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ABSTRACT 

 
 

Bioinformatic Analysis of Chicken Chemokines, Chemokine Receptors, and Toll-Like 

Receptor 21. (August 2006) 

Jixin Wang, B.S., Tarim University of Agriculture and Reclamation; 

M.S., South China Agricultural University 

Co-Chairs of Advisory Committee: Dr. James J. Zhu 
                                                                 Dr. Luc R. Berghman 

                               
 

Chemokines triggered by Toll-like receptors (TLRs) are small chemoattractant 

proteins, which mainly regulate leukocyte trafficking in inflammatory reactions via 

interaction with G protein-coupled receptors.  Forty-two chemokines and 19 cognate 

receptors have been found in the human genome.  Prior to this study, only 11 chicken 

chemokines and 7 receptors had been reported. The objectives of this study were to 

identify systematically chicken chemokines and their cognate receptor genes in the 

chicken genome and to annotate these genes and ligand-receptor binding by a 

comparative genomics approach.  Twenty-three chemokine and 14 chemokine receptor 

genes were identified in the chicken genome. The number of coding exons in these genes 

and the syntenies are highly conserved between human, mouse, and chicken although the 

amino acid sequence homologies are generally low between mammalian and chicken 

chemokines. Chicken genes were named with the systematic nomenclature used in 

humans and mice based on phylogeny, synteny, and sequence homology. The 



 

 

iv 

independent nomenclature of chicken chemokines and chemokine receptors suggests that 

the chicken may have ligand-receptor pairings similar to mammals.    

The TLR family represents evolutionarily conserved components of the pattern-

recognizing receptors (PRRs) of the innate immune system that recognize specific 

pathogen-associated molecular patterns (PAMPs) through their ectodomains (ECDs). 

TLR’s ECDs contain 19 to 25 tandem copies of leucine-rich repeat (LRR) motifs. TLRs 

play important roles in the activation of pro-inflammatory cytokines, chemokines and 

modulation of antigen-specific adaptive immune responses. To date, nine TLRs have 

been reported in chicken, along with a non-functional TLR8. Two non-mammalian 

TLRs, TLR21 and TLR22, have been identified in pufferfish and zebrafish. The 

objectives of this study were to determine if there is the existence of chicken genes 

homologous to fish-specific TLRs, and if possible ligands of these receptors exist. After 

searching the chicken genome sequence and EST database, a novel chicken TLR 

homologous to fish TLR21 was identified. Phylogenetic analysis indicated that the 

identified chicken TLR is the orthologue of TLR21 in fish. Bioinformatic analysis of 

potential PAMP binding sites within LRR insertions showed that CpG DNA is the 

putative ligand of this receptor.   
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CHAPTER I 

 

INTRODUCTION 

 
 TOLL-LIKE RECEPTORS  

The immune response is broadly categorized into innate and adaptive immunity.  

The innate immune system is the first line of defense against infections and it can 

recognize a few highly conserved molecular structures produced by microbial pathogens 

such as bacterial lipopolysaccharides (LPS), lipoteichoic acid (LTA), and double-

stranded RNA (dsRNA) (Yamamoto 2004).  These conserved molecular structures are 

collectively referred to as pathogen-associated molecular patterns (PAMPs). The 

receptors of the innate immune system that recognize PAMPs and trigger various 

effector responses are called pattern-recognizing receptors (PRRs).  These receptors may 

be secreted or expressed on the surface of immune cells. The Toll-like receptors (TLRs) 

are a family of transmembrane proteins that serve as PRRs for many microbe-derived 

molecules and play important roles in the activation of pro-inflammatory cytokines and 

modulation of antigen-specific adaptive immune responses (Armant and Fenton 2002). 

 The Toll receptor was originally discovered in Drosophila and was identified as 

an important mediator of development. It was later found to play an essential role in 

antifungal responses (Anderson et al. 1985).  As the Toll receptor is involved in the  

_______________ 

This thesis follows the style of Immunogenetics. 
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invertebrate immune system, these receptors may be conserved in vertebrates as an 

ancient mechanism of innate immune recognition.  Subsequently, a family of toll like 

receptors was discovered in Drosophila, as well as in birds and mammals. Currently 10 

TLRs (hTLR 1 - hTLR10) have been found in the human genome and the mouse 

genome contains twelve genes that encode TLRs (mTLR1-9, 11, 12, 13). TLRs differ 

from each other in their ligand specificities, the cell type they activate, expression 

patterns and the signaling pathways they utilize.  The TLRs recognize distinct PAMPs 

(Table 1.1), including lipopolysaccharide (LPS) from gram negative bacteria(TLR4) , 

lipoprotein and peptidoglycan from gram positive bacteria (TLR1 , 2 and 6), double-

stranded RNA( TLR3), CpG- containing DNA(TLR9), flagellin(TLR5) and single-

stranded RNA(TLR7) (Armant and Fenton 2002; Takeda and Akira 2003; O'Neill 2004)  

. 
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Table 1.1  TLRs, their ligands, role in host defense and disease, co-receptors and 

adaptor usage. Abbreviations: IBD, inflammatory bowel disease; LPS, 

lipopolysaccharide; RA, rheumatoid arthritis; RSV, respiratory syncytial virus; SLE, 

systemic lupus erythrometosis; TLRs, Toll-like receptors; UTIs, urinary tract infections 

(O'Neill 2004) 

 

 

 

 Upon activation by ligand, TLRs induce the production of reactive oxygen and 

nitrogen intermediates. They also initiate adaptive immunity by activating antigen-

presenting cells (APC) by inducing the production of various pro-inflammatory 

cytokines and chemokines via nuclear factor- �B (NF-�B) or IFN regulatory factor (IRF) 

signal transduction pathways (Barton and Medzhitov 2002; Yamamoto et al. 2004) (Fig. 
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1.1). In addition, TLR signaling can regulate T-helper-1 (Th1) and T-helper-2(Th2) 

responses and stimulate the proliferation and maturation of dendritic cells to the draining 

lymph nodes in some species (Dabbagh and Lewis 2003; Akira et al. 2001). So signaling 

through TLRs leads to the immune induction of innate and adaptive immunity in host 

defense. 

 

 

Fig. 1.1  TLRs recognize molecular pattern associated with bacterial pathogens. 

triacylated lipoprotein for TLR1; peptidoglycan for TLR2; double-stranded RNA for 

TLR3; lipopolysaccharide (LPS) for TLR4; flagellin for TLR5; diacylated lipoprotein 

for TLR6; imidazoquinoline and its derivative R-848, for TLR7; and bacterial 

unmethylated CpG DNA for TLR9. MyD88 associates with the TIR domain of TLRs 

and transduces signals to induce immune responses (Yamamoto et al. 2004) 
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CHEMOKINES AND CHEMOKINE RECEPTORS 

Following ligand-TLR binding, many genes such as chemokines are induced in 

activated T cells, mononuclear phagocytic cells and endothelial cells (Lichtman and 

Abbas 1997). Chemokines are a group of small proteins that regulate leukocyte 

migration through interactions with G-protein coupled receptors in the immune system 

(Zlotnik and Yoshie 2000).   

Chemokines are divided into two major (CC and CXC) and two minor (XC and 

CX3C) subfamilies based on the four conserved cysteines at the N terminus of the 

polypeptide.  The first two cysteines in the two major subfamilies are either adjacent 

(CC) or separated by one amino acid (CXC).  The first two cysteines in the CX3C 

chemokines are separated by three amino acids, whereas the XC chemokines contain 

only two of the cysteines (Murphy 2003) (Fig. 1.2). 

 

 

 

Fig. 1.2  Structural classification of the chemokine family by signature cysteines. The 

number of members in each subclass is listed at the right of each structure. Underlines 

indicate gaps in the alignment; X, an amino acid other than cysteine; and dots, other 

amino acids. Spacing between cysteines is similar in all four groups. The N and C 

termini can vary in length (Murphy 2002) 
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 The CC chemokines can be further divided into two subcategories, MCPs 

(monocyte chemoattractant proteins) and MIPs (macrophage inflammatory proteins) 

based on their structural similarities (Van Coillie et al. 1999).  The members of these two 

CC subcategories specifically attract mononuclear cells but not neutrophils. The CXC 

chemokines can also be divided into two subfamilies, one with an ELR (a conserved 

Glu-Leu-Arg preceding the first cysteine) motif, which is angiogenic and attracts 

neutrophils, and the other without the ELR motif, whose members do not attract 

neutrophils (Laing and Secombes 2004).   

Chemokine genes are characterized by their chromosomal locations and similar 

gene structure.  Most human CC and CXC genes are organized in gene clusters in 

mammalian genomes, such as human Chromosomes 4 and 17, and mouse Chromosomes 

5 and 11 (Nomiyama et al. 2001).  The genes encoding the CC subfamily contain three 

exons, whereas the CXC chemokine genes contain four exons (Forssmann et al. 2001; 

Kaiser et al. 1999). The XC subfamily of chemokines contains two members in human 

but only one in mouse.  CX3CL1 is the only known member of the CX3C subfamily in 

human, mouse, rat, and monkey.  There are extensive conserved syntenies in the 

chromosomal regions containing chemokine genes between human and mouse.   
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In humans, many transcription factor binding sites (TFBS), including sites for 

NF-kB, hepatocyte NF-1, and AP-1, have been located in the promoter region of 

chemokine genes such as IL-8, MCP-1, and CCL5.  These TFBS play important roles in 

the transcriptional control of expression of chemokine genes (Martin et al. 1997; Rovin 

et al. 1995).    

Unlike chemokines, chemokine receptors share a higher degree of sequence 

identity within a species and between species.  They have characteristic seven alpha-

helix transmembrane domains, are between 340-370 amino acids long, and have up to 

80% amino acid identity (Olson and Ley, 2002; Horuk, 2001) (Fig. 1.3). They also share 

an acidic amino terminus, a conserved sequence in the second intracellular loop, and one 

cysteine in each extracellular domain (Murphy, 1996). Most receptors can bind several 

chemokines with high affinity but only from a single class (Horuk, 2001). Like 

chemokines, most chemokine receptors are clustered in a few chromosomal regions, 

such as human Chromosomes 2 and 3 (Onuffer and Horuk, 2002). Almost all the 

chemokine receptors have their amino acid sequences encoded in a single exon. 
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Fig. 1.3  A membrane topography of CCR1. The chemokine receptors had seven 

conserved transmembrane helices, four extracellular loops with a conserved cysteine, 

and a conserved DRYLAIVHA sequence in the second intracellular domain. CHO is 

potential N-linked glycosylation sites (Horuk, 2001) 
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The chicken represents a useful model organism to study disease resistance in the 

immune system. However, many chicken homologues of mammalian chemokines have 

not been been identified. 

Comparative genomics, which provides information based on the sequence 

conservation between organisms, is a powerful approach to genome annotation. It has 

been used extensively to identify novel genes with bioinformatics tools and 

computational methods. The chicken draft genome sequence released on March 1, 2004 

by National Institutes of Health is available at the University of California at Santa Cruz 

(UCSC) Genome Browser (http://genome.ucsc.edu), and offers great opportunities for 

identification and characterization of novel genes.  The objectives of this study were to 

identify novel chemokines, chemokine receptors and Toll like receptor genes in chickens 

using comparative genomics techniques, and to make functional inferences from the 

sequence analyses of the novel genes.    
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CHAPTER II 

GENOME-WIDE IDENTIFICATION, LIGAND-RECEPTOR 

INFERENCES OF CHICKEN CHEMOKINES AND CHEMOKINE 

RECEPTOR GENES BASED ON COMPARATIVE GENOMICS* 

INTRODUCTION 
 

Chemokines are a family of small chemoattrative peptides that were originally 

recognized to be involved in host defense as regulators of leukocyte trafficking, but 

more recently have been shown to have roles in organogenesis, hematopoiesis, neuronal 

communication and HIV infection (Olson and Ley, 2002; Baggiolini et al. 1997). Their 

cognate receptors belong to a Class A subfamily of the largest superfamily of G-protein 

coupled receptors (Onuffer and Horuk, 2002).  Chemokines are believed to have 

originated from gene duplications and these genes underwent selection during recent 

evolutionary time (Zlotnik and Yoshie, 2000).  All chemokines have a characteristic 

cysteine motif.  Similarly, chemokine receptors may also be derived from a common 

ancestor through gene duplications.  All chemokine receptors share high homology with 

the prototypical family member, rhodopsin (Onuffer and Horuk, 2002).  

 

 

_____________________________ 

*Reprinted from “Genomic organization, annotation, and ligand-receptor inferences of 
chicken chemokines and chemokine receptor genes based on comparative genomics” by 
Jixin Wang, David L Adelson, Ahmet Yilmaz, Sing-Hoi Sze, Yuan Jin and James J Zhu, 
2005, BMC Genomics, 6(1):45. Copyright©2005 Wang et al. 
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Chemokines are highly basic proteins, 70 to 125 amino acids long.  Sequence 

identity among chemokines is usually low; however, all share a typical overall tertiary 

structure, which consists of at least four cysteines that form two disulfide bonds.   

At present, 42 chemokine genes have been identified in human (24 CXC, 15 CC, 

1 CX3C, and 2 XC) and 36 (21 CXC, 13 CC, 1 CX3C, and 1 XC) in mouse, whereas 

there are 11 receptors for CCLs, 6 for CXCLs, 1 for CX3CL, and 1 for XCL in human 

and mouse. Only 11 chicken chemokines including 4 CXC, 6 CC, and 1 XC, and seven 

chicken chemokine receptors including 2CXCR and 5CCR have been reported in the 

literature (Petrenko et al., 1995; Petrenko et al. 1997; Sugano et al., 1987; Li et al., 2000; 

Hughes et al., 2001; Liang et al., 2001, Smith et al., 2004; Read et al., 2005; Sick et al. 

2000; Hartl et al., 2000; Rossi et al., 1999).  Chicken chemokines share low sequence 

identity with mammals (Kaiser et al. 1999).  Therefore, it is very difficult to assign 

chicken chemokines to a specific mammalian counterpart based on sequence data alone.  

Because of limited sequence homology, most of the reported chicken chemokines were 

not named in accordance with the systematic nomenclature of mammalian chemokines. 

The newly available chicken draft genome sequence and a large number ESTs has 

allowed systematic identification and annotation of chicken chemokine and cognate 

receptor genes.  The objectives of this study were to systematically identify chemokine 

and chemokine receptor genes in the chicken genome, to name these genes according to 

existing systematic nomenclature, and to make ligand-receptor binding inferences based 

on comparative sequence analysis. The systematic nomenclature for these chicken genes 

was based on the phylogenetic trees and syntenies of chicken, human, and mouse genes, 
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and ligand-receptor binding inferences were according to the recommendations of the 

IUIS/WHO Subcommittee on Chemokine Nomenclature (Bacon et al. 2002 and Murphy 

2002). 

MATERIALS AND METHODS 

Gene identification 

To identify syntenies, genes closely linked to human and mouse chemokines 

were identified and localized on the chicken genome using the UCSC genome browser 

(http://genome.ucsc.edu).  Expressed Sequence Tags (ESTs) and chicken mRNA 

sequences in the corresponding chromosomal regions were then identified and, if 

necessary, assembled with the CAP3 program (http://pbil.univ-lyon1.fr/cap3.php) 

(Huang and Madan 1999).  These sequences were aligned with the corresponding 

chicken genomic sequence and any deletions or insertions corrected. Sequences were 

then submitted to ORF Finder (Open Reading Frame Finder) 

(http://www.ncbi.nlm.gov/gorf/gorf.html) and the open reading frames were used as 

queries in BLASTP searches against the non-redundant protein database in Genbank 

(http://www.ncbi.nih.gov/Genbank).  Sequences that produced significant alignments 

with chemokines were identified as putative chicken chemokine sequences. To identify 

chicken chemokine receptors, all sequences of putative chicken chemokine receptors 

including ESTs, mRNAs, and predicted sequences were retrieved from the UCSC 

Genome Browser.  The identified ESTs were used to determine the translation start sites 

for the receptors.  If the translation start sites could not be determined from ESTs, 
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translation start sites were based on the most likely predicted sequences from non-

chicken reference genes in the UCSC Genome Browser. 

Sequence analyses 

Complete amino acid sequences of currently known human and mouse 

chemokines were retrieved from Genbank (http://www.ncbi.nih.gov/Genbank/).  The 

amino acid sequences of all putative chicken chemokines were predicted based on the 

open reading frames of the expressed nucleotide sequences (ESTs or mRNAs).  The 

amino acid sequences were grouped according to CC, CXC, and CX3C motifs and 

aligned using the ClustalW program (http://www.ebi.ac.uk/clustalw).  The percent 

similarity of the amino acid sequences was determined based on alignments with the 

most likely human or mouse orthologs.  Human CCR1 was included in the multiple 

alignments of chicken chemokine receptors for comparison.  The seven transmembrane 

domains were predicted using the SMART program 

(http://194.94.45.211/smart/show_motifs.pl). 

 For comparison, human chemokines hCCL1 (GenBank accession number: 

(NM_002981), hCCL2 (BC009716), hCCL3 (BC071834), hCCL4 (NM_002984), 

hCCL5 (BC008600), hCCL7 (NM_006273), hCCL8 (NM_005623), hCCL11 

(BC017850), hCCL13 (BC008621), hCCL14(BC045165), hCCL15 (NM_032964), 

hCCL16 (NM_004590), hCCL17 (BC069107), hCCL18 (BC069700), hCCL19 

(BC027968), hCCL20 (BC020698), hCCL21 (BC027918), hCCL22 (BC027952), 

hCCL23 (NM_145898), hCCL24 (BC069072), hCCL25 (NM_005624), hCCL26 

(BC069394), hCCL27 (AJ243542), hCCL28 (AF220210), hCXCL1 (BC011976), 
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hCXCL2 (BC015753), hCXCL3 (BC065743), hCXCL4 (NM_002619), hCXCL5 

(BC008376), hCXCL6 (BC013744), hCXCL7 (BC028217), hCXCL8 (BC013615), 

hCXCL9 (BC063122), hCXCL10 (BC010954), hCXCL11 (BC012532), hCXCL12 

(BC039893), hCXCL13 (BC012589), hCXCL14 (BC003513), and hCXCL16 

(BC017588), and hCX3CL1(NM_002996) and mouse chemokines CCL1 (NM_011329), 

mCCL2 (NM_011333), mCCL3 (NM_011337), mCCL4 (NM_013652), mCCL5 

(BC033508), mCCL6 (BC002073), mCCL7 (BC061126), mCCL8 (NM_021443), 

mCCL9 (NM_011338), mCCL10 (U15209), mCCL11 (NM_011330), mCCL12 

(BC027520), mCCL17 (BC028505), mCCL19 (BC051472), mCCL20 (BC028504), 

mCCL25 (NM_009138), mCCL27 (BC028511), mCCL28 (BC055864), and mCX3CL1 

(BC054838) were retrieved from the GenBank.  Reported chicken chemokines K60 

(Y14971), cCAF (M16199), MIP-1� (AJ243034), k203 (Y18692), AH294 (AY037859), 

AH221 (AY037860), AH189 (AY037861), JSC (AF285876), SDF-1(BX936268), Clone 

391 (L34552) and lymphotactin (AF006742) are included in this study.  Rat (BC070938) 

and monkey (AF449286) CX3CL1 were also retrieved for CX3CL sequence analysis.  

There are several human chemokine-like genes in the human genome, which were not 

included in this study. 

Human and mouse chemokine receptors hCCR1 (NM_001295), hCCR2 

(NM_000647), hCCR3 (NM_001837), hCCR4 (NM_005508), hCCR5 (NM_000579), 

hCCR6   (NM_004367),  hCCR7 (NM_001838), hCCR8 (NM_005201),  hCCR9 

(NM_006641), hCCR10 (AY429103), hCCR11  (AF193507), hCXCR1 (NM_000634), 

hCXCR2  (BC037961), hCXCR3 (NM_001504), hCXCR4 (AY728138), hCXCR5 
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(NM_032966), hCXCR6 (NM_006564), hCX3CR1 (NP_001328), and hXCR1 

(NM_005283), mCXCR1 (AY749637), mCXCR2 (NM_009909), mCXCR3 

(NM_009910), mCXCR4 (NM_009911), mCXCR5 (NM_007551),  

mCXCR6 (NM_030712), mCCR1 (NM_009912), mCCR2 (NM_009915), mCCR3 

(NM_009914), mCCR4 (NM_009916), mCCR5 (NM_009917), mCCR6 (NM_009835), 

mCCR7 (NM_007719), mCCR8 (NM_007720), mCCR9 (NM_0099130), mCCR10 

(AF215982), mCCR11 (AF306532), mCX3CR1 (NM_009987), and mXCR1 

(NM_011798), and reported chicken cCCR2 (CAF28776), cCCR5 (CAF28777), 

cCCR8L1(CAF28778), cCCR9 (CAF28781), cCXCR1 (AAG33964), cCXCR4 

(NP_989948), and cXCR1 (CAF28779),  were also retrieved from GenBank for 

comparisons.   

 Phylogenetic analyses of protein sequences of chicken, human, and mouse 

chemokines and chemokine receptors were based on the amino acid sequences using 

neighbor-joining with options selected for bootstrap test, pairwise deletion and Poisson 

correction, using MEGA3 (Kumar et al., 2004).  For ligand-receptor inference, the first 

20 amino acids (leading peptide) of all chemokines were removed before the 

phylogenetic analysis and chicken CCLs were divided into two groups, one group 

located on chromosomes 4, 19, and the other from other chromosomes. Syntenies, 

phylogenetic trees, and sequence homologies were the combined information used for 

naming chicken chemokine and their cognate receptor according to the 

recommendations of the IUIS/WHO Subcommittee on Chemokine Nomenclature 

(Bacon et al., 2002).  These chicken genes were named according to their closest human 
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or mouse predicted orthologs if all information supports the nomenclature.  If there was 

more than one chicken gene similar to a human and/or mouse gene, these gene was 

named as in the human and/or mouse followed by a letter with alphabet order.  If a 

specific human or mouse ortholog could not be reliable determined, the chicken genes 

were named according to a closest human or mouse ortholog followed by an “L” and a 

number based on the information available.  This nomenclature also used the existing 

systematic names reported in the literature to avoid confusion. 

Transcription factor binding sites (TFBS) 

The promoter sequence of the chicken chemokine genes were predicted from a 

fragment of 3000bp upstream of the transcription start site using a Neural Network 

Promoter Prediction program (http://www.fruitfly.org/seq_tools/promoter.html) (Reese, 

2001). The DNA sequence 3000 nucleotides upstream and downstream of the TATA 

box in the predicted promoter of the chicken chemokine genes was used to identify the 

transcription factor binding sites using the MATCH 2.0 software and a TFBS matrix for 

all vertebrates in the TRANSFAC database (http://unix.cognia.com/cgi-

bin/biobase/transfac/8.2/bin/start.cgi).  

Polymerase chain reaction (PCR) and DNA sequencing 

Chicken EST or mRNA sequences were identified for all chemokine genes.  All 

sequences contained complete putative open reading frames except for CX3CL1.  

However, partial chicken CX3CL1 gene sequences (BM426140, BI066258, and 

CR389767) were identified, with a gap of 123 nucleotides between the ESTs.  Forward 

(TGTGACATCGGGAGTCGCTAC) and reverse (AAAATCCCCAGCGTTTGCTACT) 
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PCR primers were used to amplify across the gap using cDNA prepared from white 

blood cells.  PCR was performed as follows: An initial denaturation step at 940C for 2 

min and 35 cycles of denaturation, annealing, and extension at 940C for 30 sec, 590C for 

45 sec, and 720C for 1 min., and a final extension step was carried out at 720C for 10 min. 

Unincorporated nucleotides were removed from amplified PCR products using BioMax 

spin-50 mini-columns (Millipore, Billerica, MA).  BigDye terminator cycle sequencing 

reaction kits and an ABI Prism 377XL DNA Sequencer (Applied Biosystems) were used 

for DNA sequencing.    

RESULTS 

Chicken chemokines and chemokine receptors 

 In addition to the 11 previously reported, 12 new chicken chemokine were 

identified.  These included 7 new CC chemokines named CCL1L1 (BX935885), 

CCL3L1 (CF258095), CCL/MCP-L2 (CK610627), CCL/MCP-L3 (CF251629), CCL17 

(BI067703), CCL19 (BX929857), and CCL21 (CR522995), 4 new chicken CXC 

chemokines named CXCL13a (BX262175), CXCL13b (BX264625), and CXCL13c 

(CR352598), CXCL15 (BX929947), and 1 CX3CL1 chemokine (assembled from 

CR389767, BI066258, BM426140, and our sequence: AY730688).  Eleven reported 

chicken genes were also named accordingly as CCL1L2 (L34552), CCL5 (ah294, 

AY037859), CCL4L1 (MIP-1�, AJ243034), CCL/MCP-L1 (ah221, 

AY037860/BX933162), CCL16 (k203, Y18692), CCL20 (ah189, AY037861), CXCL8a 

(cCAF, M16199), CXCL8b (K60, Y14971), CXCL12 (SDF-1, BX936268), CXCL14 

(JSC, AF285876), and XCL1 (lymphotectin, AF006742).  In summary, there were 13 
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CCL, 8 CXCL, 1 CX3CL, and 1 XCL genes identified in the chicken genome.  The 

information used for the nomenclature is shown in the comparative genome maps and 

phylogenetic trees. 

Chicken chemokine amino acid sequence alignment showed that all chicken CC 

chemokines have four conserved cysteines with two adjacent cysteines at the N-terminus 

(Fig. 2.1), whereas all chicken CXC chemokines have the conserved four cysteines with 

the first two cysteines separated by one amino acid (Fig. 2.2).  Both chicken CCLs and 

CXCLs show higher degrees of sequence similarity to each other in the signal peptide 

sequences and sequence regions containing the last two cysteines.  CXCL8a, CXCL8b 

and the newly identified chemokine CXCL15 contain the ELR (Glu-Leu-Arg) motif.  

Only one chicken CX3C chemokine was found (Fig. 2.3).  The number of amino acid 

residues between conserved cysteines in all chemokines was highly conserved between 

chicken and human (Table 2.1). 
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cCCL1L1               MAKAAGAFCILLLLTALCCQSLAQRAP--AVPDKCCFN--FHTRRIKMDNIV-- 48                 
cCCL1L2                MKVFSLVMVTLLLAAVWTESSGKSFR-SSY-SSCCYKNMFIQKEINTSLIR-- 49 
cCCL3L1                MKVSVAALAVLLIA-ICYQTSAAPVG-SDPPTSCCFT--YISRQLPFSFVA-- 47 
cCCL4L1                MKSSTAAIAVLIVAALCYQVSSTPLA-VGSNGRCCYK--FLNRALPSSKVM-- 48 
cCCL5                 MMTAVAVSLSILLVAALFPQASSSPFG-ADT-TVCCFN--YSVRKLPQNHVK-- 48 
cCCL13L1        MPTSRSTMKGSAAALAALLLLALCSSAVAQLLDSDGLPTTCCLS--YVQRPVPRNLIA-- 56 
cCCL13L2               MKGSAAALAALLLLALCSSAVAHL---DGLPTTCCFS--YVQRPVPRNLIA-- 46 
cCCL13L3               MKGSAAALAALLLLALCSSAVAQL---DGLPSTCCLS--YVQRPVPRSLIA-- 46 
cCCL16                 MK-LSAVVLALLIASFCSRASSAPVG-PDV-PTCCTT--YITHKIPRNLIQ-- 46 
cCCL17                 MLSTKLVLLLLLLLSIFQYSSAAPYA----PSECCYE--HTKFALRLEALK-- 45 
cCCL19                MQRLHVLCLSLLVLRCVLHVYAGNN------VLDCCLR--TSEKPIPWRIVQDY 46 
cCCL20          MP-GLSTKSLILASLLGLLLLLLCSTSQAQS------NQDCCLS--YSKVRLPRKVIKGF 51 
cCCL21                MALRILLPLLLLAAALLLHQAEGVDNP----ASDCCLK--TSQKAISIKWVKSY 48 
                                                        ** 
cCCL1L1        ACYATSPQCPHRAVVFKVKNGKEICTPADRMWVKRYQQRFQVS------SYSIPS       97  
cCCL1L2        RYRETPPNCSRRAIIVELKKGKKFCVDPAEGWFQQYLQGKKL-------SNTST        96 
cCCL3L1        MYEYTGSRCPYHGVIFTTFEGKKCCANPEEKWVQDILNVEKH-------TDGSK        95 
cCCL4L1        DYYETNSQCPHAGVVFITRKGREVCANPENDWVQDYMNKMEL-------N            90 
cCCL5          DYFYTSSKCPQAAVVFITRKGRQVCANPDARWVKEYINFLEL-------Q            91 
cCCL13L1       SAYITSSKCRLPAVILVTKKGKEICVNPEESWVQKRLELLQN-------QEN         101 
cCCL13L2       SAYITSSKCRLPAVILVTKKGREICVNPEESWVQKRLELLQK-------QEN          91 
cCCL13L3       SAYITSSKCRLPAVILVTKKGKEICVNPEESWVQKRLELLQK-------QEN          91 
cCCL16         RHYSTSTSCSKPAIIFITKKEREVCANPSDPWVQRYLQSVKR-------D            89 
cCCL17         SFYETSHDCLLQAIVFVTKNGTKVCSKPNAPWVKKAVKYLQK-------KNNPQAV      94 
cCCL19         RMQLVQDGCDIPATVFITAKGKRLCAPPQAPWVLRLREKLDT----SSARKVPNQGN     99 
cCCL20         TEQLSGEVCDIDAIIFHTVRGLKACVNPKEDWVKKHLLFLSQ-------KLKRMSM     100 
cCCL21         SIQGPESGCVLRAVVFTTKKNKKICSSPTDPIVQKLIKSLDSKRKSTPQRKSKRQKRKQV 108 
                       *               * 
 

Fig. 2.1  Alignment of amino acid sequences of chicken chemokine CC subfamily. 

Alignment gaps are indicated by dashes. Sequences with identical amino acid in at least 

50% of chicken chemokines are highlighted in gray and conserved cysteine residues in 

dark gray 
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cCXCL8a                 MMGKAVAAVMALLLIS-MAGAKGMAQARSAIELRCQCIETHSKFIHPKFIQN 51 
cCXCL8b                  MNGKLGAVLALLLVS-AALSQGRTLVKMGNELRCQCISTHSKFIHPKSIQD 50 
cCXCL12                  MDLRALALLAFALAVISLSEEK----PVSLTYRCPCRFFESN-VARANIKH 46 
cCXCL13a                 MRALQAALALGLLLSSLLPGDGLSLESLLTNKRCKCVKVTAQIISLGLILA 51 
cCXCL13b        MRVLARGGTGAAVLPWMVLLLLLVMMSMSQAAILEVNG-NLNCRCVKTTSDYISPKRYDS 59 
cCXCL13c                 M-AVRAALLLGLLLVVLCPGDAAILEANG-NLNCRCAKTTTAFIPLRKYES 49 
cCXCL15                  MSPRL--LLPLLLAATAALCWG---APPAGELRCRCVRAVAERIPPRHLVQ 46 
cCXCL14                  MKLLTAALLLLVIAMCLASAEG---------VKCKCSRKGPK-IRFSNVRK 41 
                                                          * *            
cCXCL8a       VNLTPSGPHCKNVEVIATL--K--DGREVCLDPTAPWVKLIIKAILDKADTNNKTAS     104 
cCXCL8b       VKLTPSGPHCKNVEIIATL--K--DGREVCLDPTAPWVQLIVKALMAKAQLNSDAPL     103 
cCXCL12       LKILST-PNCS-LQIVARL--K-SNSKQVCIDPKLKWIQEYLEKALNKPRHRTHKKKQQK  101 
cCXCL13a      IDVMPPGIHCRRKEIILTL--K--RNKKVCVAPEAPWIQLLIHKLTQTDVSKKEAAAVAR  107 
cCXCL13b      IELRPVGSTCRRIEIIIKL--K--SSAKVCVNPDAPWVKKLLKRIAG               102 
cCXCL13c      VEVRPVGSSCRRLEVLIKL--K--TLERICVDPNTPWVRKLLQDLPKLKKKAAPQ       100 
cCXCL15       VELVPEGPHCAAPEVIATT--K--QGHTLCLSPSVPWVKLLVARFLNSAAQRS          95 
cCXCL14       LEIKPRYPFCVEEMIIVTLWTKVRGEQQHCLNPKRQNTVRLLKWYRVWKEKGRVYEE      98 
                       *                   * 
 

 

Fig. 2.2  Alignment of amino acid sequences of chicken chemokine CXC subfamily. 

Alignment gaps are indicated by dashes. Sequences with identical amino acid in at least 

50% of chicken chemokines are highlighted in gray and conserved cysteine residues in 

dark gray. The conserved ELR motifs are underlined 
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Chicken MRVASLQIPFALRVLC-LAAMAGGQPRAPLKCSKWCISFHRAIDQRQIKSYRETEPQCTK 59 
Human   MAPISLSWLLRLATFCHLTVLLAGQHHGVTKCNITCSKMTSKIPVALLIHYQQNQASCGK 60 
Mouse   MAPSPLAWLLRLAAFFHLCTLLPGQHLGMTKCEIMCDKMTSRIPVALLIRYQLNQESCGK 60 
Rat     MAPSQLAWLLRLAAFFHLCTLLAGQHLGMTKCNITCHKMTSPIPVTLLIHYQLNQESCGK 60 
Monkey  MAPISLSWLLHLATLCHLTVLLAGQHHGVTKCNITCSKMTSKIPVALLIHYQQNQESCGK 60 
                                       *   *                     * 
Chicken  KAIIFTTKRNREICANPYEPWVEKIVKKLDQEKASAASPLPRADTSPAAAVPKEPGIFQK 119 
Human    RAIILETRQHRLFCADPKEQWVKDAMQHLDR---------------QAAALTRNGGTFEK 105 
Mouse    RAIVLETTQHRRFCADPKEKWVQDAMKHLDH---------------QAAALTKNGGKFEK 105 
Rat      RAIILETRQHRHFCADPKEKWVQDAMKHLDH---------------QTAALTRNGGKFEK 105 
Monkey   RAIVLETRQHRLFCADPKEQWVKDAMQHLDR---------------QAAALTRNGGTFEK 105 
                      *        
Chicken  HTGLQVPPSPPATAATAASERAPTPAASTEATSKPSPAMQNATHFSAGPSAVTSGVATHS 179 
Human    QIGEVKPRTTPAAGGMDESVVLEPE-ATGESSSLEPTPSSQEAQRALGTSPELPTGVTG- 163 
Mouse    RVDNVTPGITLATRGLSPSALTKPESATLEDLALELTTISQEARGTMGTSQEPPAAVTG- 164 
Rat      RVDNVTPRITSTTRGLSPTALAKPESATVEDLTLEPTAISQEARRPMGTSQEPPAAVTG- 164 
Monkey   QVGLVKPRTTLAARGMEESAVPEPE-ATGESSSLKPTPSSREAQTALGTSPEQSTGVTG- 163 
                    
Chicken  EVVSEANRESLTSAHSTADAVDMALGQRTSYPTAPARDSDSKEEPAGYATSAAGDVRGTT 239 
Human    ---SSGTRLPPTPKAQDGGPVGTELFRVPPVSTAATWQSSAPHQPG---PSLWAEAKTSE 217 
Mouse    ---SSLSTSEAQDAGLTAKPQSIGSFEAADISTT-VWPSPAVYQSG---SSSWAEEKATE 217 
Rat      ---SFPSTSKAQDAGLAAKPQSTGISEVAAVSTT-IWPSSAVYQSG---SSLWAEEKATE 217 
Monkey   ---SSGTGLPLTPKAQDGGPVGTELFRGPPVSTAAAWQSSAPHQPG---PGLWAEGKTSE 217 
                      
Chicken  STSTSDPASIS------KGLDHPSLPTNVPLDTISARGSTSGTALRSSALPSTPHITEVG 293 
Human    APSTQDP-----------STQASTASSPAPEENAPSEGQRVWGQGQSPRPENSLEREEMG 266 
Mouse    SPSTTAP-----------SPQVSTTSPSTPEENVGSEGQPPWVQGQDLSPEKSLGSEEIN 266 
Rat      SPPTIAL-----------STQVSTTS--SPKQNVGSEGQPPWVQEQDSTPEKSPGPEETN 264 
Monkey   APSTQDPSTQASSNPRASSTQASTTSSPAPEENTPSEGQPVWGQGQSPRPENSLEREEMG 277 
                 
Chicken  MVPSTPQASPSPTQNPTTAIDEGPYVHANKNFSSSAFGTGTLDHLLPSGKQGPLDMLVFT 353 
Human    PVPAHTDAFQ----------DWGPGSMAHVSVVPVSSEGTPSREPVASGSWTPKAEEPIH 316 
Mouse    --PVHTDNFQ----------ERGPGNTVHPSVAPISSEETPSPELVASGSQAPKIEEPIH 314 
Rat      --PVHTDIFQ----------DRGPGSTVHPSVAPTSSEKTPSPELVASGSQAPKVEEPIH 312 
Monkey   PVPAHTDAFQ----------DWGPGSMAHVSVVPVSSEGTPSREPVVSGSWTPKAEEPIH 327 
                     
Chicken  SQIFSDQARAQATGSPSHPPALSSLSGSQMYLVIPVALIGVLIACGVAARWAYVKFEIRP 413 
Human    ATMDPQRLGVLITPVP------DAQAATRRQAVGLLAFLGLLFCLGVAM-FTYQSLQGCP 369 
Mouse    ATADPQKLSVLITPVP------DTQAATRRQAVGLLAFLGLLFCLGVAM-FAYQSLQGCP 367 
Rat      ATADPQKLSVFITPVP------DSQAATRRQAVGLLAFLGLLFCLGVAM-FAYQSLQGCP 365 
Monkey   ATMDPQRLGVLITPVP------DSQAATRRQAVGLLAFLGLLFCLGVAM-FAYQSLQGCP 380 
                  
Chicken  ETTSREMVEALLYLKEGHRDNVYPMEVI 441 
Human    RKMAGEMAEGLRYIPRSCGSNSYVLVPV 397 
Mouse    RKMAGEMVEGLRYVPRSCGSNSYVLVPV 395 
Rat      RKMAGEMVEGLRYVPRSCGSNSYVLVPV 393 
Monkey   RKMAGEMVEGLRYIPRSCGSNSYVLVPV 408 
 
Fig. 2.3  Alignment of amino acid sequences of chicken, human, mouse, rat and monkey 

chemokine CX3CL1. Alignment gaps are indicated by dashes. Sequences identical in all 

species are highlighted in gray. The asterisk represents the conserved cysteine residues
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Table 2.1 Chicken and corresponding human chemokine cysteine motifs  

 

Families Chemokines Chicken motif Human motif 

CC CCL1L1 CCX25CX15C CCX22CX15C 

 CCL1L2 CCX24CX15C CCX22CX15C 

 CCL3L1, CCL4, CCL5  CCX22CX15C CCX22CX15C 

 CCL16 CCX22CX15C CCX21CX15C 

 CCL17 CCX22CX15C CCX22CX15C 

 CCL19 CCX25CX15C CCX24CX15C 

 CCL20 CCX24CX15C CCX24CX15C 

 CCL21 CCX25CX15C CCX24CX17C 

 CCL13L1, CCL13L2, CCL13L3 CCX22CX15C CCX22CX15C 

CXC CXCL8a, CXCL8b CXCX24CX15C CXCX24CX15C 

 CXCL13a, CXC13b, CXCL13c CXCX24CX15C CXCX24CX15C 

 CXCL12 CXCX22CX15C CXCX22CX15C 

 CXCL14 CXCX23CX19C CXCX23CX20C 

 CXCL15  CXCX24CX15C N/A1 

XC XCL1 CX36C CX36C 

CX3C CX3CL1 CX3CX21C15C CX3CX21C15C 

1 CXCL15 is not found in humans. 

 

Chicken chemokines have limited amino acid sequence similarity compared to 

their human counterparts.  Generally, chicken CXC chemokines shared 27 to 60% amino 

acid identity with their human homologs, except for CXCL12, which shared 73% 

identity with human CXCL12.  The length of chicken chemokine CXCL polypeptides 

ranged from 95 to 107 amino acids.  Compared to their human homologs, chicken 

CXCL chemokine amino acid sequences are shorter except for chicken CXCL8a, 

CXCL8b, and CXCL12, which were 4, 5, 12 amino acids longer than their respective 



 

 

23 

human homologs.  In contrast, the sequence identities between human and chicken CCL 

chemokines are generally greater than for CXCL chemokines, ranging from 25 to 56%. 

Chicken chemokine CCL polypeptides range from 89 to 108 amino acids in length.  

Chicken CCL1L2, CCL5, and CCL17 have the same amino acid length as their human 

counterparts. Chicken CCL4L1 is shorter than corresponding human CCL4, whereas 

chicken CCL1L1, CCL3L1, CCL19 and CCL20 are longer than the corresponding 

human CCLs. These differences in length between human and chicken chemokines are 

exclusively in the N- and C- termini. 

   Chicken CX3CL1 encodes 441 amino acids, longer than all mammalian 

CX3CL1 examined.  It shares 20, 22, 20, and 22% amino acid identity with human, 

mouse, rat, and monkey CX3CL1, respectively.  Sixty-six amino acid residues in chicken 

CX3CL1 are identical to residues in mammals, but the sequence identity between 

mammals is, as expected, much higher than that between chickens and mammals (Fig. 

2.3). There are more identical amino acid residues between chicken and the mammals at 

both ends of the sequences. 

Unlike the chemokines, all the chicken chemokine receptor genes were aligned 

with non-chicken chemokine receptor reference genes in the chicken genome browser. 

There was at least one chicken EST sequence aligned to each receptor gene except for 

CCR4.  In addition to 7 reported receptors, 7 new chicken chemokine receptors were 

identified and named as CCR4 (predicted sequences: ENSGALT00000019505.1/ 

chr2_792.1), CCR6 (CV039916, BU451770, and CK987456), CCR7 (predicted 

sequence: chr27_random_59.1), CCR8a (AJ720982), CXCR2 (BX258468), CXCR5 
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(AJ450829), CX3CR1 (CF252942, BU204148, and AJ443633).  In contrast to chicken 

chemokines, chicken chemokine receptors share significant amino acid identity with 

their human receptor counterparts.  The percents of amino acid identity between chicken 

and human chemokine receptors ranged from 48 to 81%.  The lengths of these chicken 

receptors range from 335 to 382 amino acids.  The complete sequence of chicken 

CXCR2 is unknown due to a sequence gap in the chicken genome sequence.  The 

CXCR2 EST and a partial genome sequence contain the last 170 amino acids of the C-

terminus.               

 Forty-four amino acid residues were highly conservative (>85% homology) 

among all chicken chemokine receptors (Fig. 2.4).  These receptors all have seven 

transmembrane helices and three extracellular loops.  Of the seven transmembrane 

helices, helix 1 and 7 show higher degrees of sequence similarity than the other helices.  

The similarity between the extracellular domains of the chicken receptors is lower, but 

all had a conserved cysteine residue.  In contrast, the intracellular domains (except at the 

C-terminus) generally had higher degrees of sequence similarity than the extracellular 

domains.  The second intracellular domains contain a highly conserved DRYLAIV 

sequence.   
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cCCR9                                    MTSLDYYRNDSAGLSVIGNPINDTELMCDRR 31 
cCCR6                               MSTTVFGTTEFFDTDYAS---------LISTVCSKS 27 
cCCR7                     MQTGKRAARWDGCHVFCAGNNVTDDYDANTTI--DYNMFEMMCEKK 44 
cCCR8b           MEQRKKPTGRHTRALYLWFFPSQESKMNPTDLFLSTTEYDYGY--DENTAPCNEG 59 
cCCR8a               MDGDLRSLLAGGKQEDLLADFHFSPT--VNSSASYDNMY-YPELATDCEFE 48 
cCCR2                                  MEN-YTDLGDMDVTTTFDYGD-----TAPCMGT 27 
cCCR5                                  MEN-YTDLGDMP-TTTFDYGD-----TAPCMGT 26 
cCCR4                                  MSSSSTESLEADTTTFYDFIDNYNDAPQPCSKE 33 
cCX3CR1                                    MTEAPPEVTTEYVFYES-----ALACDES 24 
cXCR1                                 MDEEQYPSGWDDNYSFEYVLNE-----SNVCEMG 29 
cCXCR1                     MGTFYADELLDILYNYTSDYCNYSLVLPDID-----VSSSPC-RN 39 
cCXCR2           ------------------------------------------------------- 
cCXCR5                    MGPVSYSSETYDLSLVELSGYYEAENTTPSLEGYFCFNPSSSVVGN 46 
cCXCR4                         MDGSMDGLDLSSGILIEFADNGSEEIGSADYGDYGEPCFQH 41 
hCCR1                                   METPNTTEDYDTTTEFDYGD-----ATPCQKV 27 
                                                                    * 
cCCR9       -QVWQFARAFLPMFFWLIFFVGTVGNALVVLIYCKYRFRRSMMDRYLLHLAVADLLLLFT 90 
cCCR6       -EVRSFTKVFLPVAYSLICIVGLVGNIFVVMTFALYERTKSMTDVYLFNMAIADILFVLT 86 
cCCR7       -EVRDFRAAFLPAMYSLICFTGLLGNGLVMLTYIYFKRLKTMTDIYLLNLALADILFLLT 103 
cCCR8b      NSFPRFKSLFLPILYCLVFVFCLLGNSLVLWILLTRKRLMTMTDICLLNLAASDLLFIVP 118 
cCCR8a      -SIPAFASSFFPVLYSILFVIGLMGNALVVWVLTAFKKIRAMTDVYLLNLAISDLVFVFS 107 
cCCR2       -EEKHFAANFLPPLYSLVVIFGFIGNILVVLILVKYKKLKSMTDIYLLNLAISDLLFIFS 86 
cCCR5       -EEKHFAANFLPPLYSLVVIFGFIGNILVVLILVKYKKLKSMTDIYLLNLAISDLLFVFS 85 
cCCR4       N-FKRFAASFFPVLYTLVFLIGLIGNTLVIVVLFKYKRLKSMTDVYLLNLAISDLLFVLS 92 
cCX3CR1     -DIQAFGKIFLPLFYIAVFALGLAGNVMVVLAIVKEGSKKSITDIYLMNLAVSDLLFVIS 83 
cXCR1       N-YFIFYTHFTTVLYTLAFLLSLLGNTLVLWILFKYENLTSLTNIFIMNLCISDLVFSCM 88 
cCXCR1      -EGSVANKYLVAFIYCLAFLLSMVGNGLVVLVVTSGHINRSVTDVYLLNLAVDDLLFALS 98 
cCXCR2      ------------------------------------------------------------ 
cCXCR5      -QRDPFRKVFIPLAYLLMFVLGTVGNALVLVILERFKRSRTTTENFLFHLTLANLALLLT 105 
cCXCR4      -ENADFNRIFLPTIYSIIFLTGIIGNGLVIIVMGYQKKQRSMTDKYRLHLSVADLLFVIT 100 
hCCR1       -NERAFGAQLLPPLYSLVFVIGLVGNILVVLVLVQYKRLKNMTSIYLLNLAISDLLFLFT 86 
            ED1              Helix 1             ID1        Helix 2                               
 
 
 
 

Fig. 2.4  Alignment of amino acid sequences of chicken chemokine receptors with 

human CCR1. Alignment gaps are indicated by dashes. Sequences with identical amino 

acid in at least 50% or 85% of the chicken chemokines are highlighted in gray and dark 

gray, respectively. Asterisks represent the conserved cysteine residues.  ED and ID 

denote extracellular and intracellular domains, respectively.  Seven transmembrane 

spanning domains of chicken chemokine receptors were predicted using the SMART 

program and these consensus domains are indicated with a box.  The N-terminal 

sequence of chicken CXCR2 is currently unknown 
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cCCR9       LPFWATA-ASSGWIFRNFMCKVVNSMYKINFYGCILFLTCISFDRYLTIVQATKAKSSKQ 149 
cCCR6       LPLWAVNYAADKWIFGNFICKMAKGIYAINFSCGMLLLAFISVDRYIAIVQATKSFKLRA 146 
cCCR7       LPFWATS-AATFWCFGEFACKAVYCICKMSFFSGMLLLLSISIDRYFAIVQAASAHRFRP 162 
cCCR8b      LPFQAYY-ASDQWVFGNALCKIMGGIYYTGFYSSIFFITLMSIDRYIAIVHAVYA--MKI 175 
cCCR8a      LPFLAQYSLVSQWTFGNAMCKIVSSAYFIGFYSSAFFITIMSIDRYLAIVHSVYA--LKV 165 
cCCR2       LPFWAYY-AAHDWIFGDALCRILSGVYLLGFYSGIFFIILLTVDRYLAIVHAVFA--LKA 143 
cCCR5       LPFWAYY-AAHDWIFGDALCRILSGVYLLGFYSGIFFIILLTVDRYLAIVHAVFA--LKA 142 
cCCR4       LPFWSYF-MIDQWVFGTPWCKIISWIYLVGFYSGIFFIMLMSIDRYLAIVRAVFS--MKA 149 
cCX3CR1     LPFWASN-TVRGWTLGTIPCKVVSSLYYIGFFGGMFFITVISIDRYLAIVRATYS--MRS 140 
cXCR1       LPFWAVD-QTFGWIFGEFLCKAVNAIFSIGYYSGVFFLTLMTILRYLSVVSPLST--LRS 145 
cCXCR1      LPLWAVYWAHE-WVFGTVMCKAILVLQESNFYSGILLLACISVDRYLAIVYGTRA--ATE 155 
cCXCR2      ------------------------------------------------------------ 
cCXCR5      FPFSVVE-SLAGWVFGTFLCKILSAVHKINFYCSSMLLGCIAVDRYLAIVYAIHT--YRK 162 
cCXCR4      LPFWSVD-AAISWYFGNVLCKAVHVIYTVNLYSSVLILAFISLDRYLAIVHATNS--QRP 157 
hCCR1       LPFWIDYKLKDDWVFGDAMCKILSGFYYTGLYSEIFFIILLTIDRYLAIVHAVFA--LRA 144 
            Helix 2   ED2   *         Helix 3           ID2              
 
 
 
cCCR9      RRILRSKVVCFAVWLASVSLCLPEIM-YSQSKQIGAVTV-CKMTYP----PNIGMAFRVAV 204 
cCCR6      RTLAYSKLICLAVWASAILISSSSFLYSESYGFATNETQICDHRFDKTSDSIVLKSLL--- 204 
cCCR7      RMIFISKVTCILIWLLAFVLSIPELV-HSGVNNYDSHPR-CSIIASDLQTFSTGIKVS--- 218 
cCCR8b     RTASCGTMISLVLWLVAGLASVPNIVF-NQQLEIEQSVQ-CVPVYPPG-----NNIWKVTT 229 
cCCR8a     RTTKHGIIASLALWAVAILASVPGLVF-FREVDEDNRTQ-CIPHYPGS-----GNSWKVFS 219 
cCCR2      RTVTYGILTSIVTWAVALFASVPGIVF-HKTQQEHTRYT-CSAHYPQEQ----RDEWKQFL 198 
cCCR5      RTVTYGILTSIVTWAVALFASVPGIVF-HKTQQENTQCT-CSFHYPSDA----LINWQHSY 197 
cCCR4      RTAFHGLIASLTVWLVALLASVPELVF-RESFVEQNYTT-CKLRYPSN-----YLTWKLFY 203 
cCX3CR1    RTIKHSLLITCGVWATAVLVSVPHFVF-SQMFEN----D-CIPVLPQEL----MNIWPVFC 191 
cXCR1      QTQYCGSLVCLLVWTCSILIVVPEMIHTTVVETLEEVST-CDYDDWK---------WKKVD 196 
cCXCR1     KRH-WVKFVCVGIWVFSVLLSLPVLLFREAFVSDRNGTV-CYERIG----NENTTKWRVVL 210 
cCXCR2     -----------------------------------RNGTVCYEGIGNE---NTTK-WRVVL  22 
cCXCR5     RRARSIHLTCTAIWLSSLLLTLPDLIFMEVWTDESNRSI-CYFPEAG---IHGNNVWLAT- 218 
cCXCR4     RKLLAEKIVYVGVWLPAVLLTVPDIIF-ASTSEVEGRYL-CDRMYPHDN-------WLISF 209 
hCCR1      RTVTFGVITSIIIWALAILASMPGLYFSKTQWEFTHHT--CSLHFPHES----LREWKLFQ 199 
                      Helix 4                      *    ED3              
  
 
cCCR9      LVLKVTIGFFLPLLVMVIC-YTLIIHTLLQAKRCQKHKSLKIITMIITAFLLSQFPYNIVL 264 
cCCR6      LCLQVGFGFFIPFVFMIFC-YAFIVKSLQQAQNSKRNKAINVIVLIVVVFLVCQVPYNTVL 264 
cCCR7      ---QMVFGFLVPLVVMSVC-YLIIIKTLLQARNFEKNKAIKVIIAVVIVFVVFQLPYNGVM 275 
cCCR8b     QFAANILGLLIPFSILIHC-YAQILRNLRKCKNQN----------------LFWTPFNVVL 289 
cCCR8a     NSEVNILGWLFPVSILIFC-YHNILRNLQRCHTQNKYKAMKLVFIVVIVFFLFWTPINIML 279 
cCCR2      ALKMNILGLVIPMIIMI-CSYTQIIKTLLQCRNEKKNKAVRLIFIIMIVYFFFWAPYNICI 258 
cCCR5      ILKMNILGLIIPMIIMIFC-YSQILRTLFGCRNEKKQKAVRLIFVIMIFYFIFWTPFHVAS 257 
cCCR4      TLEINILGLLLPLIVMAFC-YSMIIKTLLHCRNEKKNKAVRMIFAVMIVFFFFWTPYNIVI 263 
cCX3CR1    NVELNTAGFFIPVCIICYC-YCGIIKTLLYCKNQKKARAIKLTLAVVIVFFLFWTPYNVLI 251 
cXCR1      IYQRNIL-FLISFGIIIFC-YINILIILLRTRSRRKHRTVKLILVIVVAFFLSWAPYNILS 255 
cCXCR1     RVLRRPSALPCPSWSCFTA-TEVTVHTLLQTKNVQKQRAMKVILAVVLVFLVCWLPYNITL 270 
cCXCR2     RVLPQTLGFALPLLVMLFC-YGVTVHTLLQTKNVQKQRAMKVILAVVLVFLVCWLPYNITL 82 
cCXCR5     RFLYHSVGFFMPLLVMCYC-YMAIVRTLCQSQRLQRQKAVRVAILVTGVFLLCWSPYHIVI 278 
cCXCR4     RFQHILVGLVLPGLIILTC-YCIIISKLSHSKGHQKRKALKTTVILILTFFACWLPYYIGI 269 
hCCR1      ALKLNLFGLVLPLLVMIIC-YTGIIKILLRRPNEKKSKAVRLIFVIMIIFFLFWTPYNLTI 259 
                     Helix 5 *              ID3           Helix 6 
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cCCR9       LIKTINMYTGAVYSCQTINGLDIGLQVTQSIAFLHSCLNPFLYVFAGERFRMALARMVQS 324 
cCCR6       LMAVANMGK-TEKSCDSDNIMAYAKYTTETIAFLHCCLNPVLYAFIGVKFRSYFVKIMKD 323 
cCCR7       LAKTISVFN-NTSSCDESKKLDMADDVTYTLACFRCCLNPFLYAFIGVKFRNDLFKLLKE 334 
cCCR8b      FLDSLQSLL-IIDNCQASSQITLALQLTETISFIHCCLNPVIYAFAGVTFKAHLKRLLQP 348 
cCCR8a      LLDSLRSLH-IIDDCQNSQRLDLALELAETLSLVHCCLNPIIYAFVGEKFKKYLCEAFGK 338 
cCCR2       LLRDFQDSF-SITSCEISGQLQKATQVTETISMIHCCINPVIYAFAGEKFRKYLRSFFR- 316 
cCCR5       FVHTFQTSF-FSPDCDSQSRLEKTIQVTETISMVHCCINPVIYAFVGEKFRKYLHMFFR- 315 
cCCR4       LLQLLEATG-VIRNCQASRNLDYASQITESLGLFHCCLNPVIYFFMGEKFKKYLKMLFKN 322 
cCX3CR1     FLETLRHYE-LFISCNQIKSLDYAMHLTETIAFSHCCLNPLIYAFAGEKFRKYLHRVCFK 310 
cXCR1       FLITFPP-----PTCQYEKDTLLAFHISRKIAFSHCCLNPVLYVFAGVKFKSHLFRLCGQ 310 
cCXCR1      VSDTLMRTRAITETCERRKHIDTALSITQVLGFSTVASTPSSTASSGRSFATASSRSWHS 330 
cCXCR2      VSDTLMRTRAITETCERRKHIDTALSITQVLGFAHSCINPIIYAFIGQKFRNSFLKILAQ 142 
cCXCR5      FLNTLTKLEAFAKDCLLEDHLDTAIMVTEAIGFTHCCLNPIIYAFIGVKFRNDFFRILHE 338 
cCXCR4      SIDTFILLGVIRHRCSLDTIVHKWISITEALAFFHCCLNPILYAFLGAKFKTSAQNALTS 329 
hCCR1       LISVFQDFLFT-HECEQSRHLDLAVQVTEVIAYTHCCVNPVIYAFVGERFRKYLRQLFHR 318 
                      ED4 *                     * Helix 7          ID4 
 

 
 
 
cCCR9         TGRYWLGGQDQCSSLGDSQEHSSNWSFAMLGRRRVRNSLTLSTNLASSVVPASCQVFV 382 
cCCR6         LWCRRYKKYNKR----SSRINSDIYLSRQTSEILTDNASSFTI                362 
cCCR7         LGCLSQQRLWQL----SSCRES----KRFSFAMETETTTTFSP                369 
cCCR8b        CARILWSPTRG-----SGVT--QSSLVLSQISGCSDS---AGVL               382 
cCCR8a        YAHFLLICKGH-----SAFNRRNTDRRTSMYTASSQSSFVGSVL               377 
cCCR2         KQIASHFSKYC-----PVFYADTVERASSTYTQSTGEQEVSAAL               355 
cCCR5         KHVATHLCKKC-----PSLYREKLERVSSTFTASTAEHDISTGL               354 
cCCR4         WQLPGDICKWC-----GLHITYHTESTGSFHTQSTGDQEAL                  358 
cCX3CR1       YCPCLCFCGPCNHYDVRPSVSYAESMVNSNITLNTSDQDGTVFL               354 
cXCR1         YLPCCDEVSRIG------------SQAKFHYEDASIY                      335 
cCXCR1        VASSARMLWHATAAPPTLSPLATPPPPSEPHCSPRPSACSPGTPRTPAS          379 
cCXCR2        RGFISKD--------------AVARYGRTSYTSTSGNTS--TTL               170 
cCXCR5        LGCISQET-----------LQEILEVTRKGCGIESDNTTSISTF               371 
cCXCR4        VSRGSSLKILSK----------SKRGGHSSVSTESESSSFHSS                362 
hCCR1         RVAVHLVKWLPFLSVD-----RLERVSST-SPSTGEHELSAGF                355 
 

Fig. 2.4 (continued) 
 
 
 

 

 

Chromosomal locations and syntenies 

Comparisons of the chromosomal segments containing chemokines in human, 

mouse, and chicken indicated that the organization of the chemokine genes was 

generally conserved between chicken and mammals (Fig. 2.5 and Fig. 2.6).  Chicken CC 

and CXC chemokines are located on Chromosomes 1, 4, 6, 9, 13, 19, and Z.  Like 
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human and mouse, there were two large clusters in the chicken genome, located on 

Chromosome 19, containing 9 CCL genes.  Two CCL1-like (CCL1L1 and 2) and three 

chicken MCP-like (CCL/MCP-L1, L2, and L3) genes related to human and mouse 

MCPs, such as CCL2, 7, 8, 11, and 13, are in one cluster (Fig. 2.5A), and CCL5, CCL16, 

CCL3L1, and CCL4L1 genes in another cluster (Fig. 2.5B).  Another CCL cluster is 

located on Chromosome Z containing two genes, CCL19 and CCL21 (Fig. 2.5C).  Two 

CXCL gene clusters were located on Chromosome 4 and contained 6 genes, two CXCL8 

(CXCL8a and b) and one CCL15 genes in one cluster (Fig. 2.6A) and three CXCL13 

(CXCL13a, b, and c) genes in another (Fig. 2.6B).  Chicken shares the syntenies with 

mouse and human in all these regions.  There is one composite cluster containing one 

CX3CL1 and one CCL17 genes (Fig. 2.6E).  Synteny was conserved in chicken on one 

side of this cluster.  Chicken CCL20, CXCL12, CXCL14, and XCL1 are individually 

located on Chromosomes 9 (Fig. 2.5D), 6 (Fig. 2.6C), 13 (Fig.2.6D), and 1 (Fig. 2.6F), 

respectively, and the syntenies were highly conserved between chicken, mouse, and 

human in these four locations.  Mammalian CCL25, CCL28, and CXCL16 were not 

found in the chicken genome, although the syntenies associated with CCL25 and CCL28 

were also conserved in chickens.  A number of human chemokines, including CCL2, 7, 

8, 11, 15, 18, 23, 24, and 26, CXCL1, 2, 3, 4, 5, 6, 7, 9, 10, and 11 in chemokine clusters 

that share syntenies with chicken clusters on Chromosome 4, and 19 were not found in 

the chicken genome, indicating gene duplications in mammals. 
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Fig. 2.5 Genomic organization (syntenies) of human, mouse, and chicken CCLs, 

CX3CLs, and XCLs 
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Fig. 2.6 Genomic organization (syntenies) of human, mouse, and chicken CXCLs 
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 Fig. 2.6 (continued) 
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Chemokine receptor genes were also highly conserved between chicken, human, 

mouse, and were similarly clustered.  The largest cluster of chicken chemokine receptors 

was found on Chromosome 2, where 5 receptor genes (CCR2, CCR5, CCR8L1, CCR9, 

and XCR1) were identified.  Another cluster on Chromosome 2 contained CCR4, CCR8, 

and CX3CR1 genes.  Chicken CXCR1 and CXCR2 are also clustered as in mammals, 

but the chromosome segment is unknown.  The remaining CCR and CXCR genes are 

individually located on Chromosomes 3 (CCR6), 27 (CCR7), 7 (CXCR4), and 24 

(CXCR5).  Several human chemokine receptors, such as CCR1, CCR3, CCR10, CXCR3, 

and CXCR6 were not found in the chicken genome, though the syntenies associated with 

these receptors are present in the chicken genome. 

Gene structure 

According to the chicken genome sequence, chicken chemokine genes shared the 

typical three-exon CC and four-exon CXC gene structures with mammals except for 

CXCL13a and CXCL13b, which have only three exons.  Chicken chemokine genes are 

shorter than the corresponding human genes due to shorter introns in chickens.  The gene 

structure of chemokine receptors was also conserved between chicken and mammals.  

The EST sequences indicated that chicken chemokine receptor genes could have up to 5 

exons though the complete sequences were not available.  However, the expressed 

sequences showed that the amino acid sequences of  identified chicken receptors are 

mostly encoded in a single exon as are most of the mammalian chemokine receptors.  

Chicken ESTs aligned with the chicken genome sequence indicated that these receptor 

mRNAs had approximately 2 kb of 5' UTR, as did those found in humans.       



 

 

36 

Phylogenetic analysis and nomenclatures 

The phylogenetic trees (Figures 2.7, 2.8 and 2.9) showed that chicken CCL5, 16, 

17, 19, and 20 and all seven CXCLs were closely related to single specific human and/or 

mouse chemokine orthologs.  The phylogenetic trees together with the syntenies 

associated with these genes (Figs. 2.5 and 2.6) strongly indicate that these genes are the 

orthologs of those found in mammals; therefore, they are named accordingly. The 

phylogenetic results show that chickens have two CXCL8 and three CXCL13 genes 

(only one copy each in mammals), indicating gene duplications in aves.One chicken 

CXCL related to mouse CXCL15 but not to human CCLs is named as cCXCL15, which 

is also supported by the synteny of the chemokine cluster (Fig. 2.6A) . Chicken CCL21 

is named according to relatedness to the human and mouse and the highly conserved 

synteny (Fig. 2.5C). According to the phylogenetic tree in Figure 2.8, two directly linked 

chicken CCLs are remotely related to human and mouse CCL1. The synteny associated 

with these genes also indicated that they may be CCL-like genes (Fig. 2.5A); therefore, 

they are named as CCL1L1 and CCL1L2. Three closely related chicken CCLs that are 

directly linked to the CCL1-like genes are related to a group of clustered human and 

mouse MCP CCLs (2, 7, 8, 11, and 13) in the phylogenetic tree.  
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The synteny and phylogenetic tree do not provide information to a specific 

mammalian ortholog, though these three chicken genes are somewhat more similar to 

human CCL13 and mouse CCL2. The results indicate that these genes are chicken MCP-

like (Fig. 2.5A and 2.8); therefore, they are named ad CCL/MCP like (CCL/MCP-L1, -

L2, and -L3). A chicken CCL gene that is directly linked to CCL16 and CCL5 (Fig. 2.5B) 

is distantly related to chicken CCL5 in the tree. This gene has been reported as MIP-1ß-

like chemokine (Petrenko et al. 1995), which is CCL4 in human and mouse. Therefore, it 

is named as CCL4L1 in order to conform to the report. Another CCL in this cluster that 

does not display relatedness to other CCLs in the phylogenetic tree (Fig. 2.8) is named as 

CCL3L1 because this chemokine display highest sequence similarity to a human CCL3-

like chemokine, and it shares synteny with human CCL3 (Fig. 2.5B). Overall, CXCLs 

are more conservative amone chicken, human, and mouse than CCLs.        

 

 

 

 

 

 

 

 

 

 



 

 

38 

 

 

 
Fig. 2.7   Phylogenetic tree of the chemokine CC subfamily members that are not located 

on Chromosome 19. The tree was constructed using the amino acid sequences of 

chicken, human, and mouse chemokines. The numbers on the branches are bootstrap 

values (percentage that the simulation supports the original interpretation).   Human, 

mouse, and chicken are abbreviated as h, m, and c, respectively.  The scale bar reflects 

the horizontal distance at which amino acid sequences differ by 20% between two 

sequences 
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Fig. 2.8  Phylogenetic tree of the chemokine CC subfamily members that are located on 

Chromosome 19. The tree was constructed using the amino acid sequences of chicken, 

human, and mouse chemokines. The numbers on the branches are bootstrap values 

(percentage that the simulation supports the original interpretation).   Human, mouse, 

and chicken are abbreviated as h, m, and c, respectively.  The scale bar reflects the 

horizontal distance at which amino acid sequences differ by 20% between two 

sequences.    
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Fig. 2.9  Phylogenetic trees of the chemokine CXC subfamily constructed using the 

amino acid sequences of chicken, human, and mouse chemokines. The numbers on the 

branches are bootstrap values (percentage that the simulation supports the original 

interpretation).  Human, mouse, and chicken are abbreviated as h, m, and c, respectively.  

The scale bar reflects the horizontal distance at which amino acid sequences differ by 

20% between two sequence
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Chicken chemokine receptors can also be named according to mammalian 

nomenclature based on phylogenetic analysis (Fig. 2.10) and syntenies.  The genetic 

distances appear to be shorter between chicken and mammalian chemokine receptors 

than those between chicken and mammalian chemokines, which is probably due to 

highly conserved transmembrane domains in these receptors.  Chicken CCR4, CCR6, 

CCR7, CCR9, CXCR2, CXCR4, CXCR5, CX3CR1, and XCR1 were closely related to a 

mammalian ortholog based on the phylogenetic analysis.  There were two distantly 

related (relative to the distance between mice and human CCR8) CCR8 genes in 

chickens, the one closer to human CCR8 as CCR8a and the other as CCR8b.  There were 

also two chicken CCRs closely related to human and mouse CCR2 and CCR5, but the 

phylogenetic analysis could not distinguish them as either CCR2 or CCR5.  Because 

these two receptors were located in a conserved chromosomal region on chicken, human, 

and mouse chromosomes, these two chicken CCRs were named as CCR2 and CCR5 

based on the synteny in which  CCR2 is closer to XCR1 than CCR5.   

According to the ligand-receptor binding information discovered in humans (all 

but the receptors of CXCL14 and CXCL15 and the ligand of CCR11 are known) and the 

systematic nomenclature of chicken genes in the present study, all chicken chemokines 

and the receptors that recognize the identified chemokines were co-identified in this 

study except the ligand of CCR9, which is CCL25 in mammals (Table 2.2).  These 

putative ligand-receptor pairings can now be experimentally tested in the lab. 
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Fig. 2.10  Phylogenetic trees of chemokine receptors constructed using the amino acid 

sequences of chicken, human, and mouse chemokine receptors. The numbers on the 

branches are bootstrap values (percentage that the simulation supports the original 

interpretation).  Human, mouse, and chicken chemokines are abbreviated as h, m, and c, 

respectively, followed by the receptor named.  The scale bar reflects the horizontal 

distance at which amino acid sequences differ by 10% between two sequences. 
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Table 2.2  Systematic names, chromosomal locations, and putative identified cognate receptors of chicken chemokines1 

Nomenclature Chromosomal location (kb) Ligand name Putative  receptor Chromosomal location (kb) 
CCL1L1 
CCL1L2 

chr19:4,488-4,499  
chr19:4,491-4,492 

 

  I-309/TCA    CCR8a 
   CCR8b 

chr2:43,465-43,469  
chr2:41,804-41,811 

     

CCL13L1  
CCL13L2  
CCL13L3 
CCL16 

chr19:4,495-4,495  
chr19:4,499-4,499 
chr19:4,507-4,508 
chr19:258-260 

  MCP-? 
  MCP-? 
  MCP-? 
  HCC 

 
    

   CCR2 

 
 

chr2:41,765-41,773 

     

CCL3L1  
CCL4 
CCL5 

chr19:240-241  
chr19:251-252  
chr19:263-265  

MIP-1α  
MIP-1β 

  RANTES 

 
   CCR5 
 

 
chr2:41,782-41,790 

     

CCL17 chr11:768-770   TARC    CCR4 chr2:43,498-43,503 
     

CCL19  
CCL21 

chrZ_random:7,805-7,808 
chrZ_random:7,810-7,810 

  MIP-3β 
  SLC 

 

   CCR7 
 

chr27_random:665-675 
     

CCL20 chr9:4,119-4,121   MIP-3α    CCR6 chr3:38,589-38,596 
Not found2    CCL25    CCR9 chr2:41,880-41,882 
Unknown3      CCR11 chr2:41,409-41,413 
     

CXCL8b 
CXCL8a 

chr4:51,462-51,465  
chr4:51,475-51,478 

 

  IL-8       CXCR2  
   CXCR14  

chrUn:136,108-136,109 
chrUn:25,460-25,462 

     

CXCL12 chr6:18,184-18,194   SDF-1    CXCR4 chr7:31,441-31,443 
     

CXCL13a  
CXCL13b 
CXCL13c 

chr4:35,453-35,454  
chr4:35,456-35,458  
chr4:35,455-35,456 

BCA-? 
BCA-? 

  BCA-? 

 
   CXCR5 

 
chr24:5,242-5,249 

     

CXCL14 chr13:14,231-14,238     BRAK    Unknown3  
CXCL15 chr4:51,500,039-51,501,326   Lungkine    Unknown3  
CX3CL1 chr11:758,710-764,541   Fractalkine    CX3CR1 chr2:43,480,576-43,490,112 
XCL1 chr1:780,81,417-78,086,769   Lymphotactin    XCR1 chr2:41,831,759-41,832,766 
1 The systematic naming, ligand naming, and putative receptors are according to Bacon et al. (2002).   
2 CCL25 was not identified in this study. 
3 The information is currently not available in humans or mice. 
4 The ligand and receptor binding has been experimentally tested (Li et al., 2005) 
 

 



 

 

47 

Putative TFBS in novel chicken chemokines 

Promoter sequences with score range from 0.80 to 1, with 1 being best, were 

identified. Most of the promoters in chicken chemokine genes contain the typical TATA 

box (Table 2.3). In addition, the TATA box in the predicted promoter sequence is 

located 61 to 156 nucleotides upstream of the first ATG in exon 1 of chicken 

chemokines. Several transcription factor binding sites including sites for TATA-binding 

protein, HSF1 (heat shock factor 1), C/EBP� (CCAAT/enhancer-binding protein �), 

nuclear factor- �B (NF-�B), GATA motif, STAT2 (signal transducer and activator of 

transcription 2), IRF1 (interferon regulatory 1), and AP-1 have been identified in the 

3000 nucleotides upstream and downstream of the TATA box in the predicted  promoter 

of chicken chemokines.   

 Analysis of TFBS also indicate that binding sites for NF-�B were mostly 

located upstream of the TATA box, whereas the binding sites for C/EBP� and GATA 

motif were located downstream of the TATA box.  The sites for STAT3, STAT4, and 

IRF1 were present on the both sides of the TATA box.   

 

     

 

   

 

 

 



 

 

48

Table 2.3  The predicted promoter sequence and promoter score of chicken chemokine genes. The chicken chemokine genes 

are shown in italic and the TATA box in the chicken promoter is shown in bold 

 

 

 

Gene Predicted Promoter PS 

CXCL8-a(cCAF) CACAAAACTGTATAAAAGCACAATGGGTCTCCCTGTTCAGACATCAGCAA 0.97 
CXCL8-b(K60) CAGGACAGTATATAATCAAGGCAGGTACCAGAGCACAGCCACTGACCACC 0.99 
CXCL12 CGCACCAGGATTAAAGGACCGGGGACTGGGGTTAAAGGATCGCGCTGCGA 0.96 
CXCL13a CCGGGTTGGGTATAAAGCAGCCTAGCAGTGGCTCGGGGGCAGTGAGGATG 1.00 
CXCL13b GGGCGATGGGTGAAAACCACCCCCAACCCCTGGGCCTCCCATGCGCCGCC 0.88 
CXCL13c ATCTGACTGCAATAAAAAAAACCCCTTGCATGGGGCCTGTGTTCTGATGT 0.99 
CXCL14(JSC) GCGGGAGCGCATTTAAAAGGGGACGAGCGGGGGGGAACGCGGCAGAGCTC 1.00 
CXCL15 TACCGAGAGAATAAAAGCAATGGGGACAGCGAGGCGGCACAGCCAGCACG 0.90 
CCL/MCP-
L1(Ah221) 

CAGCTGCGGGATAAAAGTGGCAGTGCAGCAGGGGCTGAGCATTGTGCAGA 0.97 

CCL/MCP-L2 CAGCGGCGGGTTAAAAGTGGCAGTGCAGCAGGGGCTGAGCATTGTGCAGA 1.00 
CCL/MCP-L3 GAGGCTGGGGATAAAAGTGGCAGTGCAGCAGGGGCTGAGCATTGTGCAGA 0.97 
CCL1L1 GGCCAGGGGCTATATAATGCCGAGGTACAGGCAGGTAGCACTCAGCAGCA 0.98 
CCL1L2 TGCTGCACCATAAAAGCAGCCCAGCGGTCCCATCCCAAGCAGAAGGGAAA 0.97 
CCL3L1 CCTGGTTGCATAAAGAAAGCCCCATCATTCTGGGTAGTGCTGCAAGAAGG 0.96 
CCL4L1(MIP-1�) AGCCACACGCCCTATAAATTGGGCAGTTGCTGAATGTCTCAGCATCACAG 0.99 

CCL5(Ah294) CACCAGCCCGATAAAAGGCGAGGAGCATCCCAGCCACTCCACACCACACC 0.97 
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Table 2.3 (continued) 

 

 

 

 

 

 

 

 

 

CCL16(K203) GGACTCCCTATTAAAAGGGATCTGCATCCATCTGCTGCAGACCGCCCCGC 0.97 
CCL17 CTGGAGAGGATAAATTGCAGCAGCTCCCTGCCGAGCTAGCAGAGCTCCCT 0.85 
CCL19 CTCTATGGTGGAAATAAGGGGAGGAGTGTGGGTTATTAAGTGGGATAAAT 0.80 
CCL20(Ah189) CAACTGCTTTATAAGCAGGTGGAGAAGCGTTGAGGCTGGCAGTACAGGCA 0.96 
CCL21 AAGCGACCGCAGATAAATTGGAGCAGCTGAAGCTCAGGACAGCAGTGTGT 0.88 
CX3CL1 TGGGTCAACCTAGAAGAGCCGCTCTGGAGGTGGTGGGAGCTCTTGGATGG 0.80 
XCL1(Lymphotactin) ACTGACAATATATAAACTCTGTGAAAGGCACCTCACCATAACCACTTTCT 0.99 
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DISCUSSION 

We systematically searched for all chicken chemokine and chemokine receptor 

genes in the recently available draft chicken genome.  Without this information, it may 

have taken years to find chicken chemokines and their receptors.  In order to find 

additional chicken chemokines after using the comparative genomic approach, I 

conducted low stringency BLAST against all chicken ESTs.  No additional chemokines 

were identified, which indicated that the comparative genomics approach based on 

syntenies was very effective in finding chicken chemokines.  The independent 

nomenclature of chicken chemokines and their cognate receptors, and mammalian 

chemokine-receptor binding information suggest that most of the genes have been 

identified.  The sole exception was CCL25, the only known ligand of CCR9 in mammals, 

which was not found in this study, although its receptor was identified.  Likewise, 

CXCL14, and CXCL15 were identified in both chickens and mammals, but their 

receptors are unknown.  Therefore, it is very likely that there are additional chicken 

chemokine and chemokine receptor genes in the chicken genome and that they may lie 

in genomic regions that lack sufficient sequence coverage. 

Although most of the systematic nomenclature of the chicken genes was 

unambiguous based on both of phylogenetic trees and syntenies, the information that 

was used to name seven chicken CCLs as CCL1L1, CCL1L2, CCL3L1, CCL4L1, 

CCL/MCP-L1, CCL/MCP-L2, and CCL/MCP-L3  and to distinguish two chicken 

chemokine receptors into CCR2 and CCR5 may have been inadequate. CCR2 and CCR5 

are closely related and tightly linked in the human, mouse, and chicken genomes.  The 
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phylogenetic analysis indicates these genes were duplicated after the divergence between 

mammals and aves. Further lab testing of ligand binding will make them more 

distinguishable in terms of biological functions.  Chicken CCL1/MCP-L1, -L2, and -L3 

were related to a group of clustered mouse and human MCP CCLs; therefore, specific 

cognate receptors must be tested to distinguish them.  In humans, the chemokines of this 

MCP group and MIPs, such as CCL3, CCL4, and CCL5 can bind to more than one 

receptor, such as CCR1, 2, 3, and/or 5, but not both, such as CCR2 for MCPs and CCR5 

for MIPs.  Therefore, chicken CCR2 and CCR5 may be two receptors that recognize 

these two groups of CCL chemokines.  Interestingly, two CCL1 like (CCL1L1 and 

CCL1L2) and two CCL1 receptor (CCR8a and CCR8b) genes were found in the chicken 

genome. The ligand-receptor binding for these four genes can not be determined in this 

study. Nerveless, the names assigned based on comparative analysis in this study may 

prove useful in order to apply the functional and physiological knowledge from other 

species to chickens. Further lab testing must be carried out to confirm the ligand and 

receptor binding and to understand their biological functions.  

Chicken chemokine ESTs were highly represented in the EST database.  There 

were several ESTs aligned to each identified chicken chemokine gene in the UCSC 

Genome Browser.  The sequences assembled from ESTs probably contained most, if not 

all, of the full-length chemokine mRNA sequences.  Promoter sequences with a typical 

TATAA were detected with promoter prediction software (Table 2.3).  However, there 

were only a few ESTs that partially cover chicken chemokine receptor genes.  Some of 

these ESTs contained translation start sites.  These EST sequences and reported 
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complete coding sequences indicate that the amino acid sequences of chicken chemokine 

receptors were mostly encoded in one exon.  The predicted amino acid sequences were 

of the expected length and aligned very well with the coding sequences of non-chicken 

reference genes in the UCSC Genome Browser. The conserved gene structure of this 

receptor family and high sequence similarity between chicken and mammals suggested 

that the predicted coding sequences were very accurate, especially for those with ESTs 

containing translation start sites.  CCR4 was the only predicted gene that did not have a 

matching EST and CXCR2 was the only identified gene with partial sequence. Further 

study including sequencing expressed sequences is needed to confirm these genes.   
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CHAPTER III 

A NOVEL TOLL-LIKE RECEPTOR HOMOLOGOUS TO TOLL-

LIKE RECEPTOR 21 IN FISH 

INTRODUCTION 
 

TLRs are a family of type I transmembrane receptors with an amino- terminal 

extracellular domains and a carboxy-terminal cytoplasmic region called Toll/Interleukin-

1 receptor (TIR) domains (Bell et al. 2003) (Fig. 3.1). The extracellular region contains 

19-25 tandem copies of leucine-rich repeat (LRR) motifs, which are involved in ligand 

binding. The typical LRR consensus sequence for the TLRs is arranged in a 24-residue 

repeat motif, consisting of XL2XXL5XL7XXN10XL12XXL15XXXXF20XXL23X, where X 

can be any amino acid; and the leucine residues, at positions 2,5,7,12,15, and 23 are 

occasionally replaced by other hydrophobic amino acids (Buchanan and Gay 1996). F at 

position 20 is a conserved phenylalanine; and N is asparagine and is often replaced by a 

cysteine or threonine.  

   The intracellular TIR domains are mostly conserved in TLRs and mediate 

protein-protein interactions between the TLRs and different adapter proteins such as 

MyD88, resulting in the activation of nuclear factor �B and mitogen-activated protein 

kinase signal transduction pathways (Barton and Medzhitov, 2003). TLR family 

members can be divided into five subfamilies based on the comparison of the amino acid 

sequences: the TLR2, 3, 4, 5, and 9 subfamilies (Takeda and Akira 2003). The TLR2  
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Fig. 3.1  A Toll-like receptor (TLR). All TLRs are integral membrane glycoproteins 

with an N-terminal ectodomain and a single transmembrane domain. The ectodomain of 

a TLR7, TLR8 and TLR9 family member is depicted, with the LRR solenoid shown 

with a gray molecular surface, and the N- and C- terminal flanking regions shown in 

green and purple, respectively. An undefined region present in TLR7, TLR8 and TLR9 

but not in the other TLRs, is shown as a light-blue string. Insertions within LRRs at 

position 10 are indicated in red and might contribute to the formation of the pathogen-

associated molecular pattern (PAMP) binding site. An insert at position 15 is indicated 

in yellow, and is expected to originate on the convex face of the TLR. The TIR domain 

structure was taken from pdb 1FYV (Bell et al. 2003) 
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subfamily is composed of TLR1, 2, 6, and 10; the TLR9 subfamily is composed of 

TLR7, 8, and 9.  

In the chicken, nine different TLRs (chTLR) have been identified and 

characterized (Fukui et al. 2001; Leveque et al. 2003; Philbin et al. 2005; Yilmaz et al. 

2005; Higgs et al. 2006) and a non-functional TLR8 (Iqbal et al. 2005).  Two types of 

chicken TLR2 were cloned and both genes were mapped to the same chromosomal 

segment on chromosome 4, suggesting that they arose by gene duplication (Fukui et al. 

2001).  Allelic variation in chTLR4 was associated with resistance to infection with 

Salmonella enterica Serovar Typhimurium in chickens (Leveque et al. 2003).  

Predictions of the TLR family in the pufferfish (Fugu rubripes) and zebrafish (Danio 

rerio) genomes were recently reported (Oshiumi et al. 2003; Jault et al. 2004; Meijer et 

al. 2004), showing that the counterparts of most of known mammalian TLR genes were 

identified in the pufferfish genome with the exception of TLR4 and TLR 6, while two 

novel TLRs, TLR21 and TLR22, were found (Oshiumi et al. 2003). Analysis of the 

zebrafish genome resulted in the discovery of the orthologues of human TLR genes with 

a homologue of TLR4 in addition to TLR21 and TLR22 (Jault et al. 2004; Meijer et al. 

2004). The human and mouse genomes do not contain TLR21 and TLR22 genes. The 

newly available chicken draft genome sequence and a large number ESTs has allowed 

systematic identification and annotation of novel chicken TLR genes.  The objective of 

this study was to test whether TLR21 and TLR22 genes exist in the chicken using 

bioinformatics, to compare their predicted structures with fish TLR homologues, analyze 

their expression patterns and ligand inference based on comparative genomics .   
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MATERIALS AND METHODS 

Identification of a novel toll-like receptor 

BLAST searches were carried out with TBLASTN program using fugu TLR21 

and TLR22 sequences as queries at the National Center for Biotechnology Information 

(NCBI) database (Altschul et al. 1997). Expressed Sequence Tags (ESTs) and chicken 

mRNA sequences in the corresponding chromosomal regions were then identified and, if 

necessary, assembled with the CAP3 program.  These sequences were aligned with the 

corresponding chicken genomic sequence and any deletions or insertions corrected. 

Sequences were then submitted to ORF Finder (Open Reading Frame Finder). Also, the 

chicken draft genome sequence released on March 1, 2004 by the National Institutes of 

Health (http://mgc.ucsc.edu/cgi-bin/hgGateway) was used for BLAT searches using the 

following queries; Fugu TLR21 (BAC66138), Fugu TLR22 (AAW69372), zebrafish 

TLR21 (AY389459) and zebrafish TLR22 (AY389460) respectively.  

The retrieved ESTs were used to design primers with Primer Express 2.0 

(Applied Biosystems, Foster City, CA) to amplify cDNA fragments overlapping full 

coding sequences of the TLR with three PCR reactions.  PCR was performed as follows: 

An initial denaturation step at 940C for 2 min and 35 cycles of denaturation, annealing, 

and extension at 940C for 30 sec, 590C for 45 sec, and 720C for 1 min, and a final 

extension step was carried out at 720C for 10 min. Unincorporated nucleotides were 

removed from amplified PCR products using BioMax spin-50 mini-columns (Millipore, 

Billerica, MA).  BigDye terminator cycle sequencing ready reaction kits and an ABI 
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Prism 377XL DNA Sequencer (Applied Biosystems) were used for DNA sequencing in 

the Gene Technologies Laboratory at Texas A&M University.   

Sequence analysis 

The amino acid sequence of the putative chicken TLR21 was predicted based on 

the open reading frame of the expressed nucleotide sequences (ESTs or mRNAs).  The 

initiation codon was predicted using the ATGpr program (Salamov et al. 1998). The 

protein sequences were used as queries with BLASTP to search against the non-

redundant protein database in Genbank for homologous hits.  Complete amino acid 

sequences of currently known human, mouse and chicken TLRs were retrieved from 

Genbank for comparison and sequence analysis.  The functional domain structures were 

predicted using the SMART 4.0 program (http://194.94.45.211/) (Ponting et al, 1999) 

and the hydrophobic profile analysis for predicting transmembrane domain (TM) was 

performed by the program of the Weizmann Institute of Science 

(http://bioinformatics.weizmann.ac.il/hydroph/plot_hydroph.html).  Signal peptide 

sequences were predicted using the Signal 3.0 program 

(http://www.cbs.dtu.dk/services/SignalP/) (Bendtsen et al. 2004) with the settings 

‘eukaryotes’ using both the neural network and hidden Markov model methods.  The 

alignment of TLR21 amino acid sequences was performed using the MultiAlin program 

(Corpet, 1988).      

Phylogenetic trees were constructed by the MEGA program (Kumar et al. 2004) 

using the neighbor-joining method based on the alignment of the amino acid sequences 
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of the extracellular LRR domains and intracellular TIR domains of TLRs individually, 

predicted by SMART software.  

The sequence data used for the phylogenetic tree construction with accession numbers of 

human, mouse, chicken, Fugu  and zebrafish are: human toll like receptors  hTLR1 

(GenBank accession number: NM_003263 ),  hTLR2( NM_003264),  hTLR3( 

NM_003265), hTLR4( U88880), hTLR5( NM_003268), hTLR6(  NM_006068), 

hTLR7( NM_016562), hTLR8( AF245703), hTLR9( AF245704), hTLR10( AF296673), 

Mouse toll like receptors from mTLR1 through 13 were mTLR1 (NM_030682), mTLR2 

(NM_011905), mTLR3 (NM_126166), mTLR4 (NM_021297), mTLR5 (AF186107), 

mTLR6 (AF314636), mTLR7 (NM_133211), mTLR8 (NM_133212), mTLR9 

(NM_031178), mTLR11 (NM_205819), mTLR12 (NM_205823), mTLR13 

(NM_205820). Chicken toll like receptors were chTLR1 type 1 (NM_001007488), 

chTLR1 type 2 (AY633573), chTLR2 type 1(AB050005), chTLR2 type 2 (AB046533), 

chTLR3 (AY633575), chTLR4 (AY064697), chTLR5 (NM_001024586), chTLR7 

(NM_001011688). Fugu and zebrafish toll like receptors with accession numbers were 

Fugu TLR21 (BAC66138), Fugu TLR22 (AAW69372), zTLR2 (NM_212812), zTLR3 

(NM_001013269), zTLR4b (NM_212813), zTLR21 (AY389459) and zTLR22 

(AY389460).   

The MEGA program constructs the phylogenetic trees with the options of 

bootstrap test, pairwise deletion, and poisson correction. The topological stability of the 

neighbor-joining trees was evaluated with 1000 bootstrapping replications.    
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Tissue expression profiles 

Total RNA was isolated from whole blood cells, kidney, liver, lung, oviduct, 

small intestine, large intestine, and spleen of a laying White Leghorn hen (Gallus 

domesticus) and extracted using TRIZOL reagent (Invitrogen, Carlsbad, CA) according 

to the manufacturer’s instructions.  White blood cells were isolated from the blood 

samples using Histopaq 1.099 (Sigma, St Louis, MO).   RNA samples were quantified 

with a UV spectrophotometer (Brinkmann Instruments, Westbury, NY) and the quality 

of the RNA assessed by agarose gel electrophoresis. Genomic DNA was removed by 

incubation with RNase-free DNase I (Invitrogen). Each tissue was reverse transcribed 

into cDNA by random hexamer priming using the ThermoScript kit (Invitrogen).  The 

primer sequences used for RT-PCR were designed based on the cDNA sequence of the 

predicted chTLR21 using Primer Express 2.0 program (Applied Biosystems) with 

forward (5'- GAGCTGCAGACGCTGGATTTA -3’) and reverse (5'-

CCACTGTGAGATGTACTGCAGGTT -3') primers.  Approximately 50 ng of the first-

strand cDNA was amplified in a 10 µL PCR reaction that contained 1 µL 10 X Taq 

reaction buffer (500 mM KCl, 100 mM Tris-HCl, and 15 mM Mg (OAC) 2, pH 8.3), 0.2 

�M of each of the forward and reverse primers (Table 1), 0.2 mM of dNTP mix, and 0.3 

U Taq DNA polymerase (New England Biolabs, Beverly, MA).  PCR was carried out 

using a thermocycler (MJ research, Watertown, MA). For an internal marker, RT-PCR 

for chicken cytoplasmic �-actin (X00182) was carried out under the same conditions. 

The primers for �-actin were 5' -CTGATGGTCAGGTCATCACCATT- 3'(sense) and 5'-

TACCCAAGAAAGATGGCTGGA-3' (antisense). PCR conditions described to amplify 
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expressed TLR21 sequence (5'-UTR and 3'-UTR) were also used to detect tissue 

expression. PCR products were analyzed by 1.5 % agarose gel electrophoresis and 

stained with ethidium bromide. The PCR fragments were directly sequenced to confirm 

the identity of the amplified product. 

Ligand inference of in silico analysis 

A bioinformatic approach was used to predict possible ligands of the new 

chicken Toll-like receptor. Several methods of identifying conserved domains and 

functional sites from protein sequence were used. Leucine-rich repeat (LRR) motifs 

were predicted with the SMART program with the default parameters (http://smart.embl-

heidelberg.de/). The pathogen-binding ectodomains were used as queries to search 

similar known motifs using the PROSITE program (http://expasy.nhri.org.tw/prosite/) 

against the protein pattern database. The BLOCKS program 

(http://blocks.fhcrc.org/blocks/blocks_search.html) was used against the Blocks 

database. MotifFinder program searches were performed against Motif Libraries 

(http://motif.genome.jp/). BLASTP searches were also carried out against the non-

redundant protein database in Genbank to find homologs. 

ChTLR21 protein subcellular localization prediction  

LOCtree (http://cubic.bioc.columbia.edu/cgi/var/nair/loctree/), PSORT II (http:// 

psort.nibb.ac.jp), TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) and SignalP 

program (http://www.cbs.dtu.dk/services/SignalP/) with different algorithms for 

detecting sorting signals were exploited to determine chTLR21 protein subcellular 

localization. 
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RESULTS 

Novel chicken putative TLR21 

Fish TLR21 and TLR22 were retrieved from Genbank to find orthologs in 

chicken using fugu and zebrafish TLR21 and TLR22 protein sequences. Blast analysis of 

the chicken genome database identified one mRNA sequence that encoded protein with 

homology to both of fugu TLR21 and TLR22 but no clone similar only to TLR 22 was 

obtained.  The newly identified gene was named as chTLR21 (GenBank accession 

number: AJ720600) based on comparison of the identities of protein sequences and 

phylogenetic analysis. The amino acid sequence of the putative chicken TLR21 was 

predicted based on the open reading frame of the expressed nucleotide sequences.  The 

amino acid sequence of the putative chTLR 21 is highly homologous to sequences of 

fugu TLR21 and fugu TLR22.  The partial 5�UTR and 3�UTR of chicken TLR21 was 

then cloned (GeneBank Accession number: DQ158908 and DQ198090) and sequenced 

and shown to extend the 5� end by 393 nt and the 3� end by 150 nt of the published 

cDNA (Caldwell et al., 2005).  The presence of an upstream in-frame terminator codon 

in the ORF of the chicken TLR21 gene, one ATG codon downstream from the stop 

codon in the 5� -upstream region and the existence of a signal peptide sequence showed 

that this ATG is a good candidate for the translation start codon. The program for 

predicting the initiation codon (http://www.hri.co.jp/atgpr/) also indicated that this ATG 

is the start codon.  Based on these results, we conclude that the chicken TLR21 ORF 

consists of 3346bp that encodes 959 amino acids.  Analysis of the 5�-upstream regulatory 
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region of chicken TLR21 gene demonstrated that a putative TATA box (TATAA) is 

located at 892bp upstream from the putative translation initiation site (data not shown). 

Sequence homology revealed that the putative chicken TLR21 protein was 43% 

identical to Fugu TLR21, and had 59% similarity with a partial sequence of zebrafish 

TLR21. In addition, the degree of homology was higher in the trans-membrane and 

cytoplasmic domains than the extracellular domain.  The homology in the extracellular 

domain was 40% whereas the homology in the cytoplasmic domain was 53% between 

chicken and Fugu TLR21.  

Sequence analyses 

The deduced protein sequence of the identified chicken TLR21 gene had typical 

TLR structure (Fig. 3.2) and similar domain arrangement as Fugu TLR21. Like all 

reported mammalian TLR molecules, chicken TLR21 had several LRRs in the N-

terminal region, a transmembrane domain and the TIR domain at the C-terminal end 

predicted using SMART program. There were eight more LRRs in Chicken TLR21 than 

Fugu TLR21. In addition, chicken TLR21 was composed of the most populated typical 

motifs whereas the LRRs in Fugu 21 belong to outlier motifs.  
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ChTLR21 

 

 

Fig. 3.2  Secondary structures of chicken TLR21 polypeptide. The vertical dark blue bars represent trans-membrane domains.  

Pink bars represent simple sequences.  Abbreviations used: TIR: Toll/Interleukin-1 receptor, LRR: outlier type leucine-rich 

repeats, LRR_TYP: leucine-rich repeats (typical and most populated), LRRCT: leucine-rich repeat at the C-terminal domain 
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The complete chicken TLR21 amino acid sequence was aligned with currently 

available TLR21 in other species using the Clustal W algorithm (Fig. 3.3). In this study, 

we also considered zebrafish TLR21 which is incomplete and contains only TIR domain. 

The transmembrane domain was 23 amino acids in length in all of TLRs.  The TIR 

domain was similar in length but fugu TLR21 was 7 amino acids longer than chicken 

TLR21 while zebrafish TLR21 was 11 shorter respectively. Alignment of amino acid 

residues also suggests that the extracelullar regions are less conserved than the rest of the 

domains and the residues in TIR domain were highly conserved among all species (Fig. 

3.3). 

As described previously in zebrafish and higher vertebrates (Jault et al, 2004; 

O’Neill et al., 2003), the three main conserved amino acid motif were also located in the 

chicken TLR 21 core TIR structure. The first one seemed to conserve the described 

(F/Y) DA consensus motif. The second one contained three conserved amino acid 

residues, namely R, D and G, reported to constitute a loop in the TIR domain of human 

TLR2.  

The last box is characterized by the conserved FW motif, which is found in the 

last �-helix of TIR of human TLR2. Examples of other such conserved amino acids 

include 13 residues in chicken TLR21 (AVYNSRKTVCVVS) that differ by 2 amino 

acids from Fugu TLR21.  In addition, VLLRRTYLRWP (11 residues) in chTLR21 

differ only by 4 amino acids from fugu or zebrafish TLR21.    
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chicken   MCPSHCCPLWLLLLVTVTLMPMVHPYGFRNCIEDVKAPLYFRCIQRFLQSPALAVSDLPP 60  
zebrafish ------------------------------------------------------------ 
 
chicken   HAIALNLSYNKMRCLQPSAFAHLTQLHTLDLTYNLLETLSPGAFNGLGVLVVLDLSHNKL 120 
zebrafish ------------------------------------------------------------ 
 
chicken   TTLAEGVFNSLGNLSSLQVQHNPLSTVSPSALLPLVNLRRLSLRGGRLNGLGAVAAAVQG 180 
Fugu                                                             MAVSS 5 
Zebrafish ------------------------------------------------------------ 
 
chicken   LAQLELLDLCENNLTTLGPG-PPLPASLLTLQLCNNSLRELAGGSPDMLWHVKILDLSYN 239 
Fugu      LKNLTLLDLCFNRLTSLSHSNVSLPESLNRLYLCRNNLSTLG-CEPSFLGSIEILDLSYN 64 
zebrafish ------------------------------------------------------------ 
 
chicken   SISQAEVFTQLHLRNISLLHLIGNPLDVFHLLDISDIQPRSLDFSGLVLGAQG-LDKVCL 298 
Fugu      SELPTKALEGVNLRRINYLRLRSTKVNIVEFIQNSDIHAGHVDFTSTHLNTEAKLVELCK 124 
zebrafish ------------------------------------------------------------ 
 
chicken   RLQ-GPQALRRLQLQRNGLKVLHCNALQLCP-VLRELDLSWNRLQHVGCAGRLLGKKQRE 356 
Fugu      LLKRKLSRITKLTLVGNKIETLTANTLAHCPNITKTLDLSKVGQKKSDCLQFLKEQRQ-- 182 
zebrafish ------------------------------------------------------------ 
 
chicken   KLEVLTVEHNLLKKLPSCLGAQVLPRLYNISFRFNRILTVGPQAFAYAPALQVLWLNINS 416 
Fugu      -ITTFIAEHNHYSSLPTCEDEDPFRQLEELRYRYNRILSVNSHAFHHTPNLKTLWLNINT 241 
zebrafish ------------------------------------------------------------ 
  
chicken   LVWLDRQALWRLHNLTELRLDNNLLTDLYHNSFIDLHRLRTLNLRNNRVSVLFSGVFQGL 476 
Fugu      IAFLHQKALSGLRQLSTLRLDNNLLSDLFADTFEDLFNLNILNLRNNRISVIFNNTFRNL 301 
zebrafish ------------------------------------------------------------ 
  
chicken   AELQTLDLGGNNLRHLTAQSLQGLPKLRRLYLDRNRLLEVSSTVFAPVQATLGVLDLRAN 536 
Fugu      KNLTTLDLGGNKITHFEPSGLCGLERLSKLYLDGNNLQTIDSSAYHIFQNTLTTLDLRQN 361 
zebrafish ------------------------------------------------------------ 
 
Chicken   NLQYISQWLRKPPPFRNLSSLYDLKLQAQQPYGLKMLPHYFFQGLVRLQQLSLSQNMLRS 596 
Fugu      MIHFEEDVN--FSPFVNLTKLEDLKLDEQKPYGLHILPRTLFRGLYSLRSLYVKNNMISY 419 
Zebrafish ------------------------------------------------------------ 
 
 
 

Fig. 3.3  Alignment of amino acid sequences of chicken TLR21, Fugu TLR21, and 

zebrafish TLR21. Alignment gaps are indicated by dashes. Sequences with identical 

amino acid in at least 50% of the TLR21 are highlighted in gray. Sequences identical in 

all species are highlighted in dark gray. The predicted transmembrane and 

Toll/Interleukin-1 receptor (TIR) domains are underlined and double underlined, 

respectively. The signal peptide cleavage site was predicted using SignalP 3.0 

(http://www.cbs.dtu.dk/services/SignalP/) and the signal peptide is bold and italic 
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chicken   IPPDVFEDLGQLRSLALADSSNGLHDLPDGIFRNLGNLRFLDLENAGLHSLTLEVFGNLS 656 
Fugu      LAADVFRDLKHLNFLSLDNCCVGPTHLPAGIFKDLTNLTILTVENMGIQNLSTEVFGNIS 479 
zebrafish ------------------------------------------------------------ 
  
chicken   RLQVLHLARNELKTFNDSVASRLSSLRYLDLRKCPLSCTCDNMWLQGW-LNNSRVQVVYP 715 
Fugu      QLKKIQLNHNVMQTFPVTVLQSLTKLQYLDIRNVPLSCTCENSLLRNWTVNNQKVQMIYL 539 
zebrafish ------------------------------------------------------------ 
 
 
chicken   YNYTCGSQHNAYIHSFDTHVCFLDLGLYLFAGTAPAVLLLLVVPVVYHRAYWRLKYHWYL 775                                                                           
Fugu      YSLPCPHDPKVKFFNFDTSVCNIDLGQYLFFCTAPWIFLFTVWPLLYVKLYWKIKYSYYV 599 
zebrafish ------------------------------------------------------------ 
 
chicken   LRCWVNQRWRRE---EKCYLYDSFVSYNSADESWVLQKLVPELEHG--AFRLCLHHRDFQ 830 
Fugu      FRSWFSEQWRRLREKEENCKYDAFISYNSSDELWVMNELLPNLEGNGSSFKICLHHRDFE 659 
Zebrafish -----GEQWRRLRDQEEKYNYDAFVSYNSADEDWVMEQLLPNLEG--SSFRLCLHHRDFE 53 
 
chicken   PGRSIIDNIVDAVYNSRKTVCVVSRSYLRSEWCSLEVQLASYRLLDERRDILVLVLLEDV 890 
Fugu      PGRYIIDNIVSAVYSSRKTICVVSRNFLSSEWCSLEIQLASYRLFDEHRDVLLLVLLEPI 719 
Zebrafish LGRDIVDNIVAAVYGSRKTICVVSQSFLRSEWCSLEIQLASYRLFQEMQDVLLLVFLEPI 113 
 
chicken   GDAELSAYHRMRRVLLRRTYLRWP----LDP-AAQPLFWARLKRALRWVEGGEEEEEEGL 945 
Fugu      SERQLSSYHRMRKVMLKKTYLQWPGSECTNPLQAQGLFWSQLRRAIGTTSRIETEEKGTR 779 
zebrafish PERQLSAYHRMRKVMLKKTYLQWPGSNCSDPNSAKE------------------------ 149 
  
chicken   GGGTGRPREGDKQM 959 
Fugu      VANKEDADASDNHV 793 
zebrafish -------------- 
 
 
 

Fig. 3.3 (continued) 
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Phylogenetic trees were constructed based on multiple sequence alignments of 

the amino acid sequences of the conserved LRR and TIR domains individually (Figs. 3.4 

and 3.5) among mammal and other species using the neighbor-joining method (Saitou 

and Nei, 1987) within the Molecular Evolutionary Genetics Analysis [MEGA(3.0)] 

package (Kumar et al. 2004). Data was analyzed using poisson correction.  As shown in 

figures 3.4 and 3.5, phylogenetic trees drawn based on the amino acid sequences of the 

N-terminal LRR and C-ternimal TIR are similar. TLRs can be grouped into five 

subfamilies of TLR2, 3, 4, 5, and 9 in both phylogenetic trees.  The naming of the 

chicken TLR21 was further supported by the phylogenetic trees. The phylogenetic trees 

also indicate that TIR domains from TLR22 and 21 have a common ancestor in fish and 

Fugu before separation. In addition, it can be found that the TIR domains of TLR21 

genes form a group with TLR22. This branch is only present in fish and chickens. The 

main difference between these two phylogenetic trees is that hTLR1 and hTLR6 are 

more closely related to mTLR1 and mTLR6 in the tree constructed based on the 

extracellular LRR domains. 
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Fig. 3.4  Phylogenetic tree constructed based on the amino acid  sequences of  amino- 

terminal leucine-rich repeats (LRR) domains of chicken, human, mouse, pufferfish and 

zebrafish Toll-like receptors.  Data was analyzed using Poisson correction and gaps were 

removed by complete deletion. The bootstrapping values are indicated by the numbers at 

the nodes. Human, mouse, and chicken Toll-like receptors are abbreviated as hTLR, 

mTLR, and chTLR, respectively.  ChTLR1-1, chTLR1-2, chTLR2-1, and chTLR2-2 

represent chTLR1 type 1, chTLR1 type 2, chTLR2 type 1, and chTLR2 type 2, 

respectively  
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Fig. 3.5  Phylogenetic tree constructed based on the amino acid  sequences of  carboxy-

terminal Toll/Interleukine-1 receptor (TIR) domains of chicken, human, mouse, 

pufferfish and zebrafish Toll-like receptors. Data was analyzed using Poisson correction 

and gaps were removed by complete deletion. The bootstrapping values are indicated by 

the numbers at the nodes. Human, mouse, and chicken Toll-like receptors are 

abbreviated as hTLR, mTLR, and chTLR, respectively. ChTLR1-1, chTLR1-2, chTLR2-

1, and chTLR2-2 represent chTLR1 type 1, chTLR1 type 2, chTLR2 type 1, and 

chTLR2 type 2, respectively 
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Conservation of synteny 

 Analyses of human, mouse and chicken genomes demonstrate the conserved 

syntenies. This novel chicken toll like receptor lies between SLC7A6 and NDRG4 genes 

(Fig. 3.6). The order, chromosomal location and orientation of these two genes preserve 

in both of human and mouse genomes although there is no evidence of a TLR between 

them.   Both of fugu and chicken TLR21 contains one single exon in the coding region 

although whether the chromosomal locations are conserved or not is unknown due to the 

unassembled fugu genome. The chicken TLR21 gene consists of two exons. Exon one 

and 2 in fugu gene seem to be a single exon.   
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Fig. 3.6  Comparative genomic synteny in human, mouse, and chicken for flanking 

genes of chicken TLR21 
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Tissue expression profiles 

To assess whether the predicted chicken TLR21 gene was expressed, the 

expression of chicken TLR21 mRNAs in different tissues such as the blood, kidney, 

liver, lung, oviduct, small intestine, large intestine and spleen was examined by RT-

PCR. Chicken TLR21 was widely expressed in all eight tissues tested (Fig. 3.7), with 

strong expression in spleen, small intestine and large intestine.  

 

 

 

chTLR21                
    

ββββ-actin                

                               1       2       3       4       5       6      7      8 

 

Fig. 3.7  RT-PCR analysis of chicken Toll-like receptor 21 gene expression among 

different tissues. (1) kidney, (2) liver, (3) lung, (4) oviduct, (5) small intestine, (6) large 

intestine, (7) spleen and (8) white blood cells. The chicken β-actin gene was used as a 

control for constitutive expression
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Predicted ligand  

A leucine zipper motif (PS00029, Accession number in PROSITE database) 

(periodic repetition of leucine residues at every seventh position) was detected within the 

LRR8 and LRR9 sequences of the chicken TLR21 by PROSITE program. In addition, 

this leucine zipper motif is present in human toll like receptor 3, 7, 9 and 10, mouse toll 

like receptor 3, 7, 8 and 9, chicken toll like receptor 2 types 1, 3, 7 and 21. The sequence 

homology search of the protein database showed that there is a block (sequence 

DLSHNKL) having 100% identity with mouse TLR9 by BLOCKS program. Two DNA 

binding pattern (IPB001275 and IPB006821) were detected in chTLR21 by MotifFinder 

program. 

The LRRs of chTLR21-ECDs follow the typical 24-residue LRR consensus 

sequence with characteristically spaced hydrophobic amino acid residues (Fig. 3.8). 

There are three insertions at the position 15 of the LRR7, LRR8 and LRR10 in 

chTLR21. When chTLR21 insertion sequences were BLASTP searches against the 

NCBI database, it hits human toll like receptor 9 with high score. The alignment 

between chicken chTLR21 insertion sequences and hitted human toll like receptor 9 

sequence is shown in Figure 3.9. This hitted sequence is contained in the insertion of the 

human TLR9 LRR.
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Leader        1 MCPSHCCPLWLLLLVTVTLMPMVHP  
LRR1         61 HAIALNLSY   NK MRCLQPSA                      FAHLT 
LRR2         85 QLHTLDLTY   NL LETLSPGA                      FNGLG 
LRR3        109 VLVVLDLSH   NK LTTLAEGV                      FNSLG 
LRR4        133 NLSSLQVQH   NP LSTVSPSA                      LLPLV 
LRR5        157 NLRRLSLRGGRLNG LGAVAAA                       VQGLA 
LRR6        183 QLELLDLCE   NN LTTLGPG                       P-PLP 
LRR7        206 SLLTLQLCN   NS LRELAGGSPDMLWHVKILDLSYNSISQAEVFTQLH 
LRR8        252 ALRNISLLHLIGNP LDVFHLLDISDIQPRSLD            FSGLV                   
LRR9        305 ALRRLQLQR   NG LKVLHCNA                      LQ-LC 
LRR10       329 VLRELDLSW   NR LQHVGCAGRLLGKKQREKLEVLTVEHNL  LKKLP  
LRR11       406 ALQVLWLNI   NS LVWLDRQA                      LWRLH 
LRR12       430 NLTELRLDN   NL LTDLYHNS                      FIDLH 
LRR13       454 RLRTLNLRN   NR VSVLFSGV                      FQGLA 
LRR14       478 ELQTLDLGG   NN LRHLTAQS                      LQGLP 
LRR15       502 KLRRLYLDR   NR LLEVSSTV                      FAPVQ 
LRR16       526 TLGVLDLRA   NN LQYISQWLRKPPP                 FRNLS 
LRR17       556 SLYDLKLQAQQPYG LKMLPHYF                      FQGLV 
LRR18       583 RLQQLSLSQ   NM LRSIPPDV                      FEDLG 
LRR19       607 QLRSLALADSS NG LHDLPDGI                      FRNLG 
LRR20       633 NLRFLDLE    NAGLHSLTLEV                      FGNLS 
LRR21       657 RLQVLHLAR   NE LKTFNDSV                      ASRLS 
LRR-CT      681 SLRYLDLRKCPLSCTCDNMWLQGWLNNSRVQVVYPYNYTCGSQHNAYIHSFDTHVCF  
 
LRR Consensus   XLXXLXLXX   NX LXXLXXXX                      FXXLX 

 
 
Fig. 3.8  Alignment of leucine-rich repeat motifs in chTLR21.The chTLR21-ECD sequence contains 21 LRRs and a C-terminal cap 

(LRR-CT). Alignment gaps are indicated by dashes. The consensus sequence is displayed on the bottom and residues consistent with 

the consensus motif are highlighted in dark gray and the hydrophobic residues in the LRR consensus are highlighted in gray. The four 

cysteine residues in the C-terminal cap are underlined 
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ChTLR21 Protein subcellular localization prediction showed that chicken TLR21 

and human TLR9 are extracellular protein respectively by Both of LoCtree and PSORT 

II programs (data not shown). A signal peptide was detected in both chicken TLR21 and 

human TLR9 respectively.    

  

chTLR21      LTLQLCNNSLRELAGGSPDMLWHVKILDLSYNSISQAEVFTQLH-LRNISLLHLIGNPLD 59 
hTLR9        FTLDLSRNNLVTVQPEMFAQLSHLQCLRLSHNCISQAVNGSQFLPLTGLQVLDLSHNKLD 60 
                 
chTLR21     VFHLLDISDIQ---PRSLDFSGLVLGAQGLDKVCLRLQGPQALRRLQLQRNGLKVLHCNA 116 
hTLR9       LYHEHSFTELPRLEALDLSYNSQPFGMQGVGHNFSFVAHLRTLRHLSLAHN--NIHSQVS 118 
                 
 
chTLR21         LQLCP-VLRELDLSWNRLQHVGCAGRL 142 
hTLR9           QQLCSTSLRALDFSGNALGHMWAEGDL 145 

 
 
 
Fig. 3.9  BLASTP result of alignment of amino acid sequences of chicken chTLR21 

insertion with hTLR9 hit. Alignment gaps are indicated by dashes. Sequences with 

identical amino acid are highlighted in dark gray 

 

DISCUSSION 

Sequence analysis of chTLR21 indicated that the predicted start codon in the 

open reading frame reported in the present study is probably true start codon because 

there are several stop codons in the frame before the start codon (Kozak 1996).  The 

chicken TLR21 gene consists of two exons. Exon 1 and 2 in fugu gene seem to be a 

single exon. This presumably reflects intron loss in the fugu or intron gain in chickens.   

The novel TLRs in fugu (TLR21 and TLR22) were presumed to have been lost in 

the mammalian lineage and are fish-specific TLRs (Oshiumi et al. 2003). In this study, a 
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homologue of fish TLR21 was found in the chicken. The syntenic relationship showed 

that this novel chicken toll like receptor might have arisen due to gene duplication after 

the divergence between aves and mammals.  Chicken TLR22 was not detected in the 

chicken genome and its absence could be explained either because it does not exist, or as 

an artifact of the incomplete chicken genome sequence.  

The leucine zipper pattern has been shown to be a new DNA-binding motif and 

common to DNA-binding proteins (Landschulz et al. 1988; Busch and Sassone-Corsi 

1990). The detection of a leucine zipper pattern by PROSITE program and a DNA 

binding region by the MotifFinder program suggested that chTLR21 might be a DNA 

binding protein.  

 In addition, the insertion at position 15 found in the chicken TLR21 LRR motif is 

consistent with the report that large insertions occur after positions 10 or 15 in LRR 

motifs of TLRs (Bell et al., 2003). The TLR ectodomains are responsible for ligand 

binding and the potential PAMP binding sites are more likely to be formed by 

insertions/loops in the LRR sequence (Choe et al., 2005; Bell et al., 2003). The human 

TLR9 LRR insertion was the highest scoring hit by BLASTP, with chTLR21 leucine 

LRR as a query; showing that chTLR21 may have the same ligand as human TLR9. 

TLR9 is essential for responses to bacterial DNA and the immune stimulatory effect of 

bacterial DNA is due to the presence of unmethylated deoxycytidylate-phosphate-

deoxyguanylate (CpG) dinucleotides (Hemmi et al., 2000). Synthetic 

oligodeoxynucleotides (ODN) containing these unmethylated CpG motifs can mimic 
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bacterial DNA and activate both innate and acquired immune responses that have 

evolved to protect against intracellular infections (Krieg 2002). 

The same predicted protein sorting signal of chicken TLR21 and human TLR9 

indicated that they could have similar biological function. TLRs are integral membrane 

proteins and most of the TLRs are expressed on the cell surface. However, TLR9 

appears to function intracellularly and require internalization and endosomal maturation 

for CpG-DNA to activate TLR9 (Bauer et al., 2002). How TLR9 ligands move from 

outside to inside the cell is not well known (Ulevitch et al., 2004). Based on these 

results, we conclude that the novel chicken toll like receptor 21 play its biological 

function by binding to CpG DNA ligand.  

The ortholog of TLR9 has not been identified in the chicken genome (Yilmaz et 

al, 2005; Roach et al. 2005) and chicken may not have a TLR9. However, the chicken’s 

immune system can be activated by bacterial DNA containing CpG motif (Gomis et al. 

2003). In this study, we predicted a novel chicken toll like receptor whose sequence 

characteristic motif can recognize nucleic acid DNA.  Therefore, the function of 

mammalian TLR 9 may be carried out by this novel toll like receptor by binding 

invading bacterial DNA. Many cell types have shown response to CpG ODN stimulation 

but these responses may activate either direct stimulation through TLR9 or indirect 

activation through CpG ODN-induced cytokine secretion (Griebel et al., 2005). The 

ligand inference results of this study may be tested by RNA interference (RNAi) 

technology in chickens.  
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 
 

In summary, 23 chemokine and 14 chemokine receptor genes were identified 

from the chicken genome in this study. Many chicken genes displayed high degrees of 

similarity with their human and mouse orthologs in terms of gene structure and synteny.  

Chicken has significantly fewer CCLs, CXCLs, CCRs, and CXCRs than mammals, but 

it has the same number of CX3C, XC, and cognate receptors as mouse.  The results of 

phylogenetic analysis generally agree with the comparative chromosomal locations and 

syntenies of the genes.  The independent nomenclature of chicken chemokines and 

chemokine receptors suggests that the chicken may have ligand-receptor pairings similar 

to mammals. The organization of these genes suggests that there were a substantial 

number of these genes present before divergence between aves and mammals and more 

gene duplications and CC, CXC, CCR, and CXCR subfamilies in mammals than in aves 

after the divergence.   

Based on the organization, syntenies, and phylogenetic trees of chicken, mouse, 

and human chemokine and chemokine receptor genes, it may be concluded that there 

were a substantial number of chemokine and cognate receptor genes before divergence 

between aves and mammals and  the organization of chicken chemokine genes 

represents a prototype of ancient genomic structure of chemokine genes before the 

divergence of mammals and aves.  The presence of a few chicken chemokine and 

chemokine receptor paralogs and orthologs of the mammalian genes indicated that most 
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chicken chemokine and their receptor genes shared common ancestors with the human 

and mouse genes.  There were significantly more gene duplications in CC, CXC, CCR, 

and CXCR subfamilies in mammals than in aves after the divergence of mammals and 

aves.  The mammalian and chicken genome sequences and genes identified in this study 

can be used for further investigation of the molecular evolution of these gene families 

and as a model for the study of the divergence between aves and mammals.  Avian and 

mammalian species may share very similar chemokine-receptor binding patterns.  The 

results of this study may be used as functional inferences for these chicken genes before 

they are experimentally tested. 

In this study the sequence and expression pattern of chicken TLR21 were 

identified and characterized based on the draft chicken assembly. Sequence analysis of 

chTLR21 indicated that the predicted start codon in the open reading frame reported in 

the present study are probably true start codons because there are several stop codons in 

the frame before the start codon (Kozak 1996). Recently TLR21 in Fugu and zebrafish 

has been isolated (Oshiumi et al., 2003; Meijer et al., 2004; Jault et al., 2004). The Fugu 

genome has orthologues of all human TLRs except TLR4 and TLR6. The TIR domain of 

chicken TLR21 has high sequence identity with the TIR domains of Fugu and zebrafish 

TLR21. The phylogenetic analysis of amino acid sequences, resemblance in the primary, 

secondary and tertiary structures (motifs) of polypeptides indicated that it might be an 

orthologue of Fugu and zebrafish TLR21 although the number of exons of chicken 

TLR21 is different from that of Fugu in the gene structure. 
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We know that CpG-ODN’s immunostimulatory activity is mediated by pattern 

recognition receptor Toll-like receptor 9 in human and mouse (Bauer et al. 2001; Hemmi 

et al. 2000). The chicken TLR21-ECD LRR insertion analysis and insertion sequence 

similarity with human TLR9 showed that chTLR21 could have the same ligand as 

human TLR9. This information can be used for further functional inferences of chicken 

TLR 21 in the immune response.   
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