y ∪X by N(I) in C we get a vertex cover

C ′ for G of size not larger than that of C. It follows that C ′ is a minimum vertex

cover for G that includes N(I) and excludes I, and the claim follows.

Let C be a minimum vertex cover that satisfies the conditions in the claim. If

the graph induced by N(I) is not an independent set, then any vertex cover of G,

and in particular C, cannot exclude N(I). It follows from the above claim that C a

minimum vertex cover for G that includes N(I) and excludes I. This proves part (1)

in the statement of the lemma.

Suppose now that N(I) is an independent set. If C contains I, then C excludes

N(I) and must include N(N(I)) in G′. Then C ′ = C − I is a vertex cover for G′

of size |C| − |I| = τ(G) − |I|, and τ(G′) ≤ τ(G) − |I|. If C contains N(I), then

(C − N(I)) ∪ {uI} is a vertex cover for G′ of size τ(G) − (|I| + 1) + 1 = τ(G) − |I|,

and τ(G′) ≤ τ(G) − |I|. This shows that τ(G′) ≤ τ(G) − |I|.
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On the other hand, let C ′ be a minimum vertex cover for G′. Then either C ′

contains uI or contains N(uI) and excludes uI . If C ′ contains uI , then (C ′ − {uI})∪

N(I) is a vertex cover for G os size |C ′|+ |I|, and τ(G′) ≥ τ(G)− |I|. If C ′ contains

N(uI) and excludes uI , then C ′ ∪ I is a vertex cover for G of size |C ′| + |I|, and

τ(G′) ≥ τ(G) − |I|. This shows that τ(G′) ≥ τ(G) − |I|.

It follows from the above that τ(G′) = τ(G) − |I|. This proves part (2) in the

statement of the lemma, and the proof is complete.

The following proposition can be proved using the results in [40, 41].

Proposition II.5 Let (G, k) be an instance of VC. If a structure to which Lemma II.4

applies exists in G, then such a structure can be found in O(k2
√

k) time, otherwise,

the number of vertices in G is at most 2k.

We will refer to the operation in Lemma II.4 by the general folding operation.

The reason behind this nomenclature is that this operation generalizes the folding

operation that appeared in [12, 42], and which deals with the case when |I| = 1.

Two scenarios in which this operation is applicable are given in Figure 2. Scenario

(a) is the special case in which the general folding reduces to the folding operation.

We will assume that we have a subroutine called General-Fold() that searches for

a structure in the graph to which the general folding operation applies, and applies

the operation to it in case it exists. Using Proposition II.5, this subroutine can be

implemented to run in O(k2
√

k) time.

C. The Algorithm

The main algorithm is a branch-and-search process. Each stage of the algorithm starts

with an instance (G, k) of VC, and tries to reduce the parameter k by identifying

a set S of vertices that are entirely contained in a minimum vertex cover of G, and
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Fig. 2. General folding.

including the vertex set S in the objective minimum vertex cover, which will be called

the partial cover (or simply the cover) for G, then recursively works on the reduced

instances. The subroutine General-Fold(G) applies the general folding operation to

G. Similarly, the subroutines Struction(G) and Kernelize(G) apply the struction

operation and the kernelization procedure to G.

If a vertex set S is identified such that either there is a minimum vertex cover

containing the entire S or there is a minimum vertex cover containing no vertex in

S, then we can branch on the set S. This means that the algorithm constructs two

instances of the VC problem, one by including the set S in the partial cover and

the other by excluding the set S from the partial cover, and in the latter case, every

vertex that is adjacent to a vertex in S should be included in the partial cover. The

algorithm then recursively works on the two reduced instances. If the set S consists

of a single vertex v, then we simply say we branch on v.
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1. Definitions and Observations

Observation II.6 Let v be a vertex in G. Then there exists a minimum vertex cover

for G containing N(v) or at most |N(v)| − 2 vertices from N(v).

Proof. If a minimum vertex cover C for G contains |N(v)|−1 vertices from N(v),

then it has to contain v. We form another minimum vertex cover for G by replacing

v in C by the single vertex in N(v) − C. We obtain a minimum vertex cover for G

containing N(v).

Observation II.7 Let u and v be two adjacent vertices in G. Then there exists a

minimum vertex cover for G that includes v or that excludes v and excludes at least

another neighbor of u.

Proof. Proceed by contradiction. Suppose that every minimum vertex cover C

excludes v and does not exclude any other neighbor of u. Since C excludes v, C must

contain u. Since C contains all the neighbors of u except v, (C − {u}) ∪ {v} is a

minimum vertex cover for G containing v, a contradiction.

A vertex v is said to dominate a vertex u if (u, v) is an edge in G and N(u) ⊆ N [v].

A vertex u is said to be almost-dominated by a vertex v if u and v are non-adjacent

and |N(u) − N(v)| ≤ 1.

Observation II.8 Let u and v be two vertices in G such that v dominates u. Then

there exists a minimum vertex cover of G containing v.

Proof. Let C be a minimum vertex cover. If C does not contain v then C must

contain N(v) which includes u (since (u, v) is an edge). Since (N(u) − {v}) ⊆ N(v),
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if we remove u from C and replace it with v, we get a minimum vertex cover for G

containing v. This completes the proof.

A good pair of vertices is a pair of vertices {u, z} chosen as follows. For a vertex

u in G with neighbors {u1, · · · , ud}, define its tag, denoted tag(u), to be the vector

η = 〈η1, · · · , ηd〉, where η1 is the degree of the largest-degree neighbor of u, η2 is

the degree of the second-largest degree neighbor of u, ..., and ηd is the degree of the

smallest-degree neighbor of u. First choose a vertex u of minimum degree in G such

that the following conditions are satisfied in their respective order.

(i) The vector tag(u) is maximum in lexicographic ordering over tag(w) for every

w in G with the same degree as u.

(ii) If G is regular, then the number of pairs of vertices {x, y} ⊆ N(u) such that y

is almost dominated by x is maximized.

(iii) The number of edges in the subgraph induced by N(u) is maximized.

Now choose a neighbor z of u such that the following conditions are satisfied.

(a) If there exist two neighbors of u, say v and w, such that v is almost-dominated

by w, then z is almost-dominated by a neighbor of u.

(b) The degree of z is maximum among all neighbors of u satisfying part (a) above.

(Note that if no vertex in N(u) is almost-dominated by another vertex in N(u),

then (a) is vacuously satisfied by every vertex in N(u), and z will be a neighbor

of u of maximum degree).

(c) The degree of z in the subgraph induced by N(u) is minimum among all vertices

satisfying (a) and (b) above. (That is, z is adjacent to the least number of

neighbors of u.)
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(d) The number of shared neighbors between z and a neighbor of u is maximized

over all neighbors of u satisfying (a), (b), and (c) above.

2. Tuples

Tuples will play a crucial role in the algorithm by helping to reduce the search space.

We define the notion of tuples next and describe how they will be updated and

processed by the algorithm.

Definition and intuition

A tuple is a pair (S, q) where S is a set of vertices and q is an integer. The tuple will

represent the information that in the instance of the problem (G, k) we can look for

a minimum vertex cover for G excluding at least q vertices from S. This information

will help the algorithm prune the search tree. The algorithm will only consider tuples

(S, q) with q ≤ 2, so we will only focus on such tuples here. A tuple (S, q), where

S = {u, v}, is called a 2-tuple if it satisfies the following conditions: (1) q = 1, (2)

d(u) ≥ d(v) ≥ 1, and (3) u and v are non-adjacent. A 2-tuple ({u, v}, 1) is a strong-

2-tuple if it satisfies the additional condition: d(u) ≥ 4 and d(v) ≥ 4, or 2 ≤ d(u) ≤ 3

and 2 ≤ d(v) ≤ 3.

To see how tuples can be used to prune the search space, suppose that the algo-

rithm branches on a vertex z with neighbors N(z). By Observation II.6, either there

exists a minimum vertex cover in G that contains N(z), or there exists a minimum

vertex cover for G that excludes at least two vertices from N(z). Therefore, when the

algorithm branches on z, on the side of the branch where z is included, we can restrict

our search to a minimum vertex cover that excludes at least two neighbors of N(z),

and we know that this is safe because if such a minimum vertex cover does not exist,

then on the other side of the branch where N(z) has been included the algorithm will
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still be able to find a minimum vertex cover. Consequently, on the side of the branch

where z is included, we can work under the assumption that at least two vertices

in N(z) must be excluded. This working assumption will be stipulated by creating

the tuple (N(z), q = 2). This information will be used by the algorithm to prune

the search space and render the branching more efficient. Similarly, if the algorithm

branches on a vertex z with a neighbor u, by Observation II.7, either there exists a

minimum vertex cover in G that includes z, or there exists a minimum vertex cover in

G that excludes z, and excludes at least another neighbor of u. Therefore on the side

of the branch where z is excluded, we can restrict our search to a minimum vertex

cover that excludes at least two vertices in N(u) (z and another vertex in N(u)).

This working assumption can be stipulated by creating the tuple (N(u), q = 2).

Updating tuples

Let (S, q) be a tuple. If q = 0 then the tuple S will be removed because the information

represented by (S, q) is satisfied by any minimum vertex cover. If one of the vertices

in S is removed by excluding it from the cover, then the tuple is modified by removing

the vertex from S and decrementing q by 1. The correctness of this step can be seen

as follows. Suppose a vertex u ∈ S has been excluded from the cover. If there exists a

minimum vertex cover C that excludes at least q vertices from S, then C excludes at

least q−1 vertices from S−{u}. Now if a vertex u ∈ S is removed from the graph by

including it in the cover, the vertex is removed from S and q is kept unchanged. The

justification of this step follows from the argument that if there exists a minimum

vertex cover C that includes u and excludes at least q vertices from S, then C must

exclude q vertices from S − {u} (note that the validity of the inclusion of u in the

cover is taken care of by the correctness of the steps performed by the algorithm

when it includes u in the cover). If a vertex in u ∈ S is removed from the graph as
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a result of applying the struction operation or the general folding operation, then u

is removed from S and q is decremented by 1. The reason is that if there exists a

minimum vertex cover that excludes at least q vertices from S, then this vertex cover

will exclude at least q − 1 vertices from S − {u}.

The tuples need to be updated as described above after each operation of the

algorithm. We will assume that this step is performed implicitly by the algorithm

after each operation.

Branching on 2-tuples

When the algorithm creates tuples it will use them to generate 2-tuples using very

simple rules described in the algorithm (steps a.2 and a.3 of the subroutine Reducing

in Figure 3). The algorithm only processes 2-tuples of the form (S, 1). A 2-tuple of

the form ({u, z}, 1) stipulates that at least one vertex in {u, z} must be excluded

from the cover. This means that if u is included in the cover then z should be

excluded, and hence N(z) must be included, and similarly, if z is included in the

cover then u should be excluded, and N(u) must be included. Let (S = {u, z}, 1) be

a 2-tuple. The algorithm will branch on a vertex in this two tuple. This vertex is

picked as follows. If there is a vertex w ∈ {u, z} such that w has a neighbor u′ and

|N(u′) − N(S − {w})| ≤ 1, then the algorithm will branch on the vertex in S − {w}

(that is, if there is a vertex in S with a neighbor that is almost-dominated by the

other vertex in S, then the algorithm will pick the other vertex in S). Otherwise, it

will pick a vertex in S arbitrarily and branch on it. Without loss of generality, we

will always assume that the vertex in the 2-tuple that the algorithm branches on is

z. The algorithm can be made anonymous to this choice by ordering the vertices in

a 2-tuple whenever it is created.
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3. The Algorithm VC

A tuple, a good pair, or a vertex of degree at least seven, will be referred to by the

word structure. The algorithm will maintain a set of structures T , and then it will

pick a structure and processes it. The structures in T will be considered in a certain

(sorted) order according to their priorities. The higher the priority of a structure is,

the higher the expected benefit out of this structure will be. The priority is assigned

to a structure whenever this structure is created. If an operation in the algorithm

affects a certain structure in T , then the priority of this structure needs to be modified

accordingly, and the structure may need to be removed from T . If a structure Γ is a

vertex, and if this vertex is removed by the algorithm, then Γ is also removed from T .

If Γ is a good pair, and if one of the vertices in Γ is removed by the algorithm, then Γ

is removed from T . If Γ is a tuple (S, q) then Γ will be updated as described above.

We will assume that the algorithm implicitly updates the structures in T and their

priorities after each operation. We give below a list of the structures Γ that can exist

at a certain point in T listed in a non-increasing order of their priorities. Besides

the structures listed below, T will contain tuples that are not 2-tuples, and those

tuples will not be given any priorities. The algorithm will never process these tuples,

and they are only used as intermediate structures which can result in the creation of

2-tuples by the algorithm.

1 Γ is a strong 2-tuple.

2 Γ is a 2-tuple.

3 Γ is a good pair (u, z). where d(u) = 3 and the neighbors of u are degree-5

vertices such that no two of them share any common neighbors besides u.

4 Γ is a good pair (u, z) where d(u) = 3, d(z) ≥ 5.
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5 Γ is a good pair (u, z) where d(u) = 3, d(z) ≥ 4.

6 Γ is a good pair (u, z) where d(u) = 4, u has at least three degree-5 neighbors,

and the graph induced by N(u) contains at least one edge, i.e., there is at least

one edge among the neighbors of u.

7 Γ is a good pair (u, z) where d(u) = 4 and all the neighbors of u are degree-5

vertices such that no two of them share a neighbor other than u.

8 Γ is a vertex z with d(z) ≥ 8.

9 Γ is a good pair (u, z) where d(u) = 4, d(z) ≥ 5.

10 Γ is a good pair (u, z) where d(u) = 5, d(z) ≥ 6.

11 Γ is a vertex z such that d(z) ≥ 7.

12 Γ is any good pair other than the ones appearing in 1–11 above.

We note that the above list gives the structures that could exist in T and their

priorities. Moreover, the above list is exhaustive in the sense that for any non-empty

graph G, G must contain one of the structures listed above, and the algorithm will

have a structure to process. This can be seen as follows. First if the degree of G

is bounded by 2 then Reducing must apply. So suppose that this is not the case.

Suppose also that G is connected 1. If G contains a vertex of degree at least 7, then

the algorithm will have at least one structure to consider by item 11 on the list. If

this is not the case, then G has degree bounded by 6. If G is regular, then any good

pair (u, z) must satisfy d(u) = d(z), and hence none of the items 3-7, 9-10, dealing

with good pairs applies, and item 12 applies. Basically, item 12 deals with regular

1If G is disconnected, the algorithm will be called recursively on each connected
component of G (see Theorem V.10).
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graphs. Suppose now that G is not regular. Let u be a vertex with minimum degree

in G. If d(u) = 3 then item 5 applies (since G is not regular). If d(u) = 4 then item

9 applies. If d(u) = 5 then item 10 applies. Note that since G is not regular and has

degree bounded by 6, G must contain a vertex of degree bounded by 5. This shows

that the above list is comprehensive.

The algorithm will return the size of the minimum vertex cover in case this size

is bounded by k, or otherwise it will reject. The algorithm can be easily modified

to return the desired minimum vertex cover itself in case it has size bounded by k.

We present the algorithm and prove its correctness next, and we analyze its running

time in the next section. The algorithm is given in Figure 3. Note that the algorithm

performs only two branches regardless of the structure picked, which are the ones

given in step 3 of the algorithm.

Proposition II.9 The operations in step a of Reducing are valid tuple operations.

Proof. If |S| < q then the information represented by the tuple (S, q) has been

violated because there does not exist a minimum vertex cover that excludes q vertices

from S, and hence the algorithm can reject the instance. This shows that step a.1 is

valid. (Again we note here that it is “responsibility” of the algorithm to guarantee

that whenever it branches by creating a tuple on one side of the branch, then either

there exists a minimum vertex cover that does not violate the tuples along this side

of the branch, or there is a minimum vertex cover along the other side of the branch.)

If (S, q) is a tuple and u ∈ S, and if there exists a minimum vertex cover excluding

q vertices from S, then there exists a minimum vertex cover excluding q − 1 vertices

from S−{u}. Therefore step a.2. is correct. Now let us look at step a.3 in Reducing.

Suppose (S, q) is tuple such that there are two vertices u and v in S that are adjacent.

If there exists a minimum vertex cover C for G that excludes at least q vertices from
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VC(G, T , k)
Input: a graph G, a set T of tuples, and a positive integer k.
Output: the size of a minimum vertex cover of G if the size is bounded by k;
report failure otherwise.

0. if |G| > 0 and k = 0 then reject;
1. apply Reducing;
2. pick a structure Γ of highest priority;
3. if (Γ is a 2-tuple ({u, z}, q)) or (Γ is a good pair (u, z) such that z is almost-
dominated by a vertex v ∈ N(u)) or (Γ is a vertex z with d(z) ≥ 7) then

return min{1+VC(G − z, T ∪ (N(z), 2), k − 1),
d(z)+ VC(G − N [z], T , k − d(z))};

else if Γ is a good pair (u, z) then
return min{1+VC(G − z, T , k − 1),

d(z)+ VC(G − N [z], T ∪ (N(u), 2), k − d(z))};

Reducing
a. for each tuple (S, q) ∈ T with q = 2 do

a.1. if |S| < q then reject;
a.2. for every vertex u ∈ S do T = T ∪ {(S − {u}, q − 1)};
a.3. if S is not an independent set then

T = T ∪ (
⋃

(u,v)∈E,u,v∈S{(S − {u, v}, q − 1)});
a.4. if there exists v ∈ G such that |N(v) ∩ S| ≥ |S| − q + 1 then

return (1+VC(G − v, T , k − 1)); exit;
b. if there exists v ∈ G such that d(v) = 1 then

return (1+ VC(G − N [v], T , k − 1)); exit;
c. if General-Fold(G) or Conditional Struction(G) in the given
order is applicable then apply it; exit;

d. if there are u and v in G such that v dominates u then
return (1+ VC(G − v, T , k − 1)); exit;

Conditional Struction
if there exists a strong 2-tuple {u, v} in T then

if there exists w ∈ {u, v} such that d(w) = 3 and the
Struction is applicable to w then apply it;

else if there exists a vertex u ∈ G such that the Struction is applicable to u
then apply it;

Fig. 3. The algorithm VC
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S, then C must exclude at least q − 1 vertices from S − {u, v} since C must contain

at least one of the vertices in {u, v}. Therefore (S − {u, v}, q − 1) is a tuple, and

the statement is correct. Now let us look at step a.4. Again since (S, q) is a tuple,

there exists a minimum vertex cover C that excludes at least q vertices from S. Since

|N(v) ∩ S| ≥ |S| − q + 1, C excludes at least one vertex in N(v) and must include v.

Therefore there exists a minimum vertex cover of G that includes v and the statement

is correct.

Theorem II.10 The algorithm VC is correct.

Proof. We look at the operations performed by the algorithm. Step a of Reducing

is valid by Proposition II.9. Step b in Reducing is correct because if d(v) = 1

then there exists a minimum vertex cover excluding v and including the neighbor

of v. Therefore G has a vertex cover of size k if and only if G − N [v] has a vertex

cover of size k − 1. By Lemma II.2, the struction operation is correct and hence

the operation Conditional Struction is correct as well, since it only applies the

struction operation to certain vertices that meet some specified conditions. The same

is also true for the operation General-Fold by Lemma II.4. Therefore step c in

Reducing is correct. Step d of Reducing is correct by Observation II.8.

Consider the operations in the algorithm VC. Step 0 is correct since if |G| > 0

and k = 0, G does not have a vertex cover of size bounded by k (assuming G does

not consist of isolated vertices). Step 1 is correct by the above discussion of the

subroutine Reducing. Step 2 simply picks a structure Γ of highest priority in T .

By the definition of a good pair, a good pair always exists in the graph as long as

the graph is not empty. Hence the algorithm in step 2 will pick a structure Γ. Let

us look at step 3 of the algorithm. First observe that each structure in T is either a

2-tuple, a good pair, or a vertex of degree at least 7. Therefore, one of the condition
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in step 3 will apply to Γ and the algorithm branches accordingly. In all the cases in

step 3 the algorithm branches on z, and hence the branch is valid by the definition of

branching on a vertex. What is left is showing that the tuples added in each branch

are valid tuples. The tuple created in the first branch is valid by Observation II.6,

and the tuple created by the second branch in step 3 is valid by Observation II.7.

This completes the proof.

D. Analysis of the Algorithm

In this section we analyze the running time of the algorithm. The algorithm is a

branch-and-bound process and its execution can be depicted by a search tree. The

running time of the algorithm is proportional to the number of root-leaf paths, or

equivalently the number of leaves in the search tree, multiplied by the time spent

along each such path. Therefore, the main step in the analysis of the algorithm is

deriving an upper bound on the number of leaves in the search tree. Let F (k) be

the number of leaves in the search tree of the algorithm when called on the instance

(G, k).

First, we derive an upper bound on the number of leaves F (k) of the search tree.

This is the main theorem of this chapter whose proof appears in Section E.

Theorem II.11 (The Main Theorem) For any constant c ≥ 1.2738, the search

tree of the VC on an instance (G, k) where G is a connected graph, has at most F (k)

leaves where F (k) ≤ ck.

Proof. See Theorem II.15, Section E.

Theorem II.12 The algorithm VC solves the VC problem in O(1.2738k + kn) time.
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Proof. Let (G, k) be an instance of VC. By Theorem II.10 the algorithm VC

solves the VC problem correctly. Let T be the search tree of the algorithm on the

instance (G, k), and let F (k) be the number of leaves in T . If G is connected, then

by Theorem II.11, the number of leaves in T is bounded by 1.2738k. If G is not

connected, suppose that G has two connected components G1 and G2. (If G has more

than two connected components, the statement follows by an inductive argument.)

The algorithm can be called recursively on G1 and G2. If any of G1 or G2, has at most

c′ vertices for a pre-specified constant c′ (picking c′ = 16 will work), we can compute

the size of a minimum vertex cover in constant time by brute-force and without any

branching, and the search tree corresponding to this recursive call has one leaf. For

example, if |G1| ≤ 16 and is not empty, the size of a minimum vertex cover in G1 is at

least 1. Therefore if G has a minimum vertex cover of size at most k, then the size of

a minimum vertex cover for G2 should be at most k− 1, and the parameter passed in

the recursive call to G2 is k−1. We get F (k) ≤ 1+F (k−1) ≤ 1+1.2738k−1 ≤ 1.2738k

(note that we can assume that k ≥ 8 otherwise the algorithm would compute the size

of the minimum vertex cover of G by brute-force). On the other hand if |G1| > c′ = 16

and |G2| ≥ 16, then since Reducing does not apply to G, and hence does not apply

to G1 and to G2, by Proposition II.5, the size of a minimum vertex cover for G1 is

at least |G1|/2 ≥ c′/2 ≥ 8, and the size of a minimum vertex cover for G2 is at least

|G2|/2 ≥ 8. Therefore in the recursive calls of the algorithm to G1 and G2 we can

pass the parameter k − 8. This gives F (k) ≤ 2F (k − 8) ≤ 1.2738k. This shows that

the number of leaves in T is bounded by 1.2738k.

Now let us analyze the time spent along each root-leaf path in T . By Proposi-

tion II.1, the number of vertices in G is at most 2k. Since in each branch the algorithm

can create at most one tuple, and since along any root-leaf path of T the algorithm

branches at most k times (since each branch decrements k by at least 1), the number
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of tuples created by the branches of the algorithm is O(k). Now step a.1 and a.2

in Reducing can decompose the tuples created by the algorithm thus creating new

tuples. Observe that if the algorithm creates a tuple (S, q) in a branch then q = 2,

and that any decomposition of a tuple decrements q by 1 and when q = 0 the tuple is

removed. Based on these observations, it can be easily shown that each tuple (S, q)

may lead to the creation of at most O(|S|) new tuples, each of them can no longer be

decomposed. Since each created tuple has the form (S, q) where S = N(w) for some

vertex w, and since |G| ≤ 2k, we have |S| ≤ 2k. This means that each tuple can

create at most O(k) new tuples, and the total number of tuples along any root-leaf

path is O(k2). Therefore step a of Reducing can be implemented to run in O(k3)

time. By Proposition II.5, General-Fold runs in O(k2
√

k) time. All the other oper-

ations in Reducing and in the algorithm, including the implicit maintenance of the

structures in T and their priorities, can be implemented to run in O(k3) time using

suitable data structures. Therefore the amount of time spent along each node of the

search tree is O(k3), and hence along every root-leaf path of T is O(k4).

Before any branching node in the search tree General-Fold does not apply

(because Reducing does not apply). By Proposition II.5, the size of the graph

before any branching operation is bounded by twice the size of the parameter. Note

that this is also true at the root of the tree T by Proposition II.1. By the standard

analysis using the interleaving technique introduced by Niedermeier and Rossmanith

[43], the running time of the algorithm is bounded by O(1.2738k + kn), where the

kn factor is due to the application of Proposition II.1 to the original instance of the

problem. This completes the proof.

Using Theorem V.10, and the fact that the size of a minimum vertex cover in a

graph of degree bounded by 6 is bounded by 5n/6 + 1 (n is the number of vertices in

the graph), we get the following theorem.
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Theorem II.13 The Independent Set problem on graphs of degree bounded by 6 can

be solved in O(1.224n) time, where n is the number of vertices in the graph.

Theorem II.13 improves the previous best polynomial-space algorithm for In-

dependent Set on graphs of degree at most 6 by Robson [28], which runs in time

O(1.227n).

E. Proof of The Main Theorem

In this section, we give a complete proof of Theorem II.11. First, we have the following

proposition which will be useful in the proof.

Proposition II.14 Let v be a vertex that satisfies the statement in step a.4 in Re-

ducing. If the algorithm does not reject the instance (along this path of the search

tree) then v must be included in the cover before any branching operation by the algo-

rithm. Moreover, each recursive call to Reducing before v is included in the cover,

results in the execution of step a.4 of Reducing that includes a vertex in the cover.

Proof. By looking at the algorithm VC the algorithm only branches when Reduc-

ing is not applicable. Moreover, since step a.4 in Reducing invokes the algorithm

recursively, which in turn invokes Reducing, steps b–d of Reducing will not apply

as long as step a.4 is applicable to a vertex in G.

Now suppose that there exists a vertex v and a tuple (S, q) such that |N(v)∩S| ≥

|S| − q + 1, and that the algorithm does not reject. When Reducing is applied, step

a.4 is checked. Since v satisfies this step, if v is considered in this step then v will be

included. Now suppose that another vertex x 6= v to which this step applies is checked,

and x is included in the cover. If x /∈ S, then (S, q) is unaffected by the inclusion of x,

and v still satisfies this step in the (nested) recursive call to Reducing (note that this
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is true even when x ∈ N(v)). If x ∈ S, then each tuple containing x, and in particular

S, will be updated. The tuple (S, q) will be updated to become (S ′ = S − {x}, q).

Since |S| = |S ′| + 1, |N(v) ∩ S ′| ≥ |N(v) ∩ S| − 1 ≥ |S| − q ≥ |S ′| − q + 1, and step

a.4 is still applicable to v in the nested recursive call to Reducing. This shows that

v will be included in the cover ultimately, and that each preceding call to Reducing

before v is included, will include one vertex in the cover by step a.4.

Theorem II.15 For any constant c ≥ 1.2738, the search tree of the VC on an

instance (G, k) where G is a connected graph, has at most F (k) leaves where F (k) is

upper bounded by the following.

1. ck−1 if step a.4 or any of steps b–d of Reducing is applicable.

2. ck−1.536 if there is a strong 2-tuple structure.

3. ck−1 if there is a 2-tuple structure.

4. ck−1 if G is 3-regular.

5. ck−0.897 if there exist three non-adjacent degree-3 vertices in G such that the

three of them do not share a common neighbor.

6. ck−1 if G has a degree-3 vertex u such that all the vertices in N(u) are of degree

5, and no two vertices in N(u) share a common neighbor other than u.

7. ck−0.605 if the algorithm picks a good pair (u, z) such that z is almost-dominated

by a vertex in N(u).

8. ck−0.605 if G has a degree-3 vertex u with at least one vertex in N(u) of degree

at least 5.

9. ck−0.536 if G has a degree-3 vertex.

10. ck−0.450 if G has a degree-4 vertex u such that at least three vertices in N(u)

have degree-5, and such that the graph induced by N(u) contains an edge.
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11. ck−0.450 if G has a degree-4 vertex u such that all the vertices in N(u) are of

degree 5 and no two of them share a common neighbor other than u.

12. ck−0.302 if G has a vertex of degree at least 8.

13. ck−0.255 if G has a degree-4 vertex.

14. ck−0.116 if G has a degree-5 vertex with at least one degree-6 neighbor.

15. ck in all other cases.

Proof. The proof is by induction on the size of the instance (G, k). Assume

inductively that all the above statements are simultaneously true for any instance

(G′, k′) where |G′| < |G| and k′ < k.

Before we prove the statements of the theorem we give some general remarks.

First, if during the proof we showed that the graph contains a structure Γ with an

inductively proven upper bound on the number of leaves when the structure Γ exists

in the graph, then even if the algorithm does not pick Γ to process, this upper bound

is still valid since the algorithm always picks a structure with the highest priority, and

as it will be shown by the statements of the theorem, a structure of higher priority

corresponds to a smaller upper bound on the number of leaves in its corresponding

search tree. Therefore whenever a certain structure is present in the graph, we can

safely claim the upper bound on the number of leaves corresponding to this structure

that was inductively proved. Second, if the algorithm branches by reducing the

parameter by a value p along one side, and along the other side the algorithm rejects

without doing any branching, then the number of leaves in the search tree satisfies

F (k) ≤ F (k − p) + 1. Now we are ready to prove the theorem.

Part 1. Since Reducing consists of non-branching operations, and since step

a.4 and each of steps b–d include at least one vertex in the cover, we have F (k) ≤
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F (k − 1) ≤ ck−1, by the inductive hypothesis.

Part 2. Suppose that there is a strong 2-tuple (S = {u, z}, q=1). Suppose first

that Reducing applies to G. Note that steps a.2 and a.3 of Reducing will not

affect this 2-tuple because q = 1. If step a.4 of Reducing applies, then a vertex v

is included in the cover thus reducing the parameter k by 1. Observe that in the

resulting instance S = {u, z} remains a 2-tuple (not necessarily a strong 2-tuple)

since d(u) ≥ 2 and d(z) ≥ 2, q = 1, and u and z are non-adjacent. If F (k′), where

k′ = k − 1, is the number of leaves in the search tree of the resulting instance,

then inductively by part (3) of the theorem, F (k′) ≤ ck′−1 = ck−2. It follows that

F (k) ≤ F (k′) ≤ ck−2 ≤ ck−1.536.

Now if step b in Reducing applies, then a vertex v is included in the cover

reducing the parameter k by 1. Since both u and z have degree at least 2, v is

distinct from u and z. The only way v could affect the strong 2-tuple is when v is

a neighbor of u or z, say u. If this is the case then u is included in the cover and

now S = {z} and q = 1. When the algorithm is called recursively in this step the

neighbors of z will be included by step a.4 in Reducing (since any neighbor of z

will satisfy the statement in step a.4). Since d(z) ≥ 2, and u and z did not share

any neighbors (because step a did not apply), at least two vertices will be included

in the cover. This is a total reduction in the parameter of value at least 3 giving

F (k) ≤ ck−3 ≤ ck−1.536. If the removal of v does not affect the strong 2-tuple, the

strong 2-tuple will remain in the resulting graph. Letting F (k′) be the number of

leaves in the resulting search tree, we have F (k′) ≤ ck′−1.536 by induction. Hence

F (k) ≤ F (k′) ≤ ck′−1.536 ≤ ck−2.536.

If step d of Reducing is applicable, the analysis is similar to the case when step

b applies. The only way that the removal of this vertex can affect the strong 2-tuple

is when the vertex is one of the two vertices in the tuple, or a neighbor of a vertex in
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the tuple. The same analysis performed above gives the bound.

Now suppose that step c of Reducing applies. If General-Fold is applicable,

then the subroutine will always reduce the parameter k. If it reduces the parameter

k by at least 2, then we have F (k) ≤ F (k − 2) ≤ ck−2 ≤ ck−1.536. If the subroutine

reduces the parameter by 1, then the subroutine simply folds a degree-2 vertex w. If

w is one of {u, z}, say u, then since u and z are non-adjacent, z will remain in the

resulting graph. Since d(u) = 2, by the definition of a strong 2-tuple, d(z) = 2 or

d(z) = 3. By induction, the former case leads to a further reduction in the parameter

by value at least 1 by part (1) of the theorem, and the latter case to a reduction of the

parameter of value 0.536 by part (9) of the theorem. Therefore the total reduction of

the parameter is at least 1.536 and F (k) ≤ ck−1.536 as required. Now if w /∈ {u, z},

then w cannot be adjacent to both u and z by step a.4 of Reducing. Folding w in this

case will leave at least one vertex in {u, z}, and will similarly lead to a total reduction

of the parameter of value at least 1.536. If the Conditional Struction operation

applies and destroys the strong 2-tuples, then from the way the operation works, the

operation must apply to a degree-3 vertex w such that w is in a strong 2-tuple. Note

that this operation reduces the parameter by 1. Without loss of generality, assume

that the strong 2-tuple containing w is {u, z}, and suppose that w = u. Since u and

z are non-adjacent and do not share any neighbors, the operation will not affect the

degree of z by Remark II.3, and a similar analysis to the above cases goes through.

Suppose now that Reducing is not applicable. In this case we have d(u) > 2 and

d(z) > 2. Since there is a strong 2-tuple, from the way the list of priorities was defined,

a strong 2-tuple must be picked by the algorithm as the structure Γ. The algorithm

branches in this case on the vertex z. Note that since Reducing is not applicable,

u and z do not share any neighbors. Suppose first that d(u) ≥ 4 and d(z) ≥ 4. Now

on the side of the branch where z is included, z is removed from the tuple S and q is
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kept unchanged. The recursive call to the algorithm will invoke Reducing and the

neighbors of u will be included in the cover by step a.4 of Reducing. Therefore this

side of the branch reduces the parameter by at least 5 (N(u) ∪ {z} are included in

the cover). On the other side of the branch N(z) is included reducing the parameter

by at least 4. It follows that F (k) ≤ F (k − 4) + F (k − 5) ≤ ck−4 + ck−5 ≤ ck−1.536.

If d(u) = d(z) = 3, then since the Conditional Struction is not applicable,

there are no edges between vertices in N(u) and similarly for N(z). Let N(u) =

{u1, u2, u3} and N(z) = {z1, z2, z3}. Suppose that there exists a vertex in N(u), say

u1, such that |N(u1) − N(z)| ≤ 2. In the side of the branch where the algorithm

excludes z and includes N(z), u1 becomes of degree 1 or 2, and when the subroutine

Reducing is called the parameter will be further reduced by at least 1. Therefore in

this side of the branch the parameter has been reduced by at least |N(z)| + 1 = 4.

On the other side of the branch where the algorithm includes z, all the vertices in

N(u) will be included when Reducing is called by step a.4. Moreover, the algorithm

creates the tuple (N(z), 2). We first claim that at least two vertices in N(z) do not

become isolated in the resulting graph along this side of the branch. Suppose not, then

two of the vertices in N(z), say z1 and z2 become isolated in G− ({z}∪N(u)). Since

u and z do not share any neighbors, z1 and z2 are only connected to N(u)∪{z}. But

then I = {u, z1, z2} is an independent set whose set of neighbors N(I) = {z} ∪ N(u)

satisfies |N(I)| = |I|+ 1, and General-Fold (and hence Reducing) is applicable, a

contradiction. Therefore two non-isolated vertices in N(z), that are also non-adjacent,

will remain in the resulting graph. These two vertices will create a 2-tuple by step a.2

of Reducing when applied to the tuple (N(z), 2) created by this side of the branch.

This leads to a further reduction of the parameter by at least 1 by part (2) of the

theorem. Therefore, along this side of the branch the parameter is reduced by at least

5. It follows that F (k) ≤ F (k − 4) + F (k − 5) ≤ ck−4 + ck−5 ≤ ck−1.536 as required.
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Suppose now that d(u) = d(z) = 3 and that the above case does not apply.

On the side of the branch where z is excluded, N(z) is included and a degree-3

vertex u remains in the graph. By induction, and by part (9) in the theorem, the

number of leaves in the search tree along this side of the branch is bounded by

F (k − 3.536). On the other side of the branch, {z} ∪ N(u) are included in the

cover and the tuple (N(z), 2) is created. When Reducing is called, it will end up

creating a 2-tuple for every two vertices in N(z) (note that no two vertices in N(z)

are adjacent because Conditional Struction is not applicable). We claim that at

least one of these 2-tuples is a strong 2-tuple. To see this, observe that all the vertices

in N(z) have degree at least 2 in the resulting graph. This is true because otherwise

a neighbor of z would be almost-dominated by u, and by the way the algorithm

branches on 2-tuples, u will be picked by the algorithm instead of z and the previous

discussion applies. If {z1, z2} is not a strong 2-tuple, then one vertex in {z1, z2},

say z1, has degree at least 4 and the other vertex z2 has degree at most 3. Now

if z3 has degree at least 4 then {z1, z3} is a strong 2-tuple, otherwise, {z2, z3} is a

strong 2-tuple. By induction, the number of leaves in the search tree resulting from

this side of the branch is at most F (k − 5.536) (since {z} ∪ N(u) were included and

there is a strong 2-tuple). It follows that the number of leaves in the search tree is

F (k) ≤ F (k − 3.536) + F (k − 5.536) ≤ F (k − 1.536).

Part 3. Let (S = {u, z}, q = 1) be a 2-tuple. Since q = 1 and u and v are

non-adjacent, the only way Reducing can destroy this 2-tuple is if step a.4, or if one

of steps b–d applies. Each of these steps reduces the parameter by at least 1 and

F (k) ≤ F (k − 1) ≤ ck−1 as desired.

Now we can assume that Reducing is not applicable. This implies that d(u) ≥ 3

and d(z) ≥ 3.

If there is a neighbor u′ of u such that |N(u′)−N(z)| ≤ 2, then by a similar token
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to the above, on the side of the branch where N(z) is included u′ becomes of degree at

most 2, and Reducing will further decrease the parameter by at least 1. Therefore

along this side of the branch the parameter is decreased by at least d(z)+1 ≥ 4. On the

other side of the branch we include {z} ∪N(u) and the parameter is again decreased

by at least 4 (note that d(u) ≥ 3). Therefore F (k) ≤ 2F (k − 4) ≤ 2ck−4 ≤ ck−1.

Suppose now that the above case does not apply and d(u) = d(z) = 3. On the

side of the branch where the algorithm includes z, N(u) is included and the tuple

(N(z), 2) is created. By a similar argument to the above, when Reducing is called

this tuple will create a 2-tuple (note that every vertex in N(z) has degree at least

2). Inductively, the number of leaves along this side of the branch is bounded by

F (k− 5) (note that |{z}∪N(u)| ≥ 4). On the side of the branch where z is excluded

we include N(z). It follows that F (k) ≤ F (k − 3) + F (k − 5) ≤ ck−3 + ck−5 ≤ ck−1.

In the remaining cases we must have d(u) > 3 or d(z) > 3. On one side of the

branch z and N(u) are included, and on the other side of the branch N(z) is included.

This gives us a worst-case bound F (k) ≤ F (k − 3) + F (k − 5) ≤ ck−3 + ck−5 ≤ ck−1

as required.

Part 4. Suppose that G is 3-regular. If Reducing applies then the parameter is

reduced by at least 1 and F (k) ≤ ck−1 as required. Now suppose that Reducing is

not applicable. In this case for every degree-3 vertex u no edges exist in the subgraph

induced by N(u) (this follows from the inapplicability of Conditional Struction).

If there is a 2-tuple (or a strong 2-tuple) then the statement follows from above. The

algorithm branches on a good pair (u, z). On the side where z is included the three

neighbors of z become of degree 2, and no two of them are adjacent. Then on this

side of the branch Reducing will apply at least twice reducing the parameter by at

least 2. On the side of the branch where N(z) is included, we claim that there must

exist at least four non-isolated vertices of degree at most 2. To see why this is the
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case let N(z) = {u, z1, z2} and note that N(z) is an independent set. Let B be the

set of vertices of degree at most 2 in the graph G − N(z). If |B| < 4, then the set

N(z) has at most 4 neighbors namely the vertices in {z} ∪ B, and General-Fold

would be applicable, a contradiction. Therefore, |B| ≥ 4. Now if a vertex w ∈ B

is isolated in G − N(z) then the set of vertices I = {z, w} has the neighboring set

N(I) = N(z) with |N(I)| = |I| + 1, and again General-Fold would be applicable.

Therefore the graph G−N(z) contains at least four non-isolated vertices of degree at

most two. Again, in this side of the branch Reducing will be applied twice totally

reducing the parameter along this side of the branch by at least 5. It follows that

F (k) ≤ F (k − 3) + F (k − 5) ≤ ck−3 + ck−5 ≤ ck−1 as required.

Part 5. Let x1, x2, x3 be three degree-3 vertices in G such that no two of them

are adjacent and such that the three vertices do not share a common neighbor. If the

graph is 3-regular then the statement follows from part (4) above. If Reducing is

applicable, or if there exists a 2-tuple, then the statement follows either from the fact

that Reducing reduces the parameter by at least 1, or from the parts (2) and (3) of

the theorem. If this is not the case, then from the priority list of the structures, the

structure Γ picked by the algorithm must be a good pair (u, z) where d(u) = 3 and

d(z) ≥ 3 (note that the minimum degree of a vertex in the graph is 3). Suppose first

that z is almost-dominated by a vertex v ∈ N(u).

If d(z) = 3 let N(z) = {u, z1, z2} be the neighbors of z and observe that since

Conditional Struction does not apply, no two vertices in N(z) are adjacent. The

algorithm will branch on z. If in the side of the branch where z is included the

algorithm rejects before doing any branching, then we have F (k) ≤ F (k − 3) +

1 ≤ ck−0.897 as desired. Suppose now that this is not the case. On the side of the

branch where z is included the algorithm will create the tuple ({u, z1, z2}, 2) which

will immediately be decomposed by step a.2 of Reducing into the tuples ({u, z1}, 1),
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({u, z2}, 1), ({z1, z2}, 1). Since z is almost-dominated by v, v is adjacent to all vertices

in N(z) except at most 1. Therefore there exists a tuple (S, 1) among ({u, z1}, 1),

({u, z1}, 1), ({u, z1}, 1) such that step a.4 of Reducing applies to v and (S, 1), and

v will be included in the cover. By Proposition II.14, all preceding recursive calls

to Reducing end up executing step a.4 of Reducing and include vertices in the

cover. If these recursive calls include two vertices in the cover before v is included,

then this side of the branch ends up including at least four vertices in the cover

(including z and v) and hence reducing the parameter by at least 4. Suppose that

exactly one vertex y is included in these recursive calls before v is included. If y = u,

then the tuple ({u, z1}, 1) will be updated to ({z1}, 1) and step a.4 of Reducing

will be applicable to all vertices in N(z1). Since u /∈ N(z1), this means that at

least four vertices will be included in the cover, namely N(z1) ∪ {u}, in this side

of the branch. Now if y 6= w, where w is the third neighbor of u, then after v is

included, u will be a degree-1 vertex and Reducing will end up further reducing the

parameter by at least one, again yielding a total reduction of the parameter by 4.

Suppose now that w is the vertex that is included before v is included. Now in the

resulting graph after v is included, ({z1, z2}, 1) is a 2-tuple. To see why this is the

case, note that z1 and z2 are non-adjacent and none of them can become isolated in

G − {u, v, w, z}, otherwise, General-Fold would be applicable to the set consisting

of u and that vertex. By part (3) of the theorem, this reduces the parameter by

1 yielding a total reduction of the parameter by 4 along this side of the branch.

On the other side of the branch N(z) is included. Notice that along this side of

the branch a non-isolated vertex of degree at most three must remain in the graph

because there were three non-adjacent degree-3 vertices in the graph that do not

share a common neighbor. One of these vertices must remain and cannot be isolated

(otherwise General-Fold will apply to this vertex and z). If this vertex has degree
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one or two, then Reducing will end up reducing the parameter by at least one. If

this vertex has degree three, then by part (9) of the theorem, a further reduction of

the parameter by value 0.536 can be claimed. Therefore along this side of the branch

we can claim a reduction of the parameter of value at least 3.536. It follows that

F (k) ≤ F (k − 3.536) + F (k − 4) ≤ ck−3.536 + ck−4 ≤ ck−0.897 as claimed.

Suppose now that d(z) ≥ 4. By a similar argument to the above, we can claim

that along the side of the branch where z is included v satisfies step a.4 of Reduc-

ing. A similar (and easier) argument using Proposition II.14 will show that either

Reducing ends up including a total of three vertices along this side and leaving a

vertex of degree three in the resulting graph, allowing us to claim a further reduction

of value 0.536 in the parameter by part (9) of the theorem, or it will include at least

four vertices. Therefore a total reduction in the parameter of value at least 3.536 can

be claimed along this side of the branch. On the other side of the branch N(z) is

included reducing the parameter by at least 4 and the result follows using the same

argument as above.

Suppose now that z is not almost-dominated by any vertex in N(u). Then from

the choice of a good pair and the fact that G is not regular, we have d(z) ≥ 4. The

algorithm now branches on z and in the side where N(z) is included the algorithm

will create a tuple (N(u), 2). Suppose first that d(z) = 4. On the side of the branch

where z is included, u becomes a degree-2 vertex and General-Fold is applicable

to u. Any operation in Reducing, other than General-Fold will leave u in the

resulting graph a non-isolated vertex of degree at most 2, and Reducing will still

be applicable (note that if General-Fold is applicable but was not applied then

Conditional Struction was not applied as well by the respective order of these two

operations in the algorithm). This will reduce the parameter by at least 3 along

this side of the branch. If instead General-Fold was applied, then it is easy to
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see that since no two of x1, x2, and x3 are adjacent, and since they do not share a

common neighbor, at least one of them will remain a non-isolated vertex of degree

at most 3 in the graph resulting from including z and applying General-Fold to a

degree-2 vertex (if General-Fold was applied to a set I with |I| > 1, then we can

claim a reduction in the parameter of at least 2 from this operation). This is true

since z cannot be one of the vertices in {x1, x2, x3} since d(z) = 4. This will lead

to a further reduction in the parameter of value at at least 0.536 by part (9) of the

theorem giving a total reduction along this side of the branch of value at least 2.536.

On the other side of the branch where N(z) is included the tuple (N(u), 2) will result

by step a.2 of Reducing in the strong 2-tuple ({v, w} = N(u) − {z}, 1). To see

why {v, w} is a strong 2-tuple observe that {v, w} are non-adjacent since d(u) = 3

and Conditional Struction does not apply. Moreover, from the choice of the good

pair (u, z) and since z is not almost-dominated by any vertex in N(u), none of the

vertices v or w is can be almost-dominated by z (otherwise that vertex would be

chosen in place of z). It follows that the degree of v and w in the resulting graph is

at least two. Moreover, the degree of these two vertices in G was bounded by 4 since

d(z) = 4 and by the choice of z, z had the maximum degree among the neighbors

of u. It follows that the degrees of v and w in G − N(z) is bounded by 3 (since

u was removed). This shows that {v, w} is a strong 2-tuple. By part (2) of the

theorem this gives a further reduction of the parameter of value at least 1.536, giving

a total reduction of value at least 5.536 along this side of the branch. It follows that

F (k) ≤ F (k − 2.536) + F (k − 5.536) ≤ ck−2.536 + ck−5.536 ≤ ck−0.897 as required.

Suppose now that d(z) ≥ 5. By a similar argument to the above, on the side of

the branch where z is included, u becomes a degree-2 vertex and General-Fold is

applicable. Moreover, if Reducing does not apply General-Fold then u will remain

and Reducing will be applicable again claiming a total reduction in the parameter
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of value at least 3. If Reducing applies General-Fold then a non-isolated vertex

of degree at most three remains claiming a total reduction in the parameter of value

at least 2.536 along this side of the branch. On the other side of the branch where

N(z) is included {v, w} become a 2-tuple (not necessarily a strong 2-tuple) yielding

a further reduction in the parameter of value at least 1 by part (3) of the theorem. It

follows that F (k) ≤ F (k − 2.536) + F (k − 6) ≤ ck−2.536 + ck−6 ≤ ck−0.897 as required.

Part 6. Let Γ be a structure of highest priority picked by the algorithm. If Γ is

a 2-tuple (or a strong 2-tuple) the the statement follows from the previous parts of

the theorem. If this is not the case, then by the priority list of the algorithm, Γ is

a good pair (u, z) such that d(u) = 3, and all the neighbors of u, say {v, w, z} are

degree-5 vertices such that no two of them share a common neighbor other than u. If

two vertices in {v, w, z} are adjacent, then Conditional Struction is applicable, and

hence Reducing is applicable which reduces the parameter by at least 1 implying the

desired result. Suppose that this is not the case. Since z is not almost-dominated by

any vertex in N(u) (no two vertices in N(u) share a common neighbor other than u),

the algorithm will branch on z by including z on one side of the branch, and excluding

it and creating a tuple (N(u), 2) on the other side of the branch. On the side of the

branch where z is included, u becomes of degree two. If Reducing does not apply

General-Fold to u, then u will remain in the graph (again note that Reducing did

not apply Conditional Struction by the way the algorithm works) non-isolated and

having degree at most two. this means that Reducing will also be applicable and

a total reduction of at least 3 in the value of the parameter can be claimed along

this side of the branch. If Reducing applies General-Fold to a vertex other than u,

then again a reduction of value 2 can be claimed if General-Fold applies to a set I of

cardinality at least two, or if General-Fold applies to another degree-2 vertex since

u will remain (none of the neighbors of u could be the vertex folded since each has a
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degree larger than two). If General-Fold applies to u, then a vertex of degree eight

results from folding u, and by part (12) of the theorem, an additional reduction of

the parameter of value at least 0.302 can be claimed. Therefore along this side of the

branch we can claim a reduction of the parameter of value at least 2.302. On the side

of the branch where N(z) is included, the tuple (N(u), 2) will be decomposed into

the tuple ({v, w}, 1) in step a.2 of reducing. Since v and w are non-adjacent and have

degree exactly 4 in the resulting graph (since no two neighbors of u share a common

neighbor besides u), this tuple is a strong 2-tuple giving a further reduction in the

parameter of value at least 1.536. Therefore the total reduction along this side of the

branch is at least 6.536 and F (k) ≤ F (k−2.302)+F (k−6.536) ≤ ck−2.302 +ck−6.536 ≤

ck−1 as required.

Part 7. Suppose the algorithm picks a structure Γ such that Γ is a good pair

(u, z) and z is almost-dominated by a vertex v ∈ N(u). Note that Reduce is not

applicable at this point.

Suppose that d(u) = 3. Then all vertices in N(u) have degree at least 3, and

no two of them are adjacent (since Conditional Struction is not applicable). If

d(z) = 3 let z1 and z2 be the other neighbors of z. On the side of the branch where z

is included, the algorithm forms the tuple (N(z), 2) which will be decomposed into the

tuples ({u, z1}, 1), ({z1, z2}, 1), ({u, z2}, 1), by step a.2 of the algorithm. Now since z is

almost-dominated by v, v and at least one tuple S among these three tuples will satisfy

step a.4 in Reducing. By Proposition II.14, v will be included before any branching

by the algorithm. If Reducing includes two vertices before v, then the total reduction

in the parameter along this side of the branch is at least 4. If Reducing includes

exactly one vertex before v, let this vertex be y. If y ∈ {u, z1, z2} = N(z), then the

neighbors of the vertices in N(z) − {y} will be included by step a.4 of Reducing

when applied the the vertices in N(z)−{y} and the three tuples formed above. Note
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that the set N(z)−{y} has at least two neighbors in the graph G−{z, y} (otherwise

General-Fold applies). Therefore the parameter is reduced by at least 4 in this case.

If y /∈ {u, z1, z2}, then ({z1, z2}, 1) remains a 2-tuple in the resulting graph when y

and v are included and a reduction in the parameter of value at least 1 can be claimed

by part (3) of the theorem (note that none of z1, z2 can be isolated in the resulting

graph because General-Fold does not apply). Suppose now that Reducing includes

v in the next execution. Let w be the other vertex in N(u). When v is included,

u becomes a degree-1 vertex, and Reducing is still applicable. If Reducing in the

following execution does not include u or w, then u remains a degree-1 vertex in

the resulting graph, and Reducing will still be applicable. On the other hand, if

Reducing includes u or w in the next execution, then {z1, z2} remains a 2-tuple

in the resulting graph, and a further reduction in the parameter of value 1 can be

claimed. It follows that in all cases this side of the branch will reduce the parameter

by at least 4. On the other side of the branch the algorithm includes N(z) reducing

the parameter by 3. It follows that F (k) ≤ F (k−4)+F (k−3) ≤ ck−3+ck−4 ≤ ck−0.605

as required.

Suppose now that d(u) = 3 and d(z) ≥ 4. By a similar argument to the above we

can show that on the side of the branch where z is included step a.4 applies to v and

we can show that along this side of the branch the total reduction in the parameter

is at least 3. On the other side of the branch N(z) is included yielding a reduction in

the parameter of value at least 4, and the statement follows as in the above case.

Suppose now that d(u) = 4. In this case d(z) ≥ 4. Similar to the above analysis,

when z is included step a.4 applies to v. If another vertex is included before v we get a

reduction in the parameter of value 3; otherwise v is included and u become of degree

2 yielding a further reduction in the parameter of value at least 1 by Reducing.

Therefore we get a total reduction in the parameter of value at least 3 along this side
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of the branch. Along the other side we include N(z) and the parameter is reduced

by at least 4. The statement follows.

If d(u) = 5 we have d(z) ≥ 5. When z is included, if v is not included immediately

by Reducing then the parameter will be reduced by at least 3 along this side. If

v is immediately included then u becomes a degree-3 vertex and by part (9) of the

theorem, a further reduction of the parameter of value 0.536 can be claimed. Therefore

the total reduction in the parameter along this side is at least 2.536. When N(z) is

included the parameter is reduced by at least 5. We have F (k) ≤ F (k − 2.536) +

F (k − 5) ≤ ck−2.536 + ck−5 ≤ ck−0.605 as required.

If d(u) ≥ 6, and hence d(z) ≥ 6, by a similar token to the above, when z is

included v will be included reducing the parameter by at least 2. On the other side

N(z) is included reducing the parameter by at least 6. Therefore F (k) ≤ F (k − 2) +

F (k − 6) ≤ ck−2 + ck−6 ≤ ck−0.605.

Part 8. Let Γ be the structure with highest priority picked by the algorithm. If

Γ is a 2-tuple or a good pair (u, z) such that z is almost-dominated by a neighbor of

u, then the statement follows from the above parts of the theorem. If this is not the

case, then from the priority list of the structures, the algorithm will pick a good pair

(u, z) such that d(u) = 3 and d(z) ≥ 5. Note that since Reduce is not applicable no

two neighbors of u are adjacent. Let N(u) = {v, w, z}. Note also that by the choice of

z in a nice pair, if z almost-dominates a vertex in {v, w} then z must also be almost-

dominated by a vertex in {v, w}, and by part (7) of the theorem the statement follows.

Therefore, we can assume that no vertex in {v, w} is almost-dominated by z. The

algorithm branches on z. When z is included u becomes of degree 2, and Reducing is

applicable reducing the parameter by at least 1. Therefore the total reduction along

this side of the branch is at least 2. On the other side of the branch when N(z) is

included the algorithm creates a tuple (N(u), 2) which reduces to ({v, w}, 1) by step
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a.4 of Reducing. Since no vertex in {v, w} is almost-dominated by z, v and w have

degree at least 2 in the resulting graph and are non-adjacent, and a further reduction

of the parameter by value 1 can be claimed by part (3) of the theorem. Therefore

F (k) ≤ F (k − 2) + F (k − 6) ≤ ck−2 + ck−6 ≤ ck−0.605.

Part 9. Suppose that G has a vertex of degree 3. Let Γ be the structure picked by

the algorithm. Again, from the previous parts of the theorem, and from the priority

list of the structures, we can assume that Γ is a good pair (u, z) where N(u) = {v, w, z}

such that d(u) = 3, d(v) ≤ d(w) ≤ d(z) = 4 (note that by part (4) of the theorem

the graph is not 3-regular and is connected by the assumption of the theorem), no

vertex among N(u) = {v, w, z} is almost-dominated by another by part (7), and no

two vertices in N(u) are adjacent since Conditional Struction is not applicable.

The algorithm branches on z. On the side where z is included, u becomes of degree

2, and Reducing is applicable. Therefore a reduction in the parameter of value at

least 2 can be claimed along this side of the branch. On the side of the branch where

N(z) is included, the tuple (N(u), 2) is created and will be decomposed into the tuple

({v, w}, 1) in step a.2 of Reducing. It is easy to see from the above conditions that

this is a strong 2-tuple giving a further reduction in the parameter of value at least

1.536. Therefore F (k) ≤ F (k − 2) + F (k − 5.536) ≤ ck−2 + ck−5.536 ≤ ck−0.536.

Part 10. Suppose that G has a degree-4 vertex such that at least three of its neigh-

bors are of degree 5 and such that the graph induced by this set of neighbors contains

an edge. Note that Reducing does not apply and hence Conditional Struction

does not apply as well. Let Γ be the structure of highest priority picked by the

algorithm. By the previous parts of the theorem, and from the priority list of the

structures, we can assume that Γ is a good pair (u, z) such that d(u) = 4 and at least

three vertices in N(u) = {v, w, r, z} are of degree 5 and there is an edge among the ver-

tices in N(u). We can also assume by part (7) above and the choice of z in a good pair
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that no vertex in N(u) is almost-dominated by another vertex in N(u). By the choice

of z in a good pair, and since at least two vertices in {v, w, r} are of degree-5, there

must exist an edge among the vertices {v, w, r}. The algorithm branches on z. In the

side where z is included, u becomes a degree-3 vertex with at least one edge among

its neighbors, and Reducing is applicable (since Conditional Struction is applica-

ble). Therefore we can claim a reduction in the parameter of value 2 along this side of

the branch. On the side where N(z) is excluded, since Conditional Struction does

not apply to u, and no vertex in N(u) is almost-dominated by another, a non-isolated

vertex of degree at most 4 remains in the graph. If this vertex has degree at most

2 then we can claim a reduction of the parameter of value at least 1 by Reducing.

If this vertex has degree 3 then a reduction in the parameter of value 0.536 can be

claimed by part (9) above. If this vertex has a degree 4 vertex then we can claim

a reduction in the parameter of value at least 0.255 by part (13). Therefore, along

this side of the branch the parameter is reduced by at least 5.255. It follows that

F (k) ≤ F (k − 2) + F (k − 5.255) ≤ ck−2 + ck−5.255 ≤ ck−0.450.

Part 11. Suppose that G has a vertex of degree 4 such that all its neighbors are

of degree 5 and no two of them share a common neighbor other than the vertex itself.

Let Γ be the structure of highest priority picked by the algorithm. By the above

parts of the theorem and by the list of priorities, we can assume that Γ is a good

pair (u, z) where d(u) = 4, all vertices in N(u) have degree 5, no two vertices in

N(u) share a neighbor other than u, no edge exists among the vertices in N(u), and

no vertex in N(u) is almost-dominated by another vertex in N(u). The algorithm

branches on z. In the side of the branch where z is included u becomes a degree-

3 vertex with three degree-5 neighbors such that no two of them share a common

neighbor other than u. Therefore, by part (6) of the theorem, we can claim a further

reduction in the parameter of value at least 1 on this side of the branch. On the
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side of the branch where N(z) is included a degree-4 vertex remain and we can claim

a further reduction in the parameter of value 0.255 by part (13). It follows that

F (k) ≤ F (k − 2) + F (k − 5.255) ≤ ck−2 + ck−5.255 ≤ ck−0.450.

Part 12. Suppose that G has a vertex of degree at least 8. Let Γ be the structure

of highest priority picked by the algorithm. If Γ is not a vertex of degree at least 8,

then it must have a higher ranking in the list and the above parts of the theorem show

that processing such a structure will give a search tree of size F (k) ≤ F (k − 0.302).

If Γ is a vertex z with d(z) ≥ 8, then the algorithm branches on z. We get F (k) ≤

F (k − 1) + F (k − 8) ≤ ck−1 + ck−8 ≤ ck−0.302.

Part 13. Suppose that G has a degree-4 vertex. Again we can assume that none of

the above cases applies. We can assume that the algorithm will pick a good pair (u, z)

with d(u) = 4 and d(z) ≥ 4. Let N(u) = {v, w, t, z}. We can assume that no three

edges exist among the vertices in N(u) (otherwise Conditional Struction applies)

and no vertex in N(u) is almost-dominated by another. The algorithm branches on

z.

Suppose first that G is 4-regular, and note that by the choice of a good pair, we

can assume that no vertex is almost-dominated by another, since otherwise a vertex

good pair (u, z) will be picked where z is almost-dominated by a vertex in N(u)

(because all tag vectors have the same value) and to which part (8) of the theorem

applies. Let N(u) = {v, w, t, z} and N(z) = {z1, z2, z3, u}.

Suppose that there is at least one edge among the vertices {v, w, t}. On the

side of the branch where the algorithm includes z, Reducing becomes applicable

(because Conditional Struction is applicable to u). If Reducing does not apply

Conditional Struction, then Reducing reduces the parameter by at least 1, and

a non-isolated vertex of degree at most 3 remains in the graph (namely, a vertex

in {u, z1, z2, z3}), and we can claim a further reduction in the parameter of value
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at least 0.536 by part (9) of the theorem (or better). Therefore, on the side of the

branch a total reduction in the parameter of value at least 2.536 can be claimed.

If Reducing applies Conditional Struction we will show that a vertex of degree

at most 3 remains in the graph and hence a total reduction of value 2.536 can be

claimed. Note first that when z is included the only vertices of degree 3 in the graph

are u, z1, z2, and z3. Suppose that the struction applies to a vertex y, then y must

be a vertex in N(z). Let y1, y2, and y3, be the neighbors of y and assume, without

loss of generality, that there is an edge between y1 and y2. If two vertices among

{y1, y2, y3} are of degree 3, then these vertices have to be adjacent to z in G, and

there are at least three edges between the vertices in N(y) (note that z is in N(y)),

which would make Conditional Struction applicable to y in G, and this is not

case by our assumption. Therefore, at most one vertex in {y1, y2, y3} is a degree-3

vertex. When Conditional Struction is applied to y, at most two degree-3 vertices

will be removed. Now if no vertex of degree at most 3 remains in the graph, then

by Remark II.3, the operation will only increase the degree of the neighbors of y3.

Therefore at least two neighbors of y3 other than y (which was removed) must be

also neighbors of z, and y3 and z share at least there neighbors. This means that

y3 is almost-dominated by z, contradicting our assumption. It follows that on this

side of the branch a degree-3 vertex remains, and we can claim a reduction in the

parameter of value at least 2.536. On the other side of the branch where N(z)

is included a non-isolated vertex of degree at most 3 remains in the graph, and a

further reduction in the parameter of value at least 0.536 can be claimed by part (9).

We get F (k) ≤ F (k − 2.536) + F (k − 4.536) ≤ ck−2.536 + ck−4.536 ≤ ck−0.255.

By the selection of of the vertices u and z in a good pair, we can now assume that

for any vertex y, no edge exists between the neighbors of y. Moreover, note that since

no vertex is almost-dominated by another vertex, no three vertices can share more
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than one common neighbor. On the side of the branch where z is included, the vertices

z1, z2 and z3 become degree-3 vertices such that no two of them are adjacent, and such

that they do not share any common neighbor in G− z (since z is a common neighbor

of these vertices). Therefore, by part (9) of the theorem we can claim a further

reduction in the parameter of value at least 0.897 totally reducing the parameter by

at least 1.897. On the side of the branch where N(z) is included, if one of the vertices

in {v, w, t} become of degree at most 2 (note that this vertex cannot become isolated

since this vertex would be almost-dominated by z) Reducing will apply. If all these

vertices become of degree 3 in G−N(z), then by a similar token to the above, no two

of these vertices are adjacent and they do not share a common neighbor in G−N(z),

therefore part (5) applies further reducing the parameter by a value of at least 0.897.

We get F (k) ≤ F (k − 1.897) + F (k − 4.897) ≤ ck−1.897 + ck−4.897 ≤ ck−0.255.

Now we can assume that G is not 4-regular. Since G is not connected, we can

assume that d(z) ≥ 5 and d(v) ≤ d(w) ≤ d(t) ≤ d(z) by the choice of z

Suppose that d(z) ≥ 6. On the side of the branch where z is included u becomes

a degree-3 vertex and we can claim a further reduction in the parameter of value at

least 0.536. When N(z) is included the parameter is reduced by at least 6. We get

F (k) ≤ F (k − 1.536) + F (k − 6) ≤ ck−1.536 + ck−6 ≤ ck−0.255.

Suppose now that d(z) = 5. If there is an edge among the vertices in {v, w, t},

then on the side of the branch where z is included Reducing is applicable, and we can

claim a further reduction in the parameter of value at least 1. On the other side of the

branch N(z) is included. We get F (k) ≤ F (k−2)+F (k−5) ≤ ck−2 +ck−5 ≤ ck−0.255.

If there are exactly two edges between z and two vertices in {v, w, t}, say w

and t, then on the side of the branch where N(z) is included the algorithm creates

a tuple (N(u), 2). This tuple will be reduced subsequently to the tuple ({v}, 1)

since z is excluded from N(u) and t and r are included. By step a.4 of Reducing
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and Proposition II.14, all neighbors of v will be included in the cover. Since v is

not almost-dominated by z, the parameter will be decreased further by at least 1.

When z is included u becomes of degree 3, and we can claim a further reduction in

the parameter of value at least 0.536. We get F (k) ≤ F (k − 1.536) + F (k − 6) ≤

ck−1.536 + ck−6 ≤ ck−0.255. The analysis is very similar if there is exactly one edge

between z and a vertex in {v, w, t}, say t, because on the side of the branch where z

is excluded a 2-tuple will be created namely {v, w}.

If there exists a vertex in {v, w, t} of degree 5, say t, and another vertex of

degree 4, say v, then on the side of the branch where z is included, u becomes

a degree-3 vertex with a at least one neighbor of degree 5, and we can claim a

further reduction in the parameter of value at least 0.605 by part (8). When N(z)

is included v becomes a non-isolated vertex of degree at most 3 and we can claim

a further reduction in the parameter of value at least 0.536 by part (9). We get

F (k) ≤ F (k − 1.605) + F (k − 5.536) ≤ ck−1.605 + ck−5.536 ≤ ck−0.255.

If all vertices in {v, w, t} have degree 4, and if v shares a neighbor other than u

with at least one vertex in {v, w, t}, say t, then on the side of the branch where N(z)

is included, t becomes a non-isolated vertex of degree at most 2, and we can claim

a further reduction in the parameter of value 1 since Reducing will be applicable.

On the side where z is included, u becomes of degree 3 and we can claim a further

reduction in the parameter of value at least 0.536. We get F (k) ≤ F (k − 1.536) +

F (k − 6) ≤ ck−1.536 + ck−6 ≤ ck−0.255. Suppose now that z does not share any

neighbors with {v, w, t}. If {v, w, t} share a common neighbor y 6= u, then on the

side of the branch where N(z) is included the algorithm will create the tuple (N(u), 2),

which will be reduced to ({v, w, t}, 1). Now y satisfies step a.4 in Reducing with

respect to this tuple and hence will be included by Proposition II.14 further reducing

the parameter by 1. When z is included u becomes of degree 3. We get F (k) ≤



56

F (k−1.536)+F (k−6) ≤ ck−1.536+ck−6 ≤ ck−0.255. Now if v, w, and t do not share any

common neighbor, then on the side of the branch where N(z) is included these vertices

become three vertices of degree 3 such that no two of them are adjacent and such that

the three of them do not share a common neighbor. By part (5), we can claim a further

reduction in the parameter of value at least 0.897. When z is included u becomes of

degree 3. We get F (k) ≤ F (k − 1.536) + F (k − 5.897) ≤ ck−1.536 + ck−5.897 ≤ ck−0.255.

Now suppose that all the vertices in {v, w, t} are of degree 5. If z shares a

neighbor other than u with any vertex in {v, w, t}, say t, then on the side of the

branch where N(z) is included t becomes a non-isolated vertex of degree at most

3 and we can claim a further reduction of the parameter of value at least 0.536 by

part (9). When z is included u becomes a degree-3 vertex with at least one degree-5

neighbor and we can claim a reduction in the parameter of value at least 0.605. We

get F (k) ≤ F (k − 1.605) + F (k − 5.536) ≤ ck−1.605 + ck−5.536 ≤ ck−0.255. If z does not

share any neighbors with {v, w, t} other than u, then by the choice of z in a good

pair (since all vertices in N(u) have the same degree), no two vertices in N(u) share

a neighbor other than u. This case is actually part (11) in the theorem and we have

F (k) ≤ ck−0.450 ≤ ck−0.255 as required.

Part 14. Suppose that G has a degree-5 vertex with a neighbor of degree 6. Again

if the structure Γ picked by the algorithm is not a good pair (u, z) with d(u) = 5 and

d(z) = 6 then the statement follows from the above parts of the theorem. Suppose

now that this is the case. The algorithm branches on z. When z is included u becomes

of degree 4 and we can claim a further reduction in the parameter of value at least

0.255 by part (13). When N(z) is included the parameter is reduced by at least 6.

We get F (k) ≤ F (k − 1.255) + F (k − 6) ≤ ck−1.255 + ck−6 ≤ ck−0.116.

Part 15. We can assume in this case that none of the previous parts applies. In

particular, part (11) does not apply and the graph has degree bounded by 7. If there
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exists a vertex z of degree 7, then by looking at the list of priorities, the algorithm will

branch on z (or any other vertex of degree 7). This gives F (k) ≤ F (k−1)+F (k−7) ≤

ck−1 + ck−7 ≤ ck. Suppose now that the graph has degree bounded by 6. By part (1),

there are no vertices in the graph of degree 1 and 2. By parts (9) and (13), there are

no vertices in the graph of degree less than 5. By part (14), and the fact that G is

connected, G is either 5-regular or 6-regular.

Suppose first that G is 6-regular. Since none of the above parts of the theorem

applies, the algorithm in this case will pick a good pair (u, z) and branch on z. When

z is included u becomes a degree-5 vertex with a neighbor of degree 6, and we can

claim a further reduction in the parameter of value at least 0.116 by part (14) of the

theorem. When N(z) is included the parameter is reduced by at least 6. We get

F (k) ≤ F (k − 1.116) + F (k − 6) ≤ ck−1.116 + ck−6 ≤ ck.

Suppose now that G is 5-regular. Again, since none of the above parts applies,

the algorithm will pick a good pair (u, z) and branch on z. Let N(u) = {v, w, r, t, z}.

Note that in particular, no vertex in N(u) is almost-dominated by another by part

(7).

If z is adjacent to at least two vertices in {v, w, r, t}, then by the choice of z

in a good pair, the graph induced by {v, w, r, t} must contain at least three edges.

Therefore on the side of the branch where z is included Reducing applies (because

Conditional Struction applies). On the side of the branch where N(z) is included

a vertex of degree at most 4 remains, and a further reduction in the parameter of

value at least 0.255 can be claimed by part (13) (or better if the degree is less than

4). We get F (k) ≤ F (k − 2) + F (k − 5.255) ≤ ck−2 + ck−5.255 ≤ ck.

If z is adjacent to one vertex in {v, w, r, t}, then there is at least one edge in the

subgraph induced by {v, w, r, t}. On the side of the branch where z is included, u

becomes of degree 4 and at least three of its neighbors are of degree 5 with at least
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one edge among them. Therefore we can claim a further reduction in the parameter of

value at least 0.450 by part (10). On the side of the branch where N(z) is included a

vertex of degree at most 4 remains, and a further reduction in the parameter of value at

least 0.255 can be claimed by part (13). We get F (k) ≤ F (k−1.450)+F (k−5.255) ≤

ck−1.450 + ck−5.255 ≤ ck.

If z shares one or more neighbors with a vertex in {v, w, r, t}, say with t, then

when z is excluded t becomes a non-isolated vertex of degree at most 3, and a further

reduction in the parameter of value 0.536 can be claimed by part (9). When z

is included u becomes of degree 4, and we can claim a further reduction in the

parameter of value 0.255 by part (13). We get F (k) ≤ F (k− 1.255)+F (k− 5.536) ≤

ck−1.255 + ck−5.536 ≤ ck.

Now from the choice of z in a good pair, we can assume that no two vertices in

{v, w, r, t, z} share a neighbor other than u. When z is included part (11) applies to u

and we can claim a further reduction in the parameter of value at least 0.450. When

N(z) is included we can claim a further reduction in the parameter of value 0.255 by

part (13). We get F (k) ≤ F (k − 1.450) + F (k − 5.255) ≤ ck−1.450 + ck−5.255 ≤ ck.

This completes the proof.
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CHAPTER III

LABELED SEARCH TREE AND AMORTIZED ANALYSIS*

In this chapter we extend our study on Vertex Cover. This time, we focus our

attention on the techniques of analyzing branch-and-bound algorithms. We propose a

different approach to analyzing the size of the search tree. Recall that in the previous

chapter, although we utilized a set of powerful techniques including tuples, struction,

and general folding, the way we analyzed the search tree is still using the “local”

amortized analysis. The goal was to balance each expensive branching operation by

combining it with a few more efficient operations that may follow. The ultimate

goal, of course, is to balance all branchings in the entire search tree, perhaps using a

“global” amortized analysis. In this chapter we take the first step toward that goal

by presenting an “almost-global” amortized analysis that balances all branchings in

any root-leaf path in a search tree.

In order to illustrate the effectiveness of this new technique, we present a simple

algorithm of running time O(1.194k + n) for the parameterized Vertex Cover prob-

lem on degree-3 graphs, and a simple algorithm of running time O(1.1255n) for the

Maximum Independent Set problem on degree-3 graphs. Both algorithms improve

the previous best algorithms for the problems. This demonstrates how simple algo-

rithms, if analyzed properly, may perform much better than the upper bounds on

their running time derived by considering only a worst-case scenario.

∗Part of this chapter is reprinted with kind permission of Springer Science and
Business Media from Algorithmica, Online First Issue, 2005, pp. OF1–OF29, “La-
beled Search Trees and Amortized Analysis: Improved Upper Bounds for NP-Hard
Problems”, Jianer Chen, Iyad A. Kanj, and Ge Xia. Copyright 2005 by Springer-
Verlag.
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A. Amortized Analysis on Labeled Search Trees

The most popular technique for solving NP-hard problems precisely is the branch-

and-search process, which can be depicted by a search tree model described as follows.

Each node of the search tree is associated with an instance of the problem. At a node

α in the tree the search process considers a local structure in the problem instance

associated with α, and enumerates some feasible partial solutions to the instance

based on the specific local structure. Each such enumeration induces a new reduced

problem instance that is associated with a child of the node α in the search tree. The

search process is then applied recursively to the children of α. The complexity of a

branch-and-search process, which is roughly the size of the search tree, depends mainly

on two things: how effectively the feasible partial solutions are enumerated, and how

efficiently the instance size is reduced. In particular, all exact algorithms proposed

in the literature for the Maximum Independent Set problem and the Vertex Cover

problem are based on this strategy, and most improvements were obtained by more

effective enumerations of feasible partial solutions and/or more efficient reductions in

the size of the problem instance [22, 12, 28, 44].

A desirable local structure may not exist at a stage of the branch-and-search

process. In this case, the branch-and-search process has to pick a less favorable local

structure and make a less effective branch and/or less efficient instance-size reduction.

Most proposed branch-and-search algorithms for NP-hard problems were analyzed

based on the worst-case performance. That is, the computational complexity of the

algorithm was derived based on the worst local structure occurring in the search

process. This worst-case analysis for a branch-and-search process is very conservative

— the worst cases can appear very rarely in the entire process, while most other cases

permit much better branching and reductions.
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In this chapter, we suggest new methods to analyze the branch-and-search process.

First of all, we label the nodes of a search tree to record the reduction in the parameter

size for each branching process. We then perform an amortized analysis on each path

in the search tree. This allows us to capture the following notion: an operation by

itself may be very costly in terms of the size of the search tree that it corresponds to,

however, this operation might be very beneficial in terms of introducing many efficient

branches and reductions in the entire process. Therefore, the expensive operation can

be well balanced by the induced efficient operations.

This analysis has also enabled us to consider new algorithm strategies in a branch-

and-search process. In particular, now we do not have to always strictly avoid expen-

sive operations. To illustrate our analysis and algorithmic techniques, we propose a

very simple branch-and-search algorithm for Vertex Cover on degree-3 graphs, abbre-

viated VC-3. The algorithm also induces a new algorithm for Maximum Independent

Set on degree-3 graphs, abbreviated IS-3. Using the new analysis and algorithmic

strategies, we are able to show that the new algorithms improve the best existing

algorithms in the literature. More specifically, our algorithm for VC-3 runs in time

O(1.194k +n), improving the previous best algorithm of running time O(1.237k +kn)

[23], and our algorithm for IS-3 runs in time O(1.1255n), improving the previous best

algorithm of running time O(1.1259n) [45].

We would like to further comment on why we picked VC-3 and IS-3 as our candi-

dates. Vertex Cover and Maximum Independent Set are among the most extensively

studied NP-hard problems with many proposed algorithms [22, 36, 12, 24, 46, 47, 28,

48, 27, 44]. In particular, Vertex Cover and Maximum Independent Set on graphs

of degrees 3 and 4 have received a lot of attention recently [45, 12, 23]. In spite of

the restriction imposed on graph degrees (being bounded by 3 or 4), improvements

on the previous upper bounds for these problems can be challenging and meticulous.



62

Moreover, most of the algorithms for Vertex Cover and Maximum Independent Set on

general graphs end up reducing the problem to that on low-degree graphs [12, 47, 28].

Thus, a simple and uniform algorithm that induces significant improvements on the

existing bounds for these problems is of high interest, and shows the power and ef-

fectiveness of the new analysis and algorithmic methods. In addition, recent research

has shown that these problems are “complete” in terms of their worst case running

time for a large group of well-known NP-hard problems [14, 15, 16]. More specifically,

combining the results in [15], [16], and [14], one can show that if IS-3 can be solved in

time O((1+ ε)n), or if VC-3 can be solved in time (1+ ε)kp(n) (p is a polynomial), for

every constant ε > 0, then k-SAT, Maximum Independent Set, and Vertex Cover can

all be solved in subexponential time, which seems very unlikely. Hence, it is believed

that there are constants c1, c2 > 0, such that IS-3 and VC-3 have no exact algorithms

of running time O((1 + c1)
n) and (1 + c2)

kp(n), respectively. Thus, further improve-

ment in the base of the exponential function in the running time of the algorithms

that solve these problems may lead to better understanding of the problems and their

associated complexity class.

B. The Main Algorithm

We will assume, without loss of generality, that the graph G in an instance (G, k)

of VC-3 contains no isolated vertices (such vertices can be removed in O(|G|) pre-

processing time). The number of edges |E| in G then satisfies |E| ≥ |G|/2 (note that

G may not be connected). The degree of G is bounded by 3, and hence, every vertex

in G can cover at most three edges. This means that, in order for a vertex cover of

size k to exist in G, k must be at least as large as |E|/3 (and hence, k ≥ |G|/6);

otherwise, we can report that the answer to the instance (G, k) is negative.

Proposition II.1 allows us to assume, without loss of generality, that in an in-
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Fig. 4. Vertex folding

stance (G, k) of the VC-3 problem, the graph G contains at most 2k vertices.

Let v be a degree-2 vertex in the graph with two neighbors u and w such that u

and w are not adjacent. We construct a new graph G′ as follows: remove the vertices

v, u, and w and introduce a new vertex v0 that is adjacent to all neighbors of u and

w in G (of course except the vertex v). We say that the graph G′ is obtained from

the graph G by folding the vertex v. See Figure 4 for an illustration of this operation.

Note that this operation is a spacial case of the general folding operation introduced

in the previous chapter. We have the following lemma [12], which is a special case of

Lemma II.4.

Lemma III.1 ([12]) Let G′ be a graph obtained by folding a degree-2 vertex v in a

graph G, where the two neighbors of v are not adjacent to each other. Then τ(G) =

τ(G′) + 1.

Following the terminology of Tutte [49], we define the binding set of an induced

subgraph H of a graph G to be the set of vertices in H that have neighbors not in

H. We first discuss how a small induced subgraph with a small binding set helps

identifying vertices that are in a minimum vertex cover.

Lemma III.2 Let (G, k) be an instance of VC-3 where G has no vertex of degree less

than 2. If G has an induced subgraph H with a binding set of at most 2 vertices and
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4 ≤ |H| ≤ 50,1 then in constant time we can construct an instance (G′, k′) of VC-3

with a reduced parameter k′ < k, such that G has a vertex cover of k vertices if and

only if G′ has a vertex cover of k′ vertices.

Proof. First we discuss the case where the binding set of H consists of one

vertex v. Consider the algorithm BindingSet1() in Figure 5. The algorithm runs

in constant time since |H| ≤ 50. If H has a minimum vertex cover containing the

vertex v, then let CH be this vertex cover, otherwise let CH be any minimum vertex

cover of H. In both cases, removing the vertex set CH from the graph G (and all

isolated vertices resulted from this process) gives the graph G′. Thus, it suffices to

show that there is a minimum vertex cover C of the graph G that contains the entire

set CH : in this case C − CH makes a minimum vertex cover for the graph G′ and

|C − CH | = τ(G) − τ(H).

BindingSet1(G, H, v)
{∗ {v} is the binding set of the induced subgraph H of G ∗}
if H has a min-vc containing the vertex v then

G′ = G − H; k′ = k − τ(H);
else G′ = G − (H − {v}); k′ = k − τ(H).

Fig. 5. Removing an induced subgraph whose binding set has only one vertex

Let CG be any minimum vertex cover of G, then CG ∩ VH is a vertex cover for

H, and hence |CG ∩ VH | ≥ τ(H). If the minimum vertex cover CH of H contains

v, then replacing CG ∩ VH in CG by CH gives a minimum vertex cover for G that

contains CH . On the other hand, suppose CH does not contain v, i.e., H has no

minimum vertex cover containing v. Then in case v 6∈ CG, replacing CG ∩ VH in CG

1The constant 50 used here can be replaced by any sufficiently large constant
without affecting the correctness of the results in this chapter.
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by CH gives a minimum vertex cover for G that contains CH ; while in case v ∈ CG,

|CG ∩ VH | ≥ τ(H) + 1, and replacing CG ∩ VH in CG by CH plus the vertex v gives

a minimum vertex cover of G that contains CH . Thus, in both cases, there is a

minimum vertex cover of G that contains CH . This proves the lemma for the case

where H has a binding set of one vertex.

Now suppose the binding set of H has two vertices u and v. Consider the

algorithm BindingSet2() in Figure 6, which examines all possible situations in which

vertices u and v are contained in minimum vertex covers of H.

BindingSet2(G, H, u, v)
{∗ {u, v} is the binding set of the induced subgraph H of G ∗}
1. if H has a min-vc C1 containing both u and v

then G′ = G − H; k′ = k − τ(H);
2. else if H has a min-vc C2 containing u but no min-vc containing v

then G′ = G − (H − {v}); k′ = k − τ(H);
3. else if H has a min-vc C3 containing v but no min-vc containing u

then G′ = G − (H − {u}); k′ = k − τ(H);
4. else if H has a min-vc C4 containing u and a min-vc C ′

4 containing v
then G′ = G − (H − {u, v}); k′ = k − τ(H) + 1;

if [u, v] is not an edge, add an edge [u, v] to G′;
5. else {∗ every min-vc of H contains neither u nor v ∗}

let CH be a smallest vc of H that contains both u and v;
if |CH | = τ(H) + 2 then G′ = G − (H − {u, v}); k′ = k − τ(H);

else G′ = G − (H − {u, v}); k′ = k − τ(H) + 1;
add a new vertex w and two edges [w, u] and [w, v] to the graph G′.

Fig. 6. Removing an induced subgraph whose binding set consists of two vertices

For each of the cases 1-3, we only need to verify that the corresponding minimum

vertex cover of H is entirely contained in a minimum vertex cover of G. For this, let

CG be any minimum vertex cover of the graph G. In case 1, replacing CG ∩VH in CG

by C1 gives a minimum vertex cover of G that contains C1. For case 2, if CG does not

contain v, then replacing CG ∩ VH in CG by C2 gives a minimum vertex cover for G;

while if CG contains v then |CG ∩ VH | ≥ τ(H) + 1 (since H has no minimum vertex
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cover containing v), thus replacing CG ∩ VH in CG by C2 plus v gives a minimum

vertex cover of G. The proof for case 3 is completely similar to that for case 2.

Consider case 4. Since [u, v] is an edge in G′, every vertex cover of G′ must contain

at least one of u and v. Moreover, if G has a minimum vertex cover C that contains

neither u nor v, then replacing C ∩VH in C by C4 gives a minimum vertex cover of G

that contains u. Thus, the graph G has a minimum vertex cover CG that contains at

least one of u and v. If CG contains u but not v, replacing CG ∩VH in CG by C4 gives

a minimum vertex cover C ′
G for G satisfying that (C ′

G−C4)∪{u} is a minimum vertex

cover for G′. Therefore, τ(G′) = τ(G)−|C4|+1 = τ(G)−τ(H)+1. The case in which

CG contains v but not u can be verified similarly using C ′
4 instead of C4. Finally,

suppose that CG contains both u and v. Since case 1 has been excluded and CG ∩VH

is a vertex cover for H that contains both u and v, we have |CG ∩ VH | ≥ τ(H) + 1.

Therefore, replacing CG ∩ VH in CG by C4 plus v gives a minimum vertex cover C ′′
G

for G satisfying that (C ′′
G − C4) ∪ {u} is a minimum vertex cover for the graph G′.

Thus again τ(G′) = τ(G) − τ(H) + 1.

For case 5, let CH be any minimum vertex cover of H. First consider the subcase

|CH | = τ(H) + 2. Let CG be any minimum vertex cover of G. If CG contains u but

not v, then |CG∩VH | ≥ τ(H)+1 (since no minimum vertex cover of H contains u), so

replacing CG ∩ VH in CG by CH plus u gives a minimum vertex cover of G. The case

that CG contains v but not u can be verified similarly. Finally, if CG contains both u

and v, then |CG ∩ VH | ≥ |CH | = τ(H) + 2, and replacing CG ∩ VH in CG by CH plus

u and v gives a minimum vertex cover for G. Therefore, in case |CH | = τ(H) + 2, we

can simply remove CH and reduce the parameter by τ(H). Now consider the subcase

|CH | = τ(H) + 1. In this case, the graph G has a minimum vertex cover CG that

either contains both u and v or contains neither: if a minimum vertex cover C of G

contains exactly one of u and v, then |C ∩ VH | ≥ τ(H) + 1 and replacing C ∩ VH in
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C by CH gives a minimum vertex cover of G containing both u and v. Moreover,

because of the new degree-2 vertex w, the graph G′ has a minimum vertex cover C

that either contains both u and v or contains neither. If CG contains both u and v,

replacing CG∩VH in CG by CH gives a minimum vertex cover C ′
G of G satisfying that

(C ′
G−CH)∪{u, v} is a minimum vertex cover for G′ of size τ(G)− τ(H)+1, while in

case CG contains neither u nor v, the set (CG −CG ∩ VH)∪{w} is a minimum vertex

cover for G′ of size τ(G) − τ(H) + 1.

Finally, we note that since |H| ≥ 4 and G has no vertex of degree less than 2,

we have τ(H) ≥ 2. Therefore, in all cases we have k′ < k.

We note that the condition that the vertex degree is bounded by 3 is not used

in the proof of Lemma III.2. Therefore, the lemma remains valid for instances of the

general Vertex Cover problem.

Before we present our main algorithm, we introduce some definitions and termi-

nologies.

Definition III.3 Let G be a graph in which no vertex has degree larger than 3.

1. A vertex folding operation is safe if it does not create vertices of degree larger

than 3.

2. A cycle of length l in G is an alternating cycle if it contains exactly bl/2c

degree-2 vertices of which no two are adjacent.

3. An alternating tree T in G is a tree that is an induced subgraph in G such that

all degree-1 vertices in T are of degree 3 in G and no two adjacent vertices in T

are of the same degree in G. An alternating tree T is maximal if no alternating

tree contains T as a proper subgraph.

Our main algorithm is a branch-and-search process, given in Figure 7. Each

stage of the algorithm starts with an instance (G, k) of VC-3, and tries to reduce
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the parameter k by identifying a set S of vertices that are entirely contained in a

minimum vertex cover of G, and including the vertex set S in the objective minimum

vertex cover for G, which will be called the partial cover for G, then recursively works

on the reduced instances. The subroutine Fold(v) simply applies the safe folding

operation to a degree-2 vertex v. We also implicitly assume that after each step, the

algorithm calls a subroutine Clean, which eliminates all isolated vertices and degree-

1 vertices (a degree-1 vertex is eliminated by including its neighbor in the partial

cover), and updates the graph G, the partial cover, and the parameter k accordingly.

In particular, we will assume that at the beginning of each step, the graph contains

no vertices of degree less than 2.

VC3-solver

Input: an instance (G, k) of VC-3
Output: a vertex cover C of G of size bounded by k in case it exists

1. while Reducing is applicable do apply Reducing;
2. if there is a maximal alternating tree T of at least 4 vertices in G

then branch on the vertices in T that are of degree 3 in G;
3. else if there is a degree-2 vertex v then branch on the two neighbors of v;
4. else branch on a degree-3 vertex v.

Reducing
A. while there exists a degree-2 vertex v such that folding v is safe do Fold(v);
B. if G has a component H with |H| ≤ 50 then include a min-vc of H in the
cover;
C. else if there are two adjacent triangles (u, v, w) and (u, v, z)
then include v in the cover;
D. else if there is an alternating cycle K in G
then include all degree-3 vertices on K in the cover;
E. else if G has an induced subgraph H with a binding set of at most two
vertices, and such that 4 ≤ |H| ≤ 50
then call the subroutine BindingSet1() or BindingSet2().

Fig. 7. The algorithm VC3-solver

We explain how each step in the subroutine Reducing is done efficiently. The
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conditions in step A and step C can be verified by checking each degree-2 vertex

and each edge in the graph G, respectively. The conditions in step B can be verified

by partitioning the graph G into connected components. The conditions in step E

can be checked in linear time using the following procedure. First we apply a linear

time algorithm (see [50], section 5.3) to the graph G, which identifies all cut-points

and constructs all 2-connected components of G. By examining each 2-connected

component, we can check if there is any induced subgraph with a binding set of a

single vertex that satisfies the conditions in step E. Similarly, applying the linear

time algorithm in [51] to the graph G identifies all cut-pairs, and constructs all the 3-

connected components in G. By examining each 3-connected component, we can find

out if there is any induced subgraph with a binding set of two vertices that satisfies

the conditions in step E. To check the conditions for step D, we run the following

subroutine: first remove from G the set T of all edges whose two ends are of degree 3

in G and “smooth” each degree-2 vertex v in G by removing v and adding a new edge

connecting its two neighbors. Let the resulting graph be G′. Now every alternating

cycle C in the original graph G corresponds either to a cycle in G′ (in this case C is

of even length) or to an edge [u, v] in T where u and v belong to the same connected

component of G′ (in this case, C is of odd length). Since the number of edges in G is

bounded by O(k), all these conditions can be verified in time O(k).

An explanation for step 2 of the algorithm VC3-solver is needed. Because of

step 1, there is no alternating cycle in the graph G. Since an alternating tree of at

least 4 vertices contains at least one degree-3 vertex in G that is of degree larger than

1 in the tree, we can check each degree-3 vertex in G that has at least two degree-

2 neighbors. A simple breadth-first-search style construction from such a degree-3

vertex will give a maximal alternating tree in linear time.

Theorem III.4 The algorithm VC3-solver solves the VC-3 problem correctly.
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Proof. We first discuss the subroutine Reducing. The correctness of step B

is obvious, and the correctness of step A and step E is given by Lemma IV.5 and

Lemma III.2, respectively. For step C, since every minimum vertex cover of G must

contain at least one of u and v, by the symmetry in the structure, we can simply

include v. Finally, consider step D. Let W be the set of all degree-3 vertices in the

alternating cycle K, |W | = dl/2e, where l is the length of K. Since every minimum

vertex cover CG of G contains at least dl/2e vertices in K, replacing CG ∩ K in CG

by W gives a minimum vertex cover containing W . This verifies the correctness of

step D.

What remains is to verify the correctness of each step in the main algorithm

VC3-solver. For this, we show that, in each of the branching steps 2–4, at least one

of the outcomes of the branching includes only vertices in a minimum vertex cover of

the current graph, into the partial cover.

In step 4 we branch at a degree-3 vertex v by either including v in the cover, or

excluding it and including all its neighbors. This step is correct since for any vertex

v in the graph, it is true that any minimum vertex cover either contains v, or does

not contain v and contains all its neighbors. For step 3, let u and w be the two

neighbors of the vertex v. Each minimum vertex cover CG of G contains at most two

of v, u, and w. If CG contains only one of v, u, and w, then the vertex in CG must

be v so both u and w are not in CG. If CG contains two of v, u, w, we can always

replace these two vertices in CG by u and w to get a minimum vertex cover of G that

contains both u and w. This verifies the correctness of step 3. Finally, consider case

2. Let W be the set of all degree-3 vertices in the alternating tree T . Suppose that

G has a minimum vertex cover CG that contains some vertex v in W but not the

entire W . Let Ni be the set of vertices in T such that, for each vertex u in Ni, the

unique path from v to u in T has length i. By the definition of an alternating tree, all
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vertices in Ni are of degree 2 in G if i is odd and of degree 3 in G if i is even. Since

v is in the minimum vertex cover CG, removing v makes all vertices in N1 become of

degree 1. By the observation given earlier, we can safely include all vertices in N2 in

the minimum vertex cover. Now removing all vertices in N2 makes all vertices in N3

become of degree 1, so we can include all vertices in N4 in the minimum vertex cover,

and so on. This process will eventually include all vertices in W in the minimum

vertex cover, and give a minimum vertex cover of G that contains the entire set W .

This verifies that there is a minimum vertex cover of G that either contains the entire

set W or contains no vertex in W , and proves the correctness of step 2.

The main goal of this chapter is to show that the number of leaves in the search

tree of the algorithm VC3-solver on an instance (G, k) of VC-3 is O(1.194k). This

will be done in Proposition III.16. We first note that the following conditions can be

assumed on the input (G, k) to the algorithm VC3-solver.

Assumption III.5 Let (G, k) be an instance of VC-3. We can assume that when

the algorithm VC3-solver is initially called on the instance (G, k) the following holds

true: (1) the parameter k passed is not larger than the size of a minimum vertex cover

of G; and (2) G is connected.

Suppose first that G is connected. Condition (1) can be justified as follows. We

start calling the algorithm on G with k′ = 1, 2, . . . , k. The first time the algorithm

returns a vertex cover of size k′, we stop (note that the vertex cover returned in this

case must be a minimum vertex cover). Otherwise, no vertex cover of size bounded

by k exists. Each call to the algorithm satisfies condition (1). It will be shown in

Proposition III.16 that the number of the leaves in the search tree of the algorithm

when called on an instance (G, k) is O(1.194k). The number of leaves in the search

tree in the previous calls to the algorithm becomes bounded by c ·1.1941 + c ·1.1942 +
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. . . + c · 1.194k = O(1.194k) (where c is a positive constant). Hence, the upper bound

on the number of leaves in the search tree with the new modification to the algorithm

is unchanged. Now to justify (2), suppose that there are G1, . . . , Gr components in G

with |Gi| = ni. By Proposition II.1, we may assume that the size of a minimum vertex

cover of Gi, τ(Gi), is ≥ ni/2. We will also assume that τ(Gi) ≥ 4 (a component Gi

with τ(Gi) < 4 has its size bounded by 8, and thus can be removed in constant time).

We call the algorithm on G1, with k1 = n1/2, n1/2 + 1, . . . , k. The first time the

algorithm returns a vertex cover of size k1, we stop. If the algorithm fails to return a

vertex cover in each of these cases, then no vertex cover of size bounded by k exists.

Otherwise, the algorithm returns a minimum vertex cover of G1 of size 4 ≤ k1 ≤ k.

Now we call the algorithm on G2 with k2 = n2/2, n2/2+1, . . . , k−k1, and so on. It is

now true that on each call to the algorithm on a graph component, conditions (1) and

(2) hold true. The number of leaves in the search tree is O(1.194k1 +· · ·+1.194kr). We

show next that 1.194k1 + · · · + 1.194kr ≤ 1.194k1+···+kr , which gives that the number

of leaves in the search tree is O(1.194k1+···+kr) = O(1.194k).

Since ki ≥ 4 for all i, we have 1.194ki ≥ 2. For any two numbers a ≥ 2 and

b ≥ 2, we have ab − (a + b) = (a − 1)(b − 1) − 1 ≥ 0, which gives a + b ≤ ab. Using

this inequality repeatedly gives

1.194k1 + 1.194k2 + 1.194k3 + · · · + 1.194kr ≤ 1.194k1+k2 + 1.194k3 + · · · + 1.194kr

≤ 1.194k1+k2+k3 + · · · + 1.194kr

≤ · · · ≤ 1.194k1+k2+k3+···+kr .

C. Analysis of the Algorithm

We analyze the time complexity of the algorithm VC3-solver in this section. Let T

be the search tree for the algorithm VC3-solver on the input instance (G, k). Let α
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be a node in the search tree with an associated parameter k′. If we perform a two-sided

branch at α by reducing the parameter k′ in each branch by a and b, respectively,

then such a branch will be called an (a, b) branch. We will always assume that in an

(a, b) branch, we have a ≤ b. We say that an (a, b) branch is not worse than an (a′, b′)

branch if a ≥ a′ and b ≥ b′.

Differing from the common analysis techniques based on the worst-case scenario,

we present next a novel way for analyzing the size of the search tree. This can

be achieved by looking at the set of operations performed by the algorithm as an

interleaved set of operations. This allows us to counter-balance the effect of inefficient

operations with efficient ones, thus providing a better upper bound on the size of the

search tree. Our goal is to show that the number of leaves in the search tree T is

O(rk), where r ≤ 1.194 is the unique positive root of the polynomial xk−xk−3−xk−5,

or equivalently, the unique positive root of the polynomial x5 − x2 − 1.

The graph G is called clean if no vertex of degree 0 or 1 exists in G. The graph

G is called nice if it is clean and no safe folding is applicable to any vertex in G. We

will divide the operations performed by the algorithm into four categories.

1. Folding operations: the operations performed in step A of the subroutine Re-

ducing.

2. (1, 3) branching operations: the operations performed in step 4 of VC3-solver

when we branch on a degree-3 vertex. These operations occur only when the

graph becomes 3-regular.

3. (2, 5) branching operations: the operations performed in step 3 of VC3-solver

when we pick a degree-2 vertex and branch on its neighbors. Note that at this

point of the algorithm the graph is nice, and hence, no safe folding is applicable.

Also, step D of Reducing is not applicable. This means that the two vertices
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that we branch on have five neighbors, and the branch in this case is a (2, 5)-

branch.

4. The operations performed in: steps B-E of Reducing, step 2 of VC3-solver,

and those performed by the subroutine Clean.

The operations will be referred to by their categories. For example, a category-1

operation denotes a folding operation, and a category-4 operation denotes one of the

operations listed in number 4 above.

Let i be an operation2 in any of the above categories. We define the following

parameters for operation i: ei the number of edges removed in operation i, vi the

number of vertices removed in operation i, and ki the reduction in the parameter by

operation i. We define the surplus si of operation i as follows. If i is a non-branching

operation that reduces the parameter by ki, then si = ki. If i is the a-side (resp.

b-side) of a branching operation (a, b), where a ≤ b, then si = a−3 (resp. si = b−5).

Informally speaking, si is the addition or reduction in the parameter, relative to a

(3, 5)-branch, that is gained or lost in the operation i. We define the amortized cost

mi of operation i by mi = 5ei − 6vi + 6si − 3ki. Note that if the operation i is

followed by Clean, we will combine the amortized cost of Clean with mi. Also note

that for any non-branching operation si = ki, therefore the amortized cost of such an

operation is mi = 5ei − 6vi + 3ki.

The amortized cost mi defined above will be used to measure the cost related

to operation i including the benefit cost generated by operation i, the cost gained

by operation i from other previous operations, and the cost relative to attaining the

2When looking at the search tree, a branching operation will denote the two sides
of the branch, whereas when looking at a certain path in the search tree, one side of
a branching operation will be considered an operation by itself. It should be clear
from the context what is meant by a branching operation (i.e., either one side of the
branch or the whole branch).
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target parameter reduction of the operation. Based on the principle of “gain more

then pay more”, we use the gain in the parameter reduction related to the operation

to measure the corresponding cost. Write si = ki − δi, where δi is the “target value”

in the parameter reduction for operation i (e.g., for an (a, b) branch, where a ≤ b, the

target value for the a-side operation is 3, and for the b-side operation is 5). Rewrite

the formula as mi = (5ei−6vi)+3si−3δi. We consider the three parts in the formula

for the amortized cost mi. (A) The term (5ei − 6vi) in mi: observe that for a clean

graph of n vertices and m edges, if the edge/vertex ratio m/n is less than 6/5, then a

safe folding operation is applicable (see Proposition III.18). Thus, if the operation i

removes ei edges and vi vertices such that ei/vi > 6/5 (or, equivalently 5ei−6vi > 0),

then the operation i will lower the edge/vertex ratio in the remaining subgraph and

increase the possibility of safe folding, which will benefit later steps of the algorithm.

Therefore, the term (5ei − 6vi) in mi describes the cost of the operation i that will

benefit later steps of the algorithm. (B) The surplus si: the value of si represents

the gain in the parameter reduction that is beyond the target value. Note that in the

algorithm, each operation i with a positive surplus must have taken the advantage of

a certain special graph structure which had been generated by previous operations.

Moreover, after the operation i, the favored structure disappears. Therefore, the

value si can be regarded as the cost of previous operations to generate the favored

structure consumed by the operation i. For example, a safe folding operation takes

the advantage of two adjacent degree-2 vertices (which are generated by previous

operations), gains a surplus 1, but eliminates the favored structure (i.e., the two

adjacent degree-2 vertices). Therefore, the value si describes the cost of previous

operations that benefited the operation i. (C) The value δi: since the cost of the

operation i spent for gaining the target parameter reduction δi is excluded from the

amortized cost, the term −δi becomes a term in the amortized cost mi.
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Based on the above discussion, it is natural to define the amortized cost as a

linear function of (5ei − 6vi), si, and −δi. The remaining question is to determine

the coefficients of these terms, i.e., to determine how these terms are proportionally

related. We give an intuitive explanation here. The entity si counts the extra reduc-

tion in the parameter value, and the entity δi denotes the targeted reduction in the

parameter value. Therefore, both si and δi refer to the reduction in the parameter

value, and hence, it makes sense to give them the same coefficient in the formula for

mi. Now how is the term (5ei−6vi) related to the value si (and δi)? A careful analysis

of the algorithm (see the proofs of Proposition III.17 and Lemma III.19) shows that

it is proper to equate a value 3 in (5ei − 6vi) to a value 1 in si. We use the 1-side

operation of a (1, 3) branch as an example. Here we have ei = 3 and vi = 1, thus

(5ei−6vi) = 9. On the other hand, the operation creates three degree-2 vertices, each

may induce a folding that reduces the parameter by 1. Therefore, a value 9 in the

term (5ei − 6vi) seems to correspond to a value 3 in the parameter reduction. The

same conclusion can be derived for the 2-side operation of a (2, 5) branch.

The above explains the main intuition behind the formulation of the amortized

cost as mi = (5ei − 6vi) + 3si − 3δi, which is equivalent to mi = 5ei − 6vi + 6si − 3ki.

Lemma III.6 Let C0 be a connected component in G, and let m0 be the amortized

cost incurred by invoking Clean on C0. If C0 is not a tree then m0 ≥ 0, and if C0 is

a tree then m0 ≥ −6.

Proof. Suppose first that C0 is a non-tree connected component in G. Let e0,

v0, k0 be the parameters of the operation of applying Clean to C0. Since Clean is a

non-branching operation, we have m0 = 5e0 − 6v0 + 3k0. If Clean removes the whole

component C0, then since C0 is connected and is not a tree, we have e0 ≥ v0. Also,

k0 ≥ e0/3 since every removed edge must be covered by the vertices that have been
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included in the vertex cover, and each vertex can cover at most 3 edges. It follows

that the amortized cost m0 = 5e0 − 6v0 + 3k0 ≥ 0. Now suppose that Clean does

not remove the whole component C0. Then any connected induced subgraph C ′ of C0

that is removed by Clean must have at least one edge connecting it to V (C0)−V (C ′),

which is also removed by Clean. It follows that the number of edges e′ removed when

removing C ′ is at least as large as the number of vertices v′ in C ′. Also, the reduction

in the parameter k′ incurred in C ′ is k′ ≥ e′/3 by the same argument as above. It

follows that the amortized cost m′ induced by m0 on every connected subgraph C ′ of

C removed by Clean is non-negative. The amortized cost m0 on C0 is the summation

of the amortized cost on each connected subgraph removed by Clean (this follows

from the linearity of the expression for the amortized cost and the monotonicity of

addition). It follows that the amortized cost m0 incurred by cleaning a non-tree

component is always non-negative.

Suppose now that C0 is a tree. In this case Clean removes the whole component

C0. It follows that e0 = v0 − 1. This, together with k0 ≥ e0/3, gives m0 = 5e0 − 6v0 +

3k0 ≥ −6.

Lemma III.7 A non-branching operation on a connected component of a clean graph

G has a non-negative amortized cost.

Proof. Since G is clean, every connected component of G is also clean, and hence,

is not a tree. It follows, by a similar argument to that in Lemma III.6, that the

induced amortized cost on every connected subgraph of G removed by the operation

plus Clean is non-negative. Hence, the total amortized cost is non-negative.

Fact III.8 A tree with exactly two degree-1 vertices is a path between the two degree-1

vertices.
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Lemma III.9 On a nice graph G, an operation i performed in step E of Reduc-

ing followed by an invocation to Clean has a non-negative amortized cost mi. In

particular, the amortized cost of step 4 of the procedure BindingSet2() is at least 6.

Proof. In step E of Reducing, the algorithm removes a subgraph from G and

possibly adds some edges and vertices to the graph. We need to verify that the

amortized cost of such an operation is non-negative. In the cases when the operation

does not add any vertices or edges to the graph, the fact that the amortized cost is

non-negative follows from Lemma III.7. We only need to show this statement for step

4 of BindingSet2() when one edge is added, and step 5 of BindingSet2(), when one

vertex and two edges are added. We show the statement for step 4 of BindingSet2().

The proof that this statement holds true for step 5 of BindingSet2() is very similar.

The operation in step 4 removes (H − {u, v}) from G and adds an edge [u, v] if this

edge does not already exist. If the edge [u, v] already exists, then no edge is added

and we are done. Suppose that there is no edge [u, v] in G. Note that H cannot be

a tree, otherwise, since the operation is performed on a clean connected component

of the graph, H would have exactly two degree-1 vertices namely u and v, and by

Fact III.8, H must be a chain (note that a tree with more than one vertex must

have at least two degree-1 vertices). Since |H| ≥ 4, this would imply that there

were two adjacent degree-2 vertices in the graph prior to this operation contradicting

the fact that no safe folding is applicable at this stage of the algorithm. Thus, we

must have eH ≥ vH , where eH and vH are the number of edges and vertices in

H, respectively. The operation removes eH − 1 edges (eH edges from H, and [u, v]

is added), vH − 2 vertices, and reduces the parameter by kH . Since each of the

kH vertices included in the vertex cover can cover at most 3 edges, we must have

kH ≥ (eH − 1)/3. Since the operation is a non-branching operation, its amortized
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cost mi = 5(eH − 1) − 6(vH − 2) + 3kH ≥ 6eH − 6vH + 6 ≥ 6. Also, since prior to

this operation the graph was clean, the resulting graph is also clean, and hence, the

subroutine Clean is not applicable. This completes the proof.

Proposition III.10 Let G be a nice graph, and let S be a collection of disjoint

induced trees in G that are joined to G − S by l edges. Then |S| ≤ 4l − 7.

Proof. It suffices to prove the proposition for the case when S contains a single

induced tree T . The proof for the general case follows by applying the statement to

each induced tree in S.

For an induced tree T , let LT be the set of vertices of degree less than 2 in the

tree T , and let CT be the set of edges with one end in T and the other end in G− T .

We prove, by induction on |T |, the following statement:

Statement A. |T | ≤ 4|CT | − 7. More precisely, if a vertex in LT has

degree 3 in the graph G, then |T | ≤ 4|CT | − 10, and if all vertices in LT

have degree less than 3 in G, then |T | ≤ 4|CT | − 7.

First note that the graph G is nice, and hence, G has no vertices of degree less than

2. When |T | = 1, if the vertex v in T has degree 3 in G then |CT | = 3, and if the

vertex v has degree 2 in G then |CT | = 2. Therefore, Statement A holds true when

|T | = 1. When |T | = 2, T consists of a single edge [u,w], and |CT | ≥ 3, since the nice

graph G cannot have two adjacent degree-2 vertices u and w. Therefore, Statement

A holds true when |T | = 2.

Now consider the general case |T | ≥ 3. First suppose that there is a vertex w

in LT such that w is of degree 3 in G. Then one edge [w, u] incident on w is in T

(because |T | > 1), and the other two edges [w,w1] and [w,w2] incident on w belong to

CT . Consider the tree T ′ = T −{w} in G. We have |T ′| = |T |−1 and |CT ′| = |CT |−1
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(CT ′ is obtained from CT by removing the two edges [w,w1] and [w,w2] and adding

the edge [w, u]). By the inductive hypothesis, |T ′| ≤ 4|CT ′| − 7, which gives directly

that |T | ≤ 4|CT | − 10.

Now suppose that all vertices in LT have degree 2 in G. Pick a longest path in

T with endpoints r and w. Both r and w must be in LT , and hence, have degree 2 in

G. Let u be the neighbor of w in the tree T (the vertex u must exist, and must be

different from r, because |T | ≥ 3 and a longest path in T from r to w has length at

least 2).

Let the other edge incident on w be [w,w1]. Since the graph G is nice, the vertex

u must be of degree 3 in G (otherwise, w and u would be two adjacent degree-2 vertices

in G). Let the edge incident on u but not on the path joining r to w be [u, u1]. If u1

is not in T , then consider the tree T ′ = T − {w}, and note that u is in LT ′ . We have

|T ′| = |T |−1, and |CT ′| = |CT | (CT ′ is obtained from CT by removing the edge [w,w1]

and adding the edge [u,w]). Since u is of degree 3 in G, by the inductive hypothesis,

we have |T ′| ≤ 4|CT ′| − 10, which gives |T | ≤ 4|CT | − 9 < 4|CT | − 7. Suppose now

that u1 is in the tree T . Then u1 must be in LT (otherwise, the path from r to w

would not be a longest path in T ), and u1 has degree 2 in G. Consider the tree

T ′′ = T − {w, u1} in G. We have |T ′′| = |T | − 2, and |CT ′′| = |CT | (CT ′′ is obtained

from CT by removing the edge [w,w1] and the edge joining u1 to G − T , and adding

two edges [u,w] and [u, u1]). Now the vertex u is in LT ′′ , and u is of degree 3 in G. By

the inductive hypothesis, |T ′′| ≤ 4|CT ′′|−10, which gives |T | ≤ 4|CT |−8 < 4|CT |−7.

This completes the inductive proof of Statement A and the proof of the propo-

sition.

Lemma III.11 On a nice graph G, an operation i performed in step 2 of VC3-

solver followed by an invocation to Clean is not worse than a (3, 5)-branch, and its

amortized cost mi is non-negative.
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Proof. We first prove a general result for alternating trees. Suppose that T is an

alternating tree with at least 3 vertices. Let D2 and D3 be the sets of vertices in T

of degree 2 and degree 3 in G, respectively, and let x = |D3|. Let Y be the set of

neighbors of D3 that are not in T , i.e., Y = N(D3) − D2, and let y = |Y |. We first

show, by induction on |T |, that (1) |D2| = x − 1 and hence |T | = 2x − 1; and (2)

there are exactly (x + 2) edges between T and Y .

For the base case |T | = 3, from the definition of an alternating tree, the tree T

must be a chain [u1, u2, u3] of three vertices, where u1 and u3 are of degree 1 in T and

degree 3 in G, and u2 is of degree 2 in both T and G. Moreover, there are four edges

joining T to G − T , namely those edges joining u1 and u3 to the vertices in G − T .

Therefore, we have x = |D3| = 2, |D2| = 1, and the number of edges between T and

Y is 4. Thus, statements (1) and (2) hold true in this case.

We note that the case |T | = 4 is impossible: if T has three degree-1 vertices

(which are of degree 3 in G), then the fourth vertex in T must be connected to all the

three degree-1 vertices, and hence cannot be of degree 2, so T is not an alternating

tree; while if T has two degree-1 vertices, then the other two vertices in T must be

of degree 2 and adjacent, so again T would not be an alternating tree.

Therefore, for a general case for an alternating tree T with |T | > 3, we must have

|T | ≥ 5. Let w be any vertex of degree 1 in T . By the definition of alternating trees,

w is of degree 3 in the graph G. The vertex w is adjacent to a degree-2 vertex u in the

tree T and adjacent to two other vertices w1 and w2 in G−T . Let the other neighbor

of u in T be u1, which is a degree-3 vertex in G. Consider the tree T ′ = T −{w, u} in

G. Then |T ′| = |T |−2 ≥ 3. Moreover, the tree T ′ is an alternating tree: the degree-3

vertex u1 now becomes of degree 1 in T ′, and the degrees of the vertices in T ′ still

alternate. Let D′
2 and D′

3 be the sets of vertices in T ′ of degree 2 and degree 3 in G,
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respectively. Then |D′
2| = |D2| − 1 and |D′

3| = |D3| − 1. Moreover, the number of

edges β′ between T ′ and G−T ′ is exactly one less than the number of edges β between

T and G−T (the set of edges between T ′ and G−T ′ is obtained from the set of edges

between T and G − T by removing the two edges [w,w1] and [w,w2] and adding the

edge [u1, u]). By the inductive hypothesis, we have |D′
2| = |D′

3|− 1 and β′ = |D′
3|+2,

which gives directly that |D2| = |D3| − 1 = x − 1 and β = |D3| + 2 = x + 2. This

completes the proof of statements (1) and (2).

Now we are ready to prove the statement of the lemma. Since the number of

vertices in an alternating tree is 2x − 1, which is an odd number, and since |T | is

assumed to be ≥ 4 in step 2 of VC3-solver, we have |T | ≥ 5, and hence, x ≥ 3. Part

(2), and the fact that x ≥ 3, imply that there are at least five edges between T and

Y . Since every vertex in the graph has degree bounded by 3, we have y ≥ 2.

If y = 2, then x ≤ 4, and the subgraph H induced by V (T )∪ Y has size at most

9. Since no isolated components of size ≤ 50 exist at this point of the algorithm by

step B in Reducing, the binding set of H has size bounded by 2 (the binding set

of H is a subset of Y ). Since 4 ≤ |H| ≤ 50, this is not possible at this point of the

algorithm by step E of Reducing. It follows that y ≥ 3, and branching in step 2 of

VC3-solver on D3 gives a (|D3|, |D2| + |Y |) = (x, x − 1 + y) branch, which is not

worse than a (3, 5)-branch since both x and y are at least 3.

What is left is showing that the amortized cost mi of operation i is non-negative.

Consider first the side of the branch where we include the vertices in D3 in the partial

cover. The vertices removed by this branch are those in T whose number is vi = 2x−1.

The edges removed are those in T plus the edges between T and Y . These edges are

exactly the edges incident on the vertices in D3. Since no two degree-3 vertices in

T are adjacent, it follows that the number of edges ei removed by the branch is 3x.

Moreover, the reduction ki in the parameter is x, and the surplus is x− 3. Now let S
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be the set of tree components in the resulting graph G− T , and let ti be the number

of tree components in S. By Lemma III.6, the amortized cost of Clean on a non-tree

component is non-negative, and on a tree component is at least −6. It follows that

the amortized cost of operation i including the invocation of Clean is

mi ≥ 5ei − 6vi + 6si − 3ki − 6ti

≥ 5(3x) − 6(2x − 1) + 6(x − 3) − 3x − 6ti

= 6x − 12 − 6ti. (3.1)

Observe that the tree components in S are disjoint, and each tree component

must be connected by at least two edges to T (since no degree-1 vertices exist in

G). It follows from this observation that there cannot be more than b(x + 2)/2c

tree components in S, and hence, ti ≤ b(x + 2)/2c. If x ≥ 6, then from Inequality

(3.1), we get mi ≥ 0. Suppose now that x ≤ 5. We claim that in this case either

there exists a non-tree component in G − T that is joined to T by at least three

edges, or there exist at least two non-tree components in G−T . If all components in

G−T are tree components, i.e., G−T = S, then S is a collection of disjoint induced

trees that are joined to T by at most x + 2 ≤ 7 edges satisfying the conditions of

Proposition III.10 with l = 7. It follows in this case that the number of vertices in

S is bounded by 21, and hence, the total number of vertices in the graph component

induced by V (T ) ∪ V (S) is bounded by 30. This is not possible at this point of the

algorithm due to the fact that step B in Reducing was not applicable. Now suppose

that there is exactly one non-tree component C0 in G−T that is joined by exactly two

edges to T . By a similar argument to the above, the graph induced by V (T ) ∪ V (S)

has at most 22 vertices (and at least 4 vertices), and is connected to C0 by exactly

two edges, which means that it has a binding set of size at most 2. This is again not
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possible by step E of Reducing. It follows that the claim holds true. An immediate

consequence of this claim is that ti ≤ b(x + 2− 3)/2c = b(x− 1)/2c. Combining this

with (3.1), we get mi ≥ 3x − 9 ≥ 0 because x ≥ 3.

Now on the other side of the branch we include the neighbors of D3: D2 and

Y . Let eY be the number of edges connecting the vertices of Y , and z the number

of edges between the graph induced by V (T ) ∪ Y and the remaining graph. It is not

difficult to verify that in this side of the branch the number of edges ei removed is

3x+ z + eY , the number of vertices vi removed is 2x− 1+ y, and the reduction in the

parameter ki is x − 1 + y. Let S be the set of tree components in (G − T ) − Y , and

ti the number of tree components in S. Now

mi ≥ 5ei − 6vi + 6si − 3ki − 6ti

≥ 5(3x + z + eY ) − 6(2x − 1 + y) + 6(x − 1 + y − 5) − 3(x − 1 + y) − 6ti

≥ 6x − 3y + 5eY + 5z − 6ti − 27. (3.2)

Since the alternating tree is maximal, all vertices in Y have degree 3. By counting

the sum of the degrees of the vertices in Y , we get

3y = x + 2 + z + 2eY . (3.3)

Combining (3.2) and (3.3) and noting that ti ≤ bz/2c, we get

mi ≥ 5x + 3eY + 4z − 6ti − 29 (3.4)

≥ 5x + z + 3eY − 29. (3.5)

If x ≥ 6, then from Inequality (3.5) we have mi ≥ 0. If x = 5, then from

Inequality (3.5), the fact that z ≥ 3 (note that if z ≤ 2 then the graph induced
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by V (T ) ∪ Y has size bounded by 50 and a binding set of size at most 2), Equality

(3.3), and the fact that y is an integer, we have mi ≥ 0. If x = 4 and z ≥ 9, then

again by Inequality (3.5), mi ≥ 0. We are left with the cases x = 4 and z < 9, or

x = 3. If x = 3, then z ≤ 10, because there cannot be more than 5 vertices in Y

each of which has to be joined by at least one edge to T . It follows that in both cases

z ≤ 10 and |V (T ) ∪ Y ∪ V (S)| ≤ 50 (since |S| ≤ 33 by Proposition III.10). By an

argument similar to the above, we must have at least two non-tree components in

G− (V (T )∪ Y ), or a non-tree component that is joined to Y by at least three edges.

It follows that ti ≤ b(z − 3)/2c. Combining this with Inequality (3.4), we get

mi ≥ 5x + 3eY + 4z − 6b(z − 3)/2c − 29 (3.6)

≥ 5x + z + 3eY − 20. (3.7)

Since x ≥ 3 and z ≥ 3, if x = 4, z ≥ 5, or eY ≥ 2, by (3.7) we get mi ≥ 0. Assume

now that x = 3, z ∈ {3, 4}, and eY ∈ {0, 1}. Because x, y, z, eY are all integers, it is

easy to see from (3.3), that the only possible case is when x = 3, y = 3, z = 4, eY = 0.

Substituting these values in (3.6), we get mi ≥ 2.

It follows that branch i is not worse than a (3, 5)-branch, and the amortized cost

of i including the invocation to Clean is non-negative. This completes the proof.

Theorem III.12 Let i be an operation performed in one of steps B-E in Reducing,

or step 2 in VC3-solver followed by an invocation to Clean. Then the amortized

cost mi of i is non-negative.

Proof. By Lemma III.7, the amortized cost corresponding to any non-branching

operation is non-negative. In particular, the amortized cost corresponding to an

operation performed in any of steps B-D of Reducing is non-negative. Lemma III.9
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shows that step E of Reducing followed by an invocation to Clean has a non-negative

amortized cost (note that Lemma III.7 cannot be applied to an operation in step E

since such an operation may add edges and vertices to the graph). Lemma III.11

establishes the same facts for step 2 of VC3-solver.

Proposition III.13 Let O be an operation that removes e0 edges, v0 vertices, reduces

the parameter by k0, and has surplus s0. Let m0 = 5e0−6v0+6s0−3k0 be the amortized

cost of operation O.

(i) If O is a category-1 operation then m0 ≥ 1.

(ii) If O is the 1-side branch in a category-2 operation then m0 = −6.

(iii) If O is the 3-side branch in a category-2 operation then m0 ≥ −6.

(iv) If O is the 2-side branch in a category-3 operation then m0 = 0.

(v) If O is the 5-side branch in a category-3 operation then m0 ≥ 1.

(vi) If O is a category-4 operation, then m0 ≥ 0.

Proof. A folding operation removes at least two edges and two vertices. Hence,

e0 ≥ 2 and v0 = 2. In both cases we have s0 = k0 = 1 (since there is no branching). It

follows that m0 ≥ 1. Now in the 1-side of the (1, 3)-branch it is always the case that

exactly one vertex and three edges are removed. Since s0 = −2 and k0 = 1, we have

m0 = −6. Also, the remaining graph is clean, and Clean is not applicable. Similarly

for the 2-side of the (2, 5)-branch, when we branch on the two neighbors w1 and w2 of

a degree-2 vertex w, 6 edges and 3 vertices are removed, and no degree-1 vertices are

created since all the other neighbors of the two vertices w1 and w2 must be of degree

3 (otherwise we would have an alternating tree of size at least 5, which is not possible

since step 2 of VC3-solver was not applicable). Since s0 = −1 and k0 = 2, we have

m0 = 0. In all the above cases, the subroutine Clean is not applicable since all the

remaining vertices have degrees larger than one. This proves parts (i), (ii), (iv).
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To prove part (iii), note first that in the 3-side of the (1, 3) branching we have

s0 = −2 and k0 = 3. Also, we know that before this operation the graph G is

3-regular. Let u be the degree-3 vertex that we branch on, and let v, w, z be its

neighbors. Let H be the graph induced by {u, v, w, z}. Since Reducing does not

apply at this point, there cannot be more than one edge among v, w, z (otherwise, we

would have two adjacent triangles). Suppose that there exists one edge among v, w, z.

This means that there are exactly four edges connecting H to G − H. Note that in

this case no component in G − H can be a tree, otherwise, using Proposition III.10,

the graph induced by the vertices of the tree component plus the vertices of H has

size bounded by 50, and is connected to the remaining graph by at most two edges

(since the tree component has to be connected to {v, w, z} by at least two edges),

which is not possible at this stage of the algorithm since steps B-E of Reducing do

not apply. Thus, we can assume that no component in G − H is a tree, and hence

by Lemma III.6, the amortized cost of Clean in case it is invoked is non-negative.

The number of edges and vertices removed in this case is 8 and 4, respectively, giving

m0 ≥ 5e0 − 6v0 − 21 = −5.

Now suppose that no edge exists among v, w, z, and hence, there are exactly six

edges connecting H to G−H. By a similar argument to the above, we cannot have two

different components in G−H that are trees. Thus, in the worst case, the amortized

cost of Clean is at least −6 by Lemma III.6. The branch itself removes 9 edges and

4 vertices from the graph. Since the total amortized cost is the sum of the amortized

cost of the branch and that of Clean, it follows that m0 ≥ 5e0 − 6v0 − 27 = −6.

Now we look at part (v) which is the 5-side of the (2, 5)-branch. Note that in

this case we have s0 = 0 and k0 = 5. Let u be the degree-2 vertex that we branch

on its two neighbors v and w. Let v1 and v2 be the neighbors of v other than u,

and w1 and w2 be those of w. Observe that since folding is not applicable, v and w
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must be of degree 3 and they do not share any neighbors except u. Also, since no

alternating tree of size ≥ 5 exists at this point, v1, v2, w1, w2 must be all of degree

3. Let H be the graph induced by {u, v, w, v1, v2, w1, w2}. If there are more than

two edges among the vertices {v1, v2, w1, w2}, the graph H, which has size bounded

by 50, would be connected to G − H by at most two edges, which is not possible

at this stage of the algorithm (because no induced subgraph with a binding set of

size at most two exists). If the number of edges between {v1, v2, w1, w2} is two, then

there are exactly four edges connecting H to G − H. By a similar argument to

the above, there cannot be any tree component in G − H, otherwise, there will be

at most two edges connecting H and the tree (having size bounded by 50), to the

remaining graph. The number of edges and vertices removed in this case is 12 and

7 giving m0 ≥ 3, and the amortized cost of Clean is positive (since there is no tree

component). Now suppose there is exactly one edge between {v1, v2, w1, w2}. In this

case the number of edges between H and G − H is exactly six, and the number of

edges and vertices removed is 13 and 7. By the same token, there cannot be two

tree components in G − H, and hence the amortized cost of Clean is at least −6

by Lemma III.6. This gives m0 ≥ 5e0 − 6v0 − 21 = 2. If there are no edges among

{v1, v2, w1, w2}, then there are exactly eight edges connecting H to G − H, and the

number of edges and vertices removed is 14 and 7. Again, we cannot have more than

two tree components in G − H giving an amortized cost of at least −12 for Clean.

This gives m0 ≥ 5e0 − 6v0 − 27 = 1. It follows that in all cases of the branch m0 ≥ 1.

To prove part (vi), note that a category-4 operation is either an operation per-

formed in steps B-E of Reducing followed by an invocation to Clean, an operation

performed in step 2 of VC3-solver followed by an invocation to Clean, or one that

is performed in Clean. If O is an operation that is performed in steps B-E of Re-

ducing or in step 2 of VC3-solver, then by Theorem V.18, the amortized cost of O
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including the call to Clean is non-negative. Now if O is an operation in Clean that

does not follow an operation in steps B-E of Reducing or step 2 of VC3-solver, by

the above discussion, O must be an operation following a 3-side of a (1, 3)-branch,

or a 5-side of a (2, 5)-branch (these cover all the cases in which Clean is called).

By parts (iii) and (v) above, the negative part of the amortized cost of Clean was

combined with the amortized cost of the operation itself, and the remaining part is

positive. This completes the proof.

Based on Proposition III.13, we give in Table I the parameters for any operation

i in the four categories. If operation i is a category-4 operation (or one side of a

category-4 operation), then we denote its surplus by si, reduction in the parameter

by ki, and amortized cost by mi. For every operation, a lower bound on its amortized

cost is given in the last column of the table.

Table I. The parameters of the operations

(2, 5) branching
5-side
2-side

(1, 3) branching
3-side
1-side

Folding

Operations reduction in k surplus amortized cost

Category-4 operation i

1 1
1 −2
3 −2
2 −1
5 0
ki si

1
−6
−6

0
1
0

Each non-root node α in a search tree T for the algorithm VC3-solver uniquely

specifies the operation in the algorithm from the parent of α to α. Therefore, each

operation in the algorithm can be uniquely referred to by the corresponding node

in the tree T . To simplify the description, we also assume that the root of T has

a “virtual” parent associated with the input (G, k) to the algorithm, and that the
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root of T specifies a “dummy” operation whose parameter reduction, surplus, and

amortized cost, are all equal to 0. Thus, every node in the search tree (including the

root) has a parent. By saying the operations on a path P in the search tree T , we

will be referring to the operations specified by the nodes on P . The reader should

note the distinction between the operation specified by a node and the instance (G′, k′)

associated with the node (i.e, the resulting graph G′ and the parameter value k′ at

the node). In particular, the operation specified by a node is actually the operation

applied to the instance associated with the parent of the node.

Definition III.14 In a search tree T of the algorithm VC3-solver, we assign to

each node α a label whose value is equal to the parameter reduction of the operation

specified by the node α. More precisely, if the operation from the parent of a node α

in T to α is the a-side (resp. the b-side) of an (a, b) branch, then the label of α is a

(resp. b); if the operation from the parent of α to α is a non-branching operation that

reduces the parameter value by c, then the label of α is c. As discussed above, the

root of T specifies a dummy operation whose parameter reduction is 0, and hence,

the label of the root is 0.

Let P be a path in a search tree T . Denote by x1(P ) the number of nodes

on P with label 1, specifying the 1-side operations of (1, 3) branches. Similarly,

denote by x3(P ) and x2(P ) the number of nodes on P with labels 3 and 2, specifying

the 3-side operations of (1, 3) branches and the 2-side operation of (2, 5) branches,

respectively. Finally, denote by d(P ) the sum of the surplus of all other operations

(i.e., the operations in categories 1 and 4) on the path.

Definition III.15 Let P be a path in a search tree T of the algorithm VC3-solver.

The surplus of the path P , denoted by Surp(P ), is equal to the sum of the surplus of
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all the operations on P : Surp(P ) = d(P ) − (2x1(P ) + 2x3(P ) + x2(P )). The path P

is said to be compressible if Surp(P ) ≥ 0.

To justify the formula given in the definition of Surp(P ), note that d(P ) is the

sum of the surplus of the category-1 and category-4 operations on P . Each side of a

(1, 3) branch has surplus −2, and the total surplus of the category-2 operations on P

is −2x1(P ) − 2x3(P ). The 2-side (resp. the 5-side) of a (2, 5) branch has surplus −1

(resp. 0), and the total surplus of the category-3 operations on P is −x2(P ). This

justifies why the given formula for Surp(P ) captures the total value of the surplus on

the whole path P . Intuitively speaking, in comparison to a (3, 5) branch, the 1-side

(resp. the 3-side) of a (1, 3) branch “loses” a value 2 in the parameter reduction when

compared with the 3-side (resp. the 5-side) of the (3, 5) branch, and the 2-side of a

(2, 5) branch “loses” a value 1 in the parameter reduction when compared with the

3-side of the (3, 5) branch. On the other hand, the value d(P ) corresponds to the

“extra” parameter reduction we gain in comparison to (3, 5) branches. Therefore, the

surplus Surp(P ) of a path P measures how much the “extra” gain in the parameter

value can make up for the losses along the path.

Proposition III.16 Let T be the search tree for the algorithm VC3-solver on input

(G, k). If every root-leaf path in T is compressible, then the number of leaves in T

is bounded by rk
0 , where r0 ≤ 1.194 is the unique positive root of the polynomial

x5 − x2 − 1.

Proof. First note that according to the algorithm VC3-solver, each branch node

in T is either a (1, 3) branch, a (2, 5) branch, or an (a, b) branch that is not worse

than a (3, 5) branch (see Lemma III.11). We say that a search tree T0 is normalized

if: (1) for every 1-child node α in T0, the child of α is a leaf; and (2) every branch
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node in T0 is either a (1, 3), a (2, 5), or a (3, 5) branch. We can use the following

procedure to convert a general search tree T into a normalized search tree T0, with

a one-to-one correspondence between the root-leaf paths in the two trees, and such

that the corresponding root-leaf paths in the two trees have the same surplus. Let

the leaves of the original search tree T be α1, . . ., αt. We first construct, based on

the tree T , a search tree T ′ with leaves α′
1, . . ., α′

t, as follows. For each i, let the

path from the root to the leaf αi in T be Pi. If d(Pi) = 0, then leave the path Pi

unchanged and let α′
i in T ′ be αi. If d(Pi) > 0, then add to Pi a new leaf α′

i with

label d(Pi) and make α′
i the unique child of αi (thus αi becomes a 1-child non-leaf

node in T ′). To obtain the normalized tree T0, we further perform the following two

operations on T ′: (1) convert each (a, b) branch node α that is not worse than a (3, 5)

branch into a (3, 5) branch by giving the label 3 (resp. the label 5) to the child of α

corresponding to the a-side (resp. b-side) of α; (2) remove all non-branching nodes:

for each 1-child node α in the tree with a child β, where β is not a new leaf created

in T ′, remove the edge [α, β], merge the two nodes α and β, and assign a label to

the resulting (new) node equal to the label of α (this corresponds to removing the

non-branching operation specified by β). The resulting tree T0, with leaves α′
1, . . .,

α′
t, is a normalized search tree.

Let Pi be the path from the root to the leaf αi in T and let P ′
i be the path

from the root to the leaf α′
i in T0. Since no (1, 3) branch nodes or (2, 5) branch

nodes are changed or re-labeled in the above procedure, we have x1(Pi) = x1(P
′
i ),

x3(Pi) = x3(P
′
i ), and x2(Pi) = x2(P

′
i ). Moreover, if d(Pi) = 0, then the operations in

steps (1) and (2) above are not applicable to Pi. Therefore, the path P ′
i is the same

as Pi, and d(P ′
i ) = 0. On the other hand, if d(Pi) > 0, then by our construction, the

only node on P ′
i that is not a (1, 3), a (2, 5), or a (3, 5) branch is the 1-child node

whose child is the leaf α′
i with a label d(Pi). Thus, d(P ′

i ) = d(Pi), and the paths Pi



93

and P ′
i have the same surplus.

From the above discussion, for each general search tree satisfying the condition

in the proposition, there is a normalized search tree with the same number of leaves

that also satisfies the condition in the proposition. Thus, it suffices to prove the

proposition for normalized search trees. We do this by induction on the number of

nodes in a normalized search tree T . The proposition certainly holds true if the tree

T consists of a single node or has only one leaf. Now assume that |T | > 1 and that

T has more than one leaf. Since T is normalized, the root α of T must be a branch

node, which is either a (1, 3), a (2, 5), or a (3, 5) branch node.

Suppose the root α of T is a (1, 3) branch. Let β1 and β3 be the children of α

labeled 1 and 3, respectively. Let T1 be the subtree rooted at β1 in T . Every path Pi

from the root α to a leaf αi in T1 contains the node β1, and hence x1(Pi) ≥ 1. Since the

path Pi is compressible, we have Surp(Pi) = d(Pi)− (2x1(Pi)+2x3(Pi)+x2(Pi)) ≥ 0.

It follows that d(Pi) ≥ 2, and the label of the leaf αi is at least 2. Therefore, in the

tree T we can “shift” 2 units from the label of each leaf in the subtree T1 to the node

β1, by adding 2 units to the label of β1 and subtracting 2 units from the label of every

leaf in T1. Now the label of β1 becomes 3. Similarly, we can add 2 units to the label

of the node β3 and subtract 2 units from the label of every leaf in the subtree rooted

at β3. This makes the label of β3 become 5. Note that the resulting search tree is still

normalized, with the difference that the root α now becomes a (3, 5) branch node, and

that the label of each leaf in T is decreased by 2. In particular, each root-leaf path

Pi in the resulting tree is still compressible (with the value x1(Pi) or x3(Pi) decreased

by 1 and the value d(Pi) decreased by 2).

Similarly, if the root α of the tree T is a (2, 5) branch with its label-2 child β2

corresponding to the 2-side of the branch, then we can decrease the label of each leaf

in the subtree rooted at β2 by 1, add 1 to the label of β2, and make the root α a (3, 5)
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branch. All root-leaf paths remain compressible.

Therefore, we can always end up with a normalized search tree T whose root is

a (3, 5) branch in which all root-leaf paths are compressible. Let γ3 be the child of α

labeled by 3 and γ5 be the child of α labeled by 5. Consider the subtree T3 rooted

at γ3. By re-setting the label of γ3 to 0, the subtree T3 becomes a valid normalized

search tree for the algorithm VC3-solver on input (G′, k− 3), where G′ is the graph

resulting from G by the operation specified by γ3. Moreover, each root-leaf path in

T3 is compressible since the node γ3 in T is not a child of a (1, 3) branch or a (2, 5)

branch node. Now by the inductive hypothesis, the number of leaves in T3 is bounded

by rk−3
0 , where r0 is the unique positive root of the polynomial x5 −x2 − 1. Similarly,

re-setting the label of γ5 to 0 makes the subtree rooted at γ5 a valid normalized

search tree with no more than rk−5
0 leaves. Adding the number of the leaves in the

two subtrees, we get that the number of leaves in the search tree T is bounded by

rk−3
0 + rk−5

0 . Since the polynomial xk − xk−3 − xk−5 and the polynomial x5 − x2 − 1

have the same positive root r0, we get rk
0 = rk−3

0 +rk−5
0 , which proves that the number

of leaves in the search tree T is bounded by rk
0 . This completes the inductive proof

and the proof of the proposition.

By Proposition III.16, what remains to show is that every root-leaf path in a

search tree for the algorithm VC3-solver is compressible. We start with the following

proposition.

Proposition III.17 Let P = (αi, αi+1, . . . , αi+l), l > 0, be a subpath of a root-leaf

path in a search tree T for the algorithm VC3-solver. If αi+l is the only node on the

path P whose associated graph is 3-regular, then the path P is compressible.

Proof. Let (Gi−1, ki−1) be the instance associated with the parent node αi−1 of
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αi in T , where the graph Gi−1 has ni−1 vertices and mi−1 edges (recall that the root

of T also has a virtual parent associated with the input instance to the algorithm).

Let Gi+l be the graph associated with the node αi+l where Gi+l has ni+l vertices

and mi+l edges. Since the graph Gi+l is 3-regular, we have mi+l/ni+l = 3/2. Let

m′ = mi−1 − mi+l, n′ = ni−1 − ni+l. Since mi−1/ni−1 ≤ 3/2 (the graph Gi−1 has

degree bounded by 3), we have m′/n′ ≤ 3/2.

Let xf be the number of folding operations on P , Ef the number of edges re-

moved, Vf the number of vertices removed, Sf the surplus, and Kf the reduction of

the parameter, in all folding operations on P . In a similar way, define x1, E1, V1,

S1, K1, for the 1-side of the (1, 3) branches; x3, E3, V3, S3, K3, for the 3-side of the

(1, 3) branches; x2, E2, V2, S2, K2 for the 2-side of the (2, 5) branches; x5, E5, V5, S5,

K5, for the 5-side of the (2, 5) branches; and xr, Er, Vr, Sr, Kr, for the category-4

operations on P . Since m′/n′ ≤ 3/2, we can write

Ef + E1 + E3 + E2 + E5 + Er

Vf + V1 + V3 + V2 + V5 + Vr

≤ 3

2
. (3.8)

Arranging (3.8), we get

3Vf −2Ef ≥ (2E1−3V1)+(2E3−3V3)+(2E2−3V2)+(2E5−3V5)+(2Er−3Vr). (3.9)

From the definition of the amortized cost, and by the monotonicity of addition,

we can define the amortized cost for each type of operations, λ (λ = 1, 2, 3, 5, r, f),

by: Mλ = 5Eλ − 6Vλ + 6Sλ − 3Kλ. Since the total Kλ vertices included in the

partial cover for any type of operations λ must cover all the Eλ edges removed by

that type, and since each vertex can cover at most three edges, Kλ ≥ Eλ/3. Hence,

2Eλ−3Vλ ≥ −3Sλ+Mλ/2. Using this inequality and the parameters of the operations

given in Table I, we get: 3Vf − 2Ef ≤ 5
2
xf , 2E1 − 3V1 ≥ 3x1, 2E3 − 3V3 ≥ 3x3,

2E2 − 3V2 ≥ 3x2, 2E5 − 3V5 ≥ 1
2
x5, 2Er − 3Vr ≥ −3Sr + Mr/2. Substituting these
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bounds in Inequality (3.9) and arranging it we get:

xf + Sr ≥ x2 + (x1 + x3) + x5/6 + xf/6 + Mr/6. (3.10)

Since the graph Gi+l associated with the node αi+l is 3-regular, it is not difficult

to verify the following: Either we must have at least one folding operation along P ,

or at least one operation of those described in step 4 of BindingSet2(). This is

true since these are the only operations that could make the graph become 3-regular.

(The only way to create a 3-regular graph during the execution of the algorithm is

either by a folding operation or by an operation in step 4 of BindingSet2(), which

adds an edge to the resulting graph. All the other operations remove some vertices

from the graph, which has degree bounded by 3, and hence cannot result in a 3-

regular graph.) Since every category-4 operation has a non-negative amortized cost

by Proposition III.13, and since the amortized cost of the operation in step 4 of

BindingSet2() was proved to be at least 6 in Lemma III.9, it follows that if the

operation in step 4 of BindingSet2() is performed, then we must have Mr ≥ 6.

Therefore, we either have xf ≥ 1, or Mr ≥ 6. Since xf + Sr is an integer, from

Inequality (3.10), we get

xf + Sr ≥ x2 + (x1 + x3) + 1. (3.11)

Note that if a node α specifies an operation corresponding to the 1-side or the

3-side of a (1, 3) branch, then the graph associated with the parent of α must be

3-regular (see step 4 of the algorithm VC3-solver). Since αi+l is the only node on

the path P whose associated graph is 3-regular, and since αi+l is the last node on the

path, there is at most one node (i.e., node αi) on the path P that may specify the

1-side or the 3-side operation of a (1, 3) branch, and hence, x1 + x3 ≤ 1. Combining
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this observation with Inequality (3.11), we get

xf + Sr ≥ x2 + 2(x1 + x3). (3.12)

Using the same notations given before Definition III.15, we have d(P ) = xf +Sr,

x2 = x2(P ), x1 = x1(P ), x3 = x3(P ), and (xf + Sr)− (x2 + 2(x1 + x3)) is the surplus

of the path P . Thus, Inequality (3.12) gives that Surp(P ) ≥ 0, and hence the path

P is compressible.

Proposition III.18 Let G be a nice graph with n vertices and m edges. Then m/n ≥

6/5.

Proof. The nice graph G contains no vertices of degree less than 2. Let n2

and n3 be the number of degree-2 and degree-3 vertices in G, respectively. Then

2m = 2n2 + 3n3 = 2n + n3. Since the nice graph G contains no adjacent degree-2

vertices, we have 3n3 ≥ 2n2. Combining these two relations we get the desired result.

Lemma III.19 Every root-leaf path in a search tree T of the algorithm VC3-solver

is compressible.

Proof. For an input (G, k) to the algorithm VC3-solver, if the graph G is 3-

regular, then we subdivide an edge of G by two degree-2 vertices. Let the resulting

graph be G′. Since the graph G can be obtained from G′ by folding a degree-2 vertex

in G′, by Lemma IV.5, G has a vertex cover of size k if and only if G′ has a vertex

cover of size k + 1. Therefore, we can instead apply the algorithm to the instance

(G′, k′ = k + 1), where G′ is not a 3-regular graph. Note that after subdividing an

edge in G to obtain G′, G′ is connected, and τ(G′) = τ(G) + 1. Since the parameter
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k in the instance (G, k) is assumed to be not larger than τ(G) by condition (1) in

Assumption III.5, the parameter k′ is also not larger than τ(G′). Therefore conditions

(1) and (2) in Assumption III.5 still hold on the graph G′. Moreover, since G′ has

two more vertices than G, and the parameter k′ = k + 1, G′ satisfies the assumption

given by Proposition II.1, namely that the number of vertices in G′ is bounded by

2k′. By doing this operation, the order of the running time of the algorithm is not

affected. Thus, we can always assume that the graph associated with the root of the

search tree T is not a 3-regular graph.

For any root-leaf path P ′ = (α′
1, α

′
2, . . . , α

′
t) in the search tree T , let α′

i1
, α′

i2
,

. . ., α′
ir be the nodes on P ′ whose associated graphs are 3-regular. Note that it is

impossible for two graphs associated with two consecutive nodes on P ′ to be both 3-

regular — the only operation applicable to a 3-regular graph is step 4 in the algorithm

VC3-solver that does not result in a 3-regular graph. Thus, each of the subpaths

(α′
ij−1+1, . . . , α

′
ij
) on P ′, j = 1, . . . , r (here we let α′

i0+1 be α′
1), satisfies the condition in

Proposition III.17 and is compressible, which equivalently means that the path has a

non-negative surplus. Therefore, in order to prove the lemma, it suffices to show that

the subpath P = (α′
ir+1, . . . , α

′
t) has a non-negative surplus, and hence is compressible.

To simplify the notations, we rename the nodes on P and let P = (α1, α2, . . . , αs)

(if the root-leaf path P ′ contains no node associated with a 3-regular graph, we let

P = P ′).

Let (G0, k0) be the instance associated with the parent of α1 (note that the root

of T also has a virtual parent whose associated instance is the original input to the

algorithm), where the graph G0 has n0 vertices and m0 edges. Since the degree of G0

is bounded by 3, we have

m0/n0 ≤ 3/2. (3.13)

If α1 is the root of T , then (G0, k0) is the original input instance to the algorithm.
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In this case, by Proposition II.1, we have k0 ≥ n0/2. On the other hand, If α1 is

not the root of T , then the graph G0 associated with the parent node of α1 is 3-

regular, and 2m0 = 3n0. Since each vertex can cover at most 3 edges, we must have

3k0 ≥ m0 (otherwise the answer to the instance (G0, k0) is negative). This also gives

us k0 ≥ n0/2. Therefore, in all cases, we have

k0 ≥ n0/2. (3.14)

Case 1. All the nodes on the path P are non-branching nodes.

Suppose that the parameter reduction and the surplus of the operation specified

by the first node α1 on P are k1 and s1, respectively. By the definition of the surplus,

we have s1 ≥ k1 − 5. The instance associated with α1 is (G1, k0 − k1) for some

graph G1. By condition (1) in Assumption III.5, the original parameter k is not

larger than the size of a minimum vertex cover of G. Therefore the parameter value

k0 − k1 associated with α1 is not larger than the size of a minimum vertex cover of

G1, otherwise the original parameter k would be larger than the size of a minimum

vertex cover of G. It follows that when the algorithm terminates at node αs along the

path P in the search tree, either the computed cover is a minimum vertex cover, and

hence, the reduction in the parameter along the path α2, . . ., αs is exactly equal to

k0 − k1; or the size of the resulting cover for G1 has exceeded the parameter k0 − k1,

and hence, the reduction in the parameter along the path α2, . . ., αs is greater than

k0 − k1. Note that all the nodes on P , except α1, specify non-branching operations

whose parameter reduction and surplus are equal. Therefore, the reduction in the

parameter, or equivalently the sum of the surplus, of the nodes α2, . . ., αs is at least

k0 − k1. Adding the surplus of the node α1, we get

Surp(P ) ≥ s1 + (k0 − k1) ≥ (k1 − 5) + (k0 − k1) = k0 − 5. (3.15)
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Observe that we have k0 ≥ 25. In fact, if k0 ≤ 24, then by Inequality (3.14),

n0 ≤ 2k0 < 50. In such case step B of Reducing would be applicable to (G0, k0), and

the parent node of α1 would not be a branch node. Combining the fact that k0 ≥ 25

with Inequality (3.15), we conclude that in this case Surp(P ) ≥ 20.

Case 2. The path P contains branch nodes. Let αh be the last branch node on

P .

Consider the two subpaths P1 = (α1, . . . , αh) and P2 = (αh+1, . . . , αs) of P . Let

(Gh, kh) be the instance associated with the node αh. Since all nodes in the subpath

P2 are non-branching nodes, as shown in Case 1 (see Inequality (3.15)), we have

Surp(P2) ≥ kh − 5. (3.16)

Now consider the value Surp(P1). Let xf , Ef , Vf , Kf , Sf , x1, E1, V1, K1, S1, x3,

E3, V3, K3, S3, x2, E2, V2, K2, S2, x5, E5, V5, K5, S5, xr, Er, Vr, Kr, Sr, denote the

same entities as in Proposition III.17 along the subpath P1 = (α1, . . . , αh). We have

xf + x1 + 2x2 + 3x3 + 5x5 + Kr + kh = k0. (3.17)

This is because the operation specified by the first node α1 on the subpath P1 is

applied to the instance (G0, k0) (which is associated with the parent of α1), and the

last node αh on P1 is associated with the instance (Gh, kh), and xf +x1 +2x2 +3x3 +

5x5 + Kr is the total parameter reduction of the operations on P1.

According to our algorithm, the graph Gh associated with the branch node αh in

the search tree T is nice. Thus, if we let nh and mh be the number of vertices and edges

in Gh, respectively, then by Proposition III.18, mh/nh ≥ 6/5. Using our notations, we

have mh = m0−Ef −E1−E3−E2−E5−Er and nh = n0−Vf −V1−V3−V2−V5−Vr.

Therefore,

m0 − Ef − E1 − E3 − E2 − E5 − Er

n0 − Vf − V1 − V3 − V2 − V5 − Vr

≥ 6

5
. (3.18)
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In a similar way to that in Proposition III.17, define the amortized cost for each

type of operations λ (λ = 1, 2, 3, 5, r, f), by: Mλ = 5Eλ − 6Vλ + 6Sλ − 3Kλ. Hence,

we have 5Eλ − 6Vλ = Mλ +3Kλ − 6Sλ. Using this equality and the parameters of the

operations given in Table I, we get: 6Vf − 5Ef ≤ 2xf , 5E1 − 6V1 ≥ 9x1, 5E3 − 6V3 ≥

15x3, 5E2 − 6V2 ≥ 12x2, 5E5 − 6V5 ≥ 16x5, 5Er − 6Vr ≥ Mr + 3Kr − 6Sr. Combining

these inequalities with Inequalities (3.13), (3.14), (3.17), (3.18), and arranging the

terms we get:

5xf ≥ 6x1 + 6x2 + 6x3 + x5 + Mr − 6Sr − 3kh. (3.19)

Hence:

xf +Sr ≥ x2 +(x1 +x3)+x5/6+Mr/6+xf/6−kh/2 ≥ x2 +(x1 +x3)−kh/2. (3.20)

Here we have used Proposition III.13 which gives that Mr ≥ 0. Since d(P1) = xf +Sr,

x1 = x1(P1), x2 = x2(P1), and x3 = x3(P1) (see Definition III.15), From (4.6), we get

Surp(P1) = (xf + Sr) − (x2 + 2(x1 + x3)) ≥ −(x1 + x3) − kh/2. (3.21)

Combining this inequality with Inequality (3.16),

Surp(P ) = Surp(P1) + Surp(P2) ≥ kh/2 − (x1 + x3) − 5. (3.22)

As explained in Case 1, since the node αh is a branch node, the graph Gh associ-

ated with αh must be nice and have at least 50 vertices. Since Gh is nice (and hence

is clean), the number of edges in Gh is more than 50. Since each vertex can cover at

most 3 edges, we have kh ≥ 17 (otherwise the answer to the instance (Gh, kh) is nega-

tive). Moreover, no graph associated with a node on the path P1 is 3-regular. Since a

1-side or a 3-side operation of a (1, 3) branch can only be applied on a 3-regular graph,

there is at most one node on P1 (the node α1) that may specify such an operation.

Therefore, x1 + x3 ≤ 1. Combining the last two inequalities with Inequality (3.22),
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we get Surp(P ) ≥ 0 and the path P is compressible. This completes the proof of the

lemma.

Theorem III.20 The algorithm VC3-solver runs in time O(1.194k + n).

Proof. First observe that by spending O(n) time in the subroutine Clean, we can

remove vertices of degree 0 and 1. After that, it must be true that every component

in the graph is a non-tree component, and hence, at least one third of the number of

vertices in each component must be included in any vertex cover of the component.

This means that the resulting parameter k satisfies k ≥ n/3, where n is the number

of vertices in the resulting graph (otherwise the answer to the instance is negative).

Then the algorithm mentioned in Proposition II.1 is applied. This algorithm runs in

O(k
√

k) time. Finally the algorithm VC3-solver is invoked.

Let T be the search tree for the algorithm VC3-solver on the input instance.

By Lemma III.19, every root-leaf path in T is compressible. Since every branching

operation in T can be classified as a (1, 3), (2, 5), or (a, b), with (a, b) not worse than a

(3, 5)-branch, from Proposition III.16 we get that the number of leaves in T is O(rk),

where r ≤ 1.194 is the positive root of the polynomial x5 −x2 − 1. It follows that the

number of root-leaf paths in T is also O(1.194k).

At every node in the search tree T the time spent by the algorithm is linear in

the size of the graph, which is O(k). To verify that, let us look at the operations

performed by the algorithm. First, whenever Clean is invoked, the time spent is

proportional to the size of the subgraph removed, and hence is O(k). Also the time

taken by a branching operation is O(k). We explained in Section B how step 2 of

VC3-solver can be carried out in time O(k). We also explained in Section B how

each step in Reducing can be performed in time O(k). This shows that the time

spent at every node in the search tree is O(k).
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By the standard analysis using the interleaving technique introduced by Nie-

dermeier and Rossmanith [43], the running time of the algorithm is bounded by

O(1.194k + k2 + n) = O(1.194k + n), where O(k
√

k + n) is the pre-processing time.

This completes the proof.

D. An Algorithm for IS-3

In this section we show how the algorithm for VC-3 implies an algorithm for IS-3.

The approach is exactly the same as that employed in [12], which used a less efficient

algorithm for VC-3 than the one given in this chapter, to derive an algorithm for

IS-3 running in time O(1.174n). The algorithm for IS-3 presented here runs in time

O(1.1255n), and slightly beats the previously most efficient O(1.1259n)-time algorithm

by Beigel [45].

Lemma III.21 (Lemma 6.1, [12]) Let G be a connected graph of n vertices and

degree bounded by 3. Then a minimum vertex cover of G contains at most (2n+1)/3

vertices.

Theorem III.22 The IS-3 problem can be solved in time O(1.1255n).

Proof. Let G be a graph of degree bounded by 3. The graph G may not necessarily

be connected. Let C1, . . ., Ck be the connected components of G of sizes n1, . . ., nk,

respectively. It is clear that a maximum independent set of G is the union of maximum

independent sets of the components C1, · · · , Ck. For each component Ci of G, instead

of finding a maximum independent set for Ci, we try to construct a vertex cover of ki

vertices, for ki = 1, 2, . . .. At the first ki for which we are able to construct a vertex

cover of ki vertices for Ci, we know this vertex cover is a minimum vertex cover.

Thus, the complement of this vertex cover is a maximum independent set for Ci. By
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Lemma III.21, we must have ki ≤ (2ni + 1)/3. Thus, by Theorem III.20, a maximum

independent set for the component Ci can be constructed in time O(1.194(2ni+1)/3+ni),

which is O(1.1255ni). In conclusion, a maximum independent set in the graph G can

be constructed in time O(1.1255n1 + · · · + 1.1255nk). By an argument similar to

that given in the proof of Assumption III.5 at the end of Section B, it follows that

O(1.1255n1 + · · · + 1.1255nk) = O(1.1255n).

E. Comments

In this chapter we presented algorithms for the parameterized Vertex Cover and the

Maximum Independent Set problems on degree-3 graphs. Our algorithm for VC-

3 runs in time O(1.194kk2 + n) and improves Chen et al.’s O(1.237k + kn) time

algorithm [23]. Our algorithm for IS-3 runs in time O(1.1255n) and improves Beigel’s

O(1.1259n) time algorithm [45].

We emphasize that the importance of our results lies in the techniques that we

use to analyze the size of the search tree. Despite the fact that the analysis of the

algorithm is lengthy, the algorithm itself is very simple and uniform. The algorithm

distinguishes few cases to eliminate cut-vertices and bridges from the graph. However,

all these cases are solved easily and without any branching. As a matter of fact, these

cases use very simple and elegant graph-theoretic operations that can be generalized

in a straightforward manner to the Vertex Cover problem on general graphs. If one

looks carefully at the algorithm itself, the algorithm is very intuitive. Basically the

overall behavior of the algorithm can be described as follows. As long as the case can

be solved without any branching, solve it (folding, reducing, and cleaning). If none of

the above applies, then either we can do an efficient and uniform branch (alternating

tree), which is a single branch that does not distinguish any cases, or we branch

arbitrarily at any vertex, and the amortized analysis shows that this operation will
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be balanced by non-branching operations. The analysis of the algorithm might be

lengthy, but the techniques involved are elementary combinatorial techniques.
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CHAPTER IV

PROBLEMS ON GRAPHS WITH CONSTRAINED GENUS

In this chapter, we demonstrate how the genus of the underlying graph plays an

important role in characterizing the parameterized complexity, the subexponential

time computability, and the approximability of the Vertex Cover, Independent Set,

and Dominating Set problems.

A. Computational Complexity and Graph Genus

Variants of these problems were studied where the input graph is constrained to

have certain structural properties (e.g., bounded degree graphs and planar graphs)

[52, 32, 2, 33, 6]. In particular, the problems on the class of planar graphs (the

problems remain NP-hard) become more tractable in terms of the above three com-

plexity measures. All of the three problems on planar graphs have polynomial time

approximation schemes [53, 54], and are solvable in subexponential time [54]. Recent

research in fixed parameter tractability shows that all the three problems admit pa-

rameterized algorithms whose running time is subexponential in the parameter [32].

This line of research has attracted considerable recent interests and the results have

been extended to graphs of bounded genus [55, 33, 56].

This raises an interesting question: What are the graph structures that determine

the computational complexity of these important NP-hard problems?

Our research shows that in most cases, graph genus is the sole factor that deter-

mines the complexity of the above problems. More precisely, in most cases, there is

a precise genus threshold that determines the computational complexity of the prob-

lems in terms of the three complexity measures. For instance, we show that under

the widely-believed complexity assumption W [2] 6= FPT, Dominating Set is fixed
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parameter tractable if and only if the graph genus is no(1). This result significantly

extends both Alber et al. and Ellis et al.’s results for planar graphs and for constant

genus graphs [52, 33]. The proof is also simpler and more uniform. It is also shown

that under the assumption W [1] 6= FPT, Independent Set is fixed parameter tractable

if and only if the graph genus is o(n2). For the subexponential time computability,

we show that under the assumption that not all SNP problems are solvable in subex-

ponential time, Vertex Cover, Independent Set, and Dominating Set are solvable in

subexponential time if and only if the genus of the graph is o(n). In terms of approx-

imability, we show that graph genus has a direct impact on whether Independent Set,

Vertex Cover, and Dominating Set have polynomial time approximation schemes. A

summary of our main results and the previous known results is given in Table II.

We make two remarks on our results. First, all our tractability results are robust

[57] in the sense that our algorithms work correctly regardless of whether the input

graphs satisfy the required genus bound g(n). As long as the input graphs satisfy

the required genus bound g(n), our algorithms construct correct solutions for the

problems; whereas when our algorithms fail in constructing a solution, they correctly

report that the genus of the input graph exceeds the required bound g(n). Second,

the techniques proposed in the current chapter are not restricted to only the above

three problems, and can be extended to derive similar results for other NP-hard graph

problems.

We give a quick review on the related terminologies. A surface of genus g is a

sphere with g handles in the 3-space [58]. A graph G embedded in a surface S is a

continuous one-to-one mapping from the graph into the surface. The embedding is

cellular if each component of S − G, which is called a face, is homeomorphic to an

open disk [58]. In this chapter, we only consider cellular graph embeddings. The size

of a face is the number of edge sides along the boundary of the face. The (minimum)
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Table II. Comparison between our results and the previous results

FPT Subexp. Time Approximability
Our Previous Our Previous Our Previous

Results Results Results Results Results Results

VC – FPT 2o(n) iff 2O(
√

n) if g=c PTAS¶ if g=o( n
log n) PTAS if g=c

[11] g=o(n) [32, 54] APX-C if g=nΩ(1) [53, 54]

IS FPT iff FPT if 2o(n) iff 2O(
√

n) if g=c PTAS if g=o( n
log n) PTAS if g=c

g=o(n2) g=0 [32] g=o(n) [32, 54] APX-H if g=Ω(n) [53, 54]

DS FPT iff FPT if 2o(n) iff 2O(
√

n) if g=c PTAS¶ if g=o( n
log n) PTAS if g=c

g=no(1) g=c [33] g=o(n) [32, 54] APX-H if g=nΩ(1) [53, 54]
¶Only true for kernelized graphs, see Theorem IV.17 and Theorem IV.18.

genus γmin(G) of a graph G is the smallest integer g such that G has an embedding on

a surface of genus g. For more detailed discussions on data structures and algorithms

for graph embedding on surfaces, the readers are referred to [59].

B. Genus and Parameterized Complexity

1. Genus and Independent Set

The parameterized Independent Set problem (or simply Independent Set without any

confusion) is a representative of the W [1]-complete problems [11]. Thus, it is unlikely

to be fixed parameter tractable. Actually, very recent research has shown strong

evidence that it is even unlikely that the problem is solvable in time no(k) [60, 61]. In

this subsection, we discuss how graph genus affects the parameterized complexity of

Independent Set.

Theorem IV.1 The Independent Set problem on graphs of genus bounded by g(n) is

fixed parameter tractable if g(n) = o(n2).

Proof. Since g(n) = o(n2), there is a nondecreasing and unbounded function
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r(n) such that g(n) ≤ n2/r(n).1 Without loss of generality, we can assume that

r(n) ≤ n2. Otherwise, g(n) = 0, and the theorem follows from [32]. Let G be a

graph of n vertices and genus g′ ≤ g(n). Recall that the chromatic number χ(G) of

G is the smallest integer p such that G can be colored with p colors so that no two

adjacent vertices are colored with the same color. By Heawood’s Theorem [58], the

chromatic number χ(G) of the graph G is bounded by (7 +
√

1 + 48g′)/2. From the

definition, the chromatic number χ(G) of G implies an independent set of at least

n/χ(G) vertices in G. Thus, the size α(G) of a maximum independent set in the

graph G is at least 2n/(7 +
√

1 + 48g′). Since g′ ≤ g(n) ≤ n2/r(n), we get (note that

r(n) ≤ n2)

α(G) ≥ 2n

7 +
√

1 + 48n2/r(n)
=

2n
√

r(n)

7
√

r(n) +
√

r(n) + 48n2
≥ 2n

√

r(n)

7n +
√

n2 + 48n2
=

√

r(n)

7

(4.1)

Now we are ready for describing our parameterized algorithm. Note that one

difficulty we must overcome is estimating the genus of the input graph. The graph

minimum genus problem is NP-complete [62], and there is no known effective approx-

imation algorithm for the problem. Therefore, some special tricks have to be used for

this purpose. Here we will make use of the approximation algorithm for the graph

minimum genus problem proposed in [63], which on an input graph G constructs an

embedding of G whose genus is bounded by max{4γmin(G), γmin(G) + 4n}. Consider

the algorithm given in Figure 8.

We analyze the time complexity of the algorithm IS-FPT. First note that by

our assumption on the function r(n), the function r1(n) is also nondecreasing and

unbounded. The embedding π(G) of the graph G in step 2 can be constructed in

1In this chapter, we only consider “simple” complexity functions whose value can
be feasibly computed. Thus, in our discussion, the computational time for computing
the values of complexity functions as such g(n) and r(n) will be neglected.
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ALGORITHM. IS-FPT
Input: a graph G of n vertices and an integer k
Output: decide if G has an independent set of k vertices

1. let r1(n) = min{r(n)/4, nr(n)/(n + 4r(n))};
2. construct an embedding π(G) of G using the algorithm in [63];
3. if the genus of π(G) is larger than n2/r1(n) then Stop (“the genus of G is larger than
g(n)”);
4. if k ≤

√

r1(n)/7 then Stop (“the graph G has an independent set of k vertices”)
else try all vertex subsets of k vertices to derive a conclusion.

Fig. 8. A parameterized algorithm for Independent Set

linear time [63], and the genus of the embedding π(G) can also be computed in linear

time [59].

Since r1(n) = min{r(n)/4, nr(n)/(n + 4r(n))}, if the genus γ(π(G)) of the em-

bedding π(G) is larger than n2/r1(n), then γ(π(G)) is larger than both 4n2/r(n)

and n2/r(n) + 4n. According to [63], the genus γ(π(G)) of the embedding π(G) is

bounded by max{4γmin(G), γmin(G)+4n}. Thus, in case γ(π(G)) ≤ 4γmin(G), we have

4γmin(G) > 4n2/r(n), and in case γ(π(G)) ≤ γmin(G) + 4n, we have γmin(G) + 4n >

n2/r(n) + 4n. Thus, in all cases, we will have γmin(G) > n2/r(n) ≥ g(n). In conse-

quence, the algorithm IS-FPT concludes correctly if it stops in step 3.

If the algorithm IS-FPT reaches step 4, we know that the minimum genus of

the graph G is bounded by n2/r1(n). By the above analysis and the relation in (4.1),

the size of a maximum independent set in G is at least
√

r1(n)/7. Thus, in case

k ≤
√

r1(n)/7, there must be an independent set in G with k vertices. On the other

hand, if k >
√

r1(n)/7 then r1(49k2) ≥ n, where r1 is the inverse function of the

function r1(n) defined by r1(p) = min{ q | r1(q) ≥ p }. Since the function r1(n)

is nondecreasing and unbounded, it is not difficult to see that the inverse function

r1(p) is also nondecreasing and unbounded. Since enumerating all vertex subsets of k

vertices in the graph G can be done in O(2n) time, which is bounded by O(2r1(49k2)),
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we conclude that the total running time of the algorithm IS-FPT is bounded by

O(f(k) + n2), where f(k) = 2r1(49k2) is a function dependent only on k and not on n.

Thus, the algorithm IS-FPT solves the Independent Set problem on graphs of

genus bounded by g(n) in time O(f(k) + n2), and the problem is fixed parameter

tractable.

Remark. The algorithm IS-FPT does not have to know whether the input

graph has its minimum genus bounded by g(n). Moreover, the algorithm IS-FPT

does not need to decide precisely whether the input graph has a minimum genus

bounded by g(n). In fact, on some graphs whose minimum genus is larger than g(n),

the algorithm IS-FPT may still be able to decide correctly whether the graphs have

an independent set of size k. The point is, if the input graph has its minimum genus

bounded by g(n), then the algorithm IS-FPT, without needing to know this fact,

will definitely and correctly decide whether it has an independent set of size k.

Theorem IV.2 The Independent Set problem on graphs of genus bounded by g(n) is

W [1]-complete if g(n) = Ω(n2).

Proof. Since Independent Set on general graphs is W [1]-complete [11], it suffices

to show that Independent Set on general graphs is fpt-reducible to Independent Set

on graphs of genus bounded by g(n). Since g(n) = Ω(n2), we assume g(n) ≥ cn2,

where c is a constant.

Let G1 be an arbitrary graph with n1 vertices. It is well-known that the genus

g1 of G1 is always bounded by (n1 − 3)(n1 − 4)/12 ≤ n2
1/12 [58]. Thus, if c ≥ 1/12

then G1 already has its genus bounded by cn2
1. Otherwise, we construct a new graph

G2 as follows. G2 contains h = d1/(12c)e > 1 copies of the graph G1. Partition the

h copies of G1 arbitrarily into two nonempty groups A1 and A2, and pick any pair of
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adjacent vertices u1 and v1 in G1. Now introduce a new edge [u2, v2], where u2 and v2

are two new vertices. Connect u2 to the vertex u1 in each copy of G1 in the group A1

and connect v2 to the vertex v1 in each copy of G1 in the group A2. This completes

the construction of the graph G2. It is not difficult to verify that the graph G1 has an

independent set of k1 vertices if and only if the graph G2 has an independent set of

k2 = hk+1 vertices. Thus, the reduction from (G1, k1) to (G2, k2) is an fpt-reduction.

Moreover, the graph G2 has n2 = hn1 + 2 vertices and we can verify [58] that the

genus of G2 is g2 = hg1. Thus, we have

g2 = hg1 ≤
hn2

1

12
=

(hn1)
2

12h
≤ n2

2

12/(12c)
= cn2

2 ≤ g(n2)

Thus, the genus of the graph G2 of n2 vertices is bounded by g(n2).

This completes the fpt-reduction that reduces an instance (G1, k1) of Independent

Set on general graphs to an instance (G2, k2) of Independent Set on graphs of genus

bounded by g(n). In consequence, Independent Set on graphs of genus bounded by

g(n) is W [1]-complete.

Combining Theorem IV.1 and Theorem IV.2, and noting that the genus of a

graph of n vertices is always bounded by (n−3)(n−4)/12 [58], we have the following

tight result.

Corollary IV.3 Assuming FPT 6= W [1], the Independent Set problem on graphs of

genus bounded by g(n) is not fixed parameter tractable if and only if g(n) = Θ(n2).

2. Genus and Dominating Set

Dominating Set is the most well-known W [2]-complete problem [11]. Thus, it is even

“harder” than Independent Set in terms of its parameterized complexity. Recently,

there has been considerable interest in developing parameterized algorithms for Dom-

inating Set on graphs of small genus [52, 32, 55, 64, 33, 65, 56, 66]. In particular, it
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is known that Dominating Set on planar graphs [52, 32] and on graphs of constant

genus [55, 64, 33, 56] is fixed parameter tractable. We will show a much stronger

result in this subsection: Dominating Set on graphs of genus bounded by g(n) is

fixed-parameter tractable if and only if g(n) = no(1).

For a given instance (G, k) of Dominating Set, we apply a branch-and-bound

process to construct a dominating set D of k vertices in G. Initially, D = ∅. In

a more general form during the process, suppose we have correctly included certain

vertices in the dominating set D, and removed these vertices from the graph G. The

vertices in the remaining graph G′ are colored either “white” or “black”, where each

white vertex is adjacent to a vertex in D (thus needs no further domination) and

each black vertex is adjacent to no vertex in D (thus still needs to be dominated in

the remaining graph G′). The graph G′ thus will be called a BW-graph. We call a

set D′ of vertices in the BW-graph G′ a B-dominating set if every black vertex in G′

is either in D′ or is adjacent to a vertex in D′. Note that if the current set D has d

vertices, then the graph G has a dominating set of k vertices, including all vertices

in D, if and only if the BW-graph G′ has a B-dominating set of k− d vertices. Thus,

our task is to construct a B-dominating set of k − d vertices in the BW-graph G′.

Certain reduction rules can be applied to a BW-graph G′:

R1. Remove from G′ all edges between white vertices;

R2. Remove from G′ all white vertices of degree 1;

R3. If all neighbors of a white vertex u1 are neighbors of another white vertex u2,

remove u1 from G′.

Let G′′ be a BW-graph after applying any of the above rules on G′. It is known

[52, 33] that there is a B-dominating set of k vertices in G′ if and only if there is a

B-dominating set of k vertices in G′′. A BW-graph G is called reduced if none of the
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above rules can be applied. According to rule R1, every edge in a reduced BW-graph

either connects two black vertices or connects a black vertex and a white vertex (the

edge will be called a bb-edge or a bw-edge, respectively).

We will show that in a reduced BW-graph, the number of black vertices will not

be very small. For this purpose, we first need to give a brief discussion on certain

basic facts about graph embeddings. For more detailed and formal proofs of these

facts, the readers are referred to [59].

Fact 1. A face of size 1 can only be made by a self-loop, and a face of size 2

must be made by two multiple edges on the same pair of vertices.

Fact 2. Let F be a face of size d in a graph embedding with boundary vertices

u1, u2, . . ., ud, cyclically ordered along the face boundary. If we run a new edge from

u1 to ui crossing the face F , 1 ≤ i ≤ d, then the face F is split into two faces of

sizes i and d− i + 2, respectively, both having the new edge on their face boundaries.

No other faces in the embedding are changed. Moreover, the embedding genus is

unchanged.

Fact 3. In a given embedding of a graph G, the neighbors of every vertex u

in G specify a unique cyclic order [u1, u2, . . . , ud] so that the edges [u, u1], [u, u2], . . .,

[u, ud] form a cyclic order around the vertex u in a small region on the embedding. In

particular, if every triple (u, ui, ui+1), i = 1, 2, . . . , d (here we take ud+1 as u1), makes

a triangle face on the embedding, then removing the vertex u (and all edges incident

on u) will merge all these triangle faces into a single face of size d. The embedding

genus and all other faces are unchanged.

Fact 4. Suppose there is a triangle face (u1, u2, u3) in an embedding, the vertex

u1 has degree 2, and there are no multiple edges between u2 and u3, then removing

the vertex u1 and the two edges incident on u1 neither changes the embedding genus

nor creates a face of size less than 3.
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The following lemma can be easily derived from the famous Euler Polyhedral

Equation [58].

Lemma IV.4 If G is a graph of n vertices and m edges (with possibly multiple edges

and self-loops), and G has an embedding on a surface of genus g such that all faces

of the embedding have size at least 3, then m ≤ 6g + 3n − 6.

Now we are ready to prove the following important lemma, which derives relations

among the numbers of black vertices, white vertices, edges, and the genus of a reduced

BW-graph.

Lemma IV.5 Let G be a reduced BW-graph of minimum genus g, with m edges and

n vertices, in which nw are white and nb are black, and suppose that G has neither

multiple edges nor self-loops, then (a) m ≤ 9nb+18g−18; and (b) n ≤ 4nb+6g−6.

Proof. Let π(G) be an embedding of genus g for the graph G. By rules R1 and

R2, the degree of a white vertex u in G is at least 2 and all neighbors of u are black.

We perform the following operations on each white vertex u.

If the white vertex u has degree 2 with two black neighbors u1 and u2, and there

is no edge between u1 and u2, then we add a new edge [u1, u2] crossing a face in the

embedding to make a triangle face with u (note that since u has degree 2, this is

always possible). Adding the new edge [u1, u2] does not create a face of size less than

3, because it does not introduce new self-loops or new multiple edges. Moreover, the

embedding genus is unchanged.

If u has degree d > 2 and u1, u2, . . ., ud are the d black neighbors of u, ordered

in clockwise order around u in the embedding, then for each pair of vertices ui and

ui+1, i = 1, 2, . . . , d (here we take ud+1 as u1), if the vertices u, ui, ui+1 do not form

a triangle face in the embedding π(G), then we add a new edge [ui, ui+1], crossing a
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face in the embedding π(G), to make a triangle face (u, ui, ui+1) (again, this is always

possible). This does not change the embedding genus. Note that adding this new

edge may create multiple edges between ui and ui+1. However, the new edge does not

create any faces of size less than 3. This can be proved as follows. First this does not

create faces of size 1 because it does not create self-loops. Second, if it created a face

of size 2, then the two sides of the new edge [ui, ui+1] are on the face boundaries of a

face of size 2 and a face of size 3 (i.e., the triangle face (u, ui, ui+1)). This, according

to Fact 2, would imply that before adding the new edge [ui, ui+1], the vertices u, ui,

ui+1 had already made a triangle face. This proves that adding the new edge [ui, ui+1]

does not create faces of size less than 3. Finally, note that the vertices ui and ui+1

cannot be the neighbors of a white vertex of degree 2 – otherwise by rule R3, the

white vertex of degree 2 would have been removed. Thus, processing white vertices

of degree larger than 2 does not create multiple edges for white vertices of degree 2.

Since the graph G has neither self-loops nor multiple edges, by Fact 1, the em-

bedding π(G) has all its faces of size at least 3. Let G′ be the graph and π(G′) be

the embedding of G′ after applying the above process on all white vertices in G. By

the above discussion, the embedding π(G′) has genus g and all faces in π(G′) have

size at least 3. We estimate the number mbb of bb-edges in the graph G′. For each

white vertex u of degree 2 with neighbors u1 and u2 in G′, we associate the bb-edge

[u1, u2] with the two bw-edges [u, u1] and [u, u2]. For each white vertex u of degree

d > 2 with neighbors u1, u2, . . ., ud in G′, for each i = 1, 2, . . . , d (here we take

ud+1 = u1), we associate the bb-edge [ui, ui+1] that is on the boundary of the triangle

face (u, ui, ui+1) with the bw-edge [u, ui]. Note that each such bb-edge [ui, ui+1] can

be associated with at most two bw-edges because each edge can be on the boundaries

of at most two faces. Moreover, the bb-edge [ui, ui+1] cannot be associated with the

two bw-edges incident on any degree-2 white vertex since ui and ui+1 cannot be the
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neighbors of a degree-2 white vertex in G′ (see the discussion in the last paragraph).

Since every bw-edge must be incident on a white vertex, the above association shows

that the number mbw of bw-edges is at most twice of the number mbb of bb-edges in

G′: mbw ≤ 2mbb. Since the bw-edges in the graph G′ are the same as those in the

graph G, and the number of bb-edges in G is no more than that in G′, we obtain

m ≤ mbw + mbb ≤ 3mbb (4.2)

Moreover, since each white vertex in G has degree at least 2, it is easy to see that the

number nw of white vertices in G is at most half the number mbw of bw-edges in G.

Thus,

nw ≤ mbw/2 ≤ mbb (4.3)

Recall that the embedding π(G′) has genus g and all faces in π(G′) have size at

least 3. Now we remove all white vertices from the graph G′ and from the embedding

π(G′). Let the resulting graph and embedding be G′′ and π(G′′), respectively. By

Fact 3 and Fact 4, removing a white vertex neither changes the embedding genus

nor creates faces of size less than 3. Thus, the embedding π(G′′) has genus g and all

faces in π(G′′) have size at least 3. Note that the number of edges in G′′ is equal to

the number mbb of bb-edges in G′, and the number of vertices in G′′ is equal to the

number nb of black vertices in G. Applying Lemma IV.4 to the graph G′′, we get

mbb ≤ 6g + 3nb − 6

Replacing mbb by 6g+3nb−6 in relations (4.2) and (4.3), and noting that n = nw +nb

complete the proof of the lemma.

Now we are ready to prove the following theorem.

Theorem IV.6 The Dominating Set problem on graphs of genus bounded by g(n) is
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fixed parameter tractable if g(n) = no(1).

Proof. Since g(n) = no(1), we can write g(n) ≤ n1/r(n) for some nondecreasing

and unbounded function r(n). For an instance (G, k) of the Dominating Set problem,

where the graph G has n vertices and genus g′, we apply the algorithm DS-FPT in

Figure 9.

ALGORITHM. DS-FPT
Input: a graph G of n vertices and an integer k
Output: decide if G has a dominating set of k vertices

1. if k ≥ r(n) then solve the problem by enumerating all subsets of k vertices in G; Stop;
2. k0 = k; D = ∅; G0 = G; color all vertices of G0 black;
3. while there is a black vertex u of degree d ≤ 19 in G0 do
3.1. make a (d + 1)-way branch, each includes either u or a neighbor of u in D;
3.2. remove the new vertex in D from G0, and color its neighbors in G0 white;
3.3. apply rules R1-R3 to make G0 a reduced BW-graph;
3.4. k0 = k0 − 1;
4. if the graph G0 has at most 78n1/k vertices
4.1. then find a B-dominating set of k0 vertices in G0 by enumerating all vertex subsets

of k0 vertices in G0

4.2. else Stop (“the graph G has genus larger than g(n)”);

Fig. 9. A parameterized algorithm for Dominating Set

Let r be the inverse function of the function r(n) defined by r(p) = min{ q | r(q) ≥

p }. Then the function r is also nondecreasing and unbounded. In case k ≥ r(n), we

have r(k) ≥ n. Thus, step 1 of the algorithm DS-FPT takes time O(2n) = O(2r(k)).

Now suppose k < r(n), step 3 repeatedly branches at a black vertex of degree

bounded by 19 in the reduced BW-graph G0. The search tree size T (k) of step 3 thus

satisfies the recurrence relation

T (k) ≤ 20 · T (k − 1)

which has a solution T (k) = O(20k).
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At the end of step 3, all black vertices in the reduced BW-graph G0 have degree

at least 20. Suppose at this point, the number of edges, the number of vertices, and

the number of black vertices in G0 are m0, n0 and nb, respectively. Since 2m0 is equal

to the sum of total vertex degrees in G0, we have 2m0 ≥ 20nb. By Lemma IV.5(a),

we also have m0 ≤ 9nb + 18g′ − 18 (note that the genus of the reduced BW-graph

G0 cannot be larger than the genus g′ of the original graph G). Combining these two

relations, we get nb ≤ 18g′ − 18. By Lemma IV.5(b), we have n0 ≤ 4nb + 6g′ − 6.

Thus

n0 ≤ 4nb + 6g′ − 6 ≤ 78g′ − 78 < 78g′

Thus, if g′ ≤ g(n) ≤ n1/r(n) < n1/k (note k < r(n)), then the number n0 of vertices in

the graph G0 must be bounded by 78n1/k. In this case, step 4.1 solves the problem

in time O(nk0+1
0 ) = O((n1/k)k) = O(n). On the other hand, if G0 has more than

78n1/k vertices, then step 4.2 concludes correctly that the genus of the input graph

G is larger than g(n).

In conclusion, the algorithm DS-FPT solves the Dominating Set problem on

graphs of genus bounded by g(n) in time O(2r(k) + 20k + n), and the problem is fixed

parameter tractable.

We point out that the techniques used in Theorem IV.6 are simpler, more uni-

form, and derive much stronger results compared to the previous research, which

was only valid for graphs of genus bounded by a constant [33]. Also, similarly to

the algorithm IS-FPT, the algorithm DS-FPT does not have to know whether the

input graph has minimum genus bounded by g(n). For any graph of minimum genus

bounded by g(n), the algorithm will definitely derive a correct conclusion.

Theorem IV.7 The Dominating Set problem on graphs of genus bounded by g(n) is

W [2]-complete if g(n) = nΩ(1).
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Proof. Since Dominating Set is W [2]-complete [11], it will suffice to show that

Dominating Set on general graphs is fpt-reducible to the problem on graphs of genus

bounded by g(n). Since g(n) = nΩ(1), we can assume that g(n) ≥ nc, where c is a

fixed constant.

Let G1 be an arbitrary graph of n1 vertices and genus g1. As we indicated in the

proof of Theorem IV.2, g1 ≤ n2
1. We construct a new graph G2, which is the graph

G1, plus n
2/c
1 − n1 new vertices u, v, and vi, i = 1, 2, . . . , n

2/c
1 − n1 − 2, where u has

degree 2 and is connected to the vertex v and to an arbitrary vertex in the graph G1,

and [v, vi], i = 1, 2, . . . , n
2/c
1 − n1 − 2, make a star centered at v. It is fairly easy to

verify that the graph G2 has n2 = n
2/c
1 vertices and genus g2 = g1, and that the graph

G1 has a dominating set of k1 vertices if and only if the graph G2 has a dominating

set of k2 = k1 + 1 vertices. Since c is a constant, the reduction from (G1, k1) to

(G2, k2) is an fpt-reduction. Moreover, since g2 = g1 ≤ n2
1, we have g2 ≤ nc

2 ≤ g(n2).

Therefore, (G2, k2) is an instance for Dominating Set on graphs of genus bounded

by g(n). This reduction proves that Dominating Set on graphs of genus bounded by

g(n) is W [2]-complete.

Combining Theorem IV.6 and Theorem IV.7, we derive the following tight result.

Corollary IV.8 Assuming FPT 6= W [2], the Dominating Set problem on graphs of

genus bounded by g(n) is fixed parameter tractable if and only if g(n) = no(1).

C. Genus and Subexponential Time Complexity

We say that a graph problem is solvable in sublinear exponential time (or shortly

subexponential time) if it can be solved in time 2o(n) on graphs of n vertices. Very few

NP-hard graph problems are known to be solvable in subexponential time. Lipton and
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Tarjan used their planar graph separator theorem to show that a class of NP-hard

planar graph problems, including Vertex Cover, Independent Set, and Dominating

Set, are solvable in subexponential time [54]. They also described how their results

can be extended to graphs of constant genus [54]. Recently, deriving lower bounds

on the precise complexity of NP-hard problems has been attracting more and more

attention [14, 15, 60, 61]. In particular, Impagliazzo, Paturi, and Zane [15] introduced

the concept of SERF-reduction and showed that many well-known NP-hard problems

are SERF-complete for the class SNP [15, 67]. This implies that if any of these

problems is solvable in subexponential time, then so are all problems in the class

SNP, a consequence that seems quite unlikely.

In this section, we demonstrate how graph genus affects the subexponential time

computability for Vertex Cover, Independent Set, and Dominating Set. Our algorith-

mic results in this section extend Lipton and Tarjan’s results on planar graphs and

graphs of constant genus [54], and our lower bound results refine Impagliazzo, Paturi,

and Zane’s results on general graphs [15].

Proposition IV.9 ([68]) Let G be a graph of n vertices and genus g. There is a

linear time algorithm that partitions the vertices of G into three sets A, B, C, such

that no edge joins a vertex in A with a vertex in B, |A|, |B| ≤ n/2, and |C| ≤

c0

√

(g + 1)n, where c0 is a fixed constant.

Theorem IV.10 Vertex Cover, Independent Set, and Dominating Set on graphs of

genus bounded by g(n) are solvable in subexponential time if g(n) = o(n).

Proof. We first give a detailed description of our proof for Dominating Set. The

idea is quite simple: we use Proposition IV.9 to partition the vertices of a given graph

G into the three sets A, B, and C, and enumerate all possible situations for the set C.
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Each fixed situation for the set C splits the graph G into two separated subgraphs,

induced essentially by the vertex sets A and B, respectively. Thus, we can recursively

work on the two subgraphs independently. However, this must be done with care. In

particular, in a given situation for the set C, if a vertex u in C is assigned to be not

in the dominating set and u is not adjacent to any vertex in C that is assigned to be

in the dominating set, then the vertex u must remain in the graph and a vertex in A

or B and adjacent to u must be included in the dominating set in a later stage.

Thus, assuming recursively that a partial dominating set D has been constructed,

our recursive algorithm classifies the vertices in the remaining graph G into five

groups:

1. dominating vertices, which are already included in the current D;

2. dominated vertices, which should not be in D and are adjacent to vertices in

the current D;

3. white vertices, which are adjacent to vertices in the current D but are not yet

decided whether to be in D;

4. black vertices, which are not adjacent to any vertices in the current D and are

also not yet decided whether to be in D;

5. red vertices, which should not be in D but are not yet adjacent to any vertices

in the current D.

The dominating vertices and dominated vertices will be removed from the graph.

Thus, the remaining graph G consists of only black, red, and white vertices (initially,

D = ∅ and all vertices in G are black). Such a graph G will be called a BWR-

graph. A BW-dominating set D′ in the BWR-graph G is a set of black and white

vertices in G such that every vertex in G is either in D′ or adjacent to a vertex in D′

(thus, a minimum BW-dominating set for the initial graph will be a regular minimum
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dominating set for the graph). To construct a minimum BW-dominating set for the

BWR-graph G, we use Proposition IV.9 to partition the vertices of G into the three

vertex subsets A, B, and C. Then we consider all possible assignments on the vertices

in the set C. Each vertex u in C has the following possible assignments:

• u is a white vertex. Then either u is in D or u is not in D;

• u is a red vertex. Then u must be dominated by a vertex in either C, or A, or

B;

• u is a black vertex. Then either u is in D, or u is not in D, and hence must be

dominated by a vertex in either C, or A, or B.

An assignment to the vertices in C can be as follows: each white vertex is assigned

either “in-D” or “not-in-D”, each red vertex is assigned either “in-A” or “in-B”, and

each black vertex is assigned either “in-D”, “in-A”, or “in-B”. After this assignment,

a white vertex will become either a dominating vertex (if it is “in-D”) or a dominated

vertex (if it is “not-in-D”); a red vertex adjacent to an “in-D” vertex in C will become

a dominated vertex (in this case, the assignment to the red vertex is ignored); a red

vertex not adjacent to any “in-D” vertex in C will become a red vertex and will be

added to the set A or B (depending on whether it is an “in-A” or “in-B” vertex);

an “in-D” black vertex will become a dominating vertex; a black vertex whose status

is either “in-A” or “in-B” and is adjacent to an “in-D” vertex in C will become a

dominated vertex; finally, an “in-A” black vertex (resp. an “in-B” black vertex) not

adjacent to any “in-D” vertex in C will become a red vertex and will be added to the

set A (resp. B).

Let the subgraphs induced by the updated vertex sets A and B be GA and GB,

respectively (note that now A and B may contain some vertices that were originally

in C). We then recursively work on the subgraphs GA and GB. The algorithm is
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formally presented in Figure 10.

ALGORITHM. DS-solver
Input: a BWR-graph G of n vertices, and a bound b0

Output: a minimum BR-dominating set D of G

1. if
√

n < 6b0 then solve the problem by a brute force method; Stop;
2. partition the vertices of G into the subsets A, B, C, as described in Proposition IV.9;
3. if |C| > b0

√
n then Stop(“the genus exceeds the bound”);

4. for each assignment to the vertices in C do
let D be the set of vertices in C that are assigned “in-D”;
update the graph G and the sets A and B;
construct the subgraphs GA and GB;
recursively construct the minimum BR-dominating sets DA for GA and DB for GB;
D = D ∪ DA ∪ DB;

5. output the smallest BR-dominating set constructed in step 4.

Fig. 10. An algorithm solving Dominating Set

We analyze the algorithm. Suppose the original input graph G0 has n0 vertices.

Set b0 = c0

√

g(n0) + 1, where c0 is the constant given in Proposition IV.9 (the bound

b0 is fixed for all recursive calls to the algorithm DS-Solver). Suppose that the

input to the algorithm DS-Solver is a BWR-graph G of n vertices. If
√

n < 6b0,

then n < 36c2
0(g(n0) + 1) = O(g(n0)), and a brute force method can construct a

minimum BR-dominating set for G in time O(3n) = O(3O(g(n0)). If |C| > b0

√
n, then

C would contain more than c0

√

(g(n0) + 1)n vertices. By Proposition IV.9, the graph

G would have genus larger than g(n0), which implies that the original input graph

G0 has genus larger than g(n0) (since G is a subgraph of G0). Thus, the algorithm

stops correctly.

Thus, we have
√

n ≥ 6b0 and |C| ≤ b0

√
n. Since each vertex in C can get at

most 3 different assignments, the total number of different assignments to the set C is

bounded by 3|C| ≤ 3b0
√

n. Since originally, |A|, |B| ≤ n/2, and the updated sets A and

B are the original sets A and B plus some vertices in C, each of the subgraphs GA

and GB contains at most n/2 + b0

√
n ≤ 2n/3 vertices (note that b0 ≤ √

n/6). This
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gives the following recurrence relation for the time complexity T (n) of the algorithm

DS-Solver:

T (n) ≤ 3b0
√

n · 2T (2n/3) ≤ 3b0
√

n+1T (2n/3) if
√

n ≥ 6b0

T (n) = O(3O(g(n0))) if
√

n < 6b0

Solving this recurrence relation, we get T (n) = O(3O(b0
√

n+g(n0))). In particular, if we

let n = n0 and replace b0 by c0

√

g(n0) + 1, we get

T (n0) = O(3O(c0
√

g(n0)+1·√n0+g(n0))) = 3O(
√

n0g(n0)+g(n0)) (4.4)

Thus, if g(n0) = o(n0), then T (n0) = 2o(n0), and the algorithm DS-Solver solves the

Dominating Set problem in subexponential time.

The subexponential time algorithms for Vertex Cover and Independent Set are

similar, and actually simpler. For example, for Vertex Cover, once we partition the

input graph into three parts A, B, and C, each vertex u in C has only two possibilities:

either in or not in the minimum vertex cover W . In case u is in W , we simply remove

u from the graph; while in case u is not in W , all neighbors of u are forced to be in W ,

thus all neighbors of u, as well as u itself, can be removed from the graph. Therefore,

no vertices in C will be added to the sets A and B, and each of the induced subgraphs

GA and GB will have at most n/2 vertices. This fact will simplify the analysis of the

algorithm to derive the subexponential time bound. We leave the detailed verification

to the interested readers.

Again we point out that our subexponential time algorithms for Dominating

Set, Vertex Cover, and Independent Set work correctly without needing to know the

precise genus value of the input graph. The algorithms either report correctly that

the genus of the input graph exceeds the designated bound g(n), or construct an

optimal solution to the input graph.
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Remark. After the publication of a preliminary version [31] of the current chapter

in 2003, there has been some further progress in this direction. Demaine et al. [55]

developed an algorithm of running time 2O(g
√

k+g2)nO(1) for the parameterized Domi-

nating Set problem on graphs of genus bounded by g, which was further improved by

Fomin and Thilikos [56] who presented an algorithm of running time 2O(
√

kg+g)+nO(1).

Compared to the algorithm in [55], our algorithm in Theorem IV.10 is faster when

the graph genus g is Ω(
√

n). Compared to the algorithm in [56], the running time of

our algorithm (see Equality (4.4)) is of the same order as that of the algorithm in [56]

for the general version (i.e., the non-parameterized version) of the Dominating Set

problem (since the parameter k can be of order Θ(n)). Moreover, our algorithm seems

much simpler (the algorithm in [56] uses the techniques of graph representativity and

graph branch decomposition).

Theorem IV.11 For any function g(n) = Ω(n), if any of Vertex Cover, Independent

Set, and Dominating Set on graphs of genus bounded by g(n) can be solved in subex-

ponential time, then all problems in the class SNP can be solved in subexponential

time.

Proof. Since g(n) = Ω(n), we assume g(n) ≥ cn, where c is a fixed constant.

Johnson and Szegedy [16] have shown that if Independent Set on graphs of degree

bounded by 3 is solvable in subexponential time then so is Independent Set on general

graphs, which, according to Impagliazzo, Paturi, and Zane [15], would imply that

all problems in the class SNP are solvable in subexponential time. Therefore, for

Independent Set, it suffices to show that the problem on graphs of degree bounded

by 3 is reducible to the problem on graphs of genus bounded by g(n) via a reduction

that preserves the order of the number of vertices.

Let n1, m1, and g1 be the number of vertices, the number of edges, and the
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genus of a graph G1 of degree bounded by 3. Then m1 ≤ 3n1/2, and by the Euler

Polyhedral Equation [58], g1 ≤ (m1 − n1 + 1)/2 ≤ (n1 + 2)/4 ≤ n1/3 for n1 ≥ 6.

If c ≥ 1/3, then G1 is already a graph of genus bounded by cn1 ≤ g(n1). Thus, we

assume c < 1/3. We perform the following operation on the graph G1. Pick any

edge in G1, and subdivide the edge by two degree-2 vertices. The resulting graph G′

has n1 + 2 vertices and the same genus g1. Moreover, it can be proved [12, 69] that

from any maximum independent set of G′, a maximum independent set of G1 can

be constructed in linear time. Therefore, if we apply this edge subdivision operation

dn1/(6c) − n1/2e times on the graph G1, we get a graph G2 of n2 vertices and genus

g2 = g1, where n1/(3c) ≤ n2 ≤ (3c + 1)n1/(3c). Now since g2 = g1 ≤ n1/3 ≤ cn2, the

graph G2 of n2 vertices has genus bounded by g(n2). The reduction is completed by

observing that n2 = O(n1).

The theorem also holds for Vertex Cover since Independent Set can be reduced

to Vertex Cover using the same graph [6]. For Dominating Set, the theorem follows

from the following facts: (1) Vertex Cover on graphs of degree bounded by 3 can be

reduced to Dominating Set on graphs of degree bounded by 6 [6]; and (2) subdividing

an edge by three degree-2 vertices increases the minimum dominating set size by 1

[69] and does not change the graph genus. With these facts, the proof proceeds in a

similar fashion to that for Independent Set. We leave the details to interested readers.

The class SNP [67] contains many well-known NP-hard problems, including k-

SAT, k-Colorability, k-Set Cover, Vertex Cover, and Independent Set [15]. It is

commonly believed that it is unlikely that all problems in SNP are solvable in subex-

ponential time. Based on this, and combining Theorem IV.10 and Theorem IV.11,

we have the following tight results.
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Corollary IV.12 Assuming that not all the problems in SNP are solvable in subex-

ponential time, the Vertex Cover, Independent Set, and Dominating Set problems on

graphs of genus bounded by g(n) are solvable in subexponential time if and only if

g(n) = o(n).

D. Genus and Approximability

We briefly review the related concepts and refer the readers to [2, 6] for more details.

An optimization problem Q is either a maximization or a minimization problem. Each

instance x of Q is associated with a set of solutions and each solution y for x is

associated with a value f(x, y). For a given instance x in Q, the objective is to

find a solution with the maximum value max(x) (if Q is a maximization problem)

or the minimum value min(x) (if Q is a minimization problem). An approximation

algorithm A for Q is an algorithm that for each instance x of Q constructs a solution

A(x) for x. We say that the approximation ratio of the algorithm A is bounded by

r if for all instances x of Q, we have max(x)/f(x,A(x)) ≤ r (if Q is a maximization

problem) or f(x,A(x))/ min(x) ≤ r (if Q is a minimization problem). We say that

an optimization problem Q has a polynomial time approximation scheme, shortly

PTAS, if for any constant ε > 0, the problem Q has a polynomial time approximation

algorithm whose approximation ratio is bounded by 1+ε. It is well-known that Vertex

Cover, Independent Set, and Dominating Set on planar graphs have PTAS [53, 54].

Proposition IV.13 ([68]) There is an O(n log g) time algorithm that for a given

graph G of n vertices and genus g constructs a subset Z of at most c
√

gn log g vertices,

where c is a fixed constant, such that removing the vertices in Z from G results in a

planar graph.
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The algorithm in Proposition IV.13 does not need to know the genus of the input

graph [68].

Theorem IV.14 The Independent Set problem on graphs of genus bounded by g(n)

has a PTAS if g(n) = o(n/ log n).

Proof. Let g(n) ≤ n/(r(n) log n), where r(n) is a nondecreasing and unbounded

function. Our PTAS for Independent Set works as follows: for a given graph G of n

vertices, we use the algorithm in Proposition IV.13 to construct the vertex subset Z

(this can be done in time O(n log n) even when the genus of G is larger than g(n)).

If the number z0 of vertices in Z is larger than c
√

g(n)n log g(n)), then we know that

the input graph G has genus larger than g(n) and we stop. Otherwise, the graph G1

obtained by deleting the vertices in Z from the graph G is a planar graph. We apply

any known PTAS algorithm (e.g., those given in [53, 54]) to construct an independent

set I1 for the graph G1. We simply output I1 as a solution to the original graph G.

It is obvious that this is a polynomial time approximation algorithm for In-

dependent Set on graphs of genus bounded by g(n). What left is to analyze the

approximation ratio of the algorithm. Because g(n) ≤ n/(r(n) log n)), the number of

vertices z0 in Z is such that z0 ≤ c
√

g(n)n log g(n)) ≤ cn/
√

r(n). Let n1 = n − z0

be the number of vertices in the graph G1. Let α and α1 be the sizes of a maximum

independent set in the graphs G and G1, respectively. Then α1 ≤ α ≤ α1 + z0.

Because G1 is a planar graph, by the Four-Color theorem [58], α1 ≥ n1/4.

Let α′
1 = |I1|. Since the independent set I1 is constructed by a PTAS on the

planar graph G1, α1/α
′
1 ≤ 1 + ε, where ε is the given error bound. Since the function

r(n) is nondecreasing and unbounded, there is a constant N0 such that when n ≥ N0,
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we have

c

4
√

r(n)
≤ 1

8
and

8c(1 + ε)
√

r(n)
≤ ε (4.5)

From the first inequality, we get

α′
1 ≥ α1

1 + ε
≥ n1

4(1 + ε)
=

n − z0

4(1 + ε)
≥ n − cn/

√

r(n)

4(1 + ε)

= n ·
(

1

4(1 + ε)
− c

4(1 + ε)
√

r(n)

)

≥ n

8(1 + ε)
(4.6)

Since α ≤ α1 + z0 ≤ (1 + ε)α′
1 + cn/

√

r(n), combining this with (4.5) and (4.6), we

get

α

α′
1

≤ 1 + ε +
cn

α′
1

√

r(n)
≤ 1 + ε +

8cn(1 + ε)

n
√

r(n)
≤ 1 + 2ε

Thus, the algorithm is a PTAS for Independent Set on graphs of genus bounded by

g(n).

Again our PTAS for Independent Set does not need to know whether the input

graph meets the given genus bound.

Theorem IV.15 Assuming P 6= NP, then Independent Set on graphs of genus bounded

by g(n) has no PTAS if g(n) = Ω(n).

Proof. The proof uses techniques similar to those in Theorem IV.11, so we only

give an outline of it. It is known that Independent Set on graphs of bounded degree

is APX-complete [2], which means that a PTAS for it would imply P = NP [70]. Now

a graph G1 of n1 vertices and of bounded degree has its genus bounded by O(n1).

We can increase the number of vertices in G1 without changing the graph genus by

subdividing the edges in G1 by degree-2 vertices (see the proof of Theorem IV.11).

This will give a graph G2 of n2 vertices whose genus is bounded by g(n2) (note that

g(n) ≥ cn for some constant c), and a PTAS for the graph G2 would imply a PTAS
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for the graph G1. In consequence, a PTAS for Independent Set on graphs of genus

bounded by g(n) would imply a PTAS for the same problem on graphs of bounded

degree, which would imply that P = NP.

Theorem IV.14 seems unlikely to hold for Vertex Cover and Dominating Set. In

fact, we can prove the following theorem.

Theorem IV.16 Unless P = NP, Vertex Cover and Dominating Set on graphs of

genus bounded by g(n) have no PTAS if g(n) = nΩ(1).

Proof. It is known that Vertex Cover and Dominating Set on general graphs have

no PTAS unless P = NP [70, 67]. Thus, it suffices to show how these problems on

general graphs can be reduced to the ones on graphs of genus bounded by g(n) = nΩ(1).

The proof is very similar to that for Theorem IV.7, thus we only give an outline of it.

Consider the Dominating Set problem. For a given general graph G1 of n1 vertices,

by attaching to G1 a very large star, we can construct a new graph G2 of n2 vertices,

without changing the graph genus, such that the genus of the graph G2 is bounded by

g(n2), and that the domination numbers of the graphs G1 and G2 differ by exactly 1.

Now a PTAS for the graph G2 would imply a PTAS for the graph G1. The theorem

for Vertex Cover can be proved using a similar construction.

On the other hand, we can derive results similar to Theorem IV.14 for Vertex

Cover and Dominating Set on “kernelized” graphs. Polynomial time kernelization

algorithms have become an interesting topic in the recent research on NP-hard prob-

lems [71, 12, 56]. It has been demonstrated [72] that improvement on approximating

Vertex Cover and Dominating Set on kernelized graphs will directly imply the same

improvement on approximating the problems on general graphs. In the following,
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we discuss the impact of graph genus on the approximability of Vertex Cover and

Dominating Set on kernelized graphs.

For an arbitrary graph G, the kernelization algorithms construct a kernelized

graph G′, where a vertex cover C ′ for the graph G′ gives directly a vertex cover C

for the graph G that preserves the approximation ratio (that is, the ratio of C to an

optimal solution of G is not worse than the ratio of C ′ to an optimal solution of G′).

Theorem IV.17 The Vertex Cover problem on kernelized graphs of genus bounded

by g1(n) has a PTAS if g1(n) = o(n/ log n). On the other hand, unless P = NP, the

Vertex Cover problem on kernelized graphs of genus bounded by g2(n) has no PTAS

if g2(n) = Ω(n).

Proof. The development of a PTAS for Vertex Cover on graphs of genus bounded

by g1(n) = o(n/ log n) is very similar to that for the PTAS for Independent Set given

in Theorem IV.14, except that for Independent Set in Theorem IV.14, we used Four-

Color theorem to derive a linear lower bound on the size of maximum independent

sets for planar graphs, while for Vertex Cover on kernelized graphs, the linear lower

bound on the size of minimum vertex covers comes directly from the fact that the

input graph is kernelized. To prove that Vertex Cover has no PTAS on kernelized

graphs of genus bounded by g2(n) = Ω(n), we use the techniques given in the proof

of Theorem V.21, by observing that a graph obtained by applying the operations

given in Theorem IV.11 (i.e., subdividing an edge by two degree-2 vertices [69]) on a

kernelized graph is also kernelized. We leave the detailed verification to the interested

readers.

Very recently, a kernelization algorithm for Dominating Set has been proposed.

For a given graph G, let δ(G) be the size of a minimum dominating set in the graph
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G and recall that γmin(G) denotes the minimum genus of the graph G. Formin

and Thilikos [56] proposed a polynomial time algorithm that reduces a given graph

G to a graph G′ such that δ(G) = δ(G′), and such that the number of vertices

of G′ is bounded by c0(δ(G
′) + γmin(G

′)), where c0 > 4 is a constant. Based on

this result, we can introduce the following definition: we say that a graph G is

kernelized for the Dominating Set problem if the number of vertices in G is bounded

by c0(δ(G) + γmin(G)), where c0 is the constant given in [56].

Theorem IV.18 The Dominating Set problem on kernelized graphs of genus bounded

by g1(n) has a PTAS if g1(n) = o(n/ log n). On the other hand, unless P = NP, the

Dominating Set problem on kernelized graphs of genus bounded by g2(n) has no PTAS

if g2(n) = Ω(n).

Proof. We only sketch the proof, which is similar to that for Theorem IV.17. We

leave the detailed verification to the interested reader.

The PTAS for Dominating Set on kernelized graphs of genus bounded by g1(n) =

o(n/ log n) is obtained in a similar way to the PTAS for Vertex Cover given in The-

orem IV.17, with the lower bound on the size of minimum dominating sets coming

from the kernelization. To prove that Dominating Set has no PTAS on kernelized

graphs of genus bounded by g2(n) = Ω(n), we note that graphs of degree bounded

by 3 are necessarily kernelized since the size of a minimum dominating set in such a

graph is at least n/4 – each vertex can dominate at most 3 other vertices in the graph.

Moreover, the genus of such a graph is bounded by O(n) [58]. Therefore, the assumed

PTAS for Dominating Set on graphs of genus bounded by g2(n) would imply a PTAS

for Dominating Set on graphs of degree bounded by 3, which is APX-complete [2].

This, in consequence, would imply P = NP.
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E. Comments

We have demonstrated how graph genus affects the computational complexity of the

well-known NP-hard problems Vertex Cover, Independent Set, and Dominating Set

in terms of the following complexity measures: the fixed parameter tractability, the

subexponential time computability, and the polynomial time approximability. In

most cases, we were able to derive a precise genus threshold that uniquely determines

the computational complexity of the problems in terms of the complexity measures.

Our algorithmic results significantly extend the previous research on the problems on

planar graphs and on graphs of constant genus, while our complexity results refine the

previous results on the problems and identify the “hardest graph instances” for the

problems. It should be easy to see that our techniques and results can be extended

to other NP-hard graph problems.

It is NP-hard to determine the minimum genus of a given graph [62]. However,

it is interesting to point out that all the algorithms developed in this chapter work

correctly without needing to know whether the input graph exceeds the designated

genus bound. Our algorithms either report correctly that the input graph exceeds

the designated genus bound, or solve the problems correctly for the given graph. Our

techniques seem to be useful for the study of other computational problems related

to graph genus.
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CHAPTER V

COMPUTATIONAL LOWER BOUNDS VIA PARAMETERIZED COMPLEXITY

In this chapter, we develop new techniques for deriving very strong computational

lower bounds for a class of well-known NP-hard problems including Weighted Satis-

fiability, Dominating Set, Hitting Set, Set Cover, Clique, and Independent Set. For

example, although a trivial enumeration can easily test in time O(nk) if a given graph

of n vertices has a clique of size k, we prove that unless an unlikely collapse occurs

in parameterized complexity theory, the problem is not solvable in time f(k)no(k) for

any function f , even if we restrict the parameter values to be bounded by an arbitrar-

ily small function of n. We further extended our techniques to derive computational

lower bounds on polynomial time approximation schemes for NP-hard optimization

problems. For example, we prove that the NP-hard Distinguishing Substring Selection

problem, for which a polynomial time approximation scheme has been recently devel-

oped, has no polynomial time approximation schemes of running time f(1/ε)no(1/ε)

for any function f unless an unlikely collapse occurs in parameterized complexity

theory.

A. A New Approach to Proving Lower Bounds

The W [1]-hardness of a parameterized problem implies that any algorithm of running

time O(nh) solving the problem must have h a function of the parameter k. However,

this does not completely exclude the possibility that the problem may become feasible

for small values of the parameter k. For instance, if the problem is solvable by an

algorithm running in time O(nlog log k), then such an algorithm is still feasible for
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moderately small values of k.1

Based on the framework of parameterized complexity theory, we develop new

techniques and derive much stronger computational lower bounds for a class of well-

known NP-hard problems. In particular, we answer the above mentioned questions

completely. We start by proving computational lower bounds for a class of Sat-

isfiability problems, and then extend the lower bound results to other well-known

NP-hard problems by introducing the concept of linear fpt-reductions. In particular,

we consider two classes of parameterized problems: Class A which includes Weighted

CNF SAT, Dominating Set, Hitting Set, and Set Cover, and Class B which includes

Weighted CNF q-SAT for any constant q ≥ 2, Clique, and Independent Set. We

prove that (1) unless W [1] = FPT, no problem in Class A can be solved in time

f(k)no(k)mO(1) for any function f , where n is the size of the search space from which

the k elements are selected and m is the input length; and (2) unless all search prob-

lems in the syntactic class SNP introduced by Papadimitriou and Yannakakis [67]

are solvable in subexponential time, no problem in Class B can be solved in time

f(k)mo(k) for any function f , where m is the input length. These results remain true

even if we bound the parameter values by an arbitrarily small nondecreasing and un-

bounded function. Moreover, under the same assumptions, we prove that even if we

restrict the parameter values k to be of the order Θ(µ(n)) for any reasonable function

µ, no problem in Class A can be solved in time no(k)mO(1) and no problem in Class B

can be solved in time mo(k). These are very significant improvements over the results

given in [60]: the results in [60] establish lower bounds because of a particular value of

the parameter, while the results in the current chapter under the same assumptions

1A question that might come to mind is whether such a W [1]-hard problem exists.
The answer is affirmative: by re-defining the parameter, it is not difficult to construct
W [1]-hard problems that are solvable in time O(nlog log k).



137

claim the lower bounds for essentially every value of the parameter.

Note that each of the problems in Class A (resp. Class B) can be solved by a

trivial algorithm of running time cnkm (resp. cmk), where c is an absolute constant,

which simply enumerates all possible subsets of k elements in the search space. Much

research has tended to seek new approaches to improve this trivial upper bound.

One of the common approaches is to apply a more careful branch-and-bound search

process trying to optimize the manipulation of local structures before each branch

[73, 74, 12, 75, 76]. Continuously improved algorithms for these problems have been

developed based on improved local structure manipulations (for example, see [44, 46,

28, 45] on the progress for the Independent Set problem). It has even been proposed

to automate the manipulation of local structures [47, 77] in order to further improve

the computational time.

Our results above, however, provide strong evidence that the power of this ap-

proach is quite limited in principle. The lower bounds f(k)nΩ(k)p(m) and f(k)mΩ(k)

for any function f and any polynomial p mentioned above indicate that no local

structure manipulation running in polynomial time or in time depending only on the

value k will obviate the need for exhaustive enumerations.

Our techniques have also enabled us to derive lower bounds on the computational

time of polynomial time approximation schemes (PTAS) for certain NP-hard prob-

lems. We pick the Distinguishing Substring Selection problem (DSSP) as an example,

for which a PTAS was recently developed [78, 79]. Gramm et al. [80] showed that the

parameterized DSSP problem is W [1]-hard, thus excluding the possibility that DSSP

has a PTAS of running time f(1/ε)nO(1) for any function f . We prove a much stronger

result. We first show that the Dominating Set problem can be linearly fpt-reduced to

the DSSP problem, thus proving that the parameterized DSSP problem is W [2]-hard

(improving the result in [80]). We then show how this lower bound on parameterized
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complexity can be transformed into a lower bound on the computational complexity

for any PTAS for the problem. More specifically, we prove that unless all search prob-

lems in SNP are solvable in subexponential time, the DSSP problem has no PTAS of

running time f(1/ε)no(1/ε) for any function f . This essentially excludes the possibility

that the DSSP problem has a practically efficient PTAS even for moderate values of

the error bound ε. To the authors’ knowledge, this is the first time a specific lower

bound has been derived on the running time of a PTAS for an NP-hard problem.

In this chapter, we always assume that complexity functions are “nice” with both

domain and range being non-negative integers and the values of the functions and their

inverses can be easily computed. For two functions f and g, we write f(n) = o(g(n))

if there is a nondecreasing and unbounded function λ such that f(n) ≤ g(n)/λ(n). A

function f is subexponential if f(n) = 2o(n).

B. Satisfiability and Weighted Satisfiability

In this section, we present two lemmas that show how a general satisfiability problem

is transformed into a weighted satisfiability problem. One lemma is on circuits of

bounded depth and the other lemma is on CNF formulas.

A circuit C of n input variables is a directed acyclic graph. The nodes of in-

degree 0 are the input gates, each labelled uniquely either by a positive literal xi or by

a negative literal xi, 1 ≤ i ≤ n. All other gates are either AND or OR gates. A special

gate of out-degree 0 is designated as the output gate. The size of C is the number of

gates in C, and the depth of C is the length of the longest path in C from an input

gate to the output gate. A circuit is monotone (resp. antimonotone) if all its input

gates are labelled by positive literals (resp. negative literals). A circuit represents a

Boolean function in a natural way. We say that a truth assignment τ to the input

variables of C satisfies a gate g in C if τ makes the gate g have the value 1, and that τ
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satisfies the circuit C if τ satisfies the output gate of C. The weight of an assignment

τ is the number of variables assigned the value 1 by τ .

A circuit C is a Πt-circuit if its output gate is an AND gate and it has depth

t. Using the results in [81], a Πt-circuit C can be re-structured into an equivalent

Πt-circuit C ′ with size increased at most quadratically such that (1) C ′ has t+1 levels

and each edge in C ′ only goes from a level to the next level; (2) the circuit C ′ has the

same monotonicity and the same set of input variables; (3) level 0 of C ′ consists of all

input gates and level t of C ′ consists of a single output gate; and (4) AND and OR

gates in C ′ are organized into t alternating levels. Thus, without loss of generality,

we will implicitly assume that Πt-circuits are in this levelled form.

The Satisfiability problem on Πt-circuits, abbreviated SAT[t], is to determine if a

given Πt-circuit C has a satisfying assignment. The parameterized problem Weighted

Satisfiability on Πt-circuits, abbreviated WCS[t], is to determine for a given pair

(C, k), where C is a Πt-circuit and k is an integer, if C has a satisfying assignment

of weight k. The Weighted Monotone Satisfiability (resp. Weighted Antimonotone

Satisfiability) problem on Πt-circuits, abbreviated WCS+[t] (resp. WCS−[t]) is defined

similarly to WCS[t] with the exception that the circuit C is required to be monotone

(resp. antimonotone). It is known that for each even integer t ≥ 2, WCS+[t] is W [t]-

complete, and for each odd integer t ≥ 2, WCS−[t] is W [t]-complete. To simplify

our statements, we will denote by WCS∗[t] the problem WCS+[t] if t is even and the

problem WCS−[t] if t is odd.

Lemma V.1 Let t ≥ 2 be an integer. There is an algorithm A1 that, for a given

integer r > 0, transforms each Πt-circuit C1 of n1 input variables and size m1 into

an instance (C2, k) of WCS∗[t], where k = dn1/re and the Πt-circuit C2 has n2 = 2rk

input variables and size m2 ≤ 2m1 + 22r+1k, such that C1 is satisfiable if and only if

(C2, k) is a yes-instance of WCS∗[t]. The running time of the algorithm A1 is bounded
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by O(m2
2).

Proof. Let k = dn1/re. Divide the n1 input variables x1, . . . , xn1 of the Πt-circuit

C1 into k blocks B1, . . . , Bk, where block Bi consists of input variables x(i−1)r+1, . . . , xir,

for i = 1, . . . , k−1, and block Bk consists of input variables x(k−1)r+1, . . . , xn1 . Denote

by |Bi| the number of variables in block Bi. Then |Bi| = r, for 1 ≤ i ≤ k − 1, and

|Bk| ≤ r. For an integer j, 0 ≤ j ≤ 2|Bi| − 1, denote by bini(j) the length-|Bi| binary

representation of j, which can also be interpreted as an assignment to the variables

in block Bi.

We construct a new set of input variables in k blocks B′
1, . . . , B

′
k. Each block B′

i

consists of s = 2r variables zi,0, zi,1, . . ., zi,s−1. The Πt-circuit C2 is constructed from

the Πt-circuit C1 by replacing the input gates in C1 by the new input variables in

B′
1, . . . , B

′
k. We consider two cases.

Case 1. t is even. Then all level-1 gates in the Πt-circuit C1 are OR gates.

We connect the new variables zi,j to these level-1 gates to construct the circuit C2 as

follows. Let xq be an input variable in C1 such that xq is the h-th variable in block

Bi. If the positive literal xq is an input to a level-1 OR gate g1 in C1, then all positive

literals zi,j in block B′
i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j) is 1 are

connected to gate g1 in the circuit C2. If the negative literal xq is an input to a level-1

OR gate g2 in C1, then all positive literals zi,j in block B′
i such that 0 ≤ j ≤ 2|Bi| − 1

and the h-th bit in bini(j) is 0 are connected to gate g2 in the circuit C2.

Note that if the size |Bk| of the last block Bk in C1 is smaller than r, then the

above construction for block B′
k is only on the first 2|Bk| variables in B′

k, and the last

s−2|Bk| variables in B′
k have no output edges, and hence become “dummy variables”.

We also add an “enforcement” circuitry to the circuit C2 to ensure that every

satisfying assignment to C2 assigns the value 1 to at least one variable in each block
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B′
i. This can be achieved by having an OR gate for each block B′

i, whose inputs

are connected to all positive literals in block B′
i and whose output is an input to the

output gate of the circuit C2 (for block B′
k, the inputs of the OR gate are from the

first 2|Bk| variables in B′
k). This completes the construction of the circuit C2. It is

easy to see that the circuit C2 is a monotone Πt-circuit (note that t ≥ 2 and hence the

enforcement circuitry does not increase the depth of C2). Thus, (C2, k) is an instance

of the problem WCS+[t].

We verify that the circuit C1 is satisfiable if and only if the circuit C2 has a

satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by an

assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let ji be the

integer such that bini(ji) = τi. Then according to the construction of the circuit C2,

by setting zi,ji
= 1 and all other variables in B′

i to 0, we can satisfy all level-1 OR gates

in C2 whose corresponding level-1 OR gates in C1 are satisfied by the assignment τi.

Doing this for all blocks Bi, 1 ≤ i ≤ k, gives a weight-k assignment τ ′ to the circuit

C2 that satisfies all level-1 OR gates in C2 whose corresponding level-1 OR gates in C1

are satisfied by τ . Since τ satisfies the circuit C1, the weight-k assignment τ ′ satisfies

the circuit C2.

Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment

τ ′. Because of the enforcement circuitry in C2, τ ′ assigns the value 1 to exactly one

variable in each block B′
i (in particular, in block B′

k, this variable must be one of

the first 2|Bk| variables in B′
k). Now suppose that in block B′

i, τ ′ assigns the value 1

to the variable zi,ji
. Then we set an assignment τi to the block Bi in C1 such that

τi = bini(ji). By the construction of the circuit C2, the level-1 OR gates satisfied by

the variable zi,ji
= 1 are all satisfied by the assignment τi. Therefore, if we make an

assignment τ to the circuit C1 such that the restriction of τ to block Bi is τi for all

i, then the assignment τ will satisfy all level-1 OR gates in C1 whose corresponding
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level-1 OR gates in C2 are satisfied by τ ′. Since τ ′ satisfies the circuit C2, we conclude

that the circuit C1 is satisfiable.

This completes the proof that when t is even, the circuit C1 is satisfiable if and

only if the constructed pair (C2, k) is a yes-instance of WCS+[t].

Case 2. t is odd. Then all level-1 gates in the Πt-circuit C1 are AND gates.

We connect the new variables zi,j to these level-1 gates to construct the circuit C2 as

follows. Let xq be an input variable in C1 and be the h-th variable in block Bi. If the

positive literal xq is an input to a level-1 AND gate g1 in C1, then all negative literals

zi,j in block B′
i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit in bini(j) is 0 are inputs

to gate g1 in C2. If the negative literal xq is an input to a level-1 AND gate g2 in C1,

then all negative literals zi,j in block B′
i such that 0 ≤ j ≤ 2|Bi| − 1 and the h-th bit

in bini(j) is 1 are inputs to gate g2 in C2.

For the last s−2|Bk| variables in the last block B′
k in C2, we connect the negative

literals zk,j, 2|Bk| ≤ j ≤ s− 1, to the output gate of the circuit C2 (thus, the variables

zk,j, 2|Bk| ≤ j ≤ s − 1, are forced to have the value 0 in any satisfying assignment to

C2).

An enforcement circuitry is added to C2 to ensure that every satisfying assign-

ment to C2 assigns the value 1 to at most one variable in each block B′
i. This can

be achieved as follows. For every two distinct negative literals zi,j and zi,h in B′
i,

0 ≤ j, h ≤ 2|Bi| − 1, add an OR gate gj,h. Connect zi,j and zi,h to gi,h and connect

gi,h to the output AND gate of C2. This completes the construction of the circuit C2.

The circuit C2 is an antimonotone Πt-circuit (again the enforcement circuitry does

not increase the depth of C2). Thus, (C2, k) is an instance of the problem WCS−[t].

We verify that the circuit C1 is satisfiable if and only if the circuit C2 has a

satisfying assignment of weight k. Suppose that the circuit C1 is satisfied by an

assignment τ . Let τi be the restriction of τ to block Bi, 1 ≤ i ≤ k. Let ji be the
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integer such that bini(ji) = τi. Consider the weight-k assignment τ ′ to C2 that for

each i assigns zi,ji
= 1 and all other variables in B′

i to 0. We show that τ ′ satisfies

the circuit C2. Let g1 be a level-1 AND gate in C1 that is satisfied by the assignment

τ . Since C2 is antimonotone, all inputs to g1 in C2 are negative literals. Since all

negative literals except zi,ji
in block B′

i have the value 1, we only have to prove that

no zi,ji
from any block B′

i is an input to g1. Assume to the contrary that zi,ji
in block

B′
i is an input to g1. Then by the construction of the circuit C2, there is a variable

xq that is the h-th variable in block Bi such that either xq is an input to g1 in C1

and the h-th bit of bini(ji) is 0, or xq is an input to g1 in C1 and the h-th bit of

bini(ji) is 1. However, by our construction of the index ji from the assignment τ , if

the h-th bit of bini(ji) is 0 then τ assigns xq = 0, and if the h-th bit of bini(ji) is 1

then τ assigns xq = 1. In either case, τ would not satisfy the gate g1, contradicting

our assumption. Thus, for all i, no zi,ji
is an input to the gate g1, and the assignment

τ ′ satisfies the gate g1. Since g1 is an arbitrary level-1 AND gate in C2, we conclude

that the assignment τ ′ satisfies all level-1 AND gates in C2 whose corresponding gates

in C1 are satisfied by the assignment τ . Since τ satisfies the circuit C1, the weight-k

assignment τ ′ satisfies the circuit C2.

Conversely, suppose that the circuit C2 is satisfied by a weight-k assignment τ ′.

Because of the enforcement circuitry in C2, the assignment τ ′ assigns the value 1 to

exactly one variable in each block B′
i (in particular, this variable in block B′

k must be

one of the first 2|Bk| variables in B′
k since the last s−2|Bk| variables in B′

k are forced to

have the value 0 in the satisfying assignment τ ′). Suppose that in block B′
i, τ ′ assigns

the value 1 to the variable zi,ji
. Then we set an assignment τi = bini(ji) to block Bi

in C1. Let τ be the assignment whose restriction on block Bi is τi. We prove that

τ satisfies the circuit C1. In effect, if a level-1 AND gate g2 in C2 is satisfied by the

assignment τ ′, then no negative literal zi,ji
is an input to g2. Suppose that g2 is not
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satisfied by τ in C1, then either a positive literal xq is an input to g2 and τ assigns

xq = 0, or a negative literal xq is an input to g2 and τ assigns xq = 1. Let xq be the

h-th variable in block Bi. If τ assigns xq = 0 then the h-th bit in bini(ji) is 0. Thus,

xq cannot be an input to g2 in C1 because otherwise by our construction the negative

literal zi,ji
would be an input to g2 in C2. On the other hand, if τ assigns xq = 1 then

the h-th bit in bini(ji) is 1, thus, xq cannot be an input to g2 in C1 because otherwise

the negative literal zi,ji
would be an input to g2 in C2. This contradiction shows that

the gate g2 must be satisfied by the assignment τ . Since g2 is an arbitrary level-1

AND gate in C2, we conclude that the assignment τ satisfies all level-1 AND gates in

C1 whose corresponding level-1 AND gates in C2 are satisfied by the assignment τ ′.

Since τ ′ satisfies the circuit C2, the assignment τ satisfies the circuit C1 and hence

the circuit C1 is satisfiable.

This completes the proof that when t is odd, the Πt-circuit C1 is satisfiable if

and only if the pair (C2, k) is a yes-instance of WCS−[t].

Summarizing the above discussion, we conclude that for any t ≥ 2, from a Πt-

circuit C1 of n1 input variables and size m1, we can construct an instance (C2, k)

of the problem WCS∗[t] such that C1 is satisfiable if and only if (C2, k) is a yes-

instance of WCS∗[t]. Here k = dn1/re, and C2 has n2 = 2rk input variables and size

m2 ≤ m1 +n2 + k + k22r ≤ 2m1 + k22r+1 (where the term k + k22r is an upper bound

on the size of the enforcement circuitry). Finally, it is straightforward to verify that

the pair (C2, k) can be constructed from the circuit C1 in time O(m2
2).

Lemma V.1 will serve as a basis for proving computational lower bounds for

W [2]-hard problems. In order to derive similar computational lower bounds for cer-

tain W [1]-hard problems, we need another lemma that converts weighted satisfiability

problems on monotone CNF formulas into weighted satisfiability problems on anti-

monotone CNF formulas.
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The parameterized problem Weighted Monotone CNF 2-SAT, abbreviated WCNF

2-SAT+ (resp. Weighted Antimonotone CNF 2-SAT, abbreviated WCNF 2-SAT−)

is: given an integer k and a CNF formula F , in which all literals are positive (resp.

negative) and each clause contains at most 2 literals, determine whether there is a

satisfying assignment of weight k to F .

Lemma V.2 There is an algorithm A2 that, for a given integer r > 0, transforms

each instance (F1, k1) of WCNF 2-SAT+, where the formula F1 has n1 variables, into

a group G of at most (r+1)k2 instances (Fπ, k2) of WCNF 2-SAT−, where k2 = dn1/re,

and each formula Fπ has n2 = k22
r variables, such that (F1, k1) is a yes-instance of

WCNF 2-SAT+ if and only if there is a yes-instance for WCNF 2-SAT− in the group

G. The running time of the algorithm A2 is bounded by O(n2
2(r + 1)k2).

Proof. For the given instance (F1, k1) of WCNF 2-SAT+, divide the n1 variables

in F1 into k2 = dn1/re pairwise disjoint subsets B1, . . ., Bk2 , each containing at most

r variables. Let π be a partition of the parameter k1 into k2 integers h1, . . ., hk2 ,

where 0 ≤ hi ≤ |Bi| and k1 = h1 + · · · , hk2 . We say that an assignment τ of weight

k1 for F1 is under the partition π if τ assigns the value 1 to exactly hi variables in the

set Bi for every i.

Fix a partition π of the parameter k1: k1 = h1 + · · · + hk2 . We construct an

instance (Fπ, k2) for WCNF 2-SAT− as follows. For each subset Bi,j of hi variables

in the set Bi, if for each clause (xs, xt) in F1 where both xs and xt are in Bi, at least

one of xs and xt is in Bi,j, then make Bi,j a Boolean variable in Fπ. Call such a Bi,j

an “essential variable” in Fπ. In particular, if no clause (xs, xt) in F1 has both xs and

xt in the set Bi, then every subset of hi variables in Bi makes an essential variable

in Fπ. For each pair of essential variables Bi,j and Bi,q in Fπ from the same set Bi in

F1, add a clause (Bi,j, Bi,q) to Fπ. For each pair of essential variables Bi,j and Bh,q
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in Fπ from two different sets Bi and Bh in F1, if there exist a variable xs ∈ Bi and

a variable xt ∈ Bh such that xs 6∈ Bi,j, xt 6∈ Bh,q but (xs, xt) is a clause in F1, add a

clause (Bi,j, Bh,q) to Fπ. This completes the main part of the CNF formula Fπ, which

thus far has no more than k22
r variables. To make the number n2 of variables in Fπ

to be exactly k22
r, we add a proper number of “surplus” variables to Fπ and for each

surplus variable B′ we add a unit clause (B′) to Fπ (so that these surplus variables

are forced to have the value 0 in a satisfying assignment of Fπ). Obviously, (Fπ, k2)

is an instance of the WCNF 2-SAT− problem.

We verify that the CNF formula F1 has a satisfying assignment of weight k1

under the partition π if and only if the CNF formula Fπ has a satisfying assignment

of weight k2. Let τ1 be a satisfying assignment of weight k1 under the partition π

for F1. Let C be the set of variables in F1 that are assigned the value 1 by τ1, and

Ci = C ∩ Bi. Then Ci has hi variables. Note that for any clause (xs, xt) in F1 such

that both xs and xt are in Bi, at least one of xs and xt must be in Ci – otherwise

the clause (xs, xt) would not be satisfied by the assignment τ1. Thus, each subset Ci

is an essential variable in Fπ. Now in the CNF formula Fπ, by assigning the value 1

to all Ci, 1 ≤ i ≤ k2, and the value 0 to all other variables (in particular, all surplus

variables in Fπ are assigned the value 0), we get an assignment τπ of weight k2 for Fπ.

For each clause of the form (Bi,j, Bi,q) in Fπ, where Bi,j and Bi,q are from the same

set Bi, since only one variable in Fπ from the set Bi (i.e., Ci) is assigned the value 1

by τπ, the clause is satisfied by the assignment τπ. For two variables Ci and Ch in Fπ,

i 6= h, which both get assigned the value 1 by the assignment τπ, each clause (xs, xt)

in F1 such that xs ∈ Bi and xt ∈ Bh must have either xs ∈ Ci or xt ∈ Ch (otherwise

the clause (xs, xt) would not be satisfied by τ1). Thus, (Ci, Ch) is not a clause in Fπ.

In consequence, the clauses of the form (Bi,j, Bh,q) in Fπ, i 6= h, where Bi,j and Bh,q

are from different sets Bi and Bh, are also all satisfied by τπ. This shows that Fπ is
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satisfied by the assignment τπ of weight k2.

Conversely, let τπ be a satisfying assignment of weight k2 for Fπ. Because

(Bi,j, Bi,q) is a clause in Fπ for each pair of essential variables Bi,j and Bi,q from

the same set Bi, at most one essential variable in Fπ from each set Bi can be assigned

the value 1 by the assignment τπ. Since the weight of τπ is k2, we conclude that

exactly one essential variable Bi,ji
in Fπ from each set Bi is assigned the value 1 by τπ

(note that all surplus variables in Fπ must be assigned the value 0 by τπ). Each Bi,ji

of these subsets in F1 contains exactly hi variables in Bi. Let C = ∪k2
i=1Bi,ji

, then C

has exactly k1 variables in F1. If in F1 we assign all variables in C the value 1 and all

other variables the value 0, we get an assignment τ1 of weight k1 for the formula F1.

We show that τ1 is a satisfying assignment for F1. For each clause (xs, xt) in F1 where

both xs and xt are in the same set Bi, by the construction of the essential variables

in Fπ, at least one of xs and xt is in Bi,ji
, and hence in C. Thus, all clauses (xs, xt) in

F1 where both xs and xt are in Bi are satisfied by the assignment τ1. For each clause

(xs, xt) in F1 where xs ∈ Bi and xt ∈ Bh, i 6= h, because (Bi,ji
, Bh,jh

) is not a clause in

Fπ (otherwise, τπ would not satisfy Fπ), we must have either xs ∈ Bi,ji
or xt ∈ Bh,jh

,

i.e., at least one of xs and xt must be in C. It follows that the clause (xs, xt) is again

satisfied by τ1. This proves that τ1 is a satisfying assignment of weight k1 for the

formula F1.

For each partition π of the parameter k1, we have a corresponding instance

(Fπ, k2) such that the CNF formula F1 has a satisfying assignment of weight k1 under

the partition π if and only if (Fπ, k2) is a yes-instance of WCNF 2-SAT−. Let G

be the collection of the instances (Fπ, k2) over all partitions π of the parameter k1.

Since (F1, k1) is a yes-instance of WCNF 2-SAT+ if and only if there is a partition

π of k1 such that F1 has a satisfying assignment of weight k1 under the partition

π, we conclude that (F1, k1) is a yes-instance of WCNF 2-SAT+ if and only if the
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group G contains a yes-instance of WCNF 2-SAT−. The number of instances in the

group G is bounded by the number of partitions of k1, which is bounded by (r + 1)k2 .

Finally, the instance (Fπ, k2) for a partition π of k1 can be constructed in time O(n2
2).

Therefore, the group G of the instances of WCNF 2-SAT− can be constructed in time

O(n2
2(r + 1)k2). This completes the proof of the lemma.

C. Lower Bounds on Weighted Satisfiability Problems

From Lemma V.1, we can get a number of interesting results on the relationship

between the circuit satisfiability problem SAT[t] and the weighted circuit satisfiability

problem WCS∗[t].

In the following theorems, we will denote by n the number of input variables and

m the size of a circuit.

Theorem V.3 Let t ≥ 2 be an integer. For any function f , if the problem WCS∗[t]

is solvable in time f(k)no(k)mO(1), then the problem SAT[t] can be solved in time

2o(n)mO(1).

Proof. Suppose that there is an algorithm Mwcs of running time bounded by

f(k)nk/λ(k)p(m) that solves the problem WCS∗[t], where λ(k) is a nondecreasing and

unbounded function and p is a polynomial. Without loss of generality, we can assume

that the function f is nondecreasing, unbounded, and that f(k) ≥ 2k. Define f−1 by

f−1(h) = max{q | f(q) ≤ h}. Since the function f is nondecreasing and unbounded,

the function f−1 is also nondecreasing and unbounded, and satisfies f(f−1(h)) ≤ h.

From f(k) ≥ 2k, we have f−1(h) ≤ log h.

Now we solve the problem SAT[t] as follows. For an instance C1 of SAT[t],

where C1 is a Πt-circuit of n1 input variables and size m1, we set the integer r =
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b3n1/f
−1(n1)c, and call the algorithm A1 in Lemma V.1 to convert C1 into an instance

(C2, k) of the problem WCS∗[t]. Here k = dn1/re, C2 is a Πt-circuit of n2 = 2rk

input variables and size m2 ≤ 2m1 + 22r+1k, and the algorithm A1 takes time O(m2
2).

According to Lemma V.1, we can determine if C1 is a yes-instance of SAT[t] by calling

the algorithm Mwcs to determine if (C2, k) is a yes-instance of WCS∗[t]. The running

time of the algorithm Mwcs on (C2, k) is bounded by f(k)n
k/λ(k)
2 p(m2). Combining

all above we get an algorithm Msat of running time f(k)n
k/λ(k)
2 p(m2)+O(m2

2) for the

problem SAT[t]. We analyze the running time of the algorithm Msat in terms of the

values n1 and m1.

Since k = dn1/re ≤ f−1(n1) ≤ log n1,
2 we have f(k) ≤ f(f−1(n1)) ≤ n1.

Moreover,

k = dn1/re ≥ n1/r ≥ n1/(3n1/f
−1(n1)) = f−1(n1)/3

Therefore if we set λ′(n1) = λ(f−1(n1)/3), then λ(k) ≥ λ′(n1). Since both λ and f−1

are nondecreasing and unbounded, λ′(n1) is a nondecreasing and unbounded function

of n1. We have (note that k ≤ f−1(n1) ≤ log n1),

n
k/λ(k)
2 = (k2r)k/λ(k) ≤ kk2kr/λ(k) ≤ kk23kn1/(λ(k)f−1(n1)) ≤ kk23n1/λ(k) ≤ kk23n1/λ′(n1) = 2o(n1)

Finally, consider the factor m2. Since f−1 is nondecreasing and unbounded,

m2 ≤ 2m1 + k22r+1 ≤ 2m1 + 2 log n12
6n1/f−1(n1) = 2o(n1)m1

Therefore, both terms p(m2) and O(m2
2) in the running time of the algorithm Msat

are bounded by 2o(n1)p′(m1) for a polynomial p′. Combining all these, we conclude

that the running time f(k)n
k/λ(k)
2 p(m2) + O(m2

2) of Msat is bounded by 2o(n1)p′(m1)

2Without loss of generality, we assume that in our discussions, all values under
the ceiling function “d·e” and the floor function “b·c” are greater than or equal to 1.
Therefore, we will always assume the inequalities dβe ≤ 2β and bβc ≥ β/2 for any
value β.
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for a polynomial p′. Hence, the problem SAT[t] can be solved in time 2o(n)mO(1). This

completes the proof of the theorem.

In fact, Theorem V.3 remains valid even if we restrict the parameter values to

be bounded by an arbitrarily small function, as shown in the following corollary.

Corollary V.4 Let t ≥ 2 be an integer, and µ(n) a nondecreasing and unbounded

function. If for a function f , the problem WCS∗[t] is solvable in time f(k)no(k)mO(1)

for parameter values k ≤ µ(n), then the problem SAT[t] can be solved in time

2o(n)mO(1).

Proof. Suppose that there is an algorithm M solving the WCS∗[t] problem in

time f(k)no(k)p(m) for parameter values k ≤ µ(n), where p is a polynomial. Define

µ−1(h) = max{q | µ(q) ≤ h}. Since the function µ is nondecreasing and unbounded,

the function µ−1 is also nondecreasing, unbounded, and such that k > µ(n) implies

n ≤ µ−1(k).

Now we develop an algorithm that solves the WCS∗[t] problem for general para-

meter values. For a given instance (C, k) of WCS∗[t], if k > µ(n) then we enumerate all

weight-k assignments to the circuit C and check if any of them satisfies the circuit, and

if k ≤ µ(n), we call the algorithm M to decide if (C, k) is a yes-instance for WCS∗[t].

This algorithm obviously solves the problem WCS∗[t]. Moreover, in case k > µ(n),

the algorithm runs in time O(2nm2) = O(f1(k)m2), where f1(k) = 2µ−1(k), while in

case k ≤ µ(n), the algorithm runs in time f(k)no(k)p(m). Therefore, the algorithm

solves the problem WCS∗[t] for general parameter values in time O(f2(k)no(k)mO(1)),

where f2(k) = max{f(k), f1(k)}. Now the corollary follows from Theorem V.3.

Further extension of the above techniques shows that, essentially, Theorem V.3

remains true for every parameter value.
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Theorem V.5 Let t ≥ 2 be an integer and ε be a fixed constant, 0 < ε < 1. For any

nondecreasing and unbounded function µ satisfying µ(n) ≤ nε and µ(2n) ≤ 2µ(n), if

WCS∗[t] is solvable in time no(k)mO(1) for parameter values µ(n)/8 ≤ k ≤ 16µ(n),

then SAT[t] is solvable in time 2o(n)mO(1).

Proof. We first show that by properly choosing the number r in Lemma V.1,

we can make the parameter value k = dn1/re satisfy the condition µ(n2)/8 ≤ k ≤

16µ(n2), where n2 = k2r. To show this, we extend the function µ to a continuous

function by connecting µ(i) and µ(i + 1) by a linear function for each integer i.

Fix the value n1, and consider the function

F (z) = µ

(

n12
z log n1

z log n1

)

− n1

z log n1

= µ

(

nz+1
1

z log n1

)

− n1

z log n1

Pick a real number z0, 0 < z0 < 1, such that (z0 log n1)
1−ε ≤ n

1−(z0+1)ε
1 . For this

value z0, since µ(nz0+1
1 /(z0 log n1)) ≤ (nz0+1

1 /(z0 log n1))
ε ≤ n1/(z0 log n1), we have

F (z0) ≤ 0. Moreover, it is easy to check that F (n1/ log n1) ≥ 0. Therefore, there is

a real number z∗ between z0 and n1/ log n1 such that

µ

(

n12
z∗ log n1

z∗ log n1

)

≤ n1

z∗ log n1

and µ

(

n12
z∗ log n1+1

z∗ log n1 + 1

)

≥ n1

z∗ log n1 + 1
(5.1)

We explain how to find such a real number z∗ efficiently. Starting from the value z0,

then the integer values z1 = 1, z2 = 2, . . ., dn1/ log n1e, we find the smallest zi such

that

µ

(

n12
zi log n1

zi log n1

)

≤ n1

zi log n1

and µ

(

n12
zi+1 log n1

zi+1 log n1

)

≥ n1

zi+1 log n1

Now check the values zi,j = zi + j/ log n1 for j = 0, 1, . . ., dlog n1e to find a j such
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that

µ

(

n12
zi,j log n1

zi,j log n1

)

≤ n1

zi,j log n1

and µ

(

n12
zi,j+1 log n1

zi,j+1 log n1

)

≥ n1

zi,j+1 log n1

Note that zi,j+1 = zi,j + 1/ log n1 so zi,j+1 log n1 = zi,j log n1 + 1. Thus, we can set

z∗ = zi,j.

Now we have

2µ

(

n12
z∗ log n1

z∗ log n1

)

≥ 2µ

(

n12
z∗ log n1

z∗ log n1 + 1

)

≥ µ

(

n12
z∗ log n1+1

z∗ log n1 + 1

)

≥ n1

z∗ log n1 + 1
≥ n1

2z∗ log n1

(5.2)

where the second inequality uses the fact 2µ(n) ≥ µ(2n). From (5.1) and (5.2), we

get

4µ

(

n12
z∗ log n1

z∗ log n1

)

≥ n1

z∗ log n1

≥ µ

(

n12
z∗ log n1

z∗ log n1

)

(5.3)

Therefore, if we set r = dz∗ log n1e, then from k = dn1/re, n2 = 2rk, and (5.3), we

have

µ(n2) = µ(2rk) = µ(2rdn1/re) ≥ µ(2rn1/r) ≥ µ

(

2z∗ log n1n1

2z∗ log n1

)

≥ 1

2
µ

(

2z∗ log n1n1

z∗ log n1

)

≥ 1

8
· n1

z∗ log n1

≥ 1

8
· n1

dz∗ log n1e
=

1

8
· n1

r
≥ 1

16
· dn1/re =

k

16

On the other hand,

µ(n2) = µ(2rk) ≤ µ(2z∗ log n1+1k) ≤ 2µ(2z∗ log n1dn1/re) ≤ 2µ(2z∗ log n1+1n1/r)

≤ 4µ

(

2z∗ log n1n1

z∗ log n1

)

≤ 4n1

z∗ log n1

≤ 8n1

dz∗ log n1e
=

8n1

r
≤ 8dn1/re = 8k

This proves that the values k and n2 satisfy the relation µ(n2)/8 ≤ k ≤ 16µ(n2).

Now we are ready to prove our theorem. Suppose that there is an algorithm Mwcs

of running time nk/λ(k)p(m) for the WCS∗[t] problem when the parameter values k

are in the range µ(n)/8 ≤ k ≤ 16µ(n), where λ(k) is a nondecreasing and unbounded

function and p is a polynomial. We solve the problem SAT[t] as follows:
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For an instance C1 of SAT[t], where C1 is a Πt-circuit of n1 input variables

and size m1,

(A) Let r = dz∗ log n1e, where z∗ is the real number satisfying (5.1). As

we explained above, the value z∗ can be computed in time polynomial

in n1;

(B) Call the algorithm A1 in Lemma V.1 on r and C1 to construct an

instance (C2, k) of the problem WCS∗[t], where k = dn1/re, and C2 is

a Πt-circuit of n2 = k2r input variables and size m2 ≤ 2m1 + 22r+1k.

By the above discussion, we have µ(n2)/8 ≤ k ≤ 16µ(n2);

(C) Call the algorithm Mwcs on (C2, k) to determine whether (C2, k) is

a yes-instance of WCS∗[t], which, by Lemma V.1, is equivalent to

whether C1 is a yes-instance of SAT[t].

The running time of steps (A) and (B) of the above algorithm is bounded by a

polynomial p1(m2) of m2. Step (C) takes time n
k/λ(k)
2 p(m2). Therefore, the total run-

ning time of this algorithm solving the SAT[t] problem is bounded by n
k/λ(k)
2 p2(m2),

where p2 is a polynomial. We have (for simplicity and without affecting the correct-

ness, we omit the floor and ceiling functions),

n
k/λ(k)
2 = (2rn1/r)

(n1/r)/λ(n1/r) ≤ 2n1/λ(n1/r)n
(n1/r)/λ(n1/r)
1

Now it is easy to verify that n
k/λ(k)
2 = 2o(n1) (observe that k = n1/r ≥ µ(n2)/8

hence λ(n1/r) is unbounded, and that r = z∗ log n1 = Ω(log n1)). Also, since m2 ≤

2m1+2(n2)
2, m2 = 2o(n1)m

O(1)
1 , thus, the polynomial p2(m2) is bounded by 2o(n1)m

O(1)
1 .

This concludes that the above algorithm of running time n
k/λ(k)
2 p2(m2) for the problem

SAT[t] has its running time bounded by 2o(n1)m
O(1)
1 . This completes the proof of the

theorem.
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Now we derive similar results for the weighted satisfiability problem WCNF 2-

SAT−, based on Lemma V.2. In the following discussion, for an instance (F, k) of the

problems WCNF 2-SAT− or WCNF 2-SAT+, we denote by n and m, respectively,

the number of variables and the instance size of the CNF formula F . Note that

m = O(n2).

Theorem V.6 If the problem WCNF 2-SAT− is solvable in time f(k)mo(k) for a

function f , then the problem WCNF 2-SAT+ is solvable in time 2o(n).

Proof. Since m = O(n2) for any instance of WCNF 2-SAT−, we only need to

prove that if the problem WCNF 2-SAT− is solvable in time f(k)no(k) for a function

f , then the problem WCNF 2-SAT+ is solvable in time 2o(n).

Suppose that the problem WCNF 2-SAT− is solvable in time f(k)nk/λ(k) for a

nondecreasing and unbounded function λ. Without loss of generality, we can assume

that the function f is nondecreasing, unbounded, and satisfies f(k) > 2k. Define

f−1(h) = max{q | f(q) ≤ h}. Then f−1 is a nondecreasing and unbounded function

satisfying f−1(h) ≤ log h and f(f−1(h)) ≤ h.

For a given instance (F1, k1) of WCNF 2-SAT+, where the CNF formula F1 has

n1 variables, we let r = b3n1/f
−1(n1)c and k2 = dn1/re, then we use the algorithm A2

in Lemma V.2 to construct a group G of at most (r+1)k2 instances (Fπ, k2) of WCNF

2-SAT−, where each formula Fπ has n2 = k22
r variables, and such that (F1, k1) is

a yes-instance of WCNF 2-SAT+ if and only if the group G contains a yes-instance

of WCNF 2-SAT−. By our assumption, it takes time f(k2)n
k2/λ(k2)
2 to test if each

(Fπ, k2) in the group G is a yes-instance of WCNF 2-SAT−. Therefore, in time of

order

(r + 1)k2f(k2)n
k2/λ(k2)
2 + n2

2(r + 1)k2
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we can decide if (F1, k1) is a yes-instance of WCNF 2-SAT+, where the term n2
2(r+1)k2

is for the running time of the algorithm A2. As we verified in Theorem V.3, f(k2) ≤ n1,

and n
k2/λ(k2)
2 = 2o(n1) (in particular, n2 = 2o(n1)). Finally, since r = O(n1) and

k2 = O(f−1(n1)) = O(log n1), we get (r + 1)k2 = 2o(n1). In summary, in time 2o(n1)

we can decide if (F1, k1) is a yes-instance of WCNF 2-SAT+, and hence, the problem

WCNF 2-SAT+ is solvable in time 2o(n).

Based on Theorem V.6, and using a proof completely similar to that of Corol-

lary V.4, we can prove that Theorem V.6 remains valid even if we restrict the para-

meter values to be bounded by an arbitrarily small function of n.

Corollary V.7 Let µ(n) be any nondecreasing and unbounded function. If there is

a function f such that the problem WCNF 2-SAT− is solvable in time f(k)mo(k) for

parameter values k ≤ µ(n), then the problem WCNF 2-SAT+ is solvable in time 2o(n).

Theorem V.8 For any nondecreasing and unbounded function µ satisfying µ(n) ≤

nε and µ(2n) ≤ 2µ(n), where ε is a fixed constant, 0 < ε < 1, if WCNF 2-SAT− is

solvable in time mo(k) for parameter values µ(n)/8 ≤ k ≤ 16µ(n), then the problem

WCNF 2-SAT+ is solvable in time 2o(n).

Proof. Again since m = O(n2), the given hypothesis implies that WCNF 2-SAT−

is solvable in time no(k) for parameter values µ(n)/8 ≤ k ≤ 16µ(n).

Let (F1, k1) be an instance of WCNF 2-SAT+, where the CNF formula F1 has

n1 variables. As in Theorem V.5, we first compute in polynomial time a real number

z∗ satisfying

4µ

(

n12
z∗ log n1

z∗ log n1

)

≥ n1

z∗ log n1

≥ µ

(

n12
z∗ log n1

z∗ log n1

)

Now we let r = dz∗ log n1e and k2 = dn1/re, and use the algorithm A2 in Lemma V.2

to construct a group G of at most (r + 1)k2 instances (Fπ, k2) of WCNF 2-SAT−,
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where each formula Fπ has n2 = k22
r variables, such that (F1, k1) is a yes-instance of

WCNF 2-SAT+ if and only if the group G contains a yes-instance of WCNF 2-SAT−.

As proved in Theorem V.5, the values k2 and n2 satisfy the relation µ(n2)/8 ≤

k2 ≤ 16µ(n2), and n
k2/λ(k2)
2 = 2o(n1) for any nondecreasing and unbounded function λ.

Therefore, by the hypothesis of the current theorem, we can determine in time 2o(n1)

for each (Fπ, k2) in G if (Fπ, k2) is a yes-instance of WCNF 2-SAT−. It is also easy

to verify that the total number (r + 1)k2 of instances in the group G and the running

time O(n2
2(r + 1)k2) of the algorithm A2 are all bounded by 2o(n1). Therefore, using

this transformation, we can determine in time 2o(n1) whether (F1, k1) is a yes-instance

of WCNF 2-SAT+, and hence the problem WCNF 2-SAT+ is solvable in time 2o(n1).

D. Satisfiability Problems and the W -hierarchy

We first show that a subexponential time algorithm for SAT[t] would collapse the

W -hierarchy.

Theorem V.9 For any integer t ≥ 2, if SAT[t] is solvable in time 2o(n)mO(1), then

W [t − 1] = FPT.

Proof. The theorem for the case t = 2 is an easy corollary of Corollary 3.1 in

[14]. Here we present a proof for the general case t ≥ 3 using different techniques. In

particular, our techniques do not apply to the case t = 2.

Let C be a Πt−1-circuit of n input variables x0, . . ., xn−1 and size m such that C

is monotone if t is odd and C is antimonotone if t is even. Without loss of generality,

we assume that log n is an integer (otherwise, we add dummy input variables to C).

Let k ≤ n be a non-negative integer. We first show how to construct a Πt-circuit



157

C ′ of k log n input variables from the circuit C and the integer k such that C has a

satisfying assignment of weight k if and only if C ′ is satisfiable. The input variables

in C ′ are divided into k blocks B′
1, . . . , B

′
k, where each block B′

i consists of r = log n

input variables zi,1, . . . , zi,r. For a non-negative integer j ≤ n−1, we denote by binr(j)

the length-r binary representation of the integer j, which can also be interpreted as

an assignment to a block B′
i in the circuit C ′. We distinguish two cases based on the

parity of t.

Case 1. t is odd. Then C is a monotone Πt−1-circuit and all level-1 gates in C

are OR gates. For each positive literal xj in C and for each block B′
i, we associate

an AND gate gi,j in C ′ such that if the h-th bit in binr(j) is 1 (resp. 0) then zi,h

(resp. zi,h) is an input to gi,j. The outputs of gi,j in C ′ are identical to the outputs

of xj in C. Note that for each assignment binr(j) to block B′
i, exactly one of these

new AND gates, i.e., the gate gi,j, is satisfied and outputs 1. Thus, the assignment

binr(j) of block B′
i in C ′ simulates the assignment xj = 1 in C. The circuit C ′ is

obtained from the circuit C by removing all input gates in C and adding the kn new

AND gates gi,j, 1 ≤ i ≤ k, 0 ≤ j ≤ n − 1, and the literals in blocks B′
1, . . ., B′

k.

Moreover, we add an enforcement circuitry to C ′ to make sure that the assignments

to different blocks in C ′ simulate assignments to different variables in C. To achieve

this, we construct a depth-2 subcircuit Ci,i′ for each pair of blocks B′
i and B′

i′ such

that Ci,i′ outputs 0 if and only if blocks B′
i and B′

i′ are assigned the same value. The

output of Ci,i′ is an input to the output AND gate of the circuit C ′. Since t ≥ 3, the

enforcement circuitry does not increase the depth of the circuit C ′. Thus, the circuit

C ′ is a Πt-circuit with kr input variables.

It is easy to verify that the circuit C has a satisfying assignment of weight k if

and only if the circuit C ′ is satisfiable: suppose C is satisfied by a weight-k assignment

τ , which assigns the value 1 to k variables xj1 , . . ., xjk
, and the value 0 to all other
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variables. Then by assigning the value binr(ji) to block B′
i for 1 ≤ i ≤ k, we get an

assignment τ ′ for the circuit C ′ such that all AND gates gi,ji
in C ′ are satisfied. Since

the outputs of the AND gates gi,ji
are identical to the outputs of the positive literals

xji
, we conclude that all level-2 OR gates in C ′ corresponding to those level-1 OR

gates in C satisfied by the assignment τ are satisfied by the assignment τ ′. Since the

assignment τ satisfies the circuit C and all blocks B′
i are assigned different values,

the assignment τ ′ satisfies the circuit C ′ and the circuit C ′ is satisfiable. Conversely,

suppose the circuit C ′ is satisfied by an assignment τ ′, then the restriction τ ′
i of τ ′

to block B′
i satisfies exactly one AND gate gi,ji

, where binr(ji) = τ ′
i . Because of the

enforcement circuitry, these k gates gi,ji
correspond to k different positive literals xji

.

Thus, if we set xji
= 1 for all 1 ≤ i ≤ k, and assign the value 0 to all other variables,

we get an assignment τ of weight exactly k that satisfies the circuit C.

Case 2. t is even. Then C is an antimonotone Πt−1-circuit and all level-1 gates

in C are AND gates. For each input variable xj, 0 ≤ j ≤ n − 1, and for each block

B′
i, we make an OR gate gi,j such that if the h-th bit in binr(j) is 0 (resp. 1) then zi,h

(resp. zi,h) is an input to gi,j. The outputs of gi,j in C ′ are identical to the outputs

of xj in C. Note that for each assignment binr(j) of block B′
i, exactly one of these

new OR gates, i.e., the gate gi,j, is not satisfied and outputs 0. Thus, the assignment

binr(j) of block B′
i in C ′ simulates the assignment xj = 0 (or equivalently xj = 1) in

C. As in Case 1, we also add an enforcement circuitry to C ′ to make sure that no

two blocks in C ′ are assigned the same value. The circuit C ′ is a Πt-circuit with kr

input variables.

To verify that the circuit C has a satisfying assignment of weight k if and only if

the circuit C ′ is satisfiable, suppose C is satisfied by a weight-k assignment τ , which

assigns the value 1 to k variables xj1 , . . ., xjk
, and the value 0 to all other variables.

Then by assigning the value binr(ji) to block B′
i for 1 ≤ i ≤ k, we get an assignment
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τ ′ to the circuit C ′ such that for each i, only the OR gate gi,ji
is not satisfied and

outputs 0. Thus, for each level-1 AND gate g1 satisfied by the assignment τ in C,

since no negative literals xj1 , . . ., xjk
are inputs to g1 in C, no gates g1,j1 , . . ., gk,jk

are inputs to g1 in C ′. Thus, the assignment τ ′ satisfies the gate g1. Since g1 is an

arbitrary level-1 AND gate satisfied by τ in C, we conclude that the assignment τ ′

satisfies all level-2 AND gates that correspond to the level-1 AND gates satisfied by

the assignment τ in C. Since τ satisfies the circuit C and all blocks B′
i are assigned

different values, τ ′ satisfies the circuit C ′ and C ′ is satisfiable. Conversely, suppose

the circuit C ′ is satisfied by an assignment τ ′, then the restriction τ ′
i of τ ′ to block

B′
i satisfies all OR gates gi,j except the gate gi,ji

, where binr(ji) = τ ′
i . Because of the

enforcement circuitry in C ′, assignments τ ′
i and τ ′

i′ to two different blocks in C ′ are

different. Thus, the assignments to the k blocks induce k different input variables xji
.

If we set xji
= 1 for all 1 ≤ i ≤ k and set the value 0 for all other input variables in

C, we get an assignment τ of weight exactly k satisfying the circuit C.

In summary, we have verified that for any t ≥ 3, for a given Πt−1-circuit C of n

input variables and size m, and for a given k ≤ n, where C is monotone if t is odd

and antimonotone if t is even, we can construct a Πt-circuit C ′ such that C has a

satisfying assignment of weight k if and only if C ′ is satisfiable. The circuit C ′ has

n′ = kr = k log n input variables and size m′ bounded by m + kn + 3k2 log2 n ≤ 3m3,

where the term kn is the number of the gates gi,j, 1 ≤ i ≤ k, 0 ≤ j ≤ n − 1 in

the construction of the circuit C ′, and 3k2 log2 n is an upper bound on the size of the

enforcement circuitry. The circuit C ′ can be constructed from (C, k) in time O((m′)2).

By the hypothesis of the theorem, there is an algorithm A′ that determines

whether the circuit C ′ is satisfiable in time 2o(n′)p(m′) for a polynomial p. Thus,

there is a nondecreasing and unbounded function λ such that the running time of

the algorithm A′ is bounded by 2n′/λ(n′)p(m′). This, plus the construction of the
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circuit C ′ from (C, k), gives an algorithm A′′ of running time 2n′/λ(n′)p1(m
′) that

determines whether the Πt−1-circuit C has a satisfying assignment of weight k, where

p1 is a polynomial. Note that 2n′/λ(n′) = 2k log n/λ(k log n) ≤ 2k log n/λ(log n). This gives

the following algorithm A that solves the WCS∗[t − 1] problem:

For a given instance (C, k) of WCS∗[t− 1], where C has n input variables

and size m, if k > λ(log n), then enumerate all assignments to C and

check if there is a satisfying assignment of weight k to C; if k ≤ λ(log n),

then call the algorithm A′′ to decide if there is a satisfying assignment of

weight k to C.

We analyze the algorithm A. First note that m′ ≤ 3m3, thus, p1(m
′) is bounded by a

polynomial p′(m) of m. Define λ−1(h) = min{q | λ(q) ≥ h}. Since λ is nondecreasing

and unbounded, λ−1 is also a nondecreasing and unbounded function. Let f(k) =

22λ−1(k)
. We claim that the running time of the algorithm A is bounded by f(k)np′(m).

In effect, if k > λ(log n), we have λ−1(k) ≥ log n, and f(k) ≥ 2n. Therefore, in this

case, the running time of the algorithm A is bounded by 2np′(m) ≤ f(k)p′(m). On

the other hand, if k ≤ λ(log n), then the algorithm A calls the algorithm A′′ to solve

the problem, which runs in time 2k log n/λ(log n) ≤ 2log n = n.

Thus, under the hypothesis of the theorem, we have been able to prove that the

W [t− 1]-complete problem WCS∗[t− 1] is solvable in time f(k)np′(m) for a function

f and a polynomial p′, and hence is fixed-parameter tractable. This, in consequence,

implies that W [t − 1] = FPT.

Combining Theorem V.9 with Theorem V.3, Corollary V.4, and Theorem V.5,

we get

Theorem V.10 For any integer t ≥ 2, if the problem WCS∗[t] is solvable in time

f(k)no(k)mO(1) for a function f , then W [t − 1] = FPT. This theorem remains true
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even if we restrict the parameter values k by k ≤ µ(n) for any nondecreasing and

unbounded function µ.

Theorem V.11 Let t ≥ 2 be an integer and ε be a fixed constant, 0 < ε < 1. For any

nondecreasing and unbounded function µ satisfying µ(n) ≤ nε and µ(2n) ≤ 2µ(n), if

the problem WCS∗[t] is solvable in time no(k)mO(1) for the parameter values µ(n)/8 ≤

k ≤ 16µ(n), then W [t − 1] = FPT.

Now we consider the satisfiability problems WCNF 2-SAT− and WCNF 2-SAT+on

CNF formulas. In the following discussion, for an instance (F, k) of the problems

WCNF 2-SAT− or WCNF 2-SAT+, we denote by n and m, respectively, the number

of variables and the instance size of the formula F . Note that m = O(n2).

The class SNP introduced by Papadimitriou and Yannakakis [67] contains many

well-known NP-hard problems including, for any fixed integer q ≥ 3, CNF q-SAT,

q-Colorability, q-Set Cover, and Vertex Cover, Clique, and Independent Set [15].

It is commonly believed that it is unlikely that all problems in SNP are solvable

in subexponential time3. Impagliazzo and Paturi [15] studied the class SNP and

identified a group of SNP-complete problems under the SERF-reduction, in the sense

that if any of these SNP-complete problems is solvable in subexponential time, then

all problems in SNP are solvable in subexponential time.

Lemma V.12 If the problem WCNF 2-SAT+ is solvable in time 2o(n), then all prob-

lems in SNP are solvable in subexponential time.

Proof. It is easy to see that the problem Vertex Cover can be reduced to the

3A recent result showed the equivalence between the statement that all SNP prob-
lems are solvable in subexponential time, and the collapse of a parameterized class
called Mini[1] to FPT [82].
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problem WCNF 2-SAT+ in a straightforward way: given an instance (G, k) of Vertex

Cover, where G is a graph of n vertices, we can construct an instance (FG, k) of

WCNF 2-SAT+, where the CNF formula FG has n variables, as follows: each vertex

vi of G makes a positive literal xi in FG, and each edge [vi, vj] in G makes a clause

(xi, xj) in FG. It is easy to see that the graph G has a vertex cover of k vertices if

and only if the CNF formula FG has a satisfying assignment of weight k. Therefore,

if the problem WCNF 2-SAT+ is solvable in time 2o(n), then the problem Vertex

Cover is solvable in subexponential time. Since Vertex Cover is SNP-complete under

the SERF-reduction [15], this in consequence implies that all problems in SNP are

solvable in subexponential time.

Combining Lemma V.12 with Theorem V.6, Corollary V.7, and Theorem V.8,

we get

Theorem V.13 If the problem WCNF 2-SAT− is solvable in time f(k)mo(k) for

a function f , then all problems in SNP are solvable in subexponential time. This

theorem remains true even if we restrict the parameter values k by k ≤ µ(n) for any

nondecreasing and unbounded function µ.

Theorem V.14 For any nondecreasing and unbounded function µ satisfying µ(n) ≤

nε and µ(2n) ≤ 2µ(n), where ε is a fixed constant, 0 < ε < 1, if WCNF 2-SAT− is

solvable in time mo(k) for parameter values µ(n)/8 ≤ k ≤ 16µ(n), then all problems

in SNP are solvable in subexponential time.

E. Linear fpt-reductions and Lower Bounds

In the discussion of the problems WCS∗[t], we observed that besides the parameter k

and the circuit size m, the number n of input variables has played an important role

in the computational complexity of the problems. Unless unlikely collapses occur in
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parameterized complexity theory, the problems WCS∗[t] require computational time

f(k)nΩ(k)p(m), for any polynomial p and any function f . The dominating term in

the time bound depends on the number n of input variables in the circuits, instead

of the circuit size m. Note that the circuit size m can be of the order 2n.

Each instance (C, k) of a weighted circuit satisfiability problem such as WCS∗[t]

can be regarded as a search problem, in which we need to select k elements from

a search space consisting of a set of n input variables, and assign them the value 1

so that the circuit C is satisfied. Many well-known NP-hard problems have similar

formulations. We list some of them next:

Weighted CNF SAT (abbreviated WCNF-SAT): given a CNF formula F ,

and an integer k, decide if there is an assignment of weight k that satisfies

all clauses in F . Here the search space is the set of Boolean variables in

F .

Set Cover: given a collection F of subsets in a universal set U , and an

integer k, decide whether there is a subcollection of k subsets in F whose

union is equal to U . Here the search space is F .

Hitting Set: given a collection F of subsets in a universal set U , and an

integer k, decide if there is a subset S of k elements in U such that S

intersects every subset in F . Here the search space is U .

Many graph problems seek a subset of vertices that meet certain given conditions.

For these graph problems, the natural search space is the set of all vertices. For certain

problems, a polynomial time preprocessing on the input instance can significantly

reduce the size of the search space. For example, for finding a vertex cover of k

vertices in a graph G of n vertices, a polynomial time preprocessing can reduce the
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search space size to 2k (see Proposition II.1). In the following, we present a simple

algorithm for reducing the search space size for the Dominating Set problem.

Suppose we are looking for a dominating set of k vertices in a graph G. Without

loss of generality, we assume that G contains no isolated vertices (otherwise, we simply

include the isolated vertices in the dominating set and modify the graph G and the

parameter k accordingly). We say that the graph G has an IS-Clique partition (V1, V2)

if the vertices of G can be partitioned into two disjoint subsets V1 and V2 such that V1

makes an independent set while V2 induces a clique. If |V2| ≤ k, then the vertices in

V2 plus any k−|V2| vertices in V1 make a dominating set of k vertices in G. Thus, we

assume that |V2| > k. We claim that the graph G has a dominating set of k vertices

if and only if there are k vertices in V2 that make a dominating set for G. In fact,

suppose that G has a dominating set D of k vertices, in which k1 are in V1 and k2

are in V2, where k1 + k2 = k. Now for each vertex v in D ∩ V1 that has no neighbor

in D, we replace in D the vertex v by a neighbor u of v such that u is in V2 (such a

neighbor u must exist since V1 is an independent set and v is not an isolated vertex).

This process gives us a dominating set D′ of at most k vertices in G, where D′ is a

subset of V2. Adding a proper number of vertices in V2 to D′ then gives a dominating

set of exact k vertices in G.

Therefore, if we are looking for a dominating set of k vertices in a graph G with

an IS-Clique partition (V1, V2), we can restrict our search to the set of vertices in V2,

which thus makes a search space for the problem. Now we explain how to test if a

given graph G has an IS-Clique partition.

Lemma V.15 Let the vertices of G be ordered as {v1, v2, . . . , vn} such that deg(v1) ≤

deg(v2) ≤ · · · ≤ deg(vn) (where deg(vi) denotes the degree of the vertex vi). If

G = (V,E) has an IS-Clique partition, then either there is a vertex vi in G where vi

and its neighbors make a clique V2 such that (V −V2, V2) makes an IS-Clique partition
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for G, or there is an index h, 1 ≤ h ≤ n − 1, such that deg(vh) < deg(vh+1) and

({v1, . . . , vh}, {vh+1, . . . , vn}) is an IS-Clique partition for G.

Proof. Suppose that the graph G has an IS-Clique partition (V1, V2). We consider

three different cases. (1) If there is a vertex vi in V2 such that vi has no neighbor

in V1, then vi and its neighbors make exactly the set V2 and (V1, V2) is an IS-Clique

partition for G; (2) If there is a vertex vj in V1 that is adjacent to all vertices in V2,

then vj and its neighbors make the set V2 ∪ {vj}, and (V1 − {vj}, V2 ∪ {vj}) is an

IS-Clique partition for G; (3) If neither of (1) and (2) is the case, then each vertex in

V2 has degree at least |V2| and each vertex in V1 has degree at most |V2| − 1.

Using Lemma V.15, we can develop a simple algorithm of running time O(n3)

that tests if a given graph has an IS-Clique partition. Summarizing the above we

obtain the following preprocessing algorithm on an instance (G, k) of the Dominating

Set problem:

DS-Core(G, k)

1. if the graph G has no IS-Clique partition, then let U be the entire set of
vertices in G;
2. else construct an IS-Clique partition (V1, V2) for G;

if |V2| < k, Then let U be V2 plus any k − |V2| vertices in V1;
else let U = V2;

3. return U as the search space.

Fig. 11. The algorithm DS-Core

The parameterized problems discussed in the current chapter all share the prop-

erty that they seek a subset in a search space satisfying certain properties. In most of

the problems that we consider, the search space can be easily identified. For example,

the search space for each of the problems WCNF-SAT, Set Cover, and Hitting Set is

given as we described. For some other problems, such as Dominating Set, the search
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space can be identified by a polynomial time preprocessing algorithm (such as the

DS-Core algorithm Figure 11). If no polynomial time preprocessing algorithm is

known, then we simply pick the entire input instance as the search space. For exam-

ple, for the problems Independent Set and Clique, we will take the search space to be

the entire vertex set. Thus, each instance of our parameterized problems is associated

with a triple (k, n,m), where k is the parameter, n is the size of the search space, and

m is the size of the instance. We will call such an instance a (k, n,m)-instance.

Theorems V.10 and V.13 suggest that the problem WCS∗[t] in the class W [t]

for t ≥ 2 and the problem WCNF 2-SAT− in the class W [1] seem to have very high

parameterized complexity. In the following, we introduce a new reduction to identify

problems in the corresponding classes that are at least as difficult as these problems.

Definition V.16 A parameterized problem Q is linearly fpt-reducible (shortly fptl-

reducible) to a parameterized problem Q′ if there exist a function f and an algorithm

A of running time f(k)no(k)mO(1), such that on each (k, n,m)-instance x of Q, the

algorithm A produces a (k′, n′,m′)-instance x′ of Q′, where k′ = O(k), n′ = nO(1),

m′ = mO(1), and that x is a yes-instance of Q if and only if x′ is a yes-instance of Q′.

Definition V.17 A parameterized problem Q1 is W [1]-hard under the linear fpt-

reduction, shortly Wl[1]-hard, if the problem WCNF 2-SAT− is fptl-reducible to Q1.

A parameterized problem Qt is W [t]-hard under the linear fpt-reduction, shortly Wl[t]-

hard, for t ≥ 2 if the problem WCS∗[t] is fptl-reducible to Qt.

Based on the above definitions and using Theorem V.10 and Theorem V.13, we

immediately derive:

Theorem V.18 For t ≥ 2, no Wl[t]-hard parameterized problem can be solved in

time f(k)no(k)mO(1) for a function f , unless W [t − 1] = FPT. This remains true
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even if we restrict the parameter values k by k ≤ µ(n) for any nondecreasing and

unbounded function µ.

Theorem V.19 No Wl[1]-hard parameterized problem can be solved in time f(k)mo(k)

for a function f , unless all problems in SNP are solvable in subexponential time. This

remains true even if we restrict the parameter values k by k ≤ µ(n) for any nonde-

creasing and unbounded function µ.

Using the fptl-reduction, we can immediately derive computational lower bounds

for a large number of NP-hard parameterized problems.

Theorem V.20 The following parameterized problems are Wl[2]-hard: WCNF-SAT,

Set Cover, Hitting Set, and Dominating Set. Thus, unless W [1] = FPT, none of

them can be solved in time f(k)no(k)mO(1) for any function f . This theorem remains

true even if we restrict the parameter values k by k ≤ µ(n) for any nondecreasing and

unbounded function µ.

Proof. We highlight the fptl-reductions from WCS∗[2] = WCS+[2] to these prob-

lems, which are all we need. In fact, the reductions from WCS+[2] to the problems

WCNF-SAT, Hitting Set, and Set Cover are standard and straightforward, and hence

we leave them to the interested readers.

We present the fptl-reduction from WCS+[2] to Dominating Set here. Let (C, k)

be an instance of WCS+[2], where C is a monotone Π2-circuit. We construct a graph

GC associated with the circuit C as follows. First we remove any OR gate in C if

it receives inputs from all input gates (this kind of OR gates will be satisfied by any

assignment of weight larger than 0 anyway). Then we remove the output gate of C

and add an edge to each pair of input gates in C. This gives the graph GC . We

claim that the circuit C has a satisfying assignment of weight k if and only if the
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graph GC has a dominating set of k vertices. First observe that the graph GC has

a unique IS-Clique partition (V1, V2), where V1 is the set of all OR gates and V2 is

the set of all input gates. Therefore, by the discussion before Lemma V.15, if GC

has a dominating set D of k vertices, then we can assume that D is a subset of V2.

Now assigning the value 1 to the k input variables corresponding to the vertices in

D clearly gives a satisfying assignment of weight k for the circuit C. For the other

direction, from a satisfying assignment π of weight k for the circuit C, we can easily

verify that the k vertices in GC corresponding to the k input gates in C assigned the

value 1 by π make a dominating set for the graph GC . Finally, we point out that

this reduction keeps the parameter value k, the search space size n (assuming that

we apply the algorithm DS-Core to the Dominating Set problem), and the instance

size m all unchanged.

We remark that the reduction from WCS+[2] to Dominating Set presented in

the proof of Theorem V.20 also provides a new proof for the W [2]-hardness for the

problem Dominating Set, which seems to be significantly simpler than the original

proof given in [11].

Now we consider certain Wl[1]-hard problems. Define WCNF q-SAT, where q > 0

is a fixed integer, to be the parameterized problem consisting of the pairs (F, k),

where F is a CNF formula in which each clause contains at most q literals and F has

a satisfying assignment of weight k.

Theorem V.21 The following problems are Wl[1]-hard: WCNF q-SAT for any in-

teger q ≥ 2, Clique, and Independent Set. Thus, unless all problems in SNP are

solvable in subexponential time, none of them can be solved in time f(k)mo(k) for any

function f . This theorem remains true even if we restrict the parameter values k by

k ≤ µ(m) for any nondecreasing and unbounded function µ.
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Proof. The fptl-reductions from the problem WCNF 2SAT− to these problems

are all straightforward, and hence we leave the detailed verifications to the interested

readers.

Each of the problems in Theorem V.20 and Theorem V.21 can be solved by a

trivial algorithm of running time cnkm2, where c is an absolute constant, which simply

enumerates all possible subsets of k elements in the search space. Much research has

tended to seek new approaches to improve this trivial upper bound. One of the com-

mon approaches is to apply a more careful branch-and-bound search process trying to

optimize the manipulation of local structures before each branch [73, 74, 12, 75, 76].

Continuously improved algorithms for these problems have been developed based on

improved local structure manipulations. It has even been proposed to automate the

manipulation of local structures [47, 77] in order to further improve the computational

time.

Theorem V.20 and Theorem V.21, however, provide strong evidence that the

power of this approach is quite limited in principle. The lower bound f(k)nΩ(k)p(m)

for the problems in Theorem V.20 and the lower bound f(k)mΩ(k) for the problems

in Theorem V.21, where f can be any function and p can be any polynomial, indicate

that no local structure manipulation running in polynomial time or in time depending

only on the target value k will obviate the need for exhaustive enumerations.

Weaker lower bounds, under the same assumptions in parameterized complex-

ity theory, have been established previously [60] for the parameterized problems in

Theorem V.20 and Theorem V.21. The main results in [60] proved that, for the case

k =
√

n/ log n, an algorithm of running time no(k)mO(1) for the problems in The-

orem V.20 would imply W [1] = FPT, and an algorithm of running time mo(k) for

the problems in Theorem V.21 would imply that all problems in SNP are subexpo-
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nential time solvable. However, the results in [60] do not exclude the possibility of

algorithms of running time f(k)no(k)mO(1) for the problems in Theorem V.20, and

algorithms of running time f(k)mo(k) for the problems in Theorem V.21, where f can

be possibly a very large function. Moreover, the results in [60] do not claim lower

bounds for the problems when the parameter value k is not equal to
√

n/ log n. Note

that studying the complexity of NP-hard problems for parameter values other than
√

n/ log n, in particular for small parameter values, has been an interesting topic

in research [83, 84]. Moreover, after all, most research in parameterized complexity

theory assumes that the parameter values are small. Therefore, Theorem V.20 and

Theorem V.21 are very significant improvements over the results in [60].

One might suspect that a particular parameter value (e.g., a very small para-

meter value or a very large parameter value) would help solving the problems in

Theorem V.20 and Theorem V.21 more efficiently. This possibility is, unfortunately,

denied by the following theorems, which indicate that, essentially, the problems are

actually difficult for every parameter value.

Theorem V.22 For any constant ε, 0 < ε < 1, and any nondecreasing and un-

bounded function µ satisfying µ(n) ≤ nε, and µ(2n) ≤ 2µ(n), none of the problems

in Theorem V.20 can be solved in time no(k)mO(1) even if we restrict the parameter

values k to µ(n)/8 ≤ k ≤ 16µ(n), unless W [1] = FPT.

Proof. As described in the proof of Theorem V.20, each fptl-reduction from

WCS+[2] to a problem in Theorem V.20 runs in time mO(1) and keeps the parameter

value k and the search space size n unchanged. The theorem now follows directly

from this fact and Theorem V.11.

Note that the conditions on the function µ in Theorem V.22 are satisfied by
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most complexity functions, such as µ(n) = log log n and µ(n) = n4/5. Therefore, for

example, unless the unlikely collapse W [1] = FPT occurs, constructing a dominating

set of log log n vertices requires time nΩ(log log n)mO(1), and constructing a dominating

set of
√

n vertices requires time nΩ(
√

n)mO(1).

Similar results hold for the problems in Theorem V.21, by similar proofs based

on Theorem V.14.

Theorem V.23 For any constant ε, 0 < ε < 1, and any nondecreasing and un-

bounded function µ satisfying µ(n) ≤ nε, and µ(2n) ≤ 2µ(n), none of the problems in

Theorem V.21 can be solved in time mo(k) even if we restrict the parameter values k

to µ(n)/8 ≤ k ≤ 16µ(n), unless all problems in SNP are subexponential time solvable.

We observe that all problems in Theorem V.20 are also Wl[1]-hard. Thus, we can

actually claim stronger lower bounds for these problems in terms of the parameter

value k and the instance size m, based on a stronger assumption 4. This result will

be used in the next section.

Theorem V.24 All problems in Theorem V.20 are Wl[1]-hard. Hence, none of them

can be solved in time f(k)mo(k) for any function f , unless all SNP problems are

subexponential time solvable.

Proof. The fptl-reduction from WCNF 2-SAT− to WCNF-SAT is straightforward.

It is not difficult to verify that the fpt-reduction from WCNF-SAT to Dominating Set

described in [11], which was originally used to prove the W [2]-hardness for Dominating

Set, is actually an fptl-reduction. Finally, the fptl-reduction from Dominating Set to

Hitting Set, and the fptl-reduction from Hitting Set to Set Cover are simple and

4It can be shown that if W [1] = FPT then all problems in SNP are solvable in
subexponential time.
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left to the interested readers. The theorem now follows from the transitivity of the

fptl-reduction, which can be easily verified.

F. Lower Bounds on Approximation Schemes

In this section, we discuss how the Wl[1]-hardness of a problem can be used to derive

computational lower bounds for approximation algorithms for NP-hard problems. We

first give a brief review on the terminologies in approximation algorithms.

An NP optimization problem Q is a 4-tuple (IQ, SQ, fQ, optQ), where

1. IQ is the set of input instances. It is recognizable in polynomial time;

2. For each instance x ∈ IQ, SQ(x) is the set of feasible solutions for x, which is

defined by a polynomial p and a polynomial time computable predicate π (p

and π only depend on Q) as SQ(x) = {y : |y| ≤ p(|x|) and π(x, y)};

3. fQ(x, y) is the objective function mapping a pair x ∈ IQ and y ∈ SQ(x) to a

non-negative integer. The function fQ is computable in polynomial time;

4. optQ ∈ {max, min}. Q is called a maximization problem if optQ = max, and a

minimization problem if optQ = min.

An optimal solution y0 for an instance x ∈ IQ is a feasible solution in SQ(x) such

that fQ(x, y0) = optQ{fQ(x, z) | z ∈ SQ(x)}. We will denote by optQ(x) the value

optQ{fQ(x, z) | z ∈ SQ(x)}.

An algorithm A is an approximation algorithm for an NP optimization problem

Q if, for each input instance x in IQ, the algorithm A returns a feasible solution

yA(x) in SQ(x). The solution yA(x) has an approximation ratio r(n) if it satisfies the
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following condition:

optQ(x)/fQ(x, yA(x)) ≤ r(|x|) if Q is a maximization problem

fQ(x, yA(x))/optQ(x) ≤ r(|x|) if Q is a minimization problem

The approximation algorithm A has an approximation ratio r(m) if for any instance

x in IQ, the solution yA(x) constructed by the algorithm A has an approximation

ratio bounded by r(|x|).

An NP optimization problem Q has a polynomial time approximation scheme

(PTAS) if there is an algorithm AQ that takes a pair (x, ε) as input, where x is an

instance of Q and ε > 0 is a real number, and returns a feasible solution y for x such

that the approximation ratio of the solution y is bounded by 1+ ε, and for each fixed

ε > 0, the running time of the algorithm AQ is bounded by a polynomial of |x|.

We propose the following formal framework for parameterization of NP optimiza-

tion problems.

Definition V.25 Let Q = (IQ, SQ, fQ, optQ) be an NP optimization problem. The

parameterized version of Q is defined as follows:

1. If Q is a maximization problem, then the parameterized version of Q is defined

as Q≥ = {(x, k) | x ∈ IQ and optQ(x) ≥ k};

2. If Q is a minimization problem, then the parameterized version of Q is defined

as Q≤ = {(x, k) | x ∈ IQ and optQ(x) ≤ k}.

The above definition offers the possibility to study the relationship between the

approximability and the parameterized complexity of NP optimization problems.

Theorem V.26 Let Q be an NP optimization problem. If the parameterized ver-

sion of Q is Wl[1]-hard, then Q has no PTAS of running time f(1/ε)mo(1/ε) for any

function f , unless all problems in SNP are solvable in subexponential time.
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Proof. We consider the case that Q = (IQ, SQ, fQ, optQ) is a maximization problem

such that the parameterized version Q≥ of Q is Wl[1]-hard.

Suppose to the contrary that Q has a PTAS AQ of running time f(1/ε)mo(1/ε)

for a function f . We show how to use the algorithm AQ to solve the parameterized

problem Q≥. Consider the following algorithm A≥ for Q≥:

Algorithm A≥:

On an instance (x, k) of Q≥, call the PTAS algorithm AQ on x and ε =

1/(2k). Suppose that AQ returns a solution y in SQ(x). If fQ(x, y) ≥ k,

then return “yes”, otherwise return “no”.

We verify that the algorithm A≥ solves the parameterized problem Q≥. Since Q is

a maximization problem, if fQ(x, y) ≥ k then obviously optQ(x) ≥ k. Thus, the

algorithm A≥ returns a correct decision in this case. On the other hand, suppose

fQ(x, y) < k. Since fQ(x, y) is an integer, we have fQ(x, y) ≤ k − 1. Since AQ is a

PTAS for Q and ε = 1/(2k), we must have

optQ(x)/fQ(x, y) ≤ 1 + 1/(2k)

From this we get (note that fQ(x, y) < k)

optQ(x) ≤ fQ(x, y) + fQ(x, y)/(2k) ≤ k − 1 + 1/2 = k − 1/2 < k

Thus, in this case the algorithm A≥ also returns a correct decision. This proves

that the algorithm A≥ solves the parameterized version Q≥ of the problem Q. The

running time of the algorithm A≥ is dominated by that of the algorithm AQ, which

by our hypothesis is bounded by f(1/ε)mo(1/ε) = f(2k)mo(k). Thus, the Wl[1]-hard

problem Q≥ is solvable in time f(2k)mo(k). By Theorem V.19, all problems in SNP

are solvable in subexponential time.
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The proof is similar for the case when Q is a minimization problem, and hence

is omitted.

We demonstrate an application for Theorem V.26. We pick the NP-complete

problem Distinguishing Substring Selection as an example, which has drawn a lot

of attention recently because of its applications in computational biology such as in

drug generic design [79].

Consider all strings over a fixed alphabet. Denote by |s| the length of the string

s. The distance D(s1, s2) between two strings s1 and s2, |s1| ≤ |s2|, is defined as

follows. If |s1| = |s2|, then D(s1, s2) is the Hamming distance between s1 and s2,

and if |s1| ≤ |s2|, then D(s1, s2) is the minimum of D(s1, s
′
2) over all substrings s′2 of

length |s1| in s2.

Distinguishing Substring Selection (DSSP): given a tuple (n, Sb, Sg, db, dg),

where n, db, and dg are integers, db ≤ dg, Sb = {b1, . . . , bnb
} is the set of

(bad) strings, |bi| ≥ n, and Sg = {g1, . . . , gng
} is the set of (good) strings,

|gj| = n, either find a string s of length n such that D(s, bi) ≤ db for all

bi ∈ Sb, and D(s, gj) ≥ dg for all gj ∈ Sg, or report no such a string exists.

The DSSP problem is NP-hard [80]. Recently, Deng et al. [78] (see also [79])

developed an approximation algorithm Ad for DSSP in the following sense: for a

given instance x = (n, Sb, Sg, db, dg) for DSSP and a real number ε > 0, in case

x is a yes-instance, the algorithm Ad constructs a string s of length n such that

D(s, bi) ≤ db(1 + ε) for all bi ∈ Sb, and D(s, gj) ≥ dg(1 − ε) for all gj ∈ Sg. The

running time of the algorithm Ad is O(m(nb + ng)
O(1/ε6)), where m is the size of the

instance. Obviously, such an algorithm is not practical even for moderate values of

the error bound ε.
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The authors of [78] called their algorithm a “PTAS” for the DSSP problem.

Strictly speaking, neither the problem DSSP nor the algorithm in [78] conforms to

the standard definitions of an optimization problem and a PTAS. The DSSP problem

as defined above is a decision problem with no objective function specified, and it is

also not clear what precise ratio the error bound ε measures. We will call an algorithm

in the style of the one in [78] a “PTAS-[78]” for DSSP.

Since our lower bound techniques for PTAS given in Theorem V.26 are based on

the standard framework that has been widely used in the literature, we first propose

an optimization version of the DSSP problem, the DSSP-OPT problem, using the

standard definition of NP optimization problems. We then prove that a PTAS in the

standard definition for DSSP-OPT is equivalent to a PTAS-[78] for DSSP as given

in [78]. Using the systematical methods described above, we then prove that the

parameterized version of DSSP-OPT is Wl[1]-hard, which, by Theorem V.26, gives

a computational lower bound on PTAS for DSSP-OPT. As a byproduct, this also

shows that it is unlikely to have a practically efficient PTAS-[78] algorithm for the

DSSP problem.

Definition V.27 The DSSP-OPT problem is a tuple (ID, SD, fD, optD), where

• ID is the set of all (yes- and no-) instances in the decision version of DSSP;

• For an instance x = (n, Sb, Sg, db, dg) in ID, SD(x) is the set of all strings of

length n;

• For an instance x = (n, Sb, Sg, db, dg) in ID and a string s ∈ SD(x), the objective

function value fD(x, s) is defined to be the largest non-negative integer d such

that

(i) d ≤ dg;

(ii) D(s, bi) ≤ db(2 − d/dg) for all bi ∈ Sb; and
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(iii) D(s, gj) ≥ d for all gj ∈ Sg. If such an integer d does not exist, then define

fD(x, s) = 0;

• optD = max.

Note that for x ∈ ID and s ∈ SD(x), the value fD(x, s) can be computed in polynomial

time by checking each number d = 0, 1, . . . , dg ≤ n.

We first show that a PTAS for DSSP-OPT is equivalent to a PTAS-[78] for DSSP.

Since the PTAS-[78] for DSSP is only for yes-instances of DSSP, we will concentrate

on the performance of the algorithms for yes-instances of the problem DSSP.

Lemma V.28 The DSSP-OPT problem has a PTAS of running time φ(m, 1/ε) if

and only if there is an algorithm Ad of running time φ(m,O(1/ε)) for DSSP that for

any yes-instance of DSSP (n, Sb, Sg, db, dg) and ε > 0, constructs a string s of length

n such that D(s, bi) ≤ db(1+ε) for all bi ∈ Sb, and D(s, gj) ≥ dg(1−ε) for all gj ∈ Sg.

Proof. Since x = (n, Sb, Sg, db, dg) is assumed to be a yes-instance of the decision

problem DSSP, when x is regarded as an instance for the optimization problem DSSP-

OPT, we have optD(x) = dg.

Suppose the DSSP-OPT problem has a PTAS Ap of running time φ(m, 1/ε). We

show for a yes-instance x = (n, Sb, Sg, db, dg) and ε > 0 how to construct a string s

such that D(s, bi) ≤ db(1 + ε) for all bi ∈ Sb, and D(s, gj) ≥ dg(1 − ε) for all gj ∈ Sg.

Let ε′ = ε/(1− ε) (note that 1/ε′ = O(1/ε)). Apply the PTAS Ap on x and ε′, we get

a string sp of length n such that fD(x, sp) = dp, optD(x)/dp = dg/dp ≤ 1 + ε′, and

D(sp, bi) ≤ db(2 − dp/dg) for all bi ∈ Sb and D(sp, gj) ≥ dp for all gj ∈ Sg

Now from dp ≥ dg/(1 + ε′) = dg(1 − ε), we get D(sp, gj) ≥ dg(1 − ε) for all gj ∈ Sg.
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From

2 − dp/dg ≤ 2 − 1/(1 + ε′) = 1 + ε

we get D(sp, bi) ≤ db(1 + ε) for all bi ∈ Sb. The running time of the algorithm

Ap is φ(m, 1/ε′) = φ(m,O(1/ε)). This shows that a PTAS-[78] of running time

φ(m,O(1/ε)) for DSSP can be constructed based on the PTAS Ap for the DSSP-

OPT problem.

Conversely, suppose that we have a PTAS-[78] Ad of running time φ(m, 1/ε)

for DSSP. We show how to construct a PTAS for the DSSP-OPT problem. For an

instance x = (n, Sb, Sg, db, dg) of DSSP-OPT and ε > 0, we call the algorithm Ad on

x and ε′ = ε/(2 + 2ε). By our assumption, if x is a yes-instance, then the algorithm

Ad returns a string sd of length n such that D(sd, bi) ≤ db(1 + ε′) for all bi ∈ Sb,

and D(sd, gj) ≥ dg(1 − ε′) for all gj ∈ Sg. We first consider the value fD(x, sd) for

DSSP-OPT. Let d = dg − dε′dge. Then for each good string gj, we have

D(sd, gj) ≥ dg(1 − ε′) = dg − ε′dg ≥ dg − dε′dge = d

and since d = dg − dε′dge ≤ dg − ε′dg = dg(1 − ε′), for each bad string bi,

D(sd, bi) ≤ db(1 + ε′) = db(2 − (1 − ε′)) ≤ db(2 − d/dg)

By the definition of the function fD(x, sd), we have fD(x, sd) ≥ d = dg − dε′dge.

Now consider the ratio optD(x)/fD(x, sd) for the string sd. If ε′dg < 0.5, then

(note that db ≤ dg)

D(sd, bi) ≤ db(1 + ε′) < db + 0.5 and D(sd, gj) ≥ dg(1 − ε′) > dg − 0.5

Since all D(sd, bi), db, D(sd, gj), and dg are integers, we have D(sd, bi) ≤ db = db(2 −

dg/dg) for all bi ∈ Sb, and D(sd, gj) ≥ dg for all gj ∈ Sg. Therefore, we have

fD(x, sd) = dg and opt(x)/fD(x, sd) = 1. On the other hand, if ε′dg ≥ 0.5, then
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dg − dε′dge ≥ dg − 2ε′dg, and we have

opt(x)/fD(x, sd) ≤ dg/(dg − dε′dge) ≤ dg/(dg − 2ε′dg) = 1/(1 − 2ε′) = 1 + ε

Therefore, in all cases, the string sd produced by the algorithm Ad is a solution

of approximation ratio 1 + ε for the instance x of DSSP-OPT. Again, the running

time of the algorithm is dominated by that of Ad, which is bounded by φ(m, 1/ε′) =

φ(m,O(1/ε)).

This completes the proof of the lemma.

Lemma V.28 shows that a PTAS-[78] for the problem DSSP is also a PTAS in

the standard definition for the optimization problem DSSP-OPT.

Now using the standard parameterization of optimization problems, we can study

the parameterized complexity of the problem DSSP-OPT≥.

Lemma V.29 The parameterized problem DSSP-OPT≥ is Wl[1]-hard.

Proof. We prove the lemma by an fptl-reduction from the Wl[1]-hard problem

Dominating Set to the DSSP-OPT≥ problem (see Theorem V.24).

Let (G, k) be an instance of the Dominating Set problem. Suppose that the

graph G has n vertices v1, . . ., vn. Denote by vec(vi) the binary string of length n

in which all bits are 0 except the i-th bit is 1. The instance xG = (n′, Sb, Sg, db, dg)

for DSSP-OPT is constructed as follows: n′ = n + 5, Sg consists of a single string

g0 = 0n+5, db = k − 1, and dg = k + 3.

The bad string set Sb = {b1, . . . , bn} consists of n strings, where bi corresponds

to the vertex vi in G. Suppose the neighbors of the vertex vi in G are vi1 , . . ., vir ,
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then the string bi takes the form

vec(vi) · 02220 · vec(vi) · 00000 · vec(vi1) · 02220 · vec(vi1) ·

·00000 · · · · · 00000 · vec(vir) · 02220 · vec(vir)

where the dots “·” stand for string concatenations. It is easy to see that the size of xG

is bounded by a polynomial of the size of the graph G. Finally, we set the parameter

k′ = k + 3. Thus, (xG, k′) makes an instance for the DSSP-OPT≥ problem.

We prove that (G, k) is a yes-instance for Dominating Set if and only if (xG, k′)

is a yes-instance for DSSP-OPT≥. Suppose the graph G has a dominating set H of

k vertices. Let vec(H) be the binary string of length n whose h-th bit is 1 if and

only if vh ∈ H. Now consider the string s = vec(H) · 02220. Clearly D(s, g0) =

k + 3 = dg. For each bad string bi, since H is a dominating set, either vi ∈ H or a

vertex vj ∈ H is a neighbor of vi. If vi ∈ H then the substring b′i = vec(vi) · 02220

in bi satisfies D(s, b′i) = k − 1, and if a vertex vj ∈ H is a neighbor of vi, then

the substring b′i = vec(vj) · 02220 in bi satisfies D(s, b′i) = k − 1. This verifies that

D(s, bi) = k − 1 = db(2 − dg/dg) for all 1 ≤ i ≤ n. Thus, for the string s, we have

fD(xG, s) = optD(xG) = dg = k + 3 ≥ k′. In consequence, (xG, k′) is a yes-instance of

DSSP-OPT≥.

Conversely, suppose (xG, k′) is a yes-instance for the DSSP-OPT≥ problem. Then

there is a string s of length n + 5 such that fD(xG, s) = d ≥ k′ = k + 3. By the

definition, fD(xG, s) ≤ dg = k+3. Thus, we must have d = k+3. From the definition

of the integer d, we have D(s, g0) ≥ d = k+3, and D(s, bi) ≤ db(2−d/dg) = db = k−1

for all bad strings bi. Since g0 = 0n+5 and D(s, g0) ≥ k+3, s has at least k+3 “non-0”

bits. On the other hand, it is easy to see that each substring of length n+5 in any bad

string bi contains at most 4 “non-0” bits. Since D(s, bi) ≤ k − 1 for each bad string

bi, the string s should not contain more than k + 3 “non-0” bits. Thus, the string s
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has exactly k +3 “non-0” bits. Now consider any substring b′i of length n+5 in a bad

string bi such that D(s, b′i) ≤ k − 1. The substring b′i must contain “222”: otherwise

b′i has at most three “non-0” bits so D(s, b′i) ≤ k − 1 would not be possible. If the

substring“222” in b′i does not match three “2”’s in s, then s has at least k “non-0”

bits in other places while b′i has only one “non-0” bit in other place, so D(s, b′i) ≤ k−1

would not be possible. Thus, the string s must contain the substring “222”, which

matches the substring “222” in b′i. Finally, observe that we can always assume that

the string s ends with “02220” – otherwise we simply cyclically shift the string s to

move the substring “02220” to the end. Note if D(s, b′i) ≤ k − 1 and b′i is a substring

in a segment “00000 · vec(vj) · 02220 · vec(vj) · 00000” in the bad string bi, then after

shifting s, we must have D(s, b′′i ) ≤ k − 1, where b′′i = vec(vj) · 02220. Therefore, if s

is a solution to the instance (xG, k′), then so is the string after the cyclic shifting.

Thus, the string s can be assumed to have the form s′ · 02220, where s′ is a

string of length n, with exactly k “non-0” bits. Suppose that the j1-th, j2-th, . . .,

and jk-th bits of s′ are “non-0”. We claim that the vertex set Hs = {vj1 , . . . , vjk
}

makes a dominating set of k vertices for the graph G. In fact, for any bad string bi,

let b′i be a substring of length n + 5 in bi such that D(s, b′i) ≤ k − 1. According to

the above discussion, b′i must be of the form vec(vj) · 02220, where either vj = vi or

vj is a neighbor of vi. The only “non-0” bit in vec(vj) is the j-th bit, and j must be

among {j1, . . . , jk} – otherwise D(vec(vj), s
′) is at least k + 1. Therefore, if vi = vj

then vi ∈ Hs, and if vj is a neighbor of vi, then vi is adjacent to the vertex vj in

Hs. This proves that Hs is a dominating set of k vertices in G, and that (G, k) is a

yes-instance for Dominating Set.

This completes the proof that the problem Dominating Set is fptl-reducible to

the problem DSSP-OPT≥. In consequence, DSSP-OPT≥ is Wl[1]-hard.

We remark that the problem Dominating Set is W [2]-hard under the regular
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fpt-reduction [11]. Therefore, the proof of Lemma V.29 actually shows that the

DSSP-OPT≥ problem is W [2]-hard. This improves the result in [80], which proved

that the problem is W [1]-hard.

From Lemma V.29 and Theorem V.26, we get immediately

Theorem V.30 Unless all SNP problems are solvable in subexponential time, the

optimization problem DSSP-OPT has no PTAS of running time f(1/ε)mo(1/ε) for

any function f .

By Lemma V.28, a PTAS-[78] of running time f(1/ε)mo(1/ε) for DSSP would im-

ply a PTAS of running time f ′(1/ε)mo(1/ε) for DSSP-OPT for a function f ′. There-

fore, Theorem V.30 also implies that any PTAS-[78] for DSSP cannot run in time

f(1/ε)mo(1/ε) for any function f . Thus essentially, no PTAS-[78] for DSSP can be

practically efficient even for moderate values of the error bound ε. To the authors’

knowledge, this is the first time a specific lower bound is derived on the running time

of a PTAS for an NP-hard problem.

Theorem V.30 also demonstrates the usefulness of our techniques. In most cases,

computational lower bounds and inapproximability of optimization problems are de-

rived based on approximation ratio-preserving reductions [2], by which if a problem

Q1 is reduced to another problem Q2, then Q2 is at least as hard as Q1. In particular,

if Q1 is reduced to Q2 under an approximation ratio-preserving reduction, then the

approximability of Q2 is at least as difficult as that of Q1. Therefore, the intractabil-

ity of an “easier” problem in general cannot be derived using such a reduction from a

“harder” problem. On the other hand, our computational lower bound on DSSP-OPT

was obtained by a linear fpt-reduction from Dominating Set. It is well-known that

Dominating Set has no polynomial time approximation algorithms of constant ratio

[2], while DSSP-OPT has PTAS. Thus, from the viewpoint of approximability, Dom-
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inating Set is much harder than DSSP-OPT, and our linear fpt-reduction reduces

a harder problem to an easier problem. This hints that our approach for deriving

computational lower bounds cannot be simply replaced by the standard approaches

based on approximation ratio-preserving reductions.

G. Comments

In this chapter, based on parameterized complexity theory, we developed new tech-

niques for deriving computational lower bounds for well-known NP-hard problems.

We started by establishing the computational lower bounds for the generic parame-

terized problems WCS∗[t] for t ≥ 2 and WCNF 2-SAT−. We showed that for any

integer t ≥ 2, an f(k)no(k)mO(1)-time algorithm for WCS∗[t] for any function f would

collapse the (t − 1)-st level W [t − 1] to the bottom level FPT in the fixed-parameter

intractability hierarchy, the W-hierarchy, and that an f(k)mo(k)-time algorithm for

WCNF 2-SAT− would imply subexponential time algorithms for all problems in SNP.

Based on these generic results, we introduced the concept of linear fpt-reductions, and

used it to derive tight computational lower bounds for many well-known NP-hard

problems. Obviously, the list of the problems we have given here is far from being ex-

haustive. This new technique should serve as a very powerful tool for deriving strong

computational lower bounds for other intractable problems. Moreover, we demon-

strated how our techniques can be used to derive strong computational lower bounds

on polynomial time approximation schemes for NP-hard problems. This seems to

open a new direction for the study of computational lower bounds on the approxima-

bility of NP-hard optimization problems.
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CHAPTER VI

SUMMARY AND FUTURE RESEARCH

In this dissertation, we took a structural approach in designing efficient parameterized

algorithms for a set of well-known NP-hard problems and proving strong lower bounds

for some others. Many of the techniques introduced in this dissertation have the

potential to deliver further improved algorithms and tighter lower bounds in the

future.

A. Thesis Summary

We designed new algorithms for some of the most well studied NP-hard problems. In

particular, we presented a new algorithm for Vertex Cover that is simpler than most

of the previous algorithms, yet has better performance than all of them, including

those using exponential space. For Vertex Cover on graphs with degree bounded

by three, we presented a still better algorithm by introducing a more global way

of analyzing the search tree. For other graph problems on graphs with constrained

genus, we showed that the graph genus is the major factor in determining their

parameterized complexity, approximability, and subexponential computability. Of

particular interest in this exposition are the new techniques introduced in designing

the above algorithms.

We developed a set of new techniques that allowed us to provide convincing ev-

idence that it is unlikely to do much better than the brute-force algorithm in solving

some of the well-known intractable problems, including Clique, Dominating Set, Hit-

ting Set, Set Cover, and Independent Set. The same techniques were also applied

to derive lower bounds on the running time of approximation algorithms for many

practical problems.
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B. Future Work

1. Improve the Upper Bounds for Independent Set

Vertex Cover and Independent Set are closely related. In fact, if C is a minimum

vertex cover of a graph G, then V −C constitutes a maximum independent set. The

rich structural properties and techniques that we have developed for Vertex Cover

are naturally applicable for finding maximum independent set. Exactly algorithms

for Maximum Independent Set have been extensively studied over the years [46, 28,

77, 45]. However, it seems to be difficult to make further progress on this problem. In

fact, the number of cases in [77] has reached a point where much of the most detailed

analysis has to be done by computers.

Our parameterized algorithm for Vertex Cover is in its current form an algorithm

for Independent Set. By a simple relation between the number of vertices in a graph

and the size of its vertex cover, the algorithm induces improvement on the upper

bound for the Independent Set problem on graphs of degree bounded by 6. Note

that most of the techniques for Vertex Cover, including tuple, struction, and general

folding work quite well for Independent Set. A more careful analysis or some modified

form of the current algorithm may yield an improved upper bound for Independent

Set on general graphs.

2. Tighter Analysis of Search Tree

Until recently, most of the efficient parameterized algorithms are based on refined

branch-and-bound method. This method is generally efficient in practice. However,

in order to prove bounds on the running time, a lot of special cases have to made just

for the propose of the proof. Furthermore, in analyzing a search tree representing a

branch-and-bound algorithm, the common approach is to prove that every branching
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satisfies certain condition, which is difficult and the result is usually far from being

tight.

Our method of “almost-global” amortized analysis on paths of the search tree is

the first step toward a “global” analysis of the search tree. This new method opens

a new direction in the analysis of the running time of exact algorithms for NP-hard

problems that are based on branch-and-bound. Instead of looking at sophisticated

algorithms and deriving an easy but conservative upper bound on the size of the search

tree, we can consider instead very simple and intuitive algorithms, and perform an

amortized analysis that reflects more closely the actual size of the search tree. We

believe that this method of analysis is applicable to a variety of NP-hard problems.

A natural extension of this method is to apply global analyze to the search tree as

a whole, thus balance all branchings in the entire search tree. This could potentially

yield much better bound without making the algorithm complex and the analysis

tedious.

3. Techniques for Designing Efficient Parameterized Algorithms

Parameterized computation was introduced under practical motivation [11]. That

is to design efficient algorithms for problems arising in real applications. While it

is important to proving better upper bounds for parameterized problems in theory,

emphasis should be placed on performances of the parameterized algorithms in prac-

tice. For example, a common technique for designing parameterized algorithms is a

randomized method, called the color-coding method proposed by Alon, Yuster and

Zwick [21]. Some recent efforts are focused on making this technique more practical

in real applications [85].

Another interesting technique for designing efficient parameterized algorithms

is the “kernelization” technique, which has been used in designing parameterized



187

algorithms for Vertex Cover in Proposition II.1. Smaller kernels for parameterized

problems have been extensively studied in recent years. For example, Alber et al.

[71] presented a data reduction algorithm, and showed that it reduces the Planar

Dominating Set problem to a kernel of size bounded by 335k. This kernel was further

reduced to 67 [86]. We believe that smaller kernels of NP-hard problems not only

induce fixed-parameter tractable algorithms for them, but could also improve other

types of algorithms for them by significantly reducing the size of the instances.

4. Graph Genus and Computational Complexity

Our results showed that a class of NP-hard graph problems, including some very well-

known ones, become more tractable on lower genus graphs. It is interesting to compare

our results to the results in [87], which shows that certain other NP-hard problems

become more tractable on dense graphs, for which the graph genus is necessarily high.

We notice that the problems studied in [87] are most graph cutting problems, such as

Max-Cut, and Graph-Bisection, while problems studied in this dissertation are vertex

subset problems. A systematical study of the difference between these two kinds of

NP-hard problems looks rather appealing.

Our results on the genus threshold for fixed parameter tractability and subexpo-

nential time computability (Sections B and C of Chapter IV) are tight. Our results

on polynomial time approximation schemes (Section D of Chapter IV), however, have

a gap between o(n/ log n) and Ω(n) on the genus bound. According to [68], when

the graph genus is o(n), there is a set of o(n) vertices whose removal results in a

planar graph. However, no algorithm is known that efficiently constructs such a set.

It should be interesting and seems to be possible to close the above genus gap.
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5. Stronger Lower Bounds

We have provided convincing evidence that it is unlikely to do much better than

the brute-force algorithm in solving some of the well-known intractable problems.

However, there is still a gap between the known upper bounds and the proven lower

bounds. It will be interesting if we could prove any lower bounds beyond the subexpo-

nential running time, based on parameterized complexity hypothesis. For example,

whether or not we could prove that Clique cannot be solved in time nck for some

constant c ≥ 0 unless an unlikely collapse occurs in parameterized complexity theory.

We have also proved lower bounds on the running time of approximation algo-

rithms for some practical problems. An interesting open problem is to study whether

or not parameterized complexity hypothesis will lead to inapproximability results.

Currently, we are only able to prove that some problems don’t have certain approxi-

mation schemes under plausible assumptions.

We are also interested in establishing lower bounds and inapproximability results

on weaker assumptions. For example, currently, we are only able to prove that Vertex

Cover is not solvable in subexponential time unless all problems in the class MAXSNP

is solvable in subexponential time. An obvious improvement is to establish the same

lower bonds on the weaker assumption that W[1] 6= FPT.

Recently, some efforts have been focused on finding subexponential approxima-

tion algorithms of improved ratio for problems such as Vertex Cover or proving that

such algorithms do not exist. Lower bounds or inapproximability results on such

problems would shed light on the inherent difficulties in approximating these prob-

lems.
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