

MOTION PLANNING UNDER UNCERTAINTY: APPLICATION

TO AN UNMANNED HELICOPTER

A Thesis

by

JOSHUA DANIEL DAVIS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2006

Major Subject: Aerospace Engineering

MOTION PLANNING UNDER UNCERTAINTY: APPLICATION

TO AN UNMANNED HELICOPTER

A Thesis

by

JOSHUA DANIEL DAVIS

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Suman Chakravorty
Committee Members, John L. Junkins
 Nancy Amato
 Aniruddha Datta
Head of Department, Helen Reed

August 2006

Major Subject: Aerospace Engineering

iii

ABSTRACT

Motion Planning Under Uncertainty: Application to an Unmanned Helicopter.

(August 2006)

Joshua Daniel Davis, B.S. Auburn University

Chair of Advisory Committee: Dr. Suman Chakravorty

A methodology is presented in this work for intelligent motion planning in an

uncertain environment using a non-local sensor, like a radar sensor, that allows the

sensing of the environment non-locally. This methodology is applied to an unmanned

helicopter navigating a cluttered urban environment. It is shown that the problem of

motion planning in a uncertain environment, under certain assumptions, can be posed as

the adaptive optimal control of an uncertain Markov Decision Process, characterized by a

known, control dependent system, and an unknown, control independent environment.

The strategy for motion planning then reduces to computing the control policy based on

the current estimate of the environment, also known as the “certainty equivalence

principle” in the adaptive control literature. The methodology allows the inclusion of a

non-local sensor into the problem formulation, which significantly accelerates the

convergence of the estimation and planning algorithms. Further, the motion planning and

estimation problems possess special structure which can be exploited to reduce the

computational burden of the associated algorithms significately. As a result of the

methodology developed for motion planning in this thesis, an unmanned helicopter is

able to navigate through a partially known model of the Texas A&M campus.

iv

ACKNOWLEDGMENTS

This thesis is the result of the contributions and efforts of many individuals. First, I

would like to thank Dr. Suman Chakravorty for his time as well as input, which has

made me more mature in my understanding of motion planning for autonomous systems

and has made the development of the high-level motion planner possible. I would also

like to thank Colonel Steven Suddarth from the Air Force Research Laboratory for

providing a Bergen Observer Helicopter as well as an Automated Flight Control System

from Rotomotion, LLC. He also spent many hours helping me understand the flight

controller hardware and the programming necessary to interface with its software. I am

grateful to Dennis D’Annunzio from Rotomotion for providing meaningful help and

support. David Lund and Reza Langari invested considerable time and resources in the

helicopter to ensure it flew successfully and were critical to this project’s success. I

would also like to thank Chris Mentzer, a fellow graduate student, who did more than his

fair share of assembling the helicopter and preparing it for flight testing.

 I am appreciative to Dr. John Junkins, who played an instrumental role in my

acceptance to Texas A&M and providing my first year of funding. It was a pleasure to

sit under his teaching as well as gain wisdom from his words of advice on technical and

non-technical issues. I would like to thank Dr. Helen Reed for her financial support

during my second year at Texas A&M. It has been a great joy to work with her as a

teaching assistant and I am thankful for all that I have been able to learn about satellites

under her guidance. I would like to thank Dr. Aniruddha Datta and Dr. Nancy Amato

v

for their support as members of my committee. Thank you to many of my fellow

graduate students such as Jaime Ramirez, Jeff Morris, David Oertli, Sowan Suman,

Sunny Jain, Sakthivel Kasinathan, and Shashank Shukla. They have been exceptional

friends and made my graduate school experience more enjoyable.

 I am thankful to Jesus Christ, who gives purpose and meaning to life. He has

provided encouragement and strength to me through many passages in the Bible. I am

also thankful to others, such as my friends in the Navigators Christian student

organization for their encouragement and friendship, which has enhanced my experience

while at Texas A&M. Finally, I would like to thank my family who has been an

amazing support and has played a crucial role in my success in this endeavor.

vi

TABLE OF CONTENTS

Page

ABSTRACT.……………………………………….……………………………………iii

ACKNOWLEDGMENTS………………………….……………………………………iv

TABLE OF CONTENTS………………………………………………………………..vi

LIST OF FIGURES……………………………………………………………......…....vii

NOMENCLATURE…………………………….………………………………….…....ix

1. INTRODUCTION…………………………….……………………………….…...….1

2. CONTROLLER STRUCTURE ………………………………………………….…....8

3. PLANNING UNDER UNCERTAINTY USING NON-LOCAL SENSING………..10

A. Preliminaries..10
B. Estimation……………...…………………………………………………….12
C. Control...14

4. TESTING ON AN UNMANNED HELICOPTER..….………………..…………….18

A. Developing an urban environment………..………...………………………..18
B. Non-local state estimation using a radar…………….………………...……..19
C. Interfacing with a low-level flight controller………….……………….…….20
D. Motion planning in the flight simulator………………..…...………..………20

5. CONCLUSION……………………………………………………………………….38

REFERENCES……………………………………………..…………………….…......40

APPENDIX A UAV HELICOPTER……..………………..……………………………45

A. UAV hardware……...……………..…….….……..………………………....46
B. UAV software…….………………..…….…………………...………...……49
C. Flight testing and hardware in loop testing….….……………...…………….52

VITA……………………………………………….…………………………………....54

vii

LIST OF FIGURES

FIGURE Page

1 Architecture for the High-Level Motion Planner and Low-Level Controller.............8

2 Possible High-Level Control Actions……………………………………………....19

3 Top View of Navigation through Campus……………………………………….…24

4 Angled View of Navigation through Campus……………………………………...24

5 Obstacle and Blocked Passage……………………………………………………...25

6 Blocked Passage by Langford……………………………………………………...26

7 Blocked Passage by Heldenfelds…………………………………………………...27

8 Simulator Testing 2- Large View…………………………………………………..29

9 Simulator Testing 2- Detail View…………………………………………………..30

10 Simulator Testing 3- Large View…………………………………………………..32

11 Simulator Testing 3- Detail View………………………………………………….33

12 Simulator Testing 4- Large View…………………………………………………..34

13 Simulator Testing 4- Detail View……………………………………………….….35

14 Simulator Testing 5- Large View……………………………………………….….36

15 Simulator Testing 5- Detail View……………………………………………….….37

A.1 Josh Davis with the UAV Helicopter and Ground Station ……………………..….45

A.2 Controller Architecture…………………………………………………………......47

A.3 Automated Flight Control System……………………………………………...…..48

A.4 Ground Station Interface During Hardware in Loop Testing…………………...….51

viii

FIGURE Page

A.5 Heli-3d Viewer for Ground Station…………….……………………………...…52

ix

NOMENCLATURE

Symbol Description

c = average transition cost

D = number of possible environment states at any system state s

()Eµ = expectation operator with respect to policy µ

Ft = history of process until time t

()*J = optimal cost-to-go

()J = average cost-to-go

M = number of control actions possible

N = number of system states

()p = true environmental uncertainty

()tP = vector of the true environment probabilities at time t

()q = environment state

()q̂ = non-locally observed environment state

()q = possible environment state at r

D
� = real space of D dimensions

Q = set of all possible environment states at each system state

s = system state

's = state from which observation occurs

st = system state at time t

S = set of all possible system states

x

Symbol Description

t = time

T = set of all times at which the control policy is updated during the path planning

T = average dynamic programming operator

u = control action

()*u = the optimal control

U = set of all possible control actions

V = space of all probability vectors in D
�

x = x axis position coordinate

y = y axis position coordinate

z = z axis position coordinate

α = tuning parameter for distance to the end

β = infinite horizon discount factor

� = transition cost to visit a state with no obstacle is

()λ = factor to make the sensor model stochastic

(())F sπ = fraction of time that system is in the footprint of set F(s)

ˆ(())q sπ = probability for observing noise corrupted environment state ˆ()q s

(')sπ = fraction of time that the system is at 's

()t sΠ = vector includes the tπ values for each environment s

*µ = optimal control policy

()kµ = control update at time instant kt

()ij
tγ = a D x D matrix which is a combination of all the sensor models used and their

associated number of measurements

()tΓ = sensor model of uncertainty

� = cost of hitting an obstacle

xi

Acronyms Description

AFCS Automated Flight Control System

API Application Programming Interface

ASIC Application Specific Integrated Circuit

cc cubic centimeters

DOF Degree of Freedom

DP Dynamic Programming

FLTK Fast Light ToolKit

GB Gigabyte

GHz Gigahertz

GPS Global Positioning System

IMU Inertial Measurement Unit

IP Internet Protocol

MDP Markov Decision Process

MB Megabyte

OpenGL Open Graphics Library

PCM Pulse Code Modulated

PID Proportional Integral Derivative

POMDP Partially Observed Markov Decision Process

RC Remote Control

UAV Unmanned Aerial Vehicle

xii

Acronyms Description

UGV Unmanned Ground Vehicle

VORAD Vehicle Onboard RADar

WAAS Wide Area Augmentation System

1

1. INTRODUCTION

In this thesis, a methodology for the motion planning of an autonomous agent in an

uncertain environment is proposed and applied to an unmanned helicopter navigating a

cluttered urban environment. The optimal path for the unmanned helicopter is planned

using a priori knowledge about the environment and the sensor data received, as the

helicopters navigates through obstacles in the environment. The motion planner

involves a high-level planner which plans against the uncertainty in the environment and

issues its commands in a series of waypoints for a lower-level controller to track. A

commercially available lower-level controller from Rotomotion LLC, called the

Automated Flight Control System (AFCS), was interfaced with the high-level motion

planner so that the motion planning algorithm could be implemented on a six degree of

freedom flight simulator.

The high-level controller plans the motion of the agent in an uncertain environment

using a radar sensor. The methodology is applicable for any non-local sensor, i.e., a

sensor that allows sensing of environment states surrounding the current system state.

The state space of any motion planning problem can be expressed as the ordered pair

(s,q(s)) were s represents the system state and q(s) represents the state of the

environment at the state s. For example, in the case of an unmanned helicopter

exploring an urban environment, s corresponds to the (x,y,z) coordinates of the helicopter

This thesis follows the style of Journal of Guidance, Control, and Dynamics.

2

And q(s) corresponds to the presence or absence of an obstacle at the point (x,y,z). The

goal of the motion planning strategy is to use all available information about the

environment, until the current time instant, in order to plan the “best possible” path. It is

known that the planning problem can be modeled as a Markov Decision Process (MDP),

characterized by a known, control dependent exploration system and unknown,

uncontrollable environment.1,2 Our formulation allows the integration of a radar or a

similar non-local sensor into the planning methodology. The planning and estimation

problems, as formulated in this thesis, have special structure which can be exploited to

significantly reduce the dimensionality of the associated algorithms.

 There has been substantial research in the adaptive control of controlled Markov

Chains, or Markov Decision Processes, in the past two decades. In indirect adaptive

control, the transition probabilities of the underlying Markov Chain are estimated and

the control is applied based on the most recent estimate of the transition probabilities.3,4,5

This is known as the so-called “certainty equivalence principle”. The “direct” approach

to stochastic adaptive control falls under the category of “reinforcement learning”

methodologies wherein the optimal control is calculated directly with resorting to

estimating the transition probabilities of the underlying Markov Chain.6,7,8 Underlying

all these methods is Bellman’s “principle of optimality” or Dynamic Programming,

which is a methodology for sequential decision-making under uncertainty.9,10 In this

work, it is shown that the motion planning problem can be reduced to the adaptive

optimal control of a Markov Decision Process and thus the above methodologies can be

applied to the same. The indirect approach to adaptive control is adopted since mapping

3

the environment is of interest too. The general representation for an infinite horizon

control problem based upon the principle of optimality can be represented by:

()
()

()
1 2

*
0 1 0

, ,... 1

arg min / , /k
t t t

u u t

s E c s s u s
π

π β
∞

+
= =

� �= � �
� �
� . 11 (1)

() ()*
1 2, ,...s u uπ = represents the optimal control policy that starts at the state 0s , while

()1 / ,t t tc s s u+ is the cost to transition from state ts with control tu to 1ts + . The term β

represents the discount factor for the infinite horizon problem and discounts the terms as

the states become farther out on the horizon. This formulation allows a feedback control

to be implemented for a system, using dynamic programming.

 As additional states are added to a dynamic programming problem there is a

geometric growth in computation, which is considerably more attractive than a direct

enumeration method for control determination, which would give an exponential growth

in computation.12 The reason that direct enumeration requires such a large amount of

computation, is that it determines all possible control sequences and compares them to

determine an optimal path. Even though dynamic programming is more efficient

computationally than direct enumeration, the greatest challenge associated with dynamic

programming is “the curse of dimensionality”. This means that as the number of

dimensions or states increase, the computational requirements rapidly increase and can

cause the solution to become computationally unfeasible.

 Motion planning considers how the state space (configuration space) is represented.

The dimension of the configuration space depends upon the degree of freedom of the

robot being used in the motion planning.13 Another consideration is if the system is

4

modeled as continuous or discrete. If the system is modeled as discrete, the grid size

(number of states) will greatly effect the computation time.

Various approaches have been developed for collision-free motion planning of

unmanned systems in known environments.14 In the past decade, there has been an

increasing interest in the case when the environment in which unmanned system is

operating is partially or completely unknown. The uncertainty in the environment is

treated as a deterministic worst case15,16 or on a probabilistic average case basis.17 In

“probabilistic robotics”, there has been substantial research in the localization of a

mobile robot while simultaneously mapping the environment.18,19,20,21,22 In Ref. 14, a

game-theoretic framework is proposed for robotic motion planning. The authors resort

to Bellman’s principle of optimality9 in order to tackle the motion-planning problem. In

Ref. 14, a Bayesian adaptive control4 approach is formulated which suffers from the

issue of dimensionality and may not be suitable for high dimensional environments.23 A

non-Bayesian adaptive control framework is adopted in our approach.

 There has been a blending of previously different areas of study: planning, control

theory, and artificial intelligence for motion planning. In the past, planning has focused

more on planning the trajectory of a vehicle, while control theory has focused on the

response of differential equations to control inputs.24 The area of artificial intelligence

in the past tented to focus on problem solving in a discrete state space.25,26 The

development of algorithms for autonomous systems to navigate through obstacle fields

has caused the differences between planning algorithms and control theory to become

less distinguished.

5

 Many of motion planning techniques that have been implemented are essentially

graph search methods, such as breath first search, depth first search, and Dijkstra’s

algorithm. Breadth first search considers all possible paths that are equal distance from

the starting point. Although it is not the most computationally efficient it guarantees the

optimal path is determined.27 Depth first search considers the cost from a starting point

to the goal state along a feasible path and may later consider alternate paths.28 Dijkstra’s

algorithm is a single source shortest path algorithm and was developed as a special form

of dynamic programming. Dijkstra’s algorithm includes several heuristics to draw the

vehicle toward the goal state and help eliminate unnecessary computations by removing

unnecessary state analysis.29

One of the most well know graph search methods for motion planning is A*,

pronounced (“ay-star”), and was created as a method for determining an optimal path or

trajectory by including heuristics. It determines an admissible, “optimistic”, solution.

A* is effective for a priori planning of a static environment but requires complete

recalculation if the environment changes.30 A* and Dijkstra’s algorithm are essentially

the same except for the function which is used to sort the vector recording the cost of

feasible paths.23 A development in A* research led to a class of algorithms called

Focused Dynamic A* (D*),31 which includes heuristics as well as incremental search

techniques so that a complete recalculation of the costs is not necessary for a

dynamically changing environment. D* has been implemented for various motion

planning problems, such as indoor robots, outdoor UGV (unmanned ground vehicles) in

the DARPA Unmanned Ground Vehicle Program,32 urban robots, and even the Mars

6

rover.33 A newer version of D* called D* Lite has been developed that is at least as

efficient and often more efficient than D*. D* Lite is also more intuitive to understand

than D* and has been rigorously analyzed mathematically.34

 Logic based methods also exist as a possible solution to motion planning and can be

implemented similar to graph search methods, but take a somewhat different approach to

motion planning.35,36 Logic methods often focus on partial plans and sub-goals. There

are various implementations to logic based planning, for example, planning graphs can

be analyzed by layer construction, or the planning problem can be tackled using a

Boolean approach.

 Probabilistic roadmaps (PRM) are a recent development in motion planning and are

an efficient method for determining an optimal path. They are essentially a sample-

based approach to navigation of an environment.37 The roadmap is a graph of randomly

generated collision-free paths, which are connected by a simple fast planning method.38

The advantage of using a roadmap is the efficiency with which the nodes (waypoints)

are connected in the configuration space. If part of the roadmap is not used then those

computations are wasted. However there are probabilistic roadmap variants, which

minimize unnecessary computations. The samples can be chosen randomly for the state

space (configuration space) to obtain meaningful information in developing a model of

the environment. In the study of roadmaps important information includes the denseness

of the samples chosen as well as the method of choosing the samples. Roadmaps require

preprocessing before the vehicle begins navigation and essentially act as a network of

multiple pairs of initial-goal points. In the implementation of the algorithm the roadmap

7

construction phase is used to generate the nodes and connect them, while the query

phase is used to evaluate which path is optimal. The “probabilistic” part of the name

comes from the fact that the method performs sampling in a probabilistic fashion.

However, probabilistic roadmaps do not perform control in a probabilistic fashion.

The original contributions of the current work are as follows. We propose a

hierarchical motion planner wherein, the problem of “intelligent motion planning” for

the high-level planner is reduced to the adaptive optimal control of an uncertain Markov

Decision Process, characterized by a known, control dependent system and an unknown,

control independent environment; and a low-level controller is then used to track the

commands from the high-level planner. The methodology allows for the inclusion of

non-local sensors, which significantly reduce the computational burden of the estimation

and planning algorithm in an uncertain environment. The motion planning methodology

is applied to the problem of a UAV helicopter navigating the Texas A&M campus and is

tested on a six degree of freedom flight simulator of the helicopter.

 The rest of the thesis is organized as follows. Section 2 details the structure of the

motion planner. Section 3 contains the formulation of the motion planning problem as a

Markov decision problem. In section 4, we present the results of implementing the

planning methodology on a UAV helicopter navigating the Texas A&M campus by

testing the algorithms on a six DOF flight simulator.

8

2. CONTROLLER STRUCTURE

The motion planning algorithm is implemented in a hierarchical fashion wherein a

high-level motion planner determines the optimal waypoints for the low-level controller

to track during its traverse to the goal state. The planner takes into consideration the

shortest distance to the goal state, local and non-local environment sensing, as well as

the current state of the helicopter when it makes decisions. The high-level planner

minimizes the distance traveled by choosing waypoints between the initial and goal state

while avoiding obstacles during the flight. The high-level controller determines each

desired waypoint and issues it to the low-level controller. The low-level controller

receives the waypoint command and issues the necessary commands to the flight

surfaces. Once the waypoint is achieved the high-level planner receives new sensor

information about non-local states and determines the next waypoint. This process

continues until the goal state is achieved. Figure 1 below outlines the basic motion

planning architecture.

Fig. 1 Architecture for the High-Level Motion Planner and Low-Level Controller

High-level
Motion
Planner

Controller
(PID

control)

Plant
(Helicopter

model)

Observer (Kalman Filter)
Helicopter state

estimation

+
-

Goal

Local and
non-local
environment
sensing

State of helicopter waypoint

9

The low-level flight controller used in the simulations was the Automated Flight

Control System (AFCS), which was developed by Rotomotion LLC and is capable of

executing waypoint commands given to the helicopter. The AFCS has a series of

Proportional-Integral-Derivative (PID) control loops that stabilize the attitude, position,

and velocity of a remote control helicopter.39,40 The control loops use an observer (state

estimator), which is implemented using a Kalman Filter. As the helicopter flies, the

Kalman Filter also gives state feedback to the high-level motion planner so that the high-

level planner knows that a waypoint has been achieved. It is assumed that the low-level

controller has sufficient control over the helicopter so that it will not deviate from the

grid and hit obstacles. The motion planner is thus in the form of a composite feedback

control wherein the high-level planner plans against the uncertainty in the environment

on a longer time/length scale while the lower-level controller is robust to uncertainties at

shorter time/length scaling, and also for the dynamic uncertainties in the system model.

10

3. PLANNING UNDER UNCERTAINTY USING NON-LOCAL

SENSING

 First, we recount some results that will be required for the motion planning.1,2

A. Preliminaries

Let the state of the exploration system be denoted by s, s ∈ S. Denote the state of the

environment at the system state s by q(s). For example:

1) In the case of robotic exploration of unknown terrain, s corresponds to the (x,y)

coordinates of the robot and q(s) corresponds to the height of the terrain z(x,y) at

the point (x,y).

2) In the case of a UAV navigating enemy territory while avoiding radar detection,

the s variable corresponds to the position (x,y,z) of the UAV while q(s)

corresponds to the binary valued variable indicating the presence or lack of radar

coverage at the point (x,y,z).

From hereon assume that the system state is sensed perfectly and only the

environment is sensed imperfectly. Let the number of system states be N and let the

number of possible environment states, at any system state s, be D and denote this set by

Q. Denote the local state of the exploration system by the ordered pair (s, q(s)). Let the

set of control actions be denoted by U and let the total number of control actions

possible be denoted by M. Denote any particular control action by u. The following

Markovian assumption is made about the system. Let

11

()() ()(){ }0 0 0 0 1 1 1 1, , ,..., , ,t
t t t tF s q s u s q s u− − − −= represent the history of the process until

time t.

A 3.1 The current system state, st, is dependent only on the system state and control

input at the previous time instant, i.e.,

() ()1 1/ / ,t
t t t tp s F p s s u− −= . (2)

A 3.2 The environment process is “incoherent”, i.e., the environment process is spatially

uncorrelated and temporally stationary. In other words, if {qt(s), s ∈ S} denotes the

environment process, qt(s) is a stationary process for all s ∈ S. Moreover, qt(s) is

independent of q�(s') whenever s ≠ s', for all t, � . Note that ()tq s is a random variable

and the above assumption is used in a probabilistic sense.

Deterministic environments (like an unstructured terrain) automatically satisfy the

above assumptions.

Proposition 1 Under assumptions A3.1,A3.2, the following holds:

()()() ()() ()()1 1, / / ,t
t t t t t t t tp s q s F p s s u p q s− −= (3)

The transition probabilities ()()1 1/ ,t t tp s s u− − quantify the control uncertainties

inherent in the system and are assumed to be known beforehand. The environmental

uncertainty p(q(s)) is unknown and successive estimates are made of this uncertainty as

the planning proceeds to completion. Motion planning may be framed as an infinite

horizon discounted stochastic optimization problem, i.e., given the initial state

()()0 0 0,s q s , the optimal control policy ()*
0 0 0, ()s q sµ { }1 2, ,...u u= is defined by:

12

()() ()()(()()) ()()*
0 0 0 1, 1 1 1 0 0 0

1

, arg min , , , / ,t
t t t t t t t

t

s q s E c s q s s q s u s q sµ µµ β
∞

− − − −
=

� �= � �
� �
� (4)

where ()() ()()()1, 1 1 1, , ,t t t t t t tc s q s s q s u− − − − is a positive pre-defined cost that the system

incurs in making the transition from state ()()1, 1 1t t ts q s− − − to ()(),t t ts q s under the control

action 1tu − , (.)Eµ denotes the expectation operator with respect to the policy µ , and � <

1 is a given discount factor.

 The following environment sensing model is adopted:

3) At every instant t, the system (UAV) at state st, can observe the environment

state qt(s), (i.e., the current environment state at the state s), if ()ts F s S∈ ⊆ ,

where F(s) is assumed to be known beforehand. The set F(s) constitutes a

“footprint” of the sensor system.

4) Associated with every observation-vantage point pair, (q(s),s'), s'∈ F(s), (i.e., we

are observing the environment at s, q(s), from the state s'), there exists a known

measurement error model, () ()() () ()ˆ ˆ/ , ', ,p q s q s s q s q s Q∈ , and s, s' ∈ S, i.e.,

the probability that q̂ (s) is observed when the environment is actually at the state

q(s), for an observation made from system state s. Such a model maybe deduced

from sensor calibrations.

The estimation and control schemes that are used to tackle the motion planning

problem are discussed next.

B. Estimation

Consider the following relationship:

13

()() ()()
()

()() ()
(),

1ˆ ˆ(()) () / ,
s F s q s

q s p q s q s s p q s s
F s

π π
π ′∈

′ ′= � (5)

where

1) ()()q̂ sπ denotes the probability of observing the noise corrupted environment

state ˆ()q s during the course of the exploration, i.e., the fraction of the time that

the environment at state s is observed to be at ˆ()q s during the course of the

exploration.

2) p(q(s)) denotes the true probability that the environment state is q(s) at the state

s.

3) ()sπ ′ denotes the fraction of the time that the system is at state s' and (())F sπ

represents fraction of time that the system spends in the footprint set F(s).

The above equation states that the frequency of observing a particular value of the

environment during the course of the exploration process is related to the actual

probability of the environment taking that value, the noise model and the frequency of

visiting the states of the system. Since the noise model is known, and the values of

()()q̂ sπ and ()sπ can be estimated during the course of the exploration using the

Monte-Carlo method, it is possible to obtain the true environment probabilities using

equation 5. Mathematically:

1

1ˆ ˆ ˆ(()) : 1(() ())
t

t n nq s q s q s
t

π = =� (6)

1

1
() : 1()

t

t n
n

s s s
t

π
=

= =� (7)

14

where 1(A) denotes the indicator function of the event A. Then, the true probabilities of

the environment process p(q(s)) can be obtained recursively as:

2
() : arg min () ()t t tP V

P s s s P
∈

= Π − Γ (8)

where

[]1() (()),..., (())t t t DP s p q s p q s ′= (9)

[]1ˆ ˆ() (()),... (())t t t Ds q s q sπ π ′Π = (10)

() () ()ij
t ts s sλ γ� 	Γ =
 � (11)

' ()

() (() / (),) ()ij
t i j t

s F s

s p q s q s s sγ π
∈

′ ′= � (12)

||.|| denotes the Euclidean norm in D
� , and V represents the space of all probability

vectors in D
� . Thus, keeping account of the probabilities, ()sπ and ˆ(())q sπ , the true

probabilities of the environment process can be recovered asymptotically. The term

()sλ is equal to ()1/ ()F sπ and is included to make each row of ()t sΓ stochastic.

C. Control

Consider the stochastic optimal control problem posed in equation 4. Using the

Bellman principle of optimality,6 it can be shown that the optimal policy is stationary,

i.e., the optimal control is independent of time, and that the optimal control at the state

(s,q(s)), *(, ())s q sµ , is given by the following equation:

* *

(, ())

(, ()) arg min (/ ,) (())[((, (), (, ()),) (, ())]u
r q r

u s q s p r s u p q r c r q r s q s u J r q rβ= +� , (13)

15

where *(, ())J r q r is the optimal cost-to-go from the state (, ())r q r . Moreover, *J

satisfies the following fixed point equation:

* *

(, ())

(, ()) min (/ ,) (())[((, (), (, ()),) (, ())]
u

r q r

J s q s p r s u p q r c r q r s q s u J r q rβ= +� (14)

The problem of path planning is one of adaptive control of an uncertain Markov

Decision Process, (since the probabilities of the environment process are not known).

However, the system state and the local environment are assumed to be sensed perfectly

and thus the problem is not a Partially Observed Markov Decision Process (POMDP).11

In such a scenario, the strategy of adaptive control is to use the policy that is optimal

with respect to the current estimate of the system, since it corresponds to the current

knowledge of the system that is being controlled and is referred to as the “certainty

equivalence principle” in adaptive control.3

 Let { }1 2, ,..., ,...kT t t t= denote the set of all times at which the control policy is updated

during the path planning. Let the updated control policy at time instant kt be denoted by

(, ())k s q sµ . Let pt(q(s)) denote the estimated environmental uncertainty at the time t,

obtained from the estimation equation 8. Then, the control update at time , (.)k kt T µ∈ ,

using the principle of optimality and the “certainty equivalence principle”, is given by

()() () ()()
()()

()() ()()()
,

, arg min / , , , , , (, ())
kk u t k

r q r

s q s p r s u p q r c r q r s q s u J r q rµ β� 	= +
 ��

(15)

where

16

()() () ()()
()()

()() ()()()
,

, min / , , , , , (, ())
kk t ku

r q r

J s q s p r s u p q r c r q r s q s u J r q rβ� 	= +
 �� .

(16)

Next, a few of the salient properties of the control problem posed are listed. The

following result establishes the convergence of the cost-to-go functions to the optimal

cost-to-go function when the estimates of the environmental process converge.

Proposition 2 Under assumptions A2.1-A2.2, the cost-to-go functions

*(, ()) (, ())tJ s q s J s q S→ as t → ∞ , if (()) (())tp q s p q s→ , for all s∈S, q(s)∈Q.

The optimality equations can be simplified based on the special structure of the path

planning problem due to the incoherent environment assumption, which allows us to

reduce the dimensionality of the dynamic programming problem. Consider the

optimality equation:

(, ())

(, ()) min (/ ,) (())[((, (), (, ()),) (, ())]
u

r q r

J s q s p r s u p q r c r q r s q s u J r q rβ= +� (17)

Let

()() () ()()
()()

()() ()()()
,

, , / , , , , ,
r q r

c s u q s p r s u p q r c r q r s q s u
′

= � . (18)

Noting that

(, ()) /(, ()),) (/ ,) (())p r q r s q s u p r s u p q r= , (19)

it follows that

() ()() (), () min , , / , ()
u

r

J s q s c s u q s p r s u J rβ� 	= +�

 �

� , (20)

where

17

() ()() ()()
()

,
q s

J s p q s J s q s=� . (21)

Noting that

()() ()() () ()* , arg min , , / ,
u

r

u s q s c s u q s p r s u J rβ� 	= +�

 �

� , (22)

it can be concluded that an average value of the cost-to-go function (, ())J s q s , at the

system state s, namely
()

() (()) (, ())
q s

J s p q s J s q s=� , is required in order to be able to

evaluate the optimal control at any state (, ())s q s . This allows us to carry an “average”

feedback control. However, there still remains the problem of estimating the average

cost-to-go vector ()J s . In order to answer this question, note that

() ()() ()() ()
()

min , , / , ()
u

q s r

J s p q s c s u q s p r s u J rβ� 	= +�

 �

� � . (23)

Hence, J is the fixed point of the “average” dynamic programming operator

: N NT →� � , defined by the following equation:

() ()() ()() ()
()

min , , / , () ,
u

q s r

T J s p q s c s u q s p r s u J r sβ� 	= + ∀�

 �

� � . (24)

The following proposition states that the “average DP operator”, T , is a contraction

mapping that maps n nR R→ and thus, the optimal average cost-to-go vector, which is

unique fixed point, can be obtained using successive approximations.41 This allows us to

significantly reduce the computational burden of the planning algorithm.

Proposition 3 The average DP operator, T , is a contraction mapping in N
� under the

∞ norm.

18

4. TESTING ON AN UNMANNNED HELICOPTER

The methodology presented thus far in this thesis was used for motion planning of an

unmanned helicopter in an uncertain environment. The motion planning algorithms

were implemented in a six DOF simulation of a UAV helicopter navigating through an

urban environment model of the Texas A&M campus. The results show that the

planning methodology proposed maybe suitable for autonomous navigation in a

cluttered urban environment.

A. Developing an urban environment

An environment model of the inner part of the Texas A&M campus was developed in

MATLAB, using maps as well as aerial photos of the campus from Google Earth. Once

a three dimensional campus model was developed, it was overlaid with the aerial images

for visualization purposes.

The system state, s, represents the (x,y) grid point coordinate of the vehicle and the

environment state, ()q s , represents the presence of an obstacle or otherwise at that

particular grid point. A 750x 550 meter area on the campus of Texas A&M was

discretized into 75 x 55 grid of points (i rows, j columns) so that the number of possible

system states N was equal to 4125. The environment state at any grid point has 2

possible values, obstacle or no obstacle. Figure 2 shows that at any given location the

helicopter had four possible high-level control actions: Go (Forward/Back/Right/Left) to

the adjacent grid point.

19

Fig. 2 Possible High-Level Control Actions

B. Non-local state estimation using a radar

A non-local sensor for motion planning would ideally have unlimited range, a 360

degree field of view, and no uncertainty. However, a perfect level of accuracy is not

possible in practical applications, and there are multiple sensors available that can be

used in motion planning. Researchers have used millimeter wave radar, LIDAR (LIght

Detection and Ranging), infrared sensors, and ultrasonic sensors. LIDAR sensors as

well as millimeter wave radars have been implemented on full size helicopters to warn

pilots of obstacles. A millimeter wave radar (24.7 GHz) called the Eaton VORAD

(Vehicle On-board RADar) was chosen as the non-local sensor to be modeled in this

research. The VORAD has an operating range of 1 meter to 107 meters (3 feet -350

feet), with an uncertainty of 5%, and a field of view of 12 degrees, with an uncertainty of

0.2 degrees. The radar antenna, onboard processor, and batteries require a helicopter

with a lift capability of 6-7lbs. The radar software was developed to track up to seven

obstacles every 65ms (15Hz), by reporting azimuth to each obstacle, range to each

obstacle, and gain of the return from each obstacle. The simulation treats all obstacles as

having the same radar reflectivity characteristics. Two changes were made to the

20

sensing model to accommodate the simulation: first, the field of view was changed to 90

degrees and second, radar tracking was set to nine obstacles.

C. Interfacing with a low-level flight controller

A low-level flight controller known as the Automated Flight Control System (AFCS),

developed by Rotomotion Inc. for unmanned helicopters, was used to track the high-

level flight control commands. The AFCS uses two extended Kalman filters for state

estimation: the first is a 7 state Kalman filter, 4 states for quaternion and 3 states for gyro

bias, and the second is 6 state Kalman filter, 3 states for North East Down (NED)

position and 3 states for orthogonal velocity components (UVW). The flight controller

implements nine Proportional Integral Derivative (PID) loops- three for position (x,y,z),

three for velocity (), ,x y z� � � , and three for attitude (), ,ψ θ φ .

The AFCS position sensor utilizes the Wide Area Augmentation System (WAAS)

Global Positioning System (GPS) and gives position measurements to within 3 meters

accuracy 95% of the time.

D. Motion planning in the flight simulator

D.1 Navigation and exploration

The high-level motion planner calculates an initial cost-to-go map ()J s , which is an

array of i rows and j columns, based upon the a priori environment data available.

Before the high-level motion planner implements a control, it senses and updates

probabilities of the environment state at 8 of the adjacent grid-points. If the helicopter is

commanded in a direction that has not been sensed by the radar sensor, the helicopter

21

changes directions and performs new measurements of the non-local environment states

since the sensors in this case have only a 90 degree field of view. Then the motion

planner recalculates the control and the command is issued to the low-level flight

controller for execution.

The operation of the high-level planner involves four different tuning parameters.

The cost associated with hitting an obstacle is �= 100, while the transition cost to visit a

state with no obstacle is �= 1. Various tuning values were used for � and �. The only

importance of the numbers for � and � is their magnitude relative to each other. These

values are important because the cost-to-go to the goal state includes the transition cost

along with the cost-to-go from a future state and the distance of a future state from the

goal state. An infinite horizon discount factor of .99β = was used to ensure that states

in the immediate future have a greater effect on the control than states farther out on the

horizon. For lower β values the vehicle is more likely to be trapped once the vehicle

enters a boxed in area. Also a tuning parameter of 6α = was included in the

simulations to represent a weighting value for distance to the goal. For large α values

the vehicle is drawn to the final destination and hits obstacles, while the value of 6α =

draws the vehicle to the final destination but does not hit obstacles. It is necessary to

tune the parameters because the path planning problem is posed as an infinite horizon

problem. The structure of the control is given by:

()() ()() () ()* , arg min , , / ,
u

r

u s q s c s u q s p r s u J rβ� 	= +�

 �

�

where the cost-to-go is:

22

() ()() ()() ()
()

min , , / , () ()
u

q s r

J s p q s c s u q s p r s u J r d rβ α� 	= + +�

 �

� � .

The ()(), ,c s u q s term represents the average transition cost from a state, s, to an

adjacent state, r, given that the control is u. The term ()d rα represents the tuning

parameter α multiplied by the distance of the future state, r, to the goal state.

Figures 3 through 15 included an a priori environment model accuracy of 90%. This

number quantifies the reliability of the a priori environment model. Various levels of a

priori environment model accuracy were used in the initial testing of the algorithm. If

the a priori environment model accuracy was treated as ()()0 0.5p q s = , then the a priori

model did not have a meaningful contribution to the motion planning (since a 50%

reliability is as good as flipping a fair coin). As the a priori accuracy of the model

increased from 0.5 to 0.9 the initial motion plan became more reliable and less likely to

hit obstacles.

The sensor model was generated by simulating sensor data using a Monte Carlo

approach for development of the sensor model. Each sensor measurement was taken as

the true measured value and combined with a Gaussian noise based upon the distance to

the obstacle. The simulations using the Eaton VORAD model had an accuracy of

() ()()/ ,p q s q s s′ ′ ′ = 0.95 for the non-local state sensing; i.e. when ()s s′ ≠ .

The simulations were also performed with various different uncertainty models so that

the effects of using non-local sensors, with different accuracy levels, on the performance

of the algorithm could be quantified. For example, in figures 5, 6, and 7 the non-

23

directional sensor model has an accuracy of () ()()/ ,p q s q s s′ ′ ′ = 0.96 for the local

sensing, an accuracy of () ()()/ ,p q s q s s′ ′ ′ = 0.93 at a distance of 10 meters, and an

accuracy of () ()()/ ,p q s q s s′ ′ ′ = 0.91 at a distance of 14 meters. This model was

developed by assuming non-local measurements at 1 meter have an accuracy of

() ()()/ ,p q s q s s′ ′ ′ = 0.96, while measurements at 100 meters have an accuracy of

() ()()/ ,p q s q s s′ ′ ′ = 0.57. The accuracy of the radar for a given range, was found by

linearly interpolating between the accuracy of the sensor at 1 meter and 100 meters. The

figures 8 through 15 use a directional sensor model with an approximate accuracy of

() ()()/ ,p q s q s s′ ′ ′ = 0.99. For a sensor uncertainty of () ()()/ , 0.5p q s q s s′ ′ ′ = , the

vehicle performed as if no sensor data was available. For sensor uncertainties between

() ()()/ ,p q s q s s′ ′ ′ = 0.7 and () ()()/ ,p q s q s s′ ′ ′ = 0.8, the performance increased

significantly. For uncertainties in the range of () ()()/ ,p q s q s s′ ′ ′ = 0.9 to

() ()()/ ,p q s q s s′ ′ ′ =0.99, the obstacle avoidance performance remained approximately

the same.

The motion planning software was tested multiple times before executing the

waypoints in the flight simulator. Figures 3 and 4 have been included below to show a

path that the high-level flight controller generated to navigate through campus while

using a priori map data as well as radar sensor information. The plots have been

overlaid with aerial photos to display the simulated vehicle trajectory through the Texas

A&M campus.

24

Fig. 3 Top View of Navigation through Campus

Fig. 4 Angled View of Navigation through Campus

25

D.2 Avoiding obstacles

The simulations in figures 3 and 4 used a static environment model. However, it is

realistic to consider the situation where the environment model can be dynamic. If a

newly sensed obstacle such as a vehicle or fallen building is encountered, the high-level

flight controller should be able to adapt. When the helicopter radar senses a new

obstacle, it creates a large transition cost so that the helicopter avoids flying into the

newly sensed obstacle. In figure 5, the trajectory of the helicopter is plotted in yellow.

Additional obstacles were added to the map after the helicopter started moving, so that

the helicopter encountered a dynamic obstacle field and a blocked passage by the Texas

A&M Library.

Fig. 5 Obstacles and Blocked Passage

26

D.3 Re-planning at a blocked passage

Occasionally, the vehicle may encounter an obstacle that entirely blocks a passage.

The vehicle may not have time to recalculate the entire cost map J . In this thesis,

updating the local region’s cost map (a 10x10 grid) is sufficient for the vehicle to plan a

new trajectory to get out of an impasse. It is conceivable that if the vehicle is unable to

find a path out of a local minimum due to a blocked passage, then a global cost map may

need to be recalculated. Figures 6 and 7 are included below to display the motion

planner’s response to blocked passages at various different locations on campus.

Fig. 6 Blocked Passage by Langford

27

Fig. 7 Blocked Passage by Heldenfelds

D.4 Motion planning in the flight simulator

Multiple tests were run while the high-level motion planner and low-level flight

controller were connected together. The high-level controller computation time was

relatively minor compared to the time necessary to execute the waypoint commands.

Running each MATLAB simulation took approximately 15-20 seconds, while a

simulation of actually flying the helicopter to 180 waypoints, which were 10 meters

apart, took approximately 12-15 minutes. If 180 waypoints were executed during the

initial cost-to-go calculation then approximately 180*N*M� 3,000,000 major

28

computations were required, which requires a computation time of approximately (5-10

sec). During the MATLAB simulations the vehicle made a minimum of 1 local and 8

non-local sensor measurements and up to 4 local and 32 non-local sensor measurements

per waypoint. This resulted in approximately 1800 optimizations run on environment

probabilities and 720 waypoint calculations if 180 waypoints were executed. This

requires a computation time of approximately 5-10 seconds. The following 8 plots

(figures 8-15) demonstrate the performance of the motion planner and the flight

simulator while connected together. Figures 8 and 9 were generated during the

simulator testing 2 using the obstacle map of campus with a blocked passage by the

library and a blocked passage by the pavilion. The obstacles were introduced after the

helicopter started its flight. The vehicle does not always choose the same path. In this

testing the vehicle did not take the anticipated route of going beside the library because it

accounted for sensor uncertainties and planned a route by Dunn.

29

Fig. 8 Simulator Testing 2- Large View

Note in Figure 9 how closely the helicopter actual trajectory (blue line) follows the

desired trajectory (yellow line).

m
eters

meters

Library

Rudder

Bright

Admin

Dunn

30

Fig. 9 Simulator Testing 2- Detail View

Library

Administration

Langford

Bright

31

Figures 10 and 11 were generated during the simulator testing 3 using the obstacle

map of campus with a blocked passage by the library. The blocked passage by the

library was introduced after the helicopter commenced its flight. As a result the

helicopter sensed the blocked passage by the library and moved back and forth several

times until it recalculated a local cost map. It took a few local cost map recalculations

before the helicopter was able to determine a path out between the library and the library

annex.

In a few simulations it was observed that a local cost map recalculation may not be

sufficient to update the cost map and guide the helicopter out of a blocked passage. By

only performing a local cost map update, it is possible to have a local minimum in which

the helicopter is unable to navigate its way out of an area containing a newly sensed

obstacle. The local cost map recalculations may need to be enlarged until the helicopter

is able to find its way out of an area. If a local cost map is unable to update the cost map

sufficiently for the helicopter to find its way out of an area, then it maybe necessary to

perform an entire recalculation of the cost map. Since dynamic programming by

definition is a global optimization, if the entire cost map is recalculated the helicopter

will be able to determine the optimal path to the final destination.

32

Fig. 10 Simulator Testing 3- Large View

Library

Rudder

 Admin

Bright

Dunn

Blocked
Passage

33

Fig. 11 Simulator Testing 3- Detail View

Figures 12 and 13 were generated during the simulator testing 4 using the obstacle

map of campus with a blocked passage by Heldenfelds and Langford. The blocked

passages and two obstacles near the library were introduced. The helicopter only

encountered one of the obstacles and the result is represented on figure 13.

Library Annex

Heldenfelds

Blocked
Passage

34

Fig. 12 Simulator Testing 4- Large View

m
eters

meters

Library

Rudder

Bright

Dunn

Admin

35

Fig. 13 Simulator Testing 4- Detail View

Figures 14 and 15 were generated during the simulator testing 5 using the obstacle

map of campus with a blocked passage by Heldenfelds and Langford. The helicopter

only encountered the blocked passage by Heldenfelds. After several recalculations of

the local cost map the helicopter was able to leave the boxed in area.

Library

Library Annex

Obstacle

36

Fig. 14 Simulator Testing 5- Large View

meters
m

eters

Rudder

Library

Bright

Admin

Dunn

Blocked
Passage

37

Fig. 15 Simulator Testing 5- Detail View

Heldenfelds

Butler

Library Annex

Blocked
Passage

38

5. CONCLUSION

In this work, a methodology was presented for intelligent exploration of a partially

known environment using a non-local sensor. It was shown that a motion planning

problem, under certain assumptions, can be reduced to the adaptive control of an

uncertain Markov Decision Process, consisting of a known control dependent system

state and an unknown control independent environment. The feasibility of the planning

methodology was illustrated by testing on an unmanned helicopter navigating through an

urban environment in a six DOF flight simulation.

The frequency of the cost-to-go update is of considerable interest. At one end of the

spectrum, the entire cost-to-go map could be updated at every time instant, which might

be computationally infeasible, while at the other end of the spectrum, only an initial

cost-to-go map could be calculated before the navigation begins. However, both these

extremes are possibly not “optimal” and the best solution might be somewhere midway.

It was surmised that the cost-to-go may need to be changed when the environments,

which are sensed after the helicopter begins its flight, start looking “significantly

different” from the estimates developed according to a priori data. However, these are

qualitative statements and need to be quantified in terms of algorithms.

 Another area of interest is to consider implementing heuristics in the dynamic

programming algorithm that would allow for an accelerated computation of the cost-to-

go map by initially excluding the evaluation of states that are far from the desired path of

the helicopter. Also, the controller architecture used in this research only uses the high-

39

level motion planner to detect and avoid obstacles, while the low-level controller is

assumed to track the desired trajectories closely enough to ensure obstacle avoidance. A

low-level controller needs to be designed that guarantees the local avoidance of

obstacles while tracking the high-level motion plans, so that integration of the high-level

motion planner and low-level flight controller can result in a truly intelligent

autonomous system.

Further, the amalgamation of the methodology presented in this thesis with existing

motion planning methods such as Probabilistic Roadmaps or D* might lead to more

robust, near real-time implementable motion planning algorithms.

40

REFERENCES

1 Chakravorty, S., and Junkins, J. L., “Intelligent Exploration of Unknown Environments

with Vision Like Sensors,” Proceedings of the 2005 IEEE/ASME International

Conference of Advanced Intelligent Mechatronics, Monterey, CA, 2005, pp. 1204-1209.

2 Chakravorty, S., and Junkins, J. L., “A Methodology for Intelligent Path Planning,”

Proceedings of the 2005 IEEE International Symposium on Intelligent Control,

Limassol, Cyprus, 2005, pp. 592-597.

3 Kumar, P. R., and Varaiya, P. Stochastic Systems: Estimation, Identification and

Adaptive Control, Prentice-Hall, Englewood Cliffs, NJ, 1986.

4 Borkar, V., and Varaiya, P., “Adaptive Control of Markov Chains, I: Finite Parameter

Set,” IEEE Transaction on Automatic Control, Vol. 24, No. 6, 1979, pp. 953-958.

5 Mandl, P., “Estimation and Control in Markov Chains,” Advances in Applied

Probability, Vol. 6, 1974, pp. 40-60.

6 Bertsekas, D. P., and Tsitsiklis, J. N., Neuro-Dynamic Programming, Athena

Scientific, Belmont, MA, 1996.

7 Sutton, R. S., and Barto, A. G., Reinforcement Learning: An Introduction, MIT Press,

Cambridge, MA, 1998.

8 Sutton, R. S., Barto, A. G., and Williams, R. J., “Reinforcement Learning Is Direct

Adaptive Optimal Control,” IEEE Control Systems Magazine, Vol. 12, No. 2, 1992, pp.

19-22.

9 Bellman, R. E., Dynamic Programming, Princeton University Press, Princeton, NJ,

1957.

41

10 Bellman, R. E., and Dreyfus, S. E. Applied Dynamic Programming, Princeton

University Press, Princeton, NJ, 1962.

11 Bertsekas, D. P., Dynamic Programming and Optimal Control, Athena Scientific,

Belmont, MA, 2000.

12 D. E. Kirk Optimal Control Theory: An Introduction, Prentice-Hall, Inc., Englewood

Cliffs, NJ, 1970.

13 Lozano-Pérez, T. “Spatial Planning: A Configuration Space Approach,” IEEE

Transactions on Computers, Vol. C-32, No. 2, 1983, pp. 108-120.

14 Latombe, J. C., Robot Motion Planning, Kluwer, Boston, MA, 1991.

15 Latombe, J. C., Lazanas, A., and Shekhar, S., “Robot Motion Planning with

Uncertainty in Control and Sensing,” Artificial Intelligence, Vol. 52, 1991, pp.1-47.

16 Mason, M. T., “Automatic Planning of Fine Motions: Correctness and Completeness,”

Proceedings of IEEE Conference on Robotics and Automation, Scottsdale, AZ, 1989, pp.

484-489.

17 Lavalle, S. M., “Robot Motion Planning: A Game-Theoretic Foundation,”

Algorithmica, Vol. 26, 2000, pp. 430-465.

18 Thrun, S. “A Probabilistic On-Line Mapping Algorithm for Teams of Mobile Robots,”

The International Journal of Robotic Research, Vol. 20, No. 5, May 2001, pp. 335-363.

19 Thrun, S. “Probabilistic Algorithms in Robotics,” AI Magazine, Vol. 21, No. 4, 2000,

pp. 93-109.

42

20 Burgard, W., Fox, D., Jans, H., Matenar, C., and Thrun, S., “Sonar-Based Mapping of

Large-Scale Mobile Robot Environments Using EM,” Proceedings of the International

Conference on Machine Learning, Bled, Slovenia, 1999, pp. 67-76.

21 Castellanos, J. A., Montiel, J. M., Neira, J., and Tardos, J. D., “The SP Map: A

Probabilistic Framework for Simultaneous Localization and Mapping,” IEEE

Transactions on Robotics and Automation, Vol. 15, 1999, pp. 948-953.

22 Dissanayake, G., Durant-White, H., and Bailey, T., “A Computationally Efficient

Solution to the Simultaneous Localization and Mapping Problem,” ICRA'2000

Workshop W4: Mobile Robot Navigation and Mapping, April 2000.

23 Hu, H., and Brady, M., “Dynamic Global Path Planning with Uncertainty for Mobile

Robots in Manufacturing,” IEEE Transactions on Robotics and Automation, Vol. 13,

No. 5, October 1997, pp. 760-767.

24 LaValle, S. M. Planning Algorithms, Cambridge University Press, New York, NY,

2006.

25 Korf, R. E. “Artificial Intelligence Search Algorithms,” Algorithms and Theory of

Computation Handbook, CRC Press, Boca Raton, FL, 1999.

26 Nilsson, N. J., Principles of Artificial Intelligence, Tioga Publishing Company,

Wellsboro, PA, 1980.

27 Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C., Introduction to

Algorithms (2nd Edition), MIT Press, Cambridge, MA, 2001.

28 Goodrich, M. T., Tammasia, R. Algorithm Design: Foundations, Analysis and

Internet Examples. John Wiley & Sons, Inc., New York, NY, 2002.

43

29 Dijkstra, E. W., “A Note on Two Problems in Connection with Graphs,” Numerische

Mathematik, Vol. 1, 1959, pp. 269-271.

30 Pearl, J., Heuristics: Intelligent Search Strategies for Computer Problem Solving.

Addison-Wesley, Boston, MA. 1985.

31 Stentz, A. “The Focused D* Algorithm for Real-time Replanning,” Proceedings of the

International Joint Conference on Artificial Intelligence, Montreal, Canada, 1995, pp.

1652-1659.

32 Stentz, A., and Herbert, M., “A Complete Navigation System for Goal Acquisition in

Unknown Environments,” Autonomous Robots, Vol. 2, No. 2, 1995, pp. 127-145.

33 Hebert, M., McLachlan, R., and Chang, P. “Experiments with Driving Modes for

Urban Robots,” Proceedings of the SPIE Mobile Robots, Boston, MA, 1999, pp 140-

149.

34 Koenig, S., and Likhachev M., “Fast Replanning for Navigation in Unknown Terrain,”

IEEE Transactions on Robotics, Vol. 21, No. 3, 2005.

35Ghallab, M., Nau, D., and Traverso, P., Automated Planning: Theory and Practice,

Morgan Kaufman, San Francisco, CA, 2004.

36 Russell, S. and P. Norvig. Artificial Intelligence: A Modern Approach, (2nd Edition)

Prentice-Hall, Englewood Cliffs, NJ, 2003.

37 Kavraki, L. E., Svestka, P., Latombe, J. C., and Overmars, M. H., “Probabilistic

Roadmaps for Path Planning in High-Dimensional Configuration Spaces,” IEEE

Transactions on Robotics & Automation, Vol. 12, No. 4, 1996, pp. 566-580.

44

38 Song, G., Shawna, T., and Amato, N. “A General Framework for PRM Motion

Planning,” Proc. IEEE International Conference on Robotics and Automation (ICRA), ,

Taipei, Taiwan, 2003, pp. 4445-4450.

39 Datta, A., Ho, M. T., and Bhattacharyya, S. P. Structure and Synthesis of PID

Controllers, Springer-Verlag, New York, NY, 2000.

40 Franklin, G. F., Powell, J. D., and Emami-Naeini, A., Feedback Control of Dynamic

Systems, (4th Edition) Prentice-Hall, Inc., Upper Saddle River, NJ, 2002.

41 Khalil, H. K., Nonlinear Systems, (2nd Edition) Prentice-Hall, Inc., Upper Saddle

River, NJ, 1996.

45

APPENDIX A

UAV HELICOPTER

 The helicopter used for this research was a remote control (RC) Bergen Observer with

a Zenoah G-23 (23cc) engine. The helicopter weight after the addition of the flight

controller was approximately 23 pounds and could still carry approximately 3 pounds of

additional payload. The helicopter flight controller components are estimated to have a

weight of approximately 7 pounds, this includes: aluminum skids, two battery packs, the

Automated Flight Control System, D-Link (wireless network bridge), multiple wires, 2

RC receivers, and a relay board.

Fig. A.1 Josh Davis with the UAV Helicopter and Ground Station

46

A. UAV hardware

 The RC Bergen Observer was provided by the Air Force Research Laboratory

(AFRL) to Texas A&M in order to implement a Rotomotion Automated Flight Control

System (AFCS). The helicopter was purchased and partially assembled by AFRL. The

assembly before arrival of the equipment at Texas A&M included assembling the

graphite composite (G10) frame, mounting the engine, installing camera mount,

installing the tail boom, and assembling the rotor head. The helicopter was

approximately fifty-percent assembled when it was delivered to Texas A&M in February

2005. The remaining assembly was performed at Texas A&M. This included

purchasing additional parts such as ball links, servo connecting rods, fuel system, rotor

blades, flybar paddles, and electronics equipment. The radio used was a Futaba 9CHP 9-

Channel pulse code modulated (PCM) radio with four S9001 Servos (pitch, roll, throttle,

collective) and Futaba GY401 Gyro with a S9254 digital servo for the tail rotor.

47

Fig. A.2 Controller Architecture

 The AFCS has a six degree of freedom (6-DOF) inertial measurement unit (IMU) with

three accelerometers and three gyros. The accelerometers were Analog Devices

ADXL202AE. The accelerometers use a polysilicon structure to form a differential

capacitor and measure ± 2 g static (gravitational) and dynamic accelerations. The gyros

were Tokin CG-16D ceramic gyros with a piezoelectric ceramic column to detect a

maximum angular rate of ± 90 degrees. The primary purpose of the accelerometers and

gyros is to provide the helicopter with attitude information. The AFCS flight controller

48

also contains SENS-L magnetometers, which use an Application Specific Integrated

Circuit (ASIC) architecture, from PNI Corporation’s Magneto-Inductive (MI) product

line. The three magnetometers are oriented orthogonal to each other to give the

helicopter the current heading. Three magnetometers are used because the helicopter is

not always level and ferrous helicopter components produce hard iron error.

Fig. A.3 Automated Flight Control System

 A u-blox TIM-LP Global Positioning System (GPS) receiver sensor is used and

implements differential updates using the Wide Area Augmentation System (WAAS).

After using the WAAS differential updates, the position measurements are accurate to

within 3 meters ninety-five percent of the time. The GPS sensor provides position

measurements as well as velocity measurements by integrating the change in position.

The AFCS includes a Mega 32 AVR Controller to decode the Futaba 1024 pulse code

modulation (PCM) signal as well as perform analog to digital data conversion for the

inertial measurement unit (IMU) sensors connected to the microcontroller. Information

49

is sent from the Mega 32 to an Intel XScale 400 processor. The Intel XScale 400Mhz

processor runs the onboard flight computer and analyzes the state of the helicopter at a

rate of 200 Hz.

B. UAV software

 The Rotomotion software was developed in the Linux operating environment and

includes a 3-dimensional flight simulator as well as a ground station. The simulations

were performed using the Suse Linux 9.2 operating system on an Acer laptop with a 3.0

GHz Pentium 4 processor, 512 MB of Ram, and a 40GB hard drive. The Linux C/C++

software was developed for communication between the high-level flight controller in

MATLAB and the Rotomotion low-level flight controller API. The C/C++ code was

written and debugged using the Integrated Development Environment KDevelop 3.0.

 The low-level flight controller, the AFCS, uses two Extended Kalman Filters for state

estimation. One Kalman Filter is a 7 state filter: 4 states for Quaternion and 3 states for

gyro bias. The other Kalman filter is a 6 state filter for North East Down (NED)

Position and UVW Velocity. The position measurements are filtered to give a more

accurate position hold. Also, the Doppler velocity from the GPS is integrated to smooth

out abrupt changes in position.

 The low-level flight controller also uses a series of nine Proportional Integral

Derivative (PID) control loops to control the helicopter. The first three loops that must

be tuned are the attitude control loops-roll (φ), pitch (θ), and yaw (ψ). These ensure

that the helicopter achieves the proper attitude during its transition from a hover

(stationary flight) to forward/sideway (translational flight) and yawing (rotational flight).

50

The second set of PID loops are the position control loops. These control loops ensure

that the helicopter maintains a position–fore (x), side (y), and down (z). The final three

PID loops, the velocity control loops, were developed to ensure steady velocities-fore

(x�), side (y�), and down (z�).

 The high-level flight controller uses dynamic programming to perform motion

planning in MATLAB while running on a Linux operating system. The high-level flight

controller performed a text file based inter-process communication between MATLAB

and a program called “waypoint”, which was developed using C/C++ in Kdevelop, to

communicate with the flight controller’s application programming interface (API).

 The flight simulator operates on the same protocol as the AFCS. As a result the

control algorithm can be tested in the flight simulator by executing the high-level motion

planner to interface with the flight simulator rather than the AFCS. The interface

between the waypoint program and the flight simulator (heli-sim) is essentially the same

as the interface between the waypoint program and the AFCS. The primary difference is

that flight simulator and the AFCS use different IP addresses.

 The AFCS as well as the Rotomotion ground station operate using a Linux based

operating system that was developed in the C/C++ programming language. The onboard

flight controller runs a command line (non-graphical) version of Linux. The graphical

interface of the ground station developed Rotomotion, LLC. uses the Fast Light ToolKit

(FLTK) software, which is an open source C/C++ software based upon the OpenGL

standard for computer graphics. Fast Light ToolKit is used to implement an event-

51

driven graphical interface so the ground station can monitor the helicopter’s status as

well as issue commands.

Fig. A.4 Ground Station Interface During Hardware in Loop Testing

52

Fig. A.5 Heli-3d Viewer for Ground Station

C. Flight testing and hardware in the loop testing

 In May 2005, flight testing included several maintenance flights to ensure proper

remote control performance and prepare for integration of the Rotomotion AFCS.

During testing, the engine was tuned with the proper low and high-end throttle settings

as well as the throttle-collective performance curve. The tracking of the rotor blades was

adjusted to ensure proper flight performance and radio equipment was tested.

 The helicopter wiring was changed so that the RC flight commands could be executed

through the AFCS in June 2005. A safety pilot transmitter was installed which used a

relay to bypassing the flight controller if necessary and was capable of sending servo

commands directly to the servos from a separate transmitter. In July 2005, the helicopter

was taken to Charleston, South Carolina to tune the flight controller. The flight

controller was previously used on a helicopter airframe of relatively similar size so the

53

gains in the controller reasonably held the helicopter in its position. It was still

necessary to fine tune the gains for the new airframe.

 Several remote control and autonomous flights were performed with the unmanned

helicopter. The flight testing challenges included electronic difficulties from electro-

magnetic interference and loss of communication, as well as mechanical difficulties

from clutch slippage and bearing malfunctions. After the flight testing, several

hardware-in-the-loop tests were performed to demonstrate that the high-level motion

planning algorithm could be implemented on the flight hardware.

 During the hardware-in-the-loop testing, motion planning algorithms were executed

outside the Flight Mechanics Laboratory hanger on Texas A&M’s Riverside Campus.

The helicopter was pushed on a cart to simulate the helicopter flying to various

waypoints. All of the electronics and telemetry were running and only the helicopter

engine remained off. A motion planning algorithm was executed and the helicopter was

moved on a cart to a series of waypoints as telemetry was logged by the ground station

and the control surfaces were monitored for proper deflection. After successful

hardware-in-the-loop testing, the remainder of the motion planning algorithm testing and

development was performed in the 6 DOF Rotomotion, LLC. flight simulator.

54

VITA

 Joshua Daniel Davis graduated from Auburn University with a Bachelor of Science in

Mechanical Engineering in 2003. He worked for the Air Force Research Laboratory and

later accepted a position as a graduate assistant research in the Department of Aerospace

Engineering at Texas A&M. He completed his Master of Science in Aerospace

Engineering in 2006 and accepted a position as an engineer with Bell Helicopter in

Hurst, Texas. Joshua Daniel Davis can be reached through his advisor:

Joshua Daniel Davis

c/o Dr. Suman Chakravorty

3141 TAMU- Aerospace Engineering

College Station, Texas 77843-3141

