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ABSTRACT 
 
 

Motion Planning Under Uncertainty: Application to an Unmanned Helicopter.  

(August 2006) 

Joshua Daniel Davis, B.S. Auburn University 

Chair of Advisory Committee: Dr. Suman Chakravorty 

A methodology is presented in this work for intelligent motion planning in an 

uncertain environment using a non-local sensor, like a radar sensor, that allows the 

sensing of the environment non-locally.  This methodology is applied to an unmanned 

helicopter navigating a cluttered urban environment.  It is shown that the problem of 

motion planning in a uncertain environment, under certain assumptions, can be posed as 

the adaptive optimal control of an uncertain Markov Decision Process, characterized by a 

known, control dependent system, and an unknown, control independent environment.  

The strategy for motion planning then reduces to computing the control policy based on 

the current estimate of the environment, also known as the “certainty equivalence 

principle” in the adaptive control literature.  The methodology allows the inclusion of a 

non-local sensor into the problem formulation, which significantly accelerates the 

convergence of the estimation and planning algorithms.  Further, the motion planning and 

estimation problems possess special structure which can be exploited to reduce the 

computational burden of the associated algorithms significately.  As a result of the 

methodology developed for motion planning in this thesis, an unmanned helicopter is 

able to navigate through a partially known model of the Texas A&M campus.  
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1. INTRODUCTION 

 

In this thesis, a methodology for the motion planning of an autonomous agent in an 

uncertain environment is proposed and applied to an unmanned helicopter navigating a 

cluttered urban environment.  The optimal path for the unmanned helicopter is planned 

using a priori knowledge about the environment and the sensor data received, as the 

helicopters navigates through obstacles in the environment.  The motion planner 

involves a high-level planner which plans against the uncertainty in the environment and 

issues its commands in a series of waypoints for a lower-level controller to track.  A 

commercially available lower-level controller from Rotomotion LLC, called the 

Automated Flight Control System (AFCS), was interfaced with the high-level motion 

planner so that the motion planning algorithm could be implemented on a six degree of 

freedom flight simulator. 

The high-level controller plans the motion of the agent in an uncertain environment 

using a radar sensor.  The methodology is applicable for any non-local sensor, i.e., a 

sensor that allows sensing of environment states surrounding the current system state.  

The state space of any motion planning problem can be expressed as the ordered pair 

(s,q(s)) were s represents the system state and q(s) represents the state of the 

environment at the state s.  For example, in the case of an unmanned helicopter 

exploring an urban environment, s corresponds to the (x,y,z) coordinates of the helicopter  

_____________ 
This thesis follows the style of Journal of Guidance, Control, and Dynamics.  
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And q(s) corresponds to the presence or absence of an obstacle at the point (x,y,z).  The 

goal of the motion planning strategy is to use all available information about the 

environment, until the current time instant, in order to plan the “best possible” path.  It is 

known that the planning problem can be modeled as a Markov Decision Process (MDP), 

characterized by a known, control dependent exploration system and unknown, 

uncontrollable environment.1,2  Our formulation allows the integration of a radar or a 

similar non-local sensor into the planning methodology.  The planning and estimation 

problems, as formulated in this thesis, have special structure which can be exploited to 

significantly reduce the dimensionality of the associated algorithms.  

 There has been substantial research in the adaptive control of controlled Markov 

Chains, or Markov Decision Processes, in the past two decades.  In indirect adaptive 

control, the transition probabilities of the underlying Markov Chain are estimated and 

the control is applied based on the most recent estimate of the transition probabilities.3,4,5  

This is known as the so-called “certainty equivalence principle”.  The “direct” approach 

to stochastic adaptive control falls under the category of “reinforcement learning” 

methodologies wherein the optimal control is calculated directly with resorting to 

estimating the transition probabilities of the underlying Markov Chain.6,7,8  Underlying 

all these methods is Bellman’s “principle of optimality” or Dynamic Programming, 

which is a methodology for sequential decision-making under uncertainty.9,10  In this 

work, it is shown that the motion planning problem can be reduced to the adaptive 

optimal control of a Markov Decision Process and thus the above methodologies can be 

applied to the same.  The indirect approach to adaptive control is adopted since mapping 
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the environment is of interest too.  The general representation for an infinite horizon 

control problem based upon the principle of optimality can be represented by: 

( )
( )

( )
1 2

*
0 1 0

, ,... 1

arg min / , /k
t t t

u u t

s E c s s u s
π

π β
∞

+
= =

� �= � �
� �
� . 11                                                   (1) 

( ) ( )*
1 2, ,...s u uπ =  represents the optimal control policy that starts at the state 0s , while 

( )1 / ,t t tc s s u+  is the cost to transition from state ts  with control tu  to 1ts + .  The term β  

represents the discount factor for the infinite horizon problem and discounts the terms as 

the states become farther out on the horizon.  This formulation allows a feedback control 

to be implemented for a system, using dynamic programming. 

 As additional states are added to a dynamic programming problem there is a 

geometric growth in computation, which is considerably more attractive than a direct 

enumeration method for control determination, which would give an exponential growth 

in computation.12  The reason that direct enumeration requires such a large amount of 

computation, is that it determines all possible control sequences and compares them to 

determine an optimal path.  Even though dynamic programming is more efficient 

computationally than direct enumeration, the greatest challenge associated with dynamic 

programming is “the curse of dimensionality”.  This means that as the number of 

dimensions or states increase, the computational requirements rapidly increase and can 

cause the solution to become computationally unfeasible.   

  Motion planning considers how the state space (configuration space) is represented.  

The dimension of the configuration space depends upon the degree of freedom of the 

robot being used in the motion planning.13  Another consideration is if the system is 
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modeled as continuous or discrete.  If the system is modeled as discrete, the grid size 

(number of states) will greatly effect the computation time. 

Various approaches have been developed for collision-free motion planning of 

unmanned systems in known environments.14  In the past decade, there has been an 

increasing interest in the case when the environment in which unmanned system is 

operating is partially or completely unknown.  The uncertainty in the environment is 

treated as a deterministic worst case15,16 or on a probabilistic average case basis.17  In 

“probabilistic robotics”, there has been substantial research in the localization of a 

mobile robot while simultaneously mapping the environment.18,19,20,21,22  In Ref. 14, a 

game-theoretic framework is proposed for robotic motion planning.  The authors resort 

to Bellman’s principle of optimality9 in order to tackle the motion-planning problem.  In 

Ref. 14, a Bayesian adaptive control4 approach is formulated which suffers from the 

issue of dimensionality and may not be suitable for high dimensional environments.23  A 

non-Bayesian adaptive control framework is adopted in our approach.   

 There has been a blending of previously different areas of study: planning, control 

theory, and artificial intelligence for motion planning.  In the past, planning has focused 

more on planning the trajectory of a vehicle, while control theory has focused on the 

response of differential equations to control inputs.24  The area of artificial intelligence 

in the past tented to focus on problem solving in a discrete state space.25,26  The 

development of algorithms for autonomous systems to navigate through obstacle fields 

has caused the differences between planning algorithms and control theory to become 

less distinguished.  
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  Many of motion planning techniques that have been implemented are essentially 

graph search methods, such as breath first search, depth first search, and Dijkstra’s 

algorithm.  Breadth first search considers all possible paths that are equal distance from 

the starting point.  Although it is not the most computationally efficient it guarantees the 

optimal path is determined.27  Depth first search considers the cost from a starting point 

to the goal state along a feasible path and may later consider alternate paths.28  Dijkstra’s 

algorithm is a single source shortest path algorithm and was developed as a special form 

of dynamic programming.  Dijkstra’s algorithm includes several heuristics to draw the 

vehicle toward the goal state and help eliminate unnecessary computations by removing 

unnecessary state analysis.29   

One of the most well know graph search methods for motion planning is A*, 

pronounced (“ay-star”), and was created as a method for determining an optimal path or 

trajectory by including heuristics.  It determines an admissible, “optimistic”, solution.  

A* is effective for a priori planning of a static environment but requires complete 

recalculation if the environment changes.30  A* and Dijkstra’s algorithm are essentially 

the same except for the function which is used to sort the vector recording the cost of 

feasible paths.23  A development in A* research led to a class of algorithms called 

Focused Dynamic A* (D*),31 which includes heuristics as well as incremental search 

techniques so that a complete recalculation of the costs is not necessary for a 

dynamically changing environment.  D* has been implemented for various motion 

planning problems, such as indoor robots, outdoor UGV (unmanned ground vehicles) in 

the DARPA Unmanned Ground Vehicle Program,32 urban robots, and even the Mars 
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rover.33  A newer version of D* called D* Lite has been developed that is at least as 

efficient and often more efficient than D*.  D* Lite is also more intuitive to understand 

than D* and has been rigorously analyzed mathematically.34 

  Logic based methods also exist as a possible solution to motion planning and can be 

implemented similar to graph search methods, but take a somewhat different approach to 

motion planning.35,36  Logic methods often focus on partial plans and sub-goals.  There 

are various implementations to logic based planning, for example, planning graphs can 

be analyzed by layer construction, or the planning problem can be tackled using a 

Boolean approach.  

  Probabilistic roadmaps (PRM) are a recent development in motion planning and are 

an efficient method for determining an optimal path.  They are essentially a sample-

based approach to navigation of an environment.37  The roadmap is a graph of randomly 

generated collision-free paths, which are connected by a simple fast planning method.38  

The advantage of using a roadmap is the efficiency with which the nodes (waypoints) 

are connected in the configuration space.  If part of the roadmap is not used then those 

computations are wasted.  However there are probabilistic roadmap variants, which 

minimize unnecessary computations.  The samples can be chosen randomly for the state 

space (configuration space) to obtain meaningful information in developing a model of 

the environment.  In the study of roadmaps important information includes the denseness 

of the samples chosen as well as the method of choosing the samples.  Roadmaps require 

preprocessing before the vehicle begins navigation and essentially act as a network of 

multiple pairs of initial-goal points.  In the implementation of the algorithm the roadmap 
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construction phase is used to generate the nodes and connect them, while the query 

phase is used to evaluate which path is optimal.  The “probabilistic” part of the name 

comes from the fact that the method performs sampling in a probabilistic fashion.  

However, probabilistic roadmaps do not perform control in a probabilistic fashion.   

The original contributions of the current work are as follows.  We propose a 

hierarchical motion planner wherein, the problem of “intelligent motion planning” for 

the high-level planner is reduced to the adaptive optimal control of an uncertain Markov 

Decision Process, characterized by a known, control dependent system and an unknown, 

control independent environment; and a low-level controller is then used to track the 

commands from the high-level planner.  The methodology allows for the inclusion of 

non-local sensors, which significantly reduce the computational burden of the estimation 

and planning algorithm in an uncertain environment.  The motion planning methodology 

is applied to the problem of a UAV helicopter navigating the Texas A&M campus and is 

tested on a six degree of freedom flight simulator of the helicopter.  

  The rest of the thesis is organized as follows.  Section 2 details the structure of the 

motion planner.  Section 3 contains the formulation of the motion planning problem as a 

Markov decision problem.  In section 4, we present the results of implementing the 

planning methodology on a UAV helicopter navigating the Texas A&M campus by 

testing the algorithms on a six DOF flight simulator.   
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2. CONTROLLER STRUCTURE 

 

The motion planning algorithm is implemented in a hierarchical fashion wherein a 

high-level motion planner determines the optimal waypoints for the low-level controller 

to track during its traverse to the goal state.  The planner takes into consideration the 

shortest distance to the goal state, local and non-local environment sensing, as well as 

the current state of the helicopter when it makes decisions.  The high-level planner 

minimizes the distance traveled by choosing waypoints between the initial and goal state 

while avoiding obstacles during the flight.  The high-level controller determines each 

desired waypoint and issues it to the low-level controller.  The low-level controller 

receives the waypoint command and issues the necessary commands to the flight 

surfaces.  Once the waypoint is achieved the high-level planner receives new sensor 

information about non-local states and determines the next waypoint.  This process 

continues until the goal state is achieved.  Figure 1 below outlines the basic motion 

planning architecture. 

 

 

Fig. 1  Architecture for the High-Level Motion Planner and Low-Level Controller 
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The low-level flight controller used in the simulations was the Automated Flight 

Control System (AFCS), which was developed by Rotomotion LLC and is capable of 

executing waypoint commands given to the helicopter.  The AFCS has a series of 

Proportional-Integral-Derivative (PID) control loops that stabilize the attitude, position, 

and velocity of a remote control helicopter.39,40  The control loops use an observer (state 

estimator), which is implemented using a Kalman Filter.  As the helicopter flies, the 

Kalman Filter also gives state feedback to the high-level motion planner so that the high-

level planner knows that a waypoint has been achieved.  It is assumed that the low-level 

controller has sufficient control over the helicopter so that it will not deviate from the 

grid and hit obstacles.  The motion planner is thus in the form of a composite feedback 

control wherein the high-level planner plans against the uncertainty in the environment 

on a longer time/length scale while the lower-level controller is robust to uncertainties at 

shorter time/length scaling, and also for the dynamic uncertainties in the system model. 
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3. PLANNING UNDER UNCERTAINTY USING NON-LOCAL 

SENSING 

 

  First, we recount some results that will be required for the motion planning.1,2 

A. Preliminaries 

Let the state of the exploration system be denoted by s, s ∈  S.  Denote the state of the 

environment at the system state s by q(s).  For example: 

1) In the case of robotic exploration of unknown terrain, s corresponds to the (x,y) 

coordinates of the robot and q(s) corresponds to the height of the terrain z(x,y) at 

the point (x,y). 

2) In the case of a UAV navigating enemy territory while avoiding radar detection, 

the s variable corresponds to the position (x,y,z) of the UAV while q(s) 

corresponds to the binary valued variable indicating the presence or lack of radar 

coverage at the point (x,y,z). 

From hereon assume that the system state is sensed perfectly and only the 

environment is sensed imperfectly.  Let the number of system states be N and let the 

number of possible environment states, at any system state s, be D and denote this set by 

Q.  Denote the local state of the exploration system by the ordered pair (s, q(s)).  Let the 

set of control actions be denoted by U and let the total number of control actions 

possible be denoted by M.  Denote any particular control action by u.  The following 

Markovian assumption is made about the system.  Let 
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( )( ) ( )( ){ }0 0 0 0 1 1 1 1, , ,..., , ,t
t t t tF s q s u s q s u− − − −=  represent the history of the process until 

time t. 

A 3.1 The current system state, st, is dependent only on the system state and control 

input at the previous time instant, i.e., 

( ) ( )1 1/ / ,t
t t t tp s F p s s u− −= .                                                                                (2) 

A 3.2 The environment process is “incoherent”, i.e., the environment process is spatially 

uncorrelated and temporally stationary.  In other words, if {qt(s), s ∈  S} denotes the 

environment process, qt(s) is a stationary process for all s ∈  S.  Moreover, qt(s) is 

independent of q�(s') whenever s ≠  s', for all t, � .  Note that ( )tq s  is a random variable 

and the above assumption is used in a probabilistic sense. 

Deterministic environments (like an unstructured terrain) automatically satisfy the 

above assumptions.   

Proposition 1 Under assumptions A3.1,A3.2, the following holds: 

( )( )( ) ( )( ) ( )( )1 1, / / ,t
t t t t t t t tp s q s F p s s u p q s− −=                                                   (3) 

The transition probabilities ( )( )1 1/ ,t t tp s s u− −  quantify the control uncertainties 

inherent in the system and are assumed to be known beforehand.  The environmental 

uncertainty p(q(s)) is unknown and successive estimates are made of this uncertainty as 

the planning proceeds to completion.  Motion planning may be framed as an infinite 

horizon discounted stochastic optimization problem, i.e., given the initial state 

( )( )0 0 0,s q s , the optimal control policy ( )*
0 0 0, ( )s q sµ  { }1 2, ,...u u=  is defined by: 
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( )( ) ( )( )( ( )( ) ) ( )( )*
0 0 0 1, 1 1 1 0 0 0

1

, arg min , , , / ,t
t t t t t t t

t

s q s E c s q s s q s u s q sµ µµ β
∞

− − − −
=

� �= � �
� �
�   (4) 

where ( )( ) ( )( )( )1, 1 1 1, , ,t t t t t t tc s q s s q s u− − − −  is a positive pre-defined cost that the system 

incurs in making the transition from state ( )( )1, 1 1t t ts q s− − − to ( )( ),t t ts q s  under the control 

action 1tu − , (.)Eµ  denotes the expectation operator with respect to the policy µ , and � < 

1 is a given discount factor.  

  The following environment sensing model is adopted: 

3) At every instant t, the system (UAV) at state st, can observe the environment 

state qt(s), (i.e., the current environment state at the state s), if ( )ts F s S∈ ⊆ , 

where F(s) is assumed to be known beforehand.  The set F(s) constitutes a 

“footprint” of the sensor system. 

4) Associated with every observation-vantage point pair, (q(s),s'), s'∈  F(s), (i.e., we 

are observing the environment at s, q(s), from the state s'), there exists a known 

measurement error model, ( ) ( )( ) ( ) ( )ˆ ˆ/ , ', ,p q s q s s q s q s Q∈ , and s, s' ∈  S, i.e., 

the probability that q̂ (s) is observed when the environment is actually at the state 

q(s), for an observation made from system state s.  Such a model maybe deduced 

from sensor calibrations. 

The estimation and control schemes that are used to tackle the motion planning 

problem are discussed next.  

B. Estimation 

Consider the following relationship: 
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( )( ) ( )( )
( )

( )( ) ( )
( ),

1ˆ ˆ( ( )) ( ) / ,
s F s q s

q s p q s q s s p q s s
F s

π π
π ′∈

′ ′= �                                       (5) 

where  

1) ( )( )q̂ sπ denotes the probability of observing the noise corrupted environment 

state ˆ( )q s  during the course of the exploration, i.e., the fraction of the time that 

the environment at state s is observed to be at ˆ( )q s  during the course of the 

exploration. 

2)  p(q(s)) denotes the true probability that the environment state is q(s) at the state 

s. 

3) ( )sπ ′ denotes the fraction of the time that the system is at state s' and ( ( ))F sπ  

represents fraction of time that the system spends in the footprint set F(s). 

The above equation states that the frequency of observing a particular value of the 

environment during the course of the exploration process is related to the actual 

probability of the environment taking that value, the noise model and the frequency of 

visiting the states of the system.  Since the noise model is known, and the values of 

( )( )q̂ sπ  and ( )sπ can be estimated during the course of the exploration using the 

Monte-Carlo method, it is possible to obtain the true environment probabilities using 

equation 5.  Mathematically: 

1

1ˆ ˆ ˆ( ( )) : 1( ( ) ( ))
t

t n nq s q s q s
t

π = =�                                                                            (6) 

1

1
( ) : 1( )

t

t n
n

s s s
t

π
=

= =�                                                                                            (7) 
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where 1(A) denotes the indicator function of the event A.  Then, the true probabilities of 

the environment process p(q(s)) can be obtained recursively as: 

2
( ) : arg min ( ) ( )t t tP V

P s s s P
∈

= Π − Γ                                                                           (8) 

where 

[ ]1( ) ( ( )),..., ( ( ))t t t DP s p q s p q s ′=                                                                             (9) 

[ ]1ˆ ˆ( ) ( ( )),... ( ( ))t t t Ds q s q sπ π ′Π =                                                                           (10) 

( ) ( ) ( )ij
t ts s sλ γ� 	Γ = 
 �                                                                                           (11) 

' ( )

( ) ( ( ) / ( ), ) ( )ij
t i j t

s F s

s p q s q s s sγ π
∈

′ ′= �                                                                  (12) 

||.|| denotes the Euclidean norm in D
� , and V  represents the space of all probability 

vectors in D
� .  Thus, keeping account of the probabilities, ( )sπ  and ˆ( ( ))q sπ , the true 

probabilities of the environment process can be recovered asymptotically.  The term 

( )sλ  is equal to ( )1/ ( )F sπ  and is included to make each row of ( )t sΓ  stochastic. 

C. Control 

Consider the stochastic optimal control problem posed in equation 4.  Using the 

Bellman principle of optimality,6 it can be shown that the optimal policy is stationary, 

i.e., the optimal control is independent of time, and that the optimal control at the state 

(s,q(s)), *( , ( ))s q sµ , is given by the following equation: 

* *

( , ( ))

( , ( )) arg min ( / , ) ( ( ))[ (( , ( ), ( , ( )), ) ( , ( ))]u
r q r

u s q s p r s u p q r c r q r s q s u J r q rβ= +� ,  (13) 
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where *( , ( ))J r q r  is the optimal cost-to-go from the state ( , ( ))r q r .  Moreover, *J  

satisfies the following fixed point equation: 

* *

( , ( ))

( , ( )) min ( / , ) ( ( ))[ (( , ( ), ( , ( )), ) ( , ( ))]
u

r q r

J s q s p r s u p q r c r q r s q s u J r q rβ= +�          (14) 

The problem of path planning is one of adaptive control of an uncertain Markov 

Decision Process, (since the probabilities of the environment process are not known).  

However, the system state and the local environment are assumed to be sensed perfectly 

and thus the problem is not a Partially Observed Markov Decision Process (POMDP).11  

In such a scenario, the strategy of adaptive control is to use the policy that is optimal 

with respect to the current estimate of the system, since it corresponds to the current 

knowledge of the system that is being controlled and is referred to as the “certainty 

equivalence principle” in adaptive control.3 

 Let { }1 2, ,..., ,...kT t t t= denote the set of all times at which the control policy is updated 

during the path planning.  Let the updated control policy at time instant kt  be denoted by 

( , ( ))k s q sµ .  Let pt(q(s)) denote the estimated environmental uncertainty at the time t, 

obtained from the estimation equation 8.  Then, the control update at time , (.)k kt T µ∈ , 

using the principle of optimality and the “certainty equivalence principle”, is given by 

( )( ) ( ) ( )( )
( )( )

( )( ) ( )( )( )
,

, arg min / , , , , , ( , ( ))
kk u t k

r q r

s q s p r s u p q r c r q r s q s u J r q rµ β� 	= +
 ��   

(15) 

where 
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( )( ) ( ) ( )( )
( )( )

( )( ) ( )( )( )
,

, min / , , , , , ( , ( ))
kk t ku

r q r

J s q s p r s u p q r c r q r s q s u J r q rβ� 	= +
 �� .  

(16) 

Next, a few of the salient properties of the control problem posed are listed.  The 

following result establishes the convergence of the cost-to-go functions to the optimal 

cost-to-go function when the estimates of the environmental process converge. 

Proposition 2 Under assumptions A2.1-A2.2, the cost-to-go functions 

*( , ( )) ( , ( ))tJ s q s J s q S→ as t → ∞ , if ( ( )) ( ( ))tp q s p q s→ , for all s∈S, q(s)∈Q. 

The optimality equations can be simplified based on the special structure of the path 

planning problem due to the incoherent environment assumption, which allows us to 

reduce the dimensionality of the dynamic programming problem.  Consider the 

optimality equation: 

( , ( ))

( , ( )) min ( / , ) ( ( ))[ (( , ( ), ( , ( )), ) ( , ( ))]
u

r q r

J s q s p r s u p q r c r q r s q s u J r q rβ= +�     (17) 

Let 

( )( ) ( ) ( )( )
( )( )

( )( ) ( )( )( )
,

, , / , , , , ,
r q r

c s u q s p r s u p q r c r q r s q s u
′

= � .                      (18) 

Noting that 

( , ( )) /( , ( )), ) ( / , ) ( ( ))p r q r s q s u p r s u p q r= ,                                                         (19) 

it follows that 

( ) ( )( ) ( ), ( ) min , , / , ( )
u

r

J s q s c s u q s p r s u J rβ� 	= +� 


 �

� ,                                       (20) 

where  
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( ) ( )( ) ( )( )
( )

,
q s

J s p q s J s q s=� .                                                                             (21) 

Noting that 

( )( ) ( )( ) ( ) ( )* , arg min , , / ,
u

r

u s q s c s u q s p r s u J rβ� 	= +� 


 �

� ,                               (22) 

it can be concluded that an average value of the cost-to-go function ( , ( ))J s q s , at the 

system state s, namely 
( )

( ) ( ( )) ( , ( ))
q s

J s p q s J s q s=� , is required in order to be able to 

evaluate the optimal control at any state ( , ( ))s q s .  This allows us to carry an “average” 

feedback control.  However, there still remains the problem of estimating the average 

cost-to-go vector ( )J s .  In order to answer this question, note that 

( ) ( )( ) ( )( ) ( )
( )

min , , / , ( )
u

q s r

J s p q s c s u q s p r s u J rβ� 	= +� 


 �

� � .                          (23) 

Hence, J  is the fixed point of the “average” dynamic programming operator 

: N NT →� � , defined by the following equation: 

( ) ( )( ) ( )( ) ( )
( )

min , , / , ( ) ,
u

q s r

T J s p q s c s u q s p r s u J r sβ� 	= + ∀� 


 �

� � .                (24) 

The following proposition states that the “average DP operator”, T , is a contraction 

mapping that maps n nR R→  and thus, the optimal average cost-to-go vector, which is 

unique fixed point, can be obtained using successive approximations.41  This allows us to 

significantly reduce the computational burden of the planning algorithm. 

Proposition 3 The average DP operator, T , is a contraction mapping in N
�  under the 

∞  norm. 
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4. TESTING ON AN UNMANNNED HELICOPTER  

 

The methodology presented thus far in this thesis was used for motion planning of an 

unmanned helicopter in an uncertain environment.  The motion planning algorithms 

were implemented in a six DOF simulation of a UAV helicopter navigating through an 

urban environment model of the Texas A&M campus.  The results show that the 

planning methodology proposed maybe suitable for autonomous navigation in a 

cluttered urban environment.   

A. Developing an urban environment 

An environment model of the inner part of the Texas A&M campus was developed in 

MATLAB, using maps as well as aerial photos of the campus from Google Earth.  Once 

a three dimensional campus model was developed, it was overlaid with the aerial images 

for visualization purposes.   

The system state, s, represents the (x,y) grid point coordinate of the vehicle and the 

environment state, ( )q s , represents the presence of an obstacle or otherwise at that 

particular grid point.  A 750x 550 meter area on the campus of Texas A&M was 

discretized into 75 x 55 grid of points (i rows, j columns) so that the number of possible 

system states N was equal to 4125.  The environment state at any grid point has 2 

possible values, obstacle or no obstacle.  Figure 2 shows that at any given location the 

helicopter had four possible high-level control actions: Go (Forward/Back/Right/Left) to 

the adjacent grid point.  
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Fig. 2  Possible High-Level Control Actions 

B. Non-local state estimation using a radar 

A non-local sensor for motion planning would ideally have unlimited range, a 360 

degree field of view, and no uncertainty.  However, a perfect level of accuracy is not 

possible in practical applications, and there are multiple sensors available that can be 

used in motion planning.  Researchers have used millimeter wave radar, LIDAR (LIght 

Detection and Ranging), infrared sensors, and ultrasonic sensors.  LIDAR sensors as 

well as millimeter wave radars have been implemented on full size helicopters to warn 

pilots of obstacles.  A millimeter wave radar (24.7 GHz) called the Eaton VORAD 

(Vehicle On-board RADar) was chosen as the non-local sensor to be modeled in this 

research.  The VORAD has an operating range of 1 meter to 107 meters (3 feet -350 

feet), with an uncertainty of 5%, and a field of view of 12 degrees, with an uncertainty of 

0.2 degrees.  The radar antenna, onboard processor, and batteries require a helicopter 

with a lift capability of 6-7lbs.  The radar software was developed to track up to seven 

obstacles every 65ms (15Hz), by reporting azimuth to each obstacle, range to each 

obstacle, and gain of the return from each obstacle.  The simulation treats all obstacles as 

having the same radar reflectivity characteristics.  Two changes were made to the 
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sensing model to accommodate the simulation: first, the field of view was changed to 90 

degrees and second, radar tracking was set to nine obstacles.   

C. Interfacing with a low-level flight controller 

A low-level flight controller known as the Automated Flight Control System (AFCS), 

developed by Rotomotion Inc. for unmanned helicopters, was used to track the high-

level flight control commands.  The AFCS uses two extended Kalman filters for state 

estimation: the first is a 7 state Kalman filter, 4 states for quaternion and 3 states for gyro 

bias, and the second is 6 state Kalman filter, 3 states for North East Down (NED) 

position and 3 states for orthogonal velocity components (UVW).  The flight controller 

implements nine Proportional Integral Derivative (PID) loops- three for position (x,y,z), 

three for velocity ( ), ,x y z� � � , and three for attitude ( ), ,ψ θ φ .  

The AFCS position sensor utilizes the Wide Area Augmentation System (WAAS) 

Global Positioning System (GPS) and gives position measurements to within 3 meters 

accuracy 95% of the time.    

D. Motion planning in the flight simulator  

D.1 Navigation and exploration 

The high-level motion planner calculates an initial cost-to-go map ( )J s , which is an 

array of i rows and j columns, based upon the a priori environment data available.  

Before the high-level motion planner implements a control, it senses and updates 

probabilities of the environment state at 8 of the adjacent grid-points.  If the helicopter is 

commanded in a direction that has not been sensed by the radar sensor, the helicopter 
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changes directions and performs new measurements of the non-local environment states 

since the sensors in this case have only a 90 degree field of view.  Then the motion 

planner recalculates the control and the command is issued to the low-level flight 

controller for execution. 

The operation of the high-level planner involves four different tuning parameters.  

The cost associated with hitting an obstacle is �= 100, while the transition cost to visit a 

state with no obstacle is �= 1.  Various tuning values were used for � and �.  The only 

importance of the numbers for � and � is their magnitude relative to each other.  These 

values are important because the cost-to-go to the goal state includes the transition cost 

along with the cost-to-go from a future state and the distance of a future state from the 

goal state.  An infinite horizon discount factor of .99β =  was used to ensure that states 

in the immediate future have a greater effect on the control than states farther out on the 

horizon.  For lower β  values the vehicle is more likely to be trapped once the vehicle 

enters a boxed in area.  Also a tuning parameter of 6α =  was included in the 

simulations to represent a weighting value for distance to the goal.  For large α  values 

the vehicle is drawn to the final destination and hits obstacles, while the value of 6α =  

draws the vehicle to the final destination but does not hit obstacles.  It is necessary to 

tune the parameters because the path planning problem is posed as an infinite horizon 

problem.  The structure of the control is given by: 

( )( ) ( )( ) ( ) ( )* , arg min , , / ,
u

r

u s q s c s u q s p r s u J rβ� 	= +� 


 �

�  

where the cost-to-go is: 
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( ) ( )( ) ( )( ) ( )
( )

min , , / , ( ) ( )
u

q s r

J s p q s c s u q s p r s u J r d rβ α� 	= + +� 


 �

� � . 

The ( )( ), ,c s u q s  term represents the average transition cost from a state, s, to an 

adjacent state, r, given that the control is u.  The term ( )d rα  represents the tuning 

parameter α  multiplied by the distance of the future state, r, to the goal state.   

Figures 3 through 15 included an a priori environment model accuracy of 90%.  This 

number quantifies the reliability of the a priori environment model.  Various levels of a 

priori environment model accuracy were used in the initial testing of the algorithm.  If 

the a priori environment model accuracy was treated as ( )( )0 0.5p q s = , then the a priori 

model did not have a meaningful contribution to the motion planning (since a 50% 

reliability is as good as flipping a fair coin ).  As the a priori accuracy of the model 

increased from 0.5 to 0.9 the initial motion plan became more reliable and less likely to 

hit obstacles.   

The sensor model was generated by simulating sensor data using a Monte Carlo 

approach for development of the sensor model.  Each sensor measurement was taken as 

the true measured value and combined with a Gaussian noise based upon the distance to 

the obstacle.  The simulations using the Eaton VORAD model had an accuracy of 

( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.95 for the non-local state sensing; i.e. when ( )s s′ ≠ . 

The simulations were also performed with various different uncertainty models so that 

the effects of using non-local sensors, with different accuracy levels, on the performance 

of the algorithm could be quantified.  For example, in figures 5, 6, and 7 the non-
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directional sensor model has an accuracy of ( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.96 for the local 

sensing, an accuracy of ( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.93 at a distance of 10 meters, and an 

accuracy of ( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.91 at a distance of 14 meters.  This model was 

developed by assuming non-local measurements at 1 meter have an accuracy of 

( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.96, while measurements at 100 meters have an accuracy of 

( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.57.  The accuracy of the radar for a given range, was found by 

linearly interpolating between the accuracy of the sensor at 1 meter and 100 meters.  The 

figures 8 through 15 use a directional sensor model with an approximate accuracy of 

( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.99.  For a sensor uncertainty of ( ) ( )( )/ , 0.5p q s q s s′ ′ ′ = , the 

vehicle performed as if no sensor data was available.  For sensor uncertainties between 

( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.7 and ( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.8, the performance increased 

significantly.  For uncertainties in the range of ( ) ( )( )/ ,p q s q s s′ ′ ′ = 0.9 to 

( ) ( )( )/ ,p q s q s s′ ′ ′ =0.99, the obstacle avoidance performance remained approximately 

the same.   

The motion planning software was tested multiple times before executing the 

waypoints in the flight simulator.  Figures 3 and 4 have been included below to show a 

path that the high-level flight controller generated to navigate through campus while 

using a priori map data as well as radar sensor information.  The plots have been 

overlaid with aerial photos to display the simulated vehicle trajectory through the Texas 

A&M campus. 
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Fig. 3 Top View of Navigation through Campus 

 

 

Fig. 4 Angled View of  Navigation through Campus 
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D.2 Avoiding obstacles 

The simulations in figures 3 and 4 used a static environment model.  However, it is 

realistic to consider the situation where the environment model can be dynamic.  If a 

newly sensed obstacle such as a vehicle or fallen building is encountered, the high-level 

flight controller should be able to adapt.  When the helicopter radar senses a new 

obstacle, it creates a large transition cost so that the helicopter avoids flying into the 

newly sensed obstacle.  In figure 5, the trajectory of the helicopter is plotted in yellow.  

Additional obstacles were added to the map after the helicopter started moving, so that 

the helicopter encountered a dynamic obstacle field and a blocked passage by the Texas 

A&M Library.  

 

 

Fig. 5  Obstacles and Blocked Passage 
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D.3 Re-planning at a blocked passage 

Occasionally, the vehicle may encounter an obstacle that entirely blocks a passage.  

The vehicle may not have time to recalculate the entire cost map J .  In this thesis, 

updating the local region’s cost map (a 10x10 grid) is sufficient for the vehicle to plan a 

new trajectory to get out of an impasse.  It is conceivable that if the vehicle is unable to 

find a path out of a local minimum due to a blocked passage, then a global cost map may 

need to be recalculated.  Figures 6 and 7 are included below to display the motion 

planner’s response to blocked passages at various different locations on campus. 

 

 

Fig. 6 Blocked Passage by Langford 
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Fig. 7  Blocked Passage by Heldenfelds 

 

D.4 Motion planning in the flight simulator 

Multiple tests were run while the high-level motion planner and low-level flight 

controller were connected together.  The high-level controller computation time was 

relatively minor compared to the time necessary to execute the waypoint commands.  

Running each MATLAB simulation took approximately 15-20 seconds, while a 

simulation of actually flying the helicopter to 180 waypoints, which were 10 meters 

apart, took approximately 12-15 minutes.  If 180 waypoints were executed during the 

initial cost-to-go calculation then approximately 180*N*M� 3,000,000 major 
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computations were required, which requires a computation time of approximately (5-10 

sec).  During the MATLAB simulations the vehicle made a minimum of 1 local and 8 

non-local sensor measurements and up to 4 local and 32 non-local sensor measurements 

per waypoint.  This resulted in approximately 1800 optimizations run on environment 

probabilities and 720 waypoint calculations if 180 waypoints were executed.  This 

requires a computation time of approximately 5-10 seconds.  The following 8 plots 

(figures 8-15) demonstrate the performance of the motion planner and the flight 

simulator while connected together.  Figures 8 and 9 were generated during the 

simulator testing 2 using the obstacle map of campus with a blocked passage by the 

library and a blocked passage by the pavilion.  The obstacles were introduced after the 

helicopter started its flight.  The vehicle does not always choose the same path.  In this 

testing the vehicle did not take the anticipated route of going beside the library because it 

accounted for sensor uncertainties and planned a route by Dunn. 
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Fig. 8  Simulator Testing 2- Large View 

 

Note in Figure 9 how closely the helicopter actual trajectory (blue line) follows the 

desired trajectory (yellow line).  
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Fig. 9  Simulator Testing 2- Detail View 

 

 

 

 

 

 

 

 

Library 

Administration 

Langford 

Bright 



 
 

 
 

31 

Figures 10 and 11 were generated during the simulator testing 3 using the obstacle 

map of campus with a blocked passage by the library.  The blocked passage by the 

library was introduced after the helicopter commenced its flight.  As a result the 

helicopter sensed the blocked passage by the library and moved back and forth several 

times until it recalculated a local cost map.  It took a few local cost map recalculations 

before the helicopter was able to determine a path out between the library and the library 

annex.     

In a few simulations it was observed that a local cost map recalculation may not be 

sufficient to update the cost map and guide the helicopter out of a blocked passage.  By 

only performing a local cost map update, it is possible to have a local minimum in which 

the helicopter is unable to navigate its way out of an area containing a newly sensed 

obstacle.  The local cost map recalculations may need to be enlarged until the helicopter 

is able to find its way out of an area.  If a local cost map is unable to update the cost map 

sufficiently for the helicopter to find its way out of an area, then it maybe necessary to 

perform an entire recalculation of the cost map.  Since dynamic programming by 

definition is a global optimization, if the entire cost map is recalculated the helicopter 

will be able to determine the optimal path to the final destination.  
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Fig. 10 Simulator Testing 3- Large View   
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Fig. 11  Simulator Testing 3- Detail View 

 

Figures 12 and 13 were generated during the simulator testing 4 using the obstacle 

map of campus with a blocked passage by Heldenfelds and Langford.  The blocked 

passages and two obstacles near the library were introduced.  The helicopter only 

encountered one of the obstacles and the result is represented on figure 13.   
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Fig. 12  Simulator Testing 4- Large View 
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Fig. 13  Simulator Testing 4- Detail View 

 

Figures 14 and 15 were generated during the simulator testing 5 using the obstacle 

map of campus with a blocked passage by Heldenfelds and Langford.  The helicopter 

only encountered the blocked passage by Heldenfelds.  After several recalculations of 

the local cost map the helicopter was able to leave the boxed in area.   
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Fig. 14  Simulator Testing 5- Large View 
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Fig. 15  Simulator Testing 5- Detail View 
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5. CONCLUSION 

 

In this work, a methodology was presented for intelligent exploration of a partially 

known environment using a non-local sensor.  It was shown that a motion planning 

problem, under certain assumptions, can be reduced to the adaptive control of an 

uncertain Markov Decision Process, consisting of a known control dependent system 

state and an unknown control independent environment.  The feasibility of the planning 

methodology was illustrated by testing on an unmanned helicopter navigating through an 

urban environment in a six DOF flight simulation.   

The frequency of the cost-to-go update is of considerable interest.  At one end of the 

spectrum, the entire cost-to-go map could be updated at every time instant, which might 

be computationally infeasible, while at the other end of the spectrum, only an initial 

cost-to-go map could be calculated before the navigation begins.  However, both these 

extremes are possibly not “optimal” and the best solution might be somewhere midway.  

It was surmised that the cost-to-go may need to be changed when the environments, 

which are sensed after the helicopter begins its flight, start looking “significantly 

different” from the estimates developed according to a priori data.  However, these are 

qualitative statements and need to be quantified in terms of algorithms.   

 Another area of interest is to consider implementing heuristics in the dynamic 

programming algorithm that would allow for an accelerated computation of the cost-to-

go map by initially excluding the evaluation of states that are far from the desired path of 

the helicopter.  Also, the controller architecture used in this research only uses the high-
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level motion planner to detect and avoid obstacles, while the low-level controller is 

assumed to track the desired trajectories closely enough to ensure obstacle avoidance.  A 

low-level controller needs to be designed that guarantees the local avoidance of 

obstacles while tracking the high-level motion plans, so that integration of the high-level 

motion planner and low-level flight controller can result in a truly intelligent 

autonomous system. 

Further, the amalgamation of the methodology presented in this thesis with existing 

motion planning methods such as Probabilistic Roadmaps or D* might lead to more 

robust, near real-time implementable motion planning algorithms.  
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APPENDIX A  

UAV HELICOPTER 

 

 The helicopter used for this research was a remote control (RC) Bergen Observer with 

a Zenoah G-23 (23cc) engine.  The helicopter weight after the addition of the flight 

controller was approximately 23 pounds and could still carry approximately 3 pounds of 

additional payload.  The helicopter flight controller components are estimated to have a 

weight of approximately 7 pounds, this includes: aluminum skids, two battery packs, the 

Automated Flight Control System, D-Link (wireless network bridge), multiple wires, 2 

RC receivers, and a relay board.   

 

 

Fig. A.1  Josh Davis with the UAV Helicopter and Ground Station 
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A.  UAV hardware  

 The RC Bergen Observer was provided by the Air Force Research Laboratory 

(AFRL) to Texas A&M in order to implement a Rotomotion Automated Flight Control 

System (AFCS).  The helicopter was purchased and partially assembled by AFRL.  The 

assembly before arrival of the equipment at Texas A&M included assembling the 

graphite composite (G10) frame, mounting the engine, installing camera mount, 

installing the tail boom, and assembling the rotor head.  The helicopter was 

approximately fifty-percent assembled when it was delivered to Texas A&M in February 

2005.  The remaining assembly was performed at Texas A&M.  This included 

purchasing additional parts such as ball links, servo connecting rods, fuel system, rotor 

blades, flybar paddles, and electronics equipment.  The radio used was a Futaba 9CHP 9-

Channel pulse code modulated (PCM) radio with four S9001 Servos (pitch, roll, throttle, 

collective) and Futaba GY401 Gyro with a S9254 digital servo for the tail rotor. 
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Fig. A.2  Controller Architecture 

 

 The AFCS has a six degree of freedom (6-DOF) inertial measurement unit (IMU) with 

three accelerometers and three gyros.  The accelerometers were Analog Devices 

ADXL202AE.  The accelerometers use a polysilicon structure to form a differential 

capacitor and measure ± 2 g static (gravitational) and dynamic accelerations.  The gyros 

were Tokin CG-16D ceramic gyros with a piezoelectric ceramic column to detect a 

maximum angular rate of ± 90 degrees.  The primary purpose of the accelerometers and 

gyros is to provide the helicopter with attitude information.  The AFCS flight controller 
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also contains SENS-L magnetometers, which use an Application Specific Integrated 

Circuit (ASIC) architecture, from PNI Corporation’s Magneto-Inductive (MI) product 

line.  The three magnetometers are oriented orthogonal to each other to give the 

helicopter the current heading.  Three magnetometers are used because the helicopter is 

not always level and ferrous helicopter components produce hard iron error.   

 

 

Fig. A.3  Automated Flight Control System 

 

 A u-blox TIM-LP Global Positioning System (GPS) receiver sensor is used and 

implements differential updates using the Wide Area Augmentation System (WAAS).  

After using the WAAS differential updates, the position measurements are accurate to 

within 3 meters ninety-five percent of the time.  The GPS sensor provides position 

measurements as well as velocity measurements by integrating the change in position.  

The AFCS includes a Mega 32 AVR Controller to decode the Futaba 1024 pulse code 

modulation (PCM) signal as well as perform analog to digital data conversion for the 

inertial measurement unit (IMU) sensors connected to the microcontroller.  Information 
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is sent from the Mega 32 to an Intel XScale 400 processor.  The Intel XScale 400Mhz 

processor runs the onboard flight computer and analyzes the state of the helicopter at a 

rate of 200 Hz.   

B. UAV software 

 The Rotomotion software was developed in the Linux operating environment and 

includes a 3-dimensional flight simulator as well as a ground station.  The simulations 

were performed using the Suse Linux 9.2 operating system on an Acer laptop with a 3.0 

GHz Pentium 4 processor, 512 MB of Ram, and a 40GB hard drive.  The Linux C/C++ 

software was developed for communication between the high-level flight controller in 

MATLAB and the Rotomotion low-level flight controller API.  The C/C++ code was 

written and debugged using the Integrated Development Environment KDevelop 3.0.  

 The low-level flight controller, the AFCS, uses two Extended Kalman Filters for state 

estimation.  One Kalman Filter is a 7 state filter: 4 states for Quaternion and 3 states for 

gyro bias.  The other Kalman filter is a 6 state filter for North East Down (NED) 

Position and UVW Velocity.  The position measurements are filtered to give a more 

accurate position hold.  Also, the Doppler velocity from the GPS is integrated to smooth 

out abrupt changes in position.   

 The low-level flight controller also uses a series of nine Proportional Integral 

Derivative (PID) control loops to control the helicopter.  The first three loops that must 

be tuned are the attitude control loops-roll (φ ), pitch (θ ), and yaw (ψ ).  These ensure 

that the helicopter achieves the proper attitude during its transition from a hover 

(stationary flight) to forward/sideway (translational flight) and yawing (rotational flight).  
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The second set of PID loops are the position control loops.  These control loops ensure 

that the helicopter maintains a position–fore (x), side (y), and down (z).  The final three 

PID loops, the velocity control loops, were developed to ensure steady velocities-fore 

( x� ), side ( y� ), and down ( z� ).   

 The high-level flight controller uses dynamic programming to perform motion 

planning in MATLAB while running on a Linux operating system.  The high-level flight 

controller performed a text file based inter-process communication between MATLAB 

and a program called “waypoint”, which was developed using C/C++ in Kdevelop, to 

communicate with the flight controller’s application programming interface (API). 

 The flight simulator operates on the same protocol as the AFCS.  As a result the 

control algorithm can be tested in the flight simulator by executing the high-level motion 

planner to interface with the flight simulator rather than the AFCS.  The interface 

between the waypoint program and the flight simulator (heli-sim) is essentially the same 

as the interface between the waypoint program and the AFCS.  The primary difference is 

that flight simulator and the AFCS use different IP addresses.  

 The AFCS as well as the Rotomotion ground station operate using a Linux based 

operating system that was developed in the C/C++ programming language.  The onboard 

flight controller runs a command line (non-graphical) version of Linux.  The graphical 

interface of the ground station developed Rotomotion, LLC. uses the Fast Light ToolKit 

(FLTK) software, which is an open source C/C++ software based upon the OpenGL 

standard for computer graphics.  Fast Light ToolKit is used to implement an event-
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driven graphical interface so the ground station can monitor the helicopter’s status as 

well as issue commands.  

 

 

Fig. A.4  Ground Station Interface During Hardware in Loop Testing  
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Fig. A.5  Heli-3d Viewer for Ground Station 

C. Flight testing and hardware in the loop testing  

 In May 2005, flight testing included several maintenance flights to ensure proper 

remote control performance and prepare for integration of the Rotomotion AFCS.  

During testing, the engine was tuned with the proper low and high-end throttle settings 

as well as the throttle-collective performance curve.  The tracking of the rotor blades was 

adjusted to ensure proper flight performance and radio equipment was tested.  

 The helicopter wiring was changed so that the RC flight commands could be executed 

through the AFCS in June 2005.  A safety pilot transmitter was installed which used a 

relay to bypassing the flight controller if necessary and was capable of sending servo 

commands directly to the servos from a separate transmitter.  In July 2005, the helicopter 

was taken to Charleston, South Carolina to tune the flight controller.  The flight 

controller was previously used on a helicopter airframe of relatively similar size so the 
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gains in the controller reasonably held the helicopter in its position.  It was still 

necessary to fine tune the gains for the new airframe.   

 Several remote control and autonomous flights were performed with the unmanned 

helicopter.  The flight testing challenges included electronic difficulties from electro-

magnetic interference and loss of communication, as well as mechanical difficulties 

from clutch slippage and bearing malfunctions.  After the flight testing, several 

hardware-in-the-loop tests were performed to demonstrate that the high-level motion 

planning algorithm could be implemented on the flight hardware.   

 During the hardware-in-the-loop testing, motion planning algorithms were executed 

outside the Flight Mechanics Laboratory hanger on Texas A&M’s Riverside Campus.  

The helicopter was pushed on a cart to simulate the helicopter flying to various 

waypoints.  All of the electronics and telemetry were running and only the helicopter 

engine remained off.  A motion planning algorithm was executed and the helicopter was 

moved on a cart to a series of waypoints as telemetry was logged by the ground station 

and the control surfaces were monitored for proper deflection.  After successful 

hardware-in-the-loop testing, the remainder of the motion planning algorithm testing and 

development was performed in the 6 DOF Rotomotion, LLC. flight simulator.   
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