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ABSTRACT 
 
 
 

Exploring the Relationships between Vegetation Measurements and Temperature in 

Residential Areas by Integrating LIDAR and Remotely Sensed Imagery.  (August 2005) 

Matthew A. Clemonds, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Hongxing Liu 

 
Population growth and urban sprawl have contributed to the formation of 

significant urban heat island phenomena in Houston, Texas, the fourth largest city in the 

United States. The population growth in Houston was 25.8% between 1990 and 2000 

nearly double the national average. The demand for information concerning the effects 

of urban and suburban development is growing. Houston is currently the only major US 

city lacking any kind of comprehensive city zoning ordinances.  

The Normalized Difference Vegetation Index (NDVI) has been used as a 

surrogate variable to estimate land surface temperatures at higher spatial resolutions, 

given the fact that a high-resolution remotely sensed NDVI can be created almost 

effortlessly and remotely sensed thermal data at higher resolutions is much more 

difficult to obtain. This has allowed researchers to study urban heat island dynamics at a 

micro-scale. However, this study suggests that a vegetation index alone might not be the 

best surrogate variable for providing information regarding the independent effects and 

level of contribution that tree canopy, grass, and low-lying plants have on surface 

temperatures in residential neighborhoods. This research combines LIDAR (Light 

Detection and Ranging) feature height data and high-resolution infrared aerial photos to 
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measure the characteristics of the micro-structure of residential areas (residential-

structure), derives various descriptive vegetation measurement statistics, and correlates 

the spatial distribution of surface temperature to the type and amount of vegetation cover 

in residential areas. Regression analysis is used to quantify the independent influence 

that different residential-structures have on surface temperature. In regard to 

implementing changes at a neighborhood level, the descriptive statistics derived for 

residential-structure at a micro-scale may provide useful information to decision-makers 

and may reveal a guide for future developers concerned with mitigating the negative 

effects of urban heat island phenomena.  
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CHAPTER I 
 

INTRODUCTION 
 
 

1.1. The urban heat island 

Urban heating is one of the most well known forms of anthropogenic climate 

modification (Streutker, 2003). Built-up urban areas coupled with deforestation 

concentrate the heating effect. Urban heat islands are urban areas with air and surface 

temperatures higher than the ambient temperatures that are associated with their 

surrounding rural areas (Streutker, 2003; Montávez et al., 2000; Aniello et al., 1995). By 

calculating the temperature difference between the urban area and the surrounding rural 

area, the intensity of an urban heat island can be identified (Montávez et al., 2000). It has 

been shown that the urban heat island effect can be as high as 4 to 6.5° C (Streutker, 

2002; Matson et al., 1978).  

The urban heat island effect was first documented by Luke Howard during his 

studies regarding the climate of London over 170 years ago (Streutker, 2003; Howard, 

1833; BMS, 2004). This effect became well recognized since the 1960s, when research 

revealed an increase in the annual high temperatures for the City of Los Angeles. Trees, 

citrus groves, and natural vegetative cover were replaced with buildings, parking lots, 

roads, and industrial and commercial complexes; the average temperatures in the 

downtown area of Los Angeles have increased by approximately 1° F each decade from 

the 1930s to the present (LBNL, 2004; Aniello et al., 1995). 

____________ 
This thesis follows the style of Remote Sensing of Environment.  
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Many factors contribute to the formation of urban heat islands: the increasing 

area of dark surfaces that absorb relatively more heat (radiant energy) from the sun (Lo 

& Quattrochi, 2003); a concentration of per capita energy consumption in densely 

populated areas (Streutker, 2002), sometimes referred to as “anthropogenic heat flux” 

(Sailor et al., 2003); and a convective stagnation over larger cities that can exacerbate 

the problems associated with urban heat islands is yet another contributor (Mann, 1993). 

Although it is often difficult to develop a comprehensive list of contributors to the urban 

heat island effect, the removal of vegetation or deforestation and replacing it with 

concrete impervious surfaces is a well known factor (Jensen, 2000; Lo et al., 1997). 

Vegetative cover or tree canopy provides buildings with shade, intercepts solar radiation, 

and cools the air by evapotranspiration (Akbari, 2002; Lo & Faber, 1997; Aniello et al., 

1995; Henry et al., 1989). Urban deforestation is strongly correlated with increasing 

population densities and the resulting urban sprawl (Lo & Faber, 1997). It is certainly 

true that humans play a major role in the transformation of the Earth’s surface, 

“particularly through deforestation and urbanization” (Walsh et al., 2004: 492; Goudie, 

2000).  

Urban heating can have a negative impact on the economy and human health (Lo 

& Quattrochi, 2003). The higher temperatures of urban heat islands prompt an increase 

in the amount of energy used for air conditioning. Air conditioners themselves contribute 

significant amounts of heat energy into the urban environment (Jensen, 2000). Pollution 

levels and energy costs increase as power plants burn more fossil fuel in response to the 

higher temperatures (Akbari, 2002). Accordingly, areas suffering from urban heat island 
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effects are not only uncomfortably hot; they generally possess relatively lower air 

quality (Lo & Quattrochi, 2003). Researchers have also linked higher temperatures from 

urban heat islands to acute respiratory problems and the aggravation of asthma (Lo & 

Quattrochi, 2003; Cardelino & Chameides, 1990; EPA, 2002).  

 

1.2. Urban heat island research and thermal remote sensing 

Many climatological studies regarding urban heat islands have been performed 

using in situ data from weather station networks and automobile transects (Voogt & 

Oke, 1997; Montávez et al., 2000). Although in situ data have the advantage of high 

temporal resolution and a long historical record, the individual point measurements are 

commonly widely spaced and provide poor spatial coverage; and errors are introduced in 

the interpolation process, which is conducted to create a continuous surface dataset. 

More recently, remote sensing techniques have increasingly been employed in the study 

of urban heat islands, along with Geographic Information Systems (GIS). Remotely 

sensed data have higher spatial resolutions and can provide larger ground coverage than 

the individual point measurements from in situ data (Jensen, 2000).  

Many satellite based urban heat island studies have been based on two thermal 

channels of AVHRR (Advanced Very High Resolution Radiometer) imagery (Price, 

1984; Prata, 1993; Roth et al., 1989; Streutker, 2003; 2002). Landsat TM (Thematic 

Mapper) and ETM+ (Enhanced Thematic Mapper Plus) (Weng et al., 2004; Kawashima 

et al., 2000) and airborne ATLAS (Advanced Thermal and Land Applications Sensor) 

thermal imagery have been used to derive land surface temperatures at a greater spatial 
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resolution than that provided by the AVHRR. The Global Hydrology and Climate Center 

of the National Aeronautic and Space Administration (NASA) has used the ATLAS to 

acquire thermal imagery at a much higher spatial resolution (up to 5 meters); however, 

this data has only been obtained for a small number of cities in the United States: 

Atlanta, Baton Rouge, Sacramento, and Salt Lake City (Stone & Rodgers, 2001; 

Quattrochi et al., 2000; Lo et al., 1997; GHCC, 1997; ATLANTA, 2004). At this 

resolution, the thermal emission of a single parcel can be measured (Stone & Rodgers, 

2001; Lo et al., 1997).  

Researchers have utilized thermal remote sensing data to analyze the correlations 

between surface temperature and various surface characteristics. Lo et al. (1997), Gallo 

& Tarpley (1996), and Roth et al. (1989) used remote sensing techniques to compare the 

urban heat island effect to vegetation coverage, which is often measured by the 

Normalized Difference Vegetation Index (NDVI). Owen et al. (1998) used fractional 

vegetation cover and surface moisture availability to study the impact of urban growth 

on surface radiant temperature of a region near State College, PA over a 10 year period. 

Yamshita & Sekine (1990), Nichol (1996), Sakakibara (1996), and Oke (1987) examined 

the influence of urban geometry and morphology on the urban heat island effect.  

Remote sensing technology is broadening research by providing researchers with 

the ability to examine large areas of terrain in greater and greater detail (Jensen, 2000). It 

is possible to obtain a vegetation index with an extremely fine spatial resolution from 

aerial photography or obtain Digital Elevation Models (DEMs) from airborne LIDAR 

(Light Detection and Ranging) data with about 5 meter spatial resolution. However, the 
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thermal infrared sensors that are most commonly used to derive surface temperatures 

have relatively poor spatial resolutions (Table 1.1) compared to the visible and near-

infrared bands of some of the most common sensor platforms (Kustas et al., 2003; 

Campbell, 2002). Therefore, the study of urban heat islands at a micro-scale with 

thermal remote sensing has often been limited. Methods used to achieve more detailed 

spatial resolutions in regards to temperature and urban heating studies frequently employ 

the strong negative correlation between vegetation and surface temperature (Lo et al., 

1997). Because the availability of high-resolution thermal data is so scarce, many 

researchers have examined the use of vegetation measurements (e.g., NDVI), remotely 

sensed at a more detailed spatial resolution, as a surrogate for thermal data, which are 

remotely sensed at a more coarse spatial resolution (Li et al., 2004; Weng et al., 2004; 

Kustas et al., 2003; Lo & Faber, 1997; Gallo & Tarpley, 1996; Roth et al., 1989).  

 

Table 1.1 
Common Thermal Sensors 

Sensor Spatial Resolution (m) 
GOES 4000 

AVHRR 1100 
MODIS 1000 

Landsat 5 TM   120 
ASTER     90 

Landsat 7 ETM+     60 
 
 
 
The spatial resolution of airborne LIDAR data is exceptionally fine: the average 

density of the laser pulses can be as high as 1 meter on the ground; and the vertical 

accuracy is as high as about 15 cm, due to the fact that the aircraft uses a differential 

Global Positioning System (GPS) and an Inertial Measuring Unit (IMU) to obtain the 



6 

precise position and attitude of the onboard laser sensor (Campbell, 2002; Jensen, 2000; 

Flood & Gutelius, 1997; Krabill et al., 1984). From these LIDAR data, detailed DEMs 

can be created (Maas, 2002; Krabill et al., 1984). However, the majority of the LIDAR 

measurements (laser pulses) do not reach the ground in areas with significant tree 

canopy or man-made structures (Jensen, 2000). Although this may sometimes present a 

problem, it can also be an advantage to receive measurements from both the ground and 

the vegetation or man-made structures simultaneously. With a considerable amount of 

processing of the raw LIDAR data, “bald-Earth” DEMs and vegetation heights can be 

derived (Clark et al., 2004; Persson et al., 2002; Krabill et al., 1984). The use of Digital 

Canopy Models (DCMs) obtained from LIDAR technology has made it possible to 

estimate biomass, tree heights, stand volume (Nilsson, 1996; Nelson et al., 1988), and 

even delineate individual tree crowns (Clark et al., 2004; Brandtberg et al., 2003; 

Persson et al., 2002). Although very few, if any, studies regarding urban heat islands 

have used LIDAR data, the high level of spatial detail that it provides has proven useful 

in this research of urban heat islands at a micro-scale.  

One of the few urban heat island studies completed in Houston, Texas was 

carried out by Streutker (2003; 2002), who utilized a time series of AVHRR images to 

depict the development of the urban heat island of the city by quantifying its spatial 

extent and magnitude. However, due to the coarse spatial resolution (1.1 kilometers) of 

AVHRR data, the surface temperature patterns derived by Streutker lack spatial detail. 

He recommends continued monitoring of the Houston urban heat island and further 

research with greater geographical detail. While his research effectively focused on the 
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urban heat island for the Houston Metropolitan Area as a whole, he acknowledges the 

need to conduct research at greater spatial resolutions, “such as that of individual 

neighborhoods,” to better quantify the causes of urban heat island phenomena (Streutker, 

2003: 288). This thesis is focused in this apparent gap in urban heat island studies.  

 

1.3. Research scope and objectives 

This research explores urban heat islands at a micro-scale and the structure of 

residential areas in the Houston Metropolitan area by utilizing the relatively higher 

spatial resolution provided by aerial photography and LIDAR data, together with 

satellite imagery from Landsat ETM+ (Enhanced Thematic Mapper Plus). Using remote 

sensing techniques, GIS, and statistical methods, the objectives of this study include: 

1) Combining and expanding upon research regarding the analysis and mapping of 

urban heat islands at a micro-scale and the mitigating effects of vegetation cover;  

2) Developing micro-scale tree canopy and low-level vegetation (grass and low-

lying plant) measurements to study urban heat island effects at the residential 

neighborhood level;  

3) Measuring aspects of micro-structure of residential areas (residential-structure) 

using regression analysis and correlating these to surface temperature; 

4) Evaluating the effectiveness of the micro-scale measurement approach as a better 

surrogate for explaining surface temperatures for residential neighborhoods; and 

5) Examining the planning and policy implications regarding residential land 

development focused on residential-structure. 
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This research endeavors to identify the primary factors contributing to the 

formation of urban heat islands at a micro-level and examines what methods of 

development might be employed to mitigate (or at least not contribute to) the increased 

temperatures associated with the phenomena. By way of combining and expanding upon 

research regarding the analysis and mapping of micro-urban heat islands and the 

mitigating effects of vegetation cover (Lo & Quattrochi, 2003; Stone & Rodgers, 2001; 

Saaroni et al., 2000; Aniello et al., 1995), this research quantifies the relationships 

between vegetation cover, tree canopy, development, and temperature. Micro-urban heat 

islands or “hot spots” have been shown to radiate out from individual center points 

lacking tree canopy (Aniello et al., 1995). By utilizing feature heights derived from 

LIDAR data and a high-resolution NDVI derived from aerial photography, this research 

delineates and measures tree canopy and low-level vegetation cover independently for 

residential areas. This may provide a valuable tool to study urban heat island effects at a 

micro/neighborhood scale.  

Large scale studies have eloquently defined and measured the urban heat islands 

for whole cities (Streutker, 2003; 2002; Lo & Quattrochi, 2003). Through micro-level 

analysis focused in residential areas, however, this research is aimed at providing a 

scientific basis for urban planning programs that can be implemented at the 

neighborhood level, related to the planned planting of trees and new land development 

styles to reduce urban and suburban heating. Employing remote sensing data, GIS, and 

correlation and regression statistical methods, this study analyzes and quantifies the 

relationships between micro-urban heat islands and vegetation specifically in regards to 
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the structure of residential areas. The utilization of LIDAR data and a high-resolution 

NDVI in this study elucidates the role of tree canopy, grass, and low-lying plants in 

reducing the land surface temperature increases associated with urban and suburban 

development. It has been suggested that high-resolution mapping of tree canopy may 

prove beneficial in defining and identifying the micro-urban heat island effect (Aniello 

et al., 1995). This research measures the micro-structure of residential areas (residential-

structure), derives descriptive vegetation statistics, and correlates the spatial distribution 

of surface temperature and the type and amount of vegetation cover in residential areas.  

Inasmuch as researchers have utilized vegetation indices as a surrogate for 

temperature, this research also utilizes the relationships between land-use and land-cover 

(LULC) classes, a 30-meter resolution NDVI image, and temperature to examine the 

larger spatial-scale urban heat island effect and its correlation to vegetation and LULC 

types. This larger spatial-scale analysis is compared to the residential-scale focus of this 

research, which concentrates on a micro-scale measurement approach using LIDAR data 

and a high-resolution NDVI image for neighborhoods. This comparison is then used to 

evaluate the effectiveness of the micro-scale vegetation measurement approach as a 

better surrogate than a vegetation index alone for providing information regarding the 

independent effects and level of contribution that tree canopy, grass, and low-lying 

plants have on surface temperatures in residential neighborhoods. The descriptive 

statistics derived to define the residential-structure at a micro-scale may provide useful 

information to decision-makers with respect towards planning and policy 

implementation regarding residential land development.  
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CHAPTER II 
 

STUDY AREA: HOUSTON, TEXAS 
 
 

2.1. Urban growth and heat island 

Increases in urban population and the resulting urban sprawl have contributed to 

the formation of significant urban heat islands for nearly all of the larger cities of the 

world. In addition, most large cities are only growing larger. Houston is the 4th largest 

city in the United States in terms of population. The population growth of the Houston 

PMSA (Primary Metropolitan Statistical Area) was 25.8% between 1990 and 2000, 

which is nearly double that of the national growth rate of 13% (U.S. Census Bureau, 

2001; 2000; 1995). The Houston PMSA consists of Harris County (the county in which 

the city of Houston is located) and a number of surrounding counties: Chambers, Fort 

Bend, Liberty, Montgomery, and Waller (U.S. Census Bureau, 1999).  

Valuable oil well strikes near the city and the excellent ocean access that it 

enjoys has welded Houston’s economy to the oil industry and has made the city an oil 

capital. This has launched rapid growth in the Houston area, especially in the last half of 

the 20th century (Figure 2.1). Dense population and economic activity has also triggered 

a rapid expansion of the area’s urban and suburban built-up regions. However, Houston 

is currently the only major city in the United States lacking any kind of comprehensive 

city zoning ordinances (Streutker, 2003). Therefore, market forces generally drive 

commercial location decisions and not purposeful planning that might optimize the 

urban environment and avoid structural and functional design failures (Gregory, 2000). 
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Urbanization and the accompanying deforestation that takes place to make room for 

development are two of the major human processes acting to change the patterns of land-

use and land-cover (LULC), and these “massive urban agglomerations” greatly influence 

the biosphere and the regional urban environments in which an ever growing percentage 

of the world’s population resides (Berry, 1990: 117). The historical transformation of the 

Houston Area landscape from sparsely inhabited prairie, forest, and estuarine marsh to a 

sprawling moderately impervious urban surface created and increased the urban heat 

island effect (HARC, 2004; Streutker, 2003).  

 

Population of Houston PMSA  1960-2000
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Figure 2.1. Population increases for the Houston PMSA from 1960 to 2000.  
 
 
 
2.2. Heat and pollution  

Research suggests that air quality and the quality of the environment are 

negatively affected by the urban heat island phenomenon (Lo & Quattrochi, 2003; 
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Cardelino & Chameides, 1990). Located in the sun-belt, Houston is characterized by 

relatively high temperatures and high humidity. The urban heat effect combined with the 

naturally warm environment of this southern city has increased the rate at which Volatile 

Organic Compounds (VOCs) and Nitrogen Oxides (NOx) combine in an aerial 

photochemical reaction to form ozone (EPA, 2002; Cardelino & Chameides, 1990). 

Houston has a recent unsavory history regarding adherence to the United States 

Environmental Protection Agency’s (EPA) ozone and air particulate level standards. 

This low air quality is often visible in the form of smog, which is partly created by aerial 

photochemical reactions of pollutants like Volatile Organic Compounds (VOCs) and 

Nitrogen Oxides (NOx). Ground level ozone is produced from VOCs and NOx in the 

presence of sunlight (Lo & Quattrochi, 2003). These photochemical reactions are more 

frequent and intense at higher temperatures (Quattrochi et al., 2000; Cardelino & 

Chameides, 1990). Trees act not only to directly absorb polluting gases (NOx, sulfur 

oxides, particulate matter, and ozone) from the air; they also cool the environment, thus 

slowing the rate of the aerial photochemical reactions that create harmful ozone (Lo & 

Quattrochi, 2003).  

One of the points of law and federal regulation that has come from the 1990 

Clean Air Act and its amendments is the continued refinement of a spatial delineation 

referred to as a nonattainment area (CAA, 2004). It is defined as “any area that does not 

meet (or that contributes to ambient air quality in a nearby area that does not meet) the 

national … ambient air quality standard for [a] pollutant” (CAA, 2004). After passage of 

the Clean Air Act, national ambient air quality standards were set by the EPA for six air 
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pollutants: ozone, lead, carbon monoxide, sulfur dioxide, nitrogen dioxide, and 

respirable particulate matter (TNRCC, 2004a). The multi-county nonattainment area is 

somewhat akin to the multi-county PMSA. The federal laws that govern environmental 

compliance within nonattainment areas are more stringent. Accordingly, businesses in a 

nonattainment area are “subjected to stricter pollution control regulations” (Tannenwald, 

1997: 87). These standards are applied across the board, and many smaller businesses 

and institutions that contribute very little to the pollution problem must also invest in 

adhering to complex compliance issues. Adhering to the more rigorous regulations 

increases the cost of conducting business and can be an economic burden to not only the 

business but the potential employee as well (Tannenwald, 1997).  

There are sixteen ozone nonattainment counties in Texas, and eight of the 

counties are in the Houston/Galveston area. From 1997 to 1999 the 8-hour ozone 

standards were not met at any of the ozone monitoring stations in the Houston 

Metropolitan Area, which is in the Houston/Galveston Nonattainment Area, illustrated 

by Figure 2.2 (EPA, 2000; TNRCC, 2004b). This research concentrates on a select 

number of residential neighborhoods within Harris County, but the policy implications 

regarding the impact that residential-structure has on regional temperatures for this study 

could provide information that ultimately relieves economic burdens by reducing overall 

temperatures, energy consumption, and pollution levels.  
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Figure 2.2. The Houston/Galveston Nonattainment Area. It consists of eight Gulf Coast counties. The city 
of Houston is located in Harris County.  
 
 
 
2.3. Residential areas 

The residential neighborhoods that are the focus of this study have varying 

amounts and types of vegetative cover. Although residential areas are generally not as 

‘hot’ as commercial and industrial areas, newer neighborhoods are generally 

significantly warmer than older neighborhoods that have older (more) tree cover 

(Aniello et al., 1995). Research has demonstrated that forested areas that were cleared 

for residential development are “closely related to large increase[s] in surface 

temperatures” (Lo & Quattrochi, 2003: 1059). However, some newly developed 

residential neighborhoods endeavor to preserve the older tree canopy while constructing 

new homes. The Woodlands in the northern Houston Metropolitan Area is one example 
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of such a development. The average temperatures in The Woodlands are significantly 

cooler than temperatures located in newly developed neighborhoods that clear the land 

of vegetation prior to home construction. A Lake Houston neighborhood located east-

northeast of downtown Houston is an example of a residential development with 

approximately the same home density pattern and price values of The Woodlands but 

exhibits significantly warmer temperatures, due to the development style that it employs. 

The Woodlands represents a residential area with significant tree canopy, and the Lake 

Houston neighborhood represents a residential area lacking tree canopy. These two 

neighborhoods also highlight the contrast in terms of temperature impact between a 

development style that preserves tree canopy and one that clears vegetation prior to 

construction.  

There are a number of residential neighborhoods in the Houston Metropolitan 

Area in close proximity to each other that possess the same type of structural 

characteristics as The Woodlands and the Lake Houston neighborhood. This study 

analyzes the micro-urban heat island phenomenon and the impact of neighborhood 

development by focusing on residential areas in proximity to each other that exhibit 

varying amounts of various types of vegetation cover.  
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CHAPTER III 
 

APPROACH AND METHODOLOGY 
 
 

3.1. Overview 

The general approach and methodology of the micro-scale vegetation 

measurement techniques and evaluation of the micro-urban heat island phenomenon in 

this study are illustrated by the flow chart in Figure 3.1. After rigorous geo-coding of the 

Landsat ETM+ imagery is accomplished, the thermal channel from the imagery is 

processed to derive effective at-satellite temperatures. The LIDAR data are processed to 

obtain feature height information for a region exhibiting a substantial range of vegetation 

cover abundance and type in the residential areas. By utilizing a 1 meter spatial 

resolution false color near-infrared aerial photo, an NDVI image with a high spatial 

resolution is created; the high-resolution NDVI image is then used to create an NDVI 

mask through a thresholding process, which defines vegetation coverage. A stratified 

random sampling technique is used to obtain 442 purely residential sample areas 

possessing different structural characteristics in regard to vegetation cover. By masking 

the processed LIDAR feature height data with the high-resolution NDVI mask, tree 

canopy and low-level vegetation (grass and low-lying plants) are quantified for each 

sample area. Descriptive statistics are obtained for the sample areas, and correlation and 

regression statistical methods are used to analyze the relationships between the micro-

urban heat island effect and residential-structure. This chapter details the data, 

methodology, and techniques employed for the micro-scale study that are highlighted in 
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Figure 3.1 and the processing steps of the larger spatial-scale analysis that is used to 

evaluate the effectiveness of the micro-scale vegetation measurement approach.  
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Figure 3.1. Approach and methodology flow chart. The flow chart broadly depicts the various processing 
steps taken in this study.  
 
 
 
3.2. Data sources 

A variety of remote sensing data are used in this study. 1) The Landsat ETM+ 

imagery from the Texas Natural Resource Information System was acquired January 10, 

2000 with a thermal band (10.4-12.5µm) at a spatial resolution of 60 meters. 2) Two sets 

of aerial photographs or DOQQs (Digital Orthophoto Quarter Quadrangles) are utilized. 

The 1995 DOQQs from the Texas Natural Resource Information System are false color 

near-infrared composites. The 2002 natural color DOQQs from the Houston-Galveston 
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Area Council have a spatial resolution of 0.3048 meters (1 foot). 3) The 2001 Airborne 

LIDAR data from the Harris County Flood Control District and TerraPoint, LLC 

employed in this research have a horizontal accuracy of about 1.5 meters and a vertical 

accuracy of approximately 15 centimeters (Campbell, 2002; Krabill et al., 1984). Table 

3.1 provides detailed information about each of the data sources utilized in this study. 

 

Table 3.1      
Data Source Descriptions        
Data 
Type Band 

Spectral 
Resolution (µm) Band Description 

Spatial 
Resolution (m) 

Acquisition 
Date 

1 0.450 - 0.515 blue 30 
2 0.525 - 0.605 green 30 
3 0.630 - 0.690 red 30 
4 0.750 - 0.900 near-infrared 30 
5 1.55 - 1.75 middle-infrared 30 
6 10.40 - 12.50 thermal-infrared 60 
7 2.08 - 2.35 middle-infrared 30 

Landsat 7 
ETM+ 

8 0.52 - 0.90 panchromatic 15 

January 10, 
2000 

1 0.55 green 1.0 
2 0.65 red 1.0 1995 

DOQQs 
3 1.00 near-infrared 1.0 

January 23, 
1995 

1 0.45 blue 0.3048 
2 0.55 green 0.3048 2002 

DOQQs 
3 0.65 red 0.3048 

January 
2002 

1  Bare Earth DEM 4.572 Airborne 
LIDAR 2   Feature Elevations 1.524 

November 
2001 

 
 
 

The 2002 DOQQs used in this research have provided detailed information about 

the residential study areas. The high-resolution of this aerial imagery has proven to be 

extremely valuable in identifying the multiple land-cover types present in the residential 

land-use classes. Residential land-use consists of homes, lawns, low-lying plants, trees, 

concrete, streets, and even pools. These various land-use types define the residential-
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structure of neighborhoods. Figure 3.2 illustrates the variety of land-cover type that can 

be found in a residential neighborhood.  

 

 
Figure 3.2. Example of the high-resolution 2002 DOQQ. This clip of the 1 foot resolution aerial 
photography illustrates the level of detail that can be examined in residential areas. Many different types 
of land-cover can be identified.  
 
 
 
3.3. Geo-coding satellite imagery 

Rigorous geo-coding of the 2000 Landsat ETM+ data using high-resolution 

DOQQ imagery as a control has provided sub-pixel level accuracy. Geo-coding of the 

Landsat data was performed using an affine transformation (first-order polynomial) and 

41 Ground Control Points (GCPs), which are common fixed features that are identifiable 

on both the Landsat imagery and the aerial photographs (Lillesand et al., 2004; 
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Campbell, 2002). The Root-Mean-Squared (RMS) error for the GCPs is calculated to 

provide an accuracy measure for the geo-coding process (Campbell, 2002; Hellwich & 

Ebner, 2000). ESRI ArcGIS software was utilized during the geo-coding process; Figure 

3.3 displays the software interface and the locations of the 41 GCPs used in the process. 

The 2000 Landsat ETM+ data, as received, was misaligned with the DOQQ imagery by 

approximately 130 meters. After rigorous geo-coding, the RMS error was reduced to 

only 9.77 meters. Considering the Landsat panchromatic band has a spatial resolution of 

15 meters, the geo-coding process has transformed the imagery to sub-pixel level 

accuracy. This higher level of accuracy is absolutely necessary for research at this 

detailed, micro-level that focuses on the differences in vegetation and development 

structure between residential neighborhoods in close proximity.  

 

 
Figure 3.3. ESRI ArcGIS geo-coding interface. The crosshairs mark the locations of the 41 GCPs used to 
geo-code the 2000 Landsat ETM+ data. A sub-pixel RMS error of 9.77 meters was achieved.  
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3.4. Derivation of the spatial distribution of surface temperature 

Some of the short-wavelength energy radiated from the Sun is transformed by 

surface materials and emitted back into the atmosphere as long-wavelength energy 

(Jensen, 2000). Differences in the magnitude of emitted thermal energy from various 

land-cover types can affect the “density, dynamics, and importance of other energy 

fluxes linked to specific landscape characteristics” (Quattrochi & Luvall, 2004: 2). 

Thermal sensors record the energy emitted from the Earth’s surface. The thermal band of 

the 2000 Landsat ETM+ data has a spatial resolution of 60 meters and records emitted 

electromagnetic energy from the Earth’s surface between the spectral wavelengths of 

10.4 and 12.5µm. Landsat ETM+ imagery is widely available and has a relatively high 

spatial resolution for the thermal band compared to other commonly utilized satellite-

based thermal sensors. Therefore, these data provide important information regarding the 

general patterns and spatial distribution of temperature variation for residential areas.  

In this study, the digital number values from the thermal band of the 2000 

Landsat ETM+ data are converted to effective at-satellite temperatures through two 

simple processing steps. First, the digital number (DN) of the thermal band is converted 

into radiance values (L) using the following simplified equation: 

( ) maxminmaxmin /* DNDNLLLL −+=  (3.1) 

where Lmax and Lmin are published constant coefficients (17.04 and 0.0 respectively) for 

thermal band 6 of the 2000 Landsat  ETM+ data, DN is the quantized calibrated pixel 

value of each 60x60 meter pixel in the image, and DNmax is equal to 255, which is the 

maximum quantized calibrated pixel value for the image (NASA, 2004). Second, the 
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radiance values (L) are converted to effective at-satellite brightness temperatures (Tb) in 

Kelvin, which is a more physically useful variable, by using the inverse of Planck’s 

equation of radiation: 

⎟
⎠
⎞

⎜
⎝
⎛ +

=
1ln 1

2

L
K
KTb  (3.2) 

where K1 and K2 are calibration constants, 666.09 and 1282.71 respectively, under an 

assumption of unity emissivity (NASA, 2004; Aniello et al., 1995). Remotely sensed 

effective at-satellite brightness temperature measurements require the use of in situ 

ground truth data and/or radiosonde data to calibrate for typical emissivity values of 

common surface materials (Schmugge et al., 2002; Francois & Ottle, 1996; Vidal, 1991; 

Henry et al., 1989). With the emissivity values, the effective at-satellite temperatures 

(Tb) can be converted into physical surface temperatures (Lo & Quattrochi, 2003).  

However, research has demonstrated that the differences between the effective 

at-satellite brightness temperatures and the emissivity-corrected physical surface 

temperatures to be “very small” (Lo & Quattrochi, 2003: 1058; Nichol, 1996). In 

addition, this study is interested in the relative temperature differences between 

neighborhoods in geographic proximity to one another. Therefore, the effective at-

satellite temperatures are adequate, and it is not necessary to calculate the actual physical 

surface temperatures (Aniello et al., 1995). The thermal band data from 2000 Landsat 

ETM+ imagery utilized in this study are processed to effective at-satellite temperatures 

in terms of Kelvin. Figure 3.4 illustrates the urban heat island effect by displaying the 
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processed thermal data for a part of the Houston Metropolitan Area, which overlays a 

natural color composite created from the 2000 Landsat ETM+ imagery.  

 

 
Figure 3.4. Processed 2000 Landsat ETM+ thermal band. This image illustrates the general thermal 
characteristics of part of the Houston Metropolitan Area. The thermal band overlays a natural color 
composite of the 2000 Landsat ETM+ imagery. 
 
 
 
3.5. Classification of land-use and land-cover 

The term ‘land-cover’ is associated with the form or materials covering the land 

surface: forest, water, homes, crops, asphalt, etc. ‘Land-use’ refers to the functional use 
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of the land surface: agriculture, commerce, residential, etc. Many different land-cover 

types can be present in one land-use type (Jensen, 2005). When utilizing a supervised 

classification scheme, the land-use and land-cover dynamics must be taken into account 

in order to manually select training sites for the classification algorithm. The training 

sites selected in this study represent classes in accordance with the USGS Land-

use/Land-cover Classification System, Level I and Level II with some modification 

(Campbell, 2002; Jensen, 2000). As the interest of this study is residential 

neighborhoods with variable amounts and types of vegetation cover, the traditional 

residential classification has been divided into residential areas that exhibit significant 

abundance of tree canopy and residential areas lacking tree canopy. Utilizing natural 

color and false color near-infrared composites derived from the 2000 Landsat ETM+ 

imagery and the 1995 and 2002 DOQQs as references, 177 training sites representing 7 

land-cover types were delineated (Lillesand et al., 2004; Lo et al., 1997). The classes 

used in this study are urban, agricultural, forest, water, barren land, residential with trees, 

and residential without trees.  

Based on the visible and infrared bands (bands 1-5, and 7) of the 2000 Landsat 

ETM+ imagery (30 meter spatial resolution), a supervised maximum likelihood 

classification was adopted to create a Land-use/Land-cover (LULC) map. The decision 

rule utilized by the maximum likelihood classification scheme is based on probability 

and assumes a normal distribution for the statistics of each class in each band (Jensen, 

2005). Each pixel in the image is assigned to a class according to the highest probability 

(maximum likelihood) that it belongs to that class (Jensen, 2005). The larger spatial-
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structure of the urban heat island of Houston has been analyzed in association with 

LULC types and vegetation to evaluate the micro-scale vegetation measurement 

approach as a better surrogate for explaining surface temperatures for residential 

neighborhoods, which is the focus of this thesis.  

An accuracy assessment using 100 stratified random points, high-resolution 

DOQQs, and knowledge of the Houston Metropolitan Area was performed. Each of the 

stratified random points was examined in relation to the classification image and the 

LULC ground-truth. The confusion matrix (Table 3.2) reveals the overall classification 

accuracy to be 83 percent and the kappa coefficient to be 0.77956. The kappa coefficient 

is a measure of accuracy between the 100 randomly selected ground true points and the 

classification map derived from the remote sensing data. A kappa coefficient that is 

greater than 0.80 represents a strong agreement (Jensen, 2005; Campbell, 2002). The 

accuracy of individual categories can be measured in two ways: the producer’s accuracy 

is a measure of omission error for each class; the user’s accuracy is a measure of 

commission error or reliability (Jensen, 2005). The commission error for both the 

residential with tree canopy class and the residential without tree canopy class are 

relatively low. Although the classification results display some problems, the 

classification image is used as merely a reference for the micro-scale vegetation 

measurement analysis focused on residential-structure. 
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Figure 3.5A is a high-resolution (1 foot) aerial photograph from 2002. Region A 

lacks tree canopy, and Region B has a significant amount of tree canopy. Figure 3.5B 

illustrates classification results that have been smoothed using a 3x3 neighborhood 

majority function. The yellow pixels represent residential areas lacking tree canopy, and 

the light green pixels represent residential areas with significant tree canopy. The red 

pixels signify urban areas and the dark green pixels are forested areas. Analysis suggests 

that the classification of residential areas in regards to amount of tree canopy is effective. 

The delineated regions indicate areas where a detailed analysis was conducted using 

temperature, an NDVI, and feature heights from LIDAR data. The distance from the 

center of Region A to the center of Region B is only 1,200 meters. This proximity 
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essentially controls the climatic variables that exist over greater distances. Although the 

two neighborhoods are in close proximity to each other, their vegetation cover, as 

perceived through remote sensing and the classification algorithm, varies greatly. 

 

 
Figure 3.5. Proximal residential areas classified based on vegetation. These regions represent residential 
areas with significant differences in abundance and type of vegetation cover. (A) 2002 aerial photograph. 
Region A is an area lacking tree canopy and Region B is an area with significant tree canopy. (B) 
Classification results identifying residential areas lacking tree canopy (yellow) and residential areas with 
significant tree canopy (green).  
 
 
 

Figure 3.6 illustrates the classification results for a portion of the Houston 

Metropolitan Area. The red urban areas correspond to commercial and industrial uses 

and transportation networks (roads and airports). The light tan agricultural areas 

represent crop land, and the dark tan barren land areas represent sand surfaces and 

A

B
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grasslands. The dark green forested areas correspond to surface regions covered with 

deciduous and coniferous trees. The blue areas represent water. The residential class has 

been divided into residential areas with significant tree canopy (green) and residential 

areas lacking tree canopy (yellow).  

 

 
Figure 3.6. Maximum likelihood classification results. The classification scheme was able to divide 
residential areas according to the level of tree canopy present.  
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3.6. Derivation of NDVI values and total vegetation cover 

The Normalized Difference Vegetation Index (NDVI) is created through a 

method of band ratioing, and it measures the greenness of the environment and the 

amount and/or quality of vegetation (Lillesand et al., 2004; Lo & Quattrochi, 2003; 

Campbell, 2002). This band rationing technique utilizes the fact that red light is absorbed 

by the chlorophyll and infrared radiation is strongly reflected by the mesophyll tissue in 

green vegetation, which provides a stark difference in the red and infrared values 

recorded by the sensor (Campbell, 2002). The relationships between urban heat islands 

and vegetation coverage have been analyzed by correlating surface temperature with the 

NDVI (Gallo & Tarpley, 1996). The near-infrared and red bands of the 2000 Landsat 

ETM+ data and the 1995 false color near-infrared composite DOQQ have been 

separately used to compute the NDVI with this equation:  

redNearIR
redNearIRNDVI

+
−

=  (3.3) 

where NearIR is the near-infrared band, which is band 4 for the Landsat ETM+ imagery 

and band 3 for the DOQQ, and red is the red band, which is band 3 for the Landsat 

ETM+ imagery and band 2 for the DOQQ.  

Figure 3.7 represents the NDVI image for part of the Houston Metropolitan Area 

using 2000 Landsat ETM+ data (30 meter spatial resolution). The dark green and green 

areas represent higher NDVI values and a greater amount of healthy green vegetation; 

the red in the image represents a lack of vegetation, which corresponds to transportation 

networks, urban development, and some agricultural fields.  
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Figure 3.7. NDVI results from 2000 Landsat ETM+ data. This represents part of the Houston Metropolitan 
Area. The dark green and green areas represent a greater amount of green vegetation; the red represents a 
lack of vegetation corresponding to transportation networks, urban development, and some agricultural 
fields; and the blue represents water and an absence of vegetation.  
 
 
 

The 1995 false color near-infrared composite DOQQ at 1 meter spatial resolution 

provides much more detailed results from a geographic perspective. Qualitative analysis 

of the results from the NDVI band ratioing at the higher spatial resolution was 

performed through incorporating prior knowledge about the study area and comparing 

the results to the 1995 and 2002 aerial images. After analysis, it was determined that a 
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threshold NDVI value of 0.0 divided most vegetative cover from the man-made features 

(houses, roads, etc.), bare soil, and/or water in the residential study area. The 

thresholding technique segments the image into two classes (Lillesand et al., 2004). The 

thresholding technique is utilized to create an NDVI mask, which is illustrated by the 

partially transparent green layer placed on top of the 1995 DOQQ in Figure 3.8. This 

NDVI mask layer defines the Total Vegetation Cover measurement for this research. 

The demarcated area in Figure 3.8 corresponds to region A from Figure 3.5 and 

represents a residential neighborhood in which the Total Vegetation Cover is made up of 

mainly low-level vegetation (grass and low-lying plants) and lacks tree canopy. The 

1995 NDVI results are combined with feature height information from 2001 LIDAR 

data in order to derive other micro-scale vegetation measurements.  

 

 
Figure 3.8. NDVI mask from the 1995 DOQQ. Laid over the 1995 DOQQ, the partially transparent green 
layer represents the areas with an NDVI value greater than 0.0, which divides the vegetative cover from 
the man-made features, bare soil, and water. This layer also defines the Total Vegetation Cover for this 
research. The delineated area corresponds to Region A in Figure 3.5. 
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3.7. Tall tree canopy extents and heights derived from LIDAR data 

LIDAR is an active sensor that uses laser pulses aimed toward the ground, and 

the time of the pulse return is measured to calculate the distances between the sensor and 

the various features on or above the ground (Lillesand et al., 2004). “[LIDAR sensors] 

are unique in being the only sensors that can reliably differentiate between multiple 

imaged layers” (Campbell, 2002: 239). In other words, LIDAR sensor data can be 

utilized to obtain bare-Earth information and object height information. The raw LIDAR 

data consists of a massive number of single return laser measurements corresponding to 

the ground and feature heights above the ground (e.g., homes, trees, etc.). The raw data, 

once interpolated, produces a Digital Surface Model (DSM); and if the man-made 

features are removed, a Digital Canopy Model (DCM) can be created (Nilsson, 1996; 

Nelson et al., 1988). It is no small process to remove the surface object information 

(trees, bushes, grasses, buildings, power lines, bridges, etc.) from the LIDAR data to 

create a bare-Earth DEM, void of tree canopy and man-made structures.  

For this research, the raw LIDAR data set and a bare-Earth LIDAR DEM were 

acquired from the Harris County Flood Control District. The bare-Earth LIDAR DEM 

was created through processing conducted by TerraPoint, LLC for the Harris County 

Flood Control District and has a spatial resolution of 15 feet (4.572 meters). In order to 

obtain the feature height data set for the residential study area, the bare-Earth LIDAR 

DEM was subtracted from the interpolated raw LIDAR data set (DSM). This is a simple 

raster calculation and provides the feature heights (Fh) relative to the ground for tree 

canopy and man-made structures for the residential study area (DeMers, 2002; Persson 
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et al., 2002; Krabill et al., 1984). This map subtraction process can be expressed with the 

following equation: 

bEFeFh −=  (3.4) 

where Fe is the interpolated feature elevation data set (DSM) and bE is the processed 

bare-Earth LIDAR DEM; both are relative to sea level. Figure 3.9 graphically illustrates 

the raster subtraction process: the interpolated DSM (Figure 3.9A) minus the bare-Earth 

LIDAR DEM (Figure 3.9B) provides the feature heights relative to the ground.  

 

 
Figure 3.9. Map subtraction of LIDAR data. (A) The DSM or interpolated feature elevation data set. (B) 
The bare-Earth LIDAR DEM. The bare-Earth DEM is subtracted from the DSM to obtain feature heights.  
 
 
 

Qualitative analysis of the feature height LIDAR data set was conducted through 

incorporating prior knowledge about the study area and comparing the tree heights to the 

1995 and 2002 DOQQs. After analysis, it was determined that feature heights ≥ 25 feet 

(7.62 meters) represent the tall tree canopy well while excluding most of the man-made 

structures (houses) in the residential study area. This thresholding technique provides a 

measure of the area covered by tall tree canopy in the residential neighborhood. The 

partially transparent orange layer in Figure 3.10 is laid over a 2002 DOQQ (1 foot 
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spatial resolution) and represents areas where the tree heights are ≥ 25 feet. This layer 

defines the Tall Tree Canopy measurement for this research. Figure 3.10 corresponds to 

region B from Figure 3.5 and represents a residential neighborhood with a significant 

amount of tree canopy. The 1995 NDVI mask layer is applied to the 2001 feature height 

LIDAR layer in order to obtain micro-scale measurements of tree canopy and low-level 

vegetation, which are used to analyze the relationships between residential-structure and 

micro-urban heat islands in neighborhoods.  

 

 
Figure 3.10. LIDAR feature height data. Laid over the 2002 DOQQ, the partially transparent orange layer 
represents the areas with feature heights equal to or greater than 25 feet, which excludes most of the 
houses in the residential neighborhood. This layer also defines the Tall Tree Canopy for this research. The 
delineated area corresponds to Region B in Figure 3.5. 
 
 
 
3.8. Derivation of micro-scale vegetation measurements 

By utilizing a thresholding technique together with a raster masking process 

(DeMers, 2002) from the NDVI layer, the man-made structures can be removed from the 
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LIDAR feature height layer. Therefore, the feature height threshold from the LIDAR 

data can be lowered to capture the shorter tree canopy along with the Tall Tree Canopy. 

Figure 3.11 depicts the problem caused by the man-made structures: the red pixels 

represent LIDAR feature heights between 10 and 25 feet; the brown pixels represent Tall 

Tree Canopy (feature heights ≥ 25 feet). Many of the areas with feature heights between 

10 and 25 feet in residential areas represent houses. By utilizing a masking process based 

on the Total Vegetation Cover (NDVI > 0.0), the houses can be removed from the 

feature height data set and the tree canopy measurement threshold can be lowered. 

Figure 3.12 illustrates the results of masking the LIDAR data with the Total Vegetation 

Cover layer: the green represents the increased area that can be identified as tree canopy.  

Adding the additional area identified as tree canopy to the Tall Tree Canopy 

(already identified through thresholding) created a new micro-scale vegetation 

measurement. This new layer defines the Total Tree Canopy for this research. Because 

the sample areas utilized in this research are located in residential areas and most of the 

man-made features are houses, the amount of error encountered by capturing man-made 

features heights ≥ 25 feet is negligible. However, the amount of tall tree canopy captured 

by this conditional function is significant.  

Section 3.10 lists and describes all of the micro-scale vegetation measurements 

that are utilized in this research. The micro-scale vegetation measurements are used to 

quantify residential-structure and provide information about the independent 

contributions of tree canopy and that of low-level vegetation cover toward lowering 

residential temperatures.  
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Figure 3.11. LIDAR feature heights without the NDVI mask. Many of the areas with feature heights 
between 10 and 25 feet represent man-made structures (houses).  
 
 
 

 
Figure 3.12. LIDAR feature heights with the NDVI mask. The man-made structures (houses) are removed 
from the feature height data set by the NDVI masking process, and a greater area of tree canopy can be 
identified by lowering the tree canopy measurement threshold.  
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3.9. Stratified random residential sample areas 

Detailed quantitative analysis is conducted for a larger area that exhibits a 

residential-structural mix and a wide range of micro-scale measured vegetation 

abundance and type (Figure 3.13). The mixture of green and yellow pixels in Figure 3.13 

represents different amounts of vegetation cover in residential areas. The LULC image 

was used as a reference; however, the larger study area was selected based upon the 

large quantity of geographically proximal neighborhoods exhibiting a variety of 

residential-structures. From this larger area, descriptive statistics of 442 stratified 

random residential sample areas spread over approximately 46 km2 are obtained and 

analyzed in order to quantify the relationships between feature heights, vegetation, and 

temperature. A GIS is utilized to create a fishnet that functions to: label each of the 

smaller samples; define the size of each sample; and extract information from each 

sample. The size of each sample is based partially on the resolution of the thermal data 

and partially on the characteristics of the larger study area, in terms of observed sizes of 

contiguous residential neighborhoods. The smaller sample areas were selected based 

upon a purely residential classification and the absence of change between 1995 and 

2001, because the NDVI layer was derived from 1995 imagery and the LIDAR feature 

heights layer was derived from 2001. The use of temporally correlated NDVI and 

LIDAR data and/or a highly accurate LULC map could provide a more automated means 

by which to identify purely residential sample areas.  
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Figure 3.13. Residential study area and classification results. The mixture of green and yellow pixels 
represents different amounts of vegetation cover for residential areas in proximity to each other. Within 
the larger study area, 442 smaller stratified random sample areas are demarcated. The samples are spread 
over a 46km2area. 
 
 
 

Each sample area is approximately 150x150 meters (more precisely: 

23,225.76m2). Although the samples are spread over an area that is 46km2, the actual 

area of all of the samples is about 10.27km2. Figure 3.14 illustrates the location, density, 

and size of the 442 stratified random residential sample areas. The percentages of the 

total area of each residential sample regarding their residential-structural characteristics 
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are measured. These percentages are evaluated quantitatively using simple linear 

regression, scatterplots, and multiple regression analysis. The variable values for each 

sample area are obtained by means of a relatively simple programming function written 

in C++ program language.  

 

 
Figure 3.14. 442 stratified random residential sample areas. Each sample area is about 150x150 meters and 
contains 10,000 5x5 foot cells (1.52x1.52m). The area of all of the samples combined is about 10.27km2.  
 
 
 

The smaller sample areas were selected based upon individual examination to 

ensure that the area covered within each sample is completely residential and showed 

little or no change from 1995 to 2002. This was verified by individual examination; 

comparing the 1995 and 2002 DOQQs, areas that were not purely residential or 

presented a change of LULC type from 1995 to 2002 were rejected. The gaps in the 

sample grid displayed in Figure 3.15 are areas where the samples were rejected.  
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Figure 3.15. Gaps in the residential sample grid. The areas between the numbered samples represent 
sample areas that were rejected based upon the presence of non residential land-cover or a land-cover 
change between 1995 and 2002.  
 
 
 
3.10. Binary grids representing residential-structure measurements 

All of the imagery has been resampled to a cell size of 5x5 feet in order to 

facilitate direct comparisons to the stratified random residential samples. The following 

conditional statements are utilized to create the binary grids, which are used to derive 

and define residential-structure measurements for each residential sample area:  

1) Every 5x5 foot cell with an NDVI value > 0.0 are given a value of one and NDVI 

values ≤ 0.0 are given a value of zero (Total Vegetation Cover);  

2) Cells with a feature height ≥ 10 feet are given a value of one and heights < 10 

feet are given a value of zero (Above Ground Features);  
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3) Cells with an NDVI value > 0.0 and a feature height ≥ 10 feet are given a value 

of one and all others are given a value of zero (High NDVI Tree Canopy);  

4) Cells with a feature height ≥ 25 feet are given a value of one and heights < 25 

feet are given a value of zero (Tall Tree Canopy);  

5) Cells with an NDVI value > 0.0 and a feature height ≥ 10 feet or a feature height 

≥ 25 feet are given a value of one and all others are given a value of zero (Total 

Tree Canopy); and 

6) Cells with an NDVI value > 0.0 and a feature height < 10 feet are given a value 

of one and all others are given a value of zero (Low-Level Vegetation).  

The percentage values of the area covered by each of these micro-scale 

vegetation measurements are obtained by means of a relatively simple programming 

function. These values, the mean NDVI values from the 1995 DOQQ, the mean NDVI 

values from the 2000 Landsat ETM+ imagery, and the mean feature height value within 

each sample area is compared to the corresponding mean at-satellite temperature from 

the thermal data of the 2000 Landsat ETM+ imagery. These descriptive statistics are 

used to examine the relationships between residential-structure and the micro-urban heat 

island effect. Through quantitative analysis, simple linear and multivariate regression 

models are used to explain the level of contribution that each micro-scale vegetation 

measurement based on abundance and type has toward temperature.  

Using sample #125 as an example, the following Figures illustrate the acquisition 

of the micro-scale vegetation measurements in terms of percentage of total sample area, 

which are utilized to quantify the influence of residential-structure on temperature.  
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• Figure 3.16 displays the Total Vegetation Cover: 38.73%. 

• Figure 3.17 displays the Above Ground Features: 37.12%, which represent tree 

canopy and man-made structures (houses).  

• Figure 3.18 displays the High NDVI Tree Canopy: 15.33%. 21.79% of the total 

area is removed, which represents man-made structures and some tall tree canopy 

with relatively low NDVI values.  

• Figure 3.19 displays the Total Tree Canopy: 20.44%. 5.11% of the area, which 

represents tree canopy with relatively low NDVI values, is added back.  

• Figure 3.20 displays the Low-Level Vegetation: 23.40%. From the Total 

Vegetation Cover layer, 15.33% is removed, which represents High NDVI Tree 

Canopy.  

 

 
Figure 3.16. Creation of the Total Vegetation Cover layer. (A) 1995 false color near-infrared composite 
DOQQ used to derive the NDVI has been resampled to a cell size of 5x5 feet. (B) The partially transparent 
green areas represent cells exhibiting NDVI values > 0.0: 38.73% of the total area.  
 
 

A B
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Figure 3.17. LIDAR data and Above Ground Features. (A) LIDAR data processed to provide above-
ground feature heights and mean feature height values for each sample. (B) The orange areas indicate 
feature heights ≥ 25 feet. The partially transparent red areas indicate feature heights ≥ 10 feet, which 
represents 37.12% of the total sample area.  
 
 
 

 
Figure 3.18. Creation of High NDVI Tree Canopy layer. (A) The partially transparent green areas 
represent 15.33% of the total area and have NDVI values > 0.0 and feature heights ≥ 10 feet. The partially 
transparent red areas correspond to areas with feature heights ≥ 10 feet but NDVI values ≤ 0.0. This is 
21.79% of the total area, which is removed. (B) The partially transparent green areas represent High NDVI 
Tree Canopy, which is 15.33% of the total area.  
 
 
 

A B

A B
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Figure 3.19. Creation of Tall Tree Canopy layer. (A) The green areas are High NDVI Tree Canopy, which 
is 15.33% of the total area. The orange areas represent tall tree canopy with low NDVI values; these have 
feature heights ≥ 25 feet but NDVI values ≤ 0.0, which is 5.11% of the area. (B) The areas of tall tree 
canopy with low NDVI values are added back to yield Total Tree Canopy, which is 20.44% of the area. 
 
 
 

 
Figure 3.20. Creation of Low-Level Vegetation layer. (A) The partially transparent green areas represent 
Total Vegetation Cover, which is 38.73%. The orange areas represent High NDVI Tree Canopy, which is 
15.33% of the area. (B) The partially transparent light green areas represent Low-Level Vegetation, which 
is now 23.40%. The High NDVI Tree Canopy, representing 15.33% has been removed. 
 
 
 

A B

A B
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The thermal data from the 2000 Landsat ETM+ imagery (60 meter spatial 

resolution) has been resampled to a cell size of 5x5 feet in order to directly compare it to 

the various binary grids representing different residential-structure characteristics. Figure 

3.21A displays the thermal data. The size of the stratified random residential sample 

areas was partially determined based on the spatial resolution of the thermal data. At a 

sample area size of approximately 150x150 meters, each sample has a mean at-satellite 

temperature based upon segments of at least 9 different thermal cells. This procedure 

helps eliminate outliers in the quantitative statistical analysis of the 442 sample areas and 

captures the residential thermal patterns. The mean 1995 and 2000 NDVI values for each 

sample are also evaluated against temperature. The 2000 Landsat ETM+ NDVI image 

(30 meter spatial resolution) was resampled to a cell size of 5x5 feet (Figure 3.21B). 

 

 
Figure 3.21. Resampled thermal data and NDVI from 2000 Landsat ETM+ imagery. (A) The 2000 thermal 
data has been resampled to facilitate a direct comparison between the grids. Each sample area size of about 
150x150 meters ensures that at least segments of 9 different thermal cells will be used to produce a mean 
effective at-satellite temperature for each sample area. (B) The resampled 2000 NDVI layer. 
 

A B
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CHAPTER IV 
 

RESIDENTIAL-STRUCTURE AND TEMPERATURE ANALYSIS 
 
 

4.1. Qualitative analysis of the vegetation and temperature relationship 

A qualitative analysis of the relationships between general larger spatial-scale 

vegetation distribution and surface temperature in residential areas reveals a noticeable 

negative correlation. Vegetation cover, which includes trees, grass, low-lying plants, and 

crops, influences the thermal properties of the terrestrial surface. In general, areas 

exhibiting vegetation cover that is relatively denser or thick correspond to areas with 

lower surface temperatures (e.g., forests). Compared to grassland areas or residential 

lawns, tree canopy can be considered as thick vegetation cover.  

The Houston Metropolitan Area has an excellent model that highlights the 

correlation between vegetation cover abundance or type and temperature. Figure 4.1 

illustrates the contrast in surface temperature for two residential developments. The 

general spatial distribution of temperature variation for these residential areas can be 

gleaned from the thermal image. Though qualitative analysis, the main difference 

observed between these two residential areas is the abundance of tree canopy. Figure 

4.1A represents The Woodlands, a residential development that endeavors to preserve 

the older tree canopy while constructing new homes. Figure 4.1B represents Lake 

Houston, a neighborhood that cleared the land of vegetation prior to residential 

development. After clearing the older tree canopy, development takes place, lawns are 

plotted, and small trees are planted that evidentially grow to provide a cooling effect. 
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The thermal band from the 2000 Landsat ETM+ imagery is partially transparent and 

overlays the panchromatic band from the same data set. Figure 4.1 illustrates the 

differences in temperature between residential areas with significant tree canopy and 

residential areas lacking tree canopy; thereby, illustrating the contrast between the two 

development styles. The red areas represent higher emissivity values or temperatures 

that seem to radiate out from neighborhoods lacking tree canopy (Aniello et al., 1995), 

and the green areas represent cooler temperatures. The Woodlands, as a whole, appears 

much cooler than the Lake Houston neighborhood, even though the home density 

patterns and price values are approximately the same for both residential developments.  

 

 
Figure 4.1. Temperature of residential areas with varying levels of tree canopy. The thermal band is placed 
over the panchromatic band from the 2000 Landsat ETM+ data. (A) The Woodlands, a residential 
neighborhood with significant tree canopy. (B) Lake Houston, a residential neighborhood lacking tree 
canopy. The Woodlands appears much cooler than the Lake Houston neighborhood.  
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Figure 4.2 displays the NDVI results from the 2000 Landsat ETM+ data and 

represents the same areas that are depicted in Figure 4.1. The red in Figure 4.2 represents 

a lack of vegetation, which corresponds to residential areas lacking tree canopy, and 

some transportation networks and urban development; the dark green and green regions 

represent areas with higher NDVI values and an abundance of green vegetation 

corresponding to forested areas and residential areas with significant tree canopy; the 

yellow areas represent an intermediate level of vegetation, and residential areas lacking 

tree canopy are located in these regions; and the blue represents water and an absence of 

vegetation. Considering the residential developments displayed in Figure 4.2, there 

appears to be a much larger area exhibiting low NDVI values in the Lake Houston 

neighborhood than in The Woodlands. The contrast between these two development 

styles highlights the importance of trees. The close association between the NDVI value 

and temperature is evident by visually comparing Figures 4.1 and 4.2. However, while it 

is clear that areas with high NDVI values have lower temperatures, the NDVI value 

alone does not provide information about the independent contributions of tree canopy 

and that of low-level vegetation cover toward lowering temperature. The micro-urban 

heat islands (Figure 4.1) seem to radiate out from individual center points of 

neighborhoods lacking tree canopy (Aniello et al., 1995). 
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Figure 4.2. NDVI results of residential areas with varying levels of tree canopy. The image is derived from 
2000 Landsat ETM+ data and corresponds to the areas depicted in Figure 4.1. (A) The Woodlands, a 
residential neighborhood with significant tree canopy. (B) Lake Houston, a residential neighborhood 
lacking tree canopy.  
 
 
 
4.2. NDVI as an explanatory variable for surface temperature 

The overall negative correlation between NDVI and surface temperature has 

been revealed in previous studies (Lo & Quattrochi, 2003; Lo et al., 1997; Gallo & 

Tarpley, 1996; Gallo et al., 1993). The mean NDVI values from the 2000 Landsat ETM+ 

data for each of the 442 stratified random residential sample areas plotted against the at-

satellite temperatures for the same year show a strong negative correlation (Figure 4.3). 

When considering the R2 value of 0.7675, the simple linear regression shows that about 

77% of the variation observed for temperature can be explained by the NDVI, which is a 

measure of the overall abundance and/or quality of vegetation (Lillesand et al., 2004).  
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Figure 4.3. Correlation between temperature and the NDVI. A scatterplot of at-satellite temperature and 
2000 Landsat ETM+ NDVI values. Approximately 77% of the variation in temperature can be explained 
by the NDVI value. The Pearson’s correlation coefficient is -0.8761.  
 
 
 

The NDVI alone, however, does not explain the degree to which variations in 

temperature are caused by the amount of different types of vegetation present in the 

residential environment. For concerned neighborhood planners, this information may be 

enormously helpful in mitigating the negative effects of micro-scale urban heat islands. 

In this study, an analysis of the correlations between NDVI, micro-scale vegetation 

measurements, and temperature for proximal residential sample areas shows that NDVI 
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may not be the best instrument for explaining the effects that different vegetation types 

have on surface temperature at the residential neighborhood scale. Residential areas can 

display similar relatively high NDVI values while exhibiting very different residential-

structures. Green lawns can produce relatively high NDVI values, but they do not 

provide the same level of cooling as tree canopy. This may account for the seeming 

disagreement between the amount of total vegetation cover and temperature in some 

proximal residential areas. Therefore it is necessary to define the levels of cooling that 

both trees and low-level vegetation contribute independently.  

In the following sections, residential areas exhibiting similar Total Vegetation 

Cover measurements but a wide range of vegetation types and combinations are 

analyzed. A measurement of the Total Vegetation Cover as a percentage of residential 

area based on the NDVI alone shows a relatively weak correlation to surface temperature 

(Figure 4.4). By incorporating feature height information, micro-scale vegetation 

measurements defining the abundance of various types and combinations of vegetation 

cover shows a much stronger correlation and can quantify the independent influence that 

different residential-structures have on surface temperature. The micro-scale vegetation 

measurements are evaluated as predictors of surface temperature. It is clear that a high 

NDVI value is desirable; however, the residential-structure that is needed to obtain the 

desired NDVI and a desired cooling effect in an individual neighborhood cannot be 

ascertained. The independent contributions of tree canopy and that of low-level 

vegetation cover toward lowering temperature must be quantified in order to help 

instruct planning and policy measures.  
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y = -4.2452x + 301.25
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Figure 4.4. Correlation between temperature and Total Vegetation Cover. Only approximately 27% of the 
variation in temperature can be explained by Total Vegetation Cover. The Pearson’s correlation coefficient 
is -0.5259.  
 
 
 
4.3. Selection and sampling model for two representative regions 

Given the examples of The Woodlands and Lake Houston neighborhoods 

described above, it is evident that by selecting a certain residential development style, a 

developer or city planner can greatly influence the thermal properties of the new 

neighborhood. However, the developer must know the specific residential-structure that 

should be employed to achieve a desired thermal goal, in terms of the amount of tree 
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canopy to retain versus the amount of grassy lawns to plot. Specifically selected to act as 

examples of two different types of neighborhoods in regard to residential-structure, the 

similarly sized neighborhood regions delineated in Figure 4.5 are analyzed in more 

detail. Region A represents a residential area lacking tree canopy. Region B represents a 

residential area with significant tree canopy. By comparing these two much smaller 

representative residential areas in close proximity to each other (unlike The Woodlands 

and the Lake Houston neighborhood), the geographically dependent variables relating to 

climate and elevation are essentially controlled. The distance from the center of Region 

A to the center of Region B is only 1,200 meters.  

 

 
Figure 4.5. Two representative residential regions. A 1995 false color near-infrared composite DOQQ with 
1 meter spatial resolution. Region A represents a residential area lacking tree canopy. Region B represents 
a residential area with significant tree canopy. The distance from the center of Region A to that of B is 
only 1,200 meters. The arrow at C points to an area that was developed between 1995 and 2000.  
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As described in Chapter III, the feature height threshold and the NDVI value 

threshold are identified in these two regions to calculate various micro-scale vegetation 

measurements. The residential-structure of each region displayed in Figure 4.5 is 

examined in relation to total area and in relation to each other. By acquiring NDVI 

values and feature heights from 1000 randomly selected points in each region, the 

general residential-structure pattern is revealed. Figure 4.6 is a scatterplot of the NDVI 

values and features heights for the 1000 random points in Region A, the residential area 

lacking tree canopy. Figure 4.7 is a scatterplot of the NDVI and features heights for the 

1000 random points Region B, the residential area with significant tree canopy.  
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Figure 4.6. Scatterplot for Region A. The NDVI and features heights of 1000 random points in the 
residential area lacking tree canopy.  
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Region B: Residential Area With  Significant Tree Canopy
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Figure 4.7. Scatterplot for Region B. The NDVI and features heights of 1000 random points in the 
residential area with significant tree canopy. 
 
 
 

Using both Figures, a graphically aided assessment of the threshold values was 

conducted, and the scatterplots are labeled with the land-cover types assumed from the 

derived thresholds: trees, houses, pavement, and low-level vegetation. Although both 

scatterplots display a large number of points with NDVI values over the threshold of 

0.00, most of those points for Region A are associated with low feature heights and 

represent grass and low-lying plants; most of the points for Region B with NDVI values 

> 0.00 have relatively high feature heights, which represent tree canopy. There are a 

relatively large number of points in Region B with low NDVI values and high feature 

heights. From examination, there are very few man-made features in these residential 
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regions that are taller than 25 feet; therefore, most of these points represent tall tree 

canopy with low NDVI values, most likely due to the season in which the 1995 DOQQ 

was acquired. The 1995 DOQQ, which is used to derive the NDVI values, was acquired 

in January, when the leaves were off the trees.  

 

4.4. Residential-structure and temperature in two representative regions 

The NDVI value and feature height value collected at each of the 1000 random 

points for each region were analyzed to derive micro-scale vegetation measurements that 

represent the residential-structure of each region. The statistical analysis results for each 

representative residential region are provided in Table 4.1. Based on the thresholding 

values, Region A has a Total Vegetation Cover of 48.20%, which is relatively similar to 

the Total Vegetation Cover of Region B: 58.47%. However, only 10.97% of the area of 

Region A is made up of Tall Tree Canopy compared to 48.40% for Region B. Although 

both regions have similar Total Vegetation Cover, only 8.85% of the total area of Region 

A has tall tree canopy with a high NDVI compared to 32.24% for Region B.  

After the NDVI masking process, which lowers the tree canopy threshold to ≥ 10 

feet, results show that only 15.98% of the total area of Region A has High NDVI Tree 

Canopy compared to 41.47% for Region B. The Total Tree Canopy measure for Region 

A is 18.09% compared to 57.63% for Region B. However, Region A has a much larger 

percentage of Low-Level Vegetation (32.22%) relative to Region B (17.00%). Adding 

the Total Tree Canopy to the Low-Level Vegetation yields 50.31% for Region A and 

74.63% for Region B.  
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Analysis shows that, in terms of area, both regions have similar amounts of Total 

Vegetation Cover (i.e., NDVI values > 0). In contrast to each other, however, the Total 

Tree Canopy measurement is much lower for Region A than Region B. Moreover, the 

vegetative cover for Region A is made up of mostly Low-Level Vegetation (grasses or 

low-lying plants) and Region B’s is made up of mostly tree canopy. The percentage of 

Total Vegetation Cover for Region A that is tree canopy (LIDAR feature heights ≥ 10 

feet) is only 33.15%. The percentage of the Total Vegetation Cover for Region B that is 

tree canopy is 70.93%.  

 

Table 4.1 
Residential-Structure Statistics of Representative Neighborhoods 

Region A B 
Total square meters 104,434 101,464

Land cover variable Description Percent 
total area 

Percent 
total area

Total Vegetation Cover NDVI value > 0 48.20 58.47
Tall Tree Canopy LIDAR feature heights ≥ 25 (ft) 10.97 48.40
tall trees w/ high NDVI LIDAR ≥25 and NDVI > 0 8.85 32.24
tall trees w/ low NDVI LIDAR ≥25 and NDVI ≤ 0 2.11 16.16
High NDVI Tree Canopy LIDAR ≥10 and NDVI > 0 15.98 41.47
Total Tree Canopy LIDAR ≥10 and NDVI > 0 or LIDAR ≥ 25 18.09 57.63
Low-Level Vegetation NDVI value > 0 and LIDAR < 10 32.22 17.00
Total Tree Canopy and Low-Level Vegetation together  50.31 74.63
Mean 1995 NDVI value DOQQ January 23, 1995 -0.0041 -0.0269
Mean 2000 NDVI value Landsat ETM+ January 10, 2000 0.1132 0.2549
Mean at-satellite temperature (K) 300.985 298.033

 
 
 

After establishing the differences and similarities between the two representative 

regions regarding amount of Total Vegetation Cover and Total Tree Canopy, the regions 

are examined in regard to their mean effective at-satellite temperatures. The short 
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distance between the regions reduces the influence of any climate variability. However, 

their mean effective at-satellite temperatures are much different as illustrated by Figure 

4.8, which is the 2000 Landsat ETM+ thermal band laid over a 2002 natural color 

DOQQ. The mean effective at-satellite surface temperature for Region A, which 

represents a residential neighborhood lacking tree canopy, is 300.985 Kelvin. The mean 

effective at-satellite surface temperature for Region B, which represents a residential 

neighborhood with significant tree canopy, is 298.033 Kelvin (Table 4.1). This is a 

difference of 2.982 Kelvin, or almost 3º Celsius. Even though the regions are proximal 

and they exhibit similar Total Vegetation Coverage, the thermal properties are quite 

different. The determining factor seems not to be the coverage, but the abundance or 

dearth of certain types of vegetation coverage.  

The neighborhood, marked as “C” and pointed out in Figures 4.8 and 4.5, is a 

newer residential development built between 1995 and 2000. This new development was 

built after the tree canopy, present in 1995 (Figure 4.5), was removed. The micro-urban 

heat island effect is observable; the highest temperature (302.203 Kelvin) is near the 

center of the neighborhood and the temperatures decrease with distance from the center. 

By removing the tree canopy, a new micro-urban heat island was created between 1995 

and 2000. The highest temperature observed in Region A is also 302.203 Kelvin. The 

Low-Level Vegetation present in Region A provides less of a cooling effect compared to 

tree canopy. If a certain amount of tree canopy was retained during development, the 

impact of the heating effect would have been decreased. So, how much of the tree 

canopy should have been retained?  
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Figure 4.8. Thermal characteristics of two representative residential regions. A smoothed partially 
transparent 2000 Landsat ETM+ thermal band over a 2002 DOQQ (1-foot spatial resolution). The distance 
from the center of Region A to that of B is only 1,200 meters. The mean effective at-satellite temperature 
is 300.985 Kelvin for Region A and 298.033 Kelvin for Region B. This is a difference of 2.982 Kelvin, or 
almost 3º Celsius. The arrow at C points to an area that was developed between 1995 and 2000.  
 
 
 

Research has shown that vegetation indices and surface temperature have an 

overall strong negative correlation (Weng et al., 2004; Kustas et al., 2003; Lo & 

Quattrochi, 2003; Lo et al., 1997; Gallo & Tarpley, 1996; Gallo et al., 1993; Roth et al., 

1989). Therefore, it is well established that having an overall high NDVI value in a 

neighborhood will mitigate the heating effect. However, the specific type of residential-

structure needed to obtain an overall high NDVI value is less well established. 

Moreover, the NDVI value does not explain the degree to which certain types and 

amounts of residential vegetation cool a neighborhood. By analyzing the results from the 

two representative regions, it appears that the micro-scale vegetation measurements 
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could provide more illuminating variables, regarding the effects of residential-structure 

on temperature. This high spatial resolution analysis using LIDAR data and the false 

color near-infrared DOQQ has provided detailed information regarding the type and 

abundance of certain vegetation at a neighborhood scale for the two chosen 

representative regions. A more robust variation of this micro-scale vegetation 

measurement approach, focused on residential-structure, is used to analysis 442 sample 

areas and is aimed at quantifying the level of influence that various types and amounts of 

residential land-cover have on temperature at a neighborhood scale.  

 

4.5. Residential-structure as a more explanatory variable 

By incorporating a high-resolution NDVI image, LIDAR data, and a residential 

sampling technique, the micro-scale vegetation measurement approach provides 

information about residential-structure. Using the binary grids described in Chapter III, 

descriptive statistics for each of the 442 stratified random residential sample areas are 

derived. These descriptive statistics correspond to the percentage of the total area that a 

particular variable populates within each residential sample area. The statistical values 

were extracted from the grid cells in each sample area by means of a relatively simple 

programming function written in C++ program language. Each grid statistic 

corresponding to a specific micro-scale vegetation measure is analyzed as a predictor 

variable, where temperature is the response variable. In other words, the variables that 

characterize residential-structure act as independent or explanatory variables for 

predicting the mean effective at-satellite temperature (the dependent variable) that may 
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be observed for residential neighborhoods. In addition, the mean 2000 NDVI value and 

the mean feature height in each sample area are evaluated against temperature.  

Utilizing the statistical values of the 442 residential sample areas, a simple linear 

regression model is used to identify correlations. The levels of influence that various 

types and amounts of vegetation have on temperature have been separately analyzed, by 

evaluating the micro-scale vegetation measurements in terms of their relationship to 

effective at-satellite surface temperature with the simple linear regression model. Table 

4.2 provides a summary of the results and a description of each measurement that 

represent residential-structure. As noted earlier, Total Vegetation Cover based on the 

NDVI alone shows a relatively weak correlation to effective at-satellite surface 

temperature. However, the Total Tree Canopy measurement shows a very strong 

correlation to temperature. Although the mean 2000 NDVI value also shows a strong 

correlation to temperature, it does not describe the residential-structure of the 

neighborhood in which the NDVI value was recorded by the Landsat ETM+ sensor.  

 

Table 4.2 
Residential-Structure Statistics Plotted against Temperature 

Land cover variable Description R2 Pearson's r 

Total Vegetation Cover NDVI value > 0 0.2766 -0.5259 
Above Ground Features LIDAR ≥10 0.6283 -0.7927 
High NDVI Tree Canopy LIDAR ≥10 and NDVI > 0 0.6249 -0.7905 
Tall Tree Canopy LIDAR feature heights ≥ 25 (ft) 0.7841 -0.8855 
Total Tree Canopy LIDAR ≥10 and NDVI > 0 or LIDAR ≥ 25 0.7879 -0.8876 

Mean Feature Height Mean LIDAR feature height value 0.7465 -0.8640 
Mean 2000 NDVI value Landsat ETM+ January 10, 2000 0.7675 -0.8761 
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From the linear regressions, scatterplots have been created that plot the effective 

at-satellite surface temperature against the following explanatory variables:  

1) The Total Vegetation Cover (Figure 4.9);  

2) The Above Ground Features (Figure 4.10);  

3) High NDVI Tree Canopy (Figure 4.11);  

4) Tall Tree Canopy (Figure 4.12);  

5) Total Tree Canopy (Figure 4.13).  

6) The mean feature height (Figure 4.14); and  

7) The mean 2000 NDVI value (Figure 4.15). 
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Figure 4.9. Scatterplot of temperature and Total Vegetation Cover. Only about 28% of the variation in 
temperature can be explained by this measurement. The Pearson’s correlation coefficient is -0.5259. 
 
 
 



63 

y = -6.3258x + 302.46
R2 = 0.6283
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Figure 4.10. Scatterplot of temperature and Above Ground Features. Approximately 63% of the variation 
in temperature can be explained by this measurement. The Pearson’s correlation coefficient is -0.7927. 
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Figure 4.11. Scatterplot of temperature and High NDVI Tree Canopy. Approximately 62% of the variation 
in temperature can be explained by this measurement. The Pearson’s correlation coefficient is -0.7905. 
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y = -6.3171x + 301.15
R2 = 0.7841
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Figure 4.12. Scatterplot of temperature and Tall Tree Canopy. Approximately 78% of the variation in 
temperature can be explained by this measurement. The Pearson’s correlation coefficient is -0.8855. 
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Figure 4.13. Scatterplot of temperature and Total Tree Canopy. Approximately 79% of the variation in 
temperature can be explained by this measurement. The Pearson’s correlation coefficient is -0.8876. 
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y = -0.118x + 301.37
R2 = 0.7465
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Figure 4.14. Scatterplot of temperature and mean feature height. Approximately 75% of the variation in 
temperature can be explained by this measurement. The Pearson’s correlation coefficient is -0.8640. 
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Figure 4.15. Scatterplot of temperature and mean 2000 NDVI value. Approximately 77% of the variation 
in temperature can be explained by NDVI. The Pearson’s correlation coefficient is -0.8761.  
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The simple linear regression shows that the Total Tree Canopy measurement can 

explain about 79% of the variation observed in temperature, considering the coefficient 

of determination (R2 value) of 0.7879. The regression equation that quantifies the 

influence of this micro-scale vegetation measure on temperature change is as follows: 

TTCK XT 061203.052.301 −=  (4.1) 

where XTTC is the percent of area covered by Total Tree Canopy in a residential 

neighborhood, and TK is the effective at-satellite surface temperature in Kelvin. 

Therefore, a 1% change in the area covered by Total Tree Canopy in a neighborhood 

changes Kelvin ±0.061203. Table 4.3 illustrated the expected temperatures in the 

residential study area given the percent of Total Tree Canopy (XTTC), and the 

accumulation columns show the value of Total Tree Canopy as it relates to temperature. 

The Kelvin values have been converted to equivalent degrees Celsius and Fahrenheit. A 

10% decrease in the area of Total Tree Canopy means an increase of 0.61º C or 1.10º F.  

 

Table 4.3 
Value of Total Tree Canopy 

Change in ºCelsius Change in ºFahrenheit Percent 
of XTTC Predicted ºC ∆º C Predicted ºF ∆º F 

100 22.25 0.00 72.05 0.00 
90 22.86 0.61 73.15 1.10 
80 23.47 1.22 74.25 2.20 
70 24.09 1.84 75.35 3.30 
60 24.70 2.45 76.46 4.41 
50 25.31 3.06 77.56 5.51 
40 25.92 3.67 78.66 6.61 
30 26.53 4.28 79.76 7.71 
20 27.15 4.90 80.86 8.81 
10 27.76 5.51 81.96 9.91 
0 28.37 6.12 83.07 11.02 
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In order to derive the t-value to test the significance of the correlation between 

the dependent variable (temperature) and the independent variable (Total Tree Canopy) 

using a two-tailed Student’s t distribution test statistic, the estimated standard error (Sr) 

was obtained using the following equation: 
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where r is the Pearson’s r correlation coefficient, n is the number of residential sample 

areas, and df is the degrees of freedom. A hypothesis test was established, where the null 

hypothesis is 0:0 =ρH and the alternative hypothesis is 0: ≠ρAH , and ρ is the ρ-

value or probability that the Total Tree Canopy is not correlated to temperature. The 

following equation was used to obtain the t-value: 
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The t-value is greater than ),2/( dfnt −α , which is 2.576 according the t 

distribution table, where α  is 0.01. Therefore, the null hypothesis is rejected, and there 

is a 99% confidence level that the results express a statistically significant correlation 

between the temperature and Total Tree Canopy and are not randomly derived.  

The Total Tree Canopy is not the only vegetation cover present in a 

neighborhood, and it is not the only vegetation that influences temperature. By removing 

the High NDVI Tree Canopy from the Total Vegetation Cover measurement, a Low-

Level Vegetation grid is defined. Areas of Low-Level Vegetation have a relatively high 
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NDVI value (> 0.0) and a low LIDAR feature height (< 10 feet). These areas consist of 

residential lawns, low-lying plants, and even some very small trees.  

If a developer clears an area of vegetation prior to construction, Low-Level 

Vegetation would typically be the only vegetation present soon after construction is 

completed. Usually, residential lawns are plotted and small trees are planted in the new 

residential development by the new residents. Figure 4.16 provides an example of a 

newly constructed neighborhood; the micro-scale vegetation measurement grids overlay 

the 1995 false color near-infrared composite DOQQ. Sample area #5 of the 442 stratified 

random residential sample areas highlights the residential-structure of a typical newly 

developed residential neighborhood. Total Tree Canopy is 9.79% of sample area #5 

(Figure 4.16A); Low-Level Vegetation covers 36.19% (Figure 4.16B); and the mean 

effective at-satellite surface temperature for sample #5 is 301.049 Kelvin. If the 

vegetation in a residential-structure similar to sample area #5 provides a cooling effect, it 

would have to come from the Low-Level Vegetation, primarily. However, there is some 

tree canopy present; therefore, the micro-scale vegetation measurements must be 

analyzed together.  
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Figure 4.16. A typical newly developed residential neighborhood. Vegetation measurement grids overlay 
the 1995 false color near-infrared composite DOQQ. The mean at-satellite surface temperature for sample 
area #5 is 301.049 Kelvin. (A) The green areas represent Total Tree Canopy: 9.79% for sample area #5. 
(B) The light green areas represent Low-Level Vegetation: 36.19% for sample area #5. 
 
 
 

The simple linear regression model cannot be used to quantitatively evaluate the 

influence that Low-Level Vegetation alone has on temperature variation, because the 

tree canopy is removed from the Low-Level Vegetation grid. In actual fact, the Total 

Tree Canopy grid has been removed of Low-Level Vegetation; therefore, the simple 

linear regression results for Total Tree Canopy can only represent a partial assessment. 

The strong correlation results, however, indicate that Low-Level Vegetation certainly 

has a smaller impact on temperature variation in residential areas.  

In order to account for the variation in temperature (a single response variable), 

when several explanatory variables exist, a multiple regression analysis is employed 

(Burt & Barber, 1996). This approach yields a single explanatory equation that 
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quantifies the independent influence that Total Tree Canopy and Low-Level Vegetation 

separately have on temperature variations observed in the residential study area (Burt & 

Barber, 1996). The mean at-satellite temperature for each sample area represents the 

dependent variable, and the Total Tree Canopy and Low-Level Vegetation measures are 

the independent variables. These independent variables also represent the residential-

structure in terms of vegetation type and amount. The multivariate least squares 

regression equation that quantifies the contribution that each of these micro-scale 

vegetation measures has on temperature is as follows:  

LLVTTCK XXT 02344.006872.0277.302 −−=  (4.4) 

where XTTC is the percent of area covered by Total Tree Canopy in a residential 

neighborhood, XLLV is the percent of area covered by Low-Level Vegetation in a 

residential neighborhood, and TK is the effective at-satellite surface temperature in 

Kelvin. The coefficient of determination or R2 value for the equation is 0.813 and the 

Pearson’s correlation coefficient is -0.902; therefore, the Total Tree Canopy and the 

Low-Level Vegetation combined can explain about 81% of the variation observed in 

temperature for the residential study area. This is a small but significant improvement on 

the simple linear regression for Total Tree Canopy of about 79% and the mean 2000 

NDVI value of about 77%.  

More importantly, however, the multivariate equation provides a quantitative 

value for the level of influence that each of the micro-scale vegetation measures 

separately has on temperature. For neighborhood planners that are concerned with 

mitigating the micro-scale urban heat island effect in a residential area, this information 
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is extremely helpful. A residential-structure can be planned that will allow for lawns and 

new small trees, but will also retain a certain amount of the older tree canopy during 

construction. Given the explanatory equation, increasing or decreasing the Total Tree 

Canopy by 1% would yield an expected change in temperature of ±0.06872 Kelvin, and 

by in increasing or decreasing the Low-Level Vegetation by 1%, a change of ±0.02344 

Kelvin can be expected. Table 4.4 lists a number of the sample areas representing 

various residential-structures listed according to predicted temperature change, given the 

explanatory equation and the micro-scale vegetation measures. The first row of values 

represents an area that is forested and undeveloped. The first sample area (Figure 4.17) 

showed the lowest predicted temperature (297.171 Kelvin); the following rows or 

samples are ranked according to predicted temperature; the last sample (Figure 4.18) is 

ranked 442 and showed the highest predicted temperature (301.112 Kelvin).  

 

Table 4.4 
Examples of Temperature Change for Various Residential-Structures 

Change in ºCelsius Change in ºFahrenheit Percent 
of XTTC 

Percent 
of XLLV 

Predicted 
Kelvin ºC ∆º C ºF ∆º F Rank 

90.0 10.0 295.858 22.71 0.00 72.87 0.00 
1 69.6 13.9 297.171 24.02 1.31 75.24 2.36 

40 56.5 13.4 298.080 24.93 2.22 76.87 4.00 
80 49.7 12.7 298.565 25.41 2.71 77.75 4.87 
120 40.8 27.8 298.825 25.67 2.97 78.21 5.34 
140 42.2 13.1 299.073 25.92 3.21 78.66 5.79 
180 37.3 17.1 299.315 26.16 3.46 79.10 6.22 
220 34.7 16.0 299.516 26.37 3.66 79.46 6.58 
260 30.0 18.2 299.793 26.64 3.94 79.96 7.08 
300 22.0 30.8 300.045 26.89 4.19 80.41 7.54 
340 17.0 36.9 300.244 27.09 4.39 80.77 7.89 
380 18.6 27.8 300.350 27.20 4.49 80.96 8.09 
420 15.6 23.6 300.655 27.50 4.80 81.51 8.63 
442 12.0 14.5 301.112 27.96 5.25 82.33 9.46 
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Figure 4.17. Sample with the lowest predicted temperature. Sample #69 has a Total Tree Canopy measure 
of 69.55% and a Low-Level Vegetation measure of 13.91%. Of the 442 samples it had the lowest 
predicted temperature at 297.171 Kelvin and an observed temperature of 297.456 Kelvin. (A) 2002 DOQQ 
(1-foot resolution). (B) Micro-scale vegetation measurements overlying the 1995 DOQQ (1m resolution). 
 
 
 

 
Figure 4.18. Sample with the highest predicted temperature. Sample #368 has a Total Tree Canopy 
measure 12.03% and a Low-Level Vegetation measure of 14.45%. Of the 442 samples it had the highest 
predicted temperature at 301.112 Kelvin and an observed temperature of 301.094 Kelvin. (A) 2002 DOQQ 
(1-foot resolution). (B) Micro-scale vegetation measurements overlying the 1995 DOQQ (1m resolution). 
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A summary of the multiple regression analysis results is provided in Table 4.5. 

The standard deviation error (Std. Error) for the coefficients is utilized to obtain the 95% 

lower and upper bound confidence intervals. Given the t-values, the test of significance 

(Sig. Test) values are well beyond the requirements needed for 95% confidence. With a 

VIF of 1.477, collinearity the between variables is not an issue. In regard to the 

residuals, the explanatory equation overestimated the temperature for sample area #91 at 

299.633 K; the actual observed temperature is 298.496 K; this represents the minimum 

residual: -1.13675. Figure 4.19 illustrates the problem. Sample area #91 is in close 

proximity to a forested area that has much lower temperature, which strongly influences 

the temperature in the sample area. The maximum residual represents an underestimate 

of temperature for sample area #195. The explanatory equation predicted the 

temperature at 300.157 K; the actual observed temperature is 1.18978 K higher or 

301.347 K. Figure 4.20 illustrates the problem in sample #195. There are a number of 

unusually tall houses in the sample area that are higher than the tall tree canopy 

threshold value of 25 ft. These houses were measured as Total Tree Canopy. The 

average standard deviation from the temperature is 0.41457 K for the equation.  

 

Table 4.5 
Multiple Regression Analysis Results 
Pearson's correlation coefficient r = -0.902 Coefficient of determination R2 = 0.813 

 Coefficients   95% Confidence Interval 
Variables Equation Std. Error t-values Sig. Test Lower Bound Upper Bound 
Constant 302.277 0.11200 2692.850 0.00 302.056 302.498 
XTTC -0.06872 0.00173 -39.722 0.00 -0.07212 -0.06532 
XLLV -0.02344 0.00306 -7.649 0.00 -0.02946 -0.01742 
 Minimum Maximum Mean Std. Dev. Variance Inflation Factor (VIF) 
Residuals -1.13675 1.18978 0.00 0.41457 1.477 
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Figure 4.19. Overestimate of temperature. The observed temperature for sample area #91 is 298.496 K; the 
explanatory equation over predicted the temperature at 299.633 K. This represents the minimum residual 
value of -1.13675. (A) The sample area is proximal to a forested area that provides a cooling effect. (B) 
The east side of sample area #91 is noticeably cooler, due to the strong influence of the forest to the east.  
 
 
 

 
Figure 4.20. Underestimate of temperature. The observed temperature for sample area #195 is 301.347 K; 
the explanatory equation under predicted the temperature at 300.157 K. This represents the maximum 
residual value of 1.18978. (A) There are a number of houses in the sample that are higher than the tall tree 
canopy threshold value of 25 ft. (B) These houses were measured as part of the Total Tree Canopy.  
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The micro-scale vegetation measurement approach, coupled with the multiple 

regression analysis has provided a means to quantify the residential-structure of a 

neighborhood and the influence that various residential designs have on temperature. 

The descriptive statistics in Table 4.6 provide general information about the larger 

sample area as a whole. Figure 4.17 and 4.18, as noted above, illustrate the extreme 

cases. Sample area #69 (Figure 4.17) represents a neighborhood with a relatively lower 

than average temperature (297.456 K), due to its residential-structure. It has 

approximately double the area of XTTC (69.55%) than the overall average of the 442 

residential sample areas, in addition to the 13.91% of XLLV. Sample area #368 (Figure 

4.18) represents a neighborhood with a relatively higher than average temperature 

(301.094 K). With an XTTC of 12.03% and an XLLV of 14.45%, both well below average, 

sample area #368 represents a neighborhood with an undesirable residential-structure.  

 

Table 4.6 
Descriptive Statistics for 442 Residential Sample Areas 
Measure Mean Std. Dev. 
Total Tree Canopy (XTTC) 34.94% 13.90% 
Low-Level Vegetation (XLLV) 20.99% 7.85% 
2000 NDVI Value 0.17220 0.06026 
Observed Temperature (K) 299.384 0.95826 
Predicted Temperature (K) 299.384 0.86394 
Predicted Temperature (ºC) 26.23 0.86394 
Predicted Temperature (ºF) 79.22 1.55508 
Residuals 1.83E-05 0.41457 

 
 
 

With a more precise understanding of the independent contributions of tree 

canopy and that of low-level vegetation cover toward lowering temperatures in a 
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residential neighborhood, developers and city planners can direct construction in a more 

exacting manner to mitigate the problems caused by micro-urban heat islands. The 

micro-urban heat islands, visible in Figure 4.21, radiate out from individual center points 

and influence the surrounding areas. On the other hand, the cooler areas with a more 

beneficial residential-structure also influence their surrounding. By constructing 

neighborhoods that retain a specific amount of older tree canopy in addition to plotting 

lawns and planting smaller trees, the newer development would not only have lower 

temperatures, it could help provide a relative overall cooling effect for a whole city.  

 

 
Figure 4.21. The residential micro-urban heat island effect. Higher temperatures radiate out from a number 
of individual center points and influence their surroundings. At the same time, cooler areas with a more 
beneficial residential-structure, in regards to temperature, also influence their surroundings.  
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CHAPTER V 
 

CONCLUSIONS 
 
 

The extent and magnitude of the larger urban heat island over the Houston 

Metropolitan Area has been well defined (Streutker, 2003; 2002). This large scale urban 

heating is an example of anthropogenic climate modification. Urban sprawl and 

deforestation are the main contributors. Houston is the only major city in the United 

States lacking comprehensive city zoning ordinances. That fact coupled with Houston’s 

rapid economic growth has allowed market forces to drive commercial location 

decisions and not purposeful planning. In addition, the population of the Houston PMSA 

(a 6-county area) grew at a rate of 25.8% between 1990 and 2000, well above the 

national growth rate of 13% (U.S. Census Bureau, 2001; 2000; 1995). To accommodate, 

residential developments are built in an ever expanding circle around Houston’s central 

business district. Most of these new developments completely clear an area of vegetation 

(tree canopy) prior to construction. After construction is completed, the new residents 

plot lawns and plant small trees where large ones once stood. Not only does this 

urbanization contribute to the overall man-made heating in the Houston area, it also 

creates a ‘micro-urban heat island’ effect (Aniello et al., 1995).  

Micro-urban heat islands are smaller areas that display a relatively higher 

temperature than their immediate surrounding areas. They have a center point at which 

the temperature is highest and from which they radiate out (Aniello et al., 1995). The 

larger urban heat island can exhibit temperatures 4 to 6.5° C higher than their 
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surrounding rural areas (Streutker, 2002; Matson et al., 1978). In a similar fashion, 

smaller scale micro-urban heat islands have been documented to be as high as 5 to 11° C 

warmer than tree-shaded areas immediately surrounding them. For newer residential 

areas that have been cleared of tree canopy during construction, the same micro-urban 

heat island effect can be observed by evaluating a thermal image with a relatively high 

spatial resolution like Landsat ETM+ (60 meters).  

Houston has a model that can be used to contrast a residential development style 

that clears land of vegetation prior to construction against one that endeavors to preserve 

tree canopy during construction: the Lake Houston neighborhood and The Woodlands 

respectively. Examining the thermal images of these two large residential areas allows 

for a clear contrast in temperature to be visualized. The tree canopy that could provide a 

cooling effect in the Lake Houston neighborhood has been removed and replaced with 

pavement and homes or residential lawns and low-level vegetation. The Woodlands has 

an extensive tree canopy providing an apparent cooling effect for the neighborhood. 

Using this model, this research has examined smaller representative residential areas 

with varying amounts and types of vegetation that are in close proximity to each other. 

High-resolution DOQQs, LIDAR data, and Landsat ETM+ thermal data have been used 

to study the impact of residential-structure (a mix of vegetation types, amounts, and 

combinations and made-made features) on surface temperature.  

The negative correlation between NDVI and surface temperature reveals that 

higher levels of green vegetation mitigate the urban heating effect (Lo & Quattrochi, 

2003; Lo et al., 1997; Aniello et al., 1995). Considering, however, that residential land-
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use (function) is made up of many different land-cover (form) types, the NDVI value 

alone does not provide detailed information about the residential-structure of a 

neighborhood, especially at relatively lower spatial resolutions like that of Landsat 

ETM+ (30 meters). Therefore, an NDVI may not be the best surrogate variable to 

quantify the independent influences that varying vegetation types, amounts, and 

combinations have on surface temperature at a micro-scale.  

This study has employed a micro-scale vegetation measurement technique and a 

mix of differing proximal residential sample areas to define residential-structure and 

quantify the contribution that tree canopy and low-level vegetation separately have on 

observed temperature variations. This information can be utilized to help instruct 

developers and city planners concerned with the negative impacts of urban and suburban 

heating. It could also provide a scientific basis for urban planning programs that can be 

implemented at a neighborhood level, related the planned planting of trees, local 

building design codes, and new land development styles and practices for Houston.  

By first examining two representative residential areas, it became clear that the 

mix of vegetation can explain the difference in temperature observed for these two 

relatively small neighborhoods. The neighborhood that had an abundance of tree canopy 

was much cooler (3º C) than the neighborhood that exhibited mostly low-level 

vegetation (lawns, low-lying plants, and small trees). Considering the fact that these two 

neighborhoods are only 1,200 meters apart, climate variability and elevation was not a 

factor. The contrasting residential-structures represent a micro-scale version of the 

dynamics observed in The Woodlands and the Lake Houston neighborhood.  
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With the information that was gleaned from the two representative residential 

regions, a micro-scale measurement approach was created that defined Total Vegetation 

Cover and Tall Tree Canopy from a high-resolution false color near-infrared composite 

DOQQ (1m) and LIDAR feature height data, respectively. This is accomplished using a 

thresholding technique (Lillesand et al., 2004). To further define the residential-

structure, a masking process was employed to define High NDVI Tree Canopy, Total 

Tree Canopy, and Low-Level Vegetation (DeMers, 2002). A GIS was used to create a 

fishnet grid that demarcates and identifies 442 stratified random residential sample area 

with a variety of residential-structure types. Each micro-scale vegetation measurement 

was extracted for each sample area (in terms of the percent of area covered by a certain 

vegetation type) by means of a binary grid, and a simple programming function written 

in C++. Finally, the extracted statistics were plotted against temperature, and simple 

linear regression and multiple regression analysis techniques were used to quantify 

residential-structure and the response from surface temperature at a neighborhood scale.  

The simple linear regression analysis results show that the Total Tree Canopy as 

measured can explain approximately 79% of the observed variation in surface 

temperature (R2 = 0.7879). In addition, the regression equation provides that a 1% 

change in the area covered by Total Tree Canopy in a residential neighborhood will 

yield a temperature change of approximately ±0.061 Kelvin. This correlation was much 

stronger than correlation between temperature and the Total Vegetation Cover 

measurement (R2 = 0.2766), indicating that the vegetation cover alone is a poor 

explanatory variable for surface temperature. The Total Tree Canopy correlation was 
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only slightly better than the correlation between temperature and the 2000 Landsat 

ETM+ mean NDVI values (30 meter resolution) for each sample area (R2 = 0.7675), 

explaining approximately 77% of the variation in temperature. From the NDVI 

correlation results, it is clear that a high NDVI value is desirable in regard to lowering 

temperatures; however, the residential-structure that is needed to obtain a desired 

cooling effect in an individual neighborhood cannot be ascertained from the NDVI value 

alone.  

Considering that low-level vegetation is present in a residential neighborhood 

along with the tree canopy, simple linear regression cannot provide the independent 

contributions of tree canopy and that of low-level vegetation cover toward lowering 

temperature as they act together. This was accomplished using multiple regression 

analysis. Two micro-scale vegetation measurements represent the explanatory variables: 

percent of area of Total Tree Canopy and percent of area of Low-Level Vegetation. The 

response variable is effective at-satellite surface temperature. By utilizing multivariate 

regression analysis, the independent contributions that both variables have on surface 

temperature can be quantified, even though they are in the same area.  

Results show that these two micro-scale vegetation measurements, in terms of 

percent of area, can explain about 81% of the variation in surface temperature (R2 = 

0.813, Pearson’s r = -0.902). This is a slight improvement over the simple linear 

regression correlations; however, the multivariate equation provides a quantitative value 

for the level of influence that each of the micro-scale vegetation measures separately has 

on temperature. The demand for information concerning the effects of urban and 
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suburban development is growing as the urban heating effect grows. Understanding the 

contribution that both tree canopy and low-level vegetation (lawns, small trees, and low-

lying plants) have together and separately on the mitigation of the heating effect in 

residential areas can provide neighborhood planners with needed information to design a 

sound residential-structure. It is evident that by selecting a certain residential 

development style, a developer or city planner can greatly influence the thermal 

properties of the new neighborhood (e.g., The Woodlands and the Lake Houston 

neighborhood). A developer must have specific information concerning residential-

structure if goals to meeting a certain level of micro-urban heat mitigation or reduction 

are to be met.  

With a quantified description of the influence that a certain residential-structure 

has on temperature, a proper combination can be planned that will allow for lawns and 

new small trees, but will also retain a certain amount of the older tree canopy during 

construction. The multiple regression equation (explanatory equation) provides that 

quantified description: increasing or decreasing the Total Tree Canopy by 1% will yield 

an expected change in temperature of approximately ±0.069 Kelvin, and by in increasing 

or decreasing the Low-Level Vegetation by 1%, a change of approximately ±0.023 

Kelvin can be expected. Furthermore, the equation indicates that although low-level 

vegetation has some significant mitigating effect on temperature, it is almost three times 

less than that of tree canopy. While the desire for lush, green lawns free of pine needles 

is appealing, it should be understood that low-level vegetation is not as effective in 

cooling the neighborhood. In addition, the shade and cooling effect that tree canopy 



83 

provides can also create an appealing environment: three times more appealing in 

regards to micro-urban heat mitigation.  

The 442 residential sample areas analyzed in this study represent a variety of 

residential-structure types, amounts, and combinations. The larger study area that 

contains these sample areas was chosen because of the variety it presented. A similar 

study that used feature height values for a more homogeneous area might find that the 

feature heights were less significant. For example, a completely forested area would 

provide little variation in feature heights and yield a less statistically significant result. 

The results would be as inconclusive for an area that was mostly grassland or low-level 

vegetation. In addition, this type of study would most likely yield results that were just 

the reverse if conducted in a purely urban environment with taller buildings.  

However, the threshold values could be adjusted to different residential areas and 

for different seasons. The taller trees that did not have a high NDVI value were retained 

as a part of the tree canopy. This decision was based on the fact that the vast majority of 

the residential homes in the larger study area were less than 25 feet high and the fact that 

much of the observed tree canopy would have gone unmeasured. As noted, however, 

some sample areas had taller homes that registered as tree canopy, given the threshold 

value. Although this was rare, it does reflect a certain level of error and an opportunity 

for adjustment. Various threshold levels could be tested for both the feature heights (Tall 

Tree Canopy) and the NDVI (Total Vegetation Cover).  

Considering that the NDVI threshold came from a 1995 DOQQ, the feature 

height values came from 2001 LIDAR data, and the thermal information came from 



84 

2000 Landsat ETM+ imagery, many of the potential residential sample areas had to be 

rejected. These were areas that showed change in residential-structure between 1995 and 

2000 and represented many of the newer residential developments. In general, these 

areas exhibited relatively higher temperatures, and the need to evaluate these areas 

remains important. A large portion of the accuracy of the estimates is dependent upon 

the amount of change in a region between 1995 (NDVI acquisition) and 2001 (LIDAR 

acquisition). Therefore, a careful assessment of each sample area was conducted. The 

use of temporally correlated NDVI and LIDAR data and/or a highly accurate LULC map 

could provide a more automated means by which to identify purely residential sample 

areas and eliminate a certain degree of inaccuracy. That being said, a study that utilized 

the differences from one year to the next observed by the DOQQs could be used to 

evaluate the change in temperature at high resolutions for new developments regarding 

the removal of tree canopy and the increase in temperature or the micro-urban heat 

island effect, which may be illuminating. 

The spatial resolution for the thermal data used in this study is 60 meters from 

the Landsat ETM+ imagery, which is relatively high for thermal data in general and it is 

widely available. Moreover, the delineation and quantification of tree canopy utilizing 

remotely sensed data at higher spatial resolutions (DOQQ and LIDAR) have enhanced 

the thermal data obtained from the Landsat imagery and have provided the means to 

study urban heat islands at a neighborhood level. However, the use of high-resolution 

thermal data, like that provided by the ATLAS (5 to 10 meters) could greatly enhance 
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this type of study, albeit, high-resolution ATLAS data is rarely available and not 

available for the Houston Metropolitan Area. 

Future research could define residential-structure more in terms of quantifying 

the man-made features. The use of information from city planning offices or real-estate 

databases could yield an exacting variable for the size of the human footprint in 

residential areas. In addition to the micro-scale vegetation measurements, coupling the 

man-made element into the equation in a more precise manner would produce results 

that provide an even more informative guide to decision-makers or developers with 

respect towards policy or planning implementation for residential land development.  

Remote sensing technologies have allowed researchers the ability to study large 

areas of terrain at greater levels of detail (Jensen, 2000). This study has focused on the 

influence of residential-structure on micro-scale urban heating. Larger scale studies have 

effectively defined and measured urban heat islands for whole cities (Streutker, 2003; 

2002; Lo & Quattrochi, 2003; Lo et al., 1997). However, many of the factors 

contributing to the larger city-wide urban heat island problem occur at a neighborhood 

level and have an accumulative effect. The residential area required to support larger 

cities is ever growing; and population and urban densities also continue to increase. 

Although not scientifically validated as yet, heat islands may be more the products of 

urban design than merely density of development (Estes et al., 2003). By examining 

residential areas and the impact that various types, amounts, and combinations of 

vegetation have on surface temperature, this research has designed and quantified micro-
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scale vegetation measurements that prove to be statistically significant variables that 

explain the observed variation in temperature in residential neighborhoods.  

The strong negative correlation that NDVI has with temperature has been clearly 

shown in this study as well as many others. In addition it is well understood that a low 

NDVI value in a neighborhood will have an overall beneficial effect in regard to 

lowering temperatures. However, the specific type of residential-structure needed to 

obtain an overall high NDVI value has been less well established. The explanatory 

variables derived from this study may move decision-makers and developers toward a 

better understanding of the impact of residential-structure as a positive or negative factor 

on the environment and quality of life for an ever growing percentage of the world’s 

population (Lo & Quattrochi, 2003; Berry, 1990; Cardelino & Chameides, 1990).  

Monitoring, measuring, and understanding spatial patterns and factors 

contributing to large scale urban heat island effects are essential for formulating 

guidelines, standards, and sound public policies aimed at mitigating and avoiding the 

adverse environmental impacts of urban heat islands. That being said, deforestation and 

urbanization resulting in micro-urban heat island problems occur at the neighborhood 

level and contribute to the overall urban heat island problem. Given the fact that many 

residential developers continue to clear the land completely before they begin 

construction, a clear understanding of the impact, the potential benefits, and a 

measurable cause and effect guide might provide the tools and opportunity for those 

forward thinking entrepreneurs to promote and market their new residential development 

as a “COOL” neighborhood. This would be a neighborhood that could offer its residents 
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homes that require less energy to cool, relative to homes in other residential 

developments. Due to the lower temperatures, air conditioner use would be reduced and 

the energy bills that a resident must pay every month would be decreased. In addition, 

these “COOL” neighborhoods would offer a greater amount of tree canopy, which is 

most often considered aesthetically pleasing and generally increases the property values 

of homes by making them more desirable at market.  

In summary, this research has: 1) improved our understanding of the factors and 

mechanisms contributing to the formation and development of urban heat islands; 2) 

enhanced our knowledge of the micro-urban heat island effect; 3) demonstrated the 

capabilities of assessing urban and suburban heating with high-resolution remotely 

sensed imagery and LIDAR feature height data; 4) improved our understanding of the 

impact of residential-structure in regards to the general urban heat island effect; and 5) 

explored the possible uses of this information for guiding future developers and policy-

makers. “By utilizing sound urban planning, a city can avert or alleviate the effect of 

urban heat islands” (Lo et al., 1997). Ultimately, expanded research regarding optimal 

ratios between micro-urban heat islands (impervious built-up surfaces) and vegetative 

cover (tree canopy) could reveal an exacting residential-structure that nearly eliminates 

the contribution that residential development makes toward the larger urban heat island 

problems that afflict large cities.  
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