DESIGN AND ANALYSIS OF DISTRIBUTED PRIMITIVES FOR MOBILE AD HOC
 NETWORKS

A Dissertation
by
YU CHEN

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2005

Major Subject: Computer Science

DESIGN AND ANALYSIS OF DISTRIBUTED PRIMITIVES FOR MOBILE AD HOC NETWORKS

A Dissertation
by
YU CHEN

Submitted to the Office of Graduate Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Approved by:
Chair of Committee, Jennifer L. Welch
Committee Members, Riccardo Bettati
Jianer Chen
Weiping Shi
Head of Department, Valerie E. Taylor

August 2005

Major Subject: Computer Science

Abstract

Design and Analysis of Distributed Primitives for Mobile Ad Hoc Networks.

(August 2005)

Yu Chen, B. Eng.; M.S., Zhejiang University, P. R. China
Chair of Advisory Committee: Dr. Jennifer L. Welch

This dissertation focuses on the design and analysis of distributed primitives for mobile ad hoc networks, in which mobile hosts are free to move arbitrarily. Arbitrary mobility adds unpredictability to the topology changes experienced by the network, which poses a serious challenge for the design and analysis of reliable protocols. In this work, three different approaches are used to handle mobility. The first part of the dissertation employs the simple technique of ignoring the mobility and showing a lower bound for the static case, which also holds in the mobile case. In particular, a lower bound on the worstcase running time of a previously known token circulation algorithm is proved. In the second part of the dissertation, a self-stabilizing mutual exclusion algorithm is proposed for mobile ad hoc networks, which is based on dynamic virtual rings formed by circulating tokens. The difficulties resulting from mobility are dealt with in the analysis by showing which properties hold for several kinds of mobile behavior; in particular, it is shown that mutual exclusion always holds and different levels of progress hold depending on how the mobility affects the token circulation. The third part of the dissertation presents two broadcasting protocols which propagate a message from a source node to all of the nodes in the network. Instead of relying on the frequently changing topology, the protocols depend on a less frequently changing and more stable characteristic - the distribution of mobile hosts. Constraints on distribution and mobility of mobile nodes are given which guarantee that all the nodes receive the broadcast data.

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. Jennifer L. Welch, for her inspiring and encouraging guidance in the exciting field of distributed computing and her invaluable comments during the work on this dissertation. I truly appreciate her patience, encouragement, advice and research support throughout my Ph.D study. The methodology and philosophy that I learned in my research will definitely benefit my career for life.

I want to express my gratitude to the members of my advisory committee, Dr. Riccardo Bettati, Dr. Jianer Chen, and Dr. Weiping Shi, for their valuable comments and earnest help. Special thanks to Dr. Nitin H. Vaidya for many helpful suggestions.

I also thank the fellow students in my research group, Guangtong Cao, Cheng Shao, Nicholas Neuman, Sangeeta Bhattacharya, Rajan Chandra and Vijay Balasubramanian for their collaborations.

Finally, I would like to thank my parents and my family. I could not have gone through this long journey without their constant love and support. I love them so much.

TABLE OF CONTENTS

CHAPTER Page
I INTRODUCTION 1
II RELATED WORK 3
A. Related Work on Token Circulation 3
B. Related Work on Mutual Exclusion 4
C. Related Work on Broadcasting 5
III SYSTEM MODEL 7
IV TOKEN CIRCULATION IN MOBILE AD HOC NETWORKS 9
A. Introduction 9
B. Analysis of Local Recency (LR) Algorithm 9
V SELF-STABILIZING MUTUAL EXCLUSION IN MOBILE AD HOC NETWORKS 18
A. Introduction 18
B. Motivation 20
C. System Model 22
D. Problem Definition 24
E. Algorithm Overview 26
F. Algorithm 28

1. Token Circulation Algorithm: $L R_{L}$ 28
2. Data Structures 29
3. Interfaces to the Application 31
4. Mutual Exclusion Algorithm 32
5. Code 36
G. Correctness 41
6. Properties of Execution 44
7. Safe Properties of m-tokens 45
8. Safe Properties of Non-member 51
9. Eventual Convergence 57
10. Mutual Exclusion after Convergence 59
11. Progress 62
H. Remarks 64
CHAPTER Page
VI LOCATION BASED BROADCASTING 67
A. System Model - Dense Mobile Ad Hoc Network 70
12. Communication and Computation Model 70
13. Mobility and Distribution of Mobile Nodes 71
14. Problem Definition and Protocol Stack 72
B. Overview of Our Approaches 73
C. Construction of Virtual Graph 76
D. Message Forwarding 79
15. Forwarding 80
16. Complexity 81
17. Discussion 88
E. Approach DFS 90
18. Selection of u 91
19. Code 92
20. Constraints and Complexity 92
F. Approach SF 94
21. Selection of u 96
22. Scheduled Forwarding 96
23. Code 99
24. Constraints and Complexity 99
VII CONCLUSION 105
REFERENCES 107
VITA 116

LIST OF TABLES

TABLE Page
I Denotations 30
II Timers' reset values 31
III Fields on tokens and variables at processors 66
IV Comparion of two approaches 76
V Sample values of $v_{\max }$ for DFS 95
VI Sample values of $v_{\max }$ for SF 104

LIST OF FIGURES

FIGURE

1 Token circulation algorithm: LR 9
2 A directed graph with exponential round length 10

Construction of G_{k}. 15
6 Token circulation algorithm: $L R_{L}$ 30
7 Predicate $c s_{i}$ for p_{i} to enter the critical section 36
8 Event $\operatorname{join}_{i}()$ on $p_{i}, i \neq 0$ 36 6
9 Event leave $i()$ on $p_{i}, i \neq 0$ 37
10 Event generate $e_{0}^{m}()$ on p_{0} 37
11 3812

Page10

3 A unit disk graph satisfying $F P$ 14
A unit disk graph satisfying $F P$15

A counter-example on a virtual ring with non-FIFO virtual links 22,
Event receive $e_{0}^{m}(m$-token $t)$ on p_{0} 39
Event: receive ${ }_{0}^{j}\left(j\right.$-token $\left.t_{j}\right)$ on p_{0} 40
Event $\operatorname{send}_{i}^{j}()$ on $p_{i}, i \neq 0$ 40
Event receive $_{i}^{j}\left(j\right.$-token $\left.t_{j}\right)$ on $p_{i}, i \neq 0$ 41
Event receive $_{i}^{m}(m$-token $t)$ on $p_{i}, i \neq 0$ 42
Organization of proof 43
Definition of phases 45
Proof of Mutual Exclusion after convergence 60
FIGURE Page
20 Communication primitives 71
21
An example of $V(x)$: Grid distribution of nodes 73
22
Protocol stack 74
23 Virtual graph of a network 77
24 $\operatorname{Rep}(A)$ and $\operatorname{cover}(A)$ 78
25 Function forward 82
26 $\operatorname{receipt}_{N}$ on node p in step t 83
27 Precondition of Event receipt(Message m, Cell from_cell) 83
28 Precondition of broadcast_recv(Data data) 83
29 A sufficient condition for E_{P} to converge 87
30 An example of network satisfying condition 6.1 88
31 Selection of u for DFS 91
32 DFS token circulation on the virtual graph 93
33 Selection of u 96
34 Scheduled forward 100
35 Simple flooding on the virtual graph 101

CHAPTER I

INTRODUCTION

Mobile ad hoc networks consist of mobile hosts, which are free to move arbitrarily. The communication between the mobile hosts depends on their positions and transmission ranges, so the communication topology may change with time as the hosts move into and go out of each other's transmission range. The technology of mobile ad hoc networking is becoming increasingly prevalent and it has been an active research area.

A major obstacle in design and analysis of distributed primitives for mobile ad hoc networks is the movement of mobile nodes. Arbitrary mobility adds unpredictability to the topology changes, which is a big challenge in the analysis of protocols' performance and design of reliable protocols. Due to the complication introduced by arbitrary topology changes, there is little theoretical analysis of algorithms for mobile scenarios. The most common way to examine a protocol's behavior is simulation, which should match as closely as possible the reality. However, the results in [1] indicate that significant divergences exist between the most popular simulators, including OPNET Modeler[2], NS-2 [3] and GloMoSim [4]. Thus simulation results alone might not give enough meaningful information about protocols' performance - sometimes theoretical analysis is required to complement simulation. Furthermore, unpredictable topology changes prevent most protocols from providing fully reliable service. Most of the protocols designed for mobile ad hoc networks use a best-effort strategy: protocols try their best to provide services, but service qualities are not guaranteed. In our work, we use three approaches to handle the complications introduced by mobility.

Our first approach is to reduce the problem in mobile scenarios to a simpler and solv-
able case, in which the analysis can still provide meaningful information. In chapter IV we focus on a token circulation algorithm, LR, which shows quite good performance in terms of round length in simulations [5], where round length is the number of node visits made by the token in order to visit all the nodes of the network. The goal is to provide an idea of how bad the performance of LR could be in mobile scenarios. Our analysis is done for static cases (the results appeared in [6]). We give a loose upper bound and a rigorous worst-case analysis on the round length. Since the performance cannot be better with mobility, this analysis gives us an idea of the algorithm's performance in the worst case in the presence of mobility: in particular, the worst case behavior with mobility cannot be better than the worst case for static networks.

Our second approach is to guarantee some aspects of the service unconditionally and provide different level of the others under different mobility conditions [7] [8]. In our work on self-stabilizing mutual exclusion (chapter V), the mutual exclusion property is always guaranteed without constraints on mobility and different levels of progress are guaranteed under different levels of constraints on mobility. A preliminary version of this algorithm appeared in [7] and the journal version has been accepted by [9].

Our third approach to handle mobility is to eliminate, based on the specific conditions of the network, as much as possible the impact on the protocols of the changing communication topology. Usually protocols designed for mobile networks depend on the communication topology, and its unpredictability prevents them from providing reliable services. In chapter VI, we focus on broadcasting problem in dense mobile networks, in which mobile nodes keep moving but their distribution is fairly stable. Instead of relying on the frequently changing communication topology, our algorithms depend on a less frequently changing and more stable characteristic - the distribution of mobile nodes. We also provided specific constraints on the distribution and mobility of mobile nodes to guarantee that all the nodes receive the broadcast data.

CHAPTER II

RELATED WORK

The technology of mobile ad hoc networking is becoming increasingly prevalent and it has been an active research area. Much of the work in this area has focused on routing and medium access control protocols ([10], [11], [12], [13], [14]). Past work on distributed services focused on non-fault-tolerant algorithms (e.g. leader election [15][16], token circulation [5] and mutual exclusion [17]). A survey of distributed algorithms for mobile ad hoc networks can be found in [8]. In this chapter, we provide the related work on token circulation, mutual exclusion and broadcasting respectively.

A. Related Work on Token Circulation

Token circulation can be used to implement totally ordered message delivery in a group all nodes in a group receive all messages in an identical order. One approach is to assign each message a globally unique sequence number, which can be maintained by a token. In $[18,19]$, a token carries a sequence number and is circulated through all the nodes. When a node receives the token, it gets the sequence number from the token and assigns it to the pending message which is sent to the group members; the sequence number in the token is incremented by one. Total order can also be achieved by storing messages in the token the order in which messages are added to the token determines the order in which they are delivered to the nodes [20, 21].

Several distributed token circulation algorithms for mobile ad hoc networks are studied in [5], in which the LR algorithm is introduced. Some of the proposed algorithms are aware of, and adapt to changes in, the ad hoc network topology. Comparison between the proposed algorithms is performed using simulation results obtained from a detailed simulation model (with ns-2 simulator). Our analysis results focus on the LR algorithm.

The results were added to [5] and can be found in its journal version [6].

B. Related Work on Mutual Exclusion

Mutual exclusion can be solved by circulating a token throughout the system in an appropriate way; when a processor has the token, it can enter the critical section. If the token circulation algorithm ensures that no more than one token exists in the system and every processor gets it infinitely often, clearly this simple approach to solving mutual exclusion is correct. Self-stabilizing mutual exclusion [22] and token circulation algorithms [23][24] have been designed for static networks. However, after they converge, they do not guarantee mutual exclusion in the presence of ongoing topology changes.

One paper on self-stabilization for mobile ad hoc networks is [25], in which a selfstabilizing group communication using random walk is proposed. In contrast to the probabilistic protocol in [25], our algorithm is deterministic. Both algorithms use tokens or agents to control processors' behavior, but they differ in many aspects, including how the tokens or agents are forwarded, how membership is maintained and how to handle mobility. Other work on self-stabilization for mobile situations includes a "weakly" self-stabilizing leader election algorithm in [26]. Self-stabilization can be used to handle the topology changes in dynamic distributed system ([27], [28], [29]). A comprehensive bibliography on self-stabilization is given in [30]. A survey of fault-tolerant algorithms for mobile ad hoc networks can be found in [8].

A preliminary version of our algorithm appears in [7]. Simultaneously and independently, [31] presented a non-fault-tolerant mutual exclusion algorithm in which the ring is also built dynamically according to the current physical proximity of nodes. The journal version has been accepted by [9].

C. Related Work on Broadcasting

Traditional broadcast algorithms for radio networks (e.g., [32]) usually rely on knowledge of the network topology. Mobility is not considered and the algorithms are not adaptive to topology changes. The best known broadcasting protocol [32] for undirected radio networks in which nodes do not transmit until they receive a message has time complexity $O(n \log n)$, where n is the number of nodes. If we apply these algorithms in dense networks, the complexity will be very high due to the large number of nodes. A lower bound of $\Omega\left((n \log n) /\left(\log \frac{n}{D}\right)\right)$ on time complexity is also provided in [32], where D is the diameter of the network. Denoting the area of the network by \mathcal{A} and the transmission range by R, our approaches achieve $O\left(\mathcal{A} / R^{2}\right)$ time complexity for a special case group of networks with certain properties.

Broadcasting protocols [33, 34, 35, 36, 37, 38] designed for mobile ad hoc networks have been heavily studied recently. Their performances are evaluated by simulations and little theoretical analysis is provided. A comparison of broadcasting techniques for mobile ad hoc networks is presented in [39]. Location information is used in area-based broadcasting in [33]: an intermediate node retransmits only when significant additional area could be reached. But applying this method in a dense network will result in many collisions since nodes at the boundary of the sender's transmission distance will retransmit simultaneously.

Position information has been used in routing protocols for mobile ad hoc networks; examples are $[40,41,42,43,44,45,46,47,48]$. Most of the existing position-based routing algorithms forward the packet on straight lines between source and destination: when a node receives a packet, it selects a neighbor [41] or all neighbors [43, 44] in the general direction of the destination to forward the packet. But routing along the shortest path is not always the best option since partitions may occur due to battery overuse along these popular shortest paths. Another problem introduced in this method is called local maximum

- in some situations forwarding along straight lines is not possible due to obstacles or holes in distribution of mobile nodes. In order to handle the local maximum problem, face routing (e.g., [47]) has been proposed to route packets around the obstacles or holes. Nonstraight trajectories are considered in trajectory-based routing [48], in which packets follow a trajectory established at the source, and each intermediate node takes a greedy decision of the next hop based on local position information. Since the trajectory is established before packet propagation, knowledge about the distribution of mobile nodes and the battery states of nodes is important to design an efficient trajectory. Discussion on how to handle the dynamic situation is provided in [48]. A survey of position-based routing in mobile ad hoc networks can be found in [14]. The most important differences between our approach and the existing work are that, in our approach the location-based paths are decided online during message forwarding and no knowledge about the distribution of mobile nodes is required a priori. These properties are desirable in mobile ad hoc networks, in which global knowledge might not be available and the system keeps changing.

CHAPTER III

SYSTEM MODEL

Mobile ad hoc networks consist of computing entities or mobile hosts, which are free to move arbitrarily. Mobile ad hoc networks have several salient characteristics, such as dynamic topologies, bandwidth-constrained links and limited power supplies. Mobile hosts are equipped with wireless transmitters and receivers, and the communication between the mobile hosts depends on their positions and transmission ranges. The communication ability between pairs of mobile hosts can be represented by a directed graph: each vertex v_{i} represents a mobile processor p_{i} and there is a directed link from vertex v_{i} to vertex v_{j} if and only if mobile processor p_{j} is within the transmission range of mobile processor p_{i}.

An important characteristic of the wireless medium is that if more than one neighbor of a node are transmitting at the same time, then a collision occurs. Different systems have different ability to detect collisions. The wireless communication can be synchronous or asynchronous. In our work on broadcasting problem (Chapter VI), we assume nodes can distinguish between the background noise and the interference noise, that is, a mechanism is available to detect collision. We also assume synchronous communication, in which the communication is structured into time-slots. Details of the system model of our broadcasting protocols is presented in Chapter VI.

Basic communication service between adjacent processors can be provided on the top of the physical layer. In our work on token circulation and mutual exclusion (Chapter IV and Chapter V), the distributed services assume the existence of a basic communication service between adjacent processors and the physical details of the wireless communication are hidden from the distributed protocols. In Chapter V, we list more specific assumptions required for our mutual exclusion algorithm.

We use the message passing model, in which each processor has an incoming queue.

Messages in transit are modeled as being in the incoming queues of the receiving processors. Given a mobile ad hoc network, a configuration of the network at some point in time can be described by the local state of each processor, the state of the incoming queue of each processor and the communication topology. There are two kinds of events in mobile ad hoc networks: local computation events and topology changes. A local computation event is initiated by the receipt of a message, the receipt of a request from the application, or a timeout expiring if timers are available. A local computation event changes the state of the processor at which it occurs, and enqueues messages in the incoming queues of neighboring processors. A topology change event changes the topology. An execution of an algorithm in a mobile ad hoc network is an alternating sequence of configurations and timed events $c_{0}, e_{1}, c_{1}, e_{2}, \ldots$ satisfying the following: (1) The real times of the events form a monotonically increasing sequence; if the execution is infinite, then the times increase without bound. (2) Messages are generated, sent and received in ways that are consistent with the assumptions made for the particular algorithm. (3) Each configuration after the first follows appropriately from the previous, according to the specification of the intervening event.

CHAPTER IV

TOKEN CIRCULATION IN MOBILE AD HOC NETWORKS

A. Introduction

In this chapter, we present theoretical analyses of a distributed token circulation algorithm that causes a token to continually circulate through all the nodes of a network. When a token is circulated, a round is said to complete when every node has been visited by this token at least once. The length of a round is the number of node visits made by the token in one round. We give a rigorous worst-case analysis of the Local-Recency (LR) token circulation algorithm in static networks, which shows quite good performance in simulations. The results appeared in [6].

B. Analysis of Local Recency (LR) Algorithm

The LR algorithm is introduced in [5]. In LR, the token contains a timestamp for each mobile node indicating when the mobile node received the token most recently. The token is forwarded to the neighbor which has been visited least recently. The pseudocode is presented in Figure 1.

LR_initialize (token t):
1 t.ts $=[0,0, \cdots, 0] ;$
$L R_{-}$forward $($token $t)$:
$2 t . t s[i]=\max (t . t s)+1$;
4 next = index of $t . t s$ entry among all neighbors of p_{i} with minimum value (break ties by id);
5 send t to $p_{\text {next }}$;

Fig. 1. Token circulation algorithm: $L R$

Fig. 2. A directed graph with exponential round length

Compared to all the algorithms presented in [5], LR shows quite good performance in both static and dynamic simulations. In particular, the round length is very close to the optimal round length of n. However, our attempts to prove a good upper bound on the behavior of the LR algorithm, in the static case, were not successful. Surprisingly, we are able to exhibit a class of graphs for which the worst-case round length of LR is exponential in the number of nodes in the graph.

If the topology graph is directed, then the LR algorithm can have exponential behavior [49]. In particular, on the graph in Figure 2, the LR algorithm has round length $2^{(n+1) / 2}-1$. This is the same graph on which a random walk requires exponential expected time to visit every node. However, when this graph has undirected edges, the LR round length is only $O(n):$ if $n=4 k-1, k \geq 0$, the round length is $(5 n-3) / 4$ for all the rounds; if $n=4 k+1$, $k>0$, the length of the first round is $(5 n-1) / 4$ and the length of the subsequent rounds is $(7 n-15) / 4$.

The rest of this chapter is devoted to showing exponential upper and lower bounds on the worst-case round length of the LR algorithm when the topology graph is undirected.

Let $G(V, E)$ be a connected undirected graph. In the sequel, the degree of node p is denoted by degree (p), the set of neighbors in $V-S$ of nodes in S is denoted by $N(S)$, the maximum degree of G (the maximum number of neighbors of all the nodes in G) is denoted by Δ and the diameter of G (the number of edges on the longest shortest path) is denoted by D.

In [5], we saw that every node is visited infinitely often. Here we prove the round length is $O\left(n \cdot \Delta^{D+1}\right)$.

Lemma 1 We have the following properties of LR's execution on any graph:
(a) If a node p is visited degree $(p)+1$ times in a segment of the execution, then all the neighbors of p are visited in this segment.
(b) If p is visited no more than k times in an execution, then every neighbor q of p is visited no more than $(k+1) \cdot$ degree (q) times in this execution.

Proof. Let σ be a segment of the execution in which node p is visited by the token $\operatorname{degree}(p)+1$ times. So the sequence of events in σ is $\left\langle\cdots, v_{1}, \cdots, v_{2}, \cdots, v_{\text {degree }(p)+1}, \cdots\right\rangle$, where each v_{i} is the event that p gets the token for the i th time.

Suppose p 's timestamp is updated to t when it is visited in event v_{1}. Given a state of the system, we divide the neighbors of p into two subsets, N_{1} for the nodes with timestamps larger than t and N_{2} for the others. Notice the only way for a node to move from N_{2} to N_{1} is to be visited by the token. At the beginning of σ, we have $N_{2}=N(\{p\})$ and $\left|N_{2}\right|=\operatorname{degree}(p)$.

Each time p gets the token, p chooses the next token holder from N_{2} until N_{2} is empty. Thus $\left|N_{2}\right|$ is decreased by 1 each time p is visited. So it takes at most degree (p) times to empty N_{2}. Thus when p is visited for the (degree $\left.(p)+1\right)$ th time, N_{2} is empty, that is, every
neighbor of p is visited in σ. Thus (a) is proved.
Consider the sequence of visited nodes σ^{\prime} in an execution in which p is visited k times. The occurrences of p divide σ^{\prime} into $k+1$ subsequences. By (a), each neighbor q of p occurs no more than $\operatorname{degree}(q)$ times in each subsequence, thus in σ^{\prime}, q appears no more than $(k+1) \cdot$ degree (q) times. So (b) is proved.

Theorem 2 Every round of LR on any graph has length $O\left(n \cdot \Delta^{D+1}\right)$.

Proof. Consider any execution α of LR and any round. Suppose p is the last node of this round. Notice that this is the first time p is visited in this round. From (a) in Lemma 1, each neighbor q^{\prime} of p is visited no more than $\operatorname{degree}\left(q^{\prime}\right) \leq \Delta$ times in this round. By (b) in Lemma 1, each neighbor $q^{\prime \prime}$ of q^{\prime} is visited no more than $(\Delta+1) \cdot \operatorname{degree}\left(q^{\prime \prime}\right) \leq \Delta^{2}+\Delta$ times. Similarly each node q at distance k from p is visited no more than $\Delta^{k}+\Delta^{k-1}+\cdots+\Delta$ times in this round. Thus the length of the round is no more than

$$
\begin{aligned}
& 1+ \\
& (\Delta) \cdot|N(p)|+ \\
& \left(\Delta+\Delta^{2}\right) \cdot|N(N(p))|+ \\
& \left(\Delta+\Delta^{2}+\Delta^{3}\right) \cdot|N(N(N(p)))|+ \\
& \cdots \\
& \left(\Delta+\Delta^{2}+\cdots+\Delta^{D}\right) \cdot|N(\cdots N(N(p)) \cdots)| \\
\leq & n \cdot\left(1+\Delta+\cdots+\Delta^{D-1}+\Delta^{D}\right) \\
= & O\left(n \cdot \Delta^{D+1}\right)
\end{aligned}
$$

Theorem 2 gives a fairly loose bound. It is possible that no graph actually exhibits such bad behavior. We next show a family of graphs on which the LR round length is exponential.

A graph is said to have a fixed point round if the execution of the LR algorithm on that graph, when considered as a sequence of rounds $\rho_{1}, \rho_{2}, \ldots$, has the property that for some $k \geq 1, \forall i, j \geq k, \rho_{i}=\rho_{j}$. Furthermore, the round ρ_{k} is said to be the fixed point round.

Let S be a graph on the set of nodes $\{1, \ldots, m\}$. We define S to satisfy the condition $F P$ if there are two nodes r and p in S and an integer $t>1$, such that if the token starts at r, S has a fixed point round σ satisfying:

- $F P_{1}$: The last node of σ is r.
- $F P_{2}: p$ occurs t times in σ, and every neighbor of p occurs between every two consecutive occurrences of p in σ, and either before the first occurrence of p or after the last occurrence of p in σ.

The reason for these conditions will be explained shortly.
Figure 3 depicts a unit disk graph that satisfies $F P$ with $r=16, p=27$, and $t=$ 2. Unit disk graphs are widely employed to model ad-hoc networks - all the nodes are assumed to have identical transmission range and two nodes are connected if and only if they are in each other's transmission range. The dotted circles in Figure 3 indicate the transmission range of nodes. If the token is started at 16 , the fixed point round is $13,12,1$, $2, \mathbf{3}, 27,10,9,8,26,4,5,6,7,8,9,23,22,21,20,19,18,17,5,4,3,2,24,39,38,37,36$, $35,34,33,32,31,30,29,28,25,11,10,27,3,4,26,8,7,6,5,17,18,19,20,21,22,23$, $9,10,11,25,28,29,30,31,32,33,34,35,36,37,38,39,24,2,1,12,15,14,13,16$ and has length 82 . The bold nodes in this sequence are r, p and the neighbors of p.

We now consider the construction of a family of graphs, $G_{k}, k=1,2, \cdots$. Informally, G_{k} consists of k copies of a graph S satisfying $F P$, hooked together in series, with node r in one copy connected to node p in the next copy.

More formally, for $i \geq 1$, define graph S_{i} to be isomorphic to S, with each node j, $1 \leq j \leq m$, in S replaced with node $m \cdot(i-1)+j$ in S_{i}. Define node $r_{i}=r+(i-1) \cdot m$

Fig. 3. A unit disk graph satisfying $F P$

Fig. 4. Construction of G_{k}
and $p_{i}=p+(i-1) \cdot m$. Note that each S_{i} satisfies $F P$ with respect to p_{i}, r_{i} and t, and the fixed point round of S_{i} is σ_{i}, the result of replacing each occurrence of node j in σ with node $m \cdot(i-1)+j$.

For $k \geq 1$, we define G_{k} to be $\bigcup_{i=1}^{k} S_{i}$ together with the additional edges $\left(r_{i}, p_{i+1}\right)$, $1 \leq i \leq k-1$ (see Figure 4). The number of nodes in G_{k} is $n=k \cdot|S|=k \cdot m$, where m is the number of nodes in S.

For each $k \geq 1$, consider the execution of the LR algorithm on graph G_{k} in which the token starts at node r_{k}. Let φ_{k} denote the resulting fixed point round, if one exists. In the statement of the next theorem, we use the notation $\alpha(x \rightarrow \beta)$ to represent the result of replacing every occurrence of x in the sequence α with the sequence β. For example, if $\alpha=\langle a, b, c, a\rangle, x=a$ and $\beta=\langle b, c\rangle$, then $\alpha(x \rightarrow \beta)=\alpha(a \rightarrow\langle b, c\rangle)=\langle b, c, b, c, b, c\rangle$.

Theorem 3 For all $k \geq 1$, if the token starts at r_{k}, the fixed point round φ_{k} for $L R$ on graph G_{k} ending at node r_{k} exists. Furthermore the round is $\varphi_{1}=\sigma$ and $\varphi_{k}=\sigma_{k}\left(p_{k} \rightarrow\right.$ $\left.\left\langle p_{k}, r_{k-1}, \varphi_{k-1}, p_{k}\right\rangle\right)$, for $k \geq 2$.

Proof. For the base case, G_{1} equals S, and thus the theorem is true. Assume the theorem is true for $k-1$ and show it holds for k.

First notice that G_{k} can be viewed as G_{k-1} connected to S_{k} by the single edge $\left(r_{k-1}, p_{k}\right)$. Thus if we eliminate successively repeating nodes, any sequence of visited nodes of LR on
G_{k} starting at r_{k} is a sequence of visited nodes of LR on G_{k-1} starting at r_{k-1} when restricted to the nodes of G_{k-1}. In [5], we saw that each node in the network is visited infinitely often by LR, so this sequence of LR on G_{k-1} is infinite. Thus there exist fixed point rounds on G_{k-1} ending at r_{k-1} when restricted to the nodes of G_{k-1} by the inductive hypothesis.

Similarly if we eliminate successively repeating nodes, any sequence of visited nodes of LR on G_{k} starting at r_{k} is a sequence of visited nodes of LR on S_{k} starting at r_{k} when restricted to the nodes of S_{k}, which is infinite. So by condition $F P$, there exist fixed point rounds on S_{k} satifying $F P_{1}$ and $F P_{2}$ when restricted to the nodes of S_{k} by the property C of S_{k}. By $F P_{2}$ we see that in such fixed point rounds on S_{k}, between any two times p is visited, all of p 's neighbors are visited, that is, starting from the second occurrence of p in the fixed point rounds, each time p gets the token, all the neighbors of p have been visited since the last time p gets the token.

In the following, we consider the execution of LR on G_{k} in which the sequence on G_{k-1} is the fixed point rounds, and the sequence on S_{k} is the sequence after the second occurrence of p in the fixed point rounds.

Whenever the token comes to p_{k} from some node in S_{k}, by the condition $F P_{2}$ on S_{k}, every neighbor of p_{k} has been visited more recently than r_{k-1}, so p_{k} forwards the token to r_{k-1}, which passes the token to the nodes in G_{k-1}.

The inductive hypothesis implies that r_{k-1} occurs only once in φ_{k-1}, namely at the end. Thus, by the time the token returns to r_{k-1}, it has visited every node except r_{k-1} in G_{k-1} along φ_{k-1}, so the token is then sent to p_{k}. This fact shows $\varphi_{k}=\sigma_{k}\left(p_{k} \rightarrow\right.$ $\left.\left\langle p_{k}, r_{k-1}, \varphi_{k-1}, p_{k}\right\rangle\right)$ is true for G_{k}. Since φ_{k-1} and σ_{k} are fixed by the inductive hypothesis and S_{k} 's property, φ_{k} is fixed.

The next theorem gives a tight asymptotic bound on the length of the fixed point round
of G_{k}. Recall that m is the number of nodes in each S_{i}, so $n=m \cdot k$ is the number of nodes in G_{k}. Thus the bound is exponential in the number of nodes.

Theorem $4\left|\varphi_{k}\right|=\Theta\left(t^{\frac{n}{m}}\right)$.

Proof. For $k=1,\left|\varphi_{1}\right|=|\sigma|$. For $k>1,\left|\varphi_{k}\right|=|\sigma|+t \cdot\left(\left|\varphi_{k-1}\right|+2\right)$ by Theorem 3, since each of the t occurrences of p_{k} in σ_{k}, which has the same length as σ, is replaced with $\left\langle p_{k}, r_{k-1}, \varphi_{k-1}, p_{k}\right\rangle$. The solution to this recurrence is $\left|\varphi_{k}\right|=(|\sigma|+2 t)\left(1+t+t^{2}+\ldots+\right.$ $\left.t^{k-2}\right)+|\sigma| \cdot t^{k-1}, k>1$. Thus the length of the fixed point round of G_{k} is $\Theta\left(t^{k}\right)=\Theta\left(t^{\frac{n}{m}}\right)$.

The graph S in Figure 3 satisfies conditions $F P_{1}$ and $F P_{2}$ with $m=39, t=2$, and $|\sigma|=82$. If G_{k} is constructed from this graph, then by Theorem $4,\left|\varphi_{k}\right|=\Theta\left(t^{k}\right)=$ $\Theta\left(t^{\frac{n}{m}}\right)=\Theta\left(2^{\frac{n}{39}}\right)$. Note G_{k} can also be a unit disk graph. Let us compare this bound to the one obtained in Theorem 2, which is $O\left(n \cdot \Delta^{D+1}\right)$, where Δ is the maximum degree and D is the diameter. Since the maximum degree of G_{k} is 3 and the diameter of G_{k} is $7 k+6$, this bound becomes $O\left(n \cdot 3^{7 k+7}\right)=O\left(n \cdot 3^{\frac{7}{9} n+7}\right)$. Thus we can see that the general upper bound is a large over-estimate for this family of graphs.

CHAPTER V

SELF-STABILIZING MUTUAL EXCLUSION IN MOBILE AD HOC NETWORKS

A. Introduction

The technology of mobile ad hoc networking is becoming increasingly prevalent and it has been an active research area. But much of the work in this area has focused on routing and medium access control protocols, and there is less work on distributed services. Furthermore, past work on distributed services focused on non-fault-tolerant algorithms.

An important technique for designing algorithms that tolerate arbitrary transient faults is self-stabilization, first introduced by Dijkstra in [22]. A system is defined as selfstabilizing if, starting from an arbitrary configuration, it is guaranteed to converge to a "legitimate" configuration or a "legitimate" execution in finite time. The system in the legitimate configuration (or execution) exhibits desired behavior. The arbitrary starting configuration could be the result of a transient failure that corrupted some aspect of the system state. A lot of work has been done on self-stabilization for static networks. However, it is inefficient to apply most existing self-stabilizing algorithms for static networks directly in a mobile ad hoc network for the following reason. Traditionally, a topology change has been considered as a kind of transient fault. But most known self-stabilizing algorithms require no subsequent failures (i.e., static topology) in order to converge to a legitimate configuration. If such an algorithm is applied in a mobile ad hoc network, which typically experiences frequent topology changes, it would essentially start over in trying to converge every time a topology change occurs, which is quite inefficient and might cause the algorithm never to reach a legitimate configuration. Thus a self-stabilizing algorithm for mobile ad hoc network needs to be designed specifically so that it exhibits correct behavior in the presence of topology changes, once it has converged.

In this chapter, we are interested in self-stabilizing distributed services for mobile ad hoc networks. We focus on the mutual exclusion problem. Informally, a mutual exclusion algorithm should satisfy two properties: mutual exclusion - there is no more than one processor in the critical section; and progress - some or all processors enter the critical section infinitely often. Our algorithm also provides a dynamic membership service so that processors can alternate participating in and not participating in the competition to enter the critical section. Mutual exclusion provides a mechanism for shared access to a resource, which is worth considering for mobile ad hoc networks, where mobile nodes may need to share common resources. Mutual exclusion can be used in the implementation of group communication, which is an important building block for applications that involve groups of cooperating hosts, such as mobile conferences, rescue missions and battlefield operations. Mutual exclusion is useful in many high level applications in mobile ad hoc networks such as E-learning in [50] to guarantee the consistency of shared objects.

Mutual exclusion and progress conditions cannot both be guaranteed in mobile ad hoc networks with arbitrary mobility for the following reason. Since reliable message delivery cannot be guaranteed in such a network, it is possible that some processors stop receiving messages from others even when they are always in the same connected component. If a processor makes the decision whether to enter the critical section based on communication with others, the progress condition cannot be guaranteed; if a processor can enter the critical section without communicating with others, mutual exclusion may be violated. Arbitrary mobility has prevented most protocols from providing fully reliable service in mobile ad hoc networks, and usually they provide a best-effort service instead. Our strategy to solve the mutual exclusion problem for mobile ad hoc networks is to guarantee mutual exclusion without constraints on the reliability of message delivery, and guarantee different levels of progress under different levels of constraints on mobility.

Our algorithm is based on the token circulation algorithm $L R$ discussed in chapter IV,
in which the token is forwarded by the current token holder to its neighboring processor that was visited by the token least recently. A distinguished processor in the system periodically generates a token. Upon receipt of a token, a processor checks the token state and its local state to decide whether it can enter the critical section; the check must ensure that only one processor is in the critical section even when there are multiple tokens in the system. Thus mutual exclusion can always be guaranteed, while progress depends on the frequency with which processors receive tokens.

B. Motivation

A simple solution for mutual exclusion is to circulate a token throughout the network and only the processor which holds the token enters the critical section. If there is exactly one token in the system and this token visits every processor that wants to enter the critical section infinitely often, this simple idea solves the mutual exclusion task. But it is not selfstabilizing because it cannot recover from a configuration with zero or multiple tokens.

One idea to make this simple idea self-stabilizing is as follows. In order to recover from a configuration with no token, a distinguished processor keeps generating tokens, which are circulated throughout the network. Upon receipt of a token, a processor checks the token state and its local state to decide whether it can enter the critical section. Such check should ensure that eventually only one processor is in the critical section even when there are multiple tokens in the system. An example is the self-stabilizing mutual exclusion algorithm on a ring in the shared memory model presented in [22]. A message passing version of this algorithm is presented in [51], which works on a fixed ring with FIFO links. In this algorithm, each token and each processor has a token ID. The distinguished processor, p_{0}, keeps generating tokens, setting the tokens' ID as its token ID. The tokens are forwarded along the ring. When processor $p_{i}, i \neq 0$, receives a token with ID not equal
to p_{i} 's token ID, p_{i} sets its token ID to the token's ID and enters the critical section. When a token comes back to p_{0} after traveling around the whole ring, p_{0} checks the token's ID and its token ID. If the token's ID is equal to its token ID, p_{0} increases its token ID by one and enters the critical section.

In this chapter, we consider mutual execution in mobile ad hoc networks. If the composition of the network is fixed and known, we can predefine a virtual ring. Each token is circulated in the network by some token circulation algorithm, but it visits the processors according to their positions in the virtual ring: the first processor in a token's virtual ring is said to be visited by this token when it receives this token for the first time or the last processor visited by this token is the last processor in the virtual ring; each of the other processors p_{i} is said to be visited by a token if and only if the last processor visited by this token is the processor previous to p_{i} in the virtual ring. We notice the virtual link between two successive processors on the virtual ring is non-FIFO because of the changing topology — different tokens may travel along different paths from one processor to another. Applying the idea in [51] on such a virtual ring to solve mutual exclusion does not work with non-FIFO virtual links. A counter-example is shown in Fig. 5, in which the system has converged at time 0 . But at time 3 , processor p_{1} and p_{2} enter the critical section at the same time.

So we cannot apply the idea in [51] to mobile ad hoc networks directly. What is more, a fixed virtual ring is quite inefficient in mobile ad hoc networks as it may bear little resemblance to the actual topology. Finally, in a mobile ad hoc network, a processor p_{i} may be prevented from receiving a token due to an adversarial mobility pattern, and since all the processors that follow p_{i} in a virtual ring should be visited after p_{i} is visited, they will not be visited by any token and cannot enter the critical section any more, even if they keep receiving tokens.

In this chapter we propose an algorithm based on the ideas in [22] and [51]. In order

Fig. 5. A counter-example on a virtual ring with non-FIFO virtual links
to handle the mobility, we need to deal with:

- dynamic virtual ring, which is updated periodically to reflect the changing topology,
- non-FIFO virtual links on the virtual ring, and
- partitions, so that a disconnected processor will not prevent others from entering the critical section.

C. System Model

In this chapter, we focus on the distributed services that receive and respond to the requests from the application. The distributed services run on top of the basic communication service between adjacent processors as discussed in chapter III. We make the following additional assumptions:

- Assumption ${ }_{0}$: There is a distinguished processor p_{0} (we will discuss relaxing this assumption in section V.H).
- Assumption ${ }_{1}$: An upper bound N on the number of processors is known, and each processor has a unique ID.

For simplicity, we assume processors' IDs are in $[0, N-1]$ and processor p_{i} 's ID is i; the correctness of the algorithm does not rely on it. Note that we do not require the processors know the IDs of others in advance.

- Assumption $_{2}$: There is an upper bound, d, on the message delay between two adjacent processors if the message is forwarded successfully. Messages may be lost but not corrupted.

We do not assume the network is always connected. Later we will see that message loss and the connectivity of the network will only affect the progress of the algorithm (see section V.G.6) but not mutual exclusion. The assumption of no message corruption is required because otherwise the mutual exclusion problem cannot be solved even in a non-self-stabilizing way.

- Assumption ${ }_{3}$: There is an upper bound, g, on the number of messages generated by a processor in each time unit.

A transient fault may cause the system to enter an arbitrarily corrupted configuration. The property of self-stabilization models the ability of a system to recover from a corrupted configuration under the assumption that the transient faults do not continue to occur. Our algorithm can recover from an arbitrary configuration, which may be caused by any transient fault, under the above assumptions.

A self-stabilizing algorithm requires variables to be bounded since memory space is finite. In a non-self-stabilizing algorithm, an unbounded variable can be simulated by using large but finite memory: since the algorithm starts from a correctly initialized state, the maximum value that would ever be assigned to the variable in, say, the next few hundred
years can be estimated and sufficient memory to store that value can be allocated. But this approach does not work for self-stabilizing algorithms, since in an arbitrary configuration, the variable could take on its maximum value, no matter how much space is allocated, thus experiencing overflow.

Assumption $_{1}$ is useful to set bounds on the size of variables related to processors' identification. Assumption $_{2}$ and Assumption $_{3}$ enable the algorithm to rely on a maximum number of messages existing in the system, thus we can assign IDs to messages from a bounded range.

There are timers on each processor such that each timer has a value which is decremented at the rate of real time, and if a timer is set for time interval T at time t, then at time $t+T$ an event is initiated by the timeout expiring. A timed event is a pair consisting of an event and and a real number, which represents the real time at which the event occurs. We have the following assumption on the local computation.

- Assumption 4_{4} : At each processor no more than one event is activated at the same time and the time of the local computation is negligible.

Note that one consequence of this assumption is that the time a processor stays in the critical section is negligible. This assumption is made for simplicity. We will discuss relaxing it in section V.H.

D. Problem Definition

We define the mutual exclusion task similarly to [22], in which "processor p_{i} being in the critical section in configuration c " refers to a predicate whose specifics will depend on the particular algorithm.

In some situations, processors may want to alternate between participating in and not participating in the competition to enter the critical section. In this chapter, we consider a
system in which the composition of the competing processors is changing as indicated by the processors receiving join or leave requests from the application. We call a processor in an execution active (inactive respectively) if it experiences only a finite number of join and leave requests and the last one is a join (leave respectively) request. Three versions of the dynamic mutual exclusion task, corresponding to different progress conditions, are defined as follows:

Definition 1 (Dynamic No Deadlock Mutual Exclusion.) The task of dynamic no deadlock mutual exclusion is a set of executions, such that for every execution in the set, Mutual Exclusion, Eventual Stopping and No Deadlock are satisfied:

- Mutual Exclusion: There is no more than one processor in the critical section in any configuration.
- Eventual Stopping: Every inactive processor enters the critical section only finitely often.
- No Deadlock: Some active processor enters the critical section infinitely often if the execution is infinite.

Variations with increasingly strong progress conditions are:

- Dynamic No Lockout Mutual Exclusion, in which No Deadlock is replaced with
- No Lockout: Every active processor enters the critical section infinitely often if the execution is infinite.
- Dynamic Bounded Waiting Mutual Exclusion, in which No Deadlock is replaced with
- Bounded Waiting: There exists time interval T, such that every active processor enters the critical section exactly once in every time interval T.

This chapter describes an algorithm for mobile ad hoc networks that is self-stabilizing for Mutual Exclusion and Eventual Stopping, and that is self-stabilizing for No Deadlock, No Lockout, and Bounded Waiting with respect to various conditions (which are detailed later).

Definition 2 (Self-Stabilization). An algorithm is self-stabilizing for property P (with respect to condition C), if, starting from an arbitrary configuration, every infinite execution of the algorithm (satisfying C) has a suffix satisfying P.

In this chapter, property P can be one of No Deadlock, No Lockout and Bounded Waiting, and condition C captures the assumptions about the network behavior.

E. Algorithm Overview

Here we give an informal description of our algorithm. Communication in our algorithm is based on token circulation, where each token is a message. We have two kinds of tokens: mutual exclusion token and join_request token, denoted by m-token and j-token respectively; the specific usage of each kind of token is described later in this section. Both kinds of tokens are routed using a self-stabilizing version of the token circulation algorithm $L R$ analyzed in chapter IV. The reason for using $L R$ (instead of a more traditional routing algorithm) is that we have developed a simple self-stabilizing version of $L R$, whereas it is much more problematic to design a self-stabilizing version of traditional routing algorithms. Our version of $L R$ uses bounded timestamps and enforces a lifetime on tokens, by discarding any token that has been forwarded more than a certain number of hops. Because of the bounded lifetime, we can assign IDs to tokens from a bounded range and we define the operations on token IDs to be the operations on integers mod this bound. Note in section V.C, we explained why the values of a variable should be from a bounded range.

The execution of our algorithm is divided into phases. Informally, a phase is a bounded subsequence of execution in which all the connected members enter the critical section exactly once. The special processor p_{0} maintains the membership, which is organized in two variables: new_set, a set of processors that are waiting to join the system, and ring, a list of members that have joined the system. The membership is updated only at the beginning of each phase.

- In each phase, p_{0} repeatedly generates m-tokens which carry new_set and ring.
- Processors in new_set initialize their local states upon receipt of an m-token.
- Members in ring are visited by an m-token according to their positions in ring. When a member is visited by an m-token,
* it checks the token's state and its local state to see whether it is in the critical section, and updates its local state accordingly (the condition and update is designed to handle non-FIFO virtual links, see section V.F for details);
* if it wishes to leave the system, it indicates this in the m-token.
- Each m-token records the order of processors that have forwarded it.
- When a processor wishes to join the system, it periodically sends a j-token to processor p_{0}. The sending is repeated in order to increase the likelihood that the message gets through even if some copies are lost due to mobility.
- Processor p_{0} starts a new phase when all the processors in new_set have initialized their states and all the members in ring have entered the critical section, or a certain amount of time has elapsed since the current phase began. A member is considered to be disconnected if it did not enter the critical section in the previous phase. The member list is updated by p_{0} as follows:
- ring is updated to be the currently reachable members, which are the processors in new_set that have initialized their local state and the processors in ring that have entered the critical section in last phase, minus the leave requests. The order of members in ring is decided by the order of processors that have forwarded the m-tokens. Since a poorly chosen virtual ring requires a long time for a token to visit all the nodes, the idea behind this heuristic is to have the visiting order match more closely the actual network topology in order to increase efficiency,
- new_set is updated to be the senders of j-tokens received by p_{0} in the last phase.

F. Algorithm

Here we introduce the underlying token circulation algorithm in section V.F.1, the data structures in section V.F.2, the interfaces to the application in section V.F.3, and the mutual exclusion algorithm in section V.F.4.

1. Token Circulation Algorithm: $L R_{L}$

The non-self-stabilizing $L R$ algorithm was discussed in Chapter IV, in which there is a unique token t that contains an array $t s$ of N integers (the "timestamp array") initialized to all 0 's; $t s[i]$ is a timestamp indicating when processor p_{i} received the token most recently. In $L R$, a token is forwarded to a neighboring processor that was visited by this token least recently.

In our algorithm we use a variant of $L R$, denoted by $L R_{L}$, which is similar to $L R$ except that the timestamps in $L R_{L}$ are in the range $[0, L]$, the operation " + " on elements of $t . t s$ is addition $\bmod (L+1)$, and only tokens with maximum timestamp less than L
are forwarded to the next processor (Fig. 6.) The value of L should be chosen based on the expected network behavior to guarantee that most of the tokens can be forwarded to every processor within L hops (see section V.G. 6 for further discussion). If token t is not routed to the next processor, we say t is no longer in the system. In the sequel, we refer to t 's lifetime as the time token t has stayed in the system. In this chapter, we consider a self-stabilizing algorithm, which may start from an arbitrary configuration. The following lemma shows that the lifetime of every token forwarded by $L R_{L}$ is bounded no matter what values are initially in the timestamp array.

Lemma 5 Consider any execution σ, in which tokens are forwarded for $L R_{L}$. The lifetime of any token in σ is no more than $M_{l t}=L \cdot d$. In more detail, in any configuration c, token t has been in the system for no more than $\max (t . t s) \cdot d$, and t can be in the system for no more than $(L-\max (t . t s)) \cdot d$ hops after c.

Proof. Denote the initial timestamp array of token t by $t . t s^{0}$. From the code we can see $\max (t . t s)$ is increased by 1 each time t is forwarded, so t cannot be forwarded for more than L hops, and t 's lifetime is no more than $L \cdot d$ by Assumption $_{2}$. Suppose in configuration c, t is in p_{i} 's incoming queue. Then t has been forwarded for $\max (t . t s)-$ $\max \left(t . t s^{0}\right)$ hops, and it cannot be forwarded for more than $L-\max (t . t s)$ hops after c. By Assumption $_{2}, t$ has stayed in the system for no more than $\max (t . t s) \cdot d$ time, and t can stay in the system for no more than $(L-\max (t . t s)) \cdot d$ after c time.

2. Data Structures

The denotations in TABLE I are used in our algorithm, where L is the upper bound on the number of hops taken by tokens that is enforced by $L R_{L}$. The choice of L only affects the progress of the algorithm (see section V.G.6), but not mutual exclusion. Note $M_{t i d r}$ is

$$
\begin{aligned}
& L R_{L-i n i t i a l i z e}(\text { token } t) \\
& \quad 1 \text { t.ts }=[0,0, \cdots, 0] \\
& L R_{L-} \text { forward }(\text { token } t) \text { : } \\
& 2 \text { t.ts }[i]=\max (t . t s)+1 ; \\
& 3 \text { if }(\max (t . t s) \geq L) \text { then return; } \\
& 4 \text { next }=\text { index of } t . t s \text { entry among all neighbors } \\
& \quad \text { of } p_{i} \text { with minimum value (break ties by ID); }
\end{aligned}
$$

5 send t to $p_{\text {next }}$;

Fig. 6. Token circulation algorithm: $L R_{L}$
the maximum difference between any two token IDs at any given time after convergence, while $M_{\text {tid }}$ is the bound on the token_id type. The reset values of each timer are listed in Table II (the explanation of each timer is listed in Table III.) Recall that N, g and d were introduced in section V.C.

Table I. Denotations

Denotation	Value	Explanation
$M_{l t}$	$L \cdot d$	upper bound on token's lifetime
$M_{\text {tidr }}$	$(3 g+1) M_{l t}+2$	maximum difference between any two token ids after convergence, i.e. range of token IDs (difference is defined in this section)
$M_{\text {tid }}$	$2 M_{\text {tidr }}+2$	upper bound on token_id variables

We define the token_id type to be the set of integers in $\left\{0,1, \ldots, M_{t i d}\right\}$. The operations on variables of type token_id variables are the operations on integers $\bmod \left(M_{t i d}+1\right)$. In particular, given two token_id variables, $t i d_{1}$ and $t i d_{2}$, the operation $\left[t i d_{1}, t i d_{2}\right]$ returns $\left\{t i d_{1}\right.$, tid $\left._{1}+1, \ldots, t i d_{2}\right\}$ if tid $_{1} \leq t i d_{2}$, and $\left\{t i d_{1}, t i d_{1}+1, \ldots, M_{t i d}\right\} \cup\left\{0,1, \ldots, t i d_{2}\right\}$ otherwise. We define the difference between tid_{1} and tid_{2} as $\min \left\{t_{\max }-t_{\text {min }}, t_{\text {min }}-\right.$ $\left.t_{\max }+M_{t i d}+1\right\}$, where $t_{\max }=\max \left\{t i d_{1}, t i d_{2}\right\}$ and $t_{\min }=\min \left\{t i d_{1}, t i d_{2}\right\}$. Note that the difference between $t i d_{1}$ and $t i d_{2}$ is the same as the difference between $t i d_{2}$ and $t i d_{1}$.

Table II. Timers' reset values

Timers		Reset values	Requirement on reset values
timers on p_{0}	timer ${ }_{0}^{\text {phase }}$	$T M_{\text {phase }}$	$>M_{l t}$
	timer $^{\text {gen }}$	$T M_{\text {gen }}$	
timers on p_{i}, $i \neq 0$	timer $_{i}^{\text {app }}$	$T M_{\text {app }}$	$>\left(3 M_{l t}+3 T M_{\text {phase }}\right)$
	timer $_{i}^{\text {jon }}$	$T M_{\text {join }}$	$>\left(M_{l t}+3 T M_{\text {phase }}\right)$
		$T M_{\text {join_re }}$	$<T M_{\text {join }}$

For example, if $M_{\text {tid }}=12$, then $[5,9]=\{5,6,7,8,9\},[9,5]=\{9,10,11,12,0,1,2,3,4$, $5\}$, the difference between 5 and 9 is 4 and the difference between 2 and 9 is 5 .

The fields on tokens and the variables at processors are listed in Table III.

3. Interfaces to the Application

The application process on processor p_{i} submits a join or leave request to the mutual
 section V.F.5.) A processor cannot join the system if it has currently joined, that is, member $_{i}=$ true (see precondition of join $_{i}$ in section V.F. 5), and it cannot leave if it is not in the system, that is, member $_{i}=$ false (see precondition of leave i_{i} in section V.F. 5). The time interval between two requests is no less than $T M_{a p p}$, which is enforced by using timer $_{i}^{a p p}$ (see line 2.2 of leave $_{i}$ and the precondition of join $_{i}$ in section V.F.5). Such an interval is required because when a processor leaves the system, the system needs time to erase the information related to it, so that when it rejoins the system, it will not update its state based on false information.

The application decides whether it can enter the critical section based on the part of the configuration accessible to p_{i}, that is, p_{i} 's local state and the state of its incoming queue (see Predicate $c s_{i}$ for p_{i} to enter the critical section, section V.F.5). Processor p_{0} enters the critical section at the beginning of each phase (see $c s_{0}$ and the precondition of event
start_phase ${ }_{0}$). Processor $p_{i}, i \neq 0$, enters the critical section if p_{i} has joined the system (see $c s_{i}^{1}$), it is p_{i} 's turn to be visited (see $c s_{i}^{2}$), and p_{i} has a correct token ID (see $c s_{i}^{3}$). We notice in a receive e_{i}^{m} event following any configuration in which p_{i} is in the critical section, line 9.2 is false, line 9.8 is true, and line 9.13 is true.

4. Mutual Exclusion Algorithm

Mutual exclusion is achieved by four kinds of events on processor p_{0} and three kinds of events on the other processors (see code in section V.F.5). Processor p_{0} keeps generating m-tokens in event generate e_{0}^{m}. A new phase is started by p_{0} in event start_phase ${ }_{0}$. Event receive ${ }_{0}^{j}$ is activated when p_{0} receives a j-token, and event receive e_{0}^{m} is activated when it receives an m-token. Processor $p_{i}, \neq 0$, sends j-tokens to p_{0} in event send d_{i}^{j}, which are forwarded to p_{0} among processors in event receive ${ }_{i}^{j}$. Event receive e_{i}^{m} is activated when p_{i} receives an m-token.

Now we explain how these events interact with each other to achieve mutual exclusion. Processors join the system by sending join requests. Upon receipt of a join request from the application, p_{i} sets status ${ }_{i}$ to joining, indicating it is waiting to join the system, and sends j-tokens (lines 7.1-7.6), which are forwarded to p_{0} by processors using $L R_{L}$ (lines 8.1-8.2). Upon receipt of such a token (line 6.1-6.4), p_{0} records the information in its local variable join_set $_{0}$, which will be used to update the membership at the begining of the next phase. Note in event $s e n d_{i}^{j}$, a processor resends the join request in every $T M_{\text {join_re }}$ time interval if it does not receive an m-token within time $T M_{\text {join }}$ by using the timers.

Now we consider the execution of each phase. In each phase, p_{0} repeatedly generates m-tokens (lines 3.1-3.10). Each m-token has an id and carries membership information in fields new_set and ring. Note that since p_{0} updates its local token id and membership only at the beginning of each phase, all the tokens generated in the same phase have the same token id and membership information.

We now explain how a processor $p_{i}, i \neq 0$, responds to the receipt of an m-token t (lines 9.1-9.24).

- If p_{i} is waiting to join the system and its join request was received by p_{0} in the last phase, line 9.2 is true when p_{i} receives the first m-token that is generated in the current phase. In this case, p_{i} takes following actions (line 9.3-9.6): it initializes its local token id tid $_{i}$ as $t . i d$ and sets $s t a t u s ~_{i}$ to j oined, indicating it has initialized its local state and joined the system; it also adds its id to t.visit_set (line 9.5), ensuring that it will ignore token t if it receives t again. (As we explain below, once p_{i} joins the system, p_{i} will be moved from new_set to ring in the next phase, and line 9.2 will be false in the next phase.)
- Otherwise, we say the processor is "visited" by m-token t if line 9.8 is true. Note that this condition is true only if p_{i} is a member in ring and it enforces the property that each token visits processors according to their positions in the ring. In line 9.9 p_{i} adds its id to t.visit_set, ensuring that it will ignore token t if it receives t again. Processor p_{i} updates its local state and checks whether it is in the critical section. If $t . i d$ is 0 and p_{i} 's token id is currently out of the range $\left\{M_{\text {tid }}, 0, \ldots, M_{\text {tidr }}\right\}$, then an inconsistency in the state of the system has been detected, and p_{i} 's token id is reset to 0 (lines 9.10-9.12). If $t . i d$ is one more than p_{i} 's token id, then p_{i} enters the critical section (lines 9.13-9.15). After leaving the critical section, p_{i} sets its token id to be $t . i d$ (line 9.14), which will prevent p_{i} from entering the critical section again due to tokens generated in the current phase. The intuition of how it works follows. Formal proofs are provided in section V.G.
- Consider some phase b in which p_{0} keeps generating m-tokens with id 0 . All the visited processors have local token id in range $\left\{M_{t i d}, 0, \ldots, M_{t i d r}\right\}$ at line 9.12 and those that have token id $M_{\text {tid }}$ at line 9.12 will enter the critical section
and update their token id to 0 in line 9.14 since $t . i d=0$. Thus all the visited processors will have token ids in $\left[0, M_{t i d r}\right]$ at the end of phase b.
- In phase $b+1, p_{0}$ keeps generating token with id 1 and all the processors with token id 0 update their token id to 1 when visited by such a token. Processors with other token ids will not change their token id since the bounded token lifetime guarantees that no token with id in $\left[2, M_{t i d r}+1\right]$ exists in phase $b+1$, and only tokens with id in this range can change a processor's token id that is in [$\left.1, M_{\text {tidr }}\right]$ (see lines 9.10 and 9.13). So at the end of phase $b+1$, all the visited processors have id in $\left[1, M_{t i d r}\right]$.
- Generally speaking, at the begining of phase $b+k, 1 \leq k \leq M_{t i d r}$, all the processors have token ids in $\left[k-1, M_{t i d r}\right]$. In phase $b+k, p_{0}$ keeps generating tokens with id k. All the processors with id $k-1$ updates their token ids to k when visited by a token generated in the current phase, while others remain unchanged since no token with id in range $\left[k+1, M_{\text {tidr }}+1\right]$ exists due to the bounded token lifetime. Thus at the end of phase $b+k$, all the visited processors have token ids in $\left[k, M_{t i d r}\right]$. So all the visited processors have the same token id at the end of phase $b+M_{t i d r}$; we say the system converges at this point.
- After convergence, at the begining of phase $b+k, k>M_{t i d r}$, all the members have token id $k-1$. In this phase p_{0} keeps generating tokens with id k, and the members enter the critical section only when they are visited by a token generated in the current phase for the first time. Since all these tokens visit processors in the same order, specified by ring, Mutual Exclusion is guaranteed, even if the virtual links are non-FIFO.
- When a processor wishes to leave the system, it indicates this in the m-tokens that pass through it (line 9.20). The order of processors that have forwarded the token is
updated in line 9.22. At last, the token is forwarded to the next processor using $L R_{L}$ (line 9.24).

When p_{0} receives an m-token, it only processes the token if it has the same id as p_{0} 's token id, since only these tokens can enable a processor to enter the critical section after the system converges (lines 5.1-5.11). The information about reachable members, routing order and leave requests are collected in line 5.3-5.5. If all the members (those in ring) have entered the critical section and all the waiting processors (those in new_set) have initialized their local state, that is, line 5.6 is true, then p_{0} sets timer ${ }_{0}^{\text {phase }}$ to 0 in line 5.7 to start a new phase (see the precondition of event start_phase $e_{0}()$). Otherwise the token is forwarded to the next processor in line 5.9.

A new phase is started in event start_phase ${ }_{0}$ by p_{0} (lines 4.1-4.11). There are two situations for the precondition to be true. The first is line 5.7 as mentioned above. The other is where timer $\operatorname{timer} r_{0}^{\text {phase }}$ goes off; the purpose of timer $r_{0}^{\text {phase }}$ is to prevent a phase from never ending due to partition. In this event, p_{0} updates the membership: new_set consists of the processors whose join requests were received in the last phase (line 4.2), and ring is the currently reachable members, (those in new_set that have initialized their local state and those in ring that have entered the critical section), minus the leave requests (line 4.3). Processor p_{0} also figures out if the system has become disconnected, by checking whether any of the processors in the old group were not visited yet did not send a leave request (line 4.1). Since m-tokens generated in the last phase continue circulating, a disconnected processor may be visited by an m-token which enables it to enter the critical section in the new phase. In order to avoid the situation that a disconnected processor enters the critical section at the same time as a member enters, p_{0} waits until all the m-tokens are discarded to generate new tokens for the new phase (lines 4.6-4.9). Note that a disconnected member can rejoin the system by sending j-tokens - as mentioned above, processor p_{i} resends

Predicate $c s_{i}$ for p_{i} to enter the critical section:

- $i=0: c s_{0} \equiv\left(\right.$ timer $\left._{0}^{\text {phase }}=0\right)$
- $i \neq 0: c s_{i} \equiv c s_{i}^{1} \wedge c s_{i}^{2} \wedge c s_{i}^{3}$, where $c s_{i}^{1}, c s_{i}^{2}$ and $c s_{i}^{3}$ are defined as follows, in which m-token t is the first token in queue ${ }_{i}$.
$c s_{i}^{1} \equiv\left(\right.$ member $_{i}=$ true $) \wedge\left(\right.$ status $_{i}=$ joined $)$
$c s_{i}^{2} \equiv p_{i}$ is the first processor in t.ring that is not in t.visit_set
$c s_{i}^{3} \equiv t . i d=\left(t i d_{i}+1\right) \bmod \left(M_{t i d}+1\right)$

Fig. 7. Predicate $c s_{i}$ for p_{i} to enter the critical section
/* Event join $_{i}$ occurs when p_{i} receives a request from the application to join the system */ Event $\operatorname{join}_{i}()$ on $p_{i}, i \neq 0$: pre: Receive join request from the application, and $\left(\right.$ member $_{i}=$ false $) \wedge\left(\right.$ timer $\left._{i}^{a p p}=0\right)$ action:
1.1 member $_{i}=$ true;

Fig. 8. Event $\operatorname{join}_{i}()$ on $p_{i}, i \neq 0$
j-tokens in event sent ${ }_{i}^{j}$ if it does not receive an m-token within time $T M_{\text {join }}$.

5. Code

The predicate for p_{i} to enter the critical section and the code of each event on the processors are listed in Fig. 7 - Fig. 16.
/* Event leave ${ }_{i}$ occurs when p_{i} wants to leave the system. p_{i} can rejoin only after time $T M_{a p p}$ */

Event leave ${ }_{i}()$ on $p_{i}, i \neq 0$:
pre: Receipt of leave request from the application, and $\left(\right.$ member $\left._{i}=t r u e\right)$ action:
2.1 member $_{i}=$ false;
2.2 timer $_{i}^{\text {app }}=T M_{\text {app }}$;

Fig. 9. Event leave () on $p_{i}, i \neq 0$
/* p_{0} continues generating m-tokens in event generate e_{0}^{m} */
Event generate $e_{0}^{m}()$ on p_{0} :
pre: timer $_{0}^{\text {gen }}=0$
action:
3.1 create new m-token data structure t;
3.2 $L R_{L}$ _initialize (t);
3.3 t.id $=$ tid $_{0}$;
3.4 t.ring $=$ ring $_{0}$;
3.5 t.new_set $=$ new_set ${ }_{0}$;
3.6 t.visit_set $=\left\{p_{0}\right\} ;$
3.7 t.route_list $=\left\langle p_{0}\right\rangle$;
3.8 t.leave_set $=\emptyset$;
3.9 $L R_{L-}$ forward (t);
3.10 set timer $_{0}^{\text {gen }}=T M_{\text {gen }}$;

Fig. 10. Event generate ${ }_{0}^{m}()$ on p_{0}
/* A new phase is started by p_{0} in event start_phase ${ }_{0}$ */
Event: start_phase $_{0}()$ on p_{0} :
pre: timer $_{0}^{\text {phase }}=0$
action
/* Update membership */
4.1 discon $_{0}=!\left(\left(\right.\right.$ ring $_{0}-$ visit_set $\left._{0}\right) \subseteq$ leave_set $\left._{0}\right)$;
4.2 new_set $_{0}=$ join_set $_{0}$;
4.3 ring $_{0}=$ elements of $\left(\right.$ visit_set $_{0}-$ leave_set $\left._{0}\right)$ in the order in which they appear in route_list $_{0}$ (if there exist elements in $\left(\right.$ visit_set $_{0}-$ leave_set $_{0}-$ route_list $\left._{0}\right)$, append them to the end);
/* Update token id and reset variables */
4.4 tid $_{0}=\left(t i d_{0}+1\right) \bmod \left(M_{t i d}+1\right)$;
4.5 join_set $_{0}=$ leave_set $_{0}=\emptyset$, visit_set ${ }_{0}=\left\{p_{0}\right\}$;

Critical Section
/* Clean up tokens if there are disconnected members: timer ${ }_{0}^{\text {gen }}$ is set to $M_{l t}$ to ensure p_{0} stops generating tokens for $M_{l t}$ time */
4.6 if $\left(\right.$ discon $_{0}==$ true $)$ then
4.7 set timer $_{0}^{\text {gen }}=M_{l t}$;
4.8 else
4.9 set timer $_{0}^{\text {gen }}=0$;
4.10 endif
/* Reset phase timer */
4.11 set timer ${ }_{0}^{\text {phase }}=T M_{\text {phase }}$;

Fig. 11. Event: start_phase ${ }_{0}()$ on p_{0} :
/* Event receive ${ }_{0}^{m}$ occurs when p_{0} receives a m-token. */
Event receive $e_{0}^{m}(m$-token $t)$ on p_{0} :
pre: The first token in queue e_{0} is m-token t.
action:
5.1 remove t from queue ${ }_{0}$;
5.2 if $\left(t . i d==t i d_{0}\right)$ then
/* Update membership information */
5.3 visit_set ${ }_{0}=$ visit_set $t_{0} \cup t_{\text {.visit_set }}$;
5.4 route_list $_{0}=t$. route_list;
5.5 leave_set ${ }_{0}=l e a v e _s e t_{0} \cup\left(t . l e a v e _s e t ~ \cap r i n g g_{0}\right)$;
/* If the token has visited all the members, start a new phase, otherwise forward the token to the next processor using $L R_{L} * /$
$5.6 \quad$ if $\left(\left(\right.\right.$ ring $\left._{0} \cup n e w_{-} s e t_{0}\right) \subseteq$ visit_set $\left._{0}\right)$ then
$5.7 \quad$ set timer $_{0}^{\text {phase }}=0$;
5.8 else
$5.9 \quad L R_{L-}$ forward (t);
5.10 endif
5.11 endif

Fig. 12. Event receive $e_{0}^{m}(m$-token $t)$ on p_{0}
/* Event receive ${ }_{0}^{j}$ occurs when p_{0} receives a join request. Membership is updated accordingly */

Event: receive $_{0}^{j}\left(j\right.$-token $\left.t_{j}\right)$ on p_{0} :
pre: The first token in queue ${ }_{0}$ is j-token t_{j}.
action
6.1 remove t_{j} from queue ${ }_{0}$;
6.2 if $\left(t_{j}\right.$. pid $\notin\left(\right.$ ring $_{0} \cup$ new_set $\left.\left._{0}\right)\right)$ then
6.3 join_set ${ }_{0}=j o i n _s e t_{0} \cup\left\{t_{j} . p i d\right\} ;$
6.4 endif

Fig. 13. Event: receive ${ }_{0}^{j}\left(j\right.$-token $\left.t_{j}\right)$ on p_{0}
$/^{*}$ In event $\operatorname{send} d_{i}^{j}, p_{i}$ continues generating j-tokens to increase the likelihood that such request arrives at $p_{0} * /$

Event $\operatorname{send} d_{i}^{j}()$ on $p_{i}, i \neq 0$:
pre: $\left(\right.$ member $_{i}=$ true $) \wedge\left(\right.$ timer $\left._{i}^{j o i n}=0\right)$
action:
7.1 create new j-token data structure $t_{\text {join }}$;
7.2 $L R_{L-i n i t i a l i z e ~}\left(t_{\text {join }}\right)$;
$7.3 t_{\text {join }} . p i d=p_{i}$;
7.4 $L R_{L-}$ forward $\left(t_{\text {join }}\right)$;
7.5 status $_{i}=j$ oining;
7.6 set timer $_{i}^{\text {join }}=T M_{\text {join_re }}$;

Fig. 14. Event $\operatorname{send} d_{i}^{j}()$ on $p_{i}, i \neq 0$
/* Event receive ${ }_{i}^{j}$ occurs when p_{i} receives a join request. The join request is forwarded to p_{0} using $L R_{L} * /$

Event receive $_{i}^{j}\left(j\right.$-token $\left.t_{j}\right)$ on $p_{i}, i \neq 0$:
pre: The first token in $q u e u e_{i}$ is j-token t_{j} action:
8.1 remove t_{j} from queue ${ }_{i}$;
8.2 $L R_{L-}$ forward $\left(t_{j}\right)$;

Fig. 15. Event receive $e_{i}^{j}\left(j\right.$-token $\left.t_{j}\right)$ on $p_{i}, i \neq 0$

G. Correctness

Here we show the correctness by proving that eventually tokens, non-members and members will all exhibit good behaviors. The organization of the proof is shown in Fig. 17. We explain in more detail below.

In section V.G.1, we show Eventual Stopping is true from the initial configuration of any execution (c_{0} in Fig. 17), and introduce the term "phase". Informally, a phase is a bounded subsequence of an execution in which the membership and $t i d_{0}$ remain unchanged (they are updated only at the beginning of each phase) and each connected member enters the critical section exactly once.

We discuss the properties of m-tokens in section V.G.2. In an arbitrary configuration, the IDs of tokens may spread throughout the range $\left[0, M_{t i d}\right]$. We show that eventually they will converge to a narrow range; this property is called token_safe. We prove it by defining property $\operatorname{conv}_{\text {token }}$ of a configuration and showing that eventually the execution will reach a configuration satisfying $\operatorname{conv}_{\text {token }}\left(c_{1}\right.$ in Fig. 17) and after that token_safe is always guaranteed.
/* Event receive ${ }_{i}^{m}$ occurs when p_{i} receives a m-token. p_{i} checks its local state and the token's state to see whether it can enter the critical section */

Event receive ${ }_{i}^{m}(m$-token $t)$ on $p_{i}, i \neq 0$:
pre: The first token in queue i_{i} is m-token t.

action:

9.1 remove t from queue ${ }_{i}$;
$9.2 \mathbf{i f}\left(\left(\right.\right.$ member $_{i}==$ true $) \& \&\left(\right.$ status $_{i}==$ joining $) \& \&\left(p_{i} \in\right.$ t.new_set $) \& \&\left(p_{i} \notin\right.$
t.visit_set)) then
$9.3 \quad$ tid $_{i}=t . i d ;$
$9.4 \quad$ status $_{i}=$ joined;
$9.5 \quad t . v i s i t_{-} s e t=t . v i s i t_{-} s e t \cup\left\{p_{i}\right\}$;
9.6 set timer $_{i}^{\text {join }}=T M_{\text {join }}$;
9.7 else
9.8 if $\left(\left(\right.\right.$ member $_{i}==$ true $) \& \&\left(\right.$ status $_{i}==$ joined $) \& \&\left(p_{i}\right.$ is the first processor in t.ring not in $\left.\left.t . v i s i t _s e t\right)\right)$ then
$9.9 \quad t . v i s i t _s e t=t . v i s i t _s e t \cup\left\{p_{i}\right\}$;
9.10 if $(t . i d==0) \& \&\left(t i d_{i} \notin\left\{M_{t i d}, 0, \ldots, M_{t i d r}\right\}\right)$ then
$9.11 \quad t i d_{i}=0$;
9.12 endif
9.13 if $\left(t . i d==\left(t i d_{i}+1\right) \bmod \left(M_{t i d}+1\right)\right)$ then

Critical Section
$9.14 \quad t i d_{i}=t . i d$;
9.15 endif
$9.16 \quad$ set timer $_{i}^{\text {join }}=T M_{\text {join }}$;
9.17 endif
9.18 endif
9.19 if member $_{i} \neq$ true) then
9.20 append p_{i} to t.leave_set;
9.21 else if $\left(p_{i} \notin t\right.$.route_list) then
9.22 append p_{i} to t.route_list;
9.23 endif
$9.24 L R_{L-}$ forward (t);

Fig. 16. Event receive $e_{i}^{m}(m$-token $t)$ on $p_{i}, i \neq 0$

Fig. 17. Organization of proof

The properties of non-members are discussed in section V.G.3. In an arbitrary configuration, there may exist false information related to processors which are no longer members, based on which these processors may violate mutual exclusion when they join the system. We show that eventually a processor can join the system only when no information related to it exists; this property is called nmem_safe. We prove it by first defining property $\operatorname{conv} v_{n m e m}$, in which we define the appropriate levels of information in a configuration related to a non-member according to the time it has left the system. Then we show that any execution will eventually reach a configuration satisfying conv $v_{n m e m}$ (c_{2} in Fig. 17)and after that nmem_safe is always guaranteed.

Then in section V.G.4, we focus on the properties of members in an execution in which all the configurations are both token_safe and nmem_safe. We define property $c o n v_{\text {member }}$ of a configuration related to members' state. We prove eventually the execution will reach a configuration satisfying conv member (c_{3} in Fig. 17), and we say the execution has converged if it has reached such a point.

In section V.G.5, we prove Mutual Exclusion in any execution that has converged. We also provide a discussion of different levels of progress achieved by the algorithm given different performance of token circulation in section V.G.6.

1. Properties of Execution

Since member $_{i}$ is set to false when p_{i} receives a leave request from the application (see section V.F.5), p_{i} cannot enter the critical section before the next join request. Thus Eventual Stopping can be guaranteed.

Theorem 6 Given any execution σ, Eventual Stopping is guaranteed in σ.

Our algorithm is based on circulating m-tokens, which are forwarded by $L R_{L}$, but visit processors based on their member list. A formal definition of "visiting" is given as follows, from which we see that an m-token t visits processors in t.ring according to their positions in t.ring (see line 9.8), and each processor in t.ring or t.new_set is visited by t at most once (see line 9.5 and line 9.9).

Definition 3 (Visiting). Given an m-token t, if t is the first token in queue ${ }_{i}$ in a configuration c, p_{i} is visited by t in c if and only if line 9.2 or line 9.8 is true.

We divide the execution into "phases", which are defined as follows (Fig. 18):

Definition 4 (phase). Given an execution σ, σ is divided into phases:

- phase 0 starts at the beginning of σ, and ends just before the first start_phase ${ }_{0}$ event in σ; and
- phase i, $i>0$, starts immediately after the end of phase $i-1$ and ends just before the second occurrence after phase $i-1$ of a start_phase ${ }_{0}$ event.

In the sequel we call the m-tokens with ID equal to p_{0} 's token ID as "current" tokens. We denote the start_phase e_{0} event of phase k by e_{s}^{k}, the configuration previous to e_{s}^{k} by c_{s}^{k}, the first generate e_{0}^{m} event of phase k by e_{g}^{k} and the configuration following e_{g}^{k} by c_{g}^{k}. We have the following properties for each phase:

Fig. 18. Definition of phases

Lemma 7 Given any execution σ and any $k \geq 0$,
(1) In phase k, tid d_{0}, ring $_{0}$ and new_set ${ }_{0}$ remain unchanged; their values in phase k are denoted by $\operatorname{tid} d_{0}^{k}$, ring ${ }_{0}^{k}$, and new_set ${ }_{0}^{k}$.
(2) All tokens generated in the same phase have the same values for id, ring and new_set.
(3) The IDs of the m-tokens generated in a phase are one larger than those of the m tokens generated in the previous phase, that is, $t i d_{0}^{k}=t i d_{0}^{k-1}+1$.
(4) The upper bound on the phase length is $T M_{\text {phase }}$.

Proof. All m-tokens generated by p_{0} are generated with tid $=$ tid d_{0}, ring $=$ ring $_{0}$ and new_set $=$ new_set $_{0}$ in the generate $_{0}^{m}$ event. Since the only update to ring $_{0}$, new_set ${ }_{0}$ and $t i d_{0}$ is line 4.1-4.4 in a start_phase ${ }_{0}$ event, in which $t i d_{0}$ is increased by one, (1), (2) and (3) are proved.

A start_phase ${ }_{0}$ event is activated if and only if timer $_{i}^{\text {phase }}=0$, in which timer $_{i}^{\text {phase }}$ is set to $T M_{\text {phase }}$. After that, timer ${ }_{i}^{\text {phase }}$ keeps going down until it goes off or it is set to 0 by line 5.7 in a receive e_{0}^{m} event, so it takes at most $T M_{\text {phase }}$ for a start_phase $_{0}$ event to be activated again. Thus (4) is proved.

2. Safe Properties of m-tokens

In this section, we discuss the properties related to m-tokens. In an initial configuration, the ID of a token may be any one of $\left[0, M_{t i d}\right]$. We show in Lemmas 9 and 10 that eventually the IDs of tokens will converge to some subset of $\left[0, M_{t i d}\right]$ (property $\operatorname{conv}_{t o k e n}$) and starting
from that point, there always exists an upper bound $M_{\text {tidr }}$ on the difference of token IDs in a configuration (property token_safe.) An execution in which all the configurations satisfy this bound exhibits good behaviors: a processor's token ID remains unchanged when certain conditions hold (Lemma 11), all the current tokens are generated in the current phase (Lemma 12), and all the members are those visited by a current token in the previous phase (Lemma 13).

First we define properties conv $v_{t o k e n}$ and token_safe.

Definition 5 (conv $v_{\text {token }}$). A configuration c satisfies property conv $v_{\text {token }}$ if and only if
(1) the number of m-tokens is no more than $g \cdot M_{l t}$;
(2) for every m-token t, we have $t . i d \in\left[t i d_{0}-\left(g \cdot M_{l t}+g \cdot d \cdot \max (t . t s)+1\right)\right.$, tid $\left.{ }_{0}\right]$;
(3) any two m-tokens with the same token ID have the same ring and new_set;
(4) any m-token t with ID tid d_{0} satisfies $\left(t . r i n g=\operatorname{ring}_{0}\right) \wedge\left(t . n e w _s e t=\right.$ new_set $\left._{0}\right)$.

Definition 6 (token_safe). A configuration is token_safe if and only if:
(1) for any m-token t, we have $t . i d \in\left[t i d_{0}-M_{t i d r}\right.$, tid $\left._{0}\right]$;
(2) all the m-tokens with the same id have the same ring and new_set.

We will show in Lemmas 9 and 10 that, starting from an arbitrary configuration, eventually the execution converges to a configuration satisfying conv $v_{t o k e n}$, after which token_safe is always guaranteed. The proof of this lemma is based on the fact that the number of phases is limited in each bounded time interval.

Lemma 8 Given times T_{1} and $T_{2}, T_{1}<T_{2}$, if the number of m-tokens at T_{1} is no more than k, then the number of start_phase 0_{0} events in $\left[T_{1}, T_{2}\right]$ is no more than $\left(k+g \cdot\left(T_{2}-T_{1}\right)\right.$ $\left.+\left\lceil\left(T_{2}-T_{1}\right) / T M_{\text {phase }}\right\rceil\right)$.

Proof. A start_phase e_{0} event is activated only when timer ${ }_{0}^{\text {phase }}=0$, which occurs only in two situations:

- timer phase is set to 0 in a receive ${ }_{0}^{m}$ event. The number of such events is no more than the number n_{r} of m-tokens received by p_{0} in $\left[T_{1}, T_{2}\right.$], which either exist at T_{1} or are generated during $\left[T_{1}, T_{2}\right]$. By Assumption $_{3}$, we have $n_{r} \leq k+g \cdot\left(T_{2}-T_{1}\right)$.
- timer $r_{0}^{\text {phase }}$ goes off because the timer ticked down to 0 . Since timer $r_{0}^{\text {phase }}$ is never set to any values other than $T M_{\text {phase }}$ and 0 , and it is only set to 0 in a receive e_{0}^{m} event, at least $T M_{\text {phase }}$ time elapses between any two consecutive times that the timer goes off due to ticking down, so it goes off at most $\left\lceil\left(T_{2}-T_{1}\right) / T M_{\text {phase }}\right\rceil$ times in $\left[T_{1}, T_{2}\right]$.

So in $\left[T_{1}, T_{2}\right]$ the number of start_phase ${ }_{0}$ events is no more than $k+g \cdot\left(T_{2}-T_{1}\right)+$ $\left\lceil\left(T_{2}-T_{1}\right) / T M_{\text {phase }}\right\rceil$.

Lemma 9 Starting from an arbitrary configuration c_{0}, within time $2 M_{l t}$ there is a configuration satisfying conv $_{\text {token }}$.

Proof. By Lemma 5, there is a configuration c_{1} in which all the m-tokens are generated by p_{0} after c_{0}, and a later configuration c_{2} in which all the m-tokens are generated by p_{0} after c_{1}. We will prove c_{2} satisfies conv $v_{\text {token }}$. Suppose c_{2} is in phase k. By Lemma $5, c_{2}$ occurs within $2 M_{l t}$ from c_{0}.

By Lemma 5, all the m-tokens in a configuration c after c_{1} are generated within time $M_{l t}$ before c, thus the number of m-tokens in c is no more than $g \cdot M_{l t}$ by Assumption $_{3}$. So (1) of definition 5 is proved for c_{2}. Given any m-token t in c_{2}, assume t first occurs in configuration c_{t} in phase k_{t}. Since c_{t} is after c_{1}, the number of m-tokens in c_{t} is no more than $g \cdot M_{l t}$. Let T be the time interval between c_{2} and c_{t}. We have $T \leq d \cdot \max (t . t s) \leq M_{l t}$ by Lemma 5 , and $k-k_{t} \leq g \cdot M_{l t}+g \cdot T+\left\lceil T / T M_{p h a s e}\right\rceil \leq g \cdot M_{l t}+g \cdot d \cdot \max (t \cdot t s)+1 \leq$
$2 \cdot g \cdot M_{l t}+1<M_{t i d}$ by Lemmas 5 and 8 . Thus m-tokens with the same ID are generated in the same phase by (3) of Lemma 7 and (2), (3) and (4) of definition 5 follow.

Lemma 10 Given any execution starting from a configuration c_{0} satisfying conv ${ }_{\text {token }}$, every configuration c in σ satisfies token_safe.

Proof. We denote the time interval between c and c_{0} by T and consider any m-token t in c. Assume c is in phase k.

If t is generated between c and c_{0}, say at time T_{t} in phase k_{t}, we have $T-T_{t} \leq M_{l t}$ by Lemma 5. Since all the tokens at T_{t} either exist in c_{0} or are generated within $M_{l t}$ before T_{t} by Lemma 5, the number of tokens at T_{t} is no more than $2 g \cdot M_{l t}$ by Assumption $_{3}$. By Lemma 8, we have $k-k_{t} \leq 2 g \cdot M_{l t}+g \cdot M_{l t}+1 \leq M_{t i d r}$. Thus in this case we have $t . i d=t i d_{0}^{k_{t}} \in\left[t i d_{0}^{k}-M_{t i d r}, t i d_{0}^{k}\right]$ by Lemma 7. Otherwise we denote $\max (t . t s)$ in c_{0} by $m_{a x}^{c_{t s}}$ and in c by $\max _{t s}^{c}$, and $g \cdot M_{l t}+g \cdot d \cdot \max _{t s}^{c_{0}}+1$ by x. We have $T \leq d \cdot\left(L-\max _{t s}^{c_{0}}\right)$ $\leq M_{l t}$ by Lemma 5 and $k \leq g \cdot M_{l t}+g \cdot T+\left\lceil T / T M_{\text {phase }}\right\rceil \leq g \cdot M_{l t}+g \cdot d \cdot\left(L-\right.$ max $\left._{t s}^{c_{0}}\right)$ $+1 \leq M_{t i d r}$ by Lemma 8. By (2) of $\operatorname{conv}_{\text {token }}$, we have $t . i d \in\left[t i d_{0}^{0}-x, t i d_{0}^{0}\right]$, which is a subset of $\left[t i d_{0}^{0}-x, t i d_{0}^{0}+k\right]=\left[t i d_{0}^{k}-k-x, t i d_{0}^{k}\right] \subseteq\left[t i d_{0}^{k}-M_{t i d r}, t i d_{0}^{k}\right]$ because $k+x$ $\leq M_{t i d r}$. Thus (1) is true in both cases.

Now we prove (2). First we consider the case that every m-token in c is generated after c_{0}. Assume m-token t is generated in phase k_{t}. We know $k_{t} \in\left[k-M_{t i d r}, k\right]$ from above. Because $M_{t i d r} \leq M_{t i d}, m$-tokens generated in different phases have different token IDs by Lemma 7, thus (2) is true.

Otherwise we know $k=t i d_{0}^{k}-t i d_{0} \leq M_{t i d r}$ from above. So in c, all the m-tokens existing in c_{0} have ID in $R_{1}=\left[t i d_{0}^{0}-M_{t i d r}, t i d_{0}^{0}\right]$. By (2) of definition 5 all the m-tokens generated after c_{0} have IDs in $R_{2}=\left[t i d_{0}^{0}, t i d_{0}^{k}\right] \subseteq\left[t i d_{0}^{0}, t i d_{0}^{0}+M_{t i d r}\right]$. Consider all the m tokens with ID $l \in R_{1} \cup R_{2}$ in c. If $l \in\left[t i d_{0}^{0}-M_{t i d r}, t i d_{0}^{0}-1\right]$, all these m-tokens exist in c_{0} and they have the same ring and new_set by (3) of definition 5. If $l=t i d_{0}^{0}$, these m-tokens
either exist in c_{0} or are generated in phase 0 with ring $=\operatorname{ring}_{0}^{0}$ and new_set $=$ new_set 0, so (2) is true in this case by (4) of definition 5; otherwise they are generated in the same phase after c_{0} and (2) is still true.

An execution in which all the configurations satisfy token_safe exhibits good behaviors. We state the conditions under which a processor's token ID remains unchanged in Lemma 11.

Lemma 11 Let σ be an execution in which all the configurations are token_safe. For each processor p_{i} and all $k \geq 0$, we have:
(1) If $\left(t i d_{i}=t i d_{0}\right)$ or $\left(t i d_{i}=t i d_{0}-1\right)$ in configuration c, then line 9.10 is false in the receive ${ }_{i}^{m}(t)$ event following c.
(2) If in phase k there exists a configuration c in which
(2.1) $\left(\right.$ status $\left._{i}=j o i n e d\right) \wedge\left(t i d_{i}=t i d_{0}^{k}\right)$, or
$(2.2)\left(\right.$ status $_{i}=$ joined $) \wedge\left(\right.$ tid $\left._{i} \in\left\{M_{\text {tid }}, 0, \ldots, M_{\text {tidr }}\right\}\right) \wedge$
$\left(t i d_{i} \notin\left[t i d_{0}^{k}-M_{t i d r}-1, t i d_{0}^{k}-1\right]\right)$
then tid $_{i}$ remains unchanged after c in phase k.
(3) If in phase k there exists a configuration c before c_{g}^{k} in which $\left(\right.$ status $_{i}=j$ oined $) \wedge$ $\left(\right.$ tid $_{i}=$ tid $\left.d_{0}^{k}-1\right)$, then tid remains unchanged between c and c_{g}^{k} (including $\left.c_{g}^{k}\right)$.

Proof. Proof of (1): If $t . i d \neq 0$, line 9.10 is false. Otherwise since $t . i d=0 \in\left[t i d_{0}-\right.$ $\left.M_{t i d r}, t i d_{0}\right]$ by definition 6 , we have $t i d_{0} \in\left[0, M_{t i d r}\right]$, that is, $t i d_{i} \in\left\{M_{t i d}, 0, \ldots, M_{t i d r}\right\}$, so line 9.10 is false.

Proof of (2): If (2.1) is true in c, then line 9.2 is false, line 9.10 is false by part (1), which was just proved, and line 9.13 is false because no m-token with ID $t i d_{0}^{k}+1$ exists by definition 6 . If (2.2) is true in c, then line 9.2 and line 9.10 are false, and line 9.13 is
false because all the m-tokens have ID in $\left[t i d_{0}^{k}-M_{t i d r}, t i d_{0}^{k}\right]$ by definition 6. So (2) is proved.

Proof of (3): If status $_{i}=j$ joined, then line 9.2 is false. If $t i d_{i}=t i d_{0}^{k}-1$, then line 9.10 is false by part (1), which has already been proved. Since no m-token with ID $t i d_{0}^{k}$ exists before e_{g}^{k} in phase k by definition 6, line 9.13 is false between c and c_{g}^{k}. So (3) is proved.

Now we consider the generation of current tokens of phase $k \geq 1$ in such an execution.

Lemma 12 Consider any execution σ in which all the configurations are token_safe. For each phase $k \geq 1$ of σ, we have:
(1) All the current tokens of phase k are generated in phase k with the same ring and new_set.
(2) The time interval between e_{g}^{k} and e_{s}^{k} is no more than $M_{l t}$, and there is no m-token in the configuration previous to e_{g}^{k} if $\left(\right.$ discon $_{0}=$ true $)$ in e_{s}^{k}.

Proof. Since $k \geq 1$, the c_{s}^{k} configuration exists, which is token_safe. So there is no m-token with ID $t i d_{0}^{k}$ in c_{s}^{k} by definition 6 and (1) is proved.

Now we prove (2). First we prove at least one generate e_{0}^{m} event occurs in phase k. Otherwise no m-token with ID $t i d_{0}^{k}$ exists in phase k by part (1) (which was just proved), so timer $r_{0}^{\text {phase }}$ is never reset in a receive e_{0}^{m} event and e_{s}^{k+1} is activated only when timer $_{0}^{\text {phase }}$ goes off. Thus the length of phase k is $T M_{\text {phase. }}$. Since timer $r_{0}^{\text {gen }}$ is set to 0 or to $M_{l t}$ (which is less than $T M_{\text {phase }}$) in e_{s}^{k}, it goes off and a generate e_{0}^{m} event is activated in phase k, which is a contradiction.

Since timer ${ }_{0}^{g e n}$ is not reset between e_{g}^{k} and e_{s}^{k}, the time interval between e_{g}^{k} and e_{s}^{k} is equal to its reset value in e_{s}^{k}, which is $M_{l t}$ if $\left(\right.$ discon $_{0}=$ true $)$ and 0 otherwise. If $\left(\right.$ discon $_{0}=$ true $)$, no m-token exists in the configuration previous to e_{g}^{k} by Lemma 5 .

Now we consider membership maintenance in such an execution.

Lemma 13 Consider an execution σ and phase $k \geq 1$ of σ, such that all the configurations in σ are token_safe. The following are true for each $p_{i} \in \operatorname{ring} g_{0}^{k+1}$.
(1) There is a receive $i_{i}^{m}(t)$ event, denoted by e_{i}^{v}, in phase k, such that $t . i d=t i d_{0}^{k}$ and p_{i} is added to t.visited_set in e_{i}^{v}. Furthermore, status ${ }_{i}=j o i n e d$ in any configuration after e_{i}^{v} in phase k and phase $k+1$.
(2) If $p_{i} \notin$ ring g_{0}^{k}, then tid $d_{i}=$ tid d_{0}^{k} in c_{s}^{k+1}.

Proof. By line 4.3, we have $p_{i} \in$ visited_set t_{0} in c_{s}^{k+1}. Notice visited_set $_{0}$ is set to $\{0\}$ in e_{s}^{k}, and it is updated in phase k according to visited_set in the current tokens received by p_{0}, which are generated in phase k by Lemma 12. So there exists a current token which includes p_{i} in its visited_set. Since every m-token's visited_set is set to $\{0\}$ when generated, there exists such an e_{i}^{v} event in phase k. Right after e_{i}^{v}, status ${ }_{i}$ is joined. The only code changing status i_{i} to joining is a send d_{i}^{j} event. Since timer $_{i}^{j o i n}$ is set to $T M_{\text {join }}$ in e_{i}^{v}, after which timer ${ }_{i}^{j o i n}$ keeps going down unless it is reset to $T M_{j o i n}$ in a receive e_{i}^{m} event, it takes at least $T M_{\text {join }}$ for $t i m e r_{i}^{j o i n}$ to reach 0 . Thus a $\operatorname{sen} d_{i}^{j}$ event will not occur within $T M_{j o i n}$ from e_{i}^{v}. Because $T M_{\text {join }}>2 T M_{\text {phase }}$, a $\operatorname{send} d_{i}^{j}$ event will not occur after e_{i}^{v} in phase k and phase $k+1$ by Lemma 7. So (1) is proved.

If $p_{i} \notin r i n g_{0}^{k}, p_{i}$ can be added to $t . v i s i t e d _$set only in line 9.5 , so we have $t i d_{i}=$ $t . i d=t i d_{i}^{k}$ and $s t a t u s_{i}=j$ oined in the configuration following e_{i}^{v}. After that, $t i d_{i}$ remains unchanged in phase k by (2.1) of Lemma 11. So (2) is proved.

3. Safe Properties of Non-member

In this section, we discuss the properties of non-members. First we define the appropriate levels of information related to a non-member processor according to how long ago the
processor left the system (definition 7). Lemma 14 shows the time required to move from one level to the next. We prove in Lemmas 15 and 16 that eventually the information related to a non-member will be kept in an appropriate level and starting from that point, property nmem_safe (definition 8) is always guaranteed, that is, a processor rejoin is allowed to the system only when there is no old information relating to it still in the system. Thus we guarantee that when a processor rejoins the system, it cannot enter the critical section before it is initialized by a current token (Lemma 17).

First we give definitions of $\operatorname{conv}_{n m e m}$ and $n m e m _s a f e$.
Definition 7 (conv $v_{n m e m}$). Given a configuration c, c satisfies property conv $v_{n m e m}$ if and only if for every processor p_{i} with $\left(\right.$ member $_{i}=$ false) in c, we have:
(1) if $\left(\right.$ timer $\left._{i}^{a p p} \leq 2 M_{l t}+2 T M_{\text {phase }}\right)$ then $\left(\right.$ pred $_{1}=$ true $)$
(2) if $\left(\right.$ timer $\left._{i}^{a p p} \leq M_{l t}+2 T M_{\text {phase }}\right)$ then $\left(\right.$ pred $_{2}=$ true $)$
(3) if $\left(\right.$ timer $\left._{i}^{a p p} \leq M_{l t}+T M_{\text {phase }}\right)$ then $\left(\right.$ pred $_{3}=$ true $)$
(4) if $\left(\right.$ timer $\left._{i}^{a p p} \leq M_{l t}\right)$ then $\left(\right.$ pred $_{4}=$ true $)$
where

- $\operatorname{pred}_{1} \equiv\left(\nexists\right.$ m-token $t, p_{i} \in t$.visited_set $) \wedge\left(\nexists j\right.$-token t, t.pid $\left.=p_{i}\right)$
- $\operatorname{pred}_{2} \equiv\left(p_{i} \notin\right.$ visited_set $\left._{0}\right) \wedge\left(p_{i} \notin\right.$ join_set $\left._{0}\right)$
- $\operatorname{pred}_{3} \equiv\left(p_{i} \notin\right.$ ring $\left._{0}\right) \wedge\left(p_{i} \notin\right.$ new_set $\left._{0}\right)$
- pred $_{4} \equiv \forall$-token $t,\left(p_{i} \notin t\right.$. ring $) \wedge\left(p_{i} \notin t\right.$.new_set $)$

Definition 8 (nmem_safe). A configuration is nmem_safe if and only iffor every p_{i} with $\left(\right.$ member $_{i}=$ false $) \wedge\left(\right.$ timer $\left._{i}^{a p p}=0\right),\left(\right.$ pred $_{3} \wedge$ pred $\left._{4}\right)$ is true for p_{i}.

The level of information related to p_{i} represented by each predicate is decreasing. The following lemmas shows the time required to move from one level to the next.

Lemma 14 Given $i>0$ and any execution σ in which $\left(\right.$ member $_{i}=$ false) at time T, we have the following properties, where $T_{a}=T+M_{l t}, T_{b}=T_{a}+T M_{p h a s e}, T_{c}=T_{b}+T M_{p h a s e}$, and $T_{d}=T_{c}+M_{l t}$.
(0) $\forall i, 1 \leq i \leq 4$, if $\wedge_{j=1}^{i}$ pred $_{j}$ is true at T, then $\wedge_{j=1}^{i}$ pred $_{j}$ remains true as long as member $_{i}$ remains false.
(1) If member ${ }_{i}$ is false in $\left[T, T_{a}\right]$, then pred $_{1}$ is true at T_{a}.
(2) If pred d_{1} is true at T_{a} and member ${ }_{i}$ is false in $\left[T_{a}, T_{b}\right]$, then pred ${ }_{2}$ is true at T_{b}.
(3) If $\left(\right.$ pred $_{1} \wedge$ pred $\left._{2}\right)$ is true at T_{b} and member ${ }_{i}$ is false in $\left[T_{b}, T_{c}\right]$, then pred ${ }_{3}$ is true at T_{c}.
(4) If $\left(\right.$ pred $_{1} \wedge$ pred $_{2} \wedge$ pred $\left._{3}\right)$ is true at T_{c} and member ${ }_{i}$ is false in $\left[T_{c}, T_{d}\right]$, then pred $_{4}$ is true at T_{d}.

Proof. Suppose T_{b} is in phase k_{b} and T_{c} is in phase k_{c}. We notice that (a) p_{i} does not send any j-token and p_{i} is not added to any m-token's visited_set as long as member r_{i} remains false; (b) p_{i} can be added to join_set $_{0}$ (visited_set ${ }_{0}$ respectively) only if there exists j token from p_{i} (m-token t with $p_{i} \in t$.visited_set respectively); (c) p_{i} can be added to ring g_{0} (new_set $_{0}$ respectively) only if p_{i} has been added to visited_set $_{0}$ (join_set $_{0}$ respectively) ; (d) p_{i} is included in a ring (new_set respectively) of a m-token t only if $p_{i} \in \operatorname{ring}_{0}$ ($p_{i} \in$ new_set $_{0}$ respectively) when t is generated.

If pred $_{1}$ is true at T, it is true as long as member ${ }_{i}$ is false by (a); if $\left(p r e d_{1} \wedge p r e d_{2}\right)$ is true at T, it is true as long as member r_{i} is false by (a) and (b); if ($\operatorname{pred}_{1} \wedge \operatorname{pred}_{2} \wedge$ pred $\left._{3}\right)$ is true at T, it is true as long as member ${ }_{i}$ is false by (a), (b) and (c); if (pred $_{1}$ $\wedge \operatorname{pred}_{2} \wedge \operatorname{pred}_{3} \wedge$ pred $\left._{4}\right)$ is true at T, it is true as long as member r_{i} is false by (a), (b), (c) and (d). So (0) is proved.

Since all tokens existing at T have been discarded by T_{a} by Lemma 5, (1) can be proved by (a). Since event $e_{s}^{k_{b}}$ exists in $\left[T_{a}, T_{b}\right]$ by Lemma 7, in which visited_set $_{0}$ and
join_set ${ }_{0}$ are reset, (2) can be proved by (b) because pred $_{1}$ is true in $\left[T_{a}, T_{b}\right]$ by case (0). Since by Lemma 7 configuration $c_{s}^{k_{c}}$ exists in $\left[T_{b}, T_{c}\right]$, (3) can be proved by (c) because pred d_{2} is true in $c_{s}^{k_{c}}$ by case (0). Since all the tokens existing at T_{c} have been discarded by T_{d} by Lemma 5, (4) can be proved by (d) because pred $_{3}$ is true in $\left[T_{c}, T_{d}\right]$ by cases (0).

Lemma 15 Starting from an arbitrary configuration, within time $2 M_{l t}+3 T M_{\text {phase }}$, there is a configuration satisfying conv nmem.

Proof. We will prove the configuration c at time $T=2 M_{l t}+3 T M_{\text {phase }}$ from the initial configuration satisfies conv $v_{n m e m}$. Consider any processor p_{i} with member $_{i}=$ false in c. If there is no leave ${ }_{i}$ event before c, then member ${ }_{i}$ has remained false for T time, so c satisfies conv ${ }_{n m e m}$ by (1), (2), (3), (4) and (0) of Lemma 14.

Otherwise let e be the last leave i_{i} event before c. In e, timer $_{i}^{a p p}$ is set to $T M_{\text {app }}$. Denote the value of timer $_{i}^{a p p}$ in c by T^{\prime}, so in c, member $_{i}$ has been false for $T_{f}=T M_{a p p}-T^{\prime}$ time. In c, if $T^{\prime} \leq 2 M_{l t}+2 T M_{\text {phase }}$, that is, $T_{f} \geq T M_{\text {phase }}>M_{l t}$, pred $_{1}$ is true by (1) and (0) of Lemma 14; if $T^{\prime} \leq M_{l t}+2 T M_{\text {phase }}$, that is, $T_{f} \geq M_{l t}+T M_{\text {phase }}$, pred d_{2} is $t r u e$ by (1), (2) and (0) of Lemma 14; if $T^{\prime} \leq M_{l t}+T M_{\text {phase }}$, that is, $T_{f} \geq M_{l t}+2 T M_{\text {phase }}$, pred $_{3}$ is true by (1), (2), (3) and (0) of Lemma 14; if $T^{\prime} \leq M_{l t}$, that is, $T_{f} \geq 2 M_{l t}+2 T M_{p h a s e}$, pred $_{4}$ is true by (1), (2), (3), (4) and (0) of Lemma 14.

Lemma 16 Given any execution σ starting from a configuration c_{0} satisfying conv $v_{n m e m}$, every configuration c in σ is nmem_safe.

Proof. Consider any processor p_{i} such that member $_{i}=$ false and timer ${ }_{i}^{a p p}=0$ in c. If there is a leave i_{i} before c in σ, then member ${ }_{i}$ has been false for at least $T M_{a p p} \geq$ $2 T M_{\text {phase }}+2 M_{l t}$ time by c, so the claim is true by (1), (2), (3), (4) and (0) of Lemma 14. Otherwise, member ${ }_{i}$ is false between c and c_{0}. Let T be the value of $t i m e r r_{i}^{a p p}$ in c_{0}. Since
timer $_{i}^{\text {app }}=0$ in c, member $_{i}$ has been false for T time by c. If $T>2 T M_{\text {phase }}+2 M_{l t}$, the claim is proved by (1), (2), (3), (4) and (0) of Lemma 14. If $T \in\left[M_{l t}+2 T M_{\text {phase }}, 2 M_{l t}+\right.$ $\left.2 T M_{\text {phase }}\right]$, then pred $_{1}$ is true in c_{0} by definition 7 and the claim can be proved by (2), (3), (4) and (0) of Lemma 14. If $T \in\left[M_{l t}+T M_{\text {phase }}, M_{l t}+2 T M_{\text {phase }}\right]$, then $\left(\right.$ pred $_{1} \wedge$ pred $\left._{2}\right)$ is true in c_{0} by definition 7 and the claim can be proved by (3), (4) and (0) of Lemma 14. If $T \in\left[M_{l t}, M_{l t}+T M_{\text {phase }}\right]$, then $\left(\right.$ pred $\left._{1} \wedge \operatorname{pred}_{2} \wedge \operatorname{pred}_{3}\right)$ is true in c_{0} by definition 7 and the claim can be proved by (4) and (0) of Lemma 14. If $T \in\left[0, M_{l t}\right]$, then $\left(\right.$ pred $_{3} \wedge$ pred $_{4}$) is true in c_{0} by definition 7 and the claim can be proved by (0) of Lemma 14.

From the following lemma, we can see that eventually a processor not in $r i n g_{0}$ will not enter the critical section.

Lemma 17 Given an arbitrary configuration c_{0}, consider any execution σ starting from c_{0}. Within time $T=3 M_{l t}+5 T M_{\text {phase }}$, there exists an $e_{s}^{k_{c}}$ event, $k_{c}>1$, such that
(1) all configurations after $e_{s}^{k_{c}}$ are token_safe and nmem_safe, and
(2) given any $k \geq k_{c}$, in any configuration between e_{g}^{k} and e_{g}^{k+1}, for any $p_{i} \notin r i n g_{0}^{k}$, we have
(2.1) member $_{i}=$ false) or $\left(\forall t, p_{i} \notin t . r i n g\right)$, and
(2.2) p_{i} does not enter the critical section.

Proof. By Lemmas 9, 10, after time $2 M_{l t}$, all the configurations are token_safe. By Lemmas 15 and 16, after time $2 M_{l t}+3 T M_{\text {phase }}$, all the configurations are nmem_safe. Thus after time $T^{\prime}=2 M_{l t}+3 T M_{\text {phase }}$, all the configurations are token_safe and nmem_safe. By Lemma 7, there exists some $k_{0} \geq 1$ such that the $e_{s}^{k_{0}}$ event occurs in [$\left.T^{\prime}, T^{\prime \prime}\right]$ where $T^{\prime \prime}=T^{\prime}+T M_{p h a s e}$, and k_{c} such that the $e_{s}^{k_{c}}$ event occurs in $\left[T^{\prime \prime}+M_{l t}, T\right]$. Thus (1) is true for k_{0} and k_{c}.

Now we prove (2.1) is true and we can get (2.2) directly from (2.1). Let k_{1} be the smallest number such that $p_{i} \notin$ ring g_{0}^{l} for any $l \in\left[k_{1}, k\right]$ (informally, phase k_{1} to phase k is a maximal execution segment in which $p_{i} \notin \operatorname{ring}_{0}$.) Let σ_{1} be the execution of phase $k_{1}-1$ if $k_{1}>k_{0}$, otherwise σ_{1} is empty. Let σ_{2} be the execution from $e_{s}^{\max \left\{k_{1}, k_{0}\right\}}$ to e_{g}^{k+1}. Thus all the configurations in σ_{1} or σ_{2} are token_safe and nmem_safe. We notice that (a) if σ_{1} is not empty, that is $k_{1}>k_{0}$, we have $p_{i} \in \operatorname{ring}_{0}^{k_{1}-1}$ in σ_{1} and there is no $j o i n_{i}$ event in σ_{1} by definition 8 ; (b) for any m-token t generated in σ_{2} we have $p_{i} \notin t . r i n g$; and (c) all the m-tokens in phase k are generated after $e_{s}^{k_{0}}$ by Lemma 5. We have the following two cases.

- If there is a $j o i n_{i}$ event $e_{j o i n}$ in σ_{2}, let $c_{j o i n}$ be the configuration previous to $e_{j o i n}$, in which $\left(\right.$ member $_{i}=$ false $) \wedge\left(\right.$ timer $\left._{i}^{a p p}=0\right)$. By definition 8 , there is no m-token including p_{i} in ring in $c_{\text {join }}$. So there is no m-token including p_{i} in ring in all the configurations after $e_{\text {join }}$ in σ_{2} by (b). If $e_{\text {join }}$ occurs before e_{g}^{k}, the claim is proved. Otherwise $e_{j o i n}$ occurs after e_{g}^{k}. We notice the time interval between two join i_{i} and leave $_{i}$ events is at least $T M_{\text {app }}$ because timer $_{i}^{a p p}$ is set to $T M_{\text {app }}$ in a leave i_{i} event and a join $_{i}$ event occurs only if timer $_{i}^{a p p}=0$. So there is no leave i_{i} event between e_{g}^{k} and $e_{j o i n}$ by Lemmas 7 and 12. Thus member r_{i} remains false between e_{g}^{k} and $e_{j o i n}$ and the claim is proved in this case.
- Otherwise by (a) no join $_{i}$ event occurs in σ_{1} and σ_{2}. If member $_{i}=$ false in the configuration previous to e_{g}^{k}, then member $_{i}$ remains false in σ_{2} and the claim is proved. Otherwise member $_{i}$ is always true in σ_{1} and σ_{2}. We consider the following two cases:
- If σ_{1} is empty, that is, $k_{1} \leq k_{0}$, then σ_{2} is the execution between $e_{s}^{k_{0}}$ and e_{g}^{k+1}. Thus all the tokens in phase k are generated in σ_{2} by (c) and in phase k there is no token which includes p_{i} in ring by (b). Thus (2.1) is proved in this case.
- Otherwise we have $k_{1} \geq k_{0}+1$, so all the configurations in phase $k_{1}-1$ are token_safe. Since member ${ }_{i}$ is true in phase $k_{1}-1$, we have $p_{i} \notin t$.leave_set for any current token t of phase $k_{1}-1$, which is generated in this phase by Lemma 12. Because $k_{1} \geq k_{0}+1 \geq 2$, the $e_{s}^{k_{1}-1}$ event exists, in which leave_set $_{0}$ is reset. Since leave_set ${ }_{0}$ is updated according to the leave_set on the current tokens received by p_{0} in phase $k_{1}-1$, we have $p_{i} \notin$ leave_set $_{0}$ in $e_{s}^{k_{1}}$. Because $p_{i} \notin$ ring $_{o}^{k_{1}}$, we have $p_{i} \notin$ visit_set $_{0}$ in $e_{s}^{k_{1}}$. So in $e_{s}^{k_{1}}$, discon n_{0} is true and no m-token exists in the configuration previous to $e_{g}^{k_{1}}$ by Lemma 12. So after e_{g}^{k-1}, all the m-tokens are generated after $e_{g}^{k_{1}}$ and no m-token includes p_{i} in ring by (b). Thus the claim is proved.

4. Eventual Convergence

In this section, we define a property conv member of configurations. Based on Lemma 18, we show in Lemma 19 that, starting from an arbitrary configuration, there exists a phase k_{c}, such that $c_{s}^{k_{c}}$ satisfies conv member and all the configurations after $c_{s}^{k_{c}}$ are token_safe and nmem_safe.

The intuition for conv member is that, in a configuration satisfying conv ${ }_{m e m b e r}$, all the members indicate they have joined the system by setting status ${ }_{i}$ to joined, they have a correct token ID, which is equal to $t i d_{0}$, and they have been visited recently, that is, timer $_{i}^{j o i n} \geq T M_{\text {phase }}+M_{l t}$.

Definition 9 (conv member). A configuration is conv $v_{\text {member }}$ if and only iffor any $p_{i} \in$ ring $_{0}$, we have $\left(\right.$ status $_{i}=$ joined $) \wedge\left(t i d_{i}=\right.$ tid $\left._{0}\right) \wedge\left(\right.$ timer $\left._{i}^{j o i n} \geq T M_{\text {phase }}+M_{l t}\right)$.

In Lemma 18, we show that, starting from a phase with $t i d_{0}=0$, the range of the members' token IDs is decreased by one in each phase.

Lemma 18 Consider an execution σ, in which all the configurations are token_safe, and a phase b of σ, such that $t i d_{0}^{b}=0$ and $b \geq 1$. For any $p_{i} \in \operatorname{ring}_{i}^{b+k+1}, 0 \leq k \leq M_{t i d r}$, we have tid ${ }_{i} \in\left[k, M_{\text {tidr }}\right]$ in c_{s}^{b+k+1}.

Proof. We have $t i d_{0}^{b+k}=k$ and $t i d_{0}^{b+k+1}=k+1$ by Lemma 7. Given $p_{i} \in \operatorname{ring} g_{i}^{b+k+1}$, by Lemma 13 the e_{i}^{v} event exists in phase $b+k$ and we have status $_{i}=j$ joined after e_{i}^{v} in phase $b+k$ and phase $b+k+1$. Note that if we have $t i d_{i} \in\left[k, M_{t i d r}\right]$ in the configuration c_{i}^{v} following e_{i}^{v}, then tid_{i} remains unchanged in phase $b+k$ by (2.2) of Lemma 11. So in the rest we only need to prove $\operatorname{tid}_{i} \in\left[k, M_{t i d r}\right]$ in c_{i}^{v}. We prove it by induction on k.

In phase b, if p_{i} is added to $t . v i s i t e d _s e t ~ b y ~ l i n e ~ 9.5 ~ i n ~ e ~ h a v e ~ t i d ~ w e ~ t . i d ~=~$ $0 \in\left[0, M_{t i d r}\right]$ in c_{i}^{v}. Otherwise we have $t i d_{i} \in\left\{M_{t i d}, 0, \ldots, M_{t i d r}\right\}$ at line 9.13 because $t . i d=0$, after which $t i d_{i}$ is updated to 0 if $t i d_{i}=M_{\text {tid }}$ by lines 9.13-9.15. So we have $t i d_{i} \in\left[0, M_{t i d r}\right]$ in c_{i}^{v}. Thus the claim is true for $k=0$.

Assume the claim is true for $l, 0 \leq l \leq k-1$. We show it holds for k. If $p_{i} \notin r i n g g_{0}^{b+k}$, we have tid $_{i}=t i d_{0}^{b+k}=k \in\left[k, M_{t i d r}\right]$ in c_{s}^{b+k+1} by Lemma 13. Otherwise we have $p_{i} \in\left[k-1, M_{t i d r}\right]$ in c_{s}^{b+k} by the inductive hypothesis, and status $_{i}=j$ oined in phase $b+k$ by Lemma 13. Note if $t i d_{i} \in\left[k-1, M_{\text {tidr }}\right]$ is true in the configuration previous to a receive $e_{i}^{m}\left(t^{\prime}\right)$ event in phase $b+k$, then it is true at the end of this event for the following reason. Since line 9.2 and 9.10 are false, tid $_{i}$ can be changed only when line 9.13 is true. Since we have tid $_{i} \in\left[k-1, M_{t i d r}\right], t^{\prime} . i d \in\left[k-M_{t i d r}, k\right]$ by definition 6, and $\left[k, M_{\text {tidr }}+1\right] \cap\left[k-M_{\text {tidr }}, k\right]=\{k\}$, line 9.13 is true only if $t^{\prime} . i d=t i d_{i}+1=k$, and $t i d_{i}$ is updated to $k \in\left[k-1, M_{\text {tidr }}\right]$ if it is true.

Since we have $t i d_{i} \in\left[k-1, M_{t i d r}\right]$ in $c_{s}^{b+k}, t i d_{i} \in\left[k-1, M_{t i d r}\right]$ is true in the configuration previous to all receive e_{i}^{m} events in phase $(b+k)$, including e_{i}^{v}. Since we have $t . i d=k$ in $e_{i}^{v}, t i d_{i}$ is updated to k in line 9.14 if $t i d_{i}=k-1$. So we have $t i d_{i} \in\left[k, M_{t i d r}\right]$ in c_{i}^{v}, and the claim is true for k.

Theorem 19 Given an arbitrary configuration c_{0}, consider any execution σ starting from c_{0}. Within time $2 M_{l t}+3 T M_{\text {phase }}+\left(M_{\text {tid }}+M_{\text {tidr }}\right) \cdot T M_{\text {phase }}$, there exists an $e_{s}^{k_{c}}$ event, for some $k_{c}>1$, such that
(1) all configurations after c_{s}^{t} are token_safe and nmem_safe and
(2) $c_{s}^{k_{c}}$ satisfies conv ${ }_{\text {member }}$.

Proof. By Lemmas 9, 10, after time $2 M_{l t}$, all the configurations are token_safe. By Lemmas 15 and 16, after time $2 M_{l t}+3 T M_{p h a s e}$, all the configurations are $n m e m _s a f e$. Thus after time $T=2 M_{l t}+3 T M_{p h a s e}$, all the configurations are token_safe and nmem_safe.

By Lemma 7, after T there exists a phase b such that $t i d_{0}^{b}=0$ and $b \geq 1$. Let m be $b+M_{t i d r}$. We will prove $c_{s}^{k_{c}}$ satisfies conv member, where $k_{c}=m+1$. By Lemmas 7, 9 and 15 , we can see the time of $e_{s}^{k_{c}}$ is no more than $2 M_{l t}+3 T M_{\text {phase }}+\left(M_{t i d}+M_{\text {tidr }}\right) \cdot T M_{\text {phase }}$ after the initial configuration.

For any $p_{i} \in \operatorname{rin} g_{0}^{m+1}$, by Lemma 13 the e_{i}^{v} event exists in phase m and we have status $_{i}=j$ joined after e_{i}^{v} in phase m and phase $m+1$, including c_{s}^{m+1}. By Lemma 18 we have tid $_{i}=M_{\text {tidr }}=t i d_{0}^{m}$ in c_{s}^{m+1}. Since timer $_{i}^{j o i n}$ is set $T M_{j o i n}$ in e_{i}^{v}, we have timer $_{i}^{\text {join }} \geq T M_{\text {join }}-T M_{\text {phase }} \geq T M_{\text {phase }}+M_{l t}$ in c_{s}^{m+1} by Lemmas 7 and 12. So c_{s}^{m+1} satisfies conv member .

In the sequel, we say an execution has converged if it has reached a configuration $c_{g}^{k_{c}}$, where k_{c} satisfies the properties in Lemma 17 and Theorem 19.

5. Mutual Exclusion after Convergence

In this section we focus on an execution σ which has converged. We denote by σ^{k} the subsequence between c_{g}^{k} and c_{g}^{k+1} of σ, including c_{g}^{k} and c_{g}^{k+1} (Fig. 19). By Lemma 17, we know that only processors in $\operatorname{rin} g_{0}^{k}$ can enter the critical section in σ^{k}. In this section,

Fig. 19. Proof of Mutual Exclusion after convergence
we show that if c_{s}^{k} satisfies conv member , then no more than one processor is in the critical section at the same time in σ^{k} (Lemma 20), and c_{s}^{k+1} satisfies conv member (Lemma 21). Thus Mutual Exclusion can be guaranteed from c_{g}^{k} (Theorem 22).

Lemma 20 Given an execution σ and $k>1$, such that c_{s}^{k} satisfies conv ${ }_{\text {member }}$, and all the configurations after c_{s}^{k} are token_safe and nmem_safe, we have in σ^{k} :
(1) For any $p_{i} \in \operatorname{ring} g_{0}^{k}$,
(1.1) p_{i} is in the critical section only when being visited by an m-token with ID tid d_{0}^{k} the first time in σ^{k}.
(1.2) if p_{i} never enters the critical section in σ^{k}, tid d_{i} remains unchanged. Otherwise let $c_{c s}$ be the last configuration in σ^{k} in which p_{i} is in the critical section. We have tid ${ }_{i}=$ tid $d_{0}^{k}-1$ in all configurations in σ^{k} previous to $c_{c s}$ and including $c_{c s}$, and tid ${ }_{i}=$ tid d_{0}^{k} in all configurations in σ^{k} after $c_{c s}$.
(2) No more than one processor in ring g_{0}^{k} is in the critical section at the same time in any configuration in σ^{k}.

Proof. By Definition 9, we have status $_{i}=j$ joined and $t i d_{i}=t i d_{0}=t i d_{0}^{k}-1$ in c_{s}^{k}. First we notice status $_{i}$ remains joined in σ^{k} for the following reason: status ${ }_{i}$ is set to joining only in a send d_{i}^{j} event, which will not occur in σ^{k} because timer $i_{i}^{j o i n}$ will not reach 0 in σ^{k} by Definition 9 and Lemmas 7 and 12. We denote the first event that updates tid_{i} in σ^{k} by e_{i}^{u}. By (3) of Lemma 11, $t i d_{i}$ remains unchanged before c_{g}^{k}. So we have $t i d_{i}=t i d_{0}^{k}-1$ in
c_{g}^{k} and line 9.10 is false in e_{i}^{u} by (1) of Lemma 11. Since line 9.2 is always false because status $_{i}=j$ oined, line 9.13 is true in e_{i}^{u}, that is, p_{i} is visited by an m-token with ID $t i d_{0}^{k}$ and $t i d_{i}$ is updated to $t i d_{0}^{k}$ by line 9.14 in e_{i}^{u}. Since line 9.13 is always true when p_{i} is visited by an m-token with ID $t i d_{0}^{k}$ if $\left(t i d_{i}=t i d_{0}^{k}-1\right)$, this is the first time p_{i} is visited by an m-token with ID $t i d_{0}^{k}$. Once $t i d_{i}$ is updated to $t i d_{0}^{k}, t i d_{i}$ remains unchanged in phase k by (2.1) of Lemma 11 and in phase $(k+1)$ before e_{g}^{k} by (3) of Lemma 11. Thus (1) is proved.

Now we prove (2). Assume in contradiction that p_{i} and p_{j} are in the critical section at the same time, say in configuration c. Let m-token t_{i} (t_{j} respectively) be the first token in $q^{\text {queue }}{ }_{i}$ (queue ${ }_{j}$ respectively) in c. By part (1.1), which was just proved, $t_{i}\left(t_{j}\right.$ respectively) is the first token with ID $t i d_{0}^{k}$ which visits p_{i} (p_{j} respectively). Since any m-token with ID $t i d_{0}^{k}$ is generated in phase k by Lemma 12, we have t_{i}.ring $=t_{j}$.ring $=$ ring $_{0}^{k}$. By the predicate for the critical section, we also have in c : (a) p_{i} is the first processor in t_{i}.ring not in t_{i}.visited_set, and (b) p_{j} is the first processor in t_{j}.ring not in t_{j}.visited_set. Without loss of generality, we assume p_{i} is before p_{j} in $r i n g_{0}^{k}$, thus we have $p_{i} \in t_{j}$.visited_set by (b). So p_{i} is visited by t_{j} before p_{i} is visited by t_{i}. Contradiction!

Lemma 21 Given an execution σ, if there exists a phase $k>1$, such that c_{s}^{k} satisfies conv $_{\text {member }}$, and all the configurations after c_{s}^{k} are token_safe and nonmember ${ }_{\text {safe }}$, then c_{s}^{k+1} satisfies conv member.

Proof. Given any $p_{i} \in \operatorname{rin} g_{0}^{k+1}$, by Lemma 13 we have an event e_{i}^{v} in phase k such that status $_{i}=j$ oined after e_{i}^{v} in phase k and phase $k+1$, including c_{s}^{k+1}. Since timer ${ }_{i}^{j o i n}$ is set to $T M_{j o i n} \geq 2 T M_{\text {phase }}+2 M_{l t}$ in e_{i}^{v}, we have timer $i_{i}^{j o i n} \geq T M_{\text {phase }}+M_{l t}$ in c_{s}^{k+1} by Lemmas 7 and 12. Now we consider $t i d_{i}$ in c_{s}^{k+1}. If $p_{i} \notin \operatorname{ring}_{0}^{k}$, we have $t i d_{i}=t i d_{0}^{k}$ in c_{s}^{k+1} by Lemma 13. Otherwise we have $p_{i} \in \operatorname{ring} g_{0}^{k}$. Since p_{i} is visited by a current token in e_{i}^{v} in phase k, we have $t i d_{i}=t i d_{0}^{k}$ in c_{s}^{k} by (1.2) of Lemma 20. So c_{s}^{k+1} satisfies conv $v_{\text {member }}$.

By Lemmas 17, Lemma 20 and Lemma 21, we have:

Theorem 22 Mutual Exclusion is satisfied when an execution has converged.

6. Progress

Since one of the conditions for processor p_{i} to enter the critical section is being visited by a token, the level of progress provided by this algorithm depends on the frequency with which a processor is visited by tokens, that is, $L R_{L}$'s performance for token circulation. The performance of $L R_{L}$ is affected by many factors, including message loss, choice of L, and the mobility pattern of the network. In this section, we discuss the different levels of requirements on $L R_{L}$'s performance to achieve different levels of progress. We define the following levels of $L R_{L}$'s performance, in which R_{0} is required to guarantee that p_{0} can receive p_{i} 's join_request eventually, $R_{1}(i)$ is used to guarantee that p_{i} enters the critical section infinitely often, and R_{2} is used to guarantee Bounded Waiting.

- $R_{0}(i)$: If infinitely many tokens are generated by p_{i}, then infinitely many of them arrive at p_{0} within L hops.
- $R_{1}(i)$: If infinitely many tokens that include p_{i} in ring or new_set are generated by p_{0}, then infinitely many of them visit p_{i} and come back to p_{0} within L hops.
- R_{2} : At least one of every $\left(T M_{\text {phase }}-M_{l t}\right) \cdot g$ tokens generated by p_{0} visits all the processors in their new_set and ring within L hops.

Lemma 23 Consider phase k of any execution which has converged. Let T^{k} be the time of event e_{s}^{k}. Let processor p_{i} and m-token t_{m} be such that t_{m} is generated in $\left[T^{k}, T^{k}+\right.$ $\left.T M_{\text {phase }}-M_{l t}\right], p_{i}$ is in t_{m}.new_set or t_{m}.ring and t_{m} visits p_{i} and comes back to p_{0}
within L hops. Then we have $p_{i} \in \operatorname{ring} g_{0}^{k+1}$ and p_{i} enters the critical section in phase k if $p_{i} \in t_{m}$.ring.

Proof. By Lemma 12 any current token t of phase k, including t_{m}, satisfies $(t . r i n g=$ ring $\left.g_{0}^{k}\right) \wedge\left(t . n e w _s e t=\right.$ new_set $\left.t_{0}^{k}\right)$. By Lemma 5, token t_{m} comes back to p_{0} after visiting p_{i} within $\left[T^{k}, T^{k}+T M_{\text {phase }}\right]$. Since phase k is ended only if a current token comes back to p_{0} after visiting all the processors in new_set $\operatorname{lin}_{0} \cup \operatorname{ring}_{0}$, including p_{i}, or phase k has lasted for time $T M_{\text {phase }}, p_{i}$ is visited by a current token and added to visited_set $_{0}$ in phase k. So we have $p_{i} \in \operatorname{rin} g_{0}^{k+1}$ and p_{i} enters the critical section if $p_{i} \in t$.ring by (1.1) of Lemma 20.

Theorem 24 Consider any execution that has converged, (1) If $R_{0}(i)$ and $R_{1}(i)$ are satisfied for some processor p_{i}, then No Deadlock is guaranteed; (2) if $R_{0}(i)$ and $R_{1}(i)$ are satisfied for every processor p_{i}, then No Lockout is guaranteed; (3) if $R_{0}(i)$ is satisfied for every processor p_{i} and R_{2} is satisfied, then Bounded Waiting is guaranteed with waiting time bounded by $T M_{\text {phase }}$.

Proof. First we notice that if $R_{0}(i)$ and $R_{1}(i)$ are true, then p_{i} is added to ring g_{0} or new_set ${ }_{0}$ in infinitely many phases for the following reason: If it is not true, p_{i} stops being visited by tokens eventually and $t i m e r_{i}^{j o i n}$ will not be reset to a non-zero value, so infinitely many $\operatorname{sen} d_{i}^{j}$ events are activated, in which infinitely many j-tokens are sent to p_{0}, thus infinitely many j-tokens arrive at p_{0} by R_{0} and p_{i} is added to new_set ${ }_{0}$ in infinitely many phases, which is a contradiction.

Note in any phase such that $p_{i} \in$ new_set $_{0}$, at least one token that includes p_{i} in new_set is generated during $\left[T, T+T M_{\text {phase }}-M_{l t}\right]$, where T is the time when this phase starts. From the discussion above, we know there are infinitely many phases such that $p_{i} \in$ new_set $_{0}$, so we have $p_{i} \in \operatorname{ring}_{0}$ in infinitely many phases by $R_{1}(i)$ and Lemma 23. Note in each of the infinitely many phases such that $p_{i} \in \operatorname{ring}^{0}$, at least one token that
includes $p_{i} \in \operatorname{ring}$ is generated during $\left[T, T+T M_{p h a s e}-M_{l t}\right]$, where T is the time the phase starts. So p_{i} enters the critical section infinitely often by Lemma 23 and $R_{1}(i)$. Thus (1) and (2) are proved.

Now we consider Bounded Waiting. In each phase, p_{0} keeps generating tokens. By R_{2}, at least one token which is generated within time $T M_{\text {phase }}-M_{l t}$ from the beginning of this phase visits all the members and comes back to p_{0} within L hops, so every processor enters the critical section in this phase by Lemma 23. By Lemma 3, the waiting time is bounded by $T M_{\text {phase }}$.

H. Remarks

The assumption of a distinguished processor can be relaxed by using a self-stabilizing leader election algorithm for mobile ad hoc networks. ([26] is a first step toward the development of such an algorithm, in which a "weak" self-stabilizing algorithm is presented.)

The assumption that a processor stays in the critical section only for a negligible time can be relaxed by replacing d by $d+C$ in the definition of $M_{l t}$ in Fig I, where C is the maximum time a processor stays in the critical section. No change is needed in the analysis, since the analysis is done in terms of $M_{l t}$.

Theorem 19 implies that the time for the algorithm to converge is $O\left(L^{2}\right)$ and the waiting time implied by Theorem 24 is $O(L)$.

Simulation results in [5] [6] show that the (unbounded) $L R$ algorithm performs well in mobile networks. In particular, the round length is very close to the optimal value n, where round length is the number of hops for a token to be forwarded to all the nodes and n is the number of nodes in the network. If the parameter L to our bounded version of $L R$ is chosen to be on the order of the "usual" round length, then the conditions for progress (R_{0}, R_{1}, and R_{2}) are likely to be satisfied. With such a value of L, namely $L=O(n)$,
the simulation results indicate that $O\left(n^{2}\right)$ and $O(n)$ are reasonable approximations to the convergence time and waiting time, respectively. Thus we can see that the requirements on LR's performance to guarantee different levels of progress are feasible in practice.

Table III. Fields on tokens and variables at processors

Token	Field	Data Type	Explanation
j-token	$t s$	timestamp array	used by $L R_{L}$
	pid	integer in $[0, N]$	id of sender
m-token	$t s$	timestamps array	used by $L R_{L}$
	id	token_id	token ID
	ring	permutation of subset of $[0, N]$	processors that have joined
	new_set	subset of $[0, N]$	joining processors
	visit_set	subset of $[0, N]$	processors visited
	route_list	permutation of subset of $[0, N]$	the order in which the token was routed
	leave_set	subset of $[0, N]$	leave requests
Processor Variable $^{\text {P }}$ D Data Type ${ }^{\text {a }}$			
p_{0}	tid $_{0}$	token_id	p_{0} 's local token ID
	ring_{0}	permutation of subset of $[0, N]$	processors that have joined
	new_set ${ }_{0}$	subset of $[0, N]$	joining processors
	visit_set $_{0}$	subset of $[0, N]$	processors visited
	route_list ${ }_{0}$	permutation of subset of $[0, N]$	the order in which the token was routed
	join_set ${ }_{0}$	subset of $[0, N]$	join requests
	leave_set $_{0}$	subset of $[0, N]$	leave requests
	discon $_{0}$	boolean	indicates whether there exist partitions
	timer $_{0}^{\text {gen }}$	timer	for token generation
	timer $_{0}^{\text {phase }}$	timer	for starting a new phase
$\begin{aligned} & \hline p_{i}, \\ & i \neq 0 \end{aligned}$	tid $_{i}$	token_id	$p_{i}{ }^{\text {'s }}$ local token ID
	member $_{i}$	boolean	indicates whether p_{i} is a member
	status $_{i}$	joined/joining	indicates whether p_{i} has joined
	timer $_{i}^{\text {jomn }}$	timer	for resending j-tokens
	timer $_{i}^{\text {app }}$	timer	time between application requests

CHAPTER VI

LOCATION BASED BROADCASTING

In this chapter, we focus on the broadcasting problem in dense mobile ad hoc networks. Broadcasting is one of the fundamental tasks in network communication. Its goal is to transmit a message from one node to all other nodes ${ }^{1}$ Recent advances in wireless communication make it possible to envision large scale dense ad-hoc networks, which are characterized by a large number of energy-constrained, unattended nodes [48]. Examples include the Smartdust project [52], Dataspace [53, 54], and sensitive skin [55].

Most of the protocols designed for mobile networks depend on the communication topology and its unpredictability prevents the protocols from providing reliable services. Usually a stable base is required for a protocol to provide reliable services. In spite of the fact that the topology keeps changing in a mobile ad hoc network, a specific network may have some properties which can provide stable information for protocol design. Our approach to handle mobility is to reduce the impact of the changing topology by basing the protocol on one stable aspect of a network. In a dense network, mobile nodes keep moving but their distribution is fairly stable. Instead of relying on the frequently changing communication topology, our protocols depend on the distribution of mobile nodes.

Most communication protocols specify the procedure of message propagation by determining sequences of nodes to forward the message. Usually global or local node identification is required in these protocols. However, in a mobile ad hoc network, global identification may not be available. Furthermore, since topology keeps changing, local identification usually requires sending hello beacons periodically to get the latest neighbor information, which wastes bandwidth and introduces collisions. Given the assumption

[^0]that the distribution of mobile nodes is stable in a dense network, our protocols achieve broadcasting by covering the whole area occupied by mobile nodes; instead of node identifications, the procedure of message propagation is specified by determining sequences of locations which are provided by GPS [56] or a location service [57, 58].

Location information has been used in message forwarding protocols for mobile ad hoc networks. The most important differences between our approach and the existing position-based protocols are that, in our approach the location-based paths are decided completely online during message forwarding and no knowledge about the distribution of mobile nodes is required a priori. So the selection of the next location can reflect the latest system information, including distribution of mobile nodes, obstacles, and the battery states of mobile nodes. Furthermore, we do not require knowledge of the neighborhood topology in the selection of the next location and the expected number of messages transmitted in each selection of the next location is a constant if the distribution of mobile nodes satisfies some properties. These properties are desirable in mobile ad hoc networks, in which global knowledge might not be available and the system keeps changing.

An important characteristic of the wireless medium is that when a node transmits, all the nodes in its transmission range might receive this message if no collision occurs, depending on the reliability of the transmission. This property is usually considered as a source of extraneous energy consumption $[59,60]$. The argument is that when a node transmits a packet, all nodes in the radio range of the transmitter must receive each packet to determine whether to retransmit; although most of these packets are immediately discarded, they still consume energy [60]. However, this property also means that one broadcasting covers multiple nodes. Our approaches use this property to speed up the message propagation and reduce the number of transmissions.

Our basic idea to achieve broadcasting is to forward a packet along a set of locationbased paths. By "location-based path", we mean the path is determined by a sequence of
locations, instead of node identifications. Our approach consists of two modules: Message Forwarding and Path Selection: the Path Selection module dynamically selects the next location, specified by a destination area, and the Message Forwarding module provides service to forward the message to the next location, One approach is proposed for the Message Forwarding module under the assumption that each node is able to detect collisions; a discussion on how to relax this assumption is also provided. Our approach to forward the message to the next location relies on the distribution of nodes instead of network topology, and neither neighbor information nor global identification is required. Furthermore, the number of steps in forwarding a message to a $u \times u$ area is $O(\log m)$, where m is the maximum number of mobile nodes that can be in a $u \times u$ area, and the expected number of steps is a constant under certain constraints on distribution of nodes. We propose two approaches for the Path Selection module. In both approaches, the selection of the location-based paths is done online. For each approach, we provide specific constraints on distribution and mobility of mobile nodes to guarantee that all the nodes receive the broadcast data. Under these constraints, given a network with area \mathcal{A}, our approaches achieve broadcasting in $O\left(\mathcal{A} / R^{2}\right)$ steps, where R is the transmission range.

No fully reliable broadcasting service can be guaranteed in networks with arbitrary mobility. In this chapter, we discuss constraints on mobility, specified by the maximum speed of mobile nodes, required by each approach to guarantee that all the nodes receive the broadcast data. The reason to choose the maximum speed to define the constraints is that, in practice the speed of mobile nodes is more predictable than the other mobility parameters. For example, a reasonable speed restriction of surface vehicles is 120 miles per hour and the usually speed of a commercial jet airplane is about 250 meters per second. Note we do not put any restriction on any other mobility parameter.

A. System Model - Dense Mobile Ad Hoc Network

We focus on dense mobile ad hoc networks. We assume each node has a means to determine its own location, which can be met either by GPS service [56] or some other location service [57, 58]; such assumption is common in position-based algorithms [43, 44, 45, 46, 48, 60, 14].

1. Communication and Computation Model

We assume all the devices have the same transmission range R. A device receives message from the other if and only if it is in the sender's transmission range. We assume the network is always connected. Communication connectivity between mobile devices can be described by a graph, in which each node represents a mobile device and there exists edge between two nodes if and only if the corresponding mobile devices can communicate. We assume a synchronous communication model in which the communication is structured into time-slots, achievable in practice by equipping mobile nodes with local GPS receivers [56]. We denote the upper bound on the time interval of each synchronous step by δ. This paradigm is commonly employed in the practical design of protocols for radio communication [61, 62, 63, 32]. Two communication primitives, receive and transmit, are provided by the basic communication service, which has a mechanism to detect collisions (Fig 20.) Execution is partitioned into steps. Each step consists of three phases: reception, computation and transmission. In reception phase, each node receives none or one message, depending on the number of nodes in its neighborhood which transmitted in the last step. In the computation phase, each node updates its state based on its state at the end of the last step and what occurred in the reception phase of the current step. In the transmission phase, a node can transmit a message $m s g$; the decision whether to transmit and what to transmit is based on its current state. Protocols specify each node's behavior in the compu-

- receive():
- \emptyset : no message is received if no neighbor transmitted in the last step.
- C: collision is detected if more than one neighbor transmitted in the last step.
- Message $m s g$: message $m s g$ is received if the sender of $m s g$ is the only neighbor which transmitted in the last step.
- transmit(Message $m s g$): message $m s g$ is transmitted.

Fig. 20. Communication primitives
tation and transmission phase in the forms of function and events. The action of an event is executed on a node if and only if the associated predicate is true.

In order to simplify the presentation, we use the model with the assumption that each node has the ability to detect collisions. This assumption can be relaxed and it is only used in the Message Forwarding module: in section VI.D, we propose an approach under this assumption and then discuss how to relax it. Approaches designed for the Path Selection module do not rely on this assumption directly; they are based on the services provided by the Message Forwarding module.

We assume that all the nodes in the transmission range of the sender receive the message if no collision occurs. This property might not hold all the time due to the unreliable wireless channels. However, the probability of reliable transmssion can be made quite large using mechanisms such as acknowledgement/retransmission. The discussion of improving transmission reliability is outside scope of our work. As is done in other works in this area (e.g. [32]), we assume that the transmission is reliable if no collision occurs.

2. Mobility and Distribution of Mobile Nodes

We assume the movement of mobile devices is restricted to a square network area with size \mathcal{A}. Network area can be divided into two parts: the covered area and the uncovered area, where the covered area is the union of all the positions which are within some node's
transmission range. We assume the algorithm knows the network area a priori and has no knowledge about covered area and uncovered area, which may keep changing due to failures and mobility. In the sequel, we denote the total number of nodes by n.

Nodes are placed in a network according to some distribution function. We define D as $\sqrt{\frac{A}{n}}$. Intuitively, $D \times D$ is the average area occupied by one node. Note the larger D is, the less dense the network is. This parameter is used in Theorem 27. In this chapter, we are interested in the probability of having more than one node in a given area, which is decided by the distribution function of nodes placement. We define a function $V(x, y)$ below. Note $V(x, y)$ is non-decreasing in the sense that $V(x, y) \leq V(\max (x, y), \max (x, y))$. We denote $V(x, x)$ by $V(x)$.

$$
V(x, y)=\text { the probability of having more than one node in any } x \times y \text { area. }
$$

An example is a grid distribution of mobile nodes (Fig 21): nodes are distributed on a grid graph in which each grid is a D by D square. In Fig. 21, we see that any x by x area (the solid square), where $D \leq x \leq 2 D$, covers exactly one node if and only if its southwest corner is not in the southwest $(2 D-x)$ by $(2 D-x)$ square of a grid (the dotted square). So we have $V(x)$ for this distribution as follows:

$$
V(x)= \begin{cases}0 & \text { if } x<D \\ 1-\frac{(2 D-x)^{2}}{D^{2}} & \text { if } D \leq x \leq 2 D \\ 1 & \text { if } 2 D<x\end{cases}
$$

3. Problem Definition and Protocol Stack

We focus on broadcasting protocols that propagate a message from a node, called source, to all of the nodes of a network. We define time complexity of a broadcasting protocol as the interval between the time the source node starts transmitting a broadcast message and the

Fig. 21. An example of $V(x)$: Grid distribution of nodes
last time that a node takes an action in the broadcasting protocol. We define the coverage as the fraction of nodes which receive the broadcast message when the execution of the protocol ends.

The architecture of the protocol stack of each mobile node is presented in Fig. 22. An application accesses the broadcasting service by calling the function broadcast(Data data) and receives the broadcast data in event broadcast_recv(Data data). Function broadcast and the precondition of event broadcast_recv are specified by the broadcasting service. Our approaches rely on the basic communication service through primitives transmit (Message msg) and receive(). Each node gets its position at time t through the function location (int t) provided by the location service.

B. Overview of Our Approaches

In our approaches, the area of the network is divided into cells, based on which a virtual graph is constructed - a virtual vertex represents an existing cell and a virtual edge between two vertices exists if and only if the corresponding cells are adjacent. Broadcasting

Fig. 22. Protocol stack
is achieved by propagating messages throughout the virtual graph, which is started by the vertex corresponding to the cell in which the source node resides. The proposed broadcasting approaches are organized in two modules: Path Selection and Message Forwarding (see Figure 22.)

- The Message Forwarding module provides the services of sending (forward) and receiving messages (receipt) among cells. It also notifies the application that broadcast data has arrived.
- When function forward $\left(\mathbf{P M e s s a g e} m\right.$, Cell $s _c e l l$, Cell $\left.d_{\text {_cell }}\right)$ is called by the Path Selection module at node p, a PMessage m is sent by node p, on behalf of cell s_cell, to cell d_cell; the format of PMessage is defined by the Path Selection module, which includes the broadcasting data.
- The Message Forwarding module notifies the Path Selection module that a PMessage message has arrived by triggering event receipt (PMessage m, Cell from_cell). When forward (PMessage m, Cell s_cell, Cell d_cell) is called, if there exist nodes in d_{-}cell, exactly one node in d_{-}cell will be selected on which event receipt(\mathbf{P} Message m, Cell from_cell) occurs, and
the selected node will be responsible for further communication. When this event occurs on node p, we say the cell in which p resides receives m from cell from_cell and p is the representative node of $d_{\text {_cell }}$.
- The Message Forwarding module also notifies the application that broadcast data has arrived by triggering event broadcast_recv(Data data).
- The purpose of the Path Selection module is to dynamically select a set of paths which cover the whole virtual graph. This is achieved by specifying a subset of neighboring cells to forward broadcast data when a cell starts broadcasting (function broadcast is called) or receives broadcast data from others (event receipt occurs). When a subset of neighboring cells is selected, function forward is called to forward messages to the selected cells.

In our approaches, several types of messages are defined. Each message has a field indicating its type, followed by the data fields. We denote a message in the form of msg (Type, data a_{1}, data a_{2}, \ldots). Given a message $m s g$, we use the denotation $m s g$.FieldName, where FieldName is the name of a field defined in the message definition, to retrieve the value of data field FieldName in msg .

In the sequel, first we introduce the construction of the virtual graph. Then we present a protocol for the Message Forwarding module. An analysis of this protocol is given. After that we propose two approaches, denoted by DFS and SF, for the Path Selection module. We present specific constraints on distribution and mobility of mobile nodes for each approach to guarantee coverage. Sample values of the constraints are provided. Complexity analysis are presented under these constraints. We present a comparison of DFS and SF in Table B, where R is the radio range, \mathcal{A} is the network area and δ is the time interval of each step in a synchronous system:

Table IV. Comparion of two approaches

Approach	Time	Mobility Constraint (Maximum Speed)
DFS	$O\left(\frac{\mathcal{A}}{R^{2}} \delta\right)$	$O\left(\frac{R^{3}}{\delta \mathcal{A}}\right)$
SF	$O\left(\frac{\mathcal{A}}{R^{2}} \delta\right)$	$O\left(\frac{R}{\delta}\right)$

Both approaches achieve $O\left(\mathbf{A} \delta / R^{2}\right)$ time complexity. The idea of DFS is simple but the allowed maximum speed when mobile nodes run DFS decreases as the network area increases, while the constraint on mobility for SF does not depend on the network area.

C. Construction of Virtual Graph

In our approaches, the network area is divided into cells; each cell is a square with size $u \times u$. For simplicity, we assume the number of cells is \mathcal{A} / u^{2}. The value of u depends on the transmission range R, the upper bound v on a node's speed and value of a parameter Γ defined below; for each of our approaches, we present how to select the value of u based on the values of v and Γ in section VI.E. 1 and section VI.F. 1 respectively, and we discuss the constraints on Γ and v to guarantee the coverage in section VI.E. 3 and section VI.F. 4 respectively. Note v and Γ are defined for the worst-case behavior.

We enumerate eight directions of each cell by Dirs $=[$ North, Northeast, East, Southeast, South, Southwest, West, Northwest]. Each cell has at most one neighbor in each direction. We then construct a virtual graph by assigning a virtual vertex for each cell in which there exist nodes, and adding a virtual edge between two virtual vertices if and only if the corresponding cells are neighbors (Fig 23). We denote by cell $[x, y]$ the cell whose center is $(x+1 / 2) \cdot u$ from the north boundary and $(y+1 / 2) \cdot u$ from the west boundary of the network area. Given the network area, u and location service, each node p knows
the cell in which it resides at a given time t, denoted by $\operatorname{cell}(p, t)$. We denote the neighbor of a given cell C in direction dir $\in \operatorname{Dirs}$ by neighbor (C, dir) and the neighbors in all directions of C by neighbors (C).

Fig. 23. Virtual graph of a network

Each time a cell communicates with its neighbors, a node residing in this cell is selected as the representative node. The Path Selection module will specify a subset of neighbors the cell needs to contact and the representative node communicates with each selected neighbor through function forward provided by the Message Forwarding module. Let Γ be the maximum time it takes for a representative node to communicate with all the selected neighbors. We require Γ to be the maximum time instead of the expected time because this value is required in calculating the maximum speed of mobile nodes to guarantee coverage. Note Γ is a finite value if mobile devices are not infinitely small, since the number of steps taken by each forwarding is finite, as shown in section VI.D.2. We call the area in which the representative node of cell A can be during this Γ time interval as the representative area, denoted by $\operatorname{rep}(A)$. Since the maximum distance this node can move during this time
is $v \Gamma$, where v is the maximum speed of a node, $\operatorname{rep}(A)$ is the area consisting of the cell, a u by $v \Gamma$ rectangle at each side of the cell, and a quarter circle with radius $v \Gamma$ centered at each corner of the cell (Fig 24.) Since the distance between any point in $\operatorname{rep}(A)$ to the center of A is at most $u / \sqrt{2}+v \Gamma$, any point within the circle centered at the center of cell A with radius $r_{\text {cover }}=R-(u / \sqrt{2}+v \Gamma)$ is in the transmission range of the representative node of cell A. We call this area the covered area of cell A and denote it by $\operatorname{cover}(A)$.

Fig. 24. $\operatorname{Rep}(A)$ and $\operatorname{cover}(A)$

In each of the approaches for Path Selection module, the selection of u will guarantee cell $A \subseteq \operatorname{cover}(A)$. Our approaches guarantee the following two conditions:

B1 When a cell calls function forward, all the nodes in the covered area of the sending cell receive the message.

B2 Each cell calls forward at least once.
Coverage can be achieved by these two conditions under the following assumption. We will provide specific constraints for each approach to meet this assumption.

- Assumption: if the whole area is covered by the message, then all the nodes receive the message.

D. Message Forwarding

In the Message Forwarding module, we consider the problem of forwarding a PMessage m by a node p, on behalf of cell s_cell, to a neighboring cell $d_{\text {_cell. The format of }}$ PMessage is defined by the Path Selection module, which includes a field Data to store the broadcast data. The Message Forwarding module provides the following services: if $d_{\text {_cell }}$ has no nodes in it, then the forwarding call returns NULL. Otherwise, a node in $d_{\text {_cell }}$ is selected and receives the message. In either cases, the message to be forwarded is broadcast to all nodes in cover (s_cell).

- Function forward ($\mathbf{P M}$ Message m, Cell $s _c e l l$, Cell $\left.d _c e l l\right)$ on node p : if no node exists in d_cell, returns NULL; otherwise returns SUCC.
- If forward(m, s_{-}cell, d_{-}cell $)$returns SUCC, a node in $d_{_}$cell is selected. By "a node being selected", we mean event receipt(PMessage m, Cell from_cell) occurs on this node, where parameters m and from_cell are the parameters m and s_cell in forward respectively.
- When forward(m, s_cell, d_cell) is called, event broadcast_recv(Data data) occurs on all the nodes in cover (s_cell), where parameter data is the value of field Data in the parameter m of forward.

We propose a solution to this problem which does not depend on neighbor information or global identification. The expected message and time complexity is a constant if the distribution of nodes satisfies a certain condition. The procedure involves the sender that calls forward and the nodes in its 2-hop neighborhood - the sender communicates with its neighbors and messages cover its neighbors' neighborhoods when its neighbors respond. It is possible that multiple forwardings are active in the network simultaneously. Here we give a complexity analysis under the assumption that the sets of nodes involved
in the different forwardings are disjoint. An extended version will be presented later in section VI.F for the general case and the complexity analysis is easily extended.

1. Forwarding

The Message Forwarding module calls the basic communication service to send and receive these types of messages. If there exist nodes in the destination cell, we select exactly one node as the representative node by finding a subarea in the destination cell which contains exactly one node; the single node in this subarea is selected as the representative node. Our solution is based on the following simple idea for a node p to check whether the number of nodes in a given area A is zero, one, or more than one: p transmits an \mathbf{N}-type message and each neighbor in area A responds in the next step; p will receive no (one respectively) response if there is zero (one respectively) node in A, otherwise a collision will be detected.

Let t be the time slot in which function forward is called on node p. In our solution, node p divides the area $d_{\text {_cell }}$ and tries to find out an subarea which contains exactly one node. Node p starts with area d_cell. At step t, p transmits a message and nodes in d_cell respond at step $t+1$. At step $t+2, p$ gets the information about number of nodes in d_{-}cell: if no node or exactly one node exists in d_cell, the forwarding is done. Otherwise, there exists multiple nodes in d_cell.

Then node p applies on d_cell a division and check procedure to find a subarea that contains exactly one node. Given an area A which contains multiple nodes at step $t+4 i$, node p finds a subarea of A as follows. At step $t+4 i, p$ divides A into two same size areas, denoted by A_{1} and A_{2}, and transmits to check the number of nodes in $A_{1} ;$ nodes in A_{1} respond at step $t+4 i+1$. Node p knows the information about the number of nodes in A_{1} at step $t+4 i+2$: if there is no node in A_{1}, p transmits at step $t+4 i+2$ to check the number of nodes in A_{2} and the nodes in A_{2} respond at step $t+4 i+3$. Thus at step $t+4 i+4$, node p either gets an area which contains exactly one node or it gets an area which contains
multiple nodes. If an area that contains multiple nodes is found, node p applies the above procedure on this area, starting at step $t+4 i+4$. This procedure is repeated until an area containing exactly one node is found.

Once such an area is found, p transmits a \mathbf{D} message carrying the broadcast data and the information about the found area. When a node receives this message, event broadcast_recv occurs, in which the broadcast data is delivered to the application; the node checks the information about the found area carried by this message - if it is in this area, then this node is selected and event receipt occurs. Note that node p transmits only in time slots $t+2 i$, while the nodes in the destination area respond only in time slots $t+2 i+1, i=0,1, \ldots$.

We define the types of messages as below. The codes are provided in Figs. 25-28.

- Fields in N-type Message: (Type, Msg, S_cell, Area),

In order to check the number of nodes in Area, a node sends an N-type message on behalf of cell S_cell; nodes in Area are required to response. This type of message also carries broadcast data packed in a PMessage message Msg .

- Fields in $\mathbf{N}_{\text {ack-type }}$ Message: (Type)

A node responds a \mathbf{N}-type message by an $\mathbf{N}_{\text {ack-type }}$ message.

- Fields in D-type Message: (Type, Msg, Area, TimeSlot),

A node sends a D-type message to designate a node that resides in Area at step TimeSlot. This type of message also carries broadcast data packed in a PMessage message Msg.

2. Complexity

We give an analysis for the complexity in terms of D and $V(x)$. Note function forward relies only on the number of nodes in a specific area, instead of the specific nodes in this

Local state of node p : int l, int x, area A, area A_{1}, area A_{2}, int ack_step.
Function forward $\left(\mathbf{P M e s s a g e} m_{p}\right.$, Cell $s _$cell, Cell $\left.d _c e l l\right)$ called by node p :
step t, code forward d_{0} :
1 Create an \mathbf{N}-type Message $m\left(\mathbf{N}, m_{p}, s_{-}\right.$cell, d_{-}cell $) ; \operatorname{transmit}(m)$;
step $t+2$, code forward $_{2}$:

```
switch receive()
case \emptyset:
    return NULL;
case Message:
    Create a D-type Message m(D, mp,d_cell,t+1);
    transmit(m);
    return SUCC;
case C:
    l=1;
    Divide }A\mathrm{ into two ( }\frac{u}{2}\timesu)\mathrm{ areas }\mp@subsup{A}{1}{}\mathrm{ and }\mp@subsup{A}{2}{}\mathrm{ ;
    A= A ;
    Create an \mathbf{N}\mathrm{ -type Message m(N, mp, s_cell,A); transmit(m);}
    endswitch
step t+4i, code forward}\mp@subsup{|}{4i}{},i=1,2,
    switch receive()
    case \emptyset:
        x=0;A= A ; ;
        Create an N-type Message m(\mathbf{N},\mp@subsup{m}{p}{},\mp@subsup{s}{-}{\prime}cell,A)); transmit(m);
    case Message: ack_step =t+4i-1,x=1;
    case C: }x=2\mathrm{ ;
    endswitch
```

step $t+4 i+2$, code forward $_{4 i+2}, i=1,2, \ldots$
if $(x==0)$ then
switch receive()
case $\emptyset: x=0$;
case Message: $a c k _s t e p=t+4 i+1 ; x=1$;
case C: $x=2$;
endswitch
endif
if $(x==1)$ then
Create a D-type Message $m\left(\mathbf{D}, m_{p}, A, a c k _s t e p\right)$;
transmit (m);
return SUCC;
else if $(x==0)$ then
return NULL;
else
$l++$;
Divide A into two areas with same size: A_{1} and A_{2}, each has size $\left(\frac{u}{2^{l / 2\rceil}} \times \frac{u}{2^{\lfloor l / 2\rfloor}}\right)$;
$A=A_{1}$;
Create a \mathbf{N}-type Message $m\left(\mathbf{N}, m_{p}, s_{-}\right.$cell,$\left.A\right)$;
transmit(m);
endif

Fig. 25. Function forward

Event receipt $_{N}$ on node p in step t :
Pre: receive() returns a \mathbf{N}-type Message $m_{\text {rev }}$ Action:
step t :

> 1 if $\left(\right.$ p.location ()$\left.\in m_{r e v} . A r e a\right)$ then
> 2 Create a $\mathbf{N}_{\text {ack }}$ Message $m\left(\mathbf{N}_{\text {ack }}\right)$;
> 3 transmit(m);

Fig. 26. receipt $_{N}$ on node p in step t
/* Node is selected as the representative node in Event */
Event receipt(Message m, Cell from_cell) on node p at step t :
Pre: $\left(\right.$ receive () returns a D-type Message $\left.m_{\text {rev }}\right) \wedge\left(\right.$ p.location $\left(m_{\text {rev }}\right.$.TimeSlot $) \in m_{\text {rev }}$. Area $)$ Parameters: $m=m_{\text {rev }} \cdot M s g$ and from_cell $=m_{\text {rev }} \cdot S_{-} c e l l$.

Fig. 27. Precondition of Event receipt(Message m, Cell from_cell)
/* Node receives broadcast data in this event */
Event broadcast_recv(Data data) on node p at step t :
Pre: receive() returns a D-type message $m_{\text {rev }}$
Parameters: data $=m_{\text {rev }} \cdot$ Msg.Data

Fig. 28. Precondition of broadcast_recv(Data data)
area, and the analysis results shown below only rely on the distribution of mobile nodes.
First we show in the worst case, the number of steps in forwarding a message to a $u \times u$ area is $O(\log m)$, where m is the maximum number of mobile nodes that can be in a $u \times u$ area. The reason is that function forward returns immediately if no node exists in the destination area; otherwise it divides the area into halves and eventually the area being checked is small enough that it contains only one node. Note if u is a constant, m is a constant since nodes cannot be arbitrarily small. However, if nodes are small relative to u^{2}, m can be large. In the sequel, we consider the expected time complexity and present a constraint on the distribution that guarantees the expected time complexity is a constant independent of the size of mobile nodes.

Note that the function returns in step $t+4 k+2$, that is, it takes $4 k+3$ steps for some value of $k \geq 0$. We have the following lemma:

Lemma 25 Denoting the probability that function forward returns at or after step $t+$ $4 k+2$, that is, it takes at least $4 k+3$ steps, by $g(k)$, we have

$$
g(0)=1 \text { and } g(k) \leq V\left(\frac{u}{2^{\lfloor(k-1) / 2\rfloor}}\right), k \geq 1
$$

Proof. Since the function takes at least three steps, we have $g(0)=1$. Suppose the function returns at or after step $t+4 k+2, k \geq 1$. If there exists zero or exactly one node in A at the beginning of step $t+4(k-1)+2$, the function will return in this step (line 11 and 13). So at the beginning of step $t+4(k-1)+2$, there exist at least two nodes in A. Note the size of A at the beginning of step $t+4(k-1)+2$ is the same as that of A_{1} or A_{2} at the end of step $t+4(k-2)+2$, which is $\left(u / 2^{\lceil l / 2\rceil}\right) \times\left(u / 2^{\lfloor l / 2\rfloor}\right)=\left(u / 2^{\lceil(k-1) / 2\rceil}\right) \times\left(u / 2^{\lfloor(k-1) / 2\rfloor}\right)$ because of $(l=i+1)$ at the end of step $t+4 i+2$. Since the probability of having more than one node in such an area is $V\left(\left(u / 2^{\lceil(k-1) / 2\rceil}\right) \times\left(u / 2^{\lfloor(k-1) / 2\rfloor}\right)\right)$, we have $g(k) \leq$ $V\left(\left(u / 2^{\lceil(k-1) / 2\rceil}\right) \times\left(u / 2^{\lfloor(k-1) / 2\rfloor}\right)\right) \leq V\left(u / 2^{\lfloor(k-1) / 2\rfloor}\right)$.

Directly from this lemma, we have:

Lemma 26 Denoting the probability that function forward takes no more than $4 k+3$ steps by $f(k)$ and the probability that it takes exactly $4 k+3$ steps by $P(k)$, we have

- $f(k)=1-g(k+1) \geq 1-V\left(\frac{u}{2^{[k / 2]}}\right), k \geq 0$, and
- $P(0)=1-V(u)$ and $P(k) \leq g(k) \leq V\left(\frac{u}{2^{\lfloor(k-1) / 2\rfloor}}\right), k \geq 1$.

Given $f(k)$ presented in Lemma 26 , we have
Theorem 27 The probability that function forward takes no more than $8\left\lceil\log \left(\frac{u}{D}\right)\right\rceil+3$ steps is at least $1-V(D)$.

We have the following upper bound on the expected value of the number of steps taken in an execution of forward:

Lemma 28 Denoting the expected value of $P(k)$ by E_{P}, we have

$$
E_{P} \leq 3+16 \sum_{i=1}^{\infty} i \cdot V\left(\frac{u}{2^{i-1}}\right)
$$

Proof. Note that the function only returns in step $t+4 k+2$, for some $k \geq 0$, that is, the number of steps is $4 k+3$ for some $k \geq 0$.

$$
\begin{aligned}
E_{P} & =\sum_{k=0}^{\infty}(4 k+3) \cdot P(k) \\
& =\sum_{k=0}^{\infty} 4 k \cdot P(k)+\sum_{k=0}^{\infty} 3 \cdot P(k) \\
& =4 \sum_{k=1}^{\infty} k \cdot P(k)+3 \sum_{k=0}^{\infty} P(k) \\
& \leq 3+4 \sum_{k=1}^{\infty} k \cdot V\left(\frac{u}{2^{\lfloor(k-1) / 2\rfloor}}\right) \\
& =3+4 \sum_{i=1}^{\infty}\left((2 i-1) \cdot V\left(\frac{u}{2^{\lfloor(2 i-2) / 2\rfloor}}\right)+2 i \cdot V\left(\frac{u}{2^{\lfloor(2 i-1) / 2\rfloor}}\right)\right) \\
& =3+4 \sum_{i=1}^{\infty}(4 i-1) \cdot V\left(\frac{u}{2^{i-1}}\right) \\
& \leq 3+16 \sum_{i=1}^{\infty} i \cdot V\left(\frac{u}{2^{i-1}}\right)
\end{aligned}
$$

A sufficient condition for E_{P} to converge is that $\sum i \cdot V\left(\frac{u}{2^{i-1}}\right)$ converges. Based on the fact that $\sum \frac{1}{i^{2}}$ converges, a sufficient condition is $i \cdot V\left(\frac{u}{2^{i-1}}\right)=O\left(\frac{1}{i^{2}}\right), i \rightarrow+\infty$. If u is a constant, it is equivalent to $V\left(\frac{1}{2^{i}}\right)=O\left(\frac{1}{i^{3}}\right), i \rightarrow+\infty$. Letting x be $\frac{1}{2^{i}}$, that is, $i=\log \frac{1}{x}$, this condition is equivalent to

$$
\begin{equation*}
\exists A>0, \lim _{x \rightarrow 0+} \frac{V(x)}{\frac{1}{\left(\log \frac{1}{x}\right)^{3}}} \leq A \tag{6.1}
\end{equation*}
$$

Note that for any $c>0$, the function x^{c} satisfies condition 6.1.
Theorem 29 If $V(x)$ satisfies condition 6.1 and u is a constant, then the function forward has a constant expected time complexity.

Note this analysis only depends on the distribution of mobile nodes: nodes can move into and out of an area, but function forward has a constant expected time complexity as long as the distribution of mobile nodes satisfies condition 6.1.

This condition is just a sufficient condition. In a network in which the node distribution does not satisfy this condition, it still is possible that the function forward has a constant expected number of steps. In order to have an intuitive idea of this condition, we provide the plot of function $1 / \log ^{3}(1 / x)$ in Figure 29, compared to the plots of functions x and x^{2}.

The example presented in section VI.A (a network in which nodes are distributed on a grid graph) satisfies condition 6.1 since $V(x)=0$ when $x<D$ for some constant D. Thus the expected time complexity of forwarding is a constant when applied on such a network. Note the distribution of such a network is deterministic. Here we give an example in which the distribution is probabilistic. In many applications, the purpose of sensor placement is to cover the whole area of interest. A simple deployment is to divide the area into grids and distribute a node in each grid. Assume the size of each grid is $C \times C$ and the area of the network is $k C \times k C$. Thus the number of grids and the number of sensors is k^{2}.

Fig. 29. A sufficient condition for E_{P} to converge

Given the sensor assigned to the grid centered at location (a, b), we denote the probability of that sensor being placed at location (x, y) by $P_{a, b}(x, y)$. Assume the sensor is uniformly distributed in the designated grid, that is

$$
P_{a, b}(x, y)= \begin{cases}\frac{1}{C^{2}} & \text { if }\left(x \in\left[a-\frac{C}{2}, a+\frac{C}{2}\right]\right) \wedge \\ & \left(y \in\left[b-\frac{C}{2}, b+\frac{C}{2}\right]\right) \\ 0 \quad & \text { otherwise }\end{cases}
$$

Now we calculate $V(x)$ based on this distribution function. Consider any $x \times x$ area A, where $x<C$. Since $x<C$, there exist at most four grids that overlap with A (Fig. 30.) Denote the probability that there is no node (exactly one node respectively) in A by P_{0} (P_{1} respectively) and the probability that there is no node (exactly one node respectively) in area A_{i} by $P_{0}^{i}\left(P_{1}^{i}\right.$ respectively), $i=1,2,3,4$. Note P_{0}^{i} is $\left(1-\left(a_{i} \cdot b_{i}\right) / C^{2}\right) \geq\left(1-x^{2} / C^{2}\right)$ for $i=1,2,3,4$. Thus we have $P_{0}=\prod_{i=1}^{4} P_{0}^{i} \geq\left(1-x^{2} / C^{2}\right)^{4}$. Note $P_{1}^{i}=\left(a_{i} \times b_{i}\right) / C^{2}$, $i=1,2,3,4$ and $\sum_{i=1}^{4} P_{1}^{i}=x^{2} / C^{2}$. Since the probability that exactly one node exists in A and this only node is in A_{i} is $\left(P_{1}^{i} \cdot \prod_{j \neq i, j=1}^{4} P_{0}^{j}\right)$, we have $P_{1} \geq \sum_{i=1}^{4}\left(P_{1}^{i} \cdot \prod_{j \neq i, j=1}^{4} P_{0}^{j}\right)$ $\geq \sum_{i=1}^{4}\left(P_{1}^{i} \cdot\left(1-x^{2} / C^{2}\right)^{3}\right)=\left(x^{2} / C^{2}\right) \cdot\left(1-x^{2} / C^{2}\right)^{3}$. Thus we have $V(x)=1-\left(P_{0}+\right.$ $\left.P_{1}\right) \leq 1-\left(\left(1-x^{2} / C^{2}\right)^{4}+\left(x^{2} / C^{2}\right) \cdot\left(1-\left(x^{2} / C^{2}\right)\right)^{3}\right)=1-\left(1-x^{2} / C^{2}\right)^{3}=x^{6} / C^{6}-$

Fig. 30. An example of network satisfying condition 6.1
$3 x^{4} / C^{4}+3 x^{2} / C^{2}$. Straightforward calculations verify that function $x^{6} / C^{6}-3 x^{4} / C^{4}+$ $3 x^{2} / C^{2}$ satisfies condition 6.1, and thus so does $\mathrm{V}(\mathrm{x})$.

3. Discussion

Function forward also provides a way to gather the distribution information: at the end of each call, node p finds an area in which exactly one node exists. This area can be used to estimate the average area occupied by a single node. If the mobile nodes are roughly evenly distributed, the forwarding can be sped up by using this estimated value - given a destination cell, the function first checks a subarea with the estimated size; if there is no node in this area, the area is doubled, otherwise the area is divided into two smaller areas and this procedure is repeated. Since the area in which only one node exists is close to the estimated area with high probability, the number of steps can be kept small.

In this approach, the division and check procedure is repeated until an area that contains a single node is found. In some situations, we do not require high coverage of message delivery but focus on quick propagation. We can restrict the number of steps to be less than a certain value. There exists a tradeoff between coverage and message delay in this approach: the time complexity of each forwarding is bounded while it is possible an area with a single node is not found. But the probability of failure is bounded according to

Lemma 26.
We also consider message forwarding in a system without collision detection. The idea is based on [32]. First we consider the problem defined as follows: upon receipt of a message from a node p^{\prime}, node p forwards the message to a destination area A - if there exist nodes in A, one should be selected; otherwise p should be notified that no node exists in A. We provide a solution to this problem. In step 1 , node p transmits a message with information A included; all the nodes in p 's neighborhood receive this message in this step. In step 2 , only nodes in area A respond. If p receives one response in step 2 , node p knows there is only one node in A and this node is selected. Otherwise, nodes in A and p^{\prime} respond in the next step: if p receives a response, node p knows this response is from p^{\prime} and there are no nodes in A; otherwise there are multiple nodes in A and A is divided into smaller areas. This procedure is repeated until an area with a single node is found. We assume there exists an auxiliary node in the source's neighborhood, which performs as p^{\prime} when initially the source starts forwarding the message; such a node p^{\prime} exists when a node forwards upon receipt of a message from some neighbor. The Message Forwarding module can use this procedure to provide services defined in this section if a collision detection mechanism is not available.

The assumption of the existence of an auxiliary node can be removed if a node can be elected in the source's neighborhood. In a synchronous network with global identification, this election can be done by scheduling nodes' transmission based on their ids [32] — the source transmits a message and each neighbor with id k responds in time slot $2 k$; once the source receives a response, say in the $2 i$ th time slot, it broadcasts in the $2 i+1$ time slot to tell its neighbors to stop responding; the node which responds first is elected. In our approach, we do not assume a global identification. But given the fact that mobile devices are not infinitely small and two mobile devices cannot be at the same location, we can divide a given bounded area into a finite number of cells such that at most one mobile node resides
in each cell, and define a one-to-one map from this set of cells to a set of integers. A node can be elected in the source's neighborhood by scheduling the transmissions of neighbors based on this map: a node transmits at time slot $2 i$, where i is the integer which corresponds to its location, and the source tells its neighbors to stop responding in the time slot after it receives the first response. In this approach, the node whose location corresponds to the smallest integer is elected and it takes at most $O(K)$ time slots, where K is the size of the corresponding set of integers.

E. Approach DFS

In this section, we present an approach, denoted by DFS, for the Path Selection module. In DFS, message propagation is implemented by circulating the message in depth first search order on the virtual graph - when a cell receives the message (through a representative node), it decides which neighboring cell to forward the message according to the depth first search order; it calls the Message Forwarding module to forward the message to the selected cell. Once the message has been forwarded, one node in the destination cell is selected as the representative node and it is responsible for forwarding the message to the next cell. Note that during message propagation, the virtual graph is not constructed explicitly. Instead, given the value of u, which will be presented later in this section, each node knows the location of the cell it resides in and the locations of neighboring cells based on the knowledge of the network area and the location service. Thus a representative can call the Message Forwarding module to forward the message to the selected neighboring cell; if the destination cell does not exist, the representative node will be notified and the selection will be repeated until an exsiting selected neighbor is found.

In this section, first we consider the requirement on the value of u and the code of DFS. Then we present constraints on the distribution and mobility of nodes. Given these
constraints, the value of u can be decided. After that, complexity analysis is provided.

1. Selection of u

Approach DFS requires the representative node to communicate with the nodes in the destination cell. Recall Γ is defined as the maximum time it takes for a representative node to communicate with all the selected neighboring cells. Since the representative node moves at most $v \Gamma$ away from the cell, if the maximum distance between two points in two neighboring cells is at most $R-v \Gamma$, the distance between the representative node and any node in a neighboring cell is at most R. So we guarantee the representative node is able to forward messages to the neighboring cells by requiring $(2 u)^{2}+(2 u)^{2} \leq(R-v \Gamma)^{2}$, that is, $u \leq(R-v \Gamma) /(2 \sqrt{2})$ (Fig. 31). We select $u=(R-v \Gamma) /(2 \sqrt{2})$, since a smaller u will introduce a larger number of virtual vertices and thus a larger delay in broadcasting. Constraints on v and Γ to guarantee the coverage are discussed in section VI.E.3.

Fig. 31. Selection of u for DFS

2. Code

The code of approach DFS is presented in Fig. 32.

3. Constraints and Complexity

It is easy to see our algorithm guarantees conditions B1 and B2. Here we give the constraints on distribution and mobility of mobile nodes to meet Assumption. One way is to restrict the movement of nodes in a local area. Formally, we require \forall node p, \exists cell A, such that at any time during the broadcasting, $p \in \operatorname{cover}(A)$.

We make the following assumption on the distribution of mobile nodes:

Con ${ }_{\text {dis }}^{\text {DFS }}$: The virtual graph is static and each forwarding finishes within F steps for some constant F.

When a node is selected as the representative node of the cell it resides in, that is, event receipt occurs, this node forwards the message to its neighboring cells in the order of directions in Dirs until the first existing neighboring cell is found. Thus we can set $\Gamma=(21+F) \delta$ since function forward takes three steps if the destination cell does not exist. The total time Φ for the message to cover the whole network area is $\Phi \leq$ $\Gamma\left(2 \mathcal{A} /\left(u^{2}\right)-1\right) \leq \Gamma\left(2 \mathcal{A} /\left(u^{2}\right)\right)$. Note $r_{\text {cover }}=R-(u / \sqrt{2}+v \Gamma)=3 \sqrt{2} u / 2$ and the minimum distance between a node in a cell and the boundary of the covered area of this cell is $\sqrt{2} u$ (Fig. 31). Then the assumption can be met if $v \leq \sqrt{2} u / \Phi$, which can be guaranteed by $v \leq(\sqrt{2} u) /\left(\Gamma\left(2 \mathbf{A} /\left(u^{2}\right)\right)\right)=u^{3} /(\sqrt{2} \Gamma \mathcal{A})$ where $u=(R-v \Gamma) /(2 \sqrt{2})$, that is

$$
\mathbf{C o n}_{\text {mob }}^{\mathrm{DFS}}: v \leq(R-v \Gamma)^{3} /(32 \Gamma \mathcal{A}), \text { where } \Gamma=\delta(21+F) .
$$

One solution to this inequality is $v \leq v_{\max }=\min \left\{R / 20 \Gamma,(19 R)^{3} /\left(20^{3} \cdot 32 \Gamma \mathcal{A}\right)\right\}$. The reason follows: we have $(R-v \Gamma)^{3} /(32 \Gamma \mathcal{A}) \geq(R-R \Gamma /(20 \Gamma))^{3} /(32 \Gamma \mathcal{A})=$ $(19 R)^{3} /\left(20^{3} \cdot 32 \Gamma \mathcal{A}\right) \geq v$, since $v \leq R /(20 \Gamma)$. Sample values of $v_{\max }$ are provided in

Format of PMessage: Each message carries the following fields:

- Array P, \forall cell $c, P[c] \in$ Dirs: parent cell of c. Initially $P[c]=$ NULL;
- Array N_{v}, \forall cell $c, N_{v}[c] \subseteq$ Dirs: the set of neighbors of c which have been visited in the current round. Initially $N_{v}[c]=\emptyset$.
- Data: broadcasting data.

Function broadcast(Data data) (called by source s at step t)

$$
s _c e l l=\operatorname{cell}(s, t)
$$

$i=0$;
bSucc = false;
while $(i \leq 7) \wedge(\neg b S u c c)$ do $d_{\text {_cell }}=$ neighbor $\left(s_{\text {_cell }}\right.$, Dirs $\left.[i]\right)$;
Create a PMessage $m\left(P, N_{v}\right.$, data $)$;
$m . N_{v}\left(s_{-} c e l l\right)=\left\{d _c e l l\right\} ;$
$b S u c c=\left(\right.$ forward $\left(m, s_{-}\right.$cell,d_{-}cell $) \neq$NULL $)$;
$i++;$
endwhile
Event receipt(PMessage m, Cell from_cell) on node p at step t :
Action:

```
\(s \_c e l l=\operatorname{cell}(p, t) ;\)
if \(\left(m . N_{v}\left[s \_c e l l\right]==\emptyset\right)\) then
    \(m . P\left[s \_c e l l\right]=\) from_cell;
    \(m . N_{v}\left[s_{-} c e l l\right]=\) from_cell;
endif
\(i=0\);
bSucc = false;
while \(((i \leq 7) \wedge(\neg b S u c c))\) do
    \(d_{\text {_cell }}=\) neighbor \(\left(s_{-}\right.\)cell, Dirs \(\left.[i]\right)\);
    if \(\left(d_{c}\right.\) cell \(\left.\notin m . N_{v}\left[s \_c e l l\right]\right)\) then
        \(m . N_{v}\left[s_{-} \mathrm{cell}\right]=m . N_{v}\left[s_{-} c e l l\right] \cup\left\{d \_c e l l\right\} ;\)
        bSucc=(forward \(\left(m, s_{\_}\right.\)cell, \(d_{\_}\)cell \() \neq\)NULL \()\);
    endif
    \(i++\);
endwhile
if ( \(\neg b S u c c)\) then /* Backtrack if all the neighbors have been visited */
    if \(\left(m . P\left(s \_c e l l\right) \neq\right.\) NULL \()\) then
        d_cell \(=m . P\left(s \_c e l l\right)\);
        \(m . N_{v}[\) s_cell \(]=\emptyset\);
        \(m . P\left[s \_c e l l\right]=\) NULL;
        forward(m,s_cell,d_cell);
    endif
endif
```

Fig. 32. DFS token circulation on the virtual graph

Table V. In section VI.D.3, we discussed that it is very likely that the number of steps in each forwarding will be small if the mobile nodes are roughly evenly distributed. Here we choose small sample values for F.

Now we consider time complexity. Note by constraint $\mathbf{C o n}_{\text {mob }}^{\mathrm{DFS}}$, we have $v \Gamma \leq$ $v \Phi \leq \sqrt{2} u=(R-v \Gamma) / 2$, that is, $v \Gamma \leq R / 3$. So we have $u=(R-v \Gamma) /(2 \sqrt{2}) \geq$ $R /(3 \sqrt{2})$. Thus we have $u \in[R /(3 \sqrt{2}), R /(2 \sqrt{2})]$, and it is easy to show the following lemma. The intuition is that under the above constraints, the number of calls of forward is $O\left(\mathcal{A} /\left(u^{2}\right)\right)=O\left(\mathcal{A} /\left(R^{2}\right)\right)$ and the time complexity of each call of forward is $O(\delta)$.

Lemma 30 If Con $_{\text {dis }}^{\mathrm{DFS}}$ and Con $_{\text {mob }}^{\mathrm{DFS}}$ are true, the time complexity of DFS is $O\left(\mathcal{A} \delta /\left(R^{2}\right)\right)$.

F. Approach SF

In this section, we present another approach, denoted by SF, for the Path Selection module. In this approach, messages are propapated in parallel on the virtual graph. Since multiple forwardings are active simultaneously, interferences may occur. A variant of forward, called scheduled-forward, is used to guarantee that all the nodes in the covered area of the sending cell receive the message. In SF, simple flooding is applied on the virtual graph - each message carries the information about the cells it has been forwarded to; upon reception of a message, a cell forwards the message to neighbors that have not received this message. Communication between adjacent cells is done by scheduled-forwarding.

In the sequel, we first introduce the requirement on the value of u. Then scheduledforwarding is proposed. After that we present the code and constraints on distribution and mobility, as well as a complexity analysis.

Table V. Sample values of $v_{\max }$ for DFS

Parameters				$v_{\text {max }}$
R (m)	δ (s)	F	$A\left(m^{2}\right)$	
100	5×10^{-5}	11	100×100	$1674.6 \mathrm{~m} / \mathrm{s}=6028.4 \mathrm{~km} / \mathrm{h}$
			200×200	$418.6 \mathrm{~m} / \mathrm{s}=1507.1 \mathrm{~km} / \mathrm{h}$
			500×500	$66.9 \mathrm{~m} / \mathrm{s}=241.1 \mathrm{~km} / \mathrm{h}$
			1000×1000	$16.7 \mathrm{~m} / \mathrm{s}=60.3 \mathrm{~km} / \mathrm{h}$
100	10^{-4}	11	100×100	$837.3 \mathrm{~m} / \mathrm{s}=3014.2 \mathrm{~km} / \mathrm{h}$
			200×200	$209.3 \mathrm{~m} / \mathrm{s}=753.6 \mathrm{~km} / \mathrm{h}$
			500×500	$33.5 \mathrm{~m} / \mathrm{s}=120.6 \mathrm{~km} / \mathrm{h}$
			1000×1000	$8.37 \mathrm{~m} / \mathrm{s}=30.14 \mathrm{~km} / \mathrm{h}$
100	5×10^{-4}	11	100×100	$167.5 \mathrm{~m} / \mathrm{s}=602.8 \mathrm{~km} / \mathrm{h}$
			200×200	$41.9 \mathrm{~m} / \mathrm{s}=150.7 \mathrm{~km} / \mathrm{h}$
			500×500	$6.7 \mathrm{~m} / \mathrm{s}=24.1 \mathrm{~km} / \mathrm{h}$
			1000×1000	$1.7 \mathrm{~m} / \mathrm{s}=6.0 \mathrm{~km} / \mathrm{h}$
100	5×10^{-5}	15	100×100	$1488.5 \mathrm{~m} / \mathrm{s}=5358.6 \mathrm{~km} / \mathrm{h}$
			200×200	$372.1 \mathrm{~m} / \mathrm{s}=1339.6 \mathrm{~km} / \mathrm{h}$
			500×500	$59.5 \mathrm{~m} / \mathrm{s}=214.3 \mathrm{~km} / \mathrm{h}$
			1000×1000	$14.9 \mathrm{~m} / \mathrm{s}=53.6 \mathrm{~km} / \mathrm{h}$
100	10^{-4}	15	100×100	$744.2 \mathrm{~m} / \mathrm{s}=2679.3 \mathrm{~km} / \mathrm{h}$
			200×200	$186.1 \mathrm{~m} / \mathrm{s}=669.8 \mathrm{~km} / \mathrm{h}$
			500×500	$29.8 \mathrm{~m} / \mathrm{s}=107.2 \mathrm{~km} / \mathrm{h}$
			1000×1000	$7.4 \mathrm{~m} / \mathrm{s}=26.8 \mathrm{~km} / \mathrm{h}$
100	5×10^{-4}	15	100×100	$148.8 \mathrm{~m} / \mathrm{s}=535.9 \mathrm{~km} / \mathrm{h}$
			200×200	$37.2 \mathrm{~m} / \mathrm{s}=134.0 \mathrm{~km} / \mathrm{h}$
			500×500	$6.0 \mathrm{~m} / \mathrm{s}=21.4 \mathrm{~km} / \mathrm{h}$
			1000×1000	$1.5 \mathrm{~m} / \mathrm{s}=5.4 \mathrm{~km} / \mathrm{h}$
100	5×10^{-5}	19	100×100	$1339.6 \mathrm{~m} / \mathrm{s}=4822.7 \mathrm{~km} / \mathrm{h}$
			200×200	$334.9 \mathrm{~m} / \mathrm{s}=1205.7 \mathrm{~km} / \mathrm{h}$
			500×500	$53.6 \mathrm{~m} / \mathrm{s}=192.9 \mathrm{~km} / \mathrm{h}$
			1000×1000	$13.4 \mathrm{~m} / \mathrm{s}=48.2 \mathrm{~km} / \mathrm{h}$
100	10^{-4}	19	100×100	$669.8 \mathrm{~m} / \mathrm{s}=2411.4 \mathrm{~km} / \mathrm{h}$
			200×200	$167.5 \mathrm{~m} / \mathrm{s}=602.8 \mathrm{~km} / \mathrm{h}$
			500×500	$26.8 \mathrm{~m} / \mathrm{s}=96.5 \mathrm{~km} / \mathrm{h}$
			1000×1000	$6.7 \mathrm{~m} / \mathrm{s}=24.1 \mathrm{~km} / \mathrm{h}$
100	5×10^{-4}	19	100×100	$134.0 \mathrm{~m} / \mathrm{s}=482.3 \mathrm{~km} / \mathrm{h}$
			200×200	$33.5 \mathrm{~m} / \mathrm{s}=120.6 \mathrm{~km} / \mathrm{h}$
			500×500	$5.4 \mathrm{~m} / \mathrm{s}=19.3 \mathrm{~km} / \mathrm{h}$
			1000×1000	$1.3 \mathrm{~m} / \mathrm{s}=4.8 \mathrm{~km} / \mathrm{h}$

1. Selection of u

In this approach, we require that two representative nodes of neighboring cells can communicate with each other. Since the representative node moves at most $v \Gamma$ away from the cell, if the maximum distance between two points in two neighboring cells is at most $R-2 v \Gamma$, the distance between the representative nodes from two cells is at most R. So we require $(2 u)^{2}+(2 u)^{2} \leq(R-2 v \Gamma)^{2}$, that is, $u \leq(R-2 v \Gamma) /(2 \sqrt{2})$ (Fig. 33.) We select $u=(R-2 v \Gamma) /(2 \sqrt{2})$ and we have $r_{\text {cover }}=R-(u / \sqrt{2}+v \Gamma)=(3 R-2 v \Gamma) / 4$. Constraints on v and Γ to guarantee the coverage are discussed in section VI.F.4.

Fig. 33. Selection of u

2. Scheduled Forwarding

Scheduled forwarding is based on a coloring scheme. The coloring scheme, which will be described later in this section, guarantees that given two cells A and B with the same color, the distance between any point in $\operatorname{rep}(A)$ and any point in $\operatorname{cover}(B)$ is at least R. We denote
the number of colors by K and the color of cell C by color (C). Each cell is assigned a set of steps: letting round $i, i \geq 0$, be the subsequence of $2 K$ steps: $r_{i}, r_{i}+1, \ldots, r_{i}+2 K-1$, where $r_{i}=i \cdot 2 K$, cell C is assigned two steps $\left\{r_{i}+2 c, r_{i}+2 c+1\right\}$ in round i, where $c=\operatorname{color}(C)$. Transmissions involved in a forwarding called by a cell is allowed only in the steps assigned to this cell. Suppose scheduled_forward is called at step t by node p, on behalf of cell s_cell, to forward message to cell d_cell. Denoting color (s_cell) by c, node p starts transmitting in round i_{0}, where i_{0} is the smallest integer such that $r_{i_{0}}+2 c \geq t$. During the execution, the action taken by node p in step $t+2 k$ of function forward (presented in section VI.D) is rescheduled to step $r_{i_{0}+k}+2 c$, and nodes in d_{-}cell response in step $r_{i_{0}+k}+2 c+1$. From this assignment, we see the time complexity of scheduled forwarding is $2 K$ times the complexity of forward.

At the beginning of broadcasting, only the cell in which the source resides is forwarding messages. As messages are propagated in the network, multiple cells might be forwarding simultaneously. We guarantee that for each cell C, at most one node is designated as the representative node of C at any time. This is achieved as following: when a node is designated as a representative node, it responds with a $\mathbf{D}_{\text {ack }}$ message; during its forwarding to cell C, if a representative node p_{s} of cell S hears a \mathbf{N} message on behalf of C, which means there is a representative node of C, or a $\mathbf{D}_{\text {ack }}$ message from nodes in C, which means a node is designated as the representative node of cell C, then p_{s} aborts the forwarding without designating any node. Note the selection of u guarantees p_{s} is in the transmission range of the representative node of C and of each node in cell C. We can guaranteed for each cell C, at most one node is designated as the representative node of C at any time for the following reason. Consider any round i. Note that the set of steps assigned to C 's neighbors are disjoint by the coloring scheme.

- If no node is designated as the representative node of C at the beginning of round
i, at most one node is designated in this round since this node will transmit a $\mathbf{D}_{\text {ack }}$ message when it is designated, which causes the cells which are forwarding to C to abort forwarding.
- Otherwise let p_{c} be the representative node of C and c be $\operatorname{color}(C)$. Note p_{c} transmits in both round $i-1$ and round i : p_{c} transmits an \mathbf{N} message in round i as a representative node; in round $i-1, p_{c}$ transmits at step $r_{i-1}+2 c$ if it has been designated as a representative node, otherwise it responses a $\mathbf{D}_{\text {ack }}$ message when it is designated after step $r_{i-1}+2 c$. Since it takes at least two rounds for a cell to finish forwarding, all the cells that are forwarding to C in round i receive at least one of these messages from p_{c} and they abort forwarding without designating any node.

Note that the representative nodes transmit in even steps and nodes in the destination cell respond in odd steps. The coloring scheme guarantees that given two cells C_{1} and C_{2} with the same set of assigned steps, the distance between $\operatorname{rep}\left(C_{1}\right)$ and $\operatorname{cover}\left(C_{2}\right)$ is at least R. Thus when the representative node of any cell A transmits, nodes in $\operatorname{cover}(A)$ are at least R away from the representative node of any other cell which transmits at the same time; and when the nodes in the destination cell of A responds, the represenative node of A is at least R away from the nodes in the destination cell of any other cell C with the same color (Note given a cell C, the selection of u and $r_{\text {cover }}$ guarantees that $D \subset \operatorname{cover}(C)$ for any neighbor D of C.) So interference between different executions of forwarding is avoided.

Now we consider coloring scheme. Given any two cells, $A=\left[x_{a}, y_{a}\right]$ and $B=\left[x_{b}, y_{b}\right]$, with the same color, we want to guarantee the distance between any node in $\operatorname{rep}(A)$ and any node in $\operatorname{cover}(B)$ is at least R. This can be achieved by requiring $\left|x_{a}-x_{b}\right|+\left|y_{a}-y_{b}\right| \geq I$, where $I=2 \sqrt{2} \cdot R / u$ for the following reason. The distance between the center of A and the center of B is $\sqrt{\left|x_{a}-x_{b}\right|^{2} \cdot u^{2}+\left|y_{a}-y_{b}\right|^{2} \cdot u^{2}} \geq \sqrt{\left(\left(\left|x_{a}-x_{b}\right| \cdot u+\left|y_{a}-y_{b}\right| \cdot u\right)^{2}\right) / 2}$
$=u I / \sqrt{2}$. Note the maximum distance between a node in $\operatorname{rep}(A)$ to the center of A is $\sqrt{2} u / 2+v \Gamma$ and the maximum distance between a node in $\operatorname{cover}(B)$ to the center of B is $r_{\text {cover }}$. So the minimum distance between a node in $\operatorname{rep}(A)$ and a node in $\operatorname{cover}(B)$ is at least $u I / \sqrt{2}-\left(\sqrt{2} u / 2+v \Gamma+r_{\text {cover }}\right)=u I / \sqrt{2}-R \geq R$.

Now we consider the assignment of steps. We construct a grid graph by deleting edges between cells $\left[x_{1}, y_{1}\right]$ and $\left[x_{2}, y_{2}\right]$, where $\left(x_{1}=x_{2} \pm 1\right) \wedge\left(y_{1}=y_{2} \pm 1\right)$ from the virtual graph. Note the distance between two nodes on the grid graph that correspond to cell $\left[x_{1}, y_{1}\right]$ and $\left[x_{2}, y_{2}\right]$ is $\left(\left|x_{1}-x_{2}\right|+\left|y_{1}-y_{2}\right|\right)$. We apply the coloring scheme proposed in [64] on the grid graph to guarantee the distance between any two vertices with the same color is at least I by using $K=I^{2}+1$ colors.

We present the code for scheduled_forward in Fig. 34.

3. Code

A simple way to broadcast on the virtual graph is simple flooding, as presented in Fig. 35.

4. Constraints and Complexity

It is easy to see that this approach guarantees conditions B1 and B2. Now we consider constraints on distribution and mobility of mobile nodes to meet Assumption. In this section, we dicussion the constraints on mobility under the following constraint on the distribution of mobile nodes:

- Con ${ }_{\text {dis }}^{\text {SF }}$: The virtual graph is static and each execution of scheduled forwarding is guaranteed to be done within F steps.

Assume the source of broadcasting resides at the most northwest cell. We will give a constraint on the speed v of mobile nodes. Note in this approach, the maximum time for a

Definition of messages

- $\mathbf{D}_{\text {ack }}$-type Message: (Type, Rep cell $)$
scheduled_forward $\left(\mathbf{P M e s s a g e} m, \mathbf{C e l l} s_{\text {_cell }}, \mathbf{C e l l} d_{_}\right.$cell $)$called by node n in step t :
$i_{0}=\left\lfloor\frac{t}{2 K}\right\rfloor+\left\lfloor\frac{t \bmod 2 K}{2 c}\right\rfloor$, where $c=$ color (s_cell)
step $r_{i_{0}}+2 c$:
1 if $b A b o r t()$ then return;
2 forward ${ }_{0}()$;
step $r_{i_{0}+1}+2 c$:
1 if $b A b o r t()$ then return;
2 forward ${ }_{2}()$;
step $r_{i_{0}+2 i}+2 c, i=1,2, \ldots$
1 if $b A b o r t()$ then return;
2 forward $4_{4 i}()$;
step $r_{i_{0}+2 i+1}+2 c, i=1,2, \ldots$
1 if $b \operatorname{Abort}()$ then return;
2 forward ${ }_{4 i+2}()$;
other steps:
1 if $b A b o r t()$ then return;
Subroutine boolean bAbort()
bAbort $=$ false;
if (receive ()$\notin\{\emptyset, C\})$ then
$m_{\text {rev }}=$ receive () ;
bAbort $=\left(m_{\text {rev }} \cdot\right.$ Type $==\mathbf{N} \wedge m_{\text {rev }} \cdot S _$cell $\left.==d_{-c e l l}\right) \|\left(m_{\text {rev }} \cdot\right.$ Type $==\mathbf{D}_{\text {ack }} \wedge$ $m_{\text {rev }}$.Rep_cell $==d_{-}$cell $)$;
endif
return bAbort;
/* Node p receives a message m from cell from_cell, and it is selected as the representative node of cell rep_cell. */
Event receipt(Message m, Cell from_cell) on node p at step t :
Pre: (receive () returns a D-type Message $\left.m_{\text {rev }}\right) \wedge\left(\right.$ n.location $\left(m_{\text {rev }}\right.$.TimeSlot $) \in m_{\text {rev }}$.Area)
Parameters: $m=m_{\text {rev }} \cdot M s g$, from_cell $=m_{\text {rev }}$.S_cell
Action: /* Notes: this action is taken before the action defined in Path Selection module. */
1 Create a $\mathbf{D}_{\text {ack-type }}$ Message $m^{\prime}\left(\mathbf{D}_{\text {ack }}\right.$, rep_cell $)$;
2 tranmit(m^{\prime});

Fig. 34. Scheduled forward

Format of PMessage: Each message carries the following fields:

- list V : the set of cells which has been visited by this message. Initially $V=$ NULL.
- Data: broadcasting data.

Function broadcast(Data data) (called by source s at step t)

```
s_cell = cell (s,t);
i=0;
while (i\leq7) do
    d_cell = neighbor(s_cell,Dirs[i]);
    Create a PMessage m(V,data);
    m.V = neighbors(s_cell);
    schedule_forward(m,s_cell,d_cell);
    i++;
endwhile
```

Event receipt(PMessage m, Cell from_cell) on node p at step t :
Action:

```
\(s_{\_}\)cell \(=\operatorname{cell}(p, t)\);
\(i=0\);
while \((i \leq 7)\) do
    d_cell \(=\) neighbor \(\left(s_{-}\right.\)cell, Dirs \(\left.[i]\right)\);
    if (d_cell \(\notin m . V\) ) then
        Create a PMessage \(m^{\prime}(V, d a t a)\);
        \(m^{\prime} . V=m . V \cup\) neighbors \(\left(s_{\text {_cell }}\right)\);
        schedule_forward \(\left(m^{\prime}\right.\), s_cell, d_cell);
    endif
    \(i++;\)
    endwhile
```

Fig. 35. Simple flooding on the virtual graph
representative node to communicate with all the selected neighbors is $\Gamma=14 K F \delta$ since each cell has at most eight neighbors and a representative node will not send the packet back to the cell from which it receives the packet. We say a cell is covered (uncovered respectively) if this cell has (has not respectively) received the message. We say a covered cell is inactive if it has finished all the transmissions in its first execution of forwarding, otherwise the cell is active. Note all the neighbors of an inactive cell are covered. By the scheduled transmission, if a cell is active at step t, this cell transmits at least once during steps t to $t+2 K$. We denote the set of uncovered cells (inactive covered cells and active covered cells respectively) at step t by Uncovered (t) (Inactive (t) and $\operatorname{Active}(t)$ respectively) When a cell becomes an inactive covered cell at the end of step t, (that is, the last time the cell transmits in its first execution of forwarding is step t), all the nodes residing in this cell at step t receive the message. Since eventually all the cells become inactive, coverage can be achieved if all the nodes that move into an inactive cell later are guaranteed to receive the message. This property can be achieved by guaranteeing that any node p receives the broadcast message if the following conditions are true:

- (a) $\exists t_{1}$, such that p is not in the area of $\operatorname{Inactive}\left(t_{1}\right)$ in step t_{1}, and
- (b) $\exists t_{2}>t_{1}$, such that $C \in \operatorname{Inactive}\left(t_{1}\right)$ where C is the cell in which p resides at step t_{2}.

We will show this condition can be guaranteed if the speed v of mobile nodes satisfies $v \leq u / \delta$ and $v \leq R /(4 K \delta)$. Note the minimum distance between a point in a cell and the boundary of its covered area is $r_{\text {cover }}-u / \sqrt{2}=R / 2$. By this constraint, if p moves into a cell A at some step, p will stay in $\operatorname{cover}(A)$ in the following $2 K$ steps. Thus if p moves into an active cell at some step in $\left[t_{1}, t_{2}\right]$, which will transmit at least once in the following $2 K$ steps, p will receive the message.

Now we show by contradiction that it is impossible that p never moves into an active cell during step t_{1} and step t_{2}. Since C is inactive at time t_{1}, we have $C \in \operatorname{Inactive}\left(t_{2}\right)$ by the definition of inactive cell. Thus there exists step $t \in\left[t_{1}, t_{2}\right]$, such that, denoting the cell in which p resides at step t (step $t+1$ respectively) by A (B respectively), we have $A \notin \operatorname{Inactive}(t)$ and $B \in \operatorname{Inactive}(t+1)$. By the constraint $v \leq u / \delta$, a node can only move to a neighboring cell within a step, thus A and B are neighboring cells. Since p never moves into an active cell before t_{2}, A is not active at time t, that is, A is uncovered at t because of $A \notin \operatorname{Inactive}(t)$. Cell B cannot be an inactive cell at step t because otherwise all B 's neighbors, including A, are covered at step t. So B is uncovered at step t and is inactive at step $t+1$, which is impossible since it takes at least one step for a cell to finish forwarding. Thus coverage can be guaranteed by the following constraint:

- $\mathbf{C o n}_{\mathrm{mob}}^{\mathrm{SF}}:(v \leq u / \delta=(R-28 K F \delta v) /(2 \sqrt{2} \delta)) \wedge(v \leq R /(4 K \delta))$, where $u=$ $(R-28 K F \delta v) /(2 \sqrt{2}), K=I^{2}+1$ and $I=2 \sqrt{2} R / u$.

We can show that a solution for this constraint is is $v \leq v_{\max }=R /(3 \times 28 \times 145 \times \delta F)$. Note the smaller is v, the smaller is K, thus if this constraint is satisfied by a value of v, it is satisfied by all the value smaller than v. So we only need to consider $v_{\max }=$ $R /(3 \times 28 \times 145 \times \delta F)$. Denoting $x=28 K F \delta v / R$, we have $u=(R-28 K F \delta v) /(2 \sqrt{2})$ $=(1-x) R /(2 \sqrt{2})$ and $K=I^{2}+1=(2 \sqrt{2} R / u)^{2}+1=8 \cdot R^{2} /\left(u^{2}\right)+1=8$. $R^{2} /((1-x) R /(2 \sqrt{2}))^{2}+1=64 /\left((1-x)^{2}\right)+1$. By replacing v by $v_{\max }$, we have $x=$ $28 K F \delta v / R=K /(3 \times 145)$. So we have an equation $K=64 /\left((1-K /(3 \times 145))^{2}\right)+1$ and the solution is $K=145$. Thus we have $x=K /(3 \times 145)=1 / 3$ and $v_{\max }=$ $R /(3 \times 28 \times 145 \times \delta F)=R /(3 \times 28 \delta K F)$. Since we have $(R-28 K F \delta v) /(2 \sqrt{2} \delta)=$ $(1-x) R /(2 \sqrt{2} \delta)=R /(3 \sqrt{2} \delta) \geq R /(3 \times 28 \delta K F)=v_{\max }$ and $R /(4 K \delta) \geq R /(84 \delta K F)$ $=v_{\text {max }}$, the constraint is satisfied. Sample values are presented in Table VI, in which we choose small values for F for the same reason discussed in section VI.E.3.

Table VI. Sample values of $v_{\text {max }}$ for $\mathbf{S F}$

Parameters			Constraint on $v \leq \frac{R}{12180 \delta F}$
R (meter)	δ (second)	F	$\frac{R}{12180 \delta F}$
100	$5 \cdot 10^{-5}$	11	$14.92 \mathrm{~m} / \mathrm{s}=53.74 \mathrm{~km} / \mathrm{h}$
		15	$10.95 \mathrm{~m} / \mathrm{s}=39.41 \mathrm{~km} / \mathrm{h}$
		19	$8.64 \mathrm{~m} / \mathrm{s}=31.11 \mathrm{~km} / \mathrm{h}$
100	10^{-4}	11	$7.46 \mathrm{~m} / \mathrm{s}=26.87 \mathrm{~km} / \mathrm{h}$
		15	$5.47 \mathrm{~m} / \mathrm{s}=19.70 \mathrm{~km} / \mathrm{h}$
		19	$4.32 \mathrm{~m} / \mathrm{s}=15.56 \mathrm{~km} / \mathrm{h}$
100	$2 \cdot 10^{-4}$	11	$3.73 \mathrm{~m} / \mathrm{s}=13.43 \mathrm{~km} / \mathrm{h}$
		15	$2.74 \mathrm{~m} / \mathrm{s}=9.85 \mathrm{~km} / \mathrm{h}$
		19	$2.16 \mathrm{~m} / \mathrm{s}=7.78 \mathrm{~km} / \mathrm{h}$

It is easy to show the following time complexity. The intuition is that under the above constraints, the number of calls of forward is $O\left(\mathcal{A} /\left(u^{2}\right)\right)=O\left(\mathcal{A} /\left(R^{2}\right)\right)$ and the time complexity of each call of forward is $O(\delta)$.

Lemma 31 If $\mathbf{C o n}_{\mathrm{dis}}^{\mathrm{SF}}$ and $\mathbf{C o n}_{\mathrm{mob}}^{\mathrm{SF}}$ are satisfied, the time complexity of $\mathbf{S F}$ is $O\left(\mathcal{A} \delta / R^{2}\right)$.

CHAPTER VII

CONCLUSION

This dissertation focuses on the design and analysis of distributed primitives for mobile ad hoc networks. Three topics were proposed. In the first part of the dissertation, theoretical analyses were presented for a distributed token circulation algorithm, LR, that causes a token to continually circulate through all the nodes of a network. In particular, a loose upper bound and a rigorous worst-case analysis on the round length were proved for the static case (part of the results appeared in [6]). In the future work of this part, we are interested in identifying characteristics of graphs on which LR has linear round length; the counter-example graphs found so far have a complex recursive construction. We are also interested in defining realistic mobility model that would allow analysis of LR in the mobile case.

In the second part of the dissertation, a self-stabilizing mutual exclusion algorithm was proposed for mobile ad hoc networks (a preliminary version appeared in [7] and the journal version has been accepted by [9]). It was shown that mutual exclusion always holds and different levels of progress hold under different levels of constraints. Interesting topics in the future work of this part is to characterize the specific mobility patterns in which the progress property can be guaranteed, and to evaluate the usefulness of the heuristic by which the predefined ring is updated and compare it to others.

The third part of the dissertation presented two broadcasting protocols which propagate a message from a source node to all of the nodes in the network. Instead of relying on the frequently changing topology, the protocols depend on a less frequently changing and more stable characteristic - the distribution of mobile hosts. Constraints on distribution and mobility of mobile nodes were given which guarantee that all the nodes receive the broadcast data. In our future work, we are interested in mobility model which would
allow analysis of designed protocols. This work is our first step in modeling the mobility of mobile nodes using a set of parameters (the distribution and velocity of mobile nodes) and analyzing our protocols' performance based on the values of the designed parameters.

REFERENCES

[1] D. Cavin, Y. Sasson, and A. Schiper, "On the accuracy of MANET simulators," in Proc. 2nd ACM International Workshop on Principles of Mobile Computing, Toulouse, France, 2002, pp. 38-43.
[2] OPNET Modeler, Available at http://www.opnet.com/products/modeler/home.html, 2004.
[3] VINT Project Team, The network simulator - ns-2, VINT Project Team, Available at http://www.isi.edu/nsnam/ns/, November 2000.
[4] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla, "Glomosim: A scalable network simulation environment," Technical Report 990027, Department of Computer Science, University of California at Los Angeles, May 1999.
[5] N. Malpani, N. H. Vaidya, and J. L. Welch, "Distributed token circulation on mobile ad hoc networks.," in Proc. 9th International Conference on Network Protocols(ICNP), Riverside, CA, Nov. 2001, pp. 4-13.
[6] N. Malpani, Y. Chen, N. Vaidya, and J. Welch, "Distributed token circulation in mobile ad hoc networks," IEEE Transactions on Mobile Computing, vol. 4, no. 2, pp. 154-165, March/April 2005.
[7] Y. Chen and J. L. Welch, "Self-stabilizing mutual exclusion using tokens in mobile ad hoc networks," in Proc. 6th Annual International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications (DIALM'2002), Atlanta, Georgia, 2002, pp. 34-42.
[8] C. Basile, M. Killijian, and D. Powell, "A survey of dependability issues in mobile wireless networks," Available at http://citeseer.nj.nec.com/basile03survey.html, February 2003.
[9] Y. Chen and J. L. Welch, "Self-stabilizing dynamic mutual exclusion for mobile ad hoc networks," Journal of Parallel and Distributed Computing, accepted, to appear.
[10] M. M. Carvalho and J. J. Garcia-Luna-Aceves, "A scalable model for channel access protocols in multihop ad hoc networks," in Proc. 10th Annual International Conference on Mobile Computing and Networking, Philadelphia, PA, 2004, pp. 330-344.
[11] D. Johnson and D. A. Maltz, "Dynamic source routing in ad hoc wireless networks," in Mobile Computing, T. Imielinski and H. Korth, Eds. Kluwer Academic Publishers, Boston, MA, 1994, pp. 153-181.
[12] E. M. Royer, S. R. Das, and C. E. Perkins, "Ad hoc on-demand distance vector (AODV) routing (IETF internet-draft)," Available at http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-08.txt, March 2001.
[13] G. Holland and N. H. Vaidya, "Analysis of TCP performance over mobile ad hoc networks," in Proc. 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM). Seattle, WA, 1999, pp. 219-230.
[14] M. Mauve, J. Widmer, and H. Hartenstein, "A survey on position-based routing in mobile ad hoc networks," IEEE Network Magazine, vol. 15, no. 6, pp. 30-39, November 2001.
[15] K. P. Hatzis, G. P. Pentaris, P. G. Spirakis, V. T. Tampakas, and R. B. Tan, "Fundamental control algorithms in mobile networks," in Proc. 16th ACM Symposium on Parallel Algorithms and Architectures, Saint Malo, France, 1999, pp. 251-260.
[16] N. Malpani, J. L. Welch, and N. Vaidya, "Leader election algorithms for mobile ad hoc networks," in Proc. 4th International Workshop on Discrete Algorithms and Methods for Mobile Computing and Communications, Boston, MA, 2000, pp. 96103.
[17] J. Walter, J. Welch, and N. Vaidya, "Mutual exclusion algorithm for ad hoc mobile networks," Wireless Networks, vol. 9, no. 6, pp. 585-600, Nov. 2001.
[18] B. Rajagopalan and P. McKinley, "A token-based protocol for reliable, ordered multicast communication," in Proc. 8th IEEE Symposium on Reliable Distributed Systems. Seatle, WA, October 1989, pp. 84-93.
[19] Y. Amir, L. Moser, D. Agrawal, and P. Ciarfella, "Fast message ordering and membership using a logical token-passing ring," in Proc. 13th IEEE International Conference on Distributed Computing Systems. Pittsburgh, PA, 1993, pp. 551-560.
[20] F. Cristian and F. Schmuck, "Agreeing on processor group membership in asynchronous distributed systems," Technical Report CSE95-428, Department of Computer Science, University of California at San Diego, 1995.
[21] A. Fekete, N. Lynch, and A. Shvartsman, "Specifying and using a partitionable group communication service," in Proc. 16th Annual ACM Symposium on Principles of Distributed Computing. Santa Barbara, CA, 1997, pp. 53-71.
[22] E. W. Dijkstra, "Self-stabilizing systems in spite of distributed control," Commun. ACM, vol. 17, no. 11, pp. 643-644, 1974.
[23] A. K. Datta, C. Johnen, F. Petit, and V. Villain, "Self-stabilizing depth-first token circulation in arbitrary rooted networks.," in 5th International Colloquium on Structural

Information and Communication Complexity (SIROCCO'98), Amalfi, Italy, June 1998, pp. 229-243.
[24] F. Petit and V. Villain, "Color optimal self-stabilizing depth-first token circulation for asynchronous message-passing systems," in Proc. 10th Conference on Parallel and Distributed Computing Systems, New Orleans, Louisiana, Oct, 1997, pp. 227-233.
[25] S. Dolev, E. Schiller, and J. Welch, "Random walk for self-stabilizing group communication in ad hoc networks," in Proc. 21st Annual Symposium on Principles of Distributed Computing, Monterey, CA, 2002, pp. 259-259.
[26] S. Vasudevan, N. Immerman, J. Kurose, and D. Towsley, "A leader election algorithm for mobile ad hoc networks," Technical Report 0301, Department of Computer Science, University of Massachusetts at Amherst, January 13, 2002.
[27] M. Schneider, "Self-stabilization," ACM Computing Surveys, vol. 25, pp. 45-67, 1993.
[28] S. Dolev and T. Herman, "Superstabilizing protocols for dynamic distributed systems.," Chicago J. Theor. Comput. Sci., vol. 1997, Available at http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html, 1997.
[29] S. Dolev, "Optimal time self-stabilization in uniform dynamic systems," Parallel Processing Letters, vol. 8, no. 1, pp. 7-18, 1993.
[30] T. Herman, "Self-stabilization bibliography: Access guide," Chicago Journal of Theoretical Computer Science, vol. 1996, Available at http://citeseer.ist.psu.edu/herman98selfstabilization.html, 1996.
[31] R. Baldoni, A. Virgillito, and R. Petrassi, "A distributed mutual exclusion algorithm
for mobile ad-hoc networks," in Proc. 7th IEEE Symposium on Computers and Communications (ISCC 2002), Taormina, Italy, 2002, pp. 539-544.
[32] D. R. Kowalski and A. Pelc, "Broadcasting in undirected ad hoc radio networks," in Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing, Boston, MA, 2003, pp. 73-82.
[33] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, "The broadcast storm problem in a mobile ad hoc network," in Proc. 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, Seattle, WA, 1999, pp. 151-162.
[34] H. Lim and C. Kim, "Multicast tree construction and flooding in wireless ad hoc networks," in Proc. 3rd ACM International Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Systems, Boston, MA, 2000, pp. 61-68.
[35] W. Peng and X. Lu, "On the reduction of broadcast redundancy in mobile ad hoc networks," in Proc. 1st ACM International Symposium on Mobile Ad Hoc Networking and Computing, Boston, MA, 2000, pp. 129-130.
[36] A. Laouiti, A. Qayyum, and L. Viennot, "Multipoint relaying: An efficient technique for flooding in mobile wireless networks," in Proc. 35th Annual Hawaii International Conference on System Sciences, Big Island, HI, 2002, pp. 298-307.
[37] J. Sucec and I. Marsic, "An efficient distributed network-wide broadcast algorithm for mobile ad hoc networks," Tech. Rep. CAIP 248, Rutgers University, Piscataway, NJ, September 2000.
[38] E. Pagani, "Providing reliable and fault tolerant broadcast delivery in mobile ad-hoc networks," Mobile Networks and Applications, vol. 4, no. 3, pp. 175-192, 1999.
[39] B. Williams and T. Camp, "Comparison of broadcasting techniques for mobile ad hoc networks," in Proc. 3rd ACM International Symposium on Mobile Ad Hoc Networking and Computing, Lausanne, Switzerland, 2002, pp. 194-205.
[40] Vamsi Paruchuri, Arjan Durresi, and Raj Jain, "Optimized flooding protocol for ad hoc networks," CoRR, vol. cs.NI/0311013, Available at http://arxiv.org/abs/cs.NI/0311013, 2003.
[41] H. Takagi and L. Kleinrock, "Optimal transmission ranges for randomly distributed packet radio terminals," IEEE Trans. Commun., vol. 32, no. 3, pp. 246-257, Mar. 1986.
[42] B. Karp and H. T. Kung, "GPSR: greedy perimeter stateless routing for wireless networks," in Proc. 6th Annual International Conference on Mobile Computing and Networking, Boston, MA, 2000, pp. 243-254.
[43] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, "A distance routing effect algorithm for mobility (dream)," in Proc. 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking, Dallas, TX, 1998, pp. 76-84.
[44] Y. Ko and N. H. Vaidya, "Location-aided routing (LAR) in mobile ad hoc networks," in Proc. 4th Annual ACM/IEEE International Conference on Mobile Computing and Networking, Dallas, TX, 1998, pp. 76-84.
[45] L. Blazević, L. Buttyán, S. Capkun, S. Giordano, J. Hubaux, and J. Le Boudec, "Selforganization in mobile ad-hoc networks: The approach of terminodes," IEEE Communications Magazine, vol. 39, no. 6, pp. 166-174, June 2001.
[46] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, "A scalable location service for geographic ad hoc routing," in Proc. 6th Annual International Conference
on Mobile Computing and Networking (MOBICOM '00), Boston, MA, 2000, pp. 120-130.
[47] K. Seada, A. Helmy, and R. Govindan, "On the effect of localization errors on geographic face routing in sensor networks," in Proc. 3rd International Symposium on Information Processing in Sensor Networks, Berkeley, CA, 2004, pp. 71-80.
[48] D. Niculescu and B. Nath, "Trajectory based forwarding and its applications," in Proceedings of the 9th Annual International Conference on Mobile Computing and Networking, San Diego, CA, 2003, pp. 260-272.
[49] D. Karger, Personal communication, Massachusetts Institute of Technology, Cambridge, MA, 2001.
[50] M. Lauer and M. Matthes, "MOBICOM poster: Elan-an e-learning infrastructure for ad-hoc networks," SIGMOBILE Mob. Comput. Commun. Rev., vol. 7, no. 1, pp. 53-55, 2003.
[51] G. Varghese, "Self-stabilization by counter flushing," in Proc. 13th Annual ACM Symposium on Principles of Distributed Computing, New York, NY, 1994, pp. 244253.
[52] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, "Smart dust: Communicating with a cubic-millimeter computer," IEEE Computer, vol. 34, pp. 44 - 51, Jan. 2001.
[53] T. Imielinski and S. Goel, "Dataspace: Querying and monitoring deeply networked collections in physical space," IEEE Personal Communications Magazine, vol. 7, no. 5, pp. 4-9, October 2000.
[54] T. Imielinski and B. R. Badrinath, "Wireless graffiti - data, data everywhere matters.," in Proc. 28th International Conference on Very Large Data Bases (VLDB), Hong

Kong, China, August 2002, pp. 9-19.
[55] M. Shur and S. Wagner, "Sensitive skin," IEEE Sensors Journal, vol. 1, no. 1, pp. 41-51, June 2001.
[56] E. Kaplan, Understanding GPS, Artech House, Boston, MA, 1996.
[57] J. Hightower and G. Borriella, "Location systems for ubiquitous computing," IEEE Computer, vol. 34, no. 8, pp. 57-66, 2001.
[58] S. Capkun, M. Hamdi, and J. Hubaux, "GPS-free positioning in mobile ad-hoc networks," in HICSS '01: Proc. 34th Annual Hawaii International Conference on System Sciences (HICSS-34)-Volume 9, Washington, DC, Jan 2001, pp. 9008-9017.
[59] S. Singh and C. S. Raghavendra, "PAMAS: Power aware multi-access protocol with signalling for ad hoc networks," SIGCOMM Comput. Commun. Rev., vol. 28, no. 3, pp. 5-26, 1998.
[60] Y. Xu, J. Heidemann, and D. Estrin, "Geography-informed energy conservation for ad hoc routing," in Proc. of the ACM/IEEE International Conference on Mobile Computing and Networking, Rome, Italy, July 2001, pp. 70-84.
[61] R. Gallager, "A perspective on multiaccess channels," IEEE Trans. Inform. Theory, vol. 31, pp. 124-142, 1985.
[62] R. Bar-Yehuda, O. Goldreich, and A. Itai, "On the time-complexity of broadcast operations in multi-hop radio networks: an exponential gap between determinism and randomization," Journal of Computer and Systems Science, vol. 45, pp. 104-126, 1992.
[63] A. E. F. Clementi, A. Monti, and R. Silvestri, "Selective families, superimposed codes, and broadcasting on unknown radio networks," in Proc. 12th Annual ACMSIAM Symposium on Discrete Algorithms, Washington, DC, 2001, pp. 709-718.
[64] S. S. Kulkarni and U. Arumugam, "Collision-free communication in sensor networks," in Proc. 6th Symposium on Self-Stabilizing Systems (SSS), San Francisco, CA, June 2003, pp. 17-31.

VITA

Yu Chen was born in Fu Zhou, Fu Jian Province, China. She received her B.Eng. and M.S. degree in Computer Science from Zhejiang University, P.R. China, in 1997 and 2000. She began pursuing a Ph.D. degree in Computer Science at Texas A\&M University in 2000 and received her degree in August 2005. She worked as a graduate teaching assistant and research assistant for Dr. Jennifer L. Welch in the Department of Computer Science, Texas A\&M University. Her research interests include distributed computing, self-stabilization and mobile computing. Her permenant address is: CangXia apartments, JiaXing 1-202, Taijian district, Fuzhou, Fujiang, 350009, P. R. China.

[^0]: ${ }^{1}$ In this chapter, we use the term "broadcast" to mean dissemination of a message to all nodes in the system and not to refer to a physical radio transmission.

