
DESIGN AND ANALYSIS OF DISTRlBUTED PRIMITIVES FOR MOBILE AD HOC

NETWORKS

A Dissertation

by

YU CHEN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2005

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4271265?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DESIGN AND ANALYSIS OF DISTRlBUTED PRIMITIVES FOR MOBILE AD HOC

NETWORKS

A Dissertation

by

YU CHEN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Jennifer L. Welch
Committee Members, Riccardo Bettati

Jianer Chen
Weiping Shi

Head of Department, Valerie E. Taylor

August 2005

Major Subject: Computer Science

iii

ABSTRACT

Design and Analysis of Distributed Primitives for Mobile Ad Hoc Networks.

(August 2005)

Yu Chen, B. Eng.; M.S., Zhejiang University, P. R. China

Chair of Advisory Committee: Dr. Jennifer L. Welch

This dissertation focuses on the design and analysis of distributed primitives for

mobile ad hoc networks, in which mobile hosts are free to move arbitrarily. Arbitrary

mobility adds unpredictability to the topology changes experienced by the network, which

poses a serious challenge for the design and analysis of reliable protocols. In this work,

three different approaches are used to handle mobility. The first part of the dissertation

employs the simple technique of ignoring the mobility and showing a lower bound for the

static case, which also holds in the mobile case. In particular, a lower bound on the worst-

case running time of a previously known token circulation algorithm is proved. In the

second part of the dissertation, a self-stabilizing mutual exclusion algorithm is proposed

for mobile ad hoc networks, which is based on dynamic virtual rings formed by circulating

tokens. The difficulties resulting from mobility are dealt with in the analysis by showing

which properties hold for several kinds of mobile behavior; in particular, it is shown that

mutual exclusion always holds and different levels of progress hold depending on how

the mobility affects the token circulation. The third part of the dissertation presents two

broadcasting protocols which propagate a message from a source node to all of the nodes in

the network. Instead of relying on the frequently changing topology, the protocols depend

on a less frequently changing and more stable characteristic — the distribution of mobile

hosts. Constraints on distribution and mobility of mobile nodes are given which guarantee

that all the nodes receive the broadcast data.

iv

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor, Dr. Jennifer L. Welch, for her inspiring

and encouraging guidance in the exciting field of distributed computing and her invaluable

comments during the work on this dissertation. I truly appreciate her patience, encour-

agement, advice and research support throughout my Ph.D study. The methodology and

philosophy that I learned in my research will definitely benefit my career for life.

I want to express my gratitude to the members of my advisory committee, Dr. Ric-

cardo Bettati, Dr. Jianer Chen, and Dr. Weiping Shi, for their valuable comments and

earnest help. Special thanks to Dr. Nitin H. Vaidya for many helpful suggestions.

I also thank the fellow students in my research group, Guangtong Cao, Cheng Shao,

Nicholas Neuman, Sangeeta Bhattacharya, Rajan Chandra and Vijay Balasubramanian for

their collaborations.

Finally, I would like to thank my parents and my family. I could not have gone through

this long journey without their constant love and support. I love them so much.

v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION ��� 1

II RELATED WORK ��� 3

A. Related Work on Token Circulation 3
B. Related Work on Mutual Exclusion 4
C. Related Work on Broadcasting 5

III SYSTEM MODEL ��� 7

IV TOKEN CIRCULATION IN MOBILE AD HOC NETWORKS ����� 9

A. Introduction . 9
B. Analysis of Local Recency (LR) Algorithm 9

V SELF-STABILIZING MUTUAL EXCLUSION IN MOBILE AD
HOC NETWORKS ��� 18

A. Introduction . 18
B. Motivation . 20
C. System Model . 22
D. Problem Definition . 24
E. Algorithm Overview . 26
F. Algorithm . 28

1. Token Circulation Algorithm:
�����

. 28
2. Data Structures . 29
3. Interfaces to the Application 31
4. Mutual Exclusion Algorithm 32
5. Code . 36

G. Correctness . 41
1. Properties of Execution 44
2. Safe Properties of � - 	�
����� s 45
3. Safe Properties of Non-member 51
4. Eventual Convergence . 57
5. Mutual Exclusion after Convergence 59
6. Progress . 62

H. Remarks . 64

vi

CHAPTER Page

VI LOCATION BASED BROADCASTING ��������������������������� 67

A. System Model — Dense Mobile Ad Hoc Network 70
1. Communication and Computation Model 70
2. Mobility and Distribution of Mobile Nodes 71
3. Problem Definition and Protocol Stack 72

B. Overview of Our Approaches 73
C. Construction of Virtual Graph 76
D. Message Forwarding . 79

1. Forwarding . 80
2. Complexity . 81
3. Discussion . 88

E. Approach ����� . 90
1. Selection of � . 91
2. Code . 92
3. Constraints and Complexity 92

F. Approach ��� . 94
1. Selection of � . 96
2. Scheduled Forwarding 96
3. Code . 99
4. Constraints and Complexity 99

VII CONCLUSION ��� 105

REFERENCES ��� 107

VITA ��� 116

vii

LIST OF TABLES

TABLE Page

I Denotations ��� 30

II Timers’ reset values ��� 31

III Fields on tokens and variables at processors ������������������������� 66

IV Comparion of two approaches ��������������������������������������� 76

V Sample values of ������� for ����� ������������������������������������� 95

VI Sample values of ������� for ��� ��������������������������������������� 104

viii

LIST OF FIGURES

FIGURE Page

1 Token circulation algorithm:
��� ������������������������������������� 9

2 A directed graph with exponential round length ��������������������� 10

3 A unit disk graph satisfying �! ������������������������������������� 14

4 Construction of "�# ��� 15

5 A counter-example on a virtual ring with non-FIFO virtual links ����� 22

6 Token circulation algorithm:
����� ����������������������������������� 30

7 Predicate $&%�' for ()' to enter the critical section ����������������������� 36

8 Event *+
-,.�/'�021 on ()' , ,43576 ��� 36

9 Event 89�;:<�=��'>0.1 on ()' , ,43576 ��� 37

10 Event ?����@��AB:C	�� �D 021 on (D ��� 37

11 Event: %&	�:+A-	 (FEG:=%-� D 0.1 on (D : ��� 38

12 Event AB�;$H��,.�=� �D 0I� - 	�
B�����J	K1 on (D ����������������������������������� 39

13 Event: AB�;$H��,.�=�ML D 0N* - 	�
�����O	 L 1 on (D ����������������������������������� 40

14 Event %-���@P�L ' 0.1 on ()' , ,43576 ��� 40

15 Event AB�;$H��,.�=�QL ' 0N* - 	�
B�����O	 L 1 on ()' , ,�35R6 ����������������������������� 41

16 Event AB�;$H��,.�=� �' 0I� - 	�
B�����J	K1 on ()' , ,435S6 ����������������������������� 42

17 Organization of proof ��� 43

18 Definition of phases ��� 45

19 Proof of TS�G	>�F:=8VU�WF$X8Y�/%�,Z
-� after convergence ��������������������� 60

ix

FIGURE Page

20 Communication primitives ��� 71

21 An example of [\0YW/1 : Grid distribution of nodes ��������������������� 73

22 Protocol stack ��� 74

23 Virtual graph of a network ��� 77

24
� �](^0I_`1 and $H
��=��A�0I_a1 ��� 78

25 Function b@
-Acd:<ABP ��� 82

26 A�;$H��,N()	�e on node (in step 	 ��� 83

27 Precondition of Event A�;$X��,f()	X02gih=j�j&k)lVh��nmXo�hqpIpVb/A
�� $H�;89821 ������� 83

28 Precondition of rMAB
�:+P=$H:=%&	 A�;$H�/0I��kqs;ktP+:C	�:q1 ����������������������� 83

29 A sufficient condition for U�u to converge ��������������������������� 87

30 An example of network satisfying condition 6.1 ��������������������� 88

31 Selection of � for ����� ��� 91

32 DFS token circulation on the virtual graph ��������������������������� 93

33 Selection of � ��� 96

34 Scheduled forward ��� 100

35 Simple flooding on the virtual graph ��������������������������������� 101

1

CHAPTER I

INTRODUCTION

Mobile ad hoc networks consist of mobile hosts, which are free to move arbitrarily. The

communication between the mobile hosts depends on their positions and transmission

ranges, so the communication topology may change with time as the hosts move into and

go out of each other’s transmission range. The technology of mobile ad hoc networking is

becoming increasingly prevalent and it has been an active research area.

A major obstacle in design and analysis of distributed primitives for mobile ad hoc

networks is the movement of mobile nodes. Arbitrary mobility adds unpredictability to

the topology changes, which is a big challenge in the analysis of protocols’ performance

and design of reliable protocols. Due to the complication introduced by arbitrary topol-

ogy changes, there is little theoretical analysis of algorithms for mobile scenarios. The

most common way to examine a protocol’s behavior is simulation, which should match

as closely as possible the reality. However, the results in [1] indicate that significant di-

vergences exist between the most popular simulators, including OPNET Modeler[2], NS-2

[3] and GloMoSim [4]. Thus simulation results alone might not give enough meaningful

information about protocols’ performance — sometimes theoretical analysis is required to

complement simulation. Furthermore, unpredictable topology changes prevent most pro-

tocols from providing fully reliable service. Most of the protocols designed for mobile ad

hoc networks use a best-effort strategy: protocols try their best to provide services, but

service qualities are not guaranteed. In our work, we use three approaches to handle the

complications introduced by mobility.

Our first approach is to reduce the problem in mobile scenarios to a simpler and solv-

The journal model is IEEE Transactions on Automatic Control.

2

able case, in which the analysis can still provide meaningful information. In chapter IV we

focus on a token circulation algorithm, LR, which shows quite good performance in terms

of round length in simulations [5], where round length is the number of node visits made by

the token in order to visit all the nodes of the network. The goal is to provide an idea of how

bad the performance of LR could be in mobile scenarios. Our analysis is done for static

cases (the results appeared in [6]). We give a loose upper bound and a rigorous worst-case

analysis on the round length. Since the performance cannot be better with mobility, this

analysis gives us an idea of the algorithm’s performance in the worst case in the presence

of mobility: in particular, the worst case behavior with mobility cannot be better than the

worst case for static networks.

Our second approach is to guarantee some aspects of the service unconditionally and

provide different level of the others under different mobility conditions [7] [8]. In our work

on self-stabilizing mutual exclusion (chapter V), the mutual exclusion property is always

guaranteed without constraints on mobility and different levels of progress are guaranteed

under different levels of constraints on mobility. A preliminary version of this algorithm

appeared in [7] and the journal version has been accepted by [9].

Our third approach to handle mobility is to eliminate, based on the specific conditions

of the network, as much as possible the impact on the protocols of the changing commu-

nication topology. Usually protocols designed for mobile networks depend on the commu-

nication topology, and its unpredictability prevents them from providing reliable services.

In chapter VI, we focus on broadcasting problem in dense mobile networks, in which mo-

bile nodes keep moving but their distribution is fairly stable. Instead of relying on the

frequently changing communication topology, our algorithms depend on a less frequently

changing and more stable characteristic — the distribution of mobile nodes. We also pro-

vided specific constraints on the distribution and mobility of mobile nodes to guarantee that

all the nodes receive the broadcast data.

3

CHAPTER II

RELATED WORK

The technology of mobile ad hoc networking is becoming increasingly prevalent and it has

been an active research area. Much of the work in this area has focused on routing and

medium access control protocols ([10], [11], [12], [13], [14]). Past work on distributed

services focused on non-fault-tolerant algorithms (e.g. leader election [15][16], token cir-

culation [5] and mutual exclusion [17]). A survey of distributed algorithms for mobile ad

hoc networks can be found in [8]. In this chapter, we provide the related work on token

circulation, mutual exclusion and broadcasting respectively.

A. Related Work on Token Circulation

Token circulation can be used to implement totally ordered message delivery in a group —

all nodes in a group receive all messages in an identical order. One approach is to assign

each message a globally unique sequence number, which can be maintained by a token. In

[18, 19], a token carries a sequence number and is circulated through all the nodes. When

a node receives the token, it gets the sequence number from the token and assigns it to the

pending message which is sent to the group members; the sequence number in the token is

incremented by one. Total order can also be achieved by storing messages in the token —

the order in which messages are added to the token determines the order in which they are

delivered to the nodes [20, 21].

Several distributed token circulation algorithms for mobile ad hoc networks are studied

in [5], in which the LR algorithm is introduced. Some of the proposed algorithms are

aware of, and adapt to changes in, the ad hoc network topology. Comparison between

the proposed algorithms is performed using simulation results obtained from a detailed

simulation model (with ns-2 simulator). Our analysis results focus on the LR algorithm.

4

The results were added to [5] and can be found in its journal version [6].

B. Related Work on Mutual Exclusion

Mutual exclusion can be solved by circulating a token throughout the system in an appro-

priate way; when a processor has the token, it can enter the critical section. If the token

circulation algorithm ensures that no more than one token exists in the system and every

processor gets it infinitely often, clearly this simple approach to solving mutual exclusion

is correct. Self-stabilizing mutual exclusion [22] and token circulation algorithms [23][24]

have been designed for static networks. However, after they converge, they do not guaran-

tee mutual exclusion in the presence of ongoing topology changes.

One paper on self-stabilization for mobile ad hoc networks is [25], in which a self-

stabilizing group communication using random walk is proposed. In contrast to the prob-

abilistic protocol in [25], our algorithm is deterministic. Both algorithms use tokens or

agents to control processors’ behavior, but they differ in many aspects, including how the

tokens or agents are forwarded, how membership is maintained and how to handle mobility.

Other work on self-stabilization for mobile situations includes a “weakly” self-stabilizing

leader election algorithm in [26]. Self-stabilization can be used to handle the topology

changes in dynamic distributed system ([27], [28], [29]). A comprehensive bibliography

on self-stabilization is given in [30]. A survey of fault-tolerant algorithms for mobile ad

hoc networks can be found in [8].

A preliminary version of our algorithm appears in [7]. Simultaneously and indepen-

dently, [31] presented a non-fault-tolerant mutual exclusion algorithm in which the ring is

also built dynamically according to the current physical proximity of nodes. The journal

version has been accepted by [9].

5

C. Related Work on Broadcasting

Traditional broadcast algorithms for radio networks (e.g., [32]) usually rely on knowledge

of the network topology. Mobility is not considered and the algorithms are not adaptive

to topology changes. The best known broadcasting protocol [32] for undirected radio net-

works in which nodes do not transmit until they receive a message has time complexityv 09�`wyxCz{��1 , where � is the number of nodes. If we apply these algorithms in dense net-

works, the complexity will be very high due to the large number of nodes. A lower bound

of |~};0I�`wyxBz{��1]��0IwyxBz\�� 1>� on time complexity is also provided in [32], where � is the diam-

eter of the network. Denoting the area of the network by � and the transmission range by�
, our approaches achieve

v 09�J� ��� 1 time complexity for a special case group of networks

with certain properties.

Broadcasting protocols [33, 34, 35, 36, 37, 38] designed for mobile ad hoc networks

have been heavily studied recently. Their performances are evaluated by simulations and

little theoretical analysis is provided. A comparison of broadcasting techniques for mobile

ad hoc networks is presented in [39]. Location information is used in area-based broadcast-

ing in [33]: an intermediate node retransmits only when significant additional area could be

reached. But applying this method in a dense network will result in many collisions since

nodes at the boundary of the sender’s transmission distance will retransmit simultaneously.

Position information has been used in routing protocols for mobile ad hoc networks;

examples are [40, 41, 42, 43, 44, 45, 46, 47, 48]. Most of the existing position-based routing

algorithms forward the packet on straight lines between source and destination: when a

node receives a packet, it selects a neighbor [41] or all neighbors [43, 44] in the general

direction of the destination to forward the packet. But routing along the shortest path

is not always the best option since partitions may occur due to battery overuse along these

popular shortest paths. Another problem introduced in this method is called local maximum

6

— in some situations forwarding along straight lines is not possible due to obstacles or

holes in distribution of mobile nodes. In order to handle the local maximum problem, face

routing (e.g., [47]) has been proposed to route packets around the obstacles or holes. Non-

straight trajectories are considered in trajectory-based routing [48], in which packets follow

a trajectory established at the source, and each intermediate node takes a greedy decision of

the next hop based on local position information. Since the trajectory is established before

packet propagation, knowledge about the distribution of mobile nodes and the battery states

of nodes is important to design an efficient trajectory. Discussion on how to handle the

dynamic situation is provided in [48]. A survey of position-based routing in mobile ad hoc

networks can be found in [14]. The most important differences between our approach

and the existing work are that, in our approach the location-based paths are decided online

during message forwarding and no knowledge about the distribution of mobile nodes is

required a priori. These properties are desirable in mobile ad hoc networks, in which

global knowledge might not be available and the system keeps changing.

7

CHAPTER III

SYSTEM MODEL

Mobile ad hoc networks consist of computing entities or mobile hosts, which are free to

move arbitrarily. Mobile ad hoc networks have several salient characteristics, such as dy-

namic topologies, bandwidth-constrained links and limited power supplies. Mobile hosts

are equipped with wireless transmitters and receivers, and the communication between the

mobile hosts depends on their positions and transmission ranges. The communication abil-

ity between pairs of mobile hosts can be represented by a directed graph: each vertex �<'
represents a mobile processor (V' and there is a directed link from vertex �' to vertex � L if

and only if mobile processor (L is within the transmission range of mobile processor (F' .
An important characteristic of the wireless medium is that if more than one neighbor

of a node are transmitting at the same time, then a collision occurs. Different systems have

different ability to detect collisions. The wireless communication can be synchronous or

asynchronous. In our work on broadcasting problem (Chapter VI), we assume nodes can

distinguish between the background noise and the interference noise, that is, a mechanism

is available to detect collision. We also assume synchronous communication, in which the

communication is structured into time-slots. Details of the system model of our broadcast-

ing protocols is presented in Chapter VI.

Basic communication service between adjacent processors can be provided on the top

of the physical layer. In our work on token circulation and mutual exclusion (Chapter

IV and Chapter V), the distributed services assume the existence of a basic communication

service between adjacent processors and the physical details of the wireless communication

are hidden from the distributed protocols. In Chapter V, we list more specific assumptions

required for our mutual exclusion algorithm.

We use the message passing model, in which each processor has an incoming queue.

8

Messages in transit are modeled as being in the incoming queues of the receiving proces-

sors. Given a mobile ad hoc network, a configuration of the network at some point in time

can be described by the local state of each processor, the state of the incoming queue of

each processor and the communication topology. There are two kinds of events in mobile

ad hoc networks: local computation events and topology changes. A local computation

event is initiated by the receipt of a message, the receipt of a request from the applica-

tion, or a timeout expiring if timers are available. A local computation event changes the

state of the processor at which it occurs, and enqueues messages in the incoming queues of

neighboring processors. A topology change event changes the topology. An execution of

an algorithm in a mobile ad hoc network is an alternating sequence of configurations and

timed events $ D m���QmM$��QmM� � m ���&� satisfying the following: (1) The real times of the events form

a monotonically increasing sequence; if the execution is infinite, then the times increase

without bound. (2) Messages are generated, sent and received in ways that are consistent

with the assumptions made for the particular algorithm. (3) Each configuration after the

first follows appropriately from the previous, according to the specification of the interven-

ing event.

9

CHAPTER IV

TOKEN CIRCULATION IN MOBILE AD HOC NETWORKS

A. Introduction

In this chapter, we present theoretical analyses of a distributed token circulation algorithm

that causes a token to continually circulate through all the nodes of a network. When a token

is circulated, a round is said to complete when every node has been visited by this token

at least once. The length of a round is the number of node visits made by the token in one

round. We give a rigorous worst-case analysis of the Local-Recency (LR) token circulation

algorithm in static networks, which shows quite good performance in simulations. The

results appeared in [6].

B. Analysis of Local Recency (LR) Algorithm

The LR algorithm is introduced in [5]. In LR, the token contains a timestamp for each

mobile node indicating when the mobile node received the token most recently. The token

is forwarded to the neighbor which has been visited least recently. The pseudocode is

presented in Figure 1.

��� ,.�@,I	>,Z:+8Y,Z�C�+0Y	�
B�q����	K1 :
1 	 � 	K% 5���6 m 6 m��;�;�Xm 6� ;��� b@
�A�ca:<APF09	�
�����J	K1 :
2 	 � 	K% � , �@5 ��:CW�09	 � 	K%-1���� ;
4 �@�&WG	 = index of 	 � 	K% entry among all neighbors

of ()' with minimum value (break ties by id);
5 send 	 to (�&� �M� ;

Fig. 1. Token circulation algorithm:
���

10

Fig. 2. A directed graph with exponential round length

Compared to all the algorithms presented in [5], LR shows quite good performance

in both static and dynamic simulations. In particular, the round length is very close to the

optimal round length of � . However, our attempts to prove a good upper bound on the

behavior of the LR algorithm, in the static case, were not successful. Surprisingly, we are

able to exhibit a class of graphs for which the worst-case round length of LR is exponential

in the number of nodes in the graph.

If the topology graph is directed, then the LR algorithm can have exponential behavior

[49]. In particular, on the graph in Figure 2, the LR algorithm has round length �G� �;� �2�N� �)� � .
This is the same graph on which a random walk requires exponential expected time to visit

every node. However, when this graph has undirected edges, the LR round length is onlyv 09��1 : if � 5R� � � � , ��� 6 , the round length is 0.��� � � 1K� � for all the rounds; if � 5R� �¡�¢� ,
�n£ 6 , the length of the first round is 02�� � �-1K� � and the length of the subsequent rounds

is 0.¤� � �;�C1]� � .

11

The rest of this chapter is devoted to showing exponential upper and lower bounds on

the worst-case round length of the LR algorithm when the topology graph is undirected.

Let "\02[�m�U¥1 be a connected undirected graph. In the sequel, the degree of node (is

denoted by P+�&?=A�;�+0¦(F1 , the set of neighbors in [��§
of nodes in

§
is denoted by ¨©0 § 1 ,

the maximum degree of " (the maximum number of neighbors of all the nodes in ") is

denoted by ª and the diameter of " (the number of edges on the longest shortest path) is

denoted by � .

In [5], we saw that every node is visited infinitely often. Here we prove the round

length is
v 0I�«�-ª � � � 1 .

Lemma 1 We have the following properties of LR’s execution on any graph:

(a) If a node (is visited P=�&?=A�;�+0¦(F1��¬� times in a segment of the execution, then all

the neighbors of (are visited in this segment.

(b) If (is visited no more than � times in an execution, then every neighbor of (is

visited no more than 0.���R�-1®��P=�&?=A�;�+0IB1 times in this execution.

Proof. Let ¯ be a segment of the execution in which node (is visited by the token

P+�&?=AB�;�+0°(F1M�J� times. So the sequence of events in ¯ is ±K�;�;�&m]�q�Qm&�;�;�&m�� � m��;�;�Xm��² �I³�´Z�.� � µ � � ��m��;�;�·¶ ,
where each �' is the event that (gets the token for the , th time.

Suppose (’s timestamp is updated to 	 when it is visited in event �q� . Given a state of the

system, we divide the neighbors of (into two subsets, ¨\� for the nodes with timestamps

larger than 	 and ¨ � for the others. Notice the only way for a node to move from ¨ �
to ¨¸� is to be visited by the token. At the beginning of ¯ , we have ¨ � 5 ¨¹0>ºM(�»1 and¼ ¨ � ¼ 5 P+�&?=AB�;�+0°(F1 .

Each time (gets the token, (chooses the next token holder from ¨ � until ¨ � is empty.

Thus
¼ ¨ � ¼ is decreased by 1 each time (is visited. So it takes at most P=�&?=A�;�+0¦(F1 times to

empty ¨ � . Thus when (is visited for the 02P+�&?=AB�;�+0°(F1B�½�-1 th time, ¨ � is empty, that is, every

12

neighbor of (is visited in ¯ . Thus (a) is proved.

Consider the sequence of visited nodes ¯�¾ in an execution in which (is visited �
times. The occurrences of (divide ¯�¾ into ���S� subsequences. By (a), each neighbor of

(occurs no more than P+�&?=A�;�+0IB1 times in each subsequence, thus in ¯^¾ , appears no more

than 0.���R�;1��-P+�&?qA�;�+0IB1 times. So (b) is proved.

Theorem 2 Every round of LR on any graph has length
v 0I�«�-ª � � � 1 .

Proof. Consider any execution ¿ of LR and any round. Suppose (is the last node of this

round. Notice that this is the first time (is visited in this round. From (a) in Lemma 1,

each neighbor ¾ of (is visited no more than P+�&?=AB�;�+09 ¾ 1ÁÀ�ª times in this round. By (b) in

Lemma 1, each neighbor ¾ ¾ of �¾ is visited no more than 0Iª¬�S�-1Â��P=�&?=A�;�+0I�¾ ¾¦1ÃÀÄª � �Åª
times. Similarly each node at distance � from (is visited no more than ª # ��ª #XÆG� �t�;�;�·��ª
times in this round. Thus the length of the round is no more than

�;�
0IªJ1®� ¼ ¨©0°(F1 ¼ �
0IªÄ�Çª � 1®� ¼ ¨©0I¨©0¦(V1]1 ¼ �
0IªÄ�Çª � �~ªtÈH1®� ¼ ¨©02¨¹02¨¹0¦(F1K1]1 ¼ �
�;�;�
0IªÄ�Çª � �R�;�;���~ª � 1®� ¼ ¨¹0��;�;�]¨©02¨¹0¦(F1K1@�;�;�·1 ¼

À �«�=0>�É�~ªÄ���;�;�-�~ª � ÆG� �~ª � 1
5 v 0I���-ª � � � 1

Theorem 2 gives a fairly loose bound. It is possible that no graph actually exhibits

such bad behavior. We next show a family of graphs on which the LR round length is

exponential.

13

A graph is said to have a fixed point round if the execution of the LR algorithm on that

graph, when considered as a sequence of rounds ÊF�Mm�Ê � m ����� , has the property that for some

�«�i� , Ë/,]mZ*O�S� , ÊC' 5 Ê L . Furthermore, the round Ê=# is said to be the fixed point round.

Let
§

be a graph on the set of nodes º+�Cm ����� m��½» . We define
§

to satisfy the condition

 �! if there are two nodes A and (in
§

and an integer 	Ì£Ä� , such that if the token starts at

A , § has a fixed point round ¯ satisfying:

Í �!�� : The last node of ¯ is A .
Í �! � : (occurs 	 times in ¯ , and every neighbor of (occurs between every two

consecutive occurrences of (in ¯ , and either before the first occurrence of (or after

the last occurrence of (in ¯ .

The reason for these conditions will be explained shortly.

Figure 3 depicts a unit disk graph that satisfies �! with A 5 �;Î , (5 �B¤ , and 	 5
� . Unit disk graphs are widely employed to model ad-hoc networks — all the nodes are

assumed to have identical transmission range and two nodes are connected if and only if

they are in each other’s transmission range. The dotted circles in Figure 3 indicate the

transmission range of nodes. If the token is started at �;Î , the fixed point round is 13, 12, 1,

2, 3, 27, 10, 9, 8, 26, 4, 5, 6, 7, 8, 9, 23, 22, 21, 20, 19, 18, 17, 5, 4, 3, 2, 24, 39, 38, 37, 36,

35, 34, 33, 32, 31, 30, 29, 28, 25, 11, 10, 27, 3, 4, 26, 8, 7, 6, 5, 17, 18, 19, 20, 21, 22, 23,

9, 10, 11, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 24, 2, 1, 12, 15, 14, 13, 16 and

has length 82. The bold nodes in this sequence are A , (and the neighbors of (.

We now consider the construction of a family of graphs, "Ï# , � 5 �BmQ�qm��;�;� . Informally,

"�# consists of � copies of a graph
§

satisfying �! , hooked together in series, with node A
in one copy connected to node (in the next copy.

More formally, for ,Ï�Ð� , define graph
§ ' to be isomorphic to

§
, with each node * ,

��ÀÇ*OÀÑ� , in
§

replaced with node �Ò�0I, � �-1V�Ó* in
§ ' . Define node A&' 5 A��Å0I, � �-1��Q�

14

Fig. 3. A unit disk graph satisfying �!

15

Fig. 4. Construction of "�#
and ()' 5 (J�¬0I, � �-1��� . Note that each

§ ' satisfies �! with respect to (G'Zm]A&' and 	 , and

the fixed point round of
§ ' is ¯)' , the result of replacing each occurrence of node * in ¯ with

node �Ô�=09, � �-1��Õ* .
For �Ç�Ð� , we define "�# to be Ö #'¦×/� § ' together with the additional edges 0IA;'.m.()' � ��1 ,

��À�,�ÀR� � � (see Figure 4). The number of nodes in "Ï# is � 5 �¥� ¼ § ¼ 5 �¥��� , where �
is the number of nodes in

§
.

For each �Å�Ø� , consider the execution of the LR algorithm on graph "¥# in which

the token starts at node A;# . Let Ù�# denote the resulting fixed point round, if one exists. In

the statement of the next theorem, we use the notation ¿Ì09W�Ú Û�1 to represent the result of

replacing every occurrence of W in the sequence ¿ with the sequence Û . For example, if

¿ 5 ±.:GmMr;mM$-mM:=¶ , W 5 : and Û 5 ±.r;mM$X¶ , then ¿Ì09W«Ú Û�1 5 ¿Ì02:tÚ ±.r;mM$X¶�1 5 ±.r;mM$-mMr;mM$-mMr;mM$&¶ .
Theorem 3 For all �7�Ü� , if the token starts at A-# , the fixed point round Ù®# for LR on

graph "�# ending at node A�# exists. Furthermore the round is ÙÉ� 5 ¯ and Ù�# 5 ¯G#<0°(G#�Ú
±f(G#�m�A�#HÆG�QmQÙ�#XÆG��m.(G#�¶�1 , for �«�R� .
Proof. For the base case, "¸� equals

§
, and thus the theorem is true. Assume the theorem

is true for � � � and show it holds for � .

First notice that "�# can be viewed as "�#XÆG� connected to
§ # by the single edge 09A;#XÆG�Qm.(G#&1 .

Thus if we eliminate successively repeating nodes, any sequence of visited nodes of LR on

16

"�# starting at A�# is a sequence of visited nodes of LR on "Ï#XÆG� starting at A�#XÆG� when re-

stricted to the nodes of "�#XÆG� . In [5], we saw that each node in the network is visited

infinitely often by LR, so this sequence of LR on "Ï#XÆG� is infinite. Thus there exist fixed

point rounds on "�#XÆG� ending at A�#XÆG� when restricted to the nodes of "�#XÆG� by the inductive

hypothesis.

Similarly if we eliminate successively repeating nodes, any sequence of visited nodes

of LR on "�# starting at A�# is a sequence of visited nodes of LR on
§ # starting at A;# when

restricted to the nodes of
§ # , which is infinite. So by condition �! , there exist fixed point

rounds on
§ # satifying �!�� and �! � when restricted to the nodes of

§ # by the property Ý
of
§ # . By �! � we see that in such fixed point rounds on

§ # , between any two times (is

visited, all of (’s neighbors are visited, that is, starting from the second occurrence of (in

the fixed point rounds, each time (gets the token, all the neighbors of (have been visited

since the last time (gets the token.

In the following, we consider the execution of LR on "Ï# in which the sequence on

"�#XÆG� is the fixed point rounds, and the sequence on
§ # is the sequence after the second

occurrence of (in the fixed point rounds.

Whenever the token comes to (V# from some node in
§ # , by the condition �! � on

§ # ,
every neighbor of (V# has been visited more recently than A-#HÆG� , so (G# forwards the token to

A�#XÆG� , which passes the token to the nodes in "�#XÆG� .
The inductive hypothesis implies that A-#HÆG� occurs only once in Ù®#XÆG� , namely at the

end. Thus, by the time the token returns to A-#XÆG� , it has visited every node except A;#XÆG�
in "�#HÆG� along Ù�#XÆG� , so the token is then sent to (F# . This fact shows Ù®# 5 ¯G#+0°(G# Ú
±f(G#�m�A�#HÆG�QmQÙ�#XÆG��m.(G#�¶�1 is true for "�# . Since Ù®#HÆG� and ¯G# are fixed by the inductive hypothesis

and
§ # ’s property, Ù®# is fixed.

The next theorem gives a tight asymptotic bound on the length of the fixed point round

17

of "�# . Recall that � is the number of nodes in each
§ ' , so � 5 ���>� is the number of nodes

in "�# . Thus the bound is exponential in the number of nodes.

Theorem 4
¼ Ù�# ¼ 5SÞ 0Y)ßà 1 .

Proof. For � 5 � , ¼ Ù�� ¼ 5 ¼ ¯ ¼ . For � £á� , ¼ Ù®# ¼ 5 ¼ ¯ ¼ �Ñ	É�V0 ¼ Ù�#XÆG� ¼ �7�B1 by Theorem 3,

since each of the 	 occurrences of (F# in ¯G# , which has the same length as ¯ , is replaced with

±f(G#�m�A�#HÆG�QmQÙ�#XÆG��m.(G#�¶ . The solution to this recurrence is
¼ ÙÂ# ¼ 5 0 ¼ ¯ ¼ �Ç��	K1&0>���â	@�©	 � � ���&� �

	 #XÆ � 1F� ¼ ¯ ¼ �M	 #XÆG� , �«£Ä� . Thus the length of the fixed point round of "Ï# is Þ 09	 # 1 5ÄÞ 09	�ßà 1 .

The graph
§

in Figure 3 satisfies conditions �!�� and �! � with � 5 �Bã
, 	 5 � , and¼ ¯ ¼ 5åä � . If "�# is constructed from this graph, then by Theorem 4,

¼ ÙÂ# ¼ 5 Þ 09	 # 1 5
Þ 09	�ßà 1 57Þ 02�ÌßæYç 1 . Note "�# can also be a unit disk graph. Let us compare this bound to the

one obtained in Theorem 2, which is
v 09�Ó�Cª � � � 1 , where ª is the maximum degree and

� is the diameter. Since the maximum degree of "Ï# is 3 and the diameter of "�# is ¤C�`� Î ,
this bound becomes

v 0I�«� �<è # � è 1 5 v 0I��� �déæYç ��� è 1 . Thus we can see that the general upper

bound is a large over-estimate for this family of graphs.

18

CHAPTER V

SELF-STABILIZING MUTUAL EXCLUSION IN MOBILE AD HOC NETWORKS

A. Introduction

The technology of mobile ad hoc networking is becoming increasingly prevalent and it

has been an active research area. But much of the work in this area has focused on rout-

ing and medium access control protocols, and there is less work on distributed services.

Furthermore, past work on distributed services focused on non-fault-tolerant algorithms.

An important technique for designing algorithms that tolerate arbitrary transient faults

is self-stabilization, first introduced by Dijkstra in [22]. A system is defined as self-

stabilizing if, starting from an arbitrary configuration, it is guaranteed to converge to a

“legitimate” configuration or a “legitimate” execution in finite time. The system in the le-

gitimate configuration (or execution) exhibits desired behavior. The arbitrary starting con-

figuration could be the result of a transient failure that corrupted some aspect of the system

state. A lot of work has been done on self-stabilization for static networks. However, it

is inefficient to apply most existing self-stabilizing algorithms for static networks directly

in a mobile ad hoc network for the following reason. Traditionally, a topology change has

been considered as a kind of transient fault. But most known self-stabilizing algorithms

require no subsequent failures (i.e., static topology) in order to converge to a legitimate

configuration. If such an algorithm is applied in a mobile ad hoc network, which typically

experiences frequent topology changes, it would essentially start over in trying to converge

every time a topology change occurs, which is quite inefficient and might cause the algo-

rithm never to reach a legitimate configuration. Thus a self-stabilizing algorithm for mobile

ad hoc network needs to be designed specifically so that it exhibits correct behavior in the

presence of topology changes, once it has converged.

19

In this chapter, we are interested in self-stabilizing distributed services for mobile ad

hoc networks. We focus on the mutual exclusion problem. Informally, a mutual exclusion

algorithm should satisfy two properties: mutual exclusion — there is no more than one

processor in the critical section; and progress — some or all processors enter the critical

section infinitely often. Our algorithm also provides a dynamic membership service so

that processors can alternate participating in and not participating in the competition to

enter the critical section. Mutual exclusion provides a mechanism for shared access to a

resource, which is worth considering for mobile ad hoc networks, where mobile nodes may

need to share common resources. Mutual exclusion can be used in the implementation of

group communication, which is an important building block for applications that involve

groups of cooperating hosts, such as mobile conferences, rescue missions and battlefield

operations. Mutual exclusion is useful in many high level applications in mobile ad hoc

networks such as E-learning in [50] to guarantee the consistency of shared objects.

Mutual exclusion and progress conditions cannot both be guaranteed in mobile ad hoc

networks with arbitrary mobility for the following reason. Since reliable message delivery

cannot be guaranteed in such a network, it is possible that some processors stop receiving

messages from others even when they are always in the same connected component. If a

processor makes the decision whether to enter the critical section based on communication

with others, the progress condition cannot be guaranteed; if a processor can enter the critical

section without communicating with others, mutual exclusion may be violated. Arbitrary

mobility has prevented most protocols from providing fully reliable service in mobile ad

hoc networks, and usually they provide a best-effort service instead. Our strategy to solve

the mutual exclusion problem for mobile ad hoc networks is to guarantee mutual exclusion

without constraints on the reliability of message delivery, and guarantee different levels of

progress under different levels of constraints on mobility.

Our algorithm is based on the token circulation algorithm
���

discussed in chapter IV,

20

in which the token is forwarded by the current token holder to its neighboring processor that

was visited by the token least recently. A distinguished processor in the system periodically

generates a token. Upon receipt of a token, a processor checks the token state and its local

state to decide whether it can enter the critical section; the check must ensure that only one

processor is in the critical section even when there are multiple tokens in the system. Thus

mutual exclusion can always be guaranteed, while progress depends on the frequency with

which processors receive tokens.

B. Motivation

A simple solution for mutual exclusion is to circulate a token throughout the network and

only the processor which holds the token enters the critical section. If there is exactly one

token in the system and this token visits every processor that wants to enter the critical

section infinitely often, this simple idea solves the mutual exclusion task. But it is not self-

stabilizing because it cannot recover from a configuration with zero or multiple tokens.

One idea to make this simple idea self-stabilizing is as follows. In order to recover

from a configuration with no token, a distinguished processor keeps generating tokens,

which are circulated throughout the network. Upon receipt of a token, a processor checks

the token state and its local state to decide whether it can enter the critical section. Such

check should ensure that eventually only one processor is in the critical section even when

there are multiple tokens in the system. An example is the self-stabilizing mutual exclusion

algorithm on a ring in the shared memory model presented in [22]. A message passing

version of this algorithm is presented in [51], which works on a fixed ring with FIFO

links. In this algorithm, each token and each processor has a token ID. The distinguished

processor, (D , keeps generating tokens, setting the tokens’ ID as its token ID. The tokens

are forwarded along the ring. When processor (F' , ,43576 , receives a token with ID not equal

21

to ()' ’s token ID, ()' sets its token ID to the token’s ID and enters the critical section. When

a token comes back to (D after traveling around the whole ring, (D checks the token’s ID

and its token ID. If the token’s ID is equal to its token ID, (D increases its token ID by one

and enters the critical section.

In this chapter, we consider mutual execution in mobile ad hoc networks. If the com-

position of the network is fixed and known, we can predefine a virtual ring. Each token is

circulated in the network by some token circulation algorithm, but it visits the processors

according to their positions in the virtual ring: the first processor in a token’s virtual ring

is said to be visited by this token when it receives this token for the first time or the last

processor visited by this token is the last processor in the virtual ring; each of the other

processors ()' is said to be visited by a token if and only if the last processor visited by this

token is the processor previous to (V' in the virtual ring. We notice the virtual link between

two successive processors on the virtual ring is non-FIFO because of the changing topol-

ogy — different tokens may travel along different paths from one processor to another.

Applying the idea in [51] on such a virtual ring to solve mutual exclusion does not work

with non-FIFO virtual links. A counter-example is shown in Fig. 5, in which the system

has converged at time 6 . But at time
�
, processor (�� and (� enter the critical section at the

same time.

So we cannot apply the idea in [51] to mobile ad hoc networks directly. What is

more, a fixed virtual ring is quite inefficient in mobile ad hoc networks as it may bear little

resemblance to the actual topology. Finally, in a mobile ad hoc network, a processor (/'
may be prevented from receiving a token due to an adversarial mobility pattern, and since

all the processors that follow (G' in a virtual ring should be visited after (G' is visited, they

will not be visited by any token and cannot enter the critical section any more, even if they

keep receiving tokens.

In this chapter we propose an algorithm based on the ideas in [22] and [51]. In order

22

Fig. 5. A counter-example on a virtual ring with non-FIFO virtual links

to handle the mobility, we need to deal with:

Í dynamic virtual ring, which is updated periodically to reflect the changing topology,

Í non-FIFO virtual links on the virtual ring, and

Í partitions, so that a disconnected processor will not prevent others from entering the

critical section.

C. System Model

In this chapter, we focus on the distributed services that receive and respond to the requests

from the application. The distributed services run on top of the basic communication ser-

vice between adjacent processors as discussed in chapter III. We make the following addi-

tional assumptions:

Í _a%�%��V�¥()	>,.
�� D : There is a distinguished processor (D (we will discuss relaxing this

assumption in section V.H).

23

Í _a%�%��V�¥()	>,.
��^� : An upper bound ¨ on the number of processors is known, and each

processor has a unique ID.

For simplicity, we assume processors’ IDs are in ��6 mM¨ � � � and processor (F' ’s ID is

, ; the correctness of the algorithm does not rely on it. Note that we do not require the

processors know the IDs of others in advance.

Í _a%�%��V�¥()	>,.
�� � : There is an upper bound, P , on the message delay between two adja-

cent processors if the message is forwarded successfully. Messages may be lost but

not corrupted.

We do not assume the network is always connected. Later we will see that message

loss and the connectivity of the network will only affect the progress of the algorithm

(see section V.G.6) but not mutual exclusion. The assumption of no message corrup-

tion is required because otherwise the mutual exclusion problem cannot be solved

even in a non-self-stabilizing way.

Í _a%�%��V�¥()	>,.
�� È : There is an upper bound, ? , on the number of messages generated by

a processor in each time unit.

A transient fault may cause the system to enter an arbitrarily corrupted configuration.

The property of self-stabilization models the ability of a system to recover from a cor-

rupted configuration under the assumption that the transient faults do not continue to occur.

Our algorithm can recover from an arbitrary configuration, which may be caused by any

transient fault, under the above assumptions.

A self-stabilizing algorithm requires variables to be bounded since memory space is

finite. In a non-self-stabilizing algorithm, an unbounded variable can be simulated by using

large but finite memory: since the algorithm starts from a correctly initialized state, the

maximum value that would ever be assigned to the variable in, say, the next few hundred

24

years can be estimated and sufficient memory to store that value can be allocated. But this

approach does not work for self-stabilizing algorithms, since in an arbitrary configuration,

the variable could take on its maximum value, no matter how much space is allocated, thus

experiencing overflow.

_`%-%��V�¥()	>,Z
-�¡� is useful to set bounds on the size of variables related to processors’

identification. _`%-%��V�¥()	>,Z
-� � and _a%�%��V�¥()	>,.
�� È enable the algorithm to rely on a maximum

number of messages existing in the system, thus we can assign IDs to messages from a

bounded range.

There are timers on each processor such that each timer has a value which is decre-

mented at the rate of real time, and if a timer is set for time interval ê at time 	 , then at time

	/�Õê an event is initiated by the timeout expiring. A timed event is a pair consisting of an

event and and a real number, which represents the real time at which the event occurs. We

have the following assumption on the local computation.

Í _a%�%��V�¥()	>,.
��Fë : At each processor no more than one event is activated at the same

time and the time of the local computation is negligible.

Note that one consequence of this assumption is that the time a processor stays in the

critical section is negligible. This assumption is made for simplicity. We will discuss

relaxing it in section V.H.

D. Problem Definition

We define the mutual exclusion task similarly to [22], in which “processor (F' being in the

critical section in configuration $ ” refers to a predicate whose specifics will depend on the

particular algorithm.

In some situations, processors may want to alternate between participating in and not

participating in the competition to enter the critical section. In this chapter, we consider a

25

system in which the composition of the competing processors is changing as indicated by

the processors receiving *+
�,2� or 89�;:<�=� requests from the application. We call a processor

in an execution active (inactive respectively) if it experiences only a finite number of *+
-,.�
and 8I�;:<�=� requests and the last one is a *+
�,2� (89�;:+�=� respectively) request. Three versions

of the dynamic mutual exclusion task, corresponding to different progress conditions, are

defined as follows:

Definition 1 (Dynamic No Deadlock Mutual Exclusion.) The task of dynamic no dead-

lock mutual exclusion is a set of executions, such that for every execution in the set,

TS�G	>�F:+8FU�WF$X8Y�/%�,Z
-� , U��q���F	>�F:=8 § 	�
M(C(G,.�F? and ¨Ó
4���;:+P+89
$X� are satisfied:

- TS�G	>�F:+8^U�WF$H89�/%�,Z
-� : There is no more than one processor in the critical section in

any configuration.

- U��q���F	>�F:=8 § 	�
Q(B(G,.�F? : Every inactive processor enters the critical section only finitely

often.

- ¨¢
Á���;:+P=89
�$&� : Some active processor enters the critical section infinitely often if the

execution is infinite.

Variations with increasingly strong progress conditions are:

Í Dynamic No Lockout Mutual Exclusion, in which ¨¢
����;:+P+89
$X� is replaced with

- ¨¢
 �
�$X��
��G	 : Every active processor enters the critical section infinitely often

if the execution is infinite.

Í Dynamic Bounded Waiting Mutual Exclusion, in which ¨Ó
����;:+P+89
$X� is replaced

with

- ìÏ
��V��P+�;P\í¬:<,I	>,.�/? : There exists time interval ê , such that every active pro-

cessor enters the critical section exactly once in every time interval ê .

26

This chapter describes an algorithm for mobile ad hoc networks that is self-stabilizing

for TS�G	>�F:+8+U�WF$H89�/%�,Z
-� and U��q���F	>�F:=8 § 	�
M(C(G,2�/? , and that is self-stabilizing for ¨Ó
����;:+P+89
$X� ,

¨Ó
 �
$X��
-�G	 , and ì¥
-�V��P+�;PÃíi:+,I	>,.�F? with respect to various conditions (which are detailed

later).

Definition 2 (Self-Stabilization). An algorithm is self-stabilizing for property ! (with

respect to condition Ý), if, starting from an arbitrary configuration, every infinite execution

of the algorithm (satisfying Ý) has a suffix satisfying ! .

In this chapter, property ! can be one of ¨Ó
����;:+P=89
�$&� , ¨Ó
 �
�$X��
��G	 and ì¥
-�V��P+�;P
íi:<,2	>,.�F? , and condition Ý captures the assumptions about the network behavior.

E. Algorithm Overview

Here we give an informal description of our algorithm. Communication in our algorithm

is based on token circulation, where each token is a message. We have two kinds of to-

kens: mutual exclusion token and *+
�,2� AB����F�-%&	 token, denoted by � - 	�
B����� and * - 	�
B�����
respectively; the specific usage of each kind of token is described later in this section. Both

kinds of tokens are routed using a self-stabilizing version of the token circulation algorithm���
analyzed in chapter IV. The reason for using

���
(instead of a more traditional routing

algorithm) is that we have developed a simple self-stabilizing version of
���

, whereas it

is much more problematic to design a self-stabilizing version of traditional routing algo-

rithms. Our version of
���

uses bounded timestamps and enforces a lifetime on tokens,

by discarding any token that has been forwarded more than a certain number of hops. Be-

cause of the bounded lifetime, we can assign IDs to tokens from a bounded range and we

define the operations on token IDs to be the operations on integers mod this bound. Note

in section V.C, we explained why the values of a variable should be from a bounded range.

27

The execution of our algorithm is divided into phases. Informally, a phase is a bounded

subsequence of execution in which all the connected members enter the critical section

exactly once. The special processor (D maintains the membership, which is organized in

two variables: ����c %-�&	 , a set of processors that are waiting to join the system, and A,2�/? ,

a list of members that have joined the system. The membership is updated only at the

beginning of each phase.

Í In each phase, (D repeatedly generates � - 	�
B�q��� s which carry ����c %-�&	 and A�,.�/? .

– Processors in �@��c %;�&	 initialize their local states upon receipt of an � - 	�
����� .

– Members in A�,.�F? are visited by an � - 	�
����� according to their positions in A�,.�/? .

When a member is visited by an � - 	�
B�q��� ,

* it checks the token’s state and its local state to see whether it is in the

critical section, and updates its local state accordingly (the condition and

update is designed to handle non-FIFO virtual links, see section V.F for

details);

* if it wishes to leave the system, it indicates this in the � - 	�
B����� .

– Each � - 	�
����� records the order of processors that have forwarded it.

Í When a processor wishes to join the system, it periodically sends a * - 	�
����� to pro-

cessor (D . The sending is repeated in order to increase the likelihood that the message

gets through even if some copies are lost due to mobility.

Í Processor (D starts a new phase when all the processors in �@��c %;�&	 have initialized

their states and all the members in A,2�/? have entered the critical section, or a certain

amount of time has elapsed since the current phase began. A member is considered

to be disconnected if it did not enter the critical section in the previous phase. The

member list is updated by (D as follows:

28

– A,2�/? is updated to be the currently reachable members, which are the proces-

sors in �@��c %;�&	 that have initialized their local state and the processors in A�,.�/?
that have entered the critical section in last phase, minus the leave requests. The

order of members in A�,.�/? is decided by the order of processors that have for-

warded the � - 	�
B�q��� s. Since a poorly chosen virtual ring requires a long time

for a token to visit all the nodes, the idea behind this heuristic is to have the vis-

iting order match more closely the actual network topology in order to increase

efficiency,

– ����c %;�&	 is updated to be the senders of * - 	�
B�q��� s received by (D in the last

phase.

F. Algorithm

Here we introduce the underlying token circulation algorithm in section V.F.1, the data

structures in section V.F.2, the interfaces to the application in section V.F.3, and the mutual

exclusion algorithm in section V.F.4.

1. Token Circulation Algorithm:
�����

The non-self-stabilizing
���

algorithm was discussed in Chapter IV, in which there is a

unique token 	 that contains an array 	K% of ¨ integers (the “timestamp array”) initialized to

all 0’s; 	K% � , � is a 	>,2���-%�	�:<�¥(indicating when processor (V' received the token most recently.

In
���

, a token is forwarded to a neighboring processor that was visited by this token least

recently.

In our algorithm we use a variant of
���

, denoted by
�����

, which is similar to
���

except that the timestamps in
�����

are in the range ��6 m � � , the operation “+” on elements

of 	 � 	K% is addition mod 0 � �î�-1 , and only tokens with maximum timestamp less than
�

29

are forwarded to the next processor (Fig. 6.) The value of
�

should be chosen based on

the expected network behavior to guarantee that most of the tokens can be forwarded to

every processor within
�

hops (see section V.G.6 for further discussion). If token 	 is not

routed to the next processor, we say 	 is no longer in the system. In the sequel, we refer

to 	 ’s lifetime as the time token 	 has stayed in the system. In this chapter, we consider a

self-stabilizing algorithm, which may start from an arbitrary configuration. The following

lemma shows that the lifetime of every token forwarded by
�����

is bounded no matter what

values are initially in the timestamp array.

Lemma 5 Consider any execution ¯ , in which tokens are forwarded for
�����

. The lifetime

of any token in ¯ is no more than T¹ïð� 5 � ��P . In more detail, in any configuration $, token

	 has been in the system for no more than ��:CW�09	 � 	K%-1���P , and 	 can be in the system for no

more than 0 �ñ� ��:CW�09	 � 	K%�1K1Â�-P hops after $.
Proof. Denote the initial timestamp array of token 	 by 	 � 	K% D . From the code we can

see ��:CW�09	 � 	K%�1 is increased by 1 each time 	 is forwarded, so 	 cannot be forwarded for

more than
�

hops, and 	 ’s lifetime is no more than
� ��P by _`%-%��V�¥()	>,Z
-� � . Suppose in

configuration $, 	 is in (G' ’s incoming queue. Then 	 has been forwarded for ��:CW�09	 � 	K%-1 �
��:CW�09	 � 	K% D 1 hops, and it cannot be forwarded for more than

��� ��:CW�09	 � 	K%-1 hops after $. By

_`%-%��V�¥()	>,Z
-� � , 	 has stayed in the system for no more than ��:CW�09	 � 	K%-1Ì�<P time, and 	 can

stay in the system for no more than 0 �Õ� ��:CW�09	 � 	K%-1]1Â�-P after $ time.

2. Data Structures

The denotations in TABLE I are used in our algorithm, where
�

is the upper bound on the

number of hops taken by tokens that is enforced by
�����

. The choice of
�

only affects

the progress of the algorithm (see section V.G.6), but not mutual exclusion. Note Tâ�°'°² ´ is

30

���a� ,2�@,2	>,.:+89,.�C�+09	�
������	K1 :
1 	 � 	K% 5���6 m 6 m��;�;�Xm 6� ;

���a� b@
-A�ca:<ABPF0Y	�
B�����¸	K1 :
2 	 � 	K% � , �@5 ��:CW�09	 � 	K%-1���� ;
3 if 09��:<W�0Y	 � 	K%-1Á� � 1 then return;
4 �@�&WG	 = index of 	 � 	K% entry among all neighbors

of ()' with minimum value (break ties by ID);
5 send 	 to (�&� �M� ;

Fig. 6. Token circulation algorithm:
�����

the maximum difference between any two token IDs at any given time after convergence,

while Tñ�°'°² is the bound on the 	�
B�q��� ,ZP type. The reset values of each timer are listed in

Table II (the explanation of each timer is listed in Table III.) Recall that ¨ , ? and P were

introduced in section V.C.

Table I. Denotations

Denotation Value ExplanationTÕïð� � �-P upper bound on token’s lifetimeTñ�°'°² ´ 0 � ?����-1]TÕï����ò� maximum difference between any two token
ids after convergence, i.e. range of token IDs
(difference is defined in this section)Tñ�°'°² �CTó�°'°² ´ �~� upper bound on 	�
B����� ,ZP variables

We define the 	�
����� ,.P type to be the set of integers in º 6 m��Cm �&��� mMT©�°'ô²-» . The opera-

tions on variables of type 	�
����� ,ZP variables are the operations on integers ��
PÏ0.Tâ�°'ô²G�ñ�;1 .
In particular, given two 	�
����� ,ZP variables, 	>,.PV� and 	>,ZP � , the operation � 	>,.P)�Qm]	>,ZP � � returns

º;	>,ZP��QmK	>,ZP��®�Ä�Cm ����� m]	>,ZP � » if 	>,ZP���ÀÒ	>,.P � , and º;	>,.P)�Hm]	>,.P)�¡�¬�Cm ����� mQTñ�°'°²;»�õ©º 6 m��Cm �&��� mK	>,ZP � »
otherwise. We define the difference between 	>,ZPG� and 	>,ZP � as �«,.�¡º;	>���>� � 	ö��' � m]	ö�¡' � �
	ö�������ÑTñ�°'ô²Ì�Ä�B» , where 	>���>� 5 ��:CW�º;	>,ZP��Xm]	>,ZP � » and 	>�¡' � 5 �«,.�¡º;	>,ZP��Xm]	>,ZP � » . Note that

the difference between 	>,ZP)� and 	>,ZP � is the same as the difference between 	>,ZP � and 	>,ZP�� .

31

Table II. Timers’ reset values

ê4,2����A s Reset values Requirement on reset values	>,2����A s 	>,.����A µH÷ �Kø �D êdT µQ÷ �]ø � £ÑTÕïð�
on (D 	>,.����A ³K�I�D êdT ³��2�	>,2����A s 	>,.����A � µ>µ' êdTÕ� µ�µ £i0 � TÕï��)� � êdT µQ÷ �]ø � 1
on ()' , 	>,.����A LKù ' �' êdT LKù ' � £i0.TÕï��G� � êdT µQ÷ �]ø � 1,435R6 êdT LKù ' � ´ö� ú êaT LKù ' �

For example, if TÕ�°'°² 5 �-� , then � �qm ã ��5 º�qmMÎ�mQ¤=m ä m ã » , � ã mQ� �)5 º 9, 10, 11, 12, 0, 1, 2, 3, 4,

5 » , the difference between 5 and 9 is 4 and the difference between 2 and 9 is 5.

The fields on tokens and the variables at processors are listed in Table III.

3. Interfaces to the Application

The application process on processor (V' submits a *+
-,.� or 89�;:+�=� request to the mutual

exclusion service by setting ������rQ��A;' to 	>A��F� or b@:+8I%;� (see events *=
-,.�/' and 8I�;:<�=�&' in

section V.F.5.) A processor cannot join the system if it has currently joined, that is,

������rQ��A&' 5 	>A�F� (see precondition of *=
-,.�/' in section V.F.5), and it cannot leave if it

is not in the system, that is, ������rQ��A�' 5 b@:+82%;� (see precondition of 89�;:<�=��' in section V.F.5

). The time interval between two requests is no less than êaT©� µ>µ , which is enforced by

using 	>,.����A � µ>µ' (see line 2.2 of 89�;:<�=��' and the precondition of *+
-,.�@' in section V.F.5). Such

an interval is required because when a processor leaves the system, the system needs time

to erase the information related to it, so that when it rejoins the system, it will not update

its state based on false information.

The application decides whether it can enter the critical section based on the part of

the configuration accessible to (V' , that is, ()' ’s local state and the state of its incoming queue

(see Predicate $X%�' for ()' to enter the critical section, section V.F.5). Processor (D enters

the critical section at the beginning of each phase (see $&% D and the precondition of event

32

%&	�:<A�	 (FEG:=%;� D). Processor ()' , ,O35û6 , enters the critical section if (V' has joined the system

(see $&% �'), it is ()' ’s turn to be visited (see $&% �'), and (G' has a correct token ID (see $X%-È'). We

notice in a AB�;$H��,.�=� �' event following any configuration in which (F' is in the critical section,

line 9.2 is b@:+82%;� , line 9.8 is 	>A�F� , and line 9.13 is 	>A�F� .
4. Mutual Exclusion Algorithm

Mutual exclusion is achieved by four kinds of events on processor (D and three kinds of

events on the other processors (see code in section V.F.5). Processor (D keeps generating

� - 	�
����� s in event ?q������A:<	�� �D . A new phase is started by (D in event %&	�:+A-	 (FEG:=%-� D . Event

A�;$X��,2�q� L D is activated when (D receives a * - 	�
B����� , and event A�;$X��,2�=� �D is activated when it

receives an � - 	�
����� . Processor (G' , 35á6 , sends * - 	�
B�q��� s to (D in event %-���@P�L ' , which are

forwarded to (D among processors in event A�;$X��,2�=�HL ' . Event AB�;$H��,.�=� �' is activated when ()'
receives an � - 	�
����� .

Now we explain how these events interact with each other to achieve mutual exclusion.

Processors join the system by sending join requests. Upon receipt of a *+
�,2� request from

the application, (G' sets %&	�:C	>�/%�' to *+
�,2�@,.�F? , indicating it is waiting to join the system, and

sends * - 	�
����� s (lines 7.1 - 7.6), which are forwarded to (D by processors using
���a�

(lines

8.1 - 8.2). Upon receipt of such a token (line 6.1 - 6.4), (D records the information in its

local variable *+
-,.� %;�&	 D , which will be used to update the membership at the begining of

the next phase. Note in event %-���@P L ' , a processor resends the join request in every êdT LKù ' � ´ö�
time interval if it does not receive an � - 	�
B�q��� within time êdT LKù ' � by using the timers.

Now we consider the execution of each phase. In each phase, (D repeatedly generates

� - 	�
����� s (lines 3.1 - 3.10). Each � - 	�
B����� has an id and carries membership information

in fields �@��c %;�&	 and A�,.�F? . Note that since (D updates its local token id and membership

only at the beginning of each phase, all the tokens generated in the same phase have the

same token id and membership information.

33

We now explain how a processor (V' , ,O35û6 , responds to the receipt of an � - 	�
�����½	
(lines 9.1 - 9.24).

Í If ()' is waiting to join the system and its join request was received by (D in the last

phase, line 9.2 is true when (G' receives the first � - 	�
����� that is generated in the

current phase. In this case, (V' takes following actions (line 9.3-9.6): it initializes its

local token id 	>,.P<' as 	 � ,ZP and sets %&	�:C	>�/%�' to *+
-,.���;P , indicating it has initialized its

local state and joined the system; it also adds its id to 	 � �+,ö%�,2	 %;�&	 (line 9.5), ensuring

that it will ignore token 	 if it receives 	 again. (As we explain below, once (/' joins

the system, (G' will be moved from ����c %-�&	 to A,2�/? in the next phase, and line 9.2

will be false in the next phase.)

Í Otherwise, we say the processor is “visited” by � - 	�
�����½	 if line 9.8 is true. Note

that this condition is true only if (V' is a member in A�,.�F? and it enforces the property

that each token visits processors according to their positions in the A�,.�F? . In line 9.9

()' adds its id to 	 � �+,ö%�,2	 %;�&	 , ensuring that it will ignore token 	 if it receives 	 again.

Processor ()' updates its local state and checks whether it is in the critical section. If

	 � ,ZP is 0 and ()' ’s token id is currently out of the range ºT¹�°'ô²�m 6 m ����� mQTñ�°'ô² ´ » , then an

inconsistency in the state of the system has been detected, and (/' ’s token id is reset to

0 (lines 9.10 - 9.12). If 	 � ,.P is one more than (V' ’s token id, then (G' enters the critical

section (lines 9.13 - 9.15). After leaving the critical section, (F' sets its token id to be

	 � ,ZP (line 9.14), which will prevent (V' from entering the critical section again due to

tokens generated in the current phase. The intuition of how it works follows. Formal

proofs are provided in section V.G.

– Consider some phase r in which (D keeps generating � - 	�
B����� s with id 0. All

the visited processors have local token id in range ºT¹�°'°²-m 6 m �&��� mMTñ�°'°² ´ » at line

9.12 and those that have token id T¹�°'°² at line 9.12 will enter the critical section

34

and update their token id to 6 in line 9.14 since 	 � ,.P 5ü6 . Thus all the visited

processors will have token ids in ��6 mQTÕ�°'°² ´ � at the end of phase r .
– In phase r��7� , (D keeps generating token with id � and all the processors with

token id 6 update their token id to � when visited by such a token. Processors

with other token ids will not change their token id since the bounded token

lifetime guarantees that no token with id in � �qmQT¹�°'ô² ´ ��� � exists in phase r{��� ,
and only tokens with id in this range can change a processor’s token id that is in

� �CmQTó�°'°² ´ � (see lines 9.10 and 9.13). So at the end of phase r��S� , all the visited

processors have id in � �CmMTÕ�°'°² ´ � .
– Generally speaking, at the begining of phase r4�i� , �âÀý�ÄÀýT¹�°'°² ´ , all the

processors have token ids in � � � �CmQT¹�°'ô² ´ � . In phase rÂ� � , (D keeps generating

tokens with id � . All the processors with id � � � updates their token ids to

� when visited by a token generated in the current phase, while others remain

unchanged since no token with id in range � �¥�Ä�CmQT¹�°'°² ´ �Ä� � exists due to the

bounded token lifetime. Thus at the end of phase rB�\� , all the visited processors

have token ids in � �/mMTÕ�°'°² ´ � . So all the visited processors have the same token

id at the end of phase rÂ�òTÕ�°'ô² ´ ; we say the system converges at this point.

– After convergence, at the begining of phase r��Å� , �Ó£7T©�°'°² ´ , all the members

have token id � � � . In this phase (D keeps generating tokens with id � , and the

members enter the critical section only when they are visited by a token gener-

ated in the current phase for the first time. Since all these tokens visit processors

in the same order, specified by A,2�/? , TR�V	>�F:+8GU�WF$H8Y�/%;,.
�� is guaranteed, even if

the virtual links are non-FIFO.

Í When a processor wishes to leave the system, it indicates this in the � - 	�
����� s that

pass through it (line 9.20). The order of processors that have forwarded the token is

35

updated in line 9.22. At last, the token is forwarded to the next processor using
�����

(line 9.24).

When (D receives an � - 	�
����� , it only processes the token if it has the same id as (D ’s
token id, since only these tokens can enable a processor to enter the critical section after

the system converges (lines 5.1 - 5.11). The information about reachable members, routing

order and leave requests are collected in line 5.3-5.5. If all the members (those in A�,.�/?)

have entered the critical section and all the waiting processors (those in �@��c %;�&) have

initialized their local state, that is, line 5.6 is true, then (D sets 	>,.����A µQ÷ �Kø �D to 0 in line 5.7

to start a new phase (see the precondition of event %&	�:<A-	 (VEV:=%;� D 021). Otherwise the token is

forwarded to the next processor in line 5.9.

A new phase is started in event %&	�:<A�	 (FEG:=%;� D by (D (lines 4.1 - 4.11). There are two

situations for the precondition to be true. The first is line 5.7 as mentioned above. The other

is where timer 	>,.����A µQ÷ �]ø �D goes off; the purpose of 	>,.����A µQ÷ �]ø �D is to prevent a phase from

never ending due to partition. In this event, (D updates the membership: ����c %;�&	 consists

of the processors whose join requests were received in the last phase (line 4.2), and A�,.�F?
is the currently reachable members, (those in ����c %-�&	 that have initialized their local state

and those in A�,.�F? that have entered the critical section), minus the leave requests (line 4.3).

Processor (D also figures out if the system has become disconnected, by checking whether

any of the processors in the old group were not visited yet did not send a leave request

(line 4.1). Since � - 	�
B�q��� s generated in the last phase continue circulating, a disconnected

processor may be visited by an � - 	�
����� which enables it to enter the critical section in the

new phase. In order to avoid the situation that a disconnected processor enters the critical

section at the same time as a member enters, (D waits until all the � - 	�
B�q��� s are discarded

to generate new tokens for the new phase (lines 4.6-4.9). Note that a disconnected member

can rejoin the system by sending * - 	�
B�q��� s — as mentioned above, processor (/' resends

36

Predicate $X%�' for ()' to enter the critical section:

Í , 5S6 : $&% DÌþ 09	>,2����A µQ÷ �]ø �D 576 1
Í ,435S6 : $X%�' þ $X% �'^ÿ $X% �'^ÿ $X%�È' , where $X% �' , $X% �' and $X%�È' are defined as follows, in which

� - 	�
B�����O	 is the first token in ��F���/�&' .
$X% �' þ 0I������rQ��A&' 5 	>A��F�-1 ÿ 0.%&	�:C	>�/%&' 5 *=
-,.�@�;P=1
$X% �' þ ()' is the first processor in 	 � A,2�/? that is not in 	 � �+,ö%�,I	 %;�&	
$X% È' þ 	 � ,ZP 5 09	>,ZPC'��R�;1^��
�PJ0.Tñ�°'°²Â�S�-1

Fig. 7. Predicate $&%�' for ()' to enter the critical section

/* Event *+
�,2�/' occurs when (G' receives a request from the application to join the system */

Event *=
-,.�F'�0.1 on ()' , ,�35S6 :
pre: Receive *+
�,2� request from the application, and 0I������rQ��A;' 5 b@:+82%;�-1 ÿ 09	>,.����A � µ�µ' 5S6 1
action:

1.1 ������rH��A&' 5 	>A��/� ;
Fig. 8. Event *=
-,.�/'>021 on ()' , ,43576

* - 	�
����� s in event %;���/	 L ' if it does not receive an � - 	�
����� within time êaT LKù ' � .
5. Code

The predicate for (G' to enter the critical section and the code of each event on the processors

are listed in Fig. 7 - Fig.16.

37

/* Event 89�;:<�=��' occurs when (G' wants to leave the system. (G' can rejoin only after time

êdTÕ� µ�µ */

Event 8I�;:<�=�&'�0.1 on ()' , ,�35R6 :
pre: Receipt of 89�;:<�=� request from the application, and 0I������rQ��A-' 5 	>A��F�-1
action:

2.1 ������rH��A&' 5 b@:+8I%;� ;
2.2 	>,.����A � µ>µ' 5 êdTÕ� µ>µ ;

Fig. 9. Event 89�;:<�=��'�0.1 on ()' , ,43576

/* (D continues generating � - 	�
����� s in event ?q������A:C	�� �D */

Event ?����@��AB:C	�� �D 0.1 on (D :
pre: 	>,.����A ³��2�D 5S6
action:

3.1 create new � - 	�
����� data structure 	 ;
3.2

���a� ,2�@,I	>,Z:+8Y,Z�C�+0Y	K1 ;
3.3 	 � ,.P 5 	>,.P D ;
3.4 	 � A�,.�F? 5 A�,.�F? D ;
3.5 	 � �@��c %;�&	 5 �@��c %;�&	 D ;
3.6 	 � �+,ö%�,I	 %;�&	 5 ºM(D » ;
3.7 	 � A
��G	�� 8Y,ö%&	 5 ±f(D ¶ ;
3.8 	 � 89�;:<�=� %;�&	 5�� ;
3.9

���a� b/
�A�ca:<AP/0Y	K1 ;
3.10 set 	>,.����A ³��2�D 5 êaT ³K�I� ;

Fig. 10. Event ?q������A:C	�� �D 0.1 on (D

38

/* A new phase is started by (D in event %&	�:+A-	 (FEG:=%-� D */

Event: %&	�:<A�	 (FEG:=%;� D 021 on (D :
pre: 	>,.����A µQ÷ �Kø �D 5R6
action

/* Update membership */
4.1 P+,Z%;$X
-� D 5�� 0]09A,2�/? D � �+,Z%;,I	 %-�&	 D 1���89�;:+�=� %;�&	 D 1 ;
4.2 ����c %;�&	 D 5 *+
-,.� %;�&	 D ;
4.3 A,2�/? D 5 elements of 09�=,Z%�,2	 %-�&	 D � 8I�;:<�=� %;�&	 D 1 in the order in which they appear in

A
��G	�� 8Y,ö%&	 D (if there exist elements in 0I�+,ö%�,2	 %;�&	 D � 89�;:<�q� %;�&	 D � A
��G	�� 8Y,ö%&	 D 1 , append them

to the end);

/* Update token id and reset variables */
4.4 	>,ZP D 5 0Y	>,ZP D ���-1���
PJ0.Tó�°'°²{���-1 ;
4.5 *=
-,.� %-�&	 D 5 89�;:+�=� %;�&	 D 5�� m��+,ö%�,2	 %;�&	 D 5 ºM(D » ;

Critical Section

/* Clean up tokens if there are disconnected members: 	>,.����A ³��2�D is set to T¹ï�� to ensure (D
stops generating tokens for T©ï�� time */
4.6 if (P<,ö%;$X
-� D 5�5 	>A�F�) then
4.7 set 	>,2����A ³��2�D 5 Tñïð� ;
4.8 else
4.9 set 	>,2����A ³��2�D 576 ;

4.10 endif

/* Reset phase timer */
4.11 set 	>,.����A µQ÷ �]ø �D 5 êdT µQ÷ �]ø � ;

Fig. 11. Event: %&	�:+A-	 (FEG:=%-� D 0.1 on (D :

39

/* Event AB�;$H��,.�=� �D occurs when (D receives a � - 	�
����� . */

Event AB�;$H��,.�=� �D 09� - 	�
�����\	K1 on (D :
pre: The first token in ��F���/� D is � - 	�
B�q���\	 .
action:

5.1 remove 	 from ��F���F� D ;
5.2 if 0Y	 � ,.P 5�5 	>,.P D 1 then

/* Update membership information */
5.3 �+,Z%;,I	 %-�&	 D 5 �+,ö%�,2	 %;�&	 D õ�	 � �+,ö%�,I	 %;�&	 ;
5.4 A
-�V	�� 8Y,Z%�	 D 5 	 � A
-�V	�� 8Y,ö%&	 ;
5.5 89�;:<�=� %-�&	 D 5 89�;:+�=� %;�&	 D õ 09	 � 8I�;:<�=� %-�&	��nA�,.�/? D 1 ;

/* If the token has visited all the members, start a new phase, otherwise forward the

token to the next processor using
���a�

*/
5.6 if 0K0IA�,.�/? D õ�����c %;�&	 D 1	�Ñ�+,ö%�,2	 %;�&	 D 1 then
5.7 set 	>,2����A µQ÷ �Kø �D 5R6 ;
5.8 else
5.9

���a� b@
-Acd:<ABPF09	K1 ;
5.10 endif
5.11 endif

Fig. 12. Event A�;$X��,2�q� �D 09� - 	�
�����O	K1 on (D

40

/* Event A�;$X��,2�q�ML D occurs when (D receives a join request. Membership is updated accord-

ingly */

Event: A�;$X��,2�q� L D 0N* - 	�
B�����J	 L 1 on (D :
pre: The first token in ��F���/� D is * - 	�
B�����J	 L .
action

6.1 remove 	 L from ��F���/� D ;
6.2 if (L � (G,ZP¢3
 0IA�,.�F? D õ��@��c %;�&	 D 1) then
6.3 *+
-,.� %;�&	 D 5 *=
-,.� %-�&	 D õñº;	 L � (G,ZP)» ;
6.4 endif

Fig. 13. Event: AB�;$H��,.�=� L D 0f* - 	�
�����\	 L 1 on (D

/* In event %-���@P L ' , ()' continues generating * - 	�
����� s to increase the likelihood that such

request arrives at (D */

Event %-���@P L ' 0.1 on ()' , ,43576 :
pre: 0I������rQ��A&' 5 	>A��F�-1 ÿ 09	>,2����A L�ù ' �' 5S6 1
action:

7.1 create new * - 	�
����� data structure 	 L�ù ' � ;
7.2

���a� ,2�@,I	>,Z:+8Y,Z�C�+0Y	 LKù ' � 1 ;
7.3 	 L�ù ' � � (G,.P 5 (�' ;
7.4

���a� b/
�A�ca:<AP/0Y	 LKù ' � 1 ;
7.5 %�	�:C	>�/%�' 5 *=
-,.�/,.�F? ;
7.6 set 	>,2����A&LKù ' �' 5 êdT L�ù ' � ´Z� ;

Fig. 14. Event %-���@P L ' 021 on ()' , ,435S6

41

/* Event A�;$X��,2�q�ML ' occurs when ()' receives a join request. The join request is forwarded to

(D using
���d�

*/

Event AB�;$H��,.�=� L ' 0f* - 	�
�����O	 L 1 on ()' , ,43576 :
pre: The first token in ��F���F��' is * - 	�
�����\	 L
action:

8.1 remove 	 L from ��F���/�&' ;
8.2

���a� b/
�A�ca:<AP/0Y	 L 1 ;
Fig. 15. Event A�;$X��,2�q�ML ' 0f* - 	�
B�q���\	 L 1 on ()' , ,435S6

G. Correctness

Here we show the correctness by proving that eventually tokens, non-members and mem-

bers will all exhibit good behaviors. The organization of the proof is shown in Fig. 17. We

explain in more detail below.

In section V.G.1, we show U��=���/	>�F:+8 § 	�
M(C(G,2�/? is true from the initial configuration

of any execution ($ D in Fig. 17), and introduce the term “phase”. Informally, a phase is a

bounded subsequence of an execution in which the membership and 	>,ZP D remain unchanged

(they are updated only at the beginning of each phase) and each connected member enters

the critical section exactly once.

We discuss the properties of � - 	�
B�q��� s in section V.G.2. In an arbitrary configuration,

the IDs of tokens may spread throughout the range �ð6 mQT©�°'°² � . We show that eventually

they will converge to a narrow range; this property is called 	�
B����� %-:=b@� . We prove it by

defining property $H
��/�� ù # �2� of a configuration and showing that eventually the execution

will reach a configuration satisfying $H
��/�B� ù # �2� ($;� in Fig. 17) and after that 	�
����� %;:=b@� is

always guaranteed.

42

/* Event A�;$X��,2�=� �' occurs when ()' receives a � - 	�
����� . ()' checks its local state and the

token’s state to see whether it can enter the critical section */

Event AB�;$H��,.�=� �' 09� - 	�
�����\	K1 on ()' , ,435R6 :
pre: The first token in ��F���F��' is � - 	�
�����\	 .
action:

9.1 remove 	 from ��F���F��' ;
9.2 if 0K0I������rQ��A&' 5�5 	>A�F�-1���J02%�	�:C	>�/%&' 5�5 *+
-,.�@,2�/?�1����Ø0°()'
 	 � ����c %;�&	K1���J0°()'â3

	 � �=,Z%�,2	 %-�&	K1K1 then
9.3 	>,.P<' 5 	 � ,ZP ;
9.4 %&	�:C	>�/%�' 5 *+
-,.�@�;P ;
9.5 	 � �+,ö%�,2	 %;�&	 5 	 � �+,ö%�,I	 %;�&	�õñºM()'.» ;
9.6 set 	>,2����A LKù ' �' 5 êdT LKù ' � ;
9.7 else
9.8 if 0K0I������rQ��A&' 5�5 	>A��F�-1����¬0.%&	�:C	>�/%&' 5�5 *+
�,2���;P=1���� 0¦(�' is the first processor in	 � A�,.�F? not in 	 � �=,Z%�,2	 %-�&	K1K1 then
9.9 	 � �+,ö%�,2	 %;�&	 5 	 � �+,ö%�,2	 %;�&	�õóºM(G'2» ;

9.10 if 0Y	 � ,.P 5�576 1����J09	>,.P<'�3
 ºTñ�°'°²�m 6 m ����� mQTñ�°'°² ´ »1 then
9.11 	>,.P<' 5S6 ;
9.12 endif
9.13 if 0Y	 � ,.P 5�5 09	>,.P<'q�R�;1���
�P/02Tñ�°'°²Â�R�-1K1 then

Critical Section
9.14 	>,.P<' 5 	 � ,ZP ;
9.15 endif
9.16 set 	>,2����A LKù ' �' 5 êdT LKù ' � ;
9.17 endif
9.18 endif
9.19 if 09������rQ��A�'Ì35 	>A��F�-1 then
9.20 append (G' to 	 � 89�;:<�=� %;�&	 ;
9.21 else if 0¦()'�3
 	 � A
-�V	�� 8Y,ö%&	K1 then
9.22 append (G' to 	 � A
-�V	�� 8Y,ö%&	 ;
9.23 endif
9.24

���a� b/
�A�ca:<AP/0Y	K1 ;
Fig. 16. Event A�;$X��,2�=� �' 09� - 	�
�����\	K1 on ()' , ,�35S6

43

c0 c3c2c1

memberconv

levels of Progress are guaranteed
Mutual Exclusion and different

nmem_safe is guaranteed

token_safe is guaranteed
conv nmem

conv token

Eventual Stopping is guaranteed

Fig. 17. Organization of proof

The properties of non-members are discussed in section V.G.3. In an arbitrary config-

uration, there may exist false information related to processors which are no longer mem-

bers, based on which these processors may violate mutual exclusion when they join the

system. We show that eventually a processor can join the system only when no information

related to it exists; this property is called �/����� %;:=b@� . We prove it by first defining prop-

erty $H
��/� � � � � , in which we define the appropriate levels of information in a configuration

related to a non-member according to the time it has left the system. Then we show that

any execution will eventually reach a configuration satisfying $X
-�@� � � � � ($ � in Fig. 17)and

after that �@����� %;:=b@� is always guaranteed.

Then in section V.G.4, we focus on the properties of members in an execution in

which all the configurations are both 	�
����� %;:=b@� and �/����� %;:=b@� . We define property

$H
��/��� � ��� �2´ of a configuration related to members’ state. We prove eventually the execution

will reach a configuration satisfying $H
��/�B� � ��� �2´ ($ È in Fig. 17), and we say the execution

has converged if it has reached such a point.

In section V.G.5, we prove TS�G	>�F:+8�U�WF$H8Y�/%;,.
�� in any execution that has converged.

We also provide a discussion of different levels of progress achieved by the algorithm given

different performance of token circulation in section V.G.6.

44

1. Properties of Execution

Since ������rQ��A&' is set to b@:+8I%-� when ()' receives a 89�;:<�q� request from the application (see

section V.F.5), (G' cannot enter the critical section before the next *+
-,.� request. Thus

U��=���F	>�/:+8 § 	�
Q(B(G,.�F? can be guaranteed.

Theorem 6 Given any execution ¯ , U��q���F	>�F:=8 § 	�
M(C(G,.�F? is guaranteed in ¯ .

Our algorithm is based on circulating � - 	�
����� s, which are forwarded by
�����

, but

visit processors based on their member list. A formal definition of “visiting” is given as

follows, from which we see that an � - 	�
B�q���O	 visits processors in 	 � A�,.�F? according to their

positions in 	 � A�,.�/? (see line 9.8), and each processor in 	 � A�,.�F? or 	 � ����c %;�&	 is visited by 	
at most once (see line 9.5 and line 9.9).

Definition 3 (Visiting). Given an � - 	�
B������	 , if 	 is the first token in �F���F�-' in a configu-

ration $, (G' is visited by 	 in $ if and only if line 9.2 or line 9.8 is 	>A�F� .
We divide the execution into “phases”, which are defined as follows (Fig. 18):

Definition 4 (phase). Given an execution ¯ , ¯ is divided into phases:

Í phase 0 starts at the beginning of ¯ , and ends just before the first %�	�:<A-	 (FEG:q%;� D event

in ¯ ; and

Í phase , , ,d£ 6 , starts immediately after the end of phase , � � and ends just before

the second occurrence after phase , � � of a %&	�:+A-	 (FEG:=%-� D event.

In the sequel we call the � - 	�
����� s with ID equal to (D ’s token ID as “current” tokens.

We denote the %�	�:<A-	 (FEG:q%;� D event of phase � by � # ø , the configuration previous to � # ø by $ # ø ,
the first ?����@��AB:C	�� �D event of phase � by � #³ and the configuration following � #³ by $ #³ . We

have the following properties for each phase:

45

start_phase event0

phase 2phase 1phase 0 phase 3

configuration other event

Fig. 18. Definition of phases

Lemma 7 Given any execution ¯ and any ��� 6 ,
0��;1 In phase � , 	>,.P D , A�,.�F? D and ����c %;�&	 D remain unchanged; their values in phase � are

denoted by 	>,.P #D , A�,.�F? #D , and �@��c %;�&	 #D .
0.�B1 All tokens generated in the same phase have the same values for ,ZP , A�,.�F? and ����c %;�&	 .
0 � 1 The IDs of the � - 	�
����� s generated in a phase are one larger than those of the � -

	�
����� s generated in the previous phase, that is, 	>,.P #D 5 	>,ZP #XÆG�D �R� .
0 � 1 The upper bound on the phase length is êdT µQ÷ �Kø � .

Proof. All � - 	�
B����� s generated by (D are generated with 	>,ZP 5 	>,.P D , A�,.�F? 5 A�,.�/? D and

����c %-�&	 5 ����c %;�&	 D in the ?q������A:C	�� �D event. Since the only update to A,2�/? D , ����c %;�&	 D
and 	>,ZP D is line 4.1-4.4 in a %&	�:<A�	 (FEG:=%;� D event, in which 	>,ZP D is increased by one, (1), (2)

and (3) are proved.

A %&	�:<A�	 (FEG:=%;� D event is activated if and only if 	>,.����A µQ÷ �]ø �' 5Ò6 , in which 	>,2����A µQ÷ �Kø �'
is set to êaT µQ÷ �]ø � . After that, 	>,.����A µQ÷ �]ø �' keeps going down until it goes off or it is set to 0

by line 5.7 in a A�;$X��,2�q� �D event, so it takes at most êdT µQ÷ �Kø � for a %&	�:<A-	 (FEG:=%;� D event to be

activated again. Thus (4) is proved.

2. Safe Properties of � - 	�
B�q��� s

In this section, we discuss the properties related to � - 	�
B�q��� s. In an initial configuration,

the ID of a token may be any one of �ð6 mMT¹�°'°² � . We show in Lemmas 9 and 10 that eventually

the IDs of tokens will converge to some subset of ��6 mQT¹�°'°² � (property $H
��/��� ù # �2�) and starting

46

from that point, there always exists an upper bound T©�°'°² ´ on the difference of token IDs

in a configuration (property 	�
����� %;:=b@� .) An execution in which all the configurations

satisfy this bound exhibits good behaviors: a processor’s token ID remains unchanged

when certain conditions hold (Lemma 11), all the current tokens are generated in the current

phase (Lemma 12), and all the members are those visited by a current token in the previous

phase (Lemma 13).

First we define properties $H
��/�� ù # �2� and 	�
����� %;:qb/� .
Definition 5 ($H
��/��� ù # �I�). A configuration $ satisfies property $H
��/�B� ù # �2� if and only if

0��;1 the number of � - 	�
B�q��� s is no more than ?���T©ï�� ;
0.�B1 for every � - 	�
�����\	 , we have 	 � ,ZP
 � 	>,ZP D � 0Y?Ï��TÕï��)� ?��-P��;��:CW�09	 � 	K%-1¡���-1�m-	>,ZP D � ;
0 � 1 any two � - 	�
����� s with the same token ID have the same A,2�/? and �@��c %;�&	 ;
0 � 1 any � - 	�
�����\	 with ID 	>,.P D satisfies 0Y	 � A�,.�F? 5 A�,.�F? D 1 ÿ 09	 � ����c %-�&	 5 �@��c %;�&	 D 1 .

Definition 6 (�
����� %;:qb/�). A configuration is 	�
B����� %;:=b@� if and only if:

0��;1 for any � - 	�
�����\	 , we have 	 � ,ZP
 � 	>,ZP D � Tñ�°'°² ´ m-	>,ZP D � ;
0.�B1 all the � - 	�
B����� s with the same ,ZP have the same A�,.�F? and ����c %-�&	 .

We will show in Lemmas 9 and 10 that, starting from an arbitrary configuration,

eventually the execution converges to a configuration satisfying $H
��/�<� ù # �2� , after which

	�
����� %;:qb/� is always guaranteed. The proof of this lemma is based on the fact that the

number of phases is limited in each bounded time interval.

Lemma 8 Given times ê¡� and ê � , ê¡� ú ê � , if the number of � - 	�
B�q��� s at ê¡� is no more

than � , then the number of %�	�:<A-	 (FEG:q%;� D events in � ê¡�Hm]ê � � is no more than 0)���â?��]09ê � � ê^�]1
����09ê � � ê¡�]1K��êdT µQ÷ �]ø � � 1 .

47

Proof. A %�	�:<A-	 (VEV:=%;� D event is activated only when 	>,.����A µQ÷ �]ø �D 5 6 , which occurs only

in two situations:

Í 	>,2����A µQ÷ �]ø �D is set to 0 in a A�;$X��,2�=� �D event. The number of such events is no more

than the number � ´ of � - 	�
����� s received by (D in � ê¡�Hm]ê � � , which either exist at ê��
or are generated during � ê��Hm]ê � � . By _a%-%;�V�¥()	>,.
�� È , we have � ´ ÀÅ���Å?��=09ê � � ê¡�K1 .Í 	>,2����A µQ÷ �]ø �D goes off because the timer ticked down to 0. Since 	>,.����A µQ÷ �]ø �D is never

set to any values other than êdT µQ÷ �]ø � and 0, and it is only set to 0 in a A�;$H��,.�=� �D event,

at least êdT µQ÷ �Kø � time elapses between any two consecutive times that the timer goes

off due to ticking down, so it goes off at most ��0Yê � � ê^�K1]�-êaT µH÷ �Kø � � times in � ê¡�HmKê � � .
So in � ê¡�Qm]ê � � the number of %�	�:<A-	 (FEG:q%;� D events is no more than �)�Ñ?¥��0Yê � � ê^�]1Â���0Yê � � ê¡��1]��êdT µQ÷ �]ø � � .

Lemma 9 Starting from an arbitrary configuration $ D , within time �BT¹ï�� there is a config-

uration satisfying $H
��/�� ù # �2� .
Proof. By Lemma 5, there is a configuration $�� in which all the � - 	�
B����� s are generated

by (D after $ D , and a later configuration $ � in which all the � - 	�
B�q��� s are generated by (D
after $;� . We will prove $ � satisfies $H
��/��� ù # �I� . Suppose $ � is in phase � . By Lemma 5, $ �
occurs within �CTÕïð� from $ D .

By Lemma 5, all the � - 	�
B�q��� s in a configuration $ after $�� are generated within time

TÕï�� before $, thus the number of � - 	�
����� s in $ is no more than ?¥�BT©ïð� by _`%-%��V�¥()	>,Z
-� È .
So (1) of definition 5 is proved for $ � . Given any � - 	�
�����«	 in $ � , assume 	 first occurs in

configuration $Q� in phase �C� . Since $Q� is after $;� , the number of � - 	�
B����� s in $Q� is no more

than ?Â�2TÕïð� . Let ê be the time interval between $ � and $M� . We have êÄÀRP®�9��:CW�09	 � 	K%-1ÌÀRT¹ï��
by Lemma 5, and � � �C�@À©? �]Tñïð����? �öê���� êÃ��êdT µQ÷ �Kø � � À©?Ì�KTÕïð�;��? ��PÌ�>��:CW�09	 � 	K%-1+�Õ��À

48

�4�Q?`�&TÕï��=�ò� ú Tñ�°'°² by Lemmas 5 and 8. Thus � - 	�
B�q��� s with the same ID are generated

in the same phase by (3) of Lemma 7 and (2), (3) and (4) of definition 5 follow.

Lemma 10 Given any execution starting from a configuration $ D satisfying $X
-�@��� ù # �2� , ev-

ery configuration $ in ¯ satisfies 	�
B����� %;:=b@� .
Proof. We denote the time interval between $ and $ D by ê and consider any � - 	�
�����\	 in

$. Assume $ is in phase � .

If 	 is generated between $ and $ D , say at time ê/� in phase �C� , we have ê � ê/� À TÕï��
by Lemma 5. Since all the tokens at ê�� either exist in $ D or are generated within T¹ï�� before

êF� by Lemma 5, the number of tokens at ê@� is no more than ��?Ï��TÕïð� by _a%-%;�V�¥()	>,.
�� È . By

Lemma 8, we have � � �C�4À ��?J�<Tñïð�@�Å?O�CTÕï����Ä��À Tñ�°'ô² ´ . Thus in this case we have

	 � ,ZP 5 	>,ZP #��D
 � 	>,.P #D � Tñ�°'°² ´ m]	>,.P #D � by Lemma 7. Otherwise we denote ��:<W�0Y	 � 	K%-1 in $ D by

��:CW�����fø and in $ by ��:CW ��fø , and ? �KTÕïð����? ��PÌ�>��:CW�����fø �Õ� by W . We have ê7À�PÌ�X0 �\� ��:CW�����fø 1
ÀRTÕï�� by Lemma 5 and �«Àâ?Ã�MT¹ï��)�Ç?Ã�Kêâ��� êÃ�-êaT µH÷ �Kø � � À©?Ã��TÕï��V� ?4�]PÃ��0 �«� ��:<W�����fø 1
� �tÀÄTñ�°'°² ´ by Lemma 8. By (2) of $H
��/�� ù # �2� , we have 	 � ,.P
 � 	>,.P DD � W^m]	>,.P DD � , which is a

subset of � 	>,.P DD � W^m]	>,ZP DD �Ñ� �@5 � 	>,ZP #D � � � W^mK	>,ZP #D � � � 	>,.P #D � Tñ�°'°² ´ m]	>,.P #D � because �¥�òW
ÀRTñ�°'°² ´ . Thus (1) is true in both cases.

Now we prove (2). First we consider the case that every � - 	�
����� in $ is generated

after $ D . Assume � - 	�
�����¢	 is generated in phase �<� . We know �C�
 � � � Tñ�°'ô² ´ mQ� � from

above. Because TÕ�°'°² ´ ÀSTñ�°'°² , � - 	�
����� s generated in different phases have different token

IDs by Lemma 7, thus (2) is true.

Otherwise we know � 5 	>,.P #D � 	>,.P D À�Tó�°'°² ´ from above. So in $, all the � - 	�
����� s

existing in $ D have ID in
� � 5 � 	>,.P DD � Tñ�°'°² ´ mK	>,ZP

DD � . By (2) of definition 5 all the � - 	�
����� s

generated after $ D have IDs in
� � 5 � 	>,ZP DD m]	>,.P #D � � � 	>,.P DD m]	>,ZP DD �ÅTñ�°'°² ´ � . Consider all the � -

	�
����� s with ID 8
 � ��õ � � in $. If 8
 � 	>,ZP DD � Tñ�°'°² ´ m]	>,.P DD � � � , all these � - 	�
����� s exist in $ D
and they have the same A�,.�/? and ����c %-�&	 by (3) of definition 5. If 8 5 	>,.P DD , these � - 	�
����� s

49

either exist in $ D or are generated in phase 6 with A�,.�F? 5 A�,.�F? DD and �@��c %;�&	 5 ����c %;�&	 D ,
so (2) is true in this case by (4) of definition 5; otherwise they are generated in the same

phase after $ D and (2) is still true.

An execution in which all the configurations satisfy 	�
����� %;:=b@� exhibits good behav-

iors. We state the conditions under which a processor’s token ID remains unchanged in

Lemma 11.

Lemma 11 Let ¯ be an execution in which all the configurations are 	�
����� %;:=b@� . For

each processor (G' and all �«� 6 , we have:

0��;1 If 09	>,.PC' 5 	>,.P D 1 or 0Y	>,ZPC' 5 	>,.P D � �-1 in configuration $, then line 9.10 is b@:+8I%-� in the

A�;$X��,2�=� �' 0Y	K1 event following $.
0.�B1 If in phase � there exists a configuration $ in which

02� � �;1É02%�	�:C	>�/%&' 5 *+
�,2���;P=1 ÿ 09	>,.PC' 5 	>,ZP #D 1 , or

02� � �B1É02%�	�:C	>�/%&' 5 *+
�,2���;P=1 ÿ 0V	>,.PC'
 º4Tñ�°'°² , 6 , �&��� , Tñ�°'°² ´ »1 ÿ
0Y	>,ZPC'É3
 � 	>,.P #D � Tñ�°'°² ´ � �Cm]	>,ZP #D � � � 1
then 	>,.P<' remains unchanged after $ in phase � .

0 � 1 If in phase � there exists a configuration $ before $ #³ in which 02%&	�:<	>�/%&' 5 *+
-,.���;P=1 ÿ
0Y	>,ZPC' 5 	>,ZP #D � �-1 , then 	>,ZPC' remains unchanged between $ and $ #³ (including $ #³).

Proof. Proof of (1): If 	 � ,.P~35 6 , line 9.10 is b/:=8I%;� . Otherwise since 	 � ,.P 5 6
 � 	>,.P D �
Tñ�°'°² ´ mK	>,ZP D � by definition 6, we have 	>,ZP D
 ��6 mQTñ�°'°² ´ � , that is, 	>,.P<'
 ºTñ�°'°²-m 6 m �&��� mMTñ�°'°² ´ » ,
so line 9.10 is b@:+8I%;� .

Proof of (2): If (2.1) is true in $, then line 9.2 is b@:+8I%;� , line 9.10 is b@:+8I%;� by part (1),

which was just proved, and line 9.13 is b@:+8I%;� because no � - 	�
����� with ID 	>,ZP #D �R� exists

by definition 6. If (2.2) is true in $, then line 9.2 and line 9.10 are b/:=8I%;� , and line 9.13 is

50

b@:+8I%;� because all the � - 	�
B����� s have ID in � 	>,ZP #D � Tñ�°'°² ´ m]	>,.P #D � by definition 6. So (2) is

proved.

Proof of (3): If %&	�:C	>�/%�' 5 *+
�,2���;P , then line 9.2 is b@:+8I%-� . If 	>,.P+' 5 	>,.P #D � � , then

line 9.10 is b@:+82%;� by part (1), which has already been proved. Since no � - 	�
B�q��� with ID

	>,ZP #D exists before � #³ in phase � by definition 6, line 9.13 is b@:+8I%-� between $ and $ #³ . So (3)

is proved.

Now we consider the generation of current tokens of phase ���i� in such an execution.

Lemma 12 Consider any execution ¯ in which all the configurations are 	�
����� %;:=b@� . For

each phase �«�i� of ¯ , we have:

0��;1 All the current tokens of phase � are generated in phase � with the same A�,.�F? and

�@��c %;�&	 .
0.�B1 The time interval between � #³ and � # ø is no more than TÕïð� , and there is no � - 	�
����� in

the configuration previous to � #³ if 0IP+,Z%;$X
-� D 5 	>A��/�-1 in � # ø .
Proof. Since �i� � , the $ # ø configuration exists, which is 	�
B����� %;:=b@� . So there is no

� - 	�
����� with ID 	>,.P #D in $ # ø by definition 6 and (1) is proved.

Now we prove (2). First we prove at least one ?q������A:C	�� �D event occurs in phase � .

Otherwise no � - 	�
B����� with ID 	>,.P #D exists in phase � by part (1) (which was just proved),

so 	>,.����A µQ÷ �Kø �D is never reset in a A�;$X��,2�q� �D event and � # � �ø is activated only when 	>,.����A µQ÷ �Kø �D
goes off. Thus the length of phase � is êaT µQ÷ �Kø � . Since 	>,2����A ³��2�D is set to 0 or to T¹ï�� (which

is less than êdT µQ÷ �Kø �) in � # ø , it goes off and a ?����@��AB:C	�� �D event is activated in phase � , which

is a contradiction.

Since 	>,2����A ³��2�D is not reset between � #³ and � # ø , the time interval between � #³ and � # ø
is equal to its reset value in � # ø , which is T¹ï�� if 0IP<,ö%;$X
-� D 5 	>A�F�-1 and 0 otherwise. If

02P<,Z%-$H
-� D 5 	>A�F�-1 , no � - 	�
����� exists in the configuration previous to � #³ by Lemma 5.

51

Now we consider membership maintenance in such an execution.

Lemma 13 Consider an execution ¯ and phase ���i� of ¯ , such that all the configurations

in ¯ are 	�
����� %;:=b@� . The following are true for each (V'
 A�,.�F? # � �D .

0��;1 There is a A�;$H��,.�=� �' 0Y	K1 event, denoted by ���' , in phase � , such that 	 � ,ZP 5 	>,.P #D and ()'
is added to 	 � �+,ö%�,2	��;P %-�&	 in ���' . Furthermore, %�	�:C	>�/%�' 5 *=
-,.�@�;P in any configuration

after ���' in phase � and phase ����� .
0.�B1 If ()'�3
 A�,.�F? #D , then 	>,.P<' 5 	>,ZP #D in $ # � �ø .

Proof. By line 4.3, we have (V'
 �+,ö%�,2	��;P %;�&	 D in $ # � �ø . Notice �+,Z%;,I	��;P %;�&	 D is set to º 6 »
in � # ø , and it is updated in phase � according to �+,ö%�,2	��;P %;�&	 in the current tokens received

by (D , which are generated in phase � by Lemma 12. So there exists a current token

which includes (G' in its �+,Z%;,I	��;P %;�&	 . Since every � - 	�
����� ’s �+,ö%�,2	��;P %;�&	 is set to º 6 » when

generated, there exists such an ���' event in phase � . Right after ���' , %&	�:<	>�/%&' is *+
�,2���;P . The

only code changing %&	�:<	>�/%�' to *+
�,2�@,.�F? is a %;����P-L ' event. Since 	>,.����A&LKù ' �' is set to êdT LKù ' �
in � �' , after which 	>,.����A L�ù ' �' keeps going down unless it is reset to êdT L�ù ' � in a A�;$X��,2�=� �'
event, it takes at least êdT LKù ' � for 	>,2����A&L�ù ' �' to reach 0. Thus a %-���@P�L ' event will not occur

within êdT L�ù ' � from ���' . Because êaT LKù ' � £ �-êaT µH÷ �Kø � , a %;����P L ' event will not occur after

���' in phase � and phase ���R� by Lemma 7. So (1) is proved.

If ()'O3
 A�,.�F? #D , ()' can be added to 	 � �=,Z%�,2	��;P %;�&	 only in line 9.5, so we have 	>,ZP=' 5
	 � ,ZP 5 	>,.P #' and %&	�:C	>�/%�' 5 *=
-,.�@�;P in the configuration following ���' . After that, 	>,.P<' remains

unchanged in phase � by (2.1) of Lemma 11. So (2) is proved.

3. Safe Properties of Non-member

In this section, we discuss the properties of non-members. First we define the appropriate

levels of information related to a non-member processor according to how long ago the

52

processor left the system (definition 7). Lemma 14 shows the time required to move from

one level to the next. We prove in Lemmas 15 and 16 that eventually the information related

to a non-member will be kept in an appropriate level and starting from that point, property

�@����� %;:=b@� (definition 8) is always guaranteed, that is, a processor rejoin is allowed to

the system only when there is no old information relating to it still in the system. Thus

we guarantee that when a processor rejoins the system, it cannot enter the critical section

before it is initialized by a current token (Lemma 17).

First we give definitions of $H
��/� � � � � and �@����� %;:qb/� .
Definition 7 ($H
��/� � � � �). Given a configuration $, $ satisfies property $H
-�@� � � � � if and

only if for every processor (V' with 09������rQ��A&' 5 b/:=8I%;�-1 in $, we have:

0��;1 if 0Y	>,.����A � µ>µ' ÀÑ�BTÕïð�)�ò�-êaT µH÷ �Kø � 1 then 0°(GA�;P)� 5 	>A��F�-1
0.�B1 if 0Y	>,.����A � µ>µ' ÀÑTñïð�)�ò��êdT µQ÷ �Kø � 1 then 0°(GAB�;P � 5 	>A��/�-1
0 � 1 if 0Y	>,.����A � µ>µ' ÀÑTñïð�)� êdT µQ÷ �]ø � 1 then 0¦()AB�;P È 5 	>A�F�-1
0 � 1 if 0Y	>,.����A � µ>µ' ÀÑTñïð�21 then 0¦(GA�;P<ë 5 	>A��F�-1

where

Í (GA�;P�� þ 0É3 � - 	�
�����\	 , ()'
 	 � �+,ö%�,I	��;P %;�&	�1 ÿ 0X3 * - 	�
B�����O	 , 	 � (),ZP 5 ()'Y1
Í (GA�;P � þ 0¦()'É3
 �+,ö%�,I	��;P %;�&	 D 1 ÿ 0°()'É3
 *+
�,2� %;�&	 D 1
Í (GA�;P È þ 0¦()'É3
 A�,.�F? D 1 ÿ 0¦()'É3
 �@��c %;�&	 D 1
Í (GA�;PCë þ ËO� - 	�
�����\	 , 0°()'Ì3
 	 � A�,.�F?)1 ÿ 0¦()'É3
 	 � ����c %;�&	K1

Definition 8 (�@����� %;:=b@�). A configuration is �@����� %;:qb/� if and only if for every (F' with

0I������rQ��A&' 5 b@:+8I%;�-1 ÿ 09	>,2����A � µ>µ' 576 1 , 0°(GA�;P È ÿ (GA�;PCëH1 is 	>A��F� for ()' .
The level of information related to (G' represented by each predicate is decreasing. The

following lemmas shows the time required to move from one level to the next.

53

Lemma 14 Given ,Á£ 6 and any execution ¯ in which 09������rH��A;' 5 b@:+82%;�-1 at time ê , we

have the following properties, where ê�� 5 ê��¥TÕï�� , ê!� 5 ê/����êdT µQ÷ �]ø � , ê � 5 ê"�M��êaT µH÷ �Kø � ,
and ê@² 5 ê � �òTÕï�� .
0 6 1\Ë/, , �½Àü,¥À � , if ÿ 'L ×/� (GA�;P L is true at ê , then ÿ 'L ×/� (GA�;P L remains 	>A�F� as long as

������rQ��A&' remains b@:+8I%;� .
0��;1 If ������rQ��A&' is b@:+8I%-� in � êÃm]ê@� � , then (GAB�;P�� is true at ê@� .
0.�B1 If (GA�;P�� is 	>A�F� at ê@� and ������rQ��A&' is b@:+8I%-� in � ê@�-m]ê"� � , then ()AB�;P � is 	>A�F� at ê!� .
0 � 1 If 0°(GAB�;P�� ÿ ()AB�;P � 1 is 	>A�F� at ê!� and ������rQ��A&' is b@:+8I%-� in � ê!��mKê � � , then (GA�;P È is 	>A�F�

at ê � .
0 � 1 If 0¦(GA�;P�� ÿ ()AB�;P � ÿ ()AB�;P È 1 is 	>A�F� at ê � and ������rQ��A&' is b@:+8I%;� in � ê � m]ê/² � , then (GAB�;PCë

is 	>A��/� at ê/² .
Proof. Suppose ê!� is in phase �#� and ê � is in phase � � . We notice that (a) (G' does not send

any * - 	�
����� and (G' is not added to any � - 	�
B����� ’s �=,Z%�,2	��;P %-�&	 as long as ������rH��A�' remains

b@:+8I%;� ; (b) ()' can be added to *+
-,.� %;�&	 D (�+,Z%;,I	��;P %;�&	 D respectively) only if there exists * -
	�
����� from ()' (� - 	�
������	 with ()'
 	 � �+,ö%�,2	��;P %;�&	 respectively); (c) (G' can be added to A,2�/? D
(�@��c %;�&	 D respectively) only if (G' has been added to �+,Z%;,I	��;P %;�&	 D (*+
�,2� %;�&	 D respectively)

; (d) ()' is included in a A,2�/? (����c %;�&	 respectively) of a � - 	�
�����Õ	 only if (V'
 A,2�/? D
((�'
 ����c %;�&	 D respectively) when 	 is generated.

If (GA�;P�� is 	>A��F� at ê , it is 	>A�F� as long as ������rH��A&' is b@:+8I%;� by (a); if 0¦(GA�;P)� ÿ (GA�;P � 1
is 	>A�F� at ê , it is 	>A��/� as long as ������rQ��A�' is b@:+8I%;� by (a) and (b); if 0V(GA�;P)� ÿ (GAB�;P � ÿ
(GA�;P È 1 is 	>A�F� at ê , it is 	>A��F� as long as ������rQ��A�' is b@:+8I%;� by (a), (b) and (c); if 0)()AB�;P)�
ÿ (GAB�;P � ÿ (GA�;P È ÿ ()AB�;PCë�1 is 	>A��F� at ê , it is 	>A��/� as long as ������rQ��A�' is b@:+8I%-� by (a), (b),

(c) and (d). So (0) is proved.

Since all tokens existing at ê have been discarded by ê^� by Lemma 5, (1) can be

proved by (a). Since event � #�$ø exists in � ê/�m]ê"� � by Lemma 7, in which �+,ö%�,2	��;P %;�&	 D and

54

*+
�,2� %;�&	 D are reset, (2) can be proved by (b) because (GAB�;PG� is 	>A�F� in � ê/�mKê!� � by case (0).

Since by Lemma 7 configuration $ #�%ø exists in � ê!�Mm]ê � � , (3) can be proved by (c) because

(GA�;P � is 	>A��F� in $ #&%ø by case 0 6 1 . Since all the tokens existing at ê � have been discarded by

ê/² by Lemma 5, (4) can be proved by (d) because (GA�;P È is 	>A�F� in � ê � mKê@² � by cases 0 6 1 .

Lemma 15 Starting from an arbitrary configuration, within time �CTâïð�G� � êdT µQ÷ �]ø � , there

is a configuration satisfying $H
��/� � � � � .

Proof. We will prove the configuration $ at time ê 5 �CT©ïð�^� � êdT µQ÷ �Kø � from the initial

configuration satisfies $X
-�@� � � � � . Consider any processor (G' with ������rH��A&' 5 b@:+82%;� in $.
If there is no 89�;:<�=��' event before $, then ������rQ��A�' has remained b@:+82%;� for ê time, so $
satisfies $H
-�@� � � � � by (1), (2), (3), (4) and (0) of Lemma 14.

Otherwise let � be the last 89�;:+�=��' event before $. In � , 	>,2����A � µ>µ' is set to êdTÕ� µ�µ . Denote

the value of 	>,.����A � µ>µ' in $ by ê ¾ , so in $, ������rQ��A&' has been b@:+8I%;� for ê(' 5 êdTÕ� µ>µ � ê ¾
time. In $, if êÃ¾/ÀR�BTÕïð�M����êdT µQ÷ �]ø � , that is, ê('Ï�ÅêdT µQ÷ �Kø � £ÅTÕïð� , (GA�;P�� is 	>A��F� by (1) and

(0) of Lemma 14; if ê4¾/ÀRTñïð�)�ò��êdT µQ÷ �Kø � , that is, ê('��RTÕïð�)� êdT µQ÷ �Kø � , (GA�;P � is 	>A��F� by

(1), (2) and (0) of Lemma 14; if ê ¾ ÀSTÕï����ÓêdT µQ÷ �]ø � , that is, ê('��RTñïð���ó��êdT µQ÷ �Kø � , ()AB�;P È
is 	>A��F� by (1), (2), (3) and (0) of Lemma 14; if ê�¾/ÀRTñïð� , that is, ê!'+�Ò�CTñïð�F�Ñ�-êaT µH÷ �Kø � ,
(GA�;PCë is 	>A�F� by (1), (2), (3), (4) and (0) of Lemma 14.

Lemma 16 Given any execution ¯ starting from a configuration $ D satisfying $H
-�@� � � � � ,

every configuration $ in ¯ is �@����� %;:qb/� .
Proof. Consider any processor (V' such that ������rH��A&' 5 b/:=8I%;� and 	>,.����A � µ>µ' 5 6 in $.
If there is a 89�;:+�=�&' before $ in ¯ , then ������rQ��A�' has been b/:=8I%;� for at least êaTÕ� µ>µ �
��êdT µQ÷ �]ø � �Ñ�CTÕï�� time by $, so the claim is true by (1), (2), (3), (4) and (0) of Lemma 14.

Otherwise, ������rQ��A&' is b@:+82%;� between $ and $ D . Let ê be the value of 	>,.����A � µ>µ' in $ D . Since

55

	>,.����A � µ�µ' 576 in $, ������rQ��A&' has been b@:+8I%;� for ê time by $. If ê7£Ç��êdT µQ÷ �Kø � �â�CTÕï�� , the

claim is proved by (1), (2), (3), (4) and (0) of Lemma 14. If ê
 � Tâïð�B�ñ��êdT µQ÷ �]ø � m��CTÕï��V�
��êdT µQ÷ �]ø � � , then (GAB�;P�� is 	>A��F� in $ D by definition 7 and the claim can be proved by (2), (3),

(4) and (0) of Lemma 14. If ê
 � T©ï��+�ÕêdT µQ÷ �]ø � mQTÕï��+�â��êdT µQ÷ �]ø � � , then 0¦(GA�;P)� ÿ (GAB�;P � 1
is 	>A��F� in $ D by definition 7 and the claim can be proved by (3), (4) and (0) of Lemma 14.

If ê
 � TÕïð�>mMTÕïð�/�~êdT µQ÷ �Kø � � , then 0¦(GA�;P)� ÿ (GA�;P � ÿ (GA�;P È 1 is 	>A��/� in $ D by definition 7

and the claim can be proved by (4) and (0) of Lemma 14. If ê
 ��6 mQTâï�� � , then 0°(GA�;P È ÿ
(GA�;PCëH1 is 	>A��/� in $ D by definition 7 and the claim can be proved by (0) of Lemma 14.

From the following lemma, we can see that eventually a processor not in A�,.�/? D will

not enter the critical section.

Lemma 17 Given an arbitrary configuration $ D , consider any execution ¯ starting from

$ D . Within time ê 5 � T¹ï��G�~��êdT µQ÷ �]ø � , there exists an � #�%ø event, � � £7� , such that

(1) all configurations after � #�%ø are 	�
B����� %;:=b@� and �@����� %;:qb/� , and

(2) given any �¢�Ä� � , in any configuration between � #³ and � # � �³ , for any ()'Á3
 A,2�/? #D , we

have

02� � �;1ñ09������rQ��A&' 5 b@:+82%;�-1 or 0 ËF	Qm2()'Ì3
 	 � A�,.�F?)1 , and

02� � �B1¥(�' does not enter the critical section.

Proof. By Lemmas 9, 10, after time �CT¹ïð� , all the configurations are 	�
����� %;:=b@� . By

Lemmas 15 and 16, after time �CT¹ïð�/� � êdT µQ÷ �]ø � , all the configurations are �@����� %-:=b@� .
Thus after time ê4¾ 5 �CTÕï��2� � êdT µQ÷ �Kø � , all the configurations are 	�
����� %;:qb/� and �@����� %-:=b@� .
By Lemma 7, there exists some � D �ý� such that the � # �ø event occurs in � ê4¾ m]êÃ¾ ¾ � where

êÃ¾ ¾ 5 êÃ¾H�½êdT µQ÷ �Kø � , and � � such that the � # %ø event occurs in � ê4¾ ¾H�ñTÕï��>m]ê � . Thus (1) is true

for � D and � � .

56

Now we prove (2.1) is true and we can get (2.2) directly from (2.1). Let �V� be the

smallest number such that (G'É3
 A,2�/? ïD for any 8
 � ���QmM� � (informally, phase ��� to phase � is

a maximal execution segment in which (V'É3
 A�,.�F? D .) Let ¯@� be the execution of phase �)� � �
if �q�`£ � D , otherwise ¯�� is empty. Let ¯ � be the execution from � �®�>�*).#,+.- # �&/ø to � # � �³ . Thus

all the configurations in ¯�� or ¯ � are 	�
����� %;:=b@� and �@����� %-:=b@� . We notice that (a) if ¯��
is not empty, that is ����£ � D , we have (G'
 A�,.�F? #0+ZÆG�D in ¯@� and there is no *+
-,.�/' event in

¯@� by definition 8; (b) for any � - 	�
B�q����	 generated in ¯ � we have ()'d3
 	 � A�,.�/? ; and (c) all

the � - 	�
B����� s in phase � are generated after � # �ø by Lemma 5. We have the following two

cases.

Í If there is a *+
-,.�/' event � LKù ' � in ¯ � , let $ L�ù ' � be the configuration previous to � L�ù ' � , in

which 0I������rQ��A&' 5 b@:+8I%-�-1 ÿ 09	>,.����A � µ�µ' 5¬6 1 . By definition 8, there is no � - 	�
B�����
including (G' in A,2�/? in $ L�ù ' � . So there is no � - 	�
����� including (G' in A�,.�/? in all the

configurations after � LKù ' � in ¯ � by (b). If � L�ù ' � occurs before � #³ , the claim is proved.

Otherwise � L�ù ' � occurs after � #³ . We notice the time interval between two *+
-,.��' and

89�;:<�=�&' events is at least êdTÕ� µ>µ because 	>,2����A � µ>µ' is set to êdT¹� µ>µ in a 89�;:<�=��' event

and a *+
�,2�/' event occurs only if 	>,.����A � µ>µ' 5�6 . So there is no 89�;:<�=��' event between

� #³ and � L�ù ' � by Lemmas 7 and 12. Thus ������rH��A�' remains b@:+8I%-� between � #³ and

� L�ù ' � and the claim is proved in this case.

Í Otherwise by (a) no *+
�,2�@' event occurs in ¯�� and ¯ � . If ������rQ��A&' 5 b/:=8I%;� in the

configuration previous to � #³ , then ������rQ��A&' remains b@:+82%;� in ¯ � and the claim is

proved. Otherwise ������rH��A�' is always 	>A��F� in ¯�� and ¯ � . We consider the following

two cases:

– If ¯�� is empty, that is, �)�aÀ � D , then ¯ � is the execution between � # �ø and � # � �³ .

Thus all the tokens in phase � are generated in ¯ � by (c) and in phase � there is

no token which includes (V' in A,2�/? by (b). Thus (2.1) is proved in this case.

57

– Otherwise we have �)��� � D �i� , so all the configurations in phase �)� � � are

	�
����� %;:=b@� . Since ������rQ��A�' is 	>A��F� in phase �q� � � , we have ()' 3
 	 � 89�;:<�=� %;�&	
for any current token 	 of phase �)� � � , which is generated in this phase by

Lemma 12. Because ���Ñ� � D �û�î� � , the � #,+öÆG�ø event exists, in which

89�;:<�=� %;�&	 D is reset. Since 89�;:+�=� %;�&	 D is updated according to the 89�;:<�=� %-�&	 on

the current tokens received by (D in phase ��� � � , we have ()'d3
 89�;:<�=� %;�&	 D in

� #,+ø . Because ()'Á3
 A,2�/? #,+ù , we have (G'Á3
 �+,Z%;,I	 %-�&	 D in � #,+ø . So in � #,+ø , P<,ö%;$H
�� D is

	>A��F� and no � - 	�
B����� exists in the configuration previous to � #,+³ by Lemma 12.

So after � #XÆG�³ , all the � - 	�
B����� s are generated after � #,+³ and no � - 	�
����� includes

(�' in A,2�/? by (b). Thus the claim is proved.

4. Eventual Convergence

In this section, we define a property $H
��/�B� � ��� �2´ of configurations. Based on Lemma 18,

we show in Lemma 19 that, starting from an arbitrary configuration, there exists a phase � � ,
such that $ # %ø satisfies $X
-�@��� � ��� �2´ and all the configurations after $ # %ø are 	�
B����� %;:=b@� and

�@����� %;:=b@� .
The intuition for $H
��/�� � ��� �2´ is that, in a configuration satisfying $H
��/�B� � ��� �2´ , all the

members indicate they have joined the system by setting %&	�:C	>�/%�' to *=
-,.�@�;P , they have

a correct token ID, which is equal to 	>,ZP D , and they have been visited recently, that is,

	>,.����A LKù ' �' �ÅêdT µQ÷ �Kø � �òTÕï�� .
Definition 9 ($H
��/��� � �1� �I´). A configuration is $H
-�@�� � ��� �2´ if and only if for any (G'
 A,2�/? D ,
we have 0.%&	�:C	>�/%�' 5 *+
�,2���;P=1 ÿ 0Y	>,ZPC' 5 	>,ZP D 1 ÿ 0Y	>,.����A LKù ' �' �ÅêdT µQ÷ �Kø � �~TÕï��21 .

In Lemma 18, we show that, starting from a phase with 	>,ZP D 5 6 , the range of the

members’ token IDs is decreased by one in each phase.

58

Lemma 18 Consider an execution ¯ , in which all the configurations are 	�
����� %;:=b@� , and

a phase r of ¯ , such that 	>,.P �D 5i6 and r��Ò� . For any (G'
 A,2�/? � � # � �' , 6 ÀÄ�ÓÀÄTñ�°'ô² ´ , we

have 	>,ZPC'
 � �/mMTñ�°'°² ´ � in $ � � # � �ø .

Proof. We have 	>,ZP � � #D 5 � and 	>,ZP � � # � �D 5 �t�Ä� by Lemma 7. Given (G'
 A�,.�F? � � # � �' ,

by Lemma 13 the � �' event exists in phase r��Å� and we have %&	�:C	>�@%;' 5 *+
-,.���;P after � �' in

phase r¡�â� and phase r¡�â���ò� . Note that if we have 	>,ZP+'
 � �/mMTñ�°'°² ´ � in the configuration

$,�' following ���' , then 	>,.P<' remains unchanged in phase r��Ñ� by (2.2) of Lemma 11. So in

the rest we only need to prove 	>,.P+'
 � �/mMTñ�°'°² ´ � in $ �' . We prove it by induction on � .

In phase r , if (G' is added to 	 � �+,ö%�,I	��;P %;�&	 by line 9.5 in ���' , we have 	>,.P<' 5 	 � ,ZP 5
6
 ��6 mQTñ�°'ô² ´ � in $0�' . Otherwise we have 	>,.P+'
 ºTñ�°'°²�m 6 m �&��� mMTñ�°'°² ´ » at line 9.13 because

	 � ,ZP 5 6 , after which 	>,.P<' is updated to 0 if 	>,ZP<' 5 Tñ�°'°² by lines 9.13-9.15. So we have

	>,ZPC'
 ��6 mQTñ�°'ô² ´ � in $ �' . Thus the claim is true for � 576 .
Assume the claim is true for 8 , 6 À�8®ÀR� � � . We show it holds for � . If (F'É3
 A�,.�F? � � #D ,

we have 	>,ZP<' 5 	>,ZP � � #D 5 �
 � �/mQTñ�°'ô² ´ � in $ � � # � �ø by Lemma 13. Otherwise we have

()'
 � � � �CmQTñ�°'°² ´ � in $ � � #ø by the inductive hypothesis, and %&	�:<	>�/%;' 5 *+
-,.�@�;P in phase

r��Ñ� by Lemma 13. Note if 	>,ZP<'
 � � � �CmQTñ�°'ô² ´ � is true in the configuration previous to

a A�;$X��,2�=� �' 0Y	ö¾¦1 event in phase r®�~� , then it is true at the end of this event for the following

reason. Since line 9.2 and 9.10 are b@:+8I%;� , 	>,ZP+' can be changed only when line 9.13 is

true. Since we have 	>,.P+'
 � � � �CmQTñ�°'ô² ´ � , 	ö¾ � ,ZP
 � � � Tñ�°'°² ´ mM� � by definition 6, and

� �/mQTñ�°'°² ´ �ò� � � � � � Tñ�°'ô² ´ mM� �F5 º�F» , line 9.13 is true only if 	�¾ � ,ZP 5 	>,ZPC'C�ò� 5 � , and 	>,ZPC'
is updated to �
 � � � �CmMTÕ�°'°² ´ � if it is true.

Since we have 	>,ZP<'
 � � � �CmMTñ�°'°² ´ � in $ � � #ø , 	>,ZPC'
 � � � �CmQTñ�°'°² ´ � is true in the con-

figuration previous to all A�;$X��,2�=� �' events in phase 02rÁ�S�)1 , including ���' . Since we have

	 � ,ZP 5 � in ���' , 	>,ZPC' is updated to � in line 9.14 if 	>,.P+' 5 � � � . So we have 	>,ZP<'
 � �/mQTñ�°'°² ´ �
in $ �' , and the claim is true for � .

59

Theorem 19 Given an arbitrary configuration $ D , consider any execution ¯ starting from

$ D . Within time �CTÕï��+� � êdT µQ÷ �]ø � �Ñ0.Tñ�°'ô²¡�âTñ�°'°² ´ 1��HêdT µQ÷ �]ø � , there exists an � #&%ø event, for

some � � £S� , such that

(1) all configurations after $ � ø are 	�
����� %;:=b@� and �@����� %-:=b@� and

(2) $ # %ø satisfies $X
-�@��� � ��� �2´ .
Proof. By Lemmas 9, 10, after time �CT¹ïð� , all the configurations are 	�
����� %;:=b@� . By

Lemmas 15 and 16, after time �CT¹ïð�/� � êdT µQ÷ �]ø � , all the configurations are �@����� %-:=b@� .
Thus after time ê 5 �CTÕïð�9� � êaT µH÷ �Kø � , all the configurations are 	�
B����� %;:=b@� and �/����� %;:=b@� .

By Lemma 7, after ê there exists a phase r such that 	>,ZP �D 5 6 and rJ�Ô� . Let � be

r^�âTñ�°'°² ´ . We will prove $ #�%ø satisfies $X
-�@�-� � �1� �I´ , where � � 5 �i�ò� . By Lemmas 7, 9 and

15, we can see the time of � #�%ø is no more than �CTÕïð�;� � êdT µQ÷ �]ø � �©0.Tñ�°'ô²F�½Tñ�°'°² ´ 1)�öêdT µQ÷ �Kø �
after the initial configuration.

For any ()'
 A�,.�F? � � �D , by Lemma 13 the ���' event exists in phase � and we have

%&	�:C	>�@%&' 5 *+
-,.�@�;P after ���' in phase � and phase � �i� , including $ � � �ø . By Lemma 18

we have 	>,ZP<' 5 Tñ�°'°² ´ 5 	>,ZP � D in $ � � �ø . Since 	>,.����A&L�ù ' �' is set êdT LKù ' � in ���' , we have

	>,.����A LKù ' �' �ÅêdT LKù ' � � êdT µQ÷ �Kø � �ÅêdT µQ÷ �]ø � � TÕï�� in $ � � �ø by Lemmas 7 and 12. So $ � � �ø
satisfies $H
-�@��� � ��� �2´ .

In the sequel, we say an execution has converged if it has reached a configuration $ # %³ ,

where � � satisfies the properties in Lemma 17 and Theorem 19.

5. Mutual Exclusion after Convergence

In this section we focus on an execution ¯ which has converged. We denote by ¯ # the

subsequence between $ #³ and $ # � �³ of ¯ , including $ #³ and $ # � �³ (Fig. 19). By Lemma 17,

we know that only processors in A,2�/? #D can enter the critical section in ¯ # . In this section,

60

Fig. 19. Proof of TS�G	>�F:+8/U�WF$X8Y�/%�,Z
-� after convergence

we show that if $ # ø satisfies $H
��/��� � ��� �2´ , then no more than one processor is in the critical

section at the same time in ¯ # (Lemma 20), and $ # � �ø satisfies $X
-�@�-� � �1� �I´ (Lemma 21).

Thus TR�V	ö�/:+8FU�WF$H8Y�@%�,.
�� can be guaranteed from $ #³ (Theorem 22).

Lemma 20 Given an execution ¯ and �«£Ä� , such that $ # ø satisfies $H
��/��� � ��� �2´ , and all the

configurations after $ # ø are 	�
����� %;:=b@� and �/����� %;:=b@� , we have in ¯ # :
0��;1 For any ()'
 A�,.�/? #D ,

0>� � �;1¥(�' is in the critical section only when being visited by an � - 	�
B�q��� with ID 	>,ZP #D
the first time in ¯ # .

0>� � �B1 if ()' never enters the critical section in ¯ # , 	>,ZPC' remains unchanged. Otherwise

let $ � ø be the last configuration in ¯ # in which ()' is in the critical section. We

have 	>,ZPC' 5 	>,.P #D � � in all configurations in ¯ # previous to $ � ø and including

$ � ø , and 	>,ZPC' 5 	>,ZP #D in all configurations in ¯ # after $ � ø .
0.�B1 No more than one processor in A,2�/? #D is in the critical section at the same time in any

configuration in ¯ # .
Proof. By Definition 9, we have %�	�:C	>�/%;' 5 *+
-,.���;P and 	>,ZPC' 5 	>,ZP D 5 	>,ZP #D � � in $ # ø . First

we notice %&	�:<	>�/%�' remains *+
�,2���;P in ¯ # for the following reason: %&	�:C	>�@%�' is set to *=
-,.�/,.�F?
only in a %;����P L ' event, which will not occur in ¯ # because 	>,2����A LKù ' �' will not reach 0 in ¯ #
by Definition 9 and Lemmas 7 and 12. We denote the first event that updates 	>,ZPq' in ¯ # by

��2' . By (3) of Lemma 11, 	>,.P+' remains unchanged before $ #³ . So we have 	>,ZP<' 5 	>,ZP #D � � in

61

$ #³ and line 9.10 is b@:+8I%-� in ��2' by (1) of Lemma 11. Since line 9.2 is always b@:+8I%-� because

%&	�:C	>�@%&' 5 *+
-,.���;P , line 9.13 is 	>A�F� in � 2' , that is, (G' is visited by an � - 	�
����� with ID 	>,ZP #D
and 	>,ZPC' is updated to 	>,ZP #D by line 9.14 in � 2' . Since line 9.13 is always 	>A��F� when (V' is

visited by an � - 	�
B�q��� with ID 	>,ZP #D if 09	>,ZPC' 5 	>,.P #D � �-1 , this is the first time ()' is visited

by an � - 	�
B�q��� with ID 	>,ZP #D . Once 	>,.P<' is updated to 	>,ZP #D , 	>,.P<' remains unchanged in phase

� by (2.1) of Lemma 11 and in phase 02�¥�Ä�-1 before � #³ by (3) of Lemma 11. Thus (1) is

proved.

Now we prove (2). Assume in contradiction that (F' and (L are in the critical section at

the same time, say in configuration $. Let � - 	�
������	�' (L respectively) be the first token in

��/���F�&' (��F���/� L respectively) in $. By part (1.1), which was just proved,]' (L respectively)

is the first token with ID 	>,ZP #D which visits (G' ((L respectively). Since any � - 	�
B�q��� with ID

	>,ZP #D is generated in phase � by Lemma 12, we have 	K' � A�,.�F? 5 	 L � A,2�/? 5 A�,.�/? #D . By the

predicate for the critical section, we also have in $: (a) (V' is the first processor in 	>' � A,2�/? not

in 	ö' � �+,ö%�,2	��;P %;�&	 , and (b) (L is the first processor in 	 L � A�,.�F? not in 	 L � �+,ö%�,2	��;P %;�&	 . Without

loss of generality, we assume (V' is before (L in A,2�/? #D , thus we have (G'
 	 L � �=,Z%�,2	��;P %;�&	 by

(b). So ()' is visited by 	 L before ()' is visited by 	>' . Contradiction!

Lemma 21 Given an execution ¯ , if there exists a phase �î£ � , such that $ # ø satisfies

$H
��/��� � ��� �2´ , and all the configurations after $ # ø are 	�
����� %;:=b@� and ��
-�@������rQ��A;ø2��' � , then

$ # � �ø satisfies $H
-�@��� � ��� �2´ .
Proof. Given any (G'
 A,2�/? # � �D , by Lemma 13 we have an event � �' in phase � such that

%&	�:C	>�@%&' 5 *+
�,2���;P after ���' in phase � and phase �¥�7� , including $ # � �ø . Since 	>,.����AXLKù ' �' is

set to êaT L�ù ' � �R�-êaT µH÷ �Kø � �Ñ�CTñïð� in � �' , we have 	>,2����A&LKù ' �' �ÄêaT µH÷ �Kø � �ÑTÕï�� in $ # � �ø by

Lemmas 7 and 12. Now we consider 	>,ZP+' in $ # � �ø . If ()'�3
 A�,.�F? #D , we have 	>,ZP<' 5 	>,.P #D in $ # � �ø
by Lemma 13. Otherwise we have (G'
 A�,.�/? #D . Since ()' is visited by a current token in � �'
in phase � , we have 	>,ZP<' 5 	>,ZP #D in $ # ø by (1.2) of Lemma 20. So $ # � �ø satisfies $H
��/��� � �1� �I´ .

62

By Lemmas 17, Lemma 20 and Lemma 21, we have:

Theorem 22 TS�G	>�F:=8VU�WF$X8Y�/%�,Z
-� is satisfied when an execution has converged.

6. Progress

Since one of the conditions for processor (V' to enter the critical section is being visited by

a token, the level of progress provided by this algorithm depends on the frequency with

which a processor is visited by tokens, that is,
�����

’s performance for token circulation.

The performance of
���`�

is affected by many factors, including message loss, choice of
�

,

and the mobility pattern of the network. In this section, we discuss the different levels of

requirements on
���`�

’s performance to achieve different levels of progress. We define the

following levels of
���`�

’s performance, in which
� D

is required to guarantee that (D can

receive ()' ’s *+
-,.� A���F�-%&	 eventually,
� �X0I,Z1 is used to guarantee that (V' enters the critical

section infinitely often, and
� � is used to guarantee ì¥
-�F�@P+�;P�íi:<,2	>,2�/? .

Í � D 09,ö1 : If infinitely many tokens are generated by (V' , then infinitely many of them

arrive at (D within
�

hops.

Í � �&09,ö1 : If infinitely many tokens that include (V' in A,2�/? or ����c %;�&	 are generated by

(D , then infinitely many of them visit (G' and come back to (D within
�

hops.

Í � � : At least one of every 0YêdT µH÷ �Kø � � TÕï��21É��? tokens generated by (D visits all the

processors in their �@��c %;�&	 and A�,.�F? within
�

hops.

Lemma 23 Consider phase � of any execution which has converged. Let ê # be the time

of event � # ø . Let processor ()' and � - 	�
�����½	ö� be such that 	>� is generated in � ê # m]ê # �
êdT µQ÷ �]ø � � TÕï�� � , ()' is in 	ö� � �@��c %;�&	 or 	>� � A,2�/? and 	ö� visits ()' and comes back to (D

63

within
�

hops. Then we have (G'
 A�,.�F? # � �D and ()' enters the critical section in phase � if

()'
 	ö� � A�,.�F? .

Proof. By Lemma 12 any current token 	 of phase � , including]� , satisfies 0Y	 � A�,.�F? 5
A�,.�/? #D 1 ÿ 09	 � ����c %;�&	 5 �@��c %;�&	 #D 1 . By Lemma 5, token 	�� comes back to (D after visiting

()' within � ê # mKê # �ÓêaT µH÷ �Kø � � . Since phase � is ended only if a current token comes back to

(D after visiting all the processors in �@��c %;�&	 D õ¢A,2�/? D , including (G' , or phase � has lasted

for time êaT µQ÷ �]ø � , ()' is visited by a current token and added to �+,ö%�,2	��;P %-�&	 D in phase � . So

we have (G'
 A�,.�F? # � �D and ()' enters the critical section if (G'
 	 � A�,.�/? by (1.1) of Lemma 20.

Theorem 24 Consider any execution that has converged, 0��;1 If
� D 09,ö1 and

� �&0I,Z1 are sat-

isfied for some processor (V' , then ¨Ó
`�\�;:=P+89
�$&� is guaranteed; 02�C1 if
� D 09,ö1 and

� �&0I,Z1 are

satisfied for every processor (V' , then ¨Ó
 �
�$&�q
��G	 is guaranteed; 0 � 1 if
� D 0I,Z1 is satisfied for

every processor ()' and
� � is satisfied, then ì¥
��V�@P=�;P�íi:<,2	>,2�/? is guaranteed with waiting

time bounded by êdT µQ÷ �Kø � .
Proof. First we notice that if

� D 09,ö1 and
� �&0I,Z1 are 	>A�F� , then ()' is added to A�,.�F? D or

����c %-�&	 D in infinitely many phases for the following reason: If it is not true, (/' stops

being visited by tokens eventually and 	>,2����A;LKù ' �' will not be reset to a non-zero value, so

infinitely many %;����P L ' events are activated, in which infinitely many * - 	�
����� s are sent to (D ,
thus infinitely many * - 	�
����� s arrive at (D by

� D
and ()' is added to ����c %;�&	 D in infinitely

many phases, which is a contradiction.

Note in any phase such that (G'
 �@��c %;�&	 D , at least one token that includes (G' in

����c %-�&	 is generated during � êÃm]ê¹�âêdT µQ÷ �]ø � � TÕï�� � , where ê is the time when this phase

starts. From the discussion above, we know there are infinitely many phases such that

()'
 ����c %;�&	 D , so we have ()'
 A�,.�F? D in infinitely many phases by
� �&0I,ö1 and Lemma 23.

Note in each of the infinitely many phases such that (F'
 A,2�/? D , at least one token that

64

includes ()'
 A,2�/? is generated during � êÃm]êÅ�ÑêdT µQ÷ �]ø � � Tñïð� � , where ê is the time the

phase starts. So ()' enters the critical section infinitely often by Lemma 23 and
� �&0I,Z1 . Thus

(1) and (2) are proved.

Now we consider ìÏ
��V��P+�;P�íi:+,I	>,.�F? . In each phase, (D keeps generating tokens. By� � , at least one token which is generated within time êdT µQ÷ �]ø � � TÕïð� from the beginning of

this phase visits all the members and comes back to (D within
�

hops, so every processor

enters the critical section in this phase by Lemma 23. By Lemma 3, the waiting time is

bounded by êdT µQ÷ �Kø � .
H. Remarks

The assumption of a distinguished processor can be relaxed by using a self-stabilizing

leader election algorithm for mobile ad hoc networks. ([26] is a first step toward the devel-

opment of such an algorithm, in which a “weak” self-stabilizing algorithm is presented.)

The assumption that a processor stays in the critical section only for a negligible time

can be relaxed by replacing P by PÏ�SÝ in the definition of Tâï�� in Fig I, where Ý is the

maximum time a processor stays in the critical section. No change is needed in the analysis,

since the analysis is done in terms of T©ï�� .
Theorem 19 implies that the time for the algorithm to converge is

v 0 �Ì� 1 and the

waiting time implied by Theorem 24 is
v 0 � 1 .

Simulation results in [5] [6] show that the (unbounded)
���

algorithm performs well

in mobile networks. In particular, the round length is very close to the optimal value � ,

where round length is the number of hops for a token to be forwarded to all the nodes and

� is the number of nodes in the network. If the parameter
�

to our bounded version of
���

is chosen to be on the order of the “usual” round length, then the conditions for progress

(
� D

,
� � , and

� �) are likely to be satisfied. With such a value of
�

, namely
� 5 v 0I��1 ,

65

the simulation results indicate that
v 0I� � 1 and

v 0I��1 are reasonable approximations to the

convergence time and waiting time, respectively. Thus we can see that the requirements on

LR’s performance to guarantee different levels of progress are feasible in practice.

66

Table III. Fields on tokens and variables at processors

Token Field Data Type Explanation* - 	�
����� 	K% 	>,.���-%&	�:<�¥(array used by
���`�

(G,ZP integer in ��6 mM¨ � id of sender� - 	�
B����� 	K% 	>,.���-%&	�:<�¥(s array used by
���`�

,ZP 	�
B�q��� ,ZP token IDA,2�/? permutation of processors that have joined
subset of ��6 mM¨ �����c %-�&	 subset of ��6 mM¨ � joining processors�+,ö%�,2	 %;�&	 subset of ��6 mM¨ � processors visitedAB
-�G	�� 8Y,ö%&	 permutation of the order in which the token was
subset of ��6 mM¨ � routed89�;:+�=� %;�&	 subset of ��6 mM¨ � leave requests

Processor Variable Data Type Explanation(D 	>,ZP D 	�
B�q��� ,ZP (D ’s local token IDA,2�/? D permutation of processors that
subset of ��6 mM¨ � have joined����c %-�&	 D subset of ��6 mM¨ � joining processors�+,ö%�,2	 %;�&	 D subset of ��6 mM¨ � processors visitedAB
-�G	�� 8Y,ö%&	 D permutation of the order in which the token was
subset of ��6 mM¨ � routed*+
�,2� %;�&	 D subset of ��6 mM¨ � join requests89�;:+�=� %;�&	 D subset of ��6 mM¨ � leave requestsP<,ö%;$X
-� D boolean indicates whether there exist partitions	>,.����A ³��2�D 	>,.����A for token generation	>,.����A µQ÷ �Kø �D 	>,.����A for starting a new phase()' , 	>,ZPC' 	�
B�q��� ,ZP ()' ’s local token ID,435S6 ������rQ��A&' boolean indicates whether (V' is a member%&	�:<	>�/%&' *+
�,2���;P=�&*+
�,2�@,2�/? indicates whether (G' has joined	>,.����A LKù ' �' timer for resending * - 	�
B����� s	>,.����A � µ>µ' timer time between application requests

67

CHAPTER VI

LOCATION BASED BROADCASTING

In this chapter, we focus on the broadcasting problem in dense mobile ad hoc networks.

Broadcasting is one of the fundamental tasks in network communication. Its goal is to

transmit a message from one node to all other nodes 1 Recent advances in wireless commu-

nication make it possible to envision large scale dense ad-hoc networks, which are charac-

terized by a large number of energy-constrained, unattended nodes [48]. Examples include

the Smartdust project [52], Dataspace [53, 54], and sensitive skin [55].

Most of the protocols designed for mobile networks depend on the communication

topology and its unpredictability prevents the protocols from providing reliable services.

Usually a stable base is required for a protocol to provide reliable services. In spite of

the fact that the topology keeps changing in a mobile ad hoc network, a specific network

may have some properties which can provide stable information for protocol design. Our

approach to handle mobility is to reduce the impact of the changing topology by basing

the protocol on one stable aspect of a network. In a dense network, mobile nodes keep

moving but their distribution is fairly stable. Instead of relying on the frequently changing

communication topology, our protocols depend on the distribution of mobile nodes.

Most communication protocols specify the procedure of message propagation by de-

termining sequences of nodes to forward the message. Usually global or local node iden-

tification is required in these protocols. However, in a mobile ad hoc network, global

identification may not be available. Furthermore, since topology keeps changing, local

identification usually requires sending hello beacons periodically to get the latest neigh-

bor information, which wastes bandwidth and introduces collisions. Given the assumption

� In this chapter, we use the term “broadcast” to mean dissemination of a message to all
nodes in the system and not to refer to a physical radio transmission.

68

that the distribution of mobile nodes is stable in a dense network, our protocols achieve

broadcasting by covering the whole area occupied by mobile nodes; instead of node iden-

tifications, the procedure of message propagation is specified by determining sequences of

locations which are provided by GPS [56] or a location service [57, 58].

Location information has been used in message forwarding protocols for mobile ad

hoc networks. The most important differences between our approach and the existing

position-based protocols are that, in our approach the location-based paths are decided

completely online during message forwarding and no knowledge about the distribution of

mobile nodes is required a priori. So the selection of the next location can reflect the latest

system information, including distribution of mobile nodes, obstacles, and the battery states

of mobile nodes. Furthermore, we do not require knowledge of the neighborhood topology

in the selection of the next location and the expected number of messages transmitted in

each selection of the next location is a constant if the distribution of mobile nodes satisfies

some properties. These properties are desirable in mobile ad hoc networks, in which global

knowledge might not be available and the system keeps changing.

An important characteristic of the wireless medium is that when a node transmits,

all the nodes in its transmission range might receive this message if no collision occurs,

depending on the reliability of the transmission. This property is usually considered as a

source of extraneous energy consumption [59, 60]. The argument is that when a node trans-

mits a packet, all nodes in the radio range of the transmitter must receive each packet to

determine whether to retransmit; although most of these packets are immediately discarded,

they still consume energy [60]. However, this property also means that one broadcasting

covers multiple nodes. Our approaches use this property to speed up the message propaga-

tion and reduce the number of transmissions.

Our basic idea to achieve broadcasting is to forward a packet along a set of location-

based paths. By “location-based path”, we mean the path is determined by a sequence of

69

locations, instead of node identifications. Our approach consists of two modules: Message

Forwarding and Path Selection: the Path Selection module dynamically selects the next

location, specified by a destination area, and the Message Forwarding module provides

service to forward the message to the next location, One approach is proposed for the Mes-

sage Forwarding module under the assumption that each node is able to detect collisions; a

discussion on how to relax this assumption is also provided. Our approach to forward the

message to the next location relies on the distribution of nodes instead of network topol-

ogy, and neither neighbor information nor global identification is required. Furthermore,

the number of steps in forwarding a message to a �43ñ� area is
v 0IwyxBz{��1 , where � is the

maximum number of mobile nodes that can be in a �53 � area, and the expected num-

ber of steps is a constant under certain constraints on distribution of nodes. We propose

two approaches for the Path Selection module. In both approaches, the selection of the

location-based paths is done online. For each approach, we provide specific constraints on

distribution and mobility of mobile nodes to guarantee that all the nodes receive the broad-

cast data. Under these constraints, given a network with area � , our approaches achieve

broadcasting in
v 0I�J� �`� 1 steps, where

�
is the transmission range.

No fully reliable broadcasting service can be guaranteed in networks with arbitrary

mobility. In this chapter, we discuss constraints on mobility, specified by the maximum

speed of mobile nodes, required by each approach to guarantee that all the nodes receive

the broadcast data. The reason to choose the maximum speed to define the constraints

is that, in practice the speed of mobile nodes is more predictable than the other mobility

parameters. For example, a reasonable speed restriction of surface vehicles is 120 miles

per hour and the usually speed of a commercial jet airplane is about 250 meters per second.

Note we do not put any restriction on any other mobility parameter.

70

A. System Model — Dense Mobile Ad Hoc Network

We focus on dense mobile ad hoc networks. We assume each node has a means to determine

its own location, which can be met either by GPS service [56] or some other location service

[57, 58]; such assumption is common in position-based algorithms [43, 44, 45, 46, 48, 60,

14].

1. Communication and Computation Model

We assume all the devices have the same transmission range
�

. A device receives mes-

sage from the other if and only if it is in the sender’s transmission range. We assume the

network is always connected. Communication connectivity between mobile devices can

be described by a graph, in which each node represents a mobile device and there exists

edge between two nodes if and only if the corresponding mobile devices can communicate.

We assume a synchronous communication model in which the communication is structured

into time-slots, achievable in practice by equipping mobile nodes with local GPS receivers

[56]. We denote the upper bound on the time interval of each synchronous step by 6 . This

paradigm is commonly employed in the practical design of protocols for radio communica-

tion [61, 62, 63, 32]. Two communication primitives, AB�;$H��,.�=� and 	>A:+��%��«,2	 , are provided

by the basic communication service, which has a mechanism to detect collisions (Fig 20.)

Execution is partitioned into steps. Each step consists of three phases: reception, com-

putation and transmission. In reception phase, each node receives none or one message,

depending on the number of nodes in its neighborhood which transmitted in the last step.

In the computation phase, each node updates its state based on its state at the end of the

last step and what occurred in the reception phase of the current step. In the transmission

phase, a node can transmit a message ��%�? ; the decision whether to transmit and what to

transmit is based on its current state. Protocols specify each node’s behavior in the compu-

71

Í A�;$X��,2�=�+0.1 :
– � : no message is received if no neighbor transmitted in the last step.
– C: collision is detected if more than one neighbor transmitted in the last step.
– g¬h=j�jXk)lVhÕ��%&? : message ��%&? is received if the sender of ��%&? is the only

neighbor which transmitted in the last step.Í 	>A:<��%��«,2	X0Ig¬h=j�jXk)lVhÏ��%&?�1 : message ��%&? is transmitted.

Fig. 20. Communication primitives

tation and transmission phase in the forms of function and events. The action of an event is

executed on a node if and only if the associated predicate is true.

In order to simplify the presentation, we use the model with the assumption that each

node has the ability to detect collisions. This assumption can be relaxed and it is only used

in the Message Forwarding module: in section VI.D, we propose an approach under this

assumption and then discuss how to relax it. Approaches designed for the Path Selection

module do not rely on this assumption directly; they are based on the services provided by

the Message Forwarding module.

We assume that all the nodes in the transmission range of the sender receive the mes-

sage if no collision occurs. This property might not hold all the time due to the unreliable

wireless channels. However, the probability of reliable transmssion can be made quite large

using mechanisms such as acknowledgement/retransmission. The discussion of improving

transmission reliability is outside scope of our work. As is done in other works in this area

(e.g. [32]), we assume that the transmission is reliable if no collision occurs.

2. Mobility and Distribution of Mobile Nodes

We assume the movement of mobile devices is restricted to a square network area with

size � . Network area can be divided into two parts: the covered area and the uncovered

area, where the covered area is the union of all the positions which are within some node’s

72

transmission range. We assume the algorithm knows the network area a priori and has

no knowledge about covered area and uncovered area, which may keep changing due to

failures and mobility. In the sequel, we denote the total number of nodes by � .

Nodes are placed in a network according to some distribution function. We define �
as 7 8 � . Intuitively, �93½� is the average area occupied by one node. Note the larger � is,

the less dense the network is. This parameter is used in Theorem 27. In this chapter, we are

interested in the probability of having more than one node in a given area, which is decided

by the distribution function of nodes placement. We define a function [\09W^m;:)1 below. Note

[�0YW^m<:)1 is non-decreasing in the sense that [�0YW^m<:�1¡Àâ[O0>=@?BA�09W^m<:�1 , =C?BA�0YW^m<:)1K1 . We denote

[�0YW^m]W/1 by [�09W/1 .
[\0YW^m<:�1 5 the probability of having more than one node in any WD3E: area.

An example is a grid distribution of mobile nodes (Fig 21): nodes are distributed on a

grid graph in which each grid is a � by � square. In Fig. 21, we see that any W by W area

(the solid square), where �ÐÀÅWÓÀR�B� , covers exactly one node if and only if its southwest

corner is not in the southwest 0.�B� � W/1 by 0.�B� � W/1 square of a grid (the dotted square).

So we have [O09W/1 for this distribution as follows:

[\0YW/1 5
FGGGGGGH GGGGGGI
6 if W ú �EJ
� � � � � Æ+�H�LK� K if � ÀÅW½ÀR�B�MJ
� if �B� ú W �

3. Problem Definition and Protocol Stack

We focus on broadcasting protocols that propagate a message from a node, called source,

to all of the nodes of a network. We define time complexity of a broadcasting protocol as the

interval between the time the source node starts transmitting a broadcast message and the

73

D

D

x

x

2D−x
2D−x

x

V(x)
1

D 2D

(a) Grid distribution of nodes (b) [O09W/1 for grid distribution

Fig. 21. An example of [�0YW/1 : Grid distribution of nodes

last time that a node takes an action in the broadcasting protocol. We define the coverage

as the fraction of nodes which receive the broadcast message when the execution of the

protocol ends.

The architecture of the protocol stack of each mobile node is presented in Fig. 22. An

application accesses the broadcasting service by calling the function rMA
:+P+$H:q%&	X0I��kqs;k`P+:C	�:q1
and receives the broadcast data in event rMA
:+P+$X:=%&	 AB�;$Q�/02�«k�s;kÏP+:<	�:=1 . Function rMA
:+P+$X:=%&	
and the precondition of event rMA
:+P+$H:q%&	 A�;$H� are specified by the broadcasting service.

Our approaches rely on the basic communication service through primitives 	>A:<��%��«,2	X0
gih=j�j&k)lVht��%&?�1 and A�;$X��,2�=�+0.1 . Each node gets its position at time 	 through the function

89
$H:C	>,Z
-�{0>NPO/sÌ	K1 provided by the location service.

B. Overview of Our Approaches

In our approaches, the area of the network is divided into cells, based on which a virtual

graph is constructed — a virtual vertex represents an existing cell and a virtual edge be-

tween two vertices exists if and only if the corresponding cells are adjacent. Broadcasting

74

broadcast broadcast_recv

Path Selection

Message Forwarding

forward

receipt

transmit receive

 locationLocation

Service

Application

Broadcasting Service

Basic Communication Service

Fig. 22. Protocol stack

is achieved by propagating messages throughout the virtual graph, which is started by the

vertex corresponding to the cell in which the source node resides. The proposed broad-

casting approaches are organized in two modules: Path Selection and Message Forwarding

(see Figure 22.)

Í The Message Forwarding module provides the services of sending (b@
�A�ca:<AP) and

receiving messages (A�;$X��,f()) among cells. It also notifies the application that broad-

cast data has arrived.

– When function b/
�A�ca:<AP/0�QÏgih=j�j&k�lFh¢� , o�h=p2pÌ% $H�;898 , o�h=p2pÉP $X�;898I1 is called

by the Path Selection module at node (, a PMessage � is sent by node (, on

behalf of cell % $X�;898 , to cell P $H�;898 ; the format of PMessage is defined by the

Path Selection module, which includes the broadcasting data.

– The Message Forwarding module notifies the Path Selection module that a

PMessage message has arrived by triggering event A�;$H��,N()	X0RQÏgih=j�j&k)lVhñ� ,

o�h=pIp�b/AB
-� $H�;8I8I1 . When b@
-Acd:<ABPF0>Q�gih=j�j&k)lVh�� , o�h=p2pÂ% $H�;898 , o�h=p2pÂP $H�;89821
is called, if there exist nodes in P $H�;898 , exactly one node in P $H�;898 will be se-

lected on which event AB�;$H��,N(�	X0>Q�g¬h=j�jXk)lVh½� , o�hqpIpÉb/AB
-� $H�;8I8I1 occurs, and

75

the selected node will be responsible for further communication. When this

event occurs on node (, we say the cell in which (resides receives � from cell

bFAB
-� $X�;898 and (is the representative node of P $H�;898 .
– The Message Forwarding module also notifies the application that broadcast

data has arrived by triggering event rMA
:+P+$X:=%&	 AB�;$Q�/02�«k�s;k¥P=:C	�:=1 .
Í The purpose of the Path Selection module is to dynamically select a set of paths

which cover the whole virtual graph. This is achieved by specifying a subset of

neighboring cells to forward broadcast data when a cell starts broadcasting (function

rMA
:+P+$X:=%&	 is called) or receives broadcast data from others (event A�;$H��,N()	 occurs).

When a subset of neighboring cells is selected, function b@
-A�ca:<ABP is called to forward

messages to the selected cells.

In our approaches, several types of messages are defined. Each message has a field

indicating its type, followed by the data fields. We denote a message in the form of ��%&?@0
êS:�(G� , P=:C	�:�� , P=:C	�: � , ����� 1 . Given a message ��%&? , we use the denotation ��%&? � �TN9hqp>UWV¢kYX¹h ,
where �TNIh=p>U�V�kYX¹h is the name of a field defined in the message definition, to retrieve the

value of data field �TN9h=pPUWV¢kYXÕh in ��%&? .

In the sequel, first we introduce the construction of the virtual graph. Then we present

a protocol for the Message Forwarding module. An analysis of this protocol is given. After

that we propose two approaches, denoted by ����� and ��� , for the Path Selection module.

We present specific constraints on distribution and mobility of mobile nodes for each ap-

proach to guarantee coverage. Sample values of the constraints are provided. Complexity

analysis are presented under these constraints. We present a comparison of ����� and ���
in Table B, where

�
is the radio range, � is the network area and 6 is the time interval of

each step in a synchronous system:

76

Table IV. Comparion of two approaches

Approach Time Mobility Constraint (Maximum Speed)

����� v } 8Z K 6�� v } Z æ[8 ���� v }18Z K 6�� v } Z [�
Both approaches achieve

v 0>\]6B� �`� 1 time complexity. The idea of ����� is simple but

the allowed maximum speed when mobile nodes run ����� decreases as the network area

increases, while the constraint on mobility for ��� does not depend on the network area.

C. Construction of Virtual Graph

In our approaches, the network area is divided into cells; each cell is a square with size

�^3½� . For simplicity, we assume the number of cells is �J�� � . The value of � depends on

the transmission range
�

, the upper bound � on a node’s speed and value of a parameter _
defined below; for each of our approaches, we present how to select the value of � based

on the values of � and _ in section VI.E.1 and section VI.F.1 respectively, and we discuss

the constraints on _ and � to guarantee the coverage in section VI.E.3 and section VI.F.4

respectively. Note � and _ are defined for the worst-case behavior.

We enumerate eight directions of each cell by �\,2AC% 5î� North, Northeast, East, South-

east, South, Southwest, West, Northwest � . Each cell has at most one neighbor in each

direction. We then construct a virtual graph by assigning a virtual vertex for each cell in

which there exist nodes, and adding a virtual edge between two virtual vertices if and only

if the corresponding cells are neighbors (Fig 23). We denote by cell � W^m<: � the cell whose

center is 09W¸�S�-�C�C1®�-� from the north boundary and 0�:��S�-�C�C1®�-� from the west boundary

of the network area. Given the network area, � and location service, each node (knows

77

the cell in which it resides at a given time 	 , denoted by $H�;898K0°(�m]	K1 . We denote the neighbor

of a given cell Ý in direction P+,2A
 �\,.AB% by �@��,2?�EGrQ
�A�02Ý�mMP<,.AB1 and the neighbors in all

directions of Ý by ����,2?�EGrQ
�AB%+02Ý�1 .

[1,0]

[0,0] [0,1] [0,3][0,2]

(a) Network (b) Virtual Graph

Fig. 23. Virtual graph of a network

Each time a cell communicates with its neighbors, a node residing in this cell is se-

lected as the representative node. The Path Selection module will specify a subset of neigh-

bors the cell needs to contact and the representative node communicates with each selected

neighbor through function b/
�A�ca:<AP provided by the Message Forwarding module. Let _
be the maximum time it takes for a representative node to communicate with all the selected

neighbors. We require _ to be the maximum time instead of the expected time because this

value is required in calculating the maximum speed of mobile nodes to guarantee coverage.

Note _ is a finite value if mobile devices are not infinitely small, since the number of steps

taken by each forwarding is finite, as shown in section VI.D.2. We call the area in which

the representative node of cell _ can be during this _ time interval as the representative

area, denoted by A�](¡0I_a1 . Since the maximum distance this node can move during this time

78

is �`_ , where � is the maximum speed of a node, A�](¡0I_a1 is the area consisting of the cell,

a � by �`_ rectangle at each side of the cell, and a quarter circle with radius �`_ centered

at each corner of the cell (Fig 24.) Since the distance between any point in A�](¡09_`1 to the

center of _ is at most �/�`a �Ã�~�`_ , any point within the circle centered at the center of cell

_ with radius A � ù � �I´ 5 �â� }��/�ba �Ã� �c_�� is in the transmission range of the representative

node of cell _ . We call this area the covered area of cell _ and denote it by $H
-�q��A�0I_a1 .

Γv

rep cover ()A)A(

u

u

Cell A

R
rcover

Fig. 24.
� �](¡09_`1 and $X
-�=��A)09_`1

In each of the approaches for Path Selection module, the selection of � will guarantee

cell _d�ò$H
-�q��A�0I_a1 . Our approaches guarantee the following two conditions:

B1 When a cell calls function b@
-Acd:<ABP , all the nodes in the covered area of the sending

cell receive the message.

B2 Each cell calls b@
-Acd:<ABP at least once.

Coverage can be achieved by these two conditions under the following assumption. We

will provide specific constraints for each approach to meet this assumption.

Í Assumption: if the whole area is covered by the message, then all the nodes receive

the message.

79

D. Message Forwarding

In the Message Forwarding module, we consider the problem of forwarding a Q�gihqj&j&k)lVh
� by a node (, on behalf of cell % $X�;898 , to a neighboring cell P $X�;898 . The format ofQ�g¬h=j�jXk)lVh is defined by the Path Selection module, which includes a field ��kqs;k to store

the broadcast data. The Message Forwarding module provides the following services: if

P $X�;898 has no nodes in it, then the forwarding call returns NULL. Otherwise, a node in

P $X�;898 is selected and receives the message. In either cases, the message to be forwarded is

broadcast to all nodes in $X
-�=��A)02% $H�;898I1 .
Í Function b@
�A�ca:<APF0�Q�gihqj&j&k)lVh¥� , oÏh=pIp@% $H�;8I8 , o�h=p2pFP $H�;898I1 on node (: if no node

exists in P $X�;898 , returns NULL; otherwise returns SUCC.

Í If b@
�A�ca:<APF0I� , % $X�;898 , P $H�;8I8I1 returns SUCC, a node in P $H�;8I8 is selected. By “a node

being selected”, we mean event AB�;$H��,N()	X0�QÏgih=j�j&k�lFhÏ�nmXo�hqpIpFb/A
�� $H�;8I8I1 occurs on

this node, where parameters � and b/A
�� $H�;8I8 are the parameters � and % $H�;898 in

b@
-A�ca:<ABP respectively.

Í When b@
�A�ca:<APF0I�nmQ% $H�;898>m�P $H�;89821 is called, event rMA
:+P+$H:q%&	 A�;$H�/02�«k�s�k¢P+:C	�:=1 oc-

curs on all the nodes in $H
��=��A�0.% $H�;8I8I1 , where parameter P+:C	�: is the value of field

�«k�s;k in the parameter � of b/
�A�ca:<AP .
We propose a solution to this problem which does not depend on neighbor informa-

tion or global identification. The expected message and time complexity is a constant if

the distribution of nodes satisfies a certain condition. The procedure involves the sender

that calls b@
-A�ca:<ABP and the nodes in its 2-hop neighborhood — the sender communicates

with its neighbors and messages cover its neighbors’ neighborhoods when its neighbors

respond. It is possible that multiple forwardings are active in the network simultaneously.

Here we give a complexity analysis under the assumption that the sets of nodes involved

80

in the different forwardings are disjoint. An extended version will be presented later in

section VI.F for the general case and the complexity analysis is easily extended.

1. Forwarding

The Message Forwarding module calls the basic communication service to send and receive

these types of messages. If there exist nodes in the destination cell, we select exactly one

node as the representative node by finding a subarea in the destination cell which contains

exactly one node; the single node in this subarea is selected as the representative node. Our

solution is based on the following simple idea for a node (to check whether the number

of nodes in a given area _ is zero, one, or more than one: (transmits an V -type message

and each neighbor in area _ responds in the next step; (will receive no (one respectively)

response if there is zero (one respectively) node in _ , otherwise a collision will be detected.

Let 	 be the time slot in which function b/
�A�ca:<AP is called on node (. In our solution,

node (divides the area P $X�;898 and tries to find out an subarea which contains exactly one

node. Node (starts with area P $H�;898 . At step 	 , (transmits a message and nodes in P $H�;8I8
respond at step 	q�â� . At step 	q�ñ� , (gets the information about number of nodes in P $X�;898 :
if no node or exactly one node exists in P $X�;898 , the forwarding is done. Otherwise, there

exists multiple nodes in P $H�;898 .
Then node (applies on P $X�;898 a division and check procedure to find a subarea that

contains exactly one node. Given an area _ which contains multiple nodes at step 	�� � , ,
node (finds a subarea of _ as follows. At step 	q� � , , (divides _ into two same size areas,

denoted by _�� and _ � , and transmits to check the number of nodes in _¥� ; nodes in _��
respond at step 	F� � ,q�ò� . Node (knows the information about the number of nodes in _t�
at step 	B� � ,-��� : if there is no node in _�� , (transmits at step 	C� � ,-��� to check the number

of nodes in _ � and the nodes in _ � respond at step 	{� � ,¡� � . Thus at step 	{� � ,¡� � ,
node (either gets an area which contains exactly one node or it gets an area which contains

81

multiple nodes. If an area that contains multiple nodes is found, node (applies the above

procedure on this area, starting at step 	�� � ,@� � . This procedure is repeated until an area

containing exactly one node is found.

Once such an area is found, (transmits a � message carrying the broadcast data and

the information about the found area.When a node receives this message, event rMA
:+P+$X:=%&	 AB�;$Q�
occurs, in which the broadcast data is delivered to the application; the node checks the in-

formation about the found area carried by this message — if it is in this area, then this node

is selected and event AB�;$H��,N(�	 occurs. Note that node (transmits only in time slots 	��R��, ,
while the nodes in the destination area respond only in time slots 	��ò�,F��� , , 5S6 m&�Cm ����� .

We define the types of messages as below. The codes are provided in Figs. 25-28.

Í Fields in V -type g¬h=j�jXk)lVh : 0YêS:�(V� , TÄ%&? ,
§ $H�;898 , _dA�;:q1 ,

In order to check the number of nodes in _dA�;: , a node sends an V -type message on

behalf of cell
§ $X�;898 ; nodes in _dA�;: are required to response. This type of message

also carries broadcast data packed in a Q�gihqj&j&k)lVh message TÄ%&? .

Í Fields in Vfe0gih -type gih=j�j&k)lVh : 09êS:-(V�-1
A node responds a V -type message by an VEe0gih -type message.

Í Fields in � -type gihqj&j&k)lVh : 09êS:�(G�CmQTÄ%&?Fm�_dA�;:Gm]ê4,.��� § 89
-	K1 ,
A node sends a � -type message to designate a node that resides in _�AB�;: at step

ê4,.��� § 89
;	 . This type of message also carries broadcast data packed in a Q�gih=j�j&k)lVh
message T7%�? .

2. Complexity

We give an analysis for the complexity in terms of � and [�09W/1 . Note function b/
�A�ca:<AP
relies only on the number of nodes in a specific area, instead of the specific nodes in this

82

Local state of node j : k>lYm�n , k>lYmYo , prqts0pRu , pBqts0pSu � , prqts0pRu � , k�lYm�pwv<x yzmis.j .
Function {}|�q�~�prq��c���S���w�0�0�b�c�R� µw�<� �����cy v,s0n�n �<� �w���`� v<szn�n�� called by node j :
step m , code {}|�q�~�prq�� D :

1 Create an � -type Message �f��� � � µw� y v,szn�n � � v,szn�n�� ; mPq�prl�y0��k>m<���@� ;
step m��^� , code {}|*q�~�pBq�� � :

1 switch qts0v,s,k>�wsB���
2 case � :
3 return NULL;
4 case Message:
5 Create a � -type Message �f��� � � µ � � v,szn�n � m����z� ;6 m�q�pBl�yz��k�m,���@� ;
7 return SUCC;
8 case C:
9 n���� ;

10 Divide u into two � 2 �¡ �¢¤£ areas u � and u � ;
11 u¥��u � ;
12 Create an � -type Message �f��� � � µ�� y v,s0n�n � uT� ; m�q�pBl�yz��k�m,���@� ;13 endswitch

step m��E¦�k , code {}|�q�~�prq�� ëö' , k§��� � � �,¨,¨,¨
1 switch qts0v,s,k>�wsB���
2 case � :
3 o©��ª ; u¥�«u � ;
4 Create an � -type Message �f��� � � µ � y v,s0n�n � uT�.� ; m�q�pBl�yz��k�m,���@� ;5 case Message: prv,x y0m.sij���mY�E¦�k!¬4� , o��� ;
6 case C: o��¥� ;
7 endswitch

step m��E¦�kY�^� , code {}|�q�~�prq�� ëö' � � , k!��� � � �,¨,¨,¨
1 if ��o©�R�«ªB� then
2 switch qts0v,s,k���sB���
3 case � : o���ª ;
4 case Message: pwv,x yzm.sij¡�«m��E¦�k}�¥� ; o���� ;
5 case C: o©�¥� ;
6 endswitch
7 endif
8 if (o©�R���) then
9 Create a � -type Message �f��� � � µ�� u � prv,x yzmis.j}� ;10 m�q�pBl�yz��k�m,���@� ;

11 return SUCC;
12 else if (o©�R�«ª) then
13 return NULL;
14 else
15 nb�4� ;
16 Divide u into two areas with same size: u � and u � , each has size } 2�z®°¯²± K�³ 2�z´°¯²± K�µ � ;
17 u¥��u � ;
18 Create a � -type Message �f��� � � µ�� y v,s0n�n � u	� ;19 m�q�pBl�yz��k�m,���@� ;
20 endif

Fig. 25. Function b@
�A�ca:<AP

83

Event qts0v,s,k¶j`m e on node j in step m :
Pre: q�szv,s,k���sB��� returns a � -type Message � ´ö� �
Action:
step m :

1 if (j ¨ n�|�v<pBm�k>|�lW���¸·�� ´Z� �t¨ u�qts0p) then
2 Create a �@e0g�h Message �f���@e0g�h�� ;
3 m�q�pBl�yz��k�m,���@� ;

Fig. 26. AB�;$H��,N()	�e on node (in step 	

/* Node is selected as the representative node in Event */

Event qts0v,s,k¶j`m<�����w�0�0�b�c�S� �<� �w���b{¤q�|�� v,s0n�n�� on node j at step m :
Pre: ��q�szv,s,k���sB��� returns a � -type Message � ´ö� � �"¹M�°j ¨ n�|�v;prm�k>|�lW��� ´Z� �B¨ º k��»s*¼(n�|�m&�1·�� ´ö� �t¨ u�qts0p#�
Parameters: �½�«� ´ö� ��¨¿¾ y0À and {¤q�|�� v,s0n�n��«� ´ö� ��¨ ¼ v,s0n�n .

Fig. 27. Precondition of Event AB�;$H��,N(�	X02gih=j�j&k)lVhÏ�nmHoÏh=pIpVb/A
�� $H�;8I8I1

/* Node receives broadcast data in this event */

Event Á�q�|�pw�Bv<p�y0m q�szv;�¤�����#Âz�Ã�rpBmip�� on node j at step m :
Pre: q�szv,s,k���sB��� returns a � -type message � ´ö� �
Parameters: �BprmipÃ�«� ´Z� �t¨¿¾ y,À ¨²Ä prm�p

Fig. 28. Precondition of rMA
:+P+$H:q%&	 AB�;$Q�/02�«k�s;kÏP+:<	�:=1

84

area, and the analysis results shown below only rely on the distribution of mobile nodes.

First we show in the worst case, the number of steps in forwarding a message to a

�Å3¢� area is
v 09wyxCz{��1 , where � is the maximum number of mobile nodes that can be in a

�43ó� area. The reason is that function b@
-Acd:<ABP returns immediately if no node exists in

the destination area; otherwise it divides the area into halves and eventually the area being

checked is small enough that it contains only one node. Note if � is a constant, � is a

constant since nodes cannot be arbitrarily small. However, if nodes are small relative to

� � , � can be large. In the sequel, we consider the expected time complexity and present

a constraint on the distribution that guarantees the expected time complexity is a constant

independent of the size of mobile nodes.

Note that the function returns in step 	/� � ���â� , that is, it takes � �d� � steps for some

value of �«� 6 . We have the following lemma:

Lemma 25 Denoting the probability that function b@
-Acd:<ABP returns at or after step 	��
� ���ò� , that is, it takes at least � ��� � steps, by ?@02�)1 , we have

?@0 6 1 5 � and ?�02�)1ÌÀR[ÇÆ ���È � #XÆG�2�f� ��ÉwÊ mQ���i�
Proof. Since the function takes at least three steps, we have ?�0 6 1 5 � . Suppose the

function returns at or after step 	<� � �Ì�Ó� , �«�i� . If there exists zero or exactly one node in

_ at the beginning of step 	�� � 0.� � �-1��Õ� , the function will return in this step (line 11 and

13). So at the beginning of step 	;� � 0.� � �-1-��� , there exist at least two nodes in _ . Note the

size of _ at the beginning of step)� � 02� � �-1)�ñ� is the same as that of _Ï� or _ � at the end

of step 	/� � 0.� � �C1/� � , which is 0I�/�C�"Ë ï·� ��Ì 1�3Õ0I�/�C� È ï·� ��É 1 5 09�/�C��Ëô� #XÆG�2�y� ��Ì 1�3Õ0I�/�C� È � #XÆG�2�N� ��É 1
because of 0I8 5 ,�� �-1 at the end of step 	 � � ,��î� . Since the probability of having

more than one node in such an area is [�0]09�/�C�!Ëô� #HÆG�2�y� ��Ì 1T3 0I�/�C� È � #XÆG�2�y� ��É 1K1 , we have ?@0.�)1ÁÀ
[�0K0I�/�C��Ëô� #XÆG�2�f� ��Ì 1	3â09�/�C� È � #HÆG�2�N� ��É 1]1 ÀR[O0I�/�C� È � #XÆG�2�N� ��É 1 .

Directly from this lemma, we have:

85

Lemma 26 Denoting the probability that function b/
�A�ca:<AP takes no more than � �O� �
steps by bÂ0.��1 and the probability that it takes exactly � ��� � steps by !O0.�)1 , we have

Í bÂ02�)1 5 � � ?@0.�����-1Ì�i� � [i} 2�z´ÎÍi± K�µ �4mQ��� 6 , and

Í !O0 6 1 5 � � [\0I�/1 and !O0.�)1ÌÀÅ?@02�)1ÌÀR[¬} 2� ´ÐÏ¿Í�Ñ +ÓÒ ± K�µ �4mM���i� .
Given b®0.�)1 presented in Lemma 26 , we have

Theorem 27 The probability that function b@
-Acd:+AP takes no more than ä@Ô wNxCz } 2� �rÕ � �
steps is at least � � [O02�«1 .

We have the following upper bound on the expected value of the number of steps taken

in an execution of b@
-A�ca:<ABP :
Lemma 28 Denoting the expected value of !O0.�)1 by Udu , we have

UÃuñÀ � ���;Î^Ö× '°×/� ,���[ÇÆ �� 'yÆG� Ê
Proof. Note that the function only returns in step 	^� � ���Å� , for some ��� 6 , that is, the

number of steps is � ��� � for some ��� 6 .
UÃu 5 Ö×#M× D 0 � ��� � 1®�;!O0.�)1

5 Ö×#M× D � �¥�-!\02�)1�� Ö×#M× D � �-!O0.�)1
5 � Ö×#�×/� �¥�-!O0.�)1@� � Ö×#M× D !\02�)1
À � � � Ö×#M×/� �t��[Æ �� È � #XÆG�2�y� ��ÉBÊ
5 � � � Ö×'¦×/� Æq02�, � �-1®��[ÇÆ �� È � � 'NÆ � �N� ��ÉrÊ �ò��,���[ÇÆ �� È � � 'yÆG�2�f� ��ÉwÊWÊ
5 � � � Ö×'¦×/� 0 � , � �;1®��[ÇÆ �� 'yÆG� Ê
À � ���;Î Ö× '°×/� ,���[Æ �� 'yÆG� Ê

86

A sufficient condition for U�u to converge is that ØS,Â�B[} 2�.Ù Ñ + � converges. Based on

the fact that Ø �' K converges, a sufficient condition is ,��q[} 2�.Ù Ñ + � = v } �' K � , ,�Ú ��Ú . If

� is a constant, it is equivalent to [} �� Ù � 5 v } �' æ � , ,aÚ ��Ú . Letting W be �� Ù , that is,

, 5 wNxCz �� , this condition is equivalent to

 _ £ 6 mÃw�ÛÓ=�zÜ D � [O09W/1�0�ÝßÞ.à +á 1 æ ÀÑ_ (6.1)

Note that for any $a£ 6 , the function W � satisfies condition 6.1.

Theorem 29 If [\09W/1 satisfies condition 6.1 and � is a constant, then the function b@
-Acd:+AP
has a constant expected time complexity.

Note this analysis only depends on the distribution of mobile nodes: nodes can move

into and out of an area, but function b/
�A�ca:<AP has a constant expected time complexity as

long as the distribution of mobile nodes satisfies condition 6.1.

This condition is just a sufficient condition. In a network in which the node distribution

does not satisfy this condition, it still is possible that the function b@
-Acd:+AP has a constant

expected number of steps. In order to have an intuitive idea of this condition, we provide

the plot of function �-�wNxCz È 0��-�-W/1 in Figure 29, compared to the plots of functions W and W � .
The example presented in section VI.A (a network in which nodes are distributed on a

grid graph) satisfies condition 6.1 since [\09W/1 5S6 when W ú � for some constant � . Thus

the expected time complexity of forwarding is a constant when applied on such a network.

Note the distribution of such a network is deterministic. Here we give an example in which

the distribution is probabilistic. In many applications, the purpose of sensor placement is

to cover the whole area of interest. A simple deployment is to divide the area into grids

and distribute a node in each grid. Assume the size of each grid is Ýâ3ÇÝ and the area

of the network is �qÝâ3~�qÝ . Thus the number of grids and the number of sensors is � � .

87

Fig. 29. A sufficient condition for U�u to converge

Given the sensor assigned to the grid centered at location 0I:Vm�rX1 , we denote the probability

of that sensor being placed at location 09W^m;:)1 by !Â�,- �H09W^m<:�1 . Assume the sensor is uniformly

distributed in the designated grid, that is

!��,- �Q0YW^m<:)1 5
FGGGGGGH GGGGGGI
�ã K if }KW
 � : � ã � mM:d� ã � � � ÿ

} :
 � r � ã � mMr{� ã � � �
6 otherwise

Now we calculate [�09W/1 based on this distribution function. Consider any W¥3¹W area _ ,

where W ú Ý . Since W ú Ý , there exist at most four grids that overlap with _ (Fig. 30.)

Denote the probability that there is no node (exactly one node respectively) in _ by ! D (!{�
respectively) and the probability that there is no node (exactly one node respectively) in

area _�' by ! 'D (! '� respectively), , 5 �CmQ�=m � m � . Note ! 'D is 0ö� � 02:C'V�-r�'I1]�Ý � 1®�Ò0ö� � W � �BÝ � 1
for , 5 �CmQ�qm � m � . Thus we have ! D 5Çä ë'°×/� ! 'D � 0>� � W � �BÝ � 1 ë . Note ! '� 5 0I:C'13ÓrM'91]�BÝ � ,
, 5 �CmQ�=m � m � and Ø ë'¦×/� ! '� 5 W � �BÝ � . Since the probability that exactly one node exists in

_ and this only node is in _d' is }]! '� � ä ëL�å×�'�- L ×/� ! LD � , we have !�� � Ø ë'¦×/� }]! '� � ä ëL�å×�'�- L ×/� ! LD �� Ø ë'¦×/� }]! '� �=0�� � W � �BÝ � 1 È � 5 09W � �Ý � 1Q�G0>� � W � �BÝ � 1 È . Thus we have [�0YW/1 5 � � 02! D �
!���1ÃÀ � � } 0�� � W � �BÝ � 1 ë �70YW � �BÝ � 1®�=0�� � 0YW � �BÝ � 1]1 È � 5 � � 0>� � W � �BÝ � 1 È 5 W�æH�BÝæ �

88

4A

A 2

A 3

A 1a 1

a 4

b 2b 1

b 4 b 3

a 2

a 3

=a 1 a 2

=a 3 a 4

+a 1 a = x4

+a 2 a = x3

=b 3 b 2

=b 1 b 4

+b 4 b = x3

+b 1 b = x2

Fig. 30. An example of network satisfying condition 6.1

� W ë �BÝ ë � � W � �BÝ � . Straightforward calculations verify that function W æ �Ý æ �Ñ� W ë �BÝ ë �� W � �BÝ � satisfies condition 6.1, and thus so does V(x).

3. Discussion

Function b/
�A�ca:<AP also provides a way to gather the distribution information: at the end

of each call, node (finds an area in which exactly one node exists. This area can be used

to estimate the average area occupied by a single node. If the mobile nodes are roughly

evenly distributed, the forwarding can be sped up by using this estimated value — given a

destination cell, the function first checks a subarea with the estimated size; if there is no

node in this area, the area is doubled, otherwise the area is divided into two smaller areas

and this procedure is repeated. Since the area in which only one node exists is close to the

estimated area with high probability, the number of steps can be kept small.

In this approach, the division and check procedure is repeated until an area that con-

tains a single node is found. In some situations, we do not require high coverage of message

delivery but focus on quick propagation. We can restrict the number of steps to be less than

a certain value. There exists a tradeoff between coverage and message delay in this ap-

proach: the time complexity of each forwarding is bounded while it is possible an area

with a single node is not found. But the probability of failure is bounded according to

89

Lemma 26.

We also consider message forwarding in a system without collision detection. The

idea is based on [32]. First we consider the problem defined as follows: upon receipt of a

message from a node (G¾ , node (forwards the message to a destination area _ — if there

exist nodes in _ , one should be selected; otherwise (should be notified that no node exists

in _ . We provide a solution to this problem. In step � , node (transmits a message with

information _ included; all the nodes in (’s neighborhood receive this message in this step.

In step � , only nodes in area _ respond. If (receives one response in step � , node (knows

there is only one node in _ and this node is selected. Otherwise, nodes in _ and (@¾ respond

in the next step: if (receives a response, node (knows this response is from (/¾ and there

are no nodes in _ ; otherwise there are multiple nodes in _ and _ is divided into smaller

areas. This procedure is repeated until an area with a single node is found. We assume there

exists an auxiliary node in the source’s neighborhood, which performs as (@¾ when initially

the source starts forwarding the message; such a node (¾ exists when a node forwards upon

receipt of a message from some neighbor. The Message Forwarding module can use this

procedure to provide services defined in this section if a collision detection mechanism is

not available.

The assumption of the existence of an auxiliary node can be removed if a node can be

elected in the source’s neighborhood. In a synchronous network with global identification,

this election can be done by scheduling nodes’ transmission based on their ids [32] — the

source transmits a message and each neighbor with id � responds in time slot �C� ; once the

source receives a response, say in the ��, th time slot, it broadcasts in the �,��J� time slot to tell

its neighbors to stop responding; the node which responds first is elected. In our approach,

we do not assume a global identification. But given the fact that mobile devices are not

infinitely small and two mobile devices cannot be at the same location, we can divide a

given bounded area into a finite number of cells such that at most one mobile node resides

90

in each cell, and define a one-to-one map from this set of cells to a set of integers. A node

can be elected in the source’s neighborhood by scheduling the transmissions of neighbors

based on this map: a node transmits at time slot 2 , , where , is the integer which corresponds

to its location, and the source tells its neighbors to stop responding in the time slot after it

receives the first response. In this approach, the node whose location corresponds to the

smallest integer is elected and it takes at most
v 0Pçó1 time slots, where ç is the size of the

corresponding set of integers.

E. Approach �����
In this section, we present an approach, denoted by ����� , for the Path Selection module. In

����� , message propagation is implemented by circulating the message in depth first search

order on the virtual graph — when a cell receives the message (through a representative

node), it decides which neighboring cell to forward the message according to the depth

first search order; it calls the Message Forwarding module to forward the message to the

selected cell. Once the message has been forwarded, one node in the destination cell is

selected as the representative node and it is responsible for forwarding the message to

the next cell. Note that during message propagation, the virtual graph is not constructed

explicitly. Instead, given the value of � , which will be presented later in this section, each

node knows the location of the cell it resides in and the locations of neighboring cells based

on the knowledge of the network area and the location service. Thus a representative can

call the Message Forwarding module to forward the message to the selected neighboring

cell; if the destination cell does not exist, the representative node will be notified and the

selection will be repeated until an exsiting selected neighbor is found.

In this section, first we consider the requirement on the value of � and the code of

����� . Then we present constraints on the distribution and mobility of nodes. Given these

91

constraints, the value of � can be decided. After that, complexity analysis is provided.

1. Selection of �
Approach ����� requires the representative node to communicate with the nodes in the

destination cell. Recall _ is defined as the maximum time it takes for a representative

node to communicate with all the selected neighboring cells. Since the representative node

moves at most �`_ away from the cell, if the maximum distance between two points in two

neighboring cells is at most
�S� �`_ , the distance between the representative node and any

node in a neighboring cell is at most
�

. So we guarantee the representative node is able to

forward messages to the neighboring cells by requiring 0.��/1 � �Ò02��/1 � Àû0 �i� �`_�1 � , that

is, �ÄÀÜ0 ��� �`_�1K�)0.� a �C1 (Fig. 31). We select � 5 0 ��� �`_�1K�)0.� a �B1 , since a smaller �
will introduce a larger number of virtual vertices and thus a larger delay in broadcasting.

Constraints on � and _ to guarantee the coverage are discussed in section VI.E.3.

rep cover ()A)A(

Cell A

u

u

u u

Γ

Γ

v

R−v

Fig. 31. Selection of � for �����

92

2. Code

The code of approach ����� is presented in Fig. 32.

3. Constraints and Complexity

It is easy to see our algorithm guarantees conditions B1 and B2. Here we give the con-

straints on distribution and mobility of mobile nodes to meet Assumption. One way is to

restrict the movement of nodes in a local area. Formally, we require Ë node (,

cell _ ,

such that at any time during the broadcasting, (
 $H
��=��A�0I_`1 .
We make the following assumption on the distribution of mobile nodes:

oéè�OWêWë`ìítî¿ï : The virtual graph is static and each forwarding finishes within steps for

some constant .

When a node is selected as the representative node of the cell it resides in, that is, event

A�;$X��,f()	 occurs, this node forwards the message to its neighboring cells in the order of

directions in �\,.AB% until the first existing neighboring cell is found. Thus we can set_ 5 0.�q�¥�� Ï1�6 since function b@
�A�ca:<AP takes three steps if the destination cell does

not exist. The total time ð for the message to cover the whole network area is ð À_�0I��J�)09� � 1 � �-1dÀâ_\02���J�)0I� � 1K1 . Note A � ù � �I´ 5 �¬� } �/� a �4� �`_ � 5 � a ���F�C� and the

minimum distance between a node in a cell and the boundary of the covered area of this cell

is a �� (Fig. 31). Then the assumption can be met if �\Àña ���F��ð , which can be guaranteed

by �OÀ 0.a ��F1K�)0P_\02�r\��)0I� � 1K1K1 5 �VÈQ�)0ia �r_^�J1 where � 5 0 �S� �`_¡1]��0.�ba �B1 , that is

oéè�O êWë`ìòôó*õ : ��À 0 �R� �`_¡1 È �)0 � �r_^�J1 , where _ 5 6q0.�=���~ �1 .
One solution to this inequality is �òÀ ������ 5 =@ÛÓö/º � �C� 6 _Âm-0�� ãB� 1�ÈQ�)02� 6 È{� � �r_^�J1�» .

The reason follows: we have 0 ��� �c_¡1 È �)0 � �w_��J1{�Ä0 �R� � _¡�)02� 6 _¡1K1 È �)0 � �w_��J1 5
0�� ãC� 1�ÈQ��0.� 6 È�� � �r_^�J1J�Ð� , since �òÀ � �)02� 6 _¡1 . Sample values of ������ are provided in

93

Format of �S���r�0�z�b�`� : Each message carries the following fields:÷ Array ø , ù cell v , øú v�û"· Ä k�qty : parent cell of v . Initially øéú v�ûY� NULL;÷ Array ü � , ù cell v , ü � ú v�û¸ý Ä k�qty : the set of neighbors of v which have been visited in the
current round. Initially ü � ú v�û}�5� .÷ Data: broadcasting data.

Function Á�q�|�pr�rv<pwyzm<�����bÂz�þ�rpBmip#� (called by source y at step m)
1 y v,szn�n��¥v<szn�ni��y � m&� ;
2 k§��ª ;
3 Á,¼ ¢ v<vô�¥{}prn�y�s ;
4 while (k�ÿ��) ¹ (� Á<¼ ¢ v<v) do
5 � v<szn�n��«l�s,k�À��`Á;|�q#��y v<szn�n �&Ä k�qtywú k�û�� ;
6 Create a PMessage �f��ø � ü �r� �Bprm�p#� ;
7 � ¨ ü � ��y v,s0n�n�� ���z� v,s0n�n�� ;
8 Á<¼ ¢ v<vô���{}|�q�~�prq��¤��� � y v,s0n�n � � v,s0n�n��
	� NULL � ;
9 k}�^� ;

10 endwhile
Event qts0v,s,k¶j`m<���þ� �w�0�0�`�`�þ� �<� �w���c{¤q�|�� v,szn�n�� on node j at step m :
Action:

1 y v,szn�n��¥v<szn�ni�°j � m.� ;
2 if (� ¨ ü � úßy v,s0n�nÓû}�R�5�) then
3 � ¨ øúßy v,s0n�nÓû}�¥{¤q�|�� v,s0n�n ;
4 � ¨ ü � úßy v,s0n�nÓû}�¥{¤q�|�� v,s0n�n ;
5 endif
6 k§��ª ;
7 Á,¼ ¢ v<vô�¥{}prn�y�s ;
8 while ((k�ÿ��) ¹ (�§Á,¼ ¢ v<v)) do
9 � v,s0n�n��«l�s,k�À��`Á;|�qb��y v,s0n�n �&Ä k>q�ywú k�û�� ;

10 if ��� v,szn�n�	·©� ¨ ü � úßy v,s0n�nÓû�� then
11 � ¨ ü � úßy v,szn�nÓû}��� ¨ ü � úßy v<szn�nLû���z� v,s0n�n�� ;
12 bSucc= ��{}|�q�~�prq��¤��� � y v,szn�n � � v,s0n�n���	� NULL � ;
13 endif
14 k}�4� ;
15 endwhile
16 if (�§Á,¼ ¢ v<v) then /* Backtrack if all the neighbors have been visited */
17 if (� ¨ ø��y v,s0n�n��
	� NULL) then
18 � v,s0n�n��«� ¨ ø��y v,s0n�n�� ;
19 � ¨ ü � úßy v,s0n�nÓû}�¥� ;
20 � ¨ øúßy v,s0n�nÓû}� NULL;
21 {}|�q�~�pBq��¤��� � y v<szn�n � � v<szn�n�� ;
22 endif
23 endif

Fig. 32. DFS token circulation on the virtual graph

94

Table V. In section VI.D.3, we discussed that it is very likely that the number of steps in

each forwarding will be small if the mobile nodes are roughly evenly distributed. Here we

choose small sample values for .

Now we consider time complexity. Note by constraint o¡è�O1ê�ë`ìò�ózõ , we have �`_ À
�cðØÀ a �� 5 0 �R� �`_¡1K�B� , that is, �`_ÔÀ � � � . So we have � 5 0 ��� �`_¡1]�)02�`a �C1Ó�� �)0 � a �1 . Thus we have �
�� � �)0 � a �C1Qm � �)02� a �B1�� , and it is easy to show the following

lemma. The intuition is that under the above constraints, the number of calls of b@
-Acd:<ABP
is
v 0I�J��0I� � 1K1 5 v 0I�J��0 � � 1K1 and the time complexity of each call of b@
-Acd:<ABP is

v 0P61 .
Lemma 30 If o¡è�OWêWë`ìítî¿ï and o¡è�OWêWë`ìòôó*õ are true, the time complexity of ����� is

v 0I�©6�)0 �`� 1]1 .
F. Approach ���
In this section, we present another approach, denoted by ��� , for the Path Selection module.

In this approach, messages are propapated in parallel on the virtual graph. Since multiple

forwardings are active simultaneously, interferences may occur. A variant of b@
-Acd:<ABP ,
called %-$XEG�;P<�/89�;P - b/
�A�ca:<AP , is used to guarantee that all the nodes in the covered area of

the sending cell receive the message. In ��� , simple flooding is applied on the virtual graph

— each message carries the information about the cells it has been forwarded to; upon

reception of a message, a cell forwards the message to neighbors that have not received this

message. Communication between adjacent cells is done by scheduled-forwarding.

In the sequel, we first introduce the requirement on the value of � . Then scheduled-

forwarding is proposed. After that we present the code and constraints on distribution and

mobility, as well as a complexity analysis.

95

Table V. Sample values of ������ for �����
Parameters �����>��

(m) 6 (s) _ (� �)
100 ��3¹� 6 Æ�� 11 � 6C6 3©� 6C6 1674.6 m/s =6028.4 km/h� 6C6 3ó� 6B6 418.6 m/s = 1507.1 km/h� 6C6 3ó� 6B6 66.9 m/s = 241.1 km/h� 6C6C6 3©� 6B6C6 16.7 m/s = 60.3 km/h
100 � 6 Æ+ë 11 � 6C6 3©� 6C6 837.3 m/s =3014.2 km/h� 6C6 3ó� 6B6 209.3 m/s = 753.6 km/h� 6C6 3ó� 6B6 33.5 m/s = 120.6 km/h� 6C6C6 3©� 6B6C6 8.37 m/s = 30.14 km/h
100 ��3¹� 6 Æ+ë 11 � 6C6 3©� 6C6 167.5 m/s =602.8 km/h� 6C6 3ó� 6B6 41.9 m/s = 150.7 km/h� 6C6 3ó� 6B6 6.7 m/s = 24.1 km/h� 6C6C6 3©� 6B6C6 1.7 m/s = 6.0 km/h
100 ��3¹� 6 Æ�� 15 � 6C6 3©� 6C6 1488.5 m/s =5358.6 km/h� 6C6 3ó� 6B6 372.1 m/s = 1339.6 km/h� 6C6 3ó� 6B6 59.5 m/s = 214.3 km/h� 6C6C6 3©� 6B6C6 14.9 m/s = 53.6 km/h
100 � 6 Æ+ë 15 � 6C6 3©� 6C6 744.2 m/s = 2679.3 km/h� 6C6 3ó� 6B6 186.1 m/s = 669.8 km/h� 6C6 3ó� 6B6 29.8 m/s = 107.2 km/h� 6C6C6 3©� 6B6C6 7.4 m/s = 26.8 km/h
100 ��3¹� 6 Æ+ë 15 � 6C6 3©� 6C6 148.8 m/s = 535.9 km/h� 6C6 3ó� 6B6 37.2 m/s = 134.0 km/h� 6C6 3ó� 6B6 6.0 m/s = 21.4 km/h� 6C6C6 3©� 6B6C6 1.5 m/s = 5.4 km/h
100 ��3¹� 6 Æ�� 19 � 6C6 3©� 6C6 1339.6 m/s = 4822.7 km/h� 6C6 3ó� 6B6 334.9 m/s = 1205.7 km/h� 6C6 3ó� 6B6 53.6 m/s = 192.9 km/h� 6C6C6 3©� 6B6C6 13.4 m/s = 48.2 km/h
100 � 6 Æ+ë 19 � 6C6 3©� 6C6 669.8 m/s = 2411.4 km/h� 6C6 3ó� 6B6 167.5 m/s = 602.8 km/h� 6C6 3ó� 6B6 26.8 m/s = 96.5 km/h� 6C6C6 3©� 6B6C6 6.7 m/s = 24.1 km/h
100 ��3¹� 6 Æ+ë 19 � 6C6 3©� 6C6 134.0 m/s = 482.3 km/h� 6C6 3ó� 6B6 33.5 m/s = 120.6 km/h� 6C6 3ó� 6B6 5.4 m/s = 19.3 km/h� 6C6C6 3©� 6B6C6 1.3 m/s = 4.8 km/h

96

1. Selection of �
In this approach, we require that two representative nodes of neighboring cells can com-

municate with each other. Since the representative node moves at most �`_ away from

the cell, if the maximum distance between two points in two neighboring cells is at most�¬� ��`_ , the distance between the representative nodes from two cells is at most
�

. So

we require 0.���@1 � ��0.���@1 � ÀØ0 � � ��`_�1 � , that is, �RÀ 0 ��� ��`_¡1]�)02�`a �C1 (Fig. 33.) We

select � 5 0 ��� ��`_¡1K�)02�ba �C1 and we have A � ù � �I´ 5 �7� } �/�ba �Ã�Ç�`_ � 5 0 �C��� ��`_¡1]� � .
Constraints on � and _ to guarantee the coverage are discussed in section VI.F.4.

Γv

Γv

rep)A(

u

u

Γ

Cell A

R−2v

Fig. 33. Selection of �

2. Scheduled Forwarding

Scheduled forwarding is based on a coloring scheme. The coloring scheme, which will be

described later in this section, guarantees that given two cells _ and ì with the same color,

the distance between any point in A�](¡0I_a1 and any point in $H
-�q��A�02ì¥1 is at least
�

. We denote

97

the number of colors by ç and the color of cell Ý by $H
89
-A)0IÝÏ1 . Each cell is assigned a set

of steps: letting round , , ,�� 6 , be the subsequence of �wç steps: A-'Zm�A&'&�¹�Cm ���&� m�AX'��n�rç � � ,
where A�' 5 ,Â�+�wç , cell Ý is assigned two steps º-A;'V�S�B$-m�A&'V�S�B$Ì�¬�» in round , , where

$ 5 $X
�89
�A�02Ý�1 . Transmissions involved in a forwarding called by a cell is allowed only in

the steps assigned to this cell. Suppose %;$XEG�;P+�F89�;P b@
�A�ca:<AP is called at step 	 by node (, on

behalf of cell % $H�;898 , to forward message to cell P $X�;898 . Denoting $X
�89
�A�0.% $H�;8I8I1 by $, node (
starts transmitting in round , D , where , D is the smallest integer such that A�' � �\�B$d�Å	 . During

the execution, the action taken by node (in step 	{�R�C� of function b/
�A�ca:<AP (presented

in section VI.D) is rescheduled to step A;' � � #d� �$, and nodes in P $H�;898 response in step

A&' � � #¡�Õ�B$^�Ç� . From this assignment, we see the time complexity of scheduled forwarding

is �wç times the complexity of b@
-Acd:<ABP .
At the beginning of broadcasting, only the cell in which the source resides is for-

warding messages. As messages are propagated in the network, multiple cells might be

forwarding simultaneously. We guarantee that for each cell Ý , at most one node is desig-

nated as the representative node of Ý at any time. This is achieved as following: when a

node is designated as a representative node, it responds with a �Me0gih message; during its

forwarding to cell Ý , if a representative node (/ø of cell
§

hears a V message on behalf

of Ý , which means there is a representative node of Ý , or a �fe0gih message from nodes in

Ý , which means a node is designated as the representative node of cell Ý , then (�ø aborts

the forwarding without designating any node. Note the selection of � guarantees (�ø is in

the transmission range of the representative node of Ý and of each node in cell Ý . We can

guaranteed for each cell Ý , at most one node is designated as the representative node of

Ý at any time for the following reason. Consider any round , . Note that the set of steps

assigned to Ý ’s neighbors are disjoint by the coloring scheme.

Í If no node is designated as the representative node of Ý at the beginning of round

98

, , at most one node is designated in this round since this node will transmit a �Me0gih
message when it is designated, which causes the cells which are forwarding to Ý to

abort forwarding.

Í Otherwise let (� be the representative node of Ý and $ be $H
�8I
-A�02Ý�1 . Note (� transmits

in both round , � � and round , : (� transmits an V message in round , as a represen-

tative node; in round , � � , (� transmits at step A�'NÆG�^�~�B$ if it has been designated as

a representative node, otherwise it responses a �fe0gih message when it is designated

after step A&'yÆG�V�â�B$. Since it takes at least two rounds for a cell to finish forwarding,

all the cells that are forwarding to Ý in round , receive at least one of these messages

from (� and they abort forwarding without designating any node.

Note that the representative nodes transmit in even steps and nodes in the destination

cell respond in odd steps. The coloring scheme guarantees that given two cells Ý�� and Ý �
with the same set of assigned steps, the distance between AB�](^02Ý`�K1 and $X
-�=��A)0IÝ � 1 is at least�

. Thus when the representative node of any cell _ transmits, nodes in $X
-�=��A)09_`1 are at

least
�

away from the representative node of any other cell which transmits at the same

time; and when the nodes in the destination cell of _ responds, the represenative node of _
is at least

�
away from the nodes in the destination cell of any other cell Ý with the same

color (Note given a cell Ý , the selection of � and A � ù � �I´ guarantees that � � $X
-�=��A)0IÝÏ1
for any neighbor � of Ý .) So interference between different executions of forwarding is

avoided.

Now we consider coloring scheme. Given any two cells, _ 5î� W��m<:B� � and ì 5�� W��]m<:w� � ,
with the same color, we want to guarantee the distance between any node in AB�](^0I_`1 and any

node in $H
��=��A�02ìt1 is at least
�

. This can be achieved by requiring
¼ W@� � W�� ¼ � ¼ :B� � :w� ¼ ��� ,

where � 5 �ba �`� � �� for the following reason. The distance between the center of _ and

the center of ì is 7 ¼ WV� � W�� ¼ � �;� � � ¼ :B� � :w� ¼ � �;� � � 7 0K0 ¼ WV� � W�� ¼ �;�¥� ¼ :� � :w� ¼ �;�@1 � 1��C�

99

5 ���=� a � . Note the maximum distance between a node in AB�](¡09_`1 to the center of _ isa ���@�B�Á�~�`_ and the maximum distance between a node in $X
-�=��A)0Iìt1 to the center of ì is

A � ù � �2´ . So the minimum distance between a node in A�](¡09_`1 and a node in $H
-�q��A�02ì¥1 is at

least ���q�ba � � 0.a ��/�C�Á�Ç�`_�� A � ù � �2´ 1 5 ���q�ba � �©� � � .

Now we consider the assignment of steps. We construct a grid graph by deleting

edges between cells � W��Hm<:+� � and � W � m<: � � , where 09W�� 5 W ��� �-1 ÿ 0�:=� 5 : ��� �-1 from the

virtual graph. Note the distance between two nodes on the grid graph that correspond to

cell � W��Hm<:=� � and � W � m<: � � is 0 ¼ W�� � W � ¼ � ¼ :=� � : � ¼ 1 . We apply the coloring scheme proposed

in [64] on the grid graph to guarantee the distance between any two vertices with the same

color is at least � by using ç 5 � � �R� colors.

We present the code for %-$XEG�;P<�/89�;P b@
-Acd:<ABP in Fig. 34.

3. Code

A simple way to broadcast on the virtual graph is simple flooding, as presented in Fig. 35.

4. Constraints and Complexity

It is easy to see that this approach guarantees conditions B1 and B2. Now we consider

constraints on distribution and mobility of mobile nodes to meet Assumption. In this

section, we dicussion the constraints on mobility under the following constraint on the

distribution of mobile nodes:

Í oéè�O ì�ëítî¿ï : The virtual graph is static and each execution of scheduled forwarding is

guaranteed to be done within steps.

Assume the source of broadcasting resides at the most northwest cell. We will give a

constraint on the speed � of mobile nodes. Note in this approach, the maximum time for a

100

Definition of messages÷ ��e0gih -type ���w�0�0�b�c� : � º�� j¤s � � s.j � � ï·ïÓ�y*v!�cs0� ¢ n�s0� {}|�q�~�prq��c���S���w�0�0�b�c�R� �<� �����by v,s0n�n �<� �����b� v,s0n�n�� called by node l in step m :k D �#" �� $&% �(' � mod � $� �) , where v¸�¥v;|�n�|�qb��y v,s0n�n��
step q ' � �^��v :

1 if Á;u�Á;|�q�m<��� then return;
2 {}|�q�~�prq�� D ��� ;

step q ' � � � �^��v :
1 if Á;u�Á;|�q�m<��� then return;
2 {}|�q�~�prq�� � ��� ;

step q ' � � � ' �4��v , k!��� � � �,¨,¨,¨
1 if Á;u�Á;|�q�m<��� then return;
2 {}|�q�~�prq�� ëö' ��� ;

step q ' � � � ' � � �D��v , k!��� � � �,¨,¨,¨
1 if Á;u�Á;|�q�m<��� then return;
2 {}|�q�~�prq�� ëö' � � ��� ;

other steps:

1 if Á;u�Á;|�q�m<��� then return;

Subroutine boolean Á�u	Á;|�q�m,���
1 Á;u	Á;|*q�m �¥{}pwn�y�s ;
2 if ��qts0v,s,k���sB���*	·+�*� �-, ��� then
3 � ´ö� � ��q�szv,s,k���sB��� ;
4 Á�u	Á;|�q�m©� ��� ´ö� ��¨ º�� j¤sM�R�â��¹Å� ´ö� ��¨ ¼ v<szn�n �S� � v,s0n�n��/.0. ��� ´Z� �B¨ º�� j¤sE�R� ��e0gih�¹� ´ö� ��¨1� s.j v,szn�n��S�«� v<szn�n�� ;
5 endif
6 return Á;u	Á�|�q�m ;

/* Node j receives a message � from cell {¤q�|�� v,szn�n , and it is selected as the representative node
of cell qtsij v,s0n�n . */
Event qts0v,s0kÐj`m,��� �w�0�0�`�`�R� �<� �w���`{¤q�|�� v,s0n�n�� on node j at step m :
Pre: ��qts0v,s0k��wsr��� returns a � -type Message � ´ö� � �(¹M��l ¨ n�|�v<prmPk>|�lW��� ´ö� �t¨ º k��»s�¼(n�|*m&� ·�� ´ö� ��¨ uôqtszp��
Parameters: �½�«� ´Z� ��¨¿¾ y,À , {¤q�|�� v,szn�n��«� ´Z� �t¨ ¼ v,s0n�n
Action: /* Notes: this action is taken before the action defined in Path Selection module. */

1 Create a ��e0gih -type Message � ¾ ����e0gih � qtsij v,s0n�n�� ;
2 m�q�pBlY��k>m<��� ¾ � ;

Fig. 34. Scheduled forward

101

Format of �S���r�0�z�b�`� : Each message carries the following fields:÷ list 2 : the set of cells which has been visited by this message. Initially 2�� NULL.÷ Data: broadcasting data.

Function Á�q�|�pr�rv<pwyzm<�����bÂz�þ�rpBmip#� (called by source y at step m)
1 y v,szn�n��¥v<szn�ni��y � m&� ;
2 k§��ª ;
3 while ��k�ÿ3��� do
4 � v<szn�n��«l�s,k�À��`Á;|�q#��y v<szn�n �&Ä k�qtywú k�û�� ;
5 Create a PMessage �f�42 � �rpBmip#� ;
6 � ¨ 2���l�s,k�À��cÁ;|*qtyw��y v,s0n�n�� ;
7 yzv/�`sz� ¢ n�s {}|*q�~�pBq��c��� � y v,szn�n � � v,szn�n�� ;
8 k}�^� ;
9 endwhile

Event qts0v,s,k¶j`m<���þ� �w�0�0�`�`�þ� �<� �w���c{¤q�|�� v,szn�n�� on node j at step m :
Action:

1 y v,szn�n��¥v<szn�ni�°j � m.� ;
2 k§��ª ;
3 while ��k�ÿ3��� do
4 � v<szn�n��«l�s,k�À��`Á;|�q#��y v<szn�n �&Ä k�qtywú k�û�� ;
5 if ��� v,s0n�n5	·�� ¨ 2Ã� then
6 Create a PMessage � ¾ �42 � �rpBmip#� ;
7 � ¾ ¨ 2��«� ¨ 26él�s,k�À��cÁ;|*qtyw��y v,s0n�n�� ;
8 y*v!�cs0� ¢ n�s {}|�q�~�prq��¤��� ¾ � y v,s0n�n � � v,s0n�n�� ;
9 endif

10 k}�4� ;
11 endwhile

Fig. 35. Simple flooding on the virtual graph

102

representative node to communicate with all the selected neighbors is _ 5 � � çn é6 since

each cell has at most eight neighbors and a representative node will not send the packet

back to the cell from which it receives the packet. We say a cell is covered (uncovered

respectively) if this cell has (has not respectively) received the message. We say a covered

cell is inactive if it has finished all the transmissions in its first execution of forwarding,

otherwise the cell is active. Note all the neighbors of an inactive cell are covered. By

the scheduled transmission, if a cell is active at step 	 , this cell transmits at least once

during steps 	 to 	¡�Ñ�wç . We denote the set of uncovered cells (inactive covered cells and

active covered cells respectively) at step 	 by 7d�@$X
-�=��AB�;PF0Y	K1 (�=�@:+$Q	>,2�q�+0Y	K1 and _a$M	>,.�=�+0Y	K1
respectively) When a cell becomes an inactive covered cell at the end of step 	 , (that is,

the last time the cell transmits in its first execution of forwarding is step), all the nodes

residing in this cell at step 	 receive the message. Since eventually all the cells become

inactive, coverage can be achieved if all the nodes that move into an inactive cell later are

guaranteed to receive the message. This property can be achieved by guaranteeing that any

node (receives the broadcast message if the following conditions are true:

Í (a)
 	�� , such that (is not in the area of �+�@:=$M	>,.�=�+0Y	Q��1 in step 	�� , and

Í (b)
 	 � £Ò	�� , such that Ý
 �+�@:=$M	>,.�=�+0Y	M��1 where Ý is the cell in which (resides at

step 	 � .
We will show this condition can be guaranteed if the speed � of mobile nodes satisfies

��ÀS�/�w6 and ��À � ��0 � ç^61 . Note the minimum distance between a point in a cell and the

boundary of its covered area is A � ù � �I´ � �/�ba � 5 � �C� . By this constraint, if (moves into

a cell _ at some step, (will stay in $H
��=��A�0I_`1 in the following �wç steps. Thus if (moves

into an active cell at some step in � 	Q�Hm]	 � � , which will transmit at least once in the following

�wç steps, (will receive the message.

103

Now we show by contradiction that it is impossible that (never moves into an active

cell during step 	M� and step 	 � . Since Ý is inactive at time 	M� , we have Ý
 �+��:+$M	>,.�=�+09	 � 1
by the definition of inactive cell. Thus there exists step 	
 � 	H�Hm]	 � � , such that, denoting the

cell in which (resides at step 	 (step 	{�¬� respectively) by _ (ì respectively), we have

_ý3
 �=�@:+$Q	>,2�q�+0Y	K1 and ì
 �+��:+$M	>,.�=�+09	®�Ä�-1 . By the constraint �óÀ��/�w6 , a node can only

move to a neighboring cell within a step, thus _ and ì are neighboring cells. Since (never

moves into an active cell before 	 � , _ is not active at time 	 , that is, _ is uncovered at 	
because of _á3
 �+��:+$Q	>,2�=�+09	K1 . Cell ì cannot be an inactive cell at step 	 because otherwise

all ì ’s neighbors, including _ , are covered at step 	 . So ì is uncovered at step 	 and is

inactive at step 	^��� , which is impossible since it takes at least one step for a cell to finish

forwarding. Thus coverage can be guaranteed by the following constraint:

Í oéè�O ì�ëòôó*õ : } ��ÀÑ�/�w6 5 0 ��� � ä çn 6��q1��)0.� a �w61 � ÿ 0I�\À � ��0 � ç^61]1 , where � 5
0 �R� � ä çn é6-�q1K�)02�ba �C1 , ç 5 � � �R� and � 5 �ba � � �� .

We can show that a solution for this constraint is is ��Àó�B�®�>� 5 � �)0 � 3ó� ä 3©� � �©3E6 �1 .
Note the smaller is � , the smaller is ç , thus if this constraint is satisfied by a value of

� , it is satisfied by all the value smaller than � . So we only need to consider �<���>� 5� �)0 � 3½� ä 3©� � ��3^6� Ï1 . Denoting W 5 � ä çn 6��q� � , we have � 5 0 ��� � ä çn 6��q1��)0.�`a �C1
5 0�� � W/1 � �)02�ba �C1 and ç 5 � � �û� 5 }M�ba � � ��V� � �û� 5 ä � �a� �)0I� � 14�Ô� 5 ä �� � � } 0>� � W/1 � �)02�ba �B1 � � �7� 5 Î � �)0K0�� � W/1 � 1��7� . By replacing � by ������ , we have W 5
� ä çn 6-�=� � 5 ç��)0 � 3©� � �C1 . So we have an equation ç 5 Î � �)0K0�� � ç��)0 � 3Õ� � �C1�1 � 1¡���
and the solution is ç 5 � � � . Thus we have W 5 ç��)0 � 3©� � �C1 5 �;� � and �B����� 5� �)0 � 3½� ä 3©� � ��3^6� Ï1 5 � �)0 � 3ó� ä 6rçn �1 . Since we have 0 ��� � ä çn 6��q1��)0.� a �w61 5
0�� � W/1 � �)0.� a �w61 5 � �)0 � a �r61�� � �)0 � 3n� ä 6Bçn Ï1 5 ������� and

� ��0 � ç^61¡� � ��0 äB� 6Bçn �1
= ������� , the constraint is satisfied. Sample values are presented in Table VI, in which we

choose small values for for the same reason discussed in section VI.E.3.

104

Table VI. Sample values of ��®�>� for ���
Parameters Constraint on �OÀ Z� � �98 D [�:�

(meter) 6 (second) Z� � �98 D [�:
100 �a�<� 6 Æ�� 11 14.92 m/s = 53.74 km/h

15 10.95 m/s = 39.41 km/h
19 8.64 m/s = 31.11 km/h

100 � 6 Æ+ë 11 7.46 m/s = 26.87 km/h
15 5.47 m/s = 19.70 km/h
19 4.32 m/s = 15.56 km/h

100 �a�<� 6 Æ+ë 11 3.73 m/s = 13.43 km/h
15 2.74 m/s = 9.85 km/h
19 2.16 m/s = 7.78 km/h

It is easy to show the following time complexity. The intuition is that under the above

constraints, the number of calls of b@
�A�ca:<AP is
v 0I�J�)09� � 1K1 5 v 09�J�)0 �a� 1]1 and the time

complexity of each call of b@
�A�ca:<AP is
v 0>6B1 .

Lemma 31 If oéè�O�ì�ëítî°ï and o¡è�O�ì�ëòôó*õ are satisfied, the time complexity of ��� is
v 09�©6B� ��� 1 .

105

CHAPTER VII

CONCLUSION

This dissertation focuses on the design and analysis of distributed primitives for mobile ad

hoc networks. Three topics were proposed. In the first part of the dissertation, theoretical

analyses were presented for a distributed token circulation algorithm, LR, that causes a

token to continually circulate through all the nodes of a network. In particular, a loose

upper bound and a rigorous worst-case analysis on the round length were proved for the

static case (part of the results appeared in [6]). In the future work of this part, we are

interested in identifying characteristics of graphs on which LR has linear round length; the

counter-example graphs found so far have a complex recursive construction. We are also

interested in defining realistic mobility model that would allow analysis of LR in the mobile

case.

In the second part of the dissertation, a self-stabilizing mutual exclusion algorithm

was proposed for mobile ad hoc networks (a preliminary version appeared in [7] and the

journal version has been accepted by [9]). It was shown that mutual exclusion always holds

and different levels of progress hold under different levels of constraints. Interesting topics

in the future work of this part is to characterize the specific mobility patterns in which

the progress property can be guaranteed, and to evaluate the usefulness of the heuristic by

which the predefined ring is updated and compare it to others.

The third part of the dissertation presented two broadcasting protocols which propa-

gate a message from a source node to all of the nodes in the network. Instead of relying

on the frequently changing topology, the protocols depend on a less frequently changing

and more stable characteristic — the distribution of mobile hosts. Constraints on distribu-

tion and mobility of mobile nodes were given which guarantee that all the nodes receive

the broadcast data. In our future work, we are interested in mobility model which would

106

allow analysis of designed protocols. This work is our first step in modeling the mobility

of mobile nodes using a set of parameters (the distribution and velocity of mobile nodes)

and analyzing our protocols’ performance based on the values of the designed parameters.

107

REFERENCES

[1] D. Cavin, Y. Sasson, and A. Schiper, “On the accuracy of MANET simulators,”

in Proc. 2nd ACM International Workshop on Principles of Mobile Computing,

Toulouse, France, 2002, pp. 38–43.

[2] OPNET Modeler, Available at http://www.opnet.com/products/modeler/home.html,

2004.

[3] VINT Project Team, The network simulator – ns-2, VINT Project Team, Available at

http://www.isi.edu/nsnam/ns/, November 2000.

[4] L. Bajaj, M. Takai, R. Ahuja, K. Tang, R. Bagrodia, and M. Gerla, “Glomosim: A

scalable network simulation environment,” Technical Report 990027, Department of

Computer Science, University of California at Los Angeles, May 1999.

[5] N. Malpani, N. H. Vaidya, and J. L. Welch, “Distributed token circulation on mo-

bile ad hoc networks.,” in Proc. 9th International Conference on Network Proto-

cols(ICNP), Riverside, CA, Nov. 2001, pp. 4–13.

[6] N. Malpani, Y. Chen, N. Vaidya, and J. Welch, “Distributed token circulation in

mobile ad hoc networks,” IEEE Transactions on Mobile Computing, vol. 4, no. 2, pp.

154–165, March/April 2005.

[7] Y. Chen and J. L. Welch, “Self-stabilizing mutual exclusion using tokens in mobile ad

hoc networks,” in Proc. 6th Annual International Workshop on Discrete Algorithms

and Methods for Mobile Computing and Communications (DIALM’2002), Atlanta,

Georgia, 2002, pp. 34–42.

108

[8] C. Basile, M. Killijian, and D. Powell, “A survey of dependability issues in mo-

bile wireless networks,” Available at http://citeseer.nj.nec.com/basile03survey.html,

February 2003.

[9] Y. Chen and J. L. Welch, “Self-stabilizing dynamic mutual exclusion for mobile ad

hoc networks,” Journal of Parallel and Distributed Computing, accepted, to appear.

[10] M. M. Carvalho and J. J. Garcia-Luna-Aceves, “A scalable model for channel access

protocols in multihop ad hoc networks,” in Proc. 10th Annual International Confer-

ence on Mobile Computing and Networking, Philadelphia, PA, 2004, pp. 330–344.

[11] D. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,”

in Mobile Computing, T. Imielinski and H. Korth, Eds. Kluwer Academic Publishers,

Boston, MA, 1994, pp. 153-181.

[12] E. M. Royer, S. R. Das, and C. E. Perkins, “Ad hoc on-demand distance vector

(AODV) routing (IETF internet-draft),” Available at http://www.ietf.org/internet-

drafts/draft-ietf-manet-aodv-08.txt, March 2001.

[13] G. Holland and N. H. Vaidya, “Analysis of TCP performance over mobile ad hoc net-

works,” in Proc. 5th Annual ACM/IEEE International Conference on Mobile Com-

puting and Networking (MOBICOM). Seattle, WA, 1999, pp. 219-230.

[14] M. Mauve, J. Widmer, and H. Hartenstein, “A survey on position-based routing

in mobile ad hoc networks,” IEEE Network Magazine, vol. 15, no. 6, pp. 30–39,

November 2001.

[15] K. P. Hatzis, G. P. Pentaris, P. G. Spirakis, V. T. Tampakas, and R. B. Tan, “Funda-

mental control algorithms in mobile networks,” in Proc. 16th ACM Symposium on

Parallel Algorithms and Architectures, Saint Malo, France, 1999, pp. 251–260.

109

[16] N. Malpani, J. L. Welch, and N. Vaidya, “Leader election algorithms for mobile

ad hoc networks,” in Proc. 4th International Workshop on Discrete Algorithms and

Methods for Mobile Computing and Communications, Boston, MA, 2000, pp. 96–

103.

[17] J. Walter, J. Welch, and N. Vaidya, “Mutual exclusion algorithm for ad hoc mobile

networks,” Wireless Networks, vol. 9, no. 6, pp. 585–600, Nov. 2001.

[18] B. Rajagopalan and P. McKinley, “A token-based protocol for reliable, ordered multi-

cast communication,” in Proc. 8th IEEE Symposium on Reliable Distributed Systems.

Seatle, WA, October 1989, pp. 84-93.

[19] Y. Amir, L. Moser, D. Agrawal, and P. Ciarfella, “Fast message ordering and member-

ship using a logical token-passing ring,” in Proc. 13th IEEE International Conference

on Distributed Computing Systems. Pittsburgh, PA, 1993, pp. 551-560.

[20] F. Cristian and F. Schmuck, “Agreeing on processor group membership in asyn-

chronous distributed systems,” Technical Report CSE95-428, Department of Com-

puter Science, University of California at San Diego, 1995.

[21] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and using a partitionable group

communication service,” in Proc. 16th Annual ACM Symposium on Principles of

Distributed Computing. Santa Barbara, CA, 1997, pp. 53-71.

[22] E. W. Dijkstra, “Self-stabilizing systems in spite of distributed control,” Commun.

ACM, vol. 17, no. 11, pp. 643–644, 1974.

[23] A. K. Datta, C. Johnen, F. Petit, and V. Villain, “Self-stabilizing depth-first token cir-

culation in arbitrary rooted networks.,” in 5th International Colloquium on Structural

110

Information and Communication Complexity (SIROCCO’98), Amalfi, Italy, June

1998, pp. 229–243.

[24] F. Petit and V. Villain, “Color optimal self-stabilizing depth-first token circulation for

asynchronous message-passing systems,” in Proc. 10th Conference on Parallel and

Distributed Computing Systems, New Orleans, Louisiana, Oct, 1997, pp. 227–233.

[25] S. Dolev, E. Schiller, and J. Welch, “Random walk for self-stabilizing group com-

munication in ad hoc networks,” in Proc. 21st Annual Symposium on Principles of

Distributed Computing, Monterey, CA, 2002, pp. 259–259.

[26] S. Vasudevan, N. Immerman, J. Kurose, and D. Towsley, “A leader election algo-

rithm for mobile ad hoc networks,” Technical Report 0301, Department of Computer

Science, University of Massachusetts at Amherst, January 13, 2002.

[27] M. Schneider, “Self-stabilization,” ACM Computing Surveys, vol. 25, pp. 45–67,

1993.

[28] S. Dolev and T. Herman, “Superstabilizing protocols for dynamic dis-

tributed systems.,” Chicago J. Theor. Comput. Sci., vol. 1997, Available at

http://cjtcs.cs.uchicago.edu/articles/1997/4/contents.html, 1997.

[29] S. Dolev, “Optimal time self-stabilization in uniform dynamic systems,” Parallel

Processing Letters, vol. 8, no. 1, pp. 7–18, 1993.

[30] T. Herman, “Self-stabilization bibliography: Access guide,” Chicago

Journal of Theoretical Computer Science, vol. 1996, Available at

http://citeseer.ist.psu.edu/herman98selfstabilization.html, 1996.

[31] R. Baldoni, A. Virgillito, and R. Petrassi, “A distributed mutual exclusion algorithm

111

for mobile ad-hoc networks,” in Proc. 7th IEEE Symposium on Computers and Com-

munications (ISCC 2002), Taormina, Italy, 2002, pp. 539–544.

[32] D. R. Kowalski and A. Pelc, “Broadcasting in undirected ad hoc radio networks,” in

Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing,

Boston, MA, 2003, pp. 73–82.

[33] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem in a mobile ad

hoc network,” in Proc. 5th Annual ACM/IEEE International Conference on Mobile

Computing and Networking, Seattle, WA, 1999, pp. 151–162.

[34] H. Lim and C. Kim, “Multicast tree construction and flooding in wireless ad hoc

networks,” in Proc. 3rd ACM International Workshop on Modeling, Analysis and

Simulation of Wireless and Mobile Systems, Boston, MA, 2000, pp. 61–68.

[35] W. Peng and X. Lu, “On the reduction of broadcast redundancy in mobile ad hoc net-

works,” in Proc. 1st ACM International Symposium on Mobile Ad Hoc Networking

and Computing, Boston, MA, 2000, pp. 129–130.

[36] A. Laouiti, A. Qayyum, and L. Viennot, “Multipoint relaying: An efficient technique

for flooding in mobile wireless networks,” in Proc. 35th Annual Hawaii International

Conference on System Sciences, Big Island, HI, 2002, pp. 298–307.

[37] J. Sucec and I. Marsic, “An efficient distributed network-wide broadcast algorithm

for mobile ad hoc networks,” Tech. Rep. CAIP 248, Rutgers University, Piscataway,

NJ, September 2000.

[38] E. Pagani, “Providing reliable and fault tolerant broadcast delivery in mobile ad-hoc

networks,” Mobile Networks and Applications, vol. 4, no. 3, pp. 175–192, 1999.

112

[39] B. Williams and T. Camp, “Comparison of broadcasting techniques for mobile ad

hoc networks,” in Proc. 3rd ACM International Symposium on Mobile Ad Hoc Net-

working and Computing, Lausanne, Switzerland, 2002, pp. 194–205.

[40] Vamsi Paruchuri, Arjan Durresi, and Raj Jain, “Optimized flooding pro-

tocol for ad hoc networks,” CoRR, vol. cs.NI/0311013, Available at

http://arxiv.org/abs/cs.NI/0311013, 2003.

[41] H. Takagi and L. Kleinrock, “Optimal transmission ranges for randomly distributed

packet radio terminals,” IEEE Trans. Commun., vol. 32, no. 3, pp. 246–257, Mar.

1986.

[42] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless

networks,” in Proc. 6th Annual International Conference on Mobile Computing and

Networking, Boston, MA, 2000, pp. 243–254.

[43] S. Basagni, I. Chlamtac, V. R. Syrotiuk, and B. A. Woodward, “A distance routing

effect algorithm for mobility (dream),” in Proc. 4th Annual ACM/IEEE International

Conference on Mobile Computing and Networking, Dallas, TX, 1998, pp. 76–84.

[44] Y. Ko and N. H. Vaidya, “Location-aided routing (LAR) in mobile ad hoc networks,”

in Proc. 4th Annual ACM/IEEE International Conference on Mobile Computing and

Networking, Dallas, TX, 1998, pp. 76–84.

[45] L. Blazević, L. Buttyán, S. Capkun, S. Giordano, J. Hubaux, and J. Le Boudec, “Self-

organization in mobile ad-hoc networks: The approach of terminodes,” IEEE Com-

munications Magazine, vol. 39, no. 6, pp. 166–174, June 2001.

[46] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, and R. Morris, “A scalable location

service for geographic ad hoc routing,” in Proc. 6th Annual International Conference

113

on Mobile Computing and Networking (MOBICOM ’00), Boston, MA, 2000, pp.

120–130.

[47] K. Seada, A. Helmy, and R. Govindan, “On the effect of localization errors on geo-

graphic face routing in sensor networks,” in Proc. 3rd International Symposium on

Information Processing in Sensor Networks, Berkeley, CA, 2004, pp. 71–80.

[48] D. Niculescu and B. Nath, “Trajectory based forwarding and its applications,” in

Proceedings of the 9th Annual International Conference on Mobile Computing and

Networking, San Diego, CA, 2003, pp. 260–272.

[49] D. Karger, Personal communication, Massachusetts Institute of Technology, Cam-

bridge, MA, 2001.

[50] M. Lauer and M. Matthes, “MOBICOM poster: Elan—an e-learning infrastructure

for ad-hoc networks,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 7, no. 1, pp.

53–55, 2003.

[51] G. Varghese, “Self-stabilization by counter flushing,” in Proc. 13th Annual ACM

Symposium on Principles of Distributed Computing, New York, NY, 1994, pp. 244–

253.

[52] B. Warneke, M. Last, B. Liebowitz, and K. S. J. Pister, “Smart dust: Communicating

with a cubic-millimeter computer,” IEEE Computer, vol. 34, pp. 44 – 51, Jan. 2001.

[53] T. Imielinski and S. Goel, “Dataspace: Querying and monitoring deeply networked

collections in physical space,” IEEE Personal Communications Magazine, vol. 7, no.

5, pp. 4–9, October 2000.

[54] T. Imielinski and B. R. Badrinath, “Wireless graffiti - data, data everywhere matters.,”

in Proc. 28th International Conference on Very Large Data Bases (VLDB), Hong

114

Kong, China, August 2002, pp. 9–19.

[55] M. Shur and S. Wagner, “Sensitive skin,” IEEE Sensors Journal, vol. 1, no. 1, pp.

41–51, June 2001.

[56] E. Kaplan, Understanding GPS, Artech House, Boston, MA, 1996.

[57] J. Hightower and G. Borriella, “Location systems for ubiquitous computing,” IEEE

Computer, vol. 34, no. 8, pp. 57–66, 2001.

[58] S. Capkun, M. Hamdi, and J. Hubaux, “GPS-free positioning in mobile ad-hoc net-

works,” in HICSS ’01: Proc. 34th Annual Hawaii International Conference on Sys-

tem Sciences (HICSS-34)-Volume 9, Washington, DC, Jan 2001, pp. 9008–9017.

[59] S. Singh and C. S. Raghavendra, “PAMAS: Power aware multi-access protocol with

signalling for ad hoc networks,” SIGCOMM Comput. Commun. Rev., vol. 28, no. 3,

pp. 5–26, 1998.

[60] Y. Xu, J. Heidemann, and D. Estrin, “Geography-informed energy conservation for

ad hoc routing,” in Proc. of the ACM/IEEE International Conference on Mobile

Computing and Networking, Rome, Italy, July 2001, pp. 70–84.

[61] R. Gallager, “A perspective on multiaccess channels,” IEEE Trans. Inform. Theory,

vol. 31, pp. 124–142, 1985.

[62] R. Bar-Yehuda, O. Goldreich, and A. Itai, “On the time-complexity of broadcast

operations in multi-hop radio networks: an exponential gap between determinism and

randomization,” Journal of Computer and Systems Science, vol. 45, pp. 104–126,

1992.

115

[63] A. E. F. Clementi, A. Monti, and R. Silvestri, “Selective families, superimposed

codes, and broadcasting on unknown radio networks,” in Proc. 12th Annual ACM-

SIAM Symposium on Discrete Algorithms, Washington, DC, 2001, pp. 709–718.

[64] S. S. Kulkarni and U. Arumugam, “Collision-free communication in sensor net-

works,” in Proc. 6th Symposium on Self-Stabilizing Systems (SSS), San Francisco,

CA, June 2003, pp. 17–31.

116

VITA

Yu Chen was born in Fu Zhou, Fu Jian Province, China. She received her B.Eng. and

M.S. degree in Computer Science from Zhejiang University, P.R. China, in 1997 and 2000.

She began pursuing a Ph.D. degree in Computer Science at Texas A&M University in 2000

and received her degree in August 2005. She worked as a graduate teaching assistant and

research assistant for Dr. Jennifer L. Welch in the Department of Computer Science, Texas

A&M University. Her research interests include distributed computing, self-stabilization

and mobile computing. Her permenant address is: CangXia apartments, JiaXing 1-202,

Taijian district, Fuzhou, Fujiang, 350009, P. R. China.

