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ABSTRACT

Nonparametric Bayesian Analysis of Some Clustering Problems. (August 2006)

Shubhankar Ray, B.Tech., Indian Institute of Technlogy, Guwahati;

M.S., Texas A&M University

Co–Chairs of Advisory Committee: Dr. Bani K. Mallick
Dr. Raymond J. Carroll

Nonparametric Bayesian models have been researched extensively in the past 10 years

following the work of Escobar and West (1995) on sampling schemes for Dirichlet pro-

cesses. The infinite mixture representation of the Dirichlet process makes it useful

for clustering problems where the number of clusters is unknown. We develop non-

parametric Bayesian models for two different clustering problems, namely functional

and graphical clustering.

We propose a nonparametric Bayes wavelet model for clustering of functional or

longitudinal data. The wavelet modelling is aimed at the resolution of global and

local features during clustering. The model also allows the elicitation of prior belief

about the regularity of the functions and has the ability to adapt to a wide range

of functional regularity. Posterior inference is carried out by Gibbs sampling with

conjugate priors for fast computation. We use simulated as well as real datasets to

illustrate the suitability of the approach over other alternatives.

The functional clustering model is extended to analyze splice microarray data.

New microarray technologies probe consecutive segments along genes to observe al-

ternative splicing (AS) mechanisms that produce multiple proteins from a single gene.

Clues regarding the number of splice forms can be obtained by clustering the func-

tional expression profiles from different tissues. The analysis was carried out on the
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Rosetta dataset (Johnson et al., 2003) to obtain a splice variant by tissue distribution

for all the 10,000 genes. We were able to identify a number of splice forms that appear

to be unique to cancer.

We propose a Bayesian model for partitioning graphs depicting dependencies

in a collection of objects. After suitable transformations and modelling techniques,

the problem of graph cutting can be approached by nonparametric Bayes clustering.

We draw motivation from a recent work (Dhillon, 2001) showing the equivalence of

kernel k-means clustering and certain graph cutting algorithms. It is shown that

loss functions similar to the kernel k-means naturally arise in this model, and the

minimization of associated posterior risk comprises an effective graph cutting strategy.

We present here results from the analysis of two microarray datasets, namely the

melanoma dataset (Bittner et al., 2000) and the sarcoma dataset (Nykter et al.,

2006).
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CHAPTER I

BAYESIAN WAVELET METHODS FOR FUNCTIONAL CLUSTERING

A. Introduction

Functional data arise in a wide variety of applications and is often clustered to reveal

differences in the sources or to provide a concise picture of the data. For instance,

clustered gene expression profiles from microarrays may point to underlying groups

of functionally similar genes. Model-based clustering relies largely on finite mixture

models to specify the cluster-specific parameters (Banfield and Raftery, 1993; Yeung et

al., 2001) assuming that the number of clusters is known in advance. This approach is

unreasonable in practice, as it relies on one’s ability to determine the correct number of

clusters. Medvedovic and Sivaganesan (2002) use the Dirichlet process based infinite

mixture model to overcome these deficiencies. Nonetheless, all these approaches use

multivariate normal distributions for modeling and disregard the functional form of

the data.

This ‘functional’ approach was pursued only recently in a mixed-effects spline

model by James and Sugar (2003) and in the context of yeast cell-cycle data anal-

ysis using periodic basis modelling by Wakefield et al. (2003). However, shifts in

global and local characteristics in the functional data may not be detectable in these

frameworks. As an example, the gene expression profiles of yeast cell-cycles may oc-

casionally depart from the usual cyclic behavior and these shifts will be overlooked,

in general, by the periodic basis model.

The Bayesian wavelet modelling used in this paper manages to overcome these

The format and style of this dissertation follows that of Journal of the Royal
Statistical Society, Series B.
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limitations as wavelets have nice approximation properties over a large class of func-

tional spaces (Daubechies, 1992), that can accommodate almost all the functional

forms observed in real life applications. Indeed, this richness of the wavelet represen-

tation provides the backbone for the popular frequentist wavelet shrinkage estimators

of Donoho and Johnstone (1994,1995), which are the precursors of the more recent

Bayesian wavelet estimation models (Abramovich et al., 1998, Vidakovic, 1998, Clyde

and George, 2000, Clyde et al., 1998). Wavelet representations are also sparse and can

be helpful in limiting the number of regressors. Dimension reduction is not inherent

in other models, for example, this is done in James and Sugar (2003) by attaching

an additional dimension reducing step on the spline coefficients. In Bayes wavelet

modelling this is effortlessly achieved by a selection mixture prior to isolate a few

significant coefficients for the collection of functions.

The nonparametric Bayes clustering model presented here is based on the mix-

ture of Dirichlet Processes (Ferguson, 1973, Antoniak, 1974). The Dirichlet process

(DP) provides a rich two-parameter conjugate prior family and much of the posterior

inference for a particular parametric conjugate family applies, when the same prior

becomes the base measure for a DP prior, used instead. The base prior modelling

of the wavelet coefficients can be motivated by traditional hierarchical wavelet mod-

els and allows the specification of the smoothness and regularity properties of the

functional realisations from the DP. There are several advantages in the context of

clustering. The computation is straightforward owing to the Gibbs sampling schemes

proposed in the mid-90s (Escobar and West, 1995) and the number of clusters are

automatically determined in the process. In addition, the Bayesian methodology pro-

vides a direct way to predict any missing observations extending the applicability of

model to incomplete datasets.

The paper is organized as follows. In Section B, we overview the parametric
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Bayesian models for wavelet shrinkage. This is later extended to the Dirichlet process

based nonparametric model in Section C and the posterior inference is detailed in

Section D. Some properties of the clustering model are discussed in Section E. Finally,

Section F addresses the simulations with a discussion of the model selection and the

missing data case.

B. Hierarchical Wavelet Model

Consider a collection of unknown functions {fi}, i ∈ {1, . . . , n} on the unit interval

that are observed with white Gaussian noise at m equi-spaced time points as

yi,k = fi(k/m) + εi,k, εi,k ∼ N(0, σ2
i )

where k ∈ {1, . . . ,m} and m is a power of 2. In a gene microarray, for example,

the observed curve yi,k is the response profile at the kth time point for the ith gene.

In nonparametric estimation, the functions are analysed in the sequence space of

coefficients in an orthonormal wavelet basis for L2([0, 1]). Restriction of the functions

to the unit interval introduces discontinuities at the edges. Boundary artefacts can

be avoided by periodised bases when the functions are periodic (Daubechies, 1992),

otherwise boundary folding/reflection extensions are used to improve the behavior at

the boundaries.

Wavelet representations are sparse for a wide variety of function spaces and their

multiresolution nature enables us to combine results from different resolutions and

make conclusions for the estimation problem. In particular, the sparseness implies

that when the wavelet basis is orthogonal and compactly supported (Daubechies,

1992), the independent and identically distributed (i.i.d.) normal noise affects all the

wavelet coefficients equally, while the signal information remains isolated in a few
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coefficients. In shrinkage estimation, these small coefficients which are mostly noise

are discarded to retrieve an effective reconstruction of the function. The expansion

of fi in terms of periodised scaling and wavelet functions (ϕ, ψ) has the dyadic form

fi(t) ≈ βi00ϕ00(t) +
∑J

j=1

∑2j−1

k=0 βijkψjk(t) (1.1)

where βi00 is the scaling coefficient, βijk’s are the detail coefficients and J = log2m is

the finest level of the wavelet decomposition. Wavelets also provide a direct way to

study the functional smoothness in that the wavelet representation usually contains

all the information that can tell whether fi lies in a smoothness space.

1. Wavelet estimation Models

Wavelet shrinkage estimation was popularised by Donoho and Johnstone (1994,1995),

who showed that thresholding rules on the empirical detail coefficients provide optimal

estimators for a broad range of functional spaces. Bayesian wavelet shrinkage proceeds

by eliciting mixture priors over the detail coefficients βijk, (j > 0) with a degenerate

mass at zero (Abramovich et al., 1998; Clyde and George, 2000) for selection,

βijk ∼ πjN(0, gjσ
2) + (1 − πj)δ0. (1.2)

The scaling coefficients βi00 on the other hand, are usually modeled by a vague prior.

The selection probabilities πj and the scaling parameters gj allow us to place our

prior belief by level, producing a simple estimation strategy that is more adaptive

than the classical analogues of hard or soft thresholding.

In linear model notation, if Yi = (yi,1, . . . , yi,m) is the vector of m observations

from the ith unit, the regression model is

Yi = Xβi+εi, i = 1, . . . , n (1.3)
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where βi = (βi00, βi10, βi20, βi21, . . .)
t are the wavelet coefficients for fi after the dis-

crete wavelet transformation X and εi ∼ N(0, σ2
i Im). The selection priors (1.2) are

conveniently incorporated as a scale-mixture with latent indicator variables γjk that

equal 1 with probability πj (Clyde & George, 2000; Clyde et al., 1998; De Canditiis &

Vidakovic, 2004). The effective joint prior for the coefficients and the model variance

is

βi, σ
2
i |V ∼ NIG(0,V;u, v)

where NIG denotes the normal-inverse gamma prior – the product of the conditionals

βi|σ
2
i ,V ∼ N(0, σ2

i V) and σ2
i ∼ IG(u, v) with u, v as the usual hyperparameters for

the inverse gamma (IG) prior.

The diagonal matrix V can be used to obtain a scale mixture prior, we let

V = diag(γ)diag(g) where γ = (γ00, γ10, γ20, γ21, . . .) is a vector of latent indicator

variables for selection of each coefficient and g = (g0, g1, g2, g2, . . .) comprise the

corresponding scaling parameters given by

γj,k ∼ Bernoulli(πj) and gj ∼ IG(rj, sj)

where (rj, sj) are hyperparameters specified levelwise. This hierarchical layer is es-

pecially useful for modelling sparse wavelet representations, which otherwise requires

Laplace-like sharp non-conjugate priors (Vidakovic, 1998). In particular, there is the

flexibility of controlling our prior belief about the scaling coefficient βi00 by letting

π0 = 1 and tuning (r0, s0) to vary var(g0).

To summarise the hierarchical wavelet model, we have

Yi|βi, σ
2
i ∼ N(Xβi, σ

2
i Im),

βi, σ
2
i |γ,g ∼ NIG(0,V;u, v),
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gj ∼ IG(rj, sj),

γj,k ∼ Bernoulli(πj),

for i ∈ {1, . . . , n}, j ∈ {0, . . . , J} and k ∈ {0, . . . , 2j−1}.

C. Wavelet Clustering Model

In the clustering model, the parameters θi = (βi, σ
2
i ) for the underlying functions

fi are elicited by Dirichlet process priors (DP). Dirichlet processes are almost surely

discrete and comprise a certain partitioning of the parameter space needed for clus-

tering. More precisely, the sequence of parameters θ1,θ2, . . . ,θn come from a random

distribution F that is a realisation from a Dirichlet process D(α,Hφ) depending on a

precision parameter α and base prior Hφ = EF with φ as the parameters of H. The

nonparametric hierarchical model is completed by mixing the base prior for the DP

with the hyperpriors of Section B.1 and is described as

Yi|βi, σ
2
i ∼ N(Xβi, σ

2
i Im), (1.4)

θ1,θ2, . . . ,θn ∼ F ,

F ∼ D(α,NIG(0,V;u, v)), (1.5)

gj ∼ IG(rj, sj), (1.6)

γj,k ∼ Bernoulli(πj),

α ∼ G(d0, η0).

Here φ = {g,γ}.

The underlying clustering properties of the DP are easier to appreciate in its

Pölya urn representation (Blackwell and MacQueen, 1973). This connection is also
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used later to perform sequential flexible Gibbs sampling of the clustering parameters

θi as in Escobar and West (1995). In a sequence of draws θ1,θ2, . . . from the Pölya

urn the nth sample is either distinct with a small probability α/(α + n − 1) or is

tied to a previous sample with positive probability to form a cluster. Let θ−n =

{θ1, . . . ,θn}\θn and dn−1 = number of preexisting clusters of tied samples in θ−n at

the nth draw, then we have

θn|θ−n, α,φ =
α

α+ n− 1
Hφ +

∑dn−1

i=1

ni

α+ n− 1
δθ̄i

(1.7)

where Hφ = NIG(0,V;u, v) is the base prior, φ = {g,γ} and the ith cluster has ni

tied samples that are commonly expressed by θ̄i = (β̄i, σ̄
2
i ) and

∑dn−1

i=1 ni = n− 1. In

the long term of sequential draws, the number of clusters dn is much less than n and

is determined by the precision α. We also use the set Cn containing the clustering

profile at the nth draw, such that Cn(i) is the set of indices of all the curves in the ith

cluster.

The modelling of the base prior Hφ is important and is reflected in all the realisa-

tions from the DP which are centered at Hφ = NIG(0,V;u, v). As before, the detail

coefficients are conveniently modelled by a selection prior. The scaling coefficients

are modelled using priors for which the hyperparameters are empirically estimated

and in Section F, we show that this in general works better than vague priors.

We consider two models that differ in the way the error terms are modelled.

Model 1 is a heteroscedastic model with θi = (βi, σ
2
i ) and can be useful to handle

potential fluctuations in variability across clusters or to check the normality assump-

tions in (1.3). Model 2 is an oversmoothed homoscedastic model with σ2
i = σ2 for

all i, which is computationally more straightforward. The fact that the dn separate

draws of variance in Model 1 are replaced by a single draw, imparts more stability to

the Markov chain. This makes it suitable for cases where the population is not overly
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heteroscedastic.

The nonparametric model does not allow direct control over the number of clus-

ters, but it offers the parameter α that determines the expected and the asymptotic

number of clusters: dn/ log n → α almost surely (Korwar and Hollander, 1973). Mi-

nor subjective reservations aside, we think this vagueness does not affect the inference

in practice.

1. Choice of hyperparameters

The specification of (gj, πj) represents our prior belief about the collection of curves

at each level. A variety of scale mixture or shrinkage priors (Vidakovic, 1998; Clyde

and George, 2000) have been proposed for robust and heavy-tailed modelling of

wavelet coefficients. All these specifications comprise different ways of modelling

the decay of wavelet coefficients relating them to functional smoothness. In partic-

ular, Abramovich et al. (1998) show that these parameters can be specified such

that the functions fall in Besov spaces – a valuable backbone for modelling a broad

range of smoothness and spatial adaptation properties. For the Besov space Bℓ
p,q

(ℓ > 0, 1 < p, q ≤ ∞), ℓ gives the order of smoothness in Lp([0, 1]), p controls the

spatial inhomogeneity and the parameter q allows fine distinctions in the smoothness

of fixed order ℓ.

In general, for a function with an almost surely finite wavelet representation

the smoothness is the same as that of the mother wavelet ψ. Suppose ψ ∈ Bℓ
p,q

(1 ≤ p, q ≤ ∞) has ζ vanishing moments satisfying max(0, 1/p − 1/2) < ℓ < ζ. For

j > 0, fixing gj = c12
−aj and πj = min(1, c22

−bj) with c1, c2, a > 0 and b > 1 gives an

a.s. finite wavelet series and fi also belongs to Bℓ
p,q. Abramovich et al. (1998) extend



9

the equivalence for b ∈ [0, 1], if (a, b) are chosen to satisfy

(b− 1)/p+ (a− 1)/2 ≥ ℓ− 1/p (1.8)

with equality when q = ∞ and 1 ≤ p < ∞. For convenience, we shall refer to (a, b)

as the Besov parameters.

For any (a, b) the realisations lie in a family of Besov spaces described by the

relation (1.8). By fixing a, we see a direct relation between b and the positive range of

p. In effect b controls the sparseness and the spatial inhomogeneity of the functional

realisations. In a similar manner, a defines the positive range of ℓ and therefore,

controls the overall decay of the wavelet coefficients and the smoothness. This analogy

can be drawn directly by looking at the decay of the wavelet coefficients realised by

the prior distributions. Loosely, by increasing a or b we realise functions with higher

effective smoothness, since in (1.8), ℓ > 1/p implies functions in Bℓ
pq are continuous.

Apart from the interesting connection with smoothness, in practice, greater flexibility

is achieved by updating the probabilities πj. These parameters can also affect the

model’s ability to identify clusters. For instance, smoother functions on average

cluster more tightly and should result in a drop in the number of clusters.

Recall that in our hierarchical model, the scaling parameters gj were mixed by

a conjugate prior (1.6) and in general, this imparts greater flexibility than subjective

deterministic specifications. It also allows modelling within the Besov spaces through

restrictions imposed on the IG hyperparameters (rj, sj). For j > 0 and a fixed integer

p ≥ 1, if the hyperparameters satisfy

E(g
p/2
j )1/p =

rj
1/2

{(sj − 2)(sj − 4) . . . (sj − p)}1/p
= c12

−aj and πj = min(1, c22
−bj)

with (a, b) satisfying (1.2), then the Besov correspondence still holds. The proof

(see Appendix B) is similar to that of Abramovich et al. (1998), except the use of
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the marginal t-distribution after averaging out gj. A simple way to choose the IG

hyperparameters is to fix sj = p+ 1 and calculate rj to satisfy the foregoing relation

for given values of c1 and a.

Abramovich et al. (1998) use fixed values of (a, b) based on the prior knowledge

about the functions regularity, followed by method of moments estimators to calculate

the constants c1, c2. We maximize the marginal likelihood (Clyde and George, 2000)

with respect to the base prior Hφ to estimate the constants while fixing a and b,

L(c1, c2) ∝ − log |V∗
n| − (v +mn) log

{

u+
n
∑

i=1
Y′

iYi − µ∗′
n (V∗

n)−1µ∗
n

}

where µ∗
n = V∗

n

∑n
i=1 X′Yi and V∗

n = (V−1 + nIm)−1. For fixed values of a and

b, a gridded maximization procedure can lead to estimates of c1, c2. Moreover, an

objective selection of the hyperparameters (a, b) can be performed by extending the

maximization procedure to a grid in (a, b), as illustrated in Section F.5. Ideally, the

marginal likelihood can be calculated for the DP priors using the collapsed sequen-

tial importance sampling methods of Basu and Chib (2003). This procedure can

be computationally intensive depending on the size of the dataset. In general, for

small datasets, it leads to estimates that are comparable to the marginal maximum

likelihood estimates using Hφ.

D. Posterior Inference

Adopting base priors that are conjugate to the likelihood expedites the posterior

sampling of the clustering parameters θi from the Pölya urn. We also retain the

computational advantage of the scale mixture form of the base prior and the condi-

tional posteriors for all the indicator variables γjk and the scale parameters gj are in

standard form.
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The conditional posterior distributions for the heteroscedastic case are derived

here. The corresponding conditionals for the special homoscedastic case easily follow

from these derivations.

1. Conditional distributions for clustering

To update the clustering parameters θn = (β, σ2)n, we combine the likelihood (1.4)

with the Pölya urn prior (1.7),

(β, σ2)n|(β, σ
2)−n, α,φ,Yn ∝ qn0H

∗
φ,n(β, σ2) +

∑dn−1

i=1 qniδ(β̄,σ̄2)i
(1.9)

where H∗
φ,n = NIG(µ∗,V∗;u∗n, v

∗
n) is Hφ–a posteriori with

V∗ = (V−1 + Im)−1, µ∗ = V∗X′Yn,

u∗n = u+ Y′
nYn − µ∗′(V∗)−1µ∗ and v∗n = v +m.

The weights qn· follow from the likelihood and its marginals in the NIG conjugate

family (Escobar and West, 1995) and determine the posterior inclination towards new

distinct samples. We have qni ∝ niφ(Yn|Xβ̄i, σ̄
2
i Im) as the conditional distribution of

Yn given the ith cluster or distinct sample (β̄, σ̄2)i and qn0 ∝ αtm{0, u(Im + XVX′)}

is the marginal distribution.

Similarly, setting Hφ = N(0, σ2V) for the homoscedastic model gives

H∗
φ,n = N(µ∗, σ2V∗) with

qn0 ∝ αφ{0, σ2(Im + XVX′)} and qni ∝ niφ(Yn|Xβ̄i, σ
2Im).

The posterior distribution of σ2 is simply (σ2|Y,φ) ∼ IG (u∗, v∗) where

u∗ = u+
dn
∑

i=1





∑

j∈Cn(i)

Y′
jYj − µ∗′

i (V∗
i )

−1µ∗
i



 ,

v∗ = v +mn,
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µ∗
i = V∗

i

∑

j∈Cn(i)
X′Yj, and,

V∗
i = (V−1 + niIm)−1.

Sampling requires computation of the mixture probabilities qni for the distinct

preexisting parameter values, which are small compared to n. The sequential update

of model parameters from the Pölya urn model can be randomized to preclude any

ordering related bias. This is followed by a resampling step (Bush and MacEachern,

1996) that expedites model mixing by literally shaking up the converged mixture

model.

2. Posterior sampling of the mixing parameters

For notational convenience, the parameters are grouped by the dyadic levels j of

the wavelet decomposition – γj = {γjk : ∀k} and β̄ij = {β̄ijk : ∀k} for j ≥ 0.

To obtain the conditional posteriors for the scaling parameters gj and the indicator

variables γjk, we exploit the conditional independence of the distinct cluster param-

eters {(β̄i, σ̄
2
i )}

dn
i=1 given the clusters Cn. Korwar and Hollander (1973) show that

conditional on Cn the distinct parameters are i.i.d. Hφ.

For the heteroscedastic case, the scaling parameters gj are updated levelwise by

combining the base prior and (4),

gj|γj, Cn, {σ̄
2
i , β̄ij}

dn
i=1 ∼ IG(r∗j , s

∗
j),

where s∗j = dn
∑2j−1

k=0 γjk + sj, r
∗
j =

∑dn
i=1 σ̄

−2
i

∑2j−1

k=0 γ
2
jkβ̄

2
ijk + rj. For Model 2, the σ̄2

i ’s

are replaced by a single σ2. Observe that these updates combine the information

at the jth resolution across all the distinct functions and the average shrinkage is

conservative and depends on the total variation at any resolution.

Similarly, for each level, the indicators γj are updated conditional on the indi-
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cators at other levels γ−j

f(γj|γ−j,g, Cn,Y) ∝
∏dn

i=1 f({Yj}j∈Cn(i)|γ,g, Cn)πj

where

f({Yj}j∈Cn(i)|γ,g, Cn) ∝ Ci
|V∗

i |
1/2

|V|1/2

{

u+
∑

j∈Cn(i)
Y′

jYj − µ∗′
i (V∗

i )
−1µ∗

i

}−(v+mni)/2

(1.10)

is the marginal likelihood for the ith cluster with Ci = Γ((v +mni)/2)/πnim/2 and Y

depicts the collection of all responses {Yi}
n
i=1. The update is similar in form for Model

2. Again, the selection of γjk is more conservative and is decided by the proportion

of variation explained by the coefficients β̄ijk at location (j, k) for all i.

3. Posterior sampling of the precision parameter

We update the precision α as in Escobar & West (1995). The posterior distribution

is derived by combining a gamma prior for α with the distribution of dn:

f(dn|α, n) = cn(dn)
Γ(α)

Γ(n+ α)
αdnn! (1.11)

that resembles the Cauchy formula for counting permutations and has been calculated

independently by several authors including Antoniak (1974). Combining (1.11) with

f(α), the prior for α, it can be shown that posterior f(α|dn, n) ∝ f(α)αdn−1(α +

n)
∫ 1
0 x

α(1 − x)n−1dx. Equivalently, there is a beta random variable η such that

f(α|dn, n) =
∫

f(α, η|dn, n)dη. Thus α can be updated in two steps. First, conditional

on α and dn, update η. Second, conditional on the last sampled value of η and dn,

draw α. When α ∼ G(d0, η0), both conditional distributions are in standard form,

are given by

(α|η, dn) ∼ ρnG(d0 + dn, η0 − log η) + (1 − ρn)G(d0 + dn − 1, η0 − log η)
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(η|α, dn) ∼ Beta(α+ 1, n)

where ρn/(1 − ρn) = (d0 + dn − 1)/(n(η0 − log η)).

E. Properties of the Clustering Model

When sequentially sampling from the Pölya urn (1.9) the mixture probabilities qn·

are based on the ℓ2-distance between the nth observed function and the dn−1 previ-

ously sampled functions. Most classical clustering algorithms such as k-means, neural

network clustering and so on, or even statistical models with normal likelihoods (and

priors) inherently use the ℓ2-distance as a measure of distance between two curves.

Likewise, in James and Sugar (2003) the decision of choosing a cluster is based on

the squared distance between spline coefficients.

In this section, we ascertain if in the long term of sequential draws, there is a

minimum squared-distance that would ensure a distinct sample. This distance may

be viewed as the eventual minimum separation between clusters and is referred to as

the sampling resolution. As n gets larger the collection of sampled functions becomes

populated and we expect the resolution to grow, i.e. in order for a new sample to be

distinct it must distinguish itself more clearly from increasing population as n gets

large. The rate of this growth gives an idea about the adaptation of the clustering

model. The following theorem proved in Appendix C characterizes the resolution of

the Dirichlet process without any mixing, i.e. while fixing the parameters g,γ and α.

Theorem 1 For the homoscedastic model with the base prior Hφ such that ||βi||2 <

∞ almost surely ∀i = 1, 2, . . ., the posterior sampling resolution is σ2O(log(log n)(1+δ)),

for any δ > 0.

Remarks. 1. The slow rate of increase suggests good adaptation properties of the
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model that does not change drastically as n becomes large.

2. Note that the condition of bounded ℓ2 norm can be achieved by choosing hyper-

parameters from (1.2).

3. The error variance directly affects the separation between clusters in that a higher

variability means the clusters are more spread out.

F. Examples

We analyse one synthetic and two real datasets to illustrate the practical potential of

the functional clustering model. The virtues of wavelet modelling are emphasised by

using datasets that exhibit different degrees of smoothness and spatial inhomogeneity.

The Besov class of priors mentioned in Section C.1 easily accommodate the three

extremes listed below in that b controls the inhomogeneity and the overall smoothness

can be attributed to a.

1. Smooth but inhomogeneous. The synthesized Doppler signals although

intrinsically continuous, the finite sampling along with the changing intensity

of oscillations makes it spatially inhomogeneous.

2. Not smooth and inhomogeneous. Yeast cell cycle gene expression profiles

in the second example, may be far from continuous and are characterized by

varying degrees of temporal fluctuation.

3. Not smooth but homogeneous. The third example analyses a meteorolog-

ical precipitation dataset that exhibits a certain homogeneity in the prevailing

bumpiness.

For performance evaluation the number of clusters and the misclassification rate

(in supervised conditions) are reported. In addition, the robustness to missing ob-
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servations is checked for synthetic datasets with different amounts of missing points

and a yeast cell cycle microarray data. All the reported results are averaged over

100 simulations with 10,000 iterations per simulation and a burn-in period of 1000.

In general, these specifications must vary depending on n, m and the prior estimate

of the model variance. The MCMC mixes fairly well in all these examples and the

chains seem to converge much before the alloted burn-in time. Excepting the microar-

ray dataset analysed below, a near-symmetric Symmlet wavelet basis with 8 vanishing

moments was used in all the experiments.

1. Mixed effects spline model

In some cases, the results are compared with the mixed-effects spline model of James

and Sugar (JS) (2003) given by

Yi = Sβ1i + Sβ2i + εi, εi ∼ N(0, σ2
i Im) (1.12)

where S(m × p) is a natural cubic spline design with suitably chosen knots, β1i are

cluster specific coefficients (i.e., all responses in a cluster have the same β1i) and

coefficients β2i account for individual variations in the functions within each cluster.

We do not consider the additional dimension reducing transformation used by JS, but

instead compensate with a smaller number of knots to fit higher order splines. Since

the original EM implementation of this model was unavailable, Bayesian modelling

was used to expedite the comparison and the following conjugate priors were used

β1i ∼ P , P ∼ DP (α,N(0, σ2
i Γ1)), Γ1 ∼ IW (R1, s1) and

β2i ∼ N(0, σ2
i Γ2), Γ2 ∼ IW (R2, s2)

The posterior conditionals for β1i and Γ1 follow closely from the derivations in Section

D and inverse Wishart posteriors take the place of the IG posteriors. Conditional on
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the clusters – the distinct β1i’s and Γ1, there are n additional conjugate normal draws

of β2i followed by another inverse Wishart draw of Γ2. In the simulations, R1 = 10.0I

and s1 = 5 to get a diffuse prior for Γ1. Averaging out β1i with respect to the base

prior, and β2i with respect to its normal prior, the hyperparameters R2 and s2 are

estimated by Empirical Bayes.

2. Priors for scaling coefficients

Prior modelling of the scaling coefficients determines the sensitivity to the locational

differences in the dataset. We compare the traditional choice of vague/diffuse priors

with a prior for which the hyperparameters have been empirically estimated.

The prior scale parameter g0 for the scaling coefficients βi00 follows an inverse

gamma distribution with parameters (r0, s0). For diffuse priors these parameters are

adjusted for large prior variance. An approximate empirical estimation of these hy-

perparameters can be carried out by marginalising the likelihood with respect to the

base prior (of the Dirichlet process) individually for each curve and then applying mo-

ment matching on the population of estimated g0’s to estimate (r0, s0). The marginal

likelihood follows by combining the model likelihood (1.4) β̃ijk ∼ N(βijk, σ
2), written

in terms of the empirical wavelet coefficients β̃ijk, with the prior βijk ∼ N(0, γjkgjσ
2).

For the scaling coefficients, we have β̃i00 ∼ N(0, (1 + g0)σ
2) and g0 for the ith curve

is simply estimated as β̃
2

i00/σ
2 − 1, where σ2 can be estimated from the finer levels of

wavelet decomposition. The median and the one-third range of the population of n

such estimates is matched with

Eg0 = r0/(s0 − 2), and,

var(g0) = 2r2
0/{(s0 − 2)2(s0 − 4)},

respectively, to generate rough estimates of (r0, s0).
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From a comparative study of the two priors applied to various example datasets,

the empirically estimated prior seem to be a more reliable choice and lead to better

cluster estimates than the diffuse prior. In all the examples furnished below, empiri-

cally estimated priors were used for the scaling coefficients. For illustrative purposes,

a comparative study is also discussed in one of the examples.

3. Model choice

The state space of possible clustering combinations can be very large and some model

selection criterion is required to decide between the best models. Recently, Quintana

and Iglesias (2003) provide a search algorithm to approach the best model by min-

imizing a penalized risk, however, for large datasets the computational constraints

can be prohibitive. Traditional approaches, such as using model marginal likelihoods

for model comparison seem to be more practicable considering the large datasets

commonly encountered in clustering problems.

The marginal likelihoods conditional on the specific clustering configurations

follows directly from the calculations in Section D.2. For a fixed cluster configuration

C, simple Monte-Carlo averaging of the marginal distributions (1.10), gives

f(Y|C) ≈
1

N

∑N

k=1

∏

i f({Yj}j∈C(i)|γ
(k),g(k), C), (1.13)

where N is the total number of MCMC samples. Here a large state space of the

indicators γ ∈ {0, 1}m would ideally require a very large number of MCMC samples.

In general, it is observed that the Markov chain of the indicator variables mixes

well like most hierarchical wavelet models, with little change in the convergent states

across simulations. This is essentially due to the sharp localisation of features on the

wavelet scale. In such cases, a reasonable estimate of the marginal likelihood (1.13)

is achieved by averaging over the Markov chain for a previously estimated γ.
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4. Missing data interpolation

It is common to encounter missing values in clustering and to supplement the model

with a Bayesian imputation step is useful. There has been some work for wavelet

methods on unequispaced grids (Kovac and Silverman (2000); Pensky & Vidakovic,

2001), however, we limit ourselves to the case were points are missing from a fixed

equispaced grid.

Missing data imputation is expedited by Gibbs sampling under the a priori in-

dependence of the dn distinct parameters. Gibbs sampling starts with a random

clustering configuration and randomly imputed missing points. Conditional on the

imputed dataset, the Pölya urn samples the cluster parameters θi. After n such

steps of sequential sampling the initial clustering configuration Cn is completely up-

dated. Next, conditional on Cn the posterior predictive distribution is used to per-

form the imputation. For instance, for an incomplete response (say the jth response)

that was assigned to the ith cluster in the preceding step of the Gibbs sampling,

we use Yj|β̄i, σ̄
2
i ∼ N(Xβ̄i, σ̄

2
i Im) and β̄i

iid
∼ N(0, σ̄2

i V), to write the marginal

Yj|σ̄
2
i ,g,γ ∼ N(0, σ̄2

i (Im + XVX′)). Let Yj1 and Yj2 be the known and missing

parts of Yj respectively, then from standard normal distribution theory the posterior

predictive distribution is given by

(Yj2|Yj1, σ̄
2
i ,g,γ,Cn) ∼ N(Λ21Λ

−1
11 Yj1, σ̄

2
i (Λ22 − Λ21Λ

−1
11 Λ12)),

where Λij are obtained by partitioning the marginal covariance as

Im + XVX′ =









Λ11 Λ12

Λ21 Λ22









.

We can use this technique to accurately predict unobserved portions of any curve

with uncertainty intervals. The effectiveness of our method is shown in one of the
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examples.

5. Shifted Doppler signals

This dataset is motivated by similar examples in Donoho and Johnstone (1994, 1995)

and consists of 200 shifted Doppler signals with the common form

ft0(t) = −0.025 + 0.6
√

t(1 − t) sin(2.10π/(t− t0))

and the phase t0 is continuously varied in eight disjoint intervals equally interspersed

in [0, 1] to generate the 200 signals. In one of these intervals, three functions were

perturbed to assess the model sensitivity to small local fluctuations. This created a

total of nine distinct classes of functions that have been equi-sampled on a common

grid of 128 points. For simulation, noisy data were generated by adding independent

normal noise εi,k ∼ N(0, σ2) to each of the 200 Doppler signals at 128 points. Later,

with a fixed probability pm, points were randomly selected and dropped from each

function to evaluate the robustness to missing observations.

Table I shows the estimated number of clusters d̂n and the percentage of misclas-

sifications for different amounts of randomly missing data across σ = 0.1, 0.06, 0.02

when the data is fitted with Model 2. These figures were averaged over the best

models from 100 simulations for each combination of σ and missing data probability

pm. For caomparison, similar results for the mixed effects model are shown in Table

II.

Fig. 1 shows the model log-marginal likelihoods for different pm when σ = 0.06.

The most favoured models on the basis of log-marginal likelihoods had nine clusters

followed by models with 7 to 11 clusters. First, the pm = 0.0 case with no missing

observations is discussed. Fig. 2 shows the nine clusters estimated in one of the

simulations at σ = 0.1. In most of the situations the wavelet model performs better
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Table I. Performance of the wavelet model at different SNRs and percentage of missing

observations.

d̂n Misclassifications(%)

σ

0.1

0.06

0.02

pm =0.0 0.1 0.2 0.3

8.4 7.9 6.5 5.5

9.1 8.9 8.4 7.5

9.1 9.1 8.7 8.1

0.0 0.1 0.2 0.3

10.5 14.5 20.0 26.1

8.3 9.8 12.2 17.4

3.1 5.2 7.5 10.5

than the spline model and the estimated number of clusters d̂n is consistently close

to 9. The wavelet model also has lower misclassification rates than the spline model,

indicating its robustness in high noise situations.

Table II. Performance of the mixed-effects spline model at different SNRs and per-

centage of missing observations.

d̂n Misclassifications(%)

σ

0.1

0.06

0.02

pm =0.0 0.1 0.2 0.3

7.3 6.8 5.2 4.8

9.5 8.9 7.5 6.3

9.1 8.6 7.6 6.9

0.0 0.1 0.2 0.3

18.4 22.5 24.9 36.3

11.5 16.1 20.4 27.4

4.0 7.4 11.0 17.0

The Besov parameters (a, b) are obtained by running the maximization procedure

briefed in Section C.1 on a 2 × 2 grid of (a, b) pairs and we obtain the estimates as

a = 1.90 and b = 1.20. We present the log Bayes factors to compare the model at

(a, b) = (1.90, 1.20) with some other neighbouring values of (a, b) in Table III.



22

Fig. 1. Model log-marginal likelihoods vs number of clusters for shifted Dopplers data.

Fig. 2. Nine estimated clusters for the shifted Doppler signals.
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Table III. Estimated log-Bayes factor with respect to the model for the shifted

Dopplers data with Besov parameters 1.90 and 1.20.

b

a 1.00 1.10 1.20 1.30 1.40

1.75 16.78 13.24 9.53 12.63 15.95

1.85 14.07 12.64 3.79 5.98 14.47

1.90 14.52 10.80 - 6.44 13.74

1.95 19.45 17.98 15.84 12.17 15.61

a. Results for the missing data case

To evaluate the effects of missing data, points from each function were randomly

selected and dropped with probabilities pm. Tables I and II summarise the results

from three separate simulations performed with pm = 0.1, 0.2 and 0.3. At pm = 0.1,

our method performs similar to the complete data case, with a small deviation in the

estimated size and a marginal increase in the misclassifications even at a σ = 0.1.

At pm = 0.2 and 0.3, the number of misclassifications increase and there is a drop in

d̂n. Notably, the deterioration in the wavelet model (Table I) with higher amounts of

missing data is less drastic than the spline model (Table II).

b. Predictive inference with missing data

A major advantage of the functional clustering procedure is that it can accurately

predict unobserved portions of a curve. We demonstrate another contrived example

where a portion of a curve is missing, we examine missing data prediction and its

effects on clustering. A fixed portion of the tail from a curve in the shifted Doppler

example is dropped and prediction bands are generated from the MCMC samples.
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We expect the clustering algorithm to be reasonably stable when a few curves are

partially observed owing to the shrinkage within clusters and this is confirmed in

the prediction bands plotted in Fig. 3. With 12.5% missing points the effect of

missing data prediction is hardly visible and although the bands widen with increasing

number of missing points, it is only when this number gets to 37.5% that the curve

is occasionally thrown into a distinct cluster.

Fig. 3. MCMC prediction bands for a partially observed curve in the shifted Doppler

example. Missing points in the three sub-plots (a),(b),(c) are 12.5%,25%,37.5%

respectively.

c. Effect of scaling coefficients

Three types of shifted Doppler datasets are considered (see Fig. 4) for the analysis

with the first two types ((a)–(b)) having curves that differ either in their scaling

coefficients, or detail coefficients. Dataset (c) has differences in both the scaling and

detail coefficients. Each curve is replicated five times in normal noise (σ = 1) so that

the sample size n is 15 for each dataset.

For diffuse specifications in all the three cases, we set r0 = 2.2 and s0 = 4.2 with

a prior mean, Eg0 = 1 and variance, var(g0) = 10. The empirical estimates of (r0, s0)

for the three datasets calculated in the aforementioned manner are (7.991, 6.695),
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Fig. 4. Three different Doppler datasets with three classes used to assess the model

sensitivity to scaling coefficients.

(5.7961, 11.315) and (5.110, 6.5823). The corresponding priors means of g0 are 1.7019,

0.6222, 1.1153 and the prior variances are 2.1491, 0.10584, 0.96344.

Table IV summarises the performance of these priors applied to the three datasets.

In dataset (a) only the scaling coefficients play a role in the clustering. The tighter

empirically estimated prior produces better estimates of dn with lower misclassifica-

tion rates than the diffuse prior. The differences between the curves in dataset (b) are

almost entirely encoded in the detail coefficients and the prior modelling of scaling

coefficients does not play a role in the clustering, as shown in Table IV. In dataset

(c), both the scaling and detail coefficients differ with clear evidence of three clusters

in the latter. Although the role of scaling coefficients is diminished, the empirically

estimated prior still manages to outperform the diffuse prior.

6. Yeast cell cycle data

Recently there has been a huge interest in the analysis of gene expression data from

DNA microarray experiments. When microarray experiments are performed consec-

utively in time, we call this experimental setting a time course of gene expression
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Table IV. Comparison of prior choices for the scaling coefficients for different Doppler

signals. Actual number of clusters=3.

Misclassifications(%)

Set

(a)

(b)

(c)

Prior=Estimated Diffuse

7.0 12.2

13.5 14.1

4.6 10.5

profiles. Clustering of the time course data gives insight about genes that behave

similarly over the course of the experiment. By comparing genes of unknown func-

tion with profiles that are similar to genes of known function, clues to function may

be obtained. Hence, co-expression of genes are of interest.

We analysed a similar dataset due to Spellman et al. (1998) which measures

the relative levels of mRNA over time from 6178 genes in α-pheromone synchronized

yeast cell cultures. Of interest are the connected genetic regulatory loops control-

ling the Saccharomyces cerevisiae pheromone response pathways (PrP) and whether

the involved genes can be identified by their characteristic expression profiles in one

or more clusters. In the sexual reproduction of yeast there is an essential role of

pheromone response and mating pathways that ultimately target the protein STE12

and bind DNA as a transcriptional activator for a number of other genes. This is a

natural choice for our methodology because the intergenic regions in the yeast genome

that are bound to STE12 are known from genomic location analysis in presence of

pheromone (Ren et al., 2000). With the induction of the α pheromone, the expression

levels for the PrP genes show a steep rise, until an internal stabilising mechanism is

triggered and the fervour dies down. The result is a spiky event (or more contextu-

ally, a temporal singularity) in an otherwise smooth expression profile which for the
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most part, is comparable with the response of genes that do not participate in the

pheromone response signaling and yeast mating.

The wavelet transforms give a time-frequency breakdown of information and

the coefficients may reveal new patterns in frequency as well as time. For example,

Klevecz (2000) performed a detailed wavelet analysis of the yeast cell cycle data and

found significant high frequency artifacts isolated in time, contrary to the earlier no-

tion that yeast cell cycle profiles are representative of slowly varying biological events.

The hierarchical clustering model can easily delineate profiles with increased levels of

gene expression occurring uniformly throughout the cycle from profiles characterized

by sporadic bursts of spiky events (when relatively more messages are synthesised).

The latter being a characteristic of the PrP genes is more important here. Note that

this extremal behavior is easily accommodated within the Besov spaces.

In the experiments, 16 (of the 18) equi-sampled measurements over two cell

cycles (lasting roughly 140 minutes) from 600 significantly expressed genes were con-

sidered. Some expression profiles were incomplete with a maximum of eight missing

expressions per gene. To allow for possible deflections in the error variance in the

population of gene expressions, we resorted to heteroscedastic model (Model 1) and

found the estimated variance to vary between clusters. This may well be attributed to

the significant deviations in the cluster sizes and the relatively short-sized expression

profiles.

In general, the normality assumptions do not hold for microarray experiments

and some pre-processing steps are necessary. For example, for the yeast data a log-

transformation seems to suffice. This is confirmed by a Bayesian analysis (Chaloner

& Brant, 1988) of the residuals. The residuals in the normal likelihood (1.3) are

sampled from their posterior distribution conditional on the clustering configuration.

From standard distribution theory, this posterior distribution is normal with mean
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Fig. 5. p-values vs curves from multivariate test of normality for the yeast data.

Yi −Xµ∗
i and covariance σ2V∗ (µ∗

i and V∗ defined in (1.9)). A multivariate χ2 test

is then performed to check the normality of the sampled residuals for each curve. The

p-values (at a level α = 0.05) from each curve are provided in Fig. 5 and show that

most of the vector responses satisfy the normality assumptions.

The clustering algorithm showed maximum preference for models with 6 to 9

clusters (Fig. 6), of which two models with 8 clusters dominated the others in terms

of the log model marginal likelihoods (plotted in Table V). Using a grid maximisation

procedure, the Besov parameters (a, b) were set to (1.45, 0.5) and this explains the

spatial inhomogeneity in the expression profiles noticeable in the eight clusters (for

one of the best models) plotted in Fig. 7. The plots can be divided between periodic

(Figures 7.a-d) and non-periodic (Figures 7.e-h) patterns. The two clusters in the

second category can be identified with the early on-off switch patterns and pertain

to almost all the PrP genes mentioned above.
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Fig. 6. Histogram showing the preferred number of clusters for the yeast cell-cycle

data over 10,000 MCMC iterations.

Table V. Log marginal likelihoods of the best models for the yeast cell-cycle data.

dn Best models Log marginal likelihood

8 1,2 −8.697 × 104

3,4,5 −8.699 × 104

7 1 −8.700 × 104

2,3 −8.701 × 104

6 1,2 −8.701 × 104

9 1 −8.703 × 104

2 −8.704 × 104
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Fig. 7. Clustering of the yeast cell data. Eight clusters for the 600 expression profiles

with 18 time points and a maximum of 8 missing points. Clusters (a)-(d)

hold the periodic expression profiles and (e)-(h) hold the non-periodic on-off

switching patterns.
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a. Comparison with the spline model

The JS model is fitted with 4 quantile knots. The most preferred models vary in

size from 5 to 7 and suggest over-smoothing and the models incapability to adjust to

sharp fluctuations. The log Bayes factor of the best wavelet models compared to the

best spline model was much larger than 10. In the results, not detailed here, there

is a tendency for clusters (b)-(e) and (f)-(g)-(h) in Fig. 7 to merge together in one

cluster. To emphasise this point, we fit three models differing in spatial adaptation to

3 (of the 8) clusters obtained from the wavelet model. The first cluster has periodic

and smooth profiles, the second cluster is smooth but not periodic and finally, the

third cluster is totally irregular and comes with a sharp on-off pattern of the PrP

genes. The three rows in Fig. 8 plot the fits by a periodic (Fourier cosine series)

basis, a spline basis and a wavelet basis divided in three columns corresponding to

the 3 clusters. In the first column, we see that all three fit equally well, while in

the second column, the periodic basis fit (Fig. 8.b) shows considerable bias at the

boundaries. The situation deteriorates further as we move to the third column with

a sharp fluctuation at t = 0.1 which is completely missed by both the periodic and

spline models.

b. Further simulation study

The yeast cell cycle data is a typical cDNA microarray example where high noise levels

makes inference difficult. Moreover, there is a marked heteroscedasticity in the data

as indicated in Table VI tabulating the estimated variances of the eight clusters of Fig.

7. A follow-up simulation procedure is useful in such situations to validate the results.

In order to simulate a realistic dataset for comparing the successful wavelet and spline

models, we used the yeast cell cycle data as a prototype. As realistic values of the
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Fig. 8. Comparison of fits for three types of responses. Rows: (a)-(c) periodic basis

fit, (d)-(f) spline fit and (g)-(i) wavelet fit. Columns: (a)-(g) periodic smooth

function - all the bases fit well, (b)-(h) non-periodic but smooth function - the

periodic basis has problems fitting at the boundary (c)-(i) Non-periodic and

irregular function - only the wavelet basis captures the sharp fluctuation.
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parameters, we use the representative curves (reproduced from the estimated wavelet

coefficients) of the eight clusters plotted with thick lines in Fig. 7 and replicate them

in i.i.d. normal noise with the estimated variances of Table VI following the structure

of our model to generate the responses. In other words, this is an imitation of the

original 600 gene expression profiles, to which we want to apply the algorithm and

confirm our findings. This simulation is repeated 100 times to generate 100 different

data sets, which are later analysed using wavelet as well as spline models to obtain

the average misclassification rates.

The estimated number of clusters averaged over 100 simulations for the wavelet

model is 8.21 with a very low average ‘misclassification rate’ (the deviation from

the previously estimated clustering configuration) of 5.38%. In fact, the estimated

clusters in these simulations almost always resemble Fig. 7 with differences due to

occasional switchover of curves between clusters (f) and (g); or the formation of new

clusters out of (or from combination of) clusters (f), (g) and (h). For the spline model,

we see a lot of clusters merging due to over smoothing and the average number of

clusters is 5.96 with a misclassification rate of 36.42%.

7. Precipitation spatial time series data

We consider a NCEP reanalysis spatio-temporal data that records the daily precipita-

tion over Oregon and Washington between 1949 and 1994 (Widmann and Bretherton,

2000). The gridded observations represent area-averaged precipitation on a 50km grid.

Bi-weekly averages of the daily observations from 179 locations are used, with a total

of 512 time points over a time span of roughly 5 years between 1989 and 1994.

The example illustrates the potential application of functional clustering for the

topographical categorisation of meteorological factors such as precipitation, temper-

ature, snowfall, etc. It is usually difficult to generate topographical contour maps
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Table VI. The size and the estimated variance of the eight clusters for the yeast

cell-cycle data.

Clusters # of curves Estimated variance

(a) 124 0.3519

(b) 163 0.2996

(c) 21 0.8154

(d) 33 0.8862

(e) 59 0.2893

(f) 98 0.3006

(g) 24 0.2694

(h) 78 0.5360

of precipitation vs elevation although these are of great interest in climate analysis.

A functional clustering model provides a natural way to group similar precipitation

patterns viewed as functions and associate them with elevation. This can also deal

with the problem of missing points in precipitation analysis. Missing points are typ-

ically interpolated with information from satellite observations and analysis amidst

the differences in the measurement errors from two sources can be problematic.

Precipitation maps are formed by using the slope of a simple regression of the

average local precipitation and the elevation. The clustered data plotted in Fig. 9

show a clear need for nonlinear modelling. This could in fact be used to delineate

regions with occasional swings in rainfall patterns - patterns that can be overlooked

by other geostatistical methods such as kriging (Rivoirard, 1994).

In many spatial models, a spatial random effects term viewed as a random inter-

cept process is introduced to capture the spatial correlation. Previously, the intercept

or scaling coefficients βi00 in our model were specified by nonparametric priors for clus-
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tering. Following Gelfand et al. (2003), we introduce a spatial random effect α(xi)

that can be interpreted as a random spatial adjustment at a location xi (in latitude

and longitude) to the overall intercept βi00. Thus for an observed set of locations

x1,x2, . . . ,xn, we write Yi = α(xi)1 + Xβi + εi, where the overall intercept βi00 is

an element of βi. We assume the prior distribution for α is a zero mean Gaussian

process with exponential correlation function τ 2Φρ. Here Φρ has a special structure

in that its (i, j)th entry is exp(−ρ‖xi − xj‖) where ρ > 0 is a spatial decay param-

eter. Following Banerjee (2004), we assume a gamma prior for ρ so that the mean

of the spatial prior range is half the maximum inter-site distance in the dataset,

and τ 2 is a scaling parameter specified by a vague inverse-gamma prior distribution

IG(0.005, 0.005). The dependence between the α(xi) makes them identifiable from

the other intercept terms without the need of replications.

For posterior inference, Gibbs sampling is used to alternately sample α and the

clustering parameters. More specifically, for a fixed α let Y∗
i = Yi − α(xi)1, then

the posterior inference in Section D can be performed conditional on Y∗
i . In Model 1,

each αi is updated separately by combining the implied conditional prior αi|α−i, τ
2, ρ

(from the prior α|τ 2, ρ ∼ N(0, τ 2Φρ) ) with the respective likelihood Yi ∼ N(αi1 +

Xβi, σ
2
i I). For the homoscedastic case, we can directly work with the joint prior and

the joint likelihood to draw multivariate samples of α. Finally, the parameters ρ and

τ 2 are updated by separate Metropolis-Hastings steps by conditioning only on α.

The NCEP reanalysis dataset was fitted with Model 1 and as expected there were

considerable differences in the estimated variance between clusters. The estimated

value of ρ is 0.0182 and its posterior distribution from MCMC is shown in Fig. 10.

This suggests a high spatial correlation between different locations. The overall homo-

geneity associated with the annual events and the local bumpiness due to fluctuations

in rainfall is described well by the estimated Besov parameters, (a, b) = (0.95, 0.3).
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Fig. 9. Four clusters for the precipitation data.

The histogram of the MCMC samples for the number of clusters from one simulation

in Fig. 11, shows clear preference for models with four clusters. The estimated clus-

ters from one simulation are shown in Fig. 9 and their distribution on a geographical

scale is contour-plotted in Fig. 12 at two different orientations. Fig. 9.a plots the

largest cluster and corresponds to a large number of stations outlined by cluster 1 in

Figures 9.a-b. The average annual rainfall in these areas has shown moderate fluc-

tuations over the five year period and is notably less than the areas in clusters 2-4.

Stations in cluster 3 (Fig. 9.c) have experienced heavier-than-usual rainfall between

1990-1991, but otherwise the average rainfall is comparable to cluster 2 (Fig. 9.b).

Stations in cluster 4 (Fig. 9.d) although much wetter, share the same pattern as

cluster 3, suggesting their geographical proximity which is confirmed from Fig. 12.

G. Discussion

The non-parametric Bayes model offers a flexible approach to functional clustering

and has been shown to perform favorably against other functional clustering methods.

Special stress is laid on the overall applicability of the methodology in that we rely

on straightforward Gibbs sampling methods that are usable with high-dimensional
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Fig. 10. Posterior distribution of the covariance parameter generated from 10,000

MCMC iterations.

Fig. 11. Histogram showing the preferred number of clusters for the precipitation data

over 10,000 MCMC iterations.
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Fig. 12. Topographical distribution of the four clusters shown in two different orien-

tations.

data, employ simple base prior modelling of the wavelet coefficients to encompass a

large class of functions and address the missing data problem common in real-life

applications. In addition, the method learns about the number of clusters in an

automated manner unlike other clustering methods where a dimension change comes

with a lot of computational burden.

In its ability to partition the predictor space into ‘i.i.d.’ regions, the Dirichlet

process is comparable to product mixture models for clustering. (Indeed, Quintana

and Iglesias (2003) show an equivalence under certain regularity conditions on the

Dirichlet process.) This entails the use of two distinct approaches to Gibbs Sampling

in this paper. First, the sampling of (θ1, . . . ,θn) from the Pölya urn allows the update

and clustering of these parameters in a unified way; and replaces the reversible jump

sampler (Green, 1995) used in product models for clustering, which has a reputation

for being complicated. However, conditional on a sampled configuration of clusters,
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the remaining parameters are conveniently drawn from the product mixture provided

by the Dirichlet process.

The discrete wavelet transform (1.1) requires that the number of sampled points

m be a integer power of 2. The proposed model can be used with more flexible alter-

natives, such as the Lifting scheme (Sweldens, 1996), that does not place restrictions

on the discrete support. This could additionally allow the extension of this model

to un-equispaced data. Another interesting research problem would be to modify

Quintana and Iglesias (2003) method in this high-dimensional functional clustering

problem with the presence of missing data.
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CHAPTER II

FUNCTIONAL CLUSTERING FOR IDENTIFICATION OF ALTERNATIVE

SPLICE VARIANTS

A. Introduction

Alternative Splicing (AS) is a mechanism that increases the protein diversity in ver-

tebrates. AS is considered to be an important source of functional complexity and

disease; and about 40-60% of human genes have alternative splice forms. With the

advent of new exon junction or splice microarrays, we can study the tissue distribution

of splice forms for several thousand genes.

In this chapter, we propose a nonparametric Bayesian model for identifying the

number of gene products produced from important genetic loci and to obtain clues

regarding the regulation of Alternative pre-mRNA Splicing across different tissues,

with the aim of aiding future exploratory analysis for isolation of splice forms and

providing information on specific targets.

The work focuses on the analysis of the Rosetta gene expression dataset (Johnson

et al., 2003) from five Agilent chips covering over 10,000 multi-exon human genes in

52 tissues and cell lines. The results implicate more alternatively spliced (70-75%)

human multi-exon genes than suggested by previous studies. In addition, there are a

number of splice forms that appear to be unique to cancer. These new forms may be

potential new targets for oncology drug discovery.

Section B provides a brief introduction to AS mechanisms and their contribuition

to the protein diversity in humans. Abnormalities in AS can be associated with many

types of cancer and other diseases. We discuss the importance of understanding

these mechanisms in drug discovery and biology. In addition, we briefly review the
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Fig. 13. Alternative pre-mRNA splicing.

microarray based approches that have been used to study alternative splicing. In

Section C, we extend the functional clustering model presented in Chapter I for

the clustering the gene expression profiles from spice microarrays. The posterior

specifications are mentioned in Section D. Finally, in Section E, we present results

from the analysis of the Rosetta gene expression data (Johnson et al., 2003).

B. Alternative Pre-mRNA Splicing

Vertebrates display a broad spectrum of functional and behavioural complexity that

is a result of an increase in the number of components (structural, chemical etc) or

their interaction during the course of evolution. The size of the proteome or the

protein diversity has been expanded by increasing the number of genes and inventing

new mechanisms such as varying the transcription start sites, alternative pre-mRNA

splicing, polyadenylation and post-translational protein modifications. Of these, al-

ternative pre-mRNA splicing is probability the most important source of protein

diversity in vertebrates. Figure 13 gives a schematic illustration of the alternative

pre-mRNA splicing mechanism.
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Fig. 14. Common modes of alternative splicing.

AS is a mechanism that generates multiple mRNAs from the same pre-mRNA

by combinatorially joining 5’ and 3’ sites. For example, exons can be extended or

shortened, skipped or included and incrons may be removed or retained in the mRNA

(see Figure 14). Therefore AS events that affect the protein coding region of the

mRNA will give rise to proteins which differ in their sequence and their activities.

Enzymes known as spliceosomes are responsible for carrying out pre-mRNA splic-

ing. Spliceosomes can identify 5’ and 3’ splice sites which are located on exon-intron

boundaries. Exons are the functional portions of gene sequences that code for proteins

and introns are the noncoding DNA sequences of unknown function that interrupt

most mammalian genes and their number and size vary in different genes. The aver-

age size of a human exon is 150 nucleotides and the average size of intron is around

3,500 nucleotides. Thus, the splicing machinery has to recognize small exon sequences

located within vast stretches of introns and exon recognition is a fundamental prob-
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lem in pre-mRNA splicing. The accuracy of splicing is also monitored by RNA proof

reading mechanisms that are able to target incorrectly spliced mRNA for destruction

or can correct the error.

Given the complexity of the AS mechanisms it is not surprising that alterations

in mRNA splicing can cause or be modified by a disease and characterization of these

splice specific alterations can provide new therapeutic targets. Some examples of

splicing defects that are associated with disease are:

1. Spinal muscular atrophy (SMA) is a disorder characterised by progressive

loss of spinal cord motor neurons leading to paralysis. This disorder is a result of

the deletion of the survivor of motor neuron gene (SMN1), which plays a role in

the assembly of ribonucleoprotein complexes. This deletion prevents assembly

of the U1 ribonucleoprotein complexes in the cytoplasm and results in global

defects in pre-mRNA splicing.

2. Duchenne muscular dystrophy is characterized by the enlargement of mus-

cles. It is one of the most prevalent types of muscular dystrophy and is char-

acterized by rapid progression of muscle degeneration that occurs early in life.

This dystrophy is caused by mutations in the dystrophin (DMD) gene that re-

sult in the insertion of a premature stop codon and the expression of a truncated

inactive protein. An antisense technique has been used to induced exon skipping

to restore the correct reading frame to frame-shifted mutant DMD genes.

3. Colorectal Cancer. The DCC (deleted in colorectal cancer) gene is regarded

as a tumor suppressor gene and one DCC allele is deleted in roughly 70% of col-

orectal cancers and somatically mutated in others (Reale et al., 1994). Several

splicing aberrations have been observed between the first two exons in DCC due

to which its expression is often reduced or absent in colorectal cancer tissues and
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cell lines. Our analysis of the Rosetta dataset shows that the expression profile

of DCC in the colorectal tissues is different than what is observed in other tis-

sues. This points to a different protein product of DCC in the colorectal region

that might be altered in some cases resulting in colorectal cancer.

1. Microarray approaches to splice form identification

Inkjet printing technologies allow rapid fabrication of customizable microarrays. Shoe-

maker et al. (2001) used this technology to monitor the coordinate expression of 8,183

exons annotated on chromosome 22q. Since alternative splicing of a given gene creates

different exon-exon junctions, this technology can be adapted to detect alternative

splicing by designing probes that span specific exon-exon junctions and measure the

hybridization of mRNA samples from different tissues to these probes. Although

the hybridization ratios of most exon-exon junction probes for a given gene will be

constant, there will be some junctions for which the regulation will differ due to AS.

C. Nonparametric Model for Identifying Alternative Splice Forms

The Rosetta experiment (Johnson et al., 2003) uses probes that spans consecutive

exon junctions. In particular, 8 nt sequences are printed side-by-side as 16 nt se-

quences in separate probes of the microarray. For a given sample, 10,000 genes are

probed in this fashion across 5 different microarrays. This is repeated for 54 different

tissues or cell lines and the whole experiment generates 54 × 5 = 270 microarrays in

total. Figure 15 gives a schematic illustration of the structure of the Rosetta dataset.

For our clustering analysis, we concentrate on the expression levels observed in

consecutive exon junctions for one gene across all the 54 tissues or equivalently, 54
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Fig. 15. Structure of the Rosetta dataset. The data can be viewed as a tall table

with rows corresponding to consecutive exon junctions of all the genes. The

diagram shows the 17 exon junctions corresponding for the ith gene.

differently microarrays. Assuming the microarrays are co-lognormalized, we consider

a collection of m × 1 vector responses, Y1, . . . ,Yn where m is the number of exon

junctions for the analyzed gene with the assumption that the number of tissues is

n. The response Yi from the ith tissue can be regarded as a curve that shows the

regulation across consecutive exon junctions for a particular gene. Figure 16 shows

the expression profiles for the Amyloid β-precursor protein (APP) gene from five

tissues. Thus the functional clustering model described in Chapter I can be applied

to the problem of identifying different splice forms. The only difference is that for

each curve Yi the consecutive samples (yi1, . . . , yim) are not equispaced because the

exons (or the exon-junctions) are separated by introns that may differ in size. As

we will discuss later, almost orthogonal wavelet transforms for the unequispaced case

can be produced by using the lifting scheme (Sweldens, 1996).

Given the co-lognormalized set of responses for any gene Y1, . . . ,Yn, we use a
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Fig. 16. An example set of log-expression profiles of the APP gene in five tissues. The

red bars on the x-axis show the location of the exon junctions.

multiplicative measurement error model to express the response vector from the ith

tissue as

Yi = µ1m + τ i1m + Xβi + εi, εi ∼ N(0, σ2
i Im) (2.1)

where µ is the overall effect of the n microarrays, αi is the constant tissue specific

effect, X is an almost orthogonal wavelet transform defined over the unequispaced grid

of exon junctions and βi are the corresponding wavelet coefficients. We assume that

the error terms are independent and all the correlation between the exon junctions

is functionally encoded in the residual curve Xβi after accounting for the overall

background effects, µ in all microarrays and the tissue or individual effects, τ i in

absence of replications. Thus Xβi can be regarded as the tissue specific differential

expression profile of the analyzed gene.

The observational model (2.1) makes many simplifying assumptions. For con-
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venience, we work with a multiplicative measurement error model and we study one

gene at a time for computational feasibility, ignoring the biological dependence on

other genes. The primary aim of this study was to estimate the number of splice

forms for roughly 10,000 genes and from a computational viewpoint its a formidible

task to work with a correlated model for a such a large dataset. In addition, each

tissue or cell line is usually acquired from different subject and the above model fails

to account for any subject or age-based variation. This brings us to the important

question of whether it is reasonable to compare expression profiles from different sub-

jects? We believe that such differences are largely reflected in the intensity, the overall

shape of curves remains same (unless there are mutations along that chromosomal

segment).

1. Prior elicitation

The prior distributions in the present model is largely follow from the prior elicitation

described in Chapter I in that we need to specify µ and τ i for all i = 1, . . . , n. Both

these paramters are treated as fixed effects viewing (2.1) as a mixed effects model.

In absence of any replications, the αi’s represent the confounded tissue and indi-

vidual effects. The gene concentration in the ith tissue is a primary contributor to the

tissue effect and can vary largely between tissues. Similarly, a large variability can

be expected for individual effects. Therefore, µ and τ i’s are fitted by diffuse normal

priors with a large variance. In addition, the tissue effects are assume to be a priori

independent. More specifically, we let

µ ∼ N(0, s2
0) and αi ∼ N(0, s2

1σ
2
i ), ∀i = 1, . . . , n (2.2)

where s2
0 and s2

1 take large values. Both these scaling or dispersion parameters are
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elicited by inverse gamma priors

s2
0 ∼ IG(u0, v0) and s2

1 ∼ IG(v1, v1), (2.3)

with hyperparameter specifications that ensure large values with higher probability.

Following the modelling of wavelet coefficients in Chapter I, we assume nonpara-

metric Dirichlet process priors for (β1, . . . ,βn). The task of identifying the splice

forms is accomplished by clustering the wavelet coefficients tissuewise and their num-

ber is seen as the number of clusters estimated in this manner.

Summing up the developments in this section, the hierarchical model becomes

Yi ∼ N(µ1m + τ i1m + Xβi, εiIm), (2.4)

µ ∼ N(0, s2
0), τ i ∼ N(0, s2

1σ
2
i ), (βi, σ

2
i ) ∼ NIG(0,V;u, v),

s2
0 ∼ IG(u0, v0), s

2
1 ∼ IG(v1, v1), gj ∼ IG(rj, sj),

γj,k ∼ Bernoulli(πj),

α ∼ G(d0, η0)

where i ∈ {1, . . . , n}, j ∈ {0, . . . , J}, k ∈ {0, . . . ,mj} and as one can recall from

Chapter I, V = diag(γ)diag(g) where γ = (γ00, γ10, γ20, γ21, . . .) is a vector of latent

indicator variables for selection of each coefficient and g = (g0, g1, g2, g2, . . .) are the

corresponding scaling parameters. Also, mj is the number of coefficients that is not

necessarily a dyadic function of the level j due to the manner in which the wavelets

are constructed.

D. Posterior Inference

As in Chapter I the use of conjugate base priors expedites the posterior sampling of

(βi, σ
2
i )’s from the Pölya urn. The background and tissue or individual effect parame-
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ters are also sampled easily from the respective posterior distributions. The following

subsections describe only the conditional posterior inference of these parameters and

the relevant dispersion parameters such as s2
0 and s2

1.

1. Background and tissue or individual effects

The constant background effect µ has contributions from all the probes from all

n microarrays. Therefore, the posterior conditional distribution of µ is calculated

by combining its diffuse normal prior distribution and the likelihoods (2.4) for i =

1, . . . , n; and is given by

µ|τ ,β,σ2,Y, s2
0 ∼ N

(

n
∑

i=1

s2
0

s2
0 +mσ2

i

(Yi − τ i1m − Xβ′
i1m),

n
∑

i=1

mσ2
i

s2
0 +mσ2

i

s2
0

)

(2.5)

where as before Y is the collection of all response vectors (Y1, . . . ,Yn) and in similar

notation τ , β and σ2 represent the tissue effects, the wavelet coefficients and the

observatioal dispersion parameters for all n tissues respectively.

The posterior distribution for tissue specific effects τ i is calculated by with respect

to its diffuse normal prior conditional on the responses for the ith tissue and is given

by

τ |µ,β,σ2,Y, s2
1 ∼ N

(

s2
1

s2
1 +m

(Yi − µ1m − Xβi)
′1m,

m

s2
1 +m

s2
1

)

. (2.6)

2. The scaling parameters

For computation convenience, the scaling parameters s2
0 and s2

1 are directly drawn

conditional on µ and τ respectively. Both parameters have inverse gamma posterior

distributions after combining (2.2) with the respective inverse gamma prior distribu-

tions (2.3). The exact form of these conditional posterior distributions is

s2
0 ∼ IG(u0 + µ2, v0 + 1) and s2

1 ∼ IG

(

v1 +
n
∑

i=1

τ 2
i /σ

2
i , v1 + n

)

. (2.7)
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It is reasonable to argue here that there is little objectivity in these updates, espe-

cially s2
0. However, this is not the aim here as the priors (2.3) are diffuse and the

hyperparameters involved in the above updates are chosen to obtain large values of

s2
0 (and s2

1). In fact, the above updates comprise a convenient way to uncertainty

and for practical purposes, it might suffice to assign fixed large values to both these

parameters.

The reader is referred to Chapter I for details about the posterior inference for

the remaining parameters (β,σ2,g,γ). Briefly, the sampling of the cluster specific

paramters (β,σ2) and the indicators γ requires additional conditioning on (µ, τ ) in

addition to the Y. Some minor alterations are also required to accommodate the

non-orthogonality of the wavelet transform X.

3. Estimation of the clusters and other parameters

The Bayesian computation is carried out in two steps. The first step consists of

Gibbs sampling all the model parameters are sampled from their respective posterior

distributions. This includes sampling of the background, the tissue effects, the clus-

ter locations and all the scaling or dispersion parameters. After collecting sufficient

number of samples using MCMC, all the parameters except for the cluster specific

parameters, (β,σ2) are estimated. For the second step, we repeat the MCMC con-

ditional on the estimates derived from the first step. The samples from this second

run are then used towards the estimation of (β,σ2) and the number of clusters dn as

detailed in Chapter I.
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E. Examples

The clustering scheme was applied to all the 10,000 genes in the Rosetta dataset to

estimate the number of splice forms. This is a computationally demanding task and

extensive database programming was used to generate the results. For illustration, we

present the results for three genes from the Rosetta dataset whose protein products

have been implicated in various diseases. Following Chapter I, all the reported results

were averaged over 100 simulations with 10,000 iterations per simulation and a burn-

in period of 1000. The average number of exon-junctions for the genes in the dataset

is roughly 20 and thus the length of the curves m is small compared to the examples

in Chapter I. The MCMC mixed reasonably well for all the genes in the dataset and

seemed to converge much before the alloted burn-in time. The employed wavelet basis

was constructed using the Lifting scheme (Sweldens, 1996) as described in the next

subsection.

1. Wavelets for unequispaced design

For non-equispaced design, such as in the next two examples analyzing proteomics

datasets, we use lifted wavelet transforms (Sweldens, 1996). These, unlike the tra-

ditional wavelet transforms, do not require regularly spaced samples. Traditional

wavelet transforms (designed for equispaced samples) can be factored into a sequence

of simpler transforms using the lifting scheme (Daubechies and Sweldens, 1996); and

each lifting step is a refinement over the previous steps and represents an increase in

the smoothness (or order) of the wavelet bases. These features can be extended to

non-equispaced designs by allowing more flexible basis functions that are not simply

translates or dilates of one fixed function and using the Lifting scheme to perform

the construction in the time domain. The wavelets resulting from the lifting scheme
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still have all the powerful properties of traditional wavelets such as localization and

good approximation. Despite these properties, the lifting scheme has been largely

overlooked in recent literature and many authors have resorted to using interpolation

for generating equispaced samples for their analysis.

The lifted construction used in the following examples involves two separate

steps. The first step involves an unbalanced Haar transform, that is the usual Haar

transform with adjustments for unequal distance between two successive observations.

The coefficients from this transform are used as the input for a second lifting step

that is an unbalanced version of a biorthogonal Spline wavelet. Thus the degree of the

spline functions determines the smoothness of the overall basis. More details about

such constructions can be found in Delouille, (2002). The wavelet transforms built

in this manner are not orthogonal as in the previous examples. This does not overly

affect the posterior inference or the performance of our model as we ensure near

orthogonality of transform within the lifting scheme. The posterior distributions

as calculated in the appendix can be easily extended to the case where X is not

orthogonal.

2. APP (amyloid beta-precursor protein) gene

The APP gene has 17 exons and is known to have three splice variants in that it en-

codes a cell surface receptor and a transmembrane precursor protein that is cleaved

by enzymes to form a number of peptides. Some of these peptides promote transcrip-

tional activation, while others form the protein basis of the amyloid plaques found in

the brains of patients with Alzheimer disease. Splicing abberations in this gene have

been implicated in autosomal dominant Alzheimer disease and various tumors in the

nerveous system such as Neuroblastoma, Neuroglioma etc.

The tissuewise clustering of the expression profiles for APP helps us to corrob-
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orate the usefulness of our method. The analysis reveals three clusters implying

different protein products in the brain and some tumorous tissues. Figure 17 plots all

the curves for the APP genes observed in 54 tissues and the three clusters are plotted

in Figure 18 with a clustered heatmap in Figure 19.

The first cluster contains all the tumorous tissues and confirms the previous

findings that some APP products may be directly or indirectly involved in tumors.

The second cluster contains a large number of tissues from different parts of the body

and we believe that this corrresponds to the dominant transcriptional promoter or

cell surface receptor proteins. More importantly, a distinct splice form, in the form

of the third cluster, is observed in tissues from different regions for the brain. This

suggests that APP has an important function in the brain and abnormalities in the

protein product due to splicing aberration or other somatic mutation may promote

Alzheimer’s disease.

3. DCC (deleted in colon cancer) gene

Loss of heterozygosity (LOH) on chromosome 18 is frequently observed in nearly

70% cases of Colon carcinoma. This deleted stretch of the DNA encompasses a

tumor suppressor gene known as the deleted in Colon cancer (DCC) gene. DCC is

expressed well in most normal tissues, including colon-rectal region. Netrin is protein

product of DCC that accurately guides the developing axons for the establishment of

neuronal connections. Additionally, somatic mutations in within the DCC have been

observed and several splicing aberrations have been implicated in colorectal cancers.

The DCC gene has 29 exons of which junctions for 17 consecutive exons were probed

in the Rosetta dataset. Due to missing data and saturation issues we only analyzed

the data for 39 of the 54 tissues.

Tissuewise clustering of the expression profiles for DCC confirms two separate
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Fig. 17. All the expression profiles for APP gene from 54 tissues.
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Fig. 18. Three estimated clusters for APP gene. a. Cluster 1 with 4 tumorous tissues,

b. Cluster 2 with 39 tissues corresponding to the dominant form and c.

Cluster 3 with 11 brain tissues.
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Fig. 19. Clustered heatmap of the three clusters shown in the previous figure.
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splice forms in the nervous system and the colo-rectal region. Figure 20 plots all

the curves for the DCC genes observed in 39 tissues, the four clusters are plotted in

Figure 21 and a clustered heatmap of the clusters is shown in Figure 22.

The first cluster consists of several brain tissues comprise and conforms with the

fact that DCC produces Netrin in the nervous system. The second cluster contains

a large number of tissues from different parts of the body and may correspond to

cumulative effect of different expression patterns of DCC. The third cluster is the

most important cluster and it contains four tissues from the colo-rectal region namely,

Colon, Ileum, Jejunum and cancerous colon-rectal mucosa. This strongly suggests a

different role of the DCC in the colorectum. In addition, a comparison of the four

curves within this cluster shows a reduced expression level in the first exon junctions.

Therefore, a splicing aberration in the first two exons can be implicated in this case

of colorectal cancer. The fourth estimated cluster is probably an outlier as it has a

single tissue from the Testis with a very different expression pattern from the rest of

the tissues.

4. Joint modelling of BCR-ABL

Leukemia is the uncontrolled proliferation of white blood cells and one of its common

form is chronic myelogenous leukemia (CML). In many cases of CML, the leukemia

cells share a chromosome abnormality not found in any nonleukemic white blood

cells. This abnormality is a reciprocal translocation between one chromosome 9 and

one chromosome 22 designated as t(9;22). It results in one chromosome 9 longer than

normal and one chromosome 22 shorter than normal (known as the Philadelphia

chromosome). The DNA removed from chromosome 9 contains most of the proto-

oncogene ABL. The break in chromosome 22 occurs in the middle of the BCR gene.

The fused ABL-BCR gene is a part of the Philadelphia chromosome and produces a
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Fig. 20. Expression profiles for the DCC gene from 32 tissues.
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Fig. 21. Four estimated clusters for DCC gene. a. Cluster 1 has 10 brain tissues, b.

Cluster 2 has 23 tissues from all over the body, c. Cluster 3 consists of tissues

from the colon, ileum, jejunum and colorectal mucosa (plotted in purple) and

d. Cluster 4 has a single tissue from the Testis.
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Fig. 22. Clustered heatmap of the four clusters shown in the previous figure.
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abnormal protein that regulates or activates many cell processes that normally are

turned on only when the cell is stimulated by a growth factor. This unrestrained

activation leads ultimately to CML.

In this example, we want to determine whether the abnormal translocation can

be identified by cluster. To this end we model the expression profiles for ABL and

BCR jointly by stacking them one on top of another.

Tissuewise clustering of the combined expression profiles for ABL-BCR confirms

an abnormality in a CML tissue that can be identified with the reciprocal transloca-

tion described above. Figure 23 plots together all the curves for the ABL-BCR genes

as observed in 54 tissues, the four estimated clusters are plotted in Figure 24 and a

clustered heatmap of the clusters is shown in Figure 25.

The first two clusters contain a large number of tissues from different parts of

the body and may correspond to cumulative effect of different expression patterns of

DCC. The second cluster has the CML tissue and the comparison with the expression

profiles observed in other tissues reveals a very different pattern within BCR. The

fourth cluster is probably an outlier as it has a single tissue from the bone marrkow

with a very different expression pattern from the rest of the tissues.

F. Discussion

In this chapter, we report the tissuewise clustering of roughly 10,000 multi-exon genes.

The results has been used to identify a number of splice forms that appear to be unique

to cancer that can be future therapeutic targets. It also allows us to ascertain local

intervention points for drugs. This method like all other in-silico methods, can help

biologists by providing a hypothesis that must be verified later in the laboratory.

In future, we would like to improve this model to account for interactions or
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Fig. 23. Combined expression profiles for the ABL-BCR genes from 54 tissues.
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Fig. 24. Four estimated clusters from the joint modelling of ABL-BCR. a. Cluster 1

has tissues from all over the body, b. Cluster 2 has 13 tissues from all over

the body, c. Cluster 3 consists of a CML tissue and d. Cluster 4 has a single

tissue from the bone marrow.
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Fig. 25. Clustered heatmap of the four clusters shown in the previous figure.
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dependencies between genes. This might enable us to study the cumulative effect of

genes that are part of important genetic pathways.
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CHAPTER III

BAYESIAN APPROACHES TO GRAPH PARTITIONING

A. Introduction

Graph cutting, partitioning or clustering as it is variously known is the decompo-

sition of a graph into roughly equal sized pieces while minimizing the number of

edges between those pieces (Chung, 1997). The model based graph partitioning ap-

proach proposed in this chapter draws motivation from the kernel k-means algorithm

(Scholkopf et al., 1998) that maps data points to a high-dimensional space in order

to delineate non-linearly separable clusters and that has been shown to be mathe-

matically equivalent to certain graph cutting algorithms (Dhillon et al., 2004). This

connection allows graph cutting to be performed with the simplicity of the k-means

algorithm. Nevertheless, these graph cutting approaches are subject to the drawbacks

of the classical k-means algorithm such as the specification of the number of clusters.

In this work, we show that the spectral graph cutting techniques can be related

to certain nonparameteric Bayesian clustering methods which have the ability to

learn the number of clusters from data. The proposed methodology enables the

simultaneous estimation of the subgraphs as well as their number from the data.

In addition, the set of all possible decompositions of the graph can be efficiently

explored via MCMC. Optimal graph cuts in graph theory are obtained by minimizing

intuitively defined loss functions. This optimization, however, is not straightforward

due to the combinatorial nature of the problem and spectral graph theory is employed

for approximate solutions.

In addition, the problem of graphically connecting a set of data points can be

motivated within the statistically framework of graphical models. Let G = (V,E)
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be an undirected graph describing the association between the vertices in vertex set

V through edges in the edge set E. A graphical model is a family of probability

distributions which is Markov in G (Lauritzen, 1996). The idea is to be able to fit a

high-dimensional distribution in sets of univariate conditional distributions depicting

patterns of association in a set or clique of variables. The vertex set V may consist

of a vector of random variables, Y and the absence of an edge (i, j) indicates that Yi

and Yj are conditionally independent. In other words, Yi and Yj are independent

conditional on the other entries in Y whenever i and j are not neighbors under G.

When P (G) = N(µ,Σ) is a multivariate distribution with Σ > 0, we have a

Gaussian graphical model. The covariance structure Σ is often unknown and there is

a need for statistical methods for selecting the models that best fit the data. Bayesian

approaches are well suited for graphical modelling as they provide posterior proba-

bilities for comparing different graphical models.

In the graphical model literature, it is common to model the precision matrix

Ω = Σ−1 rather than Σ itself as it allows better interpretation. For instance, ωi,j = 0

implies that i and j are conditionally independent or the edge (i, j) is absent in the

graph.

Prior specifications in Bayesian methodology can be used to model desired graph-

ical structures. It is common to assume decomposable graphs that are either complete

or have a decomposition - there exists subsets (A,B) ⊂ V such that 1. A ∪ B = V ,

2. A ∩B is complete and 3. A ∩B separates A from B. A non-decomposable graph

is a graph with no decomposition.

For decomposable graphs, hyper-Markov priors were proposed by Dawid and

Lauritzen, (1993) that essentially reproduce the factorization of likelihood at the

a priori level. This is computationally attractive as it allows for inferences to be

performed locally on a subset of vertices or a clique. However, the specification
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of hyper-Markov laws involves many hyperparameters and the constraints can be

restrictive for modelling large graphs.

For complete decomposable graphs Ω > 0, we can work with so-called global

priors like Wishart that have positive definite realizations. Global priors are easily

incorporated and are computationally attractive. For non-complete decomposable

graphs Ω is constrained and prior elicitation is not straightforward. To this end,

inference for non-decomposable graphs is typically complicated and has to rely heavily

on numerical integration methods. Moreover, non-decomposable graphs are more

important in theory than in practical applications.

We will work with the assumption that the graph G is complete with an edge

between every pair of vertices. Then the precision matrix L is unconstrained and can

be specified in a straightforward manner by a conjugate Wishart prior distribution.

The Wishart distribution, Wn(A,m) has n×n positive definite realizations when the

degrees of freedom parameter m > n and the average matriculate value is mA.

The rest of the work is organized as follows. In Section B, we review existing

spectral techniques for graph cutting and the connection with kernel k-means clus-

tering. In Section C, we describe the modelling of the precision matrix and the prior

specification of parameters associated with the vertices by nonparametric Dirichlet

process priors for clustering. The posterior inference of all the parameters is detailed

in Section D. Therein, we also derive a loss function that has similarities with the

normalized ratio loss function in graph theory. The empirical minimizaton of associ-

ated Bayes risk via MCMC is addressed in Section E. Finally in Section F, we discuss

the simulations and the results from the analysis of various datasets.
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B. Graph Cutting

Let us define an undirected graph G = (V,E) where V = 1, . . . , n is a set of vertices

and E is a set of undirected edges. Two vertices are connected by an edge if there

is an association. Every element in E is assigned a non-zero weight as a measure of

association.

Define the adjacency matrix A with entries ai,j > 0, if there is an edge (i, j) ∈ E

and the Laplacian L that has entries,

li,j =































−ai,j (i, j) ∈ E,

wi i = j,

0 otherwise,

where the wi is the degree of vertex i equal to
∑

j ai,j and W = diag(w1, . . . , wn). Note

that Laplacian L, which can be written as L = W − A, has the following properties:

1. L is a symmetric positive semi-definite matrix. Thus all eigenvalues of L are

real and non-negative, and L has a full set of n real and orthogonal eigenvectors.

2. Let 1n = (1, . . . , 1)′, then L1n = 0. Thus 0 is an eigenvalue of L with 1n as the

eigenvector.

3. If the graph G has k connected components then L has k eigenvalues that are

zero.

4. For any vector x, x′Lx =
∑

i,j∈E ai,j(xi − xj)
2.

The last property follows from property 2 and is useful for defining loss functions for

graph cutting. Note that Property 4 holds even if some weights ai,j are negative.

The matrices A or L are important because their spectral decomposition tells us

a lot about the graph G. For example, the second-to-smallest eigenvalue of L, λ2 is
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Fig. 26. Spectral decomposition of graphs. a. The popular airfoil graph, b. The

graph drawn using the first two eigenvectors of the Laplacian of the graph as

the x and y coordinates.

zero iff the graph G is disconnected (Fielder, 1975). The popular airfoil graph and

the graph constructed from the first two eigenvectors of the Laplacian is shown in

Figure 26. Roughly speaking, the dense areas in the new graph represent vertices

that are highly connected with a significant interactions. These properties are used

to derive graph cutting algorithms briefed below.

Graph cutting is a well-studied area in graph theory (Chung, 1997) and is com-

monly addressed as a constrained optimization problem where one tries to partition a

graph into roughly equally sized pieces while minimizing the number of edges between

those pieces. For this a simple cost function is given by the cut-ratio φ that is defined

as follows. If S, Sc is a partition of V or the vertices, vol(S, Sc) =
∑

i∈S,j 6∈Sc ai,j is

the sum of all edges between the two sets, and vol(S) =
∑

i∈S wi then the cut-ratio

φ(S) = vol(S, Sc)/min{vol(S), vol(Sc)}. The cut of minimum ratio is given by the

set S minimizing φ(S) and its quality is called the conductance of the graph,

φ(G) = min
S⊂V

φ(S). (3.1)
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An alternate way is to approximate the cut-ratio by minimizing

φx = x′Lx/x′Wx (3.2)

where L is the Laplacian and W is the diagonal degree matrix. Applying Property

4 of the Laplacian, it is clear that the ratio represents a trade-off between the sum

of squares of the lengths of the edges in the numerator and a measure of vertex

distance from the origin weighted by the degree of each vertex in the denominator.

The weighted quadratic term in the denominator penalizes unbalanced partitions.

It is interesting to note the resemblence with the loss function in Fisher’s linear

discriminant analysis.

The ratio φx is minimized by the solution to the generalized eigenvalue problem

Lx = λWx, which are the eigenvectors of W−1/2LW−1/2. The smallest eigenvalue λ1

is zero with the eigenvector 1n. We are interested in the second smallest eigenvalue

λ2 = minx⊥1n φx as it provides a good approximation of the conductance of the graph

(3.1). In particular, λ2 = minx⊥1n φx can be bound (Lovascz, 1996) by Cheeger’s

Theorem,

φ(G)

8

2

≤ λ2 ≤ φ(G).

One can also work with a normalized Laplacian L = W−1/2LW−1/2 and the normal-

ized ratio cut minimizes

φx = x′Lx/x′x. (3.3)

At this point there are two possible strategies to graph cutting. In a bi-partition

or binary classification problem, φx is minimized by x constrained to lie in the space

of binary indicator vectors depicting all possible class memberships of the n vertices.

Then the solution vector provides the best binary classification of the vertices in the

graph with respect to the above defined criterion (Chung, 1997). This procedure
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Fig. 27. Binary cutting of a graph. a. An adjacency matrix showing two dense

clusters of vertices with sparse connections, b. The second eigenvector of the

adjacency matrix clearly defines the boundary between the two classes.

can be extended to a multi-classification problem by seeking solutions of multi-class

indicator vectors. To see why this is an effective way to cut a graph, we show an

example adjacency matrix from a graph and its second eigenvector in Figure 27. The

eigenvector clearly defines the boundary between the two dense clusters with sparse

connections.

Alternatively, each row of the eigenvector(s) corresponding to λ2 (and λ3, λ4, . . .)

are linked with the vertices and then clustered using a suitable algorithm (Dhillon,

2001).

1. The k-means connection

In a recent paper (Dhillon et al., 2004) in maching learning, it was shown that nor-

malized ratio-based graph cutting (3.3) is equivalent to a kernel k -means clustering.

For particular choices of the kernel and by rewriting the cost function of the ker-

nel k-means algorithm as a trace maximization problem it is possible to derive this

equivalence.

We provide a shorter version of the proof given in Dhillon et al., (2004). Consider
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a p × n matrix Y = (Y1, . . . ,Yn) of p × 1 response vectors. Each data point or

column of Y can be linked with a vertex in a graph. Assume a linear functional

ϕ : Y → YK for the kernel k-means algorithm that lineary maps each 1 × n row

of Y. The corresponding kernel is given by ϕ(Y)′ϕ(Y) = K ′Y′YK. Define the

cluster configuration Cn with dn set entries corresponding to the number clusters such

that Cn(i) points to all indices in the ith cluster. Then the kernel k-means algorithm

minimizes the loss function:

L(Cn) =
sn
∑

i=1

∑

j∈Cn(i)

‖ϕ(Yj) − µi‖
2, (3.4)

where µi ≡ 1
ni

∑

j∈Cn(i) ϕ(Yi) is the center or location of the ith cluster which has

ni = |Cn(i)| entries. The equivalence with the normalized ratio cut (3.3) is proved

next.

Theorem 2 Let Y be a p × n matrix of observations. The objective loss function

(3.4) for the kernel k-means algorithm with a kernel K ′Y′YK is the equivalent to the

normalized ratio cut loss function (3.3).

Proof: Assume a configuration Cn having sn clusters and define Ȳi = (Yj : j ∈ Cn(i))

as the p× ni matrix of all ni observables in the ith cluster.

The loss function (3.4) can be rewritten as

L(Cn) =
dn
∑

i=1

∑

j∈Cn(i)

‖ϕ(Yj) − ϕ(Ȳi)
1

ni

1ni
‖2

=
dn
∑

i=1

tr{(ϕ(Ȳi) − ϕ(Ȳi)Ji)
′(ϕ(Ȳi) − ϕ(Ȳi)Ji)}

= tr{(ϕ(Y) − ϕ(Y)J)′(ϕ(Y) − ϕ(Y)J)}

= tr{YKK ′Y′} − tr{JK ′Y′YKJ}

where Jk = 1
nk

1nk
1′

nk
, J = diag(J1, . . . ,Jdn) and the last step in the derivation follows
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from the idempotency of J and the invariance of trace to the order of multiplication,

i.e. tr(AB) = tr(BA).

In this form, the best clustering configuration is given by

Cn = argminCn
L(Cn) = argmaxCn

tr{JK ′Y′YKJ}. (3.5)

This is equivalent to the normalized ratio cut (3.3) objective when the kernelK ′Y′YK

is set to W−1/2LW−1/2 mentioned in Section 1.1.

The additive loss function of the k-means algorithm is in fact the sum of the

within-cluster variation over all the clusters in the kernel-transformed space. In the

next section, we will develop a nonparametric Bayes model for clustering based on the

Dirichlet Process (Ferguson, 1973). For a given clustering sampled from this model,

we will show that a loss function similar to (3.5) arises naturally, when the likelihood

is a multivariate normal distribution. The nonparametric modelling allows us to

consider the marginal Bayes risk over all possible number of clustering combinations

of different cluster sizes.

C. Graphical Partitioning Model

Let Y = (Y1, ...,Yn) be a set of p× 1 observations vectors that follows a probability

distribution P . We associate each vertex of the graph G with an observation in Y and

assume that P is Markov over G. In particular, P ∈ P where P denotes the family

of multivariate centered Gaussian distributions N(0, Ip,Ω
−1) with respect to G and

Ω is the precision matrix. Due to the Markov property, a missing edge between any

two vertices i and j is equivalent to setting ωi,j = 0 that in turn implies conditional

independence, Yi ⊥ Yj|Y−(i,j).

We want to determine the graphs that best explain the model uncertainty given a
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set of observations Y. The likelihood of the Gaussian graphical model is then written

as

Y|G ∼ N(0, Ip,Ω
−1) (3.6)

=
|Ω|p/2

(2π)np/2
exp

{

−
1

2
tr (Y′YΩ)

}

Gaussian graphical models are similar to the covariance selection models (Wong et

al., 2003) where the objective is to try and identify the zero elements in the precision

matrix. Zeroes in the precision matrix imply a non-complete graph for which Ω is

not necessary positive definite. For the problem of graph cutting, however, that is

approached as a clustering problem it suffices to use assume a complete graph for

which Ω is easily specified by a prior distribution on the space of all n × n positive

definite matrices.

The precision matrix can be associated with a complete undirected graph by writ-

ing down the implied conditional distributions from the joint Gaussian distribution

using standard distribution theory. We have

Yi|Y−i ∼ N



−ω−1
i,i

∑

j 6=i

ωi,jYj, ω
−1
i,i



 . (3.7)

Switching the sign the off-diagonal terms in equation (3.7) can be identified as the

edge weights ai,j of an undirected graph.

In general, the set of conditional distributions {Yi|Y−i},∀i does not guarantee a

joint distribution except in the special case of autoregressive models. The conditional

autoregressive or CAR model (Besag, 1974) fits a high-dimensional distribution in

sets of univariate conditional distributions depicting patterns of association in a set

of variables. In other words, there is a consistency between the local and the global

properties of the graph that is useful for practical interpretation. However, this is
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accomplished at the cost of a positive semi-definite Ω and a degenerate joint distri-

bution, which poses significant problems for flexible hierarchical Bayesian modelling.

A well-defined multivariate normal model, such as (3.14) can always be aug-

mented (with an extra missing variable) into a CAR model. More specifically, we can

work with a linear combination of Y that has a precision matrix Ω∗ = UΩU′ where

U = [In| − 1n]. If U+ satisfies U+U = In, then the linear combination is given by

Y∗ = YU+′ and has a distribution proportional to

exp
(

−
1

2σ2
tr(Y∗′Y∗Ω∗)

)

. (3.8)

Note that as n→ ∞, the linear combination Y∗ = YU+′ → (Y,Yn+1) at the rate of

O(n−1). Thus for large values of n, we can use this distribution to graphically model

an augmented collection of responses (Y,Yn+1). As before the joint distribution

can be factored into conditional regressions of the form (3.7) with the contribution

of an extra response Yn+1 or an extra vertex in the graph which has little physical

interpretation.

D. Prior Elicitation

We define a m× n matrix of random variables β = (β1, . . . , βn) following the distri-

bution, N(θ, σ2Im, In), where θ = (θ1, . . . , θn) is a matrix of cluster locations. For

example, if β1, β3, β4 belong to the same cluster then θ1 = θ3 = θ4. When m ≥ n this

implies a noncentral Wishart distribution for Ω = β′β,

Ω ∼ W ′
n(σ2In,Ψ,m),m ≥ n (3.9)

=
|Ω|(m−n−1)/2

(2σ2)mp/2Γ(m/2)
etr

{

−
1

2σ2
Ω −

1

2
Ψ
}

F 1
0

(

ν

2
,

1

4σ2
ΨΩ

)

(3.10)
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where etr(·) = exp(tr(·)), F 1
0 is the Bessel function, Ψ = σ−2θ′θ is the non-centrality

parameter and m is the degrees of freedom. We will show later that this specification

allows us to approach graph cutting as a clustering problem.

In the special case, when the cluster locations θ = (θ1, . . . , θn) are known and

when m is large, we can approimate implied non-central Wishart distribution for Ω by

its central counterpart. More precisely, the distribution (3.10) can be approximated

upto the order O(m−2) by the central Wishart distribution (Gupta and Nagar, 1999),

Wn

(

σ2In +
1

m
θ′θ,m

)

, (3.11)

which is conjugate to the normal likelihood and can be used for fitting Ω directly.

When unknown, the location parameters θ = (θ1, . . . , θn) are specified by Dirich-

let process priors for clustering. The Dirichlet Process (DP) is a non-parametric two-

parameter conjugate family in the sense that there is a positive probability that a

sample distribution will approximate arbitrarily well any distribution that is domi-

nated by the base distribution Hφ. DPs are also a.s. discrete and comprise a certain

partitioning of the parameter space. These properties allow us to model clustering

configurations of a set of variables by DP priors without fixing the number of clusters

beforehand. The reader is referred to Section C of Chapter I for more details about

Dirichlet process priors and their applications in clustering.

In a sequence of draws θ1, θ2, . . . from the Polya urn representation of the Dirichlet

process (Blackwell and MacQueen, 1973), the nth sample is either distinct with a

small probability α/(α+n−1) or is tied to previous sample with positive probability

to form a cluster. Let θ−n = {θ1, . . . , θn} − {θn} and dn−1= number of preexisting

clusters of tied samples in θ−n at the nth draw, then we have

f(θn|θ−n, α, φ) =
α

α+ n− 1
Hφ +

dn−1
∑

j=1

ni

α+ n− 1
δθ̄j

(3.12)
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where Hφ is the base prior, and the jth cluster has nj tied samples that are commonly

expressed by θ̄j subject to
∑dn−1

j=1 nj = n− 1. After n sequential draws from the Polya

urn, there are several ties in the sampled values and we denote the set of distinct

samples (or in this case, the cluster centers) by {θ̄1, . . . , θ̄dn}, where dn is essentially

the number of clusters.

Assuming an inverse gamma prior distribution is assumed for the variance pa-

rameter, σ2 ∼ IG(u, v). The developments above can be summarized in the Bayesian

hierarchical model,

Y|Ω ∼ N(0, Ip,Ω
−1), (3.13)

Ω|θ, σ2 ∼ W (σ2In + θ′θ/m,m), (3.14)

≈ W ′(σ2In, σ
−2θ′θ,m) (3.15)

Ω = β′β

. . . . . . . . .

β|θ, σ2 ∼ N(θ, σ2Im, In) (3.16)

θ = (θ1, θ2, . . . , θn)|σ2, g ∼ F ∼ D(α,N(0, gσ2Im)), (3.17)

σ2 ∼ IG(u, v), (3.18)

g ∼ IG(r, s), (3.19)

α ∼ Gamma(d0, η0), (3.20)

where φ = g.
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E. Posterior Inference

The posterior conditional distributions of all the parameters are in exact form due to

the conjugate prior specifications. The posterior inference of the precision parameter

α remains the same as Section D.3 in Chapter I and is not discussed here.

1. Conditional distributions for the precision matrix

When the cluster locations are known, the posterior distribution of Ω is calculated

by combining the approximate Wishart prior distribution W (σ2In + θ′θ/m,m) with

the likelihood (3.14). This gives

Ω|Y,θ, σ2 ∼ W
(

tr(Y′Y) + σ2In + θ′θ/m,m+ p
)

. (3.21)

However, when the cluster locations are unknown, we sample first sample β from its

posterior normal distribution and then calculate Ω as β′β. This helps us to avoid

problems of uniqueness in calculating β from Ω. The posterior distribution for β with

respect to the multivariate normal prior distribution N(θ, σ2Im, In). The posterior

distribution is given by

β|Y,θ, σ2 ∼ N
(

m(mΣ̂ + σ−2In)−1Σ̂θ, (mΣ̂ + σ−2In)−1, Im

)

(3.22)

with Σ̂ = Y′Y/m. Note that the posterior distributional form is exact and does not

involve any approximations.

2. Conditional distributions for clustering

To update the unknown cluster locations θi, we can picture (3.17) as the likelihood

function for θ and calculate the posterior distribution with respect to the conjugate
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Polya urn prior (3.12). We get a similar looking posterior,

θi|σ
2,θ−i,β, g ∝ qi,0H

∗
φ,i +

di−1
∑

j 6=i

qi,jδθ̄j
(3.23)

where

H∗
φ,i = N(θ∗i , g

∗
i σ

2Im) with (3.24)

g∗i = (g−1 + σ−2)−1 and θ∗i = g∗i βi. (3.25)

The weights qi,· follow from the likelihood and marginals in the Normal-Inverse

Gamma family (Escobar and West, 1995) and determine the posterior inclination

towards new distinct samples. We have qi,j ∝ njφ(β − θ̄j, σ
2Im) as the conditional

distribution of θi given the jth cluster parameters and qi,0 ∝ αφ{βi, σ
2(1 + g)Im} is

the marginal distribution.

3. Posterior sampling of the scaling parameter

The scaling parameters g determines the posterior shrinkage or smoothing of the loca-

tion parameters θi over all the vertices of the graph. Small values of g are associated

with higher smoothing and lower number of clusters in the model.

To obtain the posterior distribution of the scaling parameter g, we use the condi-

tional independence of the cluster locations. The inverse Gamma prior for the scaling

parameters, g ∼ IG(r, s), when combined with joint prior distribution of the distinct

cluster locations gives us

g|dn, σ
2, {θ̄j}

dn
j=1 ∼ IG(r∗, s∗), (3.26)

with r∗ = dnm+ r and s∗ =
∑dn

j=1 ||θ̄j||
2 + s.
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4. Posterior sampling of the dispersion parameter

The posterior distribution of σ2 given the number of clusters is calculated by exploiting

the conditional independence of the distinct cluster locations (Korwar and Hollander,

1973), that is θ̄j|Cn ∼iid N(0, gσ2Im). Then, the posterior distribution is

σ2|β, g, Cn ∼ IG







u+
dn
∑

i=1





∑

j∈Cn(i)

β′
jβj − µ∗′

i (G∗
i )

−1µ∗
i



 , v +mn







where µ∗
i = G∗

i

∑

j∈Cn(i)

βj and G∗
i = (g−1 + ni)

−1Im.

It is interesting to note the resemblence of

E(σ2|β, g, Cn) =
u+

∑dn
i=1

(

∑

j∈Cn(i) β
′
jβj − µ∗′

i (G∗
i )

−1µ∗
i

)

v +mn− 2

with the k-means cost function (3.5). This suggests that the posterior mean of σ2

can be used as a loss function for graph partitioning. In fact, given the number of

clusters and the ordering of vertices, the minimization of the posterior mean of σ2

in the present model has some similarities with the minimization of the normalized

ratio cut loss function (3.3) of an undirected graph that has an adjacency matrix,

A = −ωi,jI(i 6= j) and weight matrix, W = diag(ω−1
i+ ).

To see this, first note that by conditional independence, we have θ̄j|Cn ∼iid

N(0, gσ2Im). Define a p × dn matrix θ̄ that contains only the distinct elements in

θ and a dn × n indicator matrix Tn satisfying θ̄Tn = θ so that Tn is essentially a

function of the present clustering configuration Cn. Then the likelihood (3.17) can be

rewritten as

β|θ̄, σ2 ∼ N(θ̄Tn, σ
2Im, In), or

β|σ2 ∼ N(0, σ2Im, (In + gT′
nTn)),

where the last step follows by averaging out θ̄. Combining this marginal distribution
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with the inverse gamma prior (3.19) for σ2 gives the posterior distribution

σ2|β, g, Cn ∼ IG(u+ tr(Ω(In + gT′
nTn)−1), v +mn), (3.27)

where in the last step Ω is used instead of β′β.

F. Loss Functions for Graph Partitioning

Define the matrix x = (In + gT′
nTn)−1/2 that is a function of present clustering

configuration Cn. Identifying Ω as the kernel, it is clear that the posterior mean of

σ2,

E(σ2|β, g, Cn) ∝ tr (x′Ωx) (3.28)

has a quadratic form similar to the loss functions (3.5) or (3.3). The only problem is

that now the kernel Ω > 0 and does not satisfy Ω1 6= 0.

Like before we define an adjacency matrix A such that ai,j = −ωi,jI(i 6= j), then

for any real symmetric Ω, we have the identity

tr (x′Ωx) =
∑

i

ωi+||xi||
2 +

∑

i<j

ai,j||xi − xj||
2, (3.29)

with ωi+ =
∑

j ωi,j. The quadratic form is minimized by simultaneously minimizing

∑

i<j ai,j||xi − xj||
2 and

∑

i ωi+||xi||
2. Equivalently, this represents the minimization

of the normalized ratio cut of a graph that has A as the adjacency matrix and W =

diag(ω−1
i+ ) as the weight matrix which has the inverse of the total variation associated

with any node as its diagonal elements. Regarding the inverse variation as a measure

of information, the minimization of the loss function (3.29) supports equal sized

partitions with respect to total information with each subgraph.

There is another important difference from the graphs used in spectral graph

theory. There the edge weights ai,j are always positive and this is an important
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assumption underlying graph cutting techniques based on the minimization of the

cut-ratio. The idea is that smaller cut-ratios are achieved when the vertices sharing

strong edges are assigned a common class label and vertices sharing weak edges are

assigned different class labels. In our model, the edge weights can be negative and

smaller cut-ratios may not pertain to any kind of graph cutting. However with minor

modifications the minimization of (3.28) can still lead to meaningful graph cuts as

explained below.

1. Interaction graph cuts

In a Bayesian approach, we generate MCMC samples of all the model parameters that

can be combined later to define new loss functions. We want to find sub-graphs that

contain highly interacting vertices irrespective of the sign of the correlation between

those points. A typical application is in gene pathway analysis where the objective is

to classifiy a set of genes as highly interacting even if they are negatively correlated.

We define a new loss function by assigning a negative sign to all off-diagonal

terms of Ω in (3.28). The associated posterior risk can be empirically minimized to

estimate the optimal graph cut.

2. Estimation of the graph cut

We define the optimal graph cut to minimize the posterior expectation of the quadratic

loss function described above with respect to the unknown paramters in the model.

The posterior risk can be evaluated by simple Monte Carlo averaging of the loss func-

tion with respect to g and Ω. Alternatively, we can first estimate Ω and calculate the

conditional posterior risk averaging with respect to g.

Ideally, the minimization of the posterior risk would entail the exploration of the

space of all possible clustering configurations. However, even for moderately large
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values of n this can be a computationally challenging task and we resort to a split-

merge risk minimization approach like Quintana and Iglesias (2003) which evaluates

the risk by sequentially splitting and merging different partitions in the direction that

minimizes it.

Algorithm for Risk Minimization

Let S ⊂ {1, . . . , n}. For any i ∈ S, let vol(i, S) =
∑

j∈S−{i} ai,j be the sum of all edge

wts for all edges to vertex i.

1. Set j = 1, C1
n(1) = {1, . . . , n}, C1

n = {C1
n(1)} & evaluate ℓ(C1

n).

2. Set j = 2. Find k∗1 = arg mini∈C1
n(1) vol(i, C1

n(1)).

3. Create new partition, C2
n = {C1

n(1) − {k1}, {k1}}.

4. If ℓ(C2
n) > ℓ(C1

n) set C∗
n = C1

n and Stop. Else, continue to next step.

5. Set j = j + 1. Find k∗j−1 = arg mini∈Cj−1
n (1) vol(i, Cj−1

n (1)).

6. Let Cj,1
n = {Cj−1

n (1)−{k∗j−1}, . . . , C
j−1
n (|Cj−1

n −1|), {k∗j−1}}, and for i = 2, . . . , |Cj−1
n |,

create partitions Cj,i
n = {Cj−1

n (1)−{k∗j−1}, . . . , C
j−1
n (i)∪{k∗j−1}, . . . , C

j−1
n (|Cj−1

n −

1|)}.

7. Set Cj
n = arg minCj,i

n
ℓ(Cj,i

n ).

8. If ℓ(Cj
n) > ℓ(Cj−1

n ) set C∗
n = Cj−1

n and Stop. Else, goto Step 5.

Note that the optimal cut may not be unique and there might be more than one set

of clusters that would minimize the posterior risk. Since the preceding algorithm is

greedy, we run the algorithm several times by randomly permuting the vertex set.

This allows us to uncover multiple solutions and compare between them using some

model choice criterion.
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G. Examples

The proposed methodology is applied to the problem of identifying significant sub-

graphs given a large graph of interactions for a collection of genes. We use two mi-

croarray datasets, namely a Melanoma dataset and a Gastrointestinal tumor dataset.

More information about significant subnetworks is available for the first dataset and

it is therefore used to check the performance of the proposed methodology. Following

Chapter I, all the reported results were averaged over 100 simulations with 10,000

iterations per simulation and a burn-in period of 1000.

1. Melanoma dataset

This dataset consists of gene expression profiles for roughly 7000 genes from 31

melanoma samples. Kim et al., (2002) used stochastic modelling to study the re-

lationships between genes and found WNT5A gene to play a central role in a signal

transduction pathway that might trigger an invasive phenotype in melanoma cells.

First, 51 well predicted or good predictor genes were selected. Finally, 10 genes

(shown in Table VII) that are known to play a significant role in the WNT5A driven

pathway, were analyzed.

For our study we use all 51 genes. We get two optimal interaction graph cuts

with four and five subgraphs (shown in the tables VIII and IX). In the first model,

eight out of ten genes shown in Table VII are part of the same subgraph. This group

of eight genes are split up into two subgraphs in the five subgraph model.

For visualization, we project the estimates of β by principal component analysis

onto a lower dimensional space. Figures 28 and 29 plot the subgraphs along the first

two principal components of estimated β.
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Table VII. Predictors for 10 genes likely to be a part of the WNT5A driven pathway.

Target Predictor 1 Predictor 2 Predictor 3

Pirin WNT5A STC2 HADHB

WNT5A pirin S100P RET-1

S100P WNT5A RET-1 Synuclein

RET-1 Pirin WNT5A S100P

MMP-3 S100P RET-1 HADHB

PHO-C MART-1 Synuclein STC2

MART-1 Pirin WNT5A MMP-3

HADHB Pirin WNT5A MMP-3

Synuclein Pirin S100P MART-1

STC2 Pirin WNT5A PHO-C

Table VIII. Model with four subgraphs for melanoma data.

Subgraph Genes

1 PHO-C, RET-1, ...

2 WNT5A, STC2, MMP3,Pirin, S100P, Synuclein,

MART-1, HADHB,...

3 ....

4 ....
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Table IX. Model with five subgraphs for melanoma data.

Subgraph Genes

1 PHO-C, RET-1, ...

2 WNT5A, STC2, MMP3, ...

3 Pirin, S100P, Synuclein, MART-1, HADHB,...

4 ....

5 ....
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Fig. 28. Plot of four subgraphs for melanoma data along first two principal compo-

nents of estimated beta.
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Fig. 29. Plot of five subgraphs for melanoma data along first two principal components

of estimated beta.
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2. Gastrointestinal cancer dataset

Nykter et al., (2006) recently analyze a microarray data to compare the gene ex-

pressions in two types of tumors namely, gastrointestinal stromal tumors (GIST) and

leiomyosarcomas (LMS) of the gastrointestinal tract. In the past, both have been

classified as gastrointestinal sarcomas but new evidence shows that GIST has an

unique phenotype characterized by the gain of function mutations in the cKIT gene

compared to what is observed in LMS.

Microarray experiments were performed on 44 tissues for GIST and 32 tissues

for LMS with the aim of finding differentially expressed genes between them. For

this Nykter et al., (2006) perform an unsupervised clustering the genes by visualizing

them into multiple dimensions.

For our analysis, the dimension of the dataset was reduced to 84 genes with

significant expression levels in both types of cancers. Following the estimation steps

mentioned above, the estimated number of clusters for the cancers under both loss

functions varies from 4 to 6.

To stress the relevance of a graph partitioning as compared to a simple clustering

algorithm we plot the graphs data in two ways. Figures 30 and 31 plots the subgraphs

generated by using the first two principal components of estimate β for GIST and LMS

respectively. In all these figures, the colors indicate different clusters or subgraphs

which were estimated using interaction loss function. It is evident that clustering

interactions can be very different from clustering based on simple distance metrics.

The four estimated subgraphs for GIST and LMS are shown in tables X and

XI. There are noticeable differences in the clustered genes between the two types

of cancer and a comparison of the subgraphs can be used for differential analysis of

genes.
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Fig. 30. Plot of four subgraphs for GIST data along first two principal components

of estimated beta.
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Fig. 31. Plot of four subgraphs for LMS data along first two principal components of

estimated beta.
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Table X. Four estimated clusters for GIST.

Clusters Gene Names

1 AMPD3, A24P84711, CHRDL2, CNN1, CSRP1, DKFZP586A0522,

FOXF1, KIAA0367, PDE1A, PPP2CB

2 ACTG2, AI919230, A23P59828, A24P383901, A32P172198,

A32P42989, BC038556, BF675806, C9orf65, CDC6, COL13A1,

DEPDC1, DOK6, DSCR8, ENST00000259676, FLJ10156, FLNA,

LMO2, LOC221810, MOXD1, NPTX2, PAGE-5, PBK, PLN, PRKCQ,

RANBP1, RBBP7, RNP, SCOTIN, SMS, SRP14, THC2212632,

TPD52L1, TPM1

3 ACTB, ADAMTSL3, BE826587, BUB1, CKLFSF8, CXCL12, H2AFZ,

HSPB3, KIT, MYLK, PCOLCE2, PHLDB2, PLAGL1, PPP1R12B,

RDBP, RIS1, TOP2A

4 AB014531, ACTA2, AGRP, ASNS, ATP5H, A23P158868,

A24P548966, CENPE, CTSL2, G22P1, GFOD1, KIAA0101, MDH1,

MYL6, PCSK1, RASL12, RODH, RPESP, SPINK5L3, THC2216061,

TNA, TNFSF14
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Table XI. Four estimated clusters for LMS.

Clusters Gene Names

1 AB014531, ACTA2, AGRP, ASNS, ATP5H, A23P158868,

A24P548966, CENPE, CKLFSF8, CNN1, G22P1, GFOD1, KIAA0101,

MDH1, PCSK1, PDE1A, PPP2CB, RASL12, RPESP, SPINK5L3,

THC2216061, TNA, TNFSF14

2 AMPD3, A24P84711, BC038556, BF675806, CHRDL2, CSRP1,

CTSL2, DKFZP586A0522, DSCR8, FLJ10156, FOXF1, KIAA0367,

LMO2, LOC221810, MOXD1, NPTX2, PAGE-5, THC2212632

3 ACTG2, ADAMTSL3, AI919230, A23P59828, A24P383901,

A32P172198, A32P42989, BE826587, C9orf65, COL13A1, DE-

PDC1, DOK6, ENST00000259676, FLNA, H2AFZ, PBK, PLAGL1,

PLN, PRKCQ, RANBP1, RNP, SCOTIN, SMS, SRP14, TOP2A,

TPM1

4 ACTB, BUB1, CDC6, CXCL12, HSPB3, KIT, MYL6, MYLK,

PCOLCE2, PHLDB2, PPP1R12B, RBBP7, RDBP, RIS1, RODH,

TPD52L1
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APPENDIX A

MARGINAL CALCULATIONS FOR THE HETEROSCEDASTIC MODEL

Recall Y(n×m) was used as the collection of n functional responses of length m.

For convenience, let YCn(i)(ni ×m) denote all the responses falling in the ith cluster

Cn(i). We can write the likelihood as f(Y|{β̄, σ̄}dn
i=1, Cn) =

∏dn
i=1 f(YCn(i)|β̄i, σ̄

2
i , Cn)

and the marginal as f(Y|γ,g, Cn) =
∏dn

i=1

∫

f(YCn(i)|β̄i, σ̄
2
i , Cn)f(β̄i, σ̄

2
i )dβ̄idσ̄

2
i . Sup-

pose the ith cluster has ni responses and (β̄i, σ̄
2
i ) ∼ NIG(0,V;u, v) a priori, the ith

(of the dn) integral inside the product can be written as

(u/2)v/2

|V|1/2(2π)(nim+p)/2Γ(v/2)

∫ 1

σ̄
(nim+v+p+2)/2
i

exp











−
1

2σ̄2
i

∑

i
′
∈C(i)

(Yi′ − Xβ̄i)
t(Yi′ − Xβ̄i)











× exp







−
tr(β̄

t
iV

−1β̄i) + u

2σ̄2
i







dβ̄idσ̄
2
i

=
|V∗

i |
1/2(u/2)v/2

|V|1/2(2π)(nim)/2Γ(v/2)

∫ e−u∗/2σ̄2
i

σ̄
(nim+v+2)/2
i

×
∫ 1

(2πσ̄i)p/2|V∗
i |

1/2
exp

{

(β̄i − µ∗
i )

tV∗−1
i (β̄i − µ∗

i )
}

dβ̄idσ̄
2
i

=
|V∗

i |
1/2(u/2)v/2

|V|1/2(2π)(nim)/2Γ(v/2)

∫ e−u∗/2σ̄2
i

σ̄
(nim+v+2)/2
i

dσ2
i ∝

Γ((v +mni)/2)

π(nim)/2

|V∗
i |

1/2

|V|1/2
(u∗i )

−(v+mni)/2

where V∗
i = (niI + V−1)−1, µ∗

i = V∗
i

∑

i′∈Cn(i) X
tYi′ and u∗i = u +

∑

i′∈Cn(i) Y
t
i′Yi′ −

µ∗t
i V∗−1

i µ∗
i . Multiplying over all dn clusters, we get

f(Y|γ,g, Cn) ∝
dn
∏

i=1

Γ((v +mni)/2)

πnim/2

|V∗
i |

1/2

|V|1/2
(u∗i )

−(v+mni)/2
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APPENDIX B

PROOF FOR BESOV PRIORS

This is an extension of the proof for Theorem 2 in Abramovich et al. (1998)

for the special case of finite Besov scales p, q < ∞. This condition ensures that the

complete metric parameter space is separable (for example, Blackwell & MacQueen,

1973). Also, we do not consider a third parameter ρ satisfying gj = c1j
ρ2−aj.

In univariate notation, the prior on the wavelet coefficients is f(βjk|gj, σ
2) =

N(0, σ2gjγjkI) and f(gj) ∼ IG(rj, sj) implies f(βjk|γjk, σ
2) = tsj

(0, rjγjkσ
2). We will

need the moments E||βj||
p
p =

∑

k Eβp
jk and E(||βj||

2p
p ) =

∑

k Eβ2p
jk +

∑

k 6=k′ E(βjkβjk′)p,

where βj are the coefficients at the jth resolution. If νp is the pth moment of N(0, 1),

then

Eβp
jk = E(E(βp

jk|gj)) = c2σ
p2−bjνpE(g

p/2
j ).

Thus, we have E||βj||
p
p = c2σ

p2(1−b)jνpE(g
p/2
j ) and E(||βj||

2p
p ) = c2σ

2p2(1−b)jν2pE(gp
j )+

c22σ
2p2j(2j − 1)2−2bjν2

2pE(gp
j ) ≤ c2σ

2pν2p2
(1−b)j(1 + c22

(1−b)jν2p)E(gp
j ).

Given these moments, by Chebyshev Inequality, we have for some ǫ > 0,

Pr(|2−(1−b)j||βj||
p
p − σpc2νpE(g

p/2
j )| > ǫ) ≤ ǫ22−2(1−b)jE(||βj||

2p
p )

and to apply the Borel-Cantelli Lemma

∑∞
j=0 Pr(|2−(1−b)j||βj||

p
p − σpc2νpE(g

p/2
j )| > ǫ) ≤ ǫ2

∑∞
j=0 2−2(1−b)jE(||βj||

2p
p ) <∞

Thus 2−(1−b)j||βj||
p
p → c2σ

pνpE(g
p/2
j ) almost surely.

Since this is true for j = 0, 1, . . ., the Besov sequence norm is finite if

∑∞
j=0 2j(ℓ+1/2−1/p)q2(1−b)jq/pE(g

p/2
j )q/p <∞
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The infinite sum on the right hand side is finite, if E(g
p/2
j )1/p ∝ 2−aj for all j = 0, 1, . . .,

where a satisfies (b− 1)/p+ (a− 1)/2 ≥ ℓ− 1/p.

To summarise, if for all j,

E(g
p/2
j )1/p =

rj
1/2

{(sj − 2)(sj − 4) . . . (sj − p)}1/p
= c12

−aj

where a satisfies (b−1)/p+(a−1)/2 ≥ ℓ−1/p, then the Besov correspondence holds.
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APPENDIX C

PROOF OF THEOREM 1

We consider the conditional posterior of (βn+1|Y,β−(n+1), σ
2) in the oversmoothed

model. The probability that βn+1 is not tied to any of the previous samples is

qn+1 =

∑n
i=1 φ(Yn+1|Xβi, σ

2Im)

αφ(Yn+1|0, σ2(Im + XVX′)) +
∑n

i=1 φ(Yn+1|Xβi, σ
2Im)

≤
1

1 + αR∗
n+1/n

where

R∗
n+1 =

φ(Yn+1|0, σ
2(Im + XVX′))

φ(Yn+1|Xβ̄, σ2Im)

and β̄ ∈ {β1, . . . ,βn} s.t. ||Yn+1 − Xβ̄||2 is minimum. Also, we can write

log ER∗
n+1 = log Eβ

φ(Yn+1|Xβ, σ2Im)

φ(Yn+1|Xβ̄, σ2Im)
≥ Eβ log

φ(Yn+1|Xβ, σ2Im)

φ(Yn+1|Xβ̄, σ2Im)

=
1

2σ2

{

||Yn+1 − Xβ̄||22 − ||Yn+1||
2
2 − σ2tr(V)

}

≡ logRn+1

Finally, writing qn+1 ≤ (1 + αRn/n)−1, we get

EYn+1
qn+1 ≤ E

(

1

1 + αRn/n

)

≈
1 + αERn/n

exp(2E log(1 + αRn/n))
.

Since Rn is small for large n, exp(2E log(1+αRn/n)) = exp(2αERn/n)−O(n−2) and

if Xβn+1 is the actual function underlying Yn+1, we have

EYn+1
qn+1 ≤

1 + αERn/n

exp(2αERn/n)
, ERn = e5||β̄||2

2
/8σ2

e−tr(V)/2 exp
{

−
1

2σ2
β̄

t
βn+1

}

(C.1)

since Eeu
t
x = exp(utµ+utΣu/2) for x ∼ N(µ,Σ). We assume that ||β̄||2,||βn+1||2<∞

almost surely by prior specification and let ρn+1 = β̄
t
βn+1 be the inner product of the

actual functional and the closest available functional. For large n the sample space
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becomes dense and we expect ρn+1 to increase. Then from (C.1)

∞
∑

n=1

EYn+1
qn+1 ≤

∞
∑

n=1

1 + C3

n
e−ρn+1/2σ2

e
C4
n

e−ρn+1/2σ2 <∞, C3, C4 > 0

if ρn+1 ≈ σ2 log(log n)1+δ for some δ > 0. By the Borell-Cantelli lemma, this means

that the new sample is almost surely distinct if the inner-product (or the ℓ2 distance)

is less (greater) than σ2O(log(log n)1+δ).
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