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ABSTRACT 

 

 

 

Molecular and In Vitro Characterization of a Babesia divergens-like Agent from Eastern 

Cottontail Rabbits (Sylvilagus floridanus) on Nantucket Island. (August 2005) 

Angela M. Spencer, B.A., Baylor University 

Chair of Advisory Committee: Dr. Patricia J. Holman 

 

 

A Babesia sp. isolated from eastern cottontail rabbits (Sylvilagus floridanus) is 

morphologically similar and genetically identical, based on SSU rRNA gene 

comparisons, to two agents responsible for human babesiosis in North America and is 

closely related to the European parasite, Babesia divergens.  The ribosomal RNA (rRNA) 

internal transcribed spacer regions (ITS1 and ITS2) and the 5.8S rRNA genes of Babesia 

isolates were sequenced and analyzed.  The rRNA ITS region sequences of three isolates, 

one each from Kentucky, Massachusetts and Great Britain, considered Babesia 

divergens-like organisms, were compared to two Babesia microti isolates, two Babesia 

odocoilei isolates and a well defined Babesia divergens isolate.  The two B. divergens-

like isolates from North America shared identical rRNA ITS1-5.8S-ITS2 region 

sequences, and the clones of these isolates clustered into one clade in three phylogenetic 

analyses, suggesting that these isolates are conspecific.  In vitro comparison of host 

erythrocyte specificity between the rabbit Babesia sp. and B. divergens was employed to 

discriminate between the two organisms and to determine the usefulness of in vitro 

techniques for Babesia sp. characterization.  In vitro growth of the rabbit Babesia sp. was 

supported in human and cottontail rabbit erythrocytes, but not in bovine cells.  
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Babesia divergens in vitro growth was supported in human and bovine erythrocytes, but 

not in cottontail rabbit cells.  Morphological characteristics and size differences also 

distinguished the two parasites from one another.  The erythrocyte specificity and 

parasite size differences reported in this study agree with previous in vivo results and 

validate the use of in vitro methods for characterization of Babesia species.   
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INTRODUCTION
     

Members of the Apicomplexan genus Babesia are notable as a cause of human and 

veterinary disease as well as for the impact they have had on the current understanding of 

parasitology.  These protozoan parasites infect vertebrate erythrocytes causing severe to 

chronic anemia in susceptible hosts.  Biblical descriptions suggest that Egyptian cattle 

exhibited signs similar to those currently recognized as cattle babesiosis or redwater fever  

caused by Babesia bovis infection (Homer et al. 2000).  Babesia bovis and Babesia 

bigemina are both responsible for the devastating babesiosis outbreak that occurred in 

Texas cattle during the mid-1800s and resulted in the pivotal discovery by Smith and 

Kilbourne (1893) that B. bigemina is transmitted by the tick vector Boophilus annulatus.  

This discovery was the first proof that arthropods could vector a disease agent and has 

contributed significantly to the present understanding of vector borne disease (Smith and 

Kilbourne 1893; Levine 1985).   

In the past century, additional species of Babesia, susceptible hosts, and competent 

vectors have been identified.  A wide variety of mammals are susceptible to the disease, 

including equids, ungulates, and humans worldwide.  Increased physician awareness has 

caused an increase in the number of diagnosed human babesiosis cases.  Ecological 

changes and increased outdoor activities have contributed to increased prevalence by 

bringing humans into contact with tick vectors more often.  The rise in babesiosis 

diagnoses has re-defined the infection as an emerging zoonotic disease (Gorenflot et 

al.1998; Telford and Goethert 2004; Kjemtrup and Conrad 2000).   

                                                 
 
 This thesis follows the style of Parasitology Research. 
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Babesia organisms can be visualized in a Giemsa stained infected blood smear at 1000X 

magnification.  They are pyriform (pear shaped) or seen as round or amoeboid forms 

(Levine 1985).  Depending on Babesia species, a host erythrocyte may be parasitized by 

single, paired, or multiple organisms.  The size of the organisms varies depending on the 

species and are therefore classified as either small (1.0-2.5 µm) or large (2.5-5.0 µm) 

Babesia, accordingly (Levine 1985).  Electron microscopy reveals the presence of an 

apical complex, micronemes, rhoptries and other organelles characteristic of the phylum 

Apicomplexa (Simpson et al. 1963; Simpson et al. 1967; Droleskey et al. 1993; Holman 

et al. 2005)  

The Babesia species sensu stricto, or true Babesia, are characterized by transovarial 

transmission by the vector tick and the limitation of infecting only erythrocytes in the 

mammalian host (Levine 1985).  Species within this classification include 

Babesia divergens, B. bovis and Babesia odocoilei (Levine 1985).  Transovarial 

transmission occurs when developing parasites invade the ovaries of the tick vector and 

infect the oocytes within.  These infected eggs hatch, the larval ticks mature and are then 

capable of transmitting the parasites during feeding without having previously ingested 

an infected blood meal.  Transovarial transmission is an efficient method of parasite 

survival in that thousands of developing ticks can become infected while in the ovary of 

the female tick.  Furthermore, the existence of ticks that have become infective early in 

life creates more opportunities for the tick to transmit the parasite to competent vertebrate 

hosts.  The life cycle of B. divergens utilizes transovarial transmission and benefits from 

the resulting infectivity of all life stages of the tick vector, Ixodes ricinus.  The larvae and 

nymphs of this tick species feed on small animals, predominantly rodents and ground 
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dwelling birds.  Adult ticks are capable of climbing higher onto vegetation and therefore 

parasitize larger animals including deer, sheep, and cattle (Wall and Shearer 2001).  

Transstadial transmission may also occur through which an individual tick becomes 

infected during a blood meal and remains infective through the following molts.  During 

this stage to stage transmission, the parasites multiply into clumps of up to 200 

organisms, referred to as pseudocysts, within tick phagocytes.  Approximately 11-16 days 

following a blood meal, these spherical pseudocysts become club shaped, exit the cells 

and migrate to tick muscle tissue.  The organisms divide but remain in the tick muscle, 

which remains unchanged during the molting process, until induced by tick feeding, 

during the next stage, to migrate to the salivary glands (Levine 1973).   

Babesia microti and Babesia equi are atypical within the genus Babesia due to the ability 

to undergo a pre-erythrocytic stage in host lymphocytes and the inability to be 

transmitted transovarially (Mehlhorn and Schein 1984).  The transmission of B. microti 

through the tick vector Ixodes scapularis exemplifies the transstadial route of 

transmission.  The larval ticks become infected during a blood meal on the white footed 

mouse (Peromyscus leucopus), the preferred host for this stage.  Following a molt, the 

nymphs feed indiscriminately and are most responsible for transmitting the parasite to 

humans (Healy et al. 1976; Gorenflot et al. 1998).  Adults of I. scapularis preferentially 

feed on white tailed deer (Odocoileus virginianus), which are incompetent reservoirs for 

B. microti, but are very important in completing the life cycle of the vector tick (Peisman 

et al. 1979). 
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 Babesia undergo asexual replication in the vertebrate intermediate host and both asexual 

and sexual replication in the definitive host Ixodid ticks (Mehlhorn and Schein 1984; 

Kjemtrup and Conrad 2000).  The parasites enter the tick during the blood meal and are 

carried to the tick gut, where they become sexually competent cells by gamogony.  The 

resulting zygotes then penetrate into the epithelial cells of the gut before entering the 

hemolymph, which carries the organisms to the various tick cells including fat bodies and 

nephrocytes and eventually the salivary gland acini.  Sporogony, a form of asexual 

replication, occurs within the salivary gland cells, and is followed by specialized 

organelle development and a budding process, which results in mature sporozoites.  The 

vector tick undergoes a molt before becoming infective to a vertebrate host during which 

the parasite is maintained in the tick mesoderm (Levine 1973).  Parasite transmission is 

possible once the tick takes a blood meal following metamorphosis.  During the final 

hours of tick attachment, sporozoites are in the lumen of the salivary gland and available 

for injection into the vertebrate host (Homer et al. 2000; Levine 1985; Mehlhorn and 

Schein 1984).   

Once in the vertebrate host, the sporozoites invade erythrocytes.  Within erythrocytes the 

sporozoites differentiate into trophozoites and divide into merozoites, then exit the cell 

and each merozoite enters a new erythrocyte to begin another cycle of multiplication.  

Using transmission electron microscopy (TEM), Droleskey and others (1993) 

demonstrated that within the erythrocyte, B. odocoilei merozoites divide through either 

binary fission or a nuclear budding process resembling that described by Rudzinska and 

Trager (1976) for B. microti.  Through nuclear budding, a single parasite is capable of 

producing up to eight progeny in two rounds of division (Droleskey et al. 1993; 
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Rudzinska and Trager 1976).  The resulting daughter cells mature to merozoites, which 

continue to infect additional erythrocytes.  Once ingested by the tick vector, trophozoites 

may mature into gametocytes, in response to the decrease in temperature, which are 

capable of sexual reproduction (Homer et al. 2000).    

There are two named species in the genus Babesia that have traditionally been identified 

in human cases of babesiosis and are considered to be of zoonotic risk in endemic areas.  

Babesia divergens was identified as the cause of the first reported human case of 

babesiosis in 1957, which occurred in a splenectomized Yugoslovian farmer (Skrabolo 

and Deanovic 1957).  Since then, approximately 30 European cases have been reported 

spanning from Eastern Europe to Italy and Great Britain (Piccaluga et al. 2004; Gorenflot 

et al. 1998).  Babesia divergens, is vectored by the tick I. ricinus and is an economically 

important pathogen of cattle in Europe.  Cattle infected with B. divergens experience 

reduced milk production and poor weight gain, but rarely death (Gorenflot et al. 1998).  

The human cases occurred most often in rural areas where cattle are present and 

corresponded to the seasonal activity of the tick vector (May-September).  Eighty three 

percent of the documented European patients have been asplenic, having a high fatality 

rate.  The broad range of symptoms, which include fever, fatigue, chills, hemoglobinuria, 

thrombocytopenia, hepatomegaly, and splenomegaly, are the result of the parasite-

induced hemolytic anemia (Homer et al. 2000).  

As described for the true babesias, B. divergens undergoes transovarial transmission 

through the vector tick and does not undergo a pre-erythrocytic stage in the vertebrate 

host (Levine 1985; Holman et al. 2000).  Morphologically, B. divergens is a small 
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parasite (1.5 x 0.4 µm) most commonly seen in pairs, which diverge widely from each 

other near the circumference of the infected bovine erythrocyte (accolé form), but also 

can be seen as single round parasites and rarely as tetrads (Levine 1985).  In human 

erythrocytes, the pairs are seen in central or subcentral portions of the cell (Gorenflot et 

al. 1998).  Although Gorenflot et al. (1998) did not mention the accolé form, this form 

has been noted in the B. divergens-like cases infecting humans in North America 

(Herwaldt et al. 1996; Beattie et al. 2002).   

The rodent Babesia, B. microti, is recognized as the etiologic agent of Nantucket fever of 

humans in the United States and is reported to infect humans on other continents as well 

(Levine 1985; Herwaldt et al. 2004; Kjemtrup et al. 2000).  This parasite is endemic, but 

non-pathogenic, in mice (P. leucopus) populations and vectored by the Ixodid tick, 

I. scapularis (also referred to as Ixodes dammini) in the northeastern United States 

(Gorenflot et al. 1998).  In 1968, Scholtens et al. documented the first human case of 

B. microti.  Since then, hundreds of cases have been reported, with approximately 40 

resulting from blood transfusions and transplacental transmission (Lux et al. 2003; 

Mylonakis 2001).  Most of the cases are tick-transmitted and occur in spleen-intact 

individuals.  Humans with B. microti infections commonly exhibit a flu-like presentation 

including fever, malaise and myalgia, but they have also been reported to be 

asymptomatic (Gorenflot et al. 1998).   

Babesia microti differs from the true Babesias by the existence of a pre-erythrocytic 

stage, during which the parasite enters mammalian host lymphocytes (Mehlhorn and 

Schein1984).  This species is not transovarially transmitted through the tick vector, which 
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is characteristic of the Babesia sp. sensu stricto as discussed above, but is transstadially 

transmitted instead (Levine 1985).  Morphologically this organism is classified as 

pleomorphic and can be seen predominantly as rings, but also as pairs and tetrads, in 

vertebrate blood.  The tetrad formation of B. microti is distinct form that of B. divergens 

in that it is the result of the quaternary budding of one organism into four rather than the 

binary fission of one organism into two as seen with B. divergens (Levine 1985).    

In addition to the classic cases of human babesiosis, a number of cases due to previously 

un-described Babesia species have been reported in recent years (Quick et al. 1993; 

Persing et al. 1995; Herwaldt et al. 1996, 2003, 2004; Beattie et al. 2002).  The causative 

agents in three of these cases, despite occurring in North America, have been classified as 

B. divergens-like due to morphologic, antigenic, and small subunit ribosomal RNA (SSU 

rRNA) gene similarities (Herwaldt et al. 1996; Beattie et al. 2002; Herwaldt et al. 2003).  

The first (designated MO1) was diagnosed in an elderly asplenic Missouri man of failing 

health (Herwaldt et al. 1996).  The patient presented febrile with headache, joint pain, 

thrombocytopenia and piroplasm-positive blood, despite having no recollection of a tick 

bite or history of foreign travel.  Even with aggressive treatment including quinine sulfate 

and clindamycin, the patient suffered from organ failure and secondary infection and died 

twenty days post hospitalization.  

Parasite morphology, serology, animal inoculation, and phylogenetic analysis were 

utilized to identify MO1 (Herwaldt et al 1996).  Morphologically this organism is most 

similar to B. divergens, exhibiting subcentral and subperipheral pairs in human 

erythrocytes, which are consistent with human B. divergens infection, but not considered 
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diagnostic (Herwaldt et al. 1996).  Serum taken from this patient was subjected to indirect 

immunofluorescent antibody and immuno-precipitation assays and reacted most strongly 

to B. divergens antigens.  This serum reacted less strongly to antigens of the cervid 

parasite B. odocoilei and not at all to those of B. microti.  In order to determine host 

infectivity of the parasite, animal inoculations were carried out using hamsters 

(Mesocricetus auratus), jirds (Meriones unguiculatus), asplenic calves, and bighorn 

sheep (Ovis canadensis nelsoni) (Herwaldt et al. 1996).  Despite the fact that jirds and 

calves are susceptible to B. divergens, hamsters and jirds are susceptible to B. microti and 

the North American Babesia species designated WA1, and bighorn sheep are susceptible 

to B. odocoilei, none of the experimental animals became parasitemic after inoculation 

with the B. divergens-like MO1 organism (Herwaldt et al. 1996).  Results of the 

phylogenetic analysis using partial SSU rRNA gene sequences show that there is a close 

relationship between the MO1 parasite and to both B. divergens and B. odocoilei 

(Herwaldt et al. 1996). 

In 2002 Beattie et al. reported a second North American B. divergens-like case involving 

an asplenic Kentucky man with no history of European travel.  The patient presented with 

headache, fever, and hemoglobinuria.  Piroplasms were visualized in Giemsa-stained 

blood smears.  Following diagnosis of babesiosis, intravenous clindamycin and oral 

quinidine therapy was initiated.  Morphologically, as with MO1, this agent (designated 

KY for this discussion) most closely resembles B. divergens.  SSU rRNA gene sequence 

analysis using the entire gene shows that the KY sequence is identical to that of MO1 and 

differs in only three nucleotide positions from that of B. divergens resulting in a 99.8% 

similarity between these two organisms (Beattie et al. 2002).   
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An epidemiologic survey on Nantucket Island found an organism described as 

B. divergens to be endemic in eastern cottontail rabbits (Sylvilagus floridanus) on the 

island (Goethert and Telford 2003a), which is designated NR for this discussion.  The full 

length SSU rRNA gene sequence of NR is identical to those of both KY and MO1 

(Goethert and Telford 2003a; Holman et al. 2005).  Interestingly, Beattie et al. (2002) 

reported that the Kentucky patient had hunted and dressed cottontail rabbits prior to the 

onset of symptoms.  

The most recent North American B. divergens-like case occurred in an elderly, asplenic, 

but otherwise healthy man living in Washington State (Herwaldt et al. 2004).  The 

symptoms included fever, fatigue, and thrombocytopenia.  After piroplasms were 

visualized by blood smear examination, he was diagnosed with babesiosis and treated 

accordingly.  Despite temporary renal insufficiency resulting from dehydration, the 

patient recovered.  As with the MO1 isolate, this organism had a strong serologic 

reactivity with B. divergens, but did not produce parasitemias when injected into 

hamsters or jirds.  The full length SSU rRNA gene sequence varied in eight nucleotide 

positions from the European B. divergens sequence, resulting in a 99.5% similarity 

between these two organisms, and 99.6% similarity with the North American MO-1 and 

KY agents (Herwaldt et al. 2004; unpublished data). 

A few agents of human babesiosis have been classified as distinct from both B. microti 

and B. divergens.  The first was designated WA1 in reference to Washington State where 

it occurred in a relatively healthy man (Quick et al. 1993).  The WA1 agent is 

morphologically and serologically most similar to the canine parasite Babesia gibsoni, 
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but failed to infect splenectomized dogs upon experimental inoculation.  Four additional 

west coast cases of human babesiosis have occurred in California, and the causative 

agents appear to be conspecific with WA1 (Persing et al. 1995).  

 The EU1 (European Union 1) agent responsible for two cases of human babesiosis in 

Europe was found to most closely resemble B. odocoilei according to phylogenetic 

analysis, but still has 29 base differences in the SSU rRNA gene sequence comparison by 

29 base differences (Herwaldt et al. 2004).  The EU1 agent and B. divergens differ at 31 

positions within the SSU rRNA gene sequence.  Serologic, animal inoculation, and 

phylogenetic analysis distinguish this organism from other known human Babesia agents 

(Herwaldt et al. 2004).  

Numerous techniques have been utilized for the identification of Babesia species.  Initial 

morphologic examination using a Giemsa-stained blood smear is critical to the 

confirmation of patent babesiosis and may be conclusive in the presence of species 

specific diagnostic forms, such as the accolé form of B. divergens and the tetrad form of 

B. microti, when seen in the natural vertebrate host.  Unfortunately, there may be no 

visible parasites, the vertebrate host may be aberrant or these forms may be absent in the 

sample smear making definitive identification through microscopy impossible (Herwaldt 

et al. 1996). 

Serologic analyses have been useful tools in the characterization of numerous organisms, 

including Babesia (Waldrup et al. 1992; Goff et al. 1993; Holman et al. 2000).  These 

methods, however, provide information about exposure to a species rather than indication 

of current infection (Langton et al. 2003; Gorenflot et al. 1998).  Furthermore, 
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complications, such as false positives due to cross-reactivity, reduce the dependability of 

these analyses (Holman et al. 2000; Homer et al. 2000; Persing et al. 1995).  The immune 

status of the patient may also alter serological results due to cross-reactivity resulting 

from connective tissue disorders or false negatives in immune compromised individuals 

(Benezra et al. 1987).  

Generally speaking, Babesia are relatively host specific with regards to vertebrate host, 

pathogenicity, and tick vector (Levine 1985; Holman et al. 2000).  Although these 

parasites are continually identified in a greater variety of host species than once thought, 

this trait has been utilized to differentiate between isolates through comparative in vivo 

inoculation studies (Herwaldt et al. 2000; Quick et al. 1993; Holman et al. 2005).  In 

order to identify the MO1 agent, Herwaldt et al. (1996) inoculated animals known to be 

susceptible to specific Babesia species.  No parasitemias resulted, distinguishing MO1 

from B. divergens, B. odocoilei, B. microti, and WA1.  The agent responsible for the 

WA1 babesiosis was also subjected to in vivo studies in which this organism was injected 

into hamsters, jirds and a dog.  The hamsters and jirds became parasitemic, but the dog 

did not.  These results suggest that although the organism appears most similar to 

B. gibsoni, its inability to infect the dog and its infectivity for rodents distinguishes it 

from this canine parasite.  

The increased success of in vitro cultivation of Babesia species has created an additional 

diagnostic tool when blood smear results are inconclusive.  Babesia divergens, B. bovis, 

B. equi and Babesia caballi and are among the commonly cultured Babesia species (Levy 

and Ristic 1980; Varynen and Tuomi 1982; Holman et al. 1993a, 1994b).  This technique 
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provides a dependable source of parasites for investigations of resistance, treatment 

options, and genetic relationships, and has also proven to be a useful diagnostic tool 

(Holman et al. 1998; Sunaga et al. 2002; Malandrin et al. 2004).  Holman et al. (1998) 

successfully utilized the microcentrifuge in vitro method to amplify B. equi parasitemias 

from naturally infected horses with low circulating parasitemias.  This technique can 

therefore be applied to assess carrier status of animals as well as provide a sufficient 

number of organisms for use in comparative studies.  In vitro culture was also used to 

assess the carrier status of cattle with B. divergens (Malandrin et al. 2004).  It was found 

that this organism could be successfully cultured from asymptomatic carrier cattle when 

no parasites could be visualized by blood smear. 

In vitro methods of Babesia cultivation were introduced following the success with the 

closely related parasite genus, Plasmodium.  A constant flow system was implemented in 

the cultivation of Plasmodium species that consists of a settled erythrocyte layer over 

which the medium continually flows (Trager 1971).  Through this method, greater 

parasite growth was found in a reduced oxygen environment (1% oxygen) relative to a 

gas mixture with higher oxygen content (5%) (Trager and Jenson 1976).  A similar result 

was achieved with the candle jar method, which utilizes a lit candle to consume the 

oxygen, creating a reduced oxygen environment for the culture (Emerson and Held 1969; 

Trager and Jenson 1976).   

Levy and Ristic (1980) developed the microaerophilous stationary phase (MASP) 

technique, which also involves a settled layer of erythrocytes and reduced oxygen 

tension, to successfully cultivate B. bovis.  This system uses a particular depth of medium 
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to act as an oxygen barrier creating reduced oxygen tension resulting from parasite 

metabolism (Levy and Ristic 1980).  As the oxygen tension of the erythrocyte layer 

declines, the culture turns noticeably darker.  This color change has been correlated to 

parasite growth (Levy and Ristic 1980).  Currently the MASP technique is routinely used 

for the in vitro culture of multiple Babesia species including B. divergens, B. bigemina, 

B. caballi, B. equi, B. odocoilei and B. gibsoni (Varynen and Tuomi 1982; Vega et al. 

1985; Holman et al. 1998, 1993a, 1994b; Zweygarth and Lopez-Rebollar 2000).  

Holman et al. (2005) successfully cultivated two isolates of the B. divergens-like agent 

(NR) from blood samples collected from eastern cottontail rabbits on Nantucket Island, 

Massachusetts.  Both eastern cottontail rabbit and human erythrocytes supported 

continuous growth of both isolates.  Of the numerous culture media tested, a 

supplemented HL-1 medium was found to be the best for long-term propagation.  Serum 

comparisons found that the medium supplemented with human serum supported growth.  

However, parasite growth was not supported by media supplemented with fetal bovine or 

domestic rabbit sera.  

Genetic sequence comparison analyses provide organism specific characterization.  

Restriction fragment length polymorphism (RFLP) and nucleotide sequence 

determination are commonly used polymerase chain reaction (PCR) based approaches of 

genetic sequence investigation that are useful for the characterization of organisms 

(Prichard and Tait 2001).  The SSU rRNA gene produces a functionally conserved 

product, and therefore has been the gold standard in genetic analysis for Apicomplexan 

species (Prichard and Tait 2001; Reddy et al. 1991; Holman et al. 2000, Holman et al. 
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2003).  Additionally, multiple copies of the SSU rRNA gene are present in most 

eukaryotic genomes, providing a sufficient amount of target DNA for amplification 

reactions, further making it an ideal target for genetic studies (Reddy et al. 1991).  

Through Southern blot analysis of digested rDNA, Reddy et al. (1991) identified three 

distinct rRNA transcriptional units in the genome of the cattle piroplasm B. bigemina.  

These nucleotide units varied in length from 10.65 kb and 10.80 kb to 13.65 kb.  This 

result is supported by the earlier finding by Dalrymple (1990) that three distinct SSU 

rRNA transcriptional units exist in the genome of B. bovis.    

Holman et al. (2000) utilized SSU rRNA gene sequence analysis to characterize 

suspected B. odocoilei isolates with identical clinical presentations but serologic 

variability.  The SSU rRNA gene sequences of these cervid parasites were all identical to 

that of B. odocoilei.  The majority of the SSU rRNA gene was also used by Goethert and 

Telford (2003b) to investigate the heterogeneity within the zoonotic rodent parasite 

B. microti.  The authors divided the species into three distinct clades based on genetic 

variation, of which only two clades were found to be parasites of rodents.  The remaining 

clade consisted of parasites of carnivores (Goethert and Telford 2003b). 

The highly conserved nature of the SSU rRNA sequences does not allow for definitive 

characterization of the current B. divergens-like organisms (Herwaldt et al. 2000; Beattie 

et al. 2002; Langton et al. 2003).  As seen with the MO1 and KY agents and the most 

recent agent of human babesiosis in Washington State, slight sequence variation exists 

among the SSU rRNA gene sequences of these organisms and that of B. divergens.  

Therefore, a definitive species assignment of B. divergens cannot be made for the agents 
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of these recent U. S. cases.  This is also the situation with a B. divergens-like agent 

collected from reindeer in Great Britain with an SSU rRNA gene sequence that differs 

from that of B. divergens by only four nucleotide positions (Langton et al. 2003).  The 

amount of SSU rRNA gene nucleotide variation required for species differentiation has 

not been defined.  Within such a highly conserved gene no variation is expected, as seen 

among sequences acquired from multiple geographically distant isolates of B. divergens 

(Herwaldt et al. 2003).  Despite this finding, it is likely that multiple SSU rRNA 

transcription units are present in the B. divergens genome, as reported for B. bigemina 

and B. bovis.  The existence of multiple SSU rRNA units could justify the slight intra-

species variation seen between these B. divergens-like isolates and B. divergens and 

allow the suggestion that some sequence variation may be possible within a species.  

The ß-tubulin gene has also been utilized as a genetic marker for piroplasm species 

(Cacciò et al. 1997; Goethert and Telford 2003a; Goethert and Telford 2003b).  This gene 

encodes for the functionally conserved component of eukaryotic cell microtubules, 

ß-tubulin, and, therefore, has a nucleotide sequence that is conserved within the phylum 

Apicomplexa.  The existence of at least one intron within this gene has allowed species 

discrimination due to PCR product length variation.  Cacciò et al. (1997) found ß-tubulin 

gene intron lengths in two species of Theileria and seven species of Babesia to vary from 

20 to 170 bp.  This variation allowed for species determination by PCR product size 

comparison in most cases.  An RFLP protocol was developed to differentiate among 

those that could not be distinguished by PCR product size alone (Cacciò et al. 1997).   
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The ß-tubulin gene sequence has also been used to support Babesia SSU rRNA gene 

data.  Goethert and Telford (2003b) sequenced the ß-tubulin gene of B. microti to 

investigate the genetic diversity of this organism, which appears to be underestimated 

with the highly conserved SSU rRNA gene.  The majority of human B. microti infections 

have occurred in the northeastern United States (Goethert and Telford 2003b).  Despite 

the existence of both a competent rodent host and tick vector (I. ricinus), only a few cases 

of B. microti babesiosis in man have been reported in Europe (Goethert and Telford 

2003b; Duh et al. 2001; Grey et al. 2002).  This evidence, in addition to inconsistent 

B. microti infectivity in Japan, suggests that different strains of B. microti exist (Goethert 

and Telford 2003b; Saito-Ito et al. 2004).  Genetic diversity was found among 

morphologically invariant B. microti isolates.  The phylogenetic separations resulting 

from the SSU rRNA gene analyses were supported by the ß-tubulin gene data, which had 

more distinct sequence variation (Goethert and Telford 2003b).  In order to further 

identify the B. divergens-like organism found in cottontail rabbits on Nantucket Island, 

Goethert and Telford (2003a) used ß-tubulin gene sequence data in addition to SSU 

rRNA gene data.  This less highly conserved gene sequence supports the evidence that 

this organism is most closely related to B. divergens.  

Other less highly conserved genetic regions have also been investigated for their use in 

the distinction between closely related organisms and to delineate species within a genus 

(Berzunza-Cruz et al. 2002).  The ribosomal RNA (rRNA) internal transcribed spacers 

(ITS1 and ITS2) are non-translated genetic regions that lie between the highly conserved 

SSU rRNA (5´) and LSU rRNA (3´) genes and are separated by the smaller 5.8S rRNA 

gene in most eukaryotic organisms (Berzunza-Cruz et al. 2002).  The rRNA ITS1 and 
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ITS2 genetic region sequence comparisons have reinforced the distinction between 

subspecies of Babesia canis isolates previously suggested according to pathogenicity, 

vector specificity, and geography (Uilenberg et al. 1989; Zahler et al. 1998).  The rRNA 

ITS genetic region sequences of the three previously designated subspecies, Babesia 

canis canis, Babesia canis vogeli and Babesia canis rossi shared 99.0-97.9 percent 

identity within subspecies and 69-82 percent identity among subspecies.  The rRNA ITS 

genetic region sequences of the B. canis subspecies shared only 66-69 percent identity 

with the SSU rRNA ITS genetic region of B. caballi, an equine parasite (Zahler et al. 

1998).  The authors concluded that, independent of environmental factors, the three 

suggested subspecies of B. canis can be delineated genetically.  Furthermore, the B. canis 

group can be differentiated from other distinct Babesia species using rRNA ITS genetic 

region comparisons.    

Additional Apicomplexan parasites have been evaluated according to rRNA ITS1-5.8S-

ITS2 genetic region sequences.  Collins and Allsopp (1999) found that the 5.8S rRNA 

gene sequences of eleven Theileria isolates are identical, but the rRNA ITS1 and ITS2 

genetic region sequences show high variability.  The variable combinations found within 

the rRNA ITS1 and ITS2 genetic region sequences of Theileria parva parva and 

Theileria parva lawrenci suggest that genetic recombination occurs between these two 

organisms, creating more variability within these already poorly conserved sequences 

(Collins and Allsopp 1999).  Adam et al. (2000) also used rRNA ITS1 genetic region 

sequences to investigate variability within the intestinal Apicomplexan parasite species 

Cyclospora cayetanensis in order to identify distinct genotypes of this organism.  
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Sequence heterogeneity was found within isolates suggesting that there may be multiple 

rRNA transcriptional units within the genome of this organism.   

The goals of this project include determining the usefulness of the rRNA ITS1-5.8S-ITS2 

genetic region in the identification of the B. divergens-like parasites NR, KY, and GBRD, 

the Great Britain reindeer B. divergens-like agent.  Also, baseline data obtained from this 

genetic region may be used in the characterization of other Babesia species.  Following 

the success of Zahler et al. (1998) with B. canis, it is expected that this region will be 

helpful in the characterization of these agents.   

In vitro cell culture comparisons will also be employed to determine if the 

B. divergens-like organism from eastern cottontail rabbits and B. divergens share the 

same host erythrocyte requirements.  This technique parallels in vivo studies in which 

parasites are inoculated into hosts with known susceptibilities as carried out by Quick et 

al. (1993) and Herwaldt et al. (1996).  
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MATERIALS AND METHODS 

rRNA ITS1-5.8S-ITS2 Genetic Sequence Comparisons 

Parasites and DNA extraction 

Six Babesia isolates were included in this study: three previously described 

B. divergens-like parasites from a human case of babesiosis in Kentucky (KY), from an 

eastern cottontail rabbit on Nantucket Island, Massachusetts (NR), a reindeer from Great 

Britain (GBRD) (Beattie et al. 2002; Goethert and Telford 2003a; Langton et al. 2003); a 

B. divergens (BdivP; Purnell isolate of cattle origin from Great Britain) (Purnell et al. 

1976; Holman et al. 2000); and two strains of B. microti, Peabody and GI, of human 

origin (Ruebush and Hanson 1979; Peisman et al. 1986) (Table 1).   

Parasite DNA was obtained from the Kentucky human isolate and the Great Britain 

reindeer as previously reported (Beattie et al. 2002; Langton et al. 2003).  Genomic DNA 

of NR was extracted from infected eastern cottontail rabbit blood collected into acid 

citrate dextrose (ACD) during an epidemiologic survey on Nantucket Island, 

Massachusetts (Goethert and Telford 2003A).  Babesia microti DNA was extracted from 

blood of mice experimentally infected with either the GI or Peabody B. microti 

strains.  Babesia divergens DNA was obtained from parasites recovered from 

cryopreserved B. divergens culture stocks and cultivated as previously described except 

for the use of HL-1 medium (BIO Whitaker Walkersville, MD) supplemented with 20%  
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Table 1.  List of taxa from which rRNA ITS1-5.8S-ITS2 genetic region sequence data 

included in the analyses were derived.  GenBank accession numbers for the sequences are 

provided.  Sequence data generated in this study are indicated by an asterisk (*).   

  

 

 

Isolate 

 

 

Origin 

 

 

Host of origin 

 

 

Taxon 

 

GenBank  

accession number 

 

KY 

 

Kentucky 

 

Human 

 

Babesia divergens-like 

    

  * 

NR Nantucket Island, 

Massachusetts,  

Cottontail rabbit  B. divergens-like   * 

GBRD Great Britain Reindeer B. divergens-like   *  

BdivP Great Britain Cow B. divergens (Purnell)    * 

MNBo Minnesota Caribou Babesia odocoilei AY339756 (Clone 1)  

AY339757 (Clone 2) 

AY339758 (Clone 3) 

WIBo Wisconsin Reindeer B. odocoilei AY339749 (Clone 1)  

AY339750 (Clone 2) 

AY345122 (Clone 3) 

GIBm Boston,  

Massachusetts   

Human Babesia microti (GI)   *  

PeaBm Nantucket Island, 

Massachusetts  

Human B. microti (Peabody)   * 

BcanR South Africa Dog Babesia canis AF394535 

BcanV Spain Dog B. canis AF394534 

BcanC Europe Dog B. canis AF394533 

BcabN Namibia Horse Babesia caballi AF394536 
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adult bovine serum (Holman et al. 2000).  Parasite DNA was purified from the cultures 

when approximately 10% parasitemia was achieved.  In all cases, parasite DNA was 

purified from infected erythrocytes by a standard phenol/chloroform extraction protocol 

using phase lock divider gel tubes (Eppendorf, Westbury, NY) (Sambrook et al. 1989).  

rRNA ITS1-5.8S-ITS2 genetic region amplification and sequencing 

The rRNA ITS1-5.8S-ITS2 region was amplified by a nested polymerase chain reaction 

(PCR).  The primers used to amplify the target gene region in this study were designed 

previously for use in this lab.  A map of the rRNA ITS genetic region with the relative 

locations of the following primer sequences can be seen in Fig 1.  The primary PCR 

reactions (Advantage 2 PCR Enzyme System, CLONTECH Laboratories, Palo Alto, CA) 

were performed in a 25 µl reaction volume with 50 -100 ng DNA and one of the 

following primer combinations (0.1 µM of each primer): ITSF 

(5' GAGAAGTCGTAACAAGGTTTCCG 3') and ITSR 

(5' GGTCCGTGTTCCAAGACGG 3') (BdivP, KY, GBRD), ITSF and LSU50R 

(5' GCTTCACTCGCCGTTACTAGG 3') (PeaBm), or 1055F 

(5' GGTGGTGCATGGCCG 3') and ITSR (NR and GIBm).  Amplification was carried 

out in a thermal cycler (Express or Sprint Thermal Cycler; Hybaid, Middlesex, United 

Kingdom) using a hot start method.  Initial denaturation for 1-5 min at 94-96 ºC was 

followed by 35 cycles of denaturation for 30 sec at 94 ºC, annealing for 30 sec at 55 ºC, 

and extension for 2 min at 72 ºC.  A final extension of 10 min at 72 ºC was followed by a 

4 ºC hold.  All PCR products were electrophoresed on 1% agarose gels, stained with 

ethidium bromide, and visualized by UV transillumination.   
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Nested protocols to obtain single band amplicons for KY, NR, GBRD, and GIBm, used 

1 µl of the primary PCR product as template in amplifications performed as above, but 

with primer combinations ITSF and LSU50R (KY, GBRD, and GIBm) or ITSFN (5' 

GTGAACCTGCGGA-AG 3') and LSU50R (NR). 

 

 

 

Figure 1.  Schematic drawing of the rRNA ITS1-5.8S-ITS2 genetic region.  The primers 

used to amplify the rRNA ITS1-5.8S-ITS2 genetic region are shown with arrows 

indicating primer orientation.   

     

   

 

Except for the PeaBm amplicon, which was PCR purified (QIAquick; Qiagen, MD) and 

directly sequenced using primers ITSFN and LSU50R, the final amplicons were cloned 

prior to sequencing following manufacturer’s instructions (TOPO One Shot; Invitrogen, 

San Diego, CA).  Color-selected transformed colonies were screened by colony PCR 

using plasmid promoter region primers m13 forward and m13 reverse.  Colony PCR 

reactions were carried out using a sample of each chosen colony mixed with 9 µl of water 

and incubated at 94 ºC prior to the addition of primers (0.1 µM each) and polymerase and 
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buffer solution (Taq PCR master mix, Qiagen, Valencia, CA) in a final reaction volume 

of 22 µl.  Following the 10 minute denaturation, the amplification protocol included 30 

cycles of 94 ºC for 1 min, annealing at 50 ºC for 1 min and a 1 min extension at 72 ºC.  A 

final extension at 72 ºC for 10 minutes was followed by a 4 ºC hold.  Colony PCR 

products were electrophoresed on 1% agarose gels, stained with ethidium bromide and 

visualized by UV transillumination.  Plasmid DNA preparations were performed on 

positive colonies using the QIAprep Spin Miniprep kit following manufacturer’s 

instructions (Qiagen).  Three clones for each isolate were sequenced in both directions 

using plasmid promoter region specific primers, m13 reverse and m13 forward, and 

specific SSU rRNA ITS genetic region primers as needed (ITSF, ITSFN, ITSR, LSU50R, 

1200F (5' CAGGTCTGTGATGCT 3'), BdivITSF2 (5' CACGGATGCTGCTCG 3'), 

LSU300R (5' TWGCGCTTCAATCCC 3'), and BdivITSR2 

(5' CCGGTAGCATGCTATGG 3')).  The cloned amplicons were sequenced by the Gene 

Technologies Laboratory (Institute of Developmental and Molecular Biology, 

Department of Biology, Texas A&M University, College Station, TX) or the DNA 

Technologies Core Lab (Department of Veterinary Pathobiology, Texas A&M 

University).   

Sequence analysis 

Sequencher (3.1.2) software (Gene Codes Corp., Ann Arbor, MI) was used to construct 

contiguous rRNA ITS1-5.8S-ITS2 genetic region sequences for each KY, NR, BdivP, 

GBRD and GIBm clone, and for the directly sequenced PeaBm.  Intra-isolate pair wise 

comparisons among three clones for each isolate were obtained for the rRNA ITS1, 5.8S 
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and ITS2 genetic regions separately using Genestream (Pearson et al. 1997).  

Corresponding values were obtained for two B. odocoilei isolates (MNBo and WIBo) 

using sequence data in the GenBank database (Table 1) (Holman et al. 2003).  Consensus 

rRNA ITS1-5.8S-ITS2 genetic region sequences were determined from three clones of 

each isolate, including MNBo and WIBo, using Sequencher software.  Intra- and 

intergenic pair wise alignments of the rRNA ITS genetic region consensus sequence data 

were performed using Genestream (Pearson et al. 1997).  

Sequence data for the 5.8S rRNA genes from Babesia canis rossi (BcanR), Babesia canis 

vogeli (BcanV), Babesia canis canis (BcanC) and Babesia caballi (BcabN) obtained from 

the GenBank database (accession numbers AF394535, AF394534, AF394533 and 

AF394536, respectively) (Zahler et al. 1998) were used to determine intra- and intergenic 

percent identity values for the 5.8S rRNA gene sequences using Genestream pair wise 

comparisons. 

Phylogenetic analyses 

Three separate sequence alignments, consisting of the rRNA ITS1 and ITS2 genetic 

regions and the full rRNA ITS1-5.8S-ITS2 genetic region were constructed from three 

clones each of NR, KY, GBRD, BdivP, MNBo and WIBo, with the GIBm and PeaBm 

sequences included as outgroups, using Clustal W (Pearson et al. 1997) and manually 

adjusted as needed to maximize identity.  Maximum likelihood phylogenetic trees 

employing a heuristic search strategy with general search options (bootstrap, n=100) were 

constructed from each resulting alignment using the Paup 4.0b10 program (Swofford, 

2002).  Likelihood analyses were carried out through a substitution model (Ti/Tv 
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ratio=1).  The sequences of the ingroup were rooted against those of the outgroup at the 

internal node with basal polytomy.  Groups with frequencies greater than 50% were 

retained and only the best trees were kept.     

In Vitro Culture Comparisons 

Parasites 

Both the Babesia sp. isolated from Nantucket Island cottontail rabbit number 774 (NR) 

and the Purnell isolate of B. divergens were previously described (Goethert and Telford 

2003a; Holman et al. 2005; Purnell et al. 1976).  Cultured parasites retrieved from 

cryopreserved stocks were used in this study (Holman et al. 2000, 2005). 

Parasite culture  

Parasites were recovered from liquid nitrogen storage using previously described 

methods (Holman et al. 1993b).  Donor erythrocytes for culture were prepared for use as 

previously described (Holman et al. 2005) and added to culture wells at a final well 

concentration of 10% (V/V) in the cultures.  Each well contained 0.9 ml medium, 0.1 ml 

uninfected erythrocytes and 0.25 ml of the infected erythrocyte sample.  This volume of 

1.25 ml per well was maintained throughout the experiment.  All cultures were incubated 

in a humidified modular incubator chamber (Billups-Rothenberg, Inc., Del Mar, CA) at 

37 ºC in a 5% carbon dioxide, 2% oxygen and 93% nitrogen atmosphere for the duration 

of the study. 
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Passages 14 and 23 of NR were recovered from cryostorage into cottontail rabbit donor 

erythrocytes and human donor erythrocytes (Rockland Immunochemicals, Gilbertsville, 

PA), respectively.  The donor cottontail rabbit blood was collected into vacutainer tubes 

containing acid citrate dextrose from free-ranging eastern cottontail rabbits live-trapped 

under a scientific collecting permit issued by the Massachusetts Division of Fisheries and 

Wildlife by Drs. Heidi Goethert and Sam Telford, III (Division of Infectious Diseases, 

Department of Biomedical Sciences, Tufts University School of Veterinary Medicine, 

200 Westboro Road, North Grafton, Massachusetts).  Blood samples were determined to 

be free of B. divergens and the rabbit Babesia sp. by a previously described PCR 

performed by Dr. Heidi Goethert prior to shipping the blood to Texas A&M University 

(Goethert and Telford 2003a).  Cultures of NR were maintained in complete culture 

medium, designated HL-H, comprised of HL-1 medium (Bio-Whittaker, Walkersville, 

MD) supplemented with 20% human serum (Rockland Immunochemicals), 1% HB101 

(V/V, reconstituted according to manufacturer’s instructions, Irvine Scientific, Santa 

Ana, CA), 200 mM sodium hypoxanthine and 32 µM thymidine (Holman et al. 1994b) 

(HT supplement, Gibco, Grand Island, NY), 1 mM L-glutamine (Gibco), antibiotic-

antimycotic (200 µg/ml streptomycin, 200 U/ml penicillin, 50 µg/ml Fungizone, Gibco) 

and 100 µg/ml gentamycin (Gibco).  

Passage two of B. divergens was recovered from cryostorage into bovine erythrocytes 

(adult crossbred, animal number 0425, Texas A&M University, College Station, TX) and 

maintained in HL-1 medium supplemented with L-glutamine, antibiotic-antimycotic, and 

gentamycin as above, but with 20% adult autologous bovine serum and designated 
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HL-B.  Cryopreserved passage two B. divergens culture was also resuscitated into human 

erythrocytes and cultured in HL-H as described above for NR. 

Medium was replenished daily in all cultures by removal of 0.9 ml of used medium, 

without disturbing the settled erythrocyte layer, and replacement with an equal volume of 

appropriate fresh medium.  Initially, parasitemias in all cultures were monitored through 

Giemsa-stained (Accustain, Sigma) spots of erythrocytes as previously described 

(Holman et al. 2005).  Subcultures were performed at a 1:2 split ratio every 3 to 7 days as 

the parasitemias exceeded 50 infected erythrocytes per spot.  After parasitemias were 

sustained at approximately 2-3 % for two passages, the cultures were maintained on a 

3-day 1:5 split ratio schedule for the remainder of the experiment.  During 1:5 subculture, 

the used medium was removed and replaced with fresh.  The settled erythrocyte layer 

was then resuspended and 0.25 ml of that resuspension was added to each of two wells 

containing 0.9 ml fresh medium and 0.1 ml uninfected erythrocytes.  

The cultured NR and B. divergens were subcultured into the combinations of erythrocytes 

and media as shown in Table 2.  Three passages, each at a 1:5 split ratio, were completed 

for both NR in bovine erythrocytes and B. divergens in cottontail erythrocytes prior to 

performing comparative growth assays to ensure that the original host erythrocytes were 

diluted out (Holman et al. 1993b).  
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Table 2.  List of cultured parasites showing the different erythrocyte and media 

conditions. 

Parasite Host RBC Medium 

B. divergens Human 

Bovine 

Bovine 

Cottontail Rabbit 

HL-H 

HL-H 

HL-F 

n/a 

NR Human 

Human 

Bovine 

Cottontail Rabbit 

HL-H 

HL-F 

n/a 

HL-H 

 

In addition, each parasite was cultured as above, but using HL-1 medium supplemented 

with 20% fetal bovine serum (Atlanta Biologicals) and L-glutamine, antibiotics and 

gentamicin, designated HL-F, to evaluate the ability of fetal bovine serum to support 

continuous cultures (Table 2).  Three passages were completed for both parasites in HL-F 

prior to beginning the experimental period.  Babesia divergens in bovine erythrocytes and 

NR in human erythrocytes were subcultured into the HL-F medium and maintained 

following a normal 3-day subculture routine for 30 days as described above. 

Evaluation of in vitro proliferation 

Two wells of each culture combination were maintained and monitored for 30 days (10 

passages).  Four erythrocyte smears were made daily from each distinct culture (two 

smears per well), stained with Giemsa, and viewed at 1000X under oil immersion.  Daily 

percent parasitized erythrocytes (PPE) were assessed by differentially counting 1,000 

erythrocytes per smear in the four smears of each culture condition daily for the 30-day 

experimental period.  The four PPE values obtained daily over the 30-day period were 
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averaged for each culture condition, and the Student’s t-test used to determine 

significance between culture conditions.   

The length and width of each individual parasite in 50 paired intraerythrocytic merozoites 

were measured for B. divergens and NR in each culture condition using an ocular 

micrometer at 1000X magnification under oil immersion.  The average sizes and standard 

deviations were obtained for each Babesia sp. in each host erythrocyte type, and the 

significance of differences between them were assessed using Student’s t-test. 
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RESULTS 

rRNA ITS1-5.8S-ITS2 Genetic Sequence Comparisons 

Sequence comparison 

The rRNA ITS1-5.8S-ITS2 genomic DNA segments obtained from the six Babesia 

samples ranged in length from 708 base pairs (bp) in B. microti to 865 bp in the 

B. divergens-like NR and KY isolates (Table 3).  NR and KY had sequences of identical 

length in all three regions, as did the two B. microti strains, GIBm and PeaBm (Table 3).  

The lengths of the rRNA ITS1 and ITS2 genetic regions were variable among the 

remaining isolates and within the GBRD and B. odocoilei isolates (Table 3).  The 5.8S 

genes were 159 bp in length in B. divergens and in all B. divergens-like sequences, 

including B. odocoilei (Table 3).   

Intra-isolate variation from 0 to 4 bp within the rRNA ITS1 genetic region, 5.8S rRNA 

gene or rRNA ITS2 genetic region sequences occurred within NR, KY and BdivP, with 

variation in the full rRNA ITS1-5.8S-ITS2 genetic region ranging from 0 to 7 bp among 

clones (Table 4).  The rRNA ITS1, 5.8S rRNA or SSU rRNA ITS2 genetic region 

sequences of GBRD varied from 0 to 16 bp, with variation of 7 to 20 base pairs in the full 

rRNA ITS1-5.8S-ITS2 genetic region.  MNBo and WisBo differed by as many as 29 

bp in the ITS1 region and 38 bp in the full rRNA ITS1-5.8S-ITS2 genetic region (Table 

4).  The three clones of GIBm shared identical sequences (Table 4).  Corresponding 

percent identity values to the above base pair differences are shown in Table 4.  No 
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clones were available for analysis for PeaBm, which was sequenced directly from 

purified PCR product.     

A full alignment of the rRNA ITS1-5.8S-ITS2 genetic region consensus sequences of 

NR, KY, BdivP and GBRD shows that the NR and KY sequences are identical (depicted 

as NR/KY) (Fig. 2).  The BdivP and GBRD sequences were identical in 20 positions that 

were distinct from NR/KY (Fig. 2).  The sequences of BdivP and NR/KY were the most 

divergent, with different nucleotides found in 54 positions.  The GBRD sequence differed 

at 50 positions from BdivP and at 39 positions from NR/KY.   

 

Table 3.  List of rRNA ITS1-5.8S-ITS2 genetic region sequence lengths.  Sequence 

lengths in base pairs of the SSU rRNA ITS1, 5.8S and ITS2 genetic regions from Babesia 

divergens (BdivP); Babesia divergens-like isolates from Kentucky human 

(KY), Nantucket Island rabbit (NR), and Great Britain reindeer (GBRD); Babesia 

odocoilei from Minnesota caribou (MnBo) and Wisconsin reindeer (WIBo), and Babesia 

microti strains GI (GIBm) and Peabody (PeaBm).      

 

 
    

 

   

 

Lengths of regions in base pairs                                

  Isolate  ITS1   5.8S    ITS2    

 

KY        

 

Clone 1,2,3 

 

449 

 

159 

 

257 

NR        Clone 1,2,3 449 159 257 

BdivP    Clone 1,2,3 446 159 246 

GBRD   

             

Clone 1,2 

Clone 3 

446 

448 

159 

159 

251 

251 

MNBo    

             

Clone 1,2 

Clone 3 

418  

416 

159 

159 

251 

251 

WIBo 

             

Clone 1 

Clone 2,3 

417 

413 

159 

159 

250 

250 

Pea Bm  353 156 197 

GI Bm   

 

Clone 1,2,3 353 156 197 
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Table 4.  Table of clonal sequence comparisons.  Pairwise sequence comparisons of the 

rRNA ITS1 genetic region, 5.8S rRNA gene and rRNA ITS2 genetic region among 

clones of Babesia divergens (BdivP); Babesia divergens-like isolates from Kentucky 

human (KY), Nantucket Island rabbit (NR), and Great Britain reindeer (GBRD); Babesia 

odocoilei from Minnesota caribou (MnBo) and Wisconsin reindeer (WIBo), and Babesia 

microti GI strain (GIBm).  The values in each upper matrix represent base pair 

differences.  The values in each lower matrix represent percent identities. 

 

 
 

Isolate 

 

Clone 1 

 

 

Clone 2 

 

Clone 3 

   ITS1 5.8S ITS2 ITS1 5.8S ITS2 ITS1 5.8S ITS2 

KY clone 1 - - -  1 1  0 1  3  0  

KY clone 2  99.8  99.4  100 - - - 2 2  0  

KY clone 3  99.8  98.1  100  99.6  98.7  100 - - - 

                    

NR clone 1 - - -  2 2  3   2 1  3  

NR clone 2  99.6  98.7  98.8 - - -  0 1  4  

NR clone 3  99.6  99.4  98.8  100  99.4  99.2 - - - 

                    

BdivP clone 1 - - -  2  0  2  0  0  0 

BdivP clone 2  99.6  100  99.2 - - -  2  0  2 

BdivP clone 3  100  100  100  99.6  100  99.2 - - - 

                              

GBRD clone 1 - - -  2 1   4 16  0  1 

GBRD clone 2  99.6 99.4  98.5  - - -  14 1  5  

GBRD clone 3 96.4 100 99.6 96.9 99.4 98.1 - - - 

                    

MNBo clone 1 - - - 2 1 0 14 0 1 

MNBo clone 2 99.5 99.4 100 - - - 14 2 0 

MNBo clone 3 96.7 98.1 100 96.7 98.7 100 - - - 

                    

WIBo clone 1 - - - 29 0 9 28 0 10 

WIBo clone 2 93.1 100 96.4 - - - 1 0 1 

WIBo clone 3 93.3 100 96.0 99.8 100 99.6 - - - 

                    

GIBm clone 1 - - - 0 0 0 0 0 0 

GIBm clone 2 100 100 100 - - - 0 0 0 

GIBm clone 3 100 100 100 100 100 100 - - - 
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NR/KY     ACATTGAATACCCTTGCACAATAGTGCTCGGCTTCGACATTTACGTTGTGTAAGCTTGCT 60    

GBRD      ACATTGAATACCTTTGCACAATAGTGCTCGGCTTCGACATTTACGTTGTGTAAGCTTGCT    

BdivP     ACATTGAATACCCTTGCACAATAGTGCTCGGCTTCGGCATTTACGTTGTGTAAGCTTGCT    

                                               

NR/KY     TGCAGCTGTGACTCTACGTCATGGTCCACTTTCTGTGGTTTCGTATTTGCCGTTGCCATG 120    

GBRD      TGCAGCTGTGACTCTACGTCATGGTCCACTTT--GTGGTTTCGTACTTGCCGTTGCCATG    

BdivP     TGCAGCTGTGACTCTACGTCATGGTCCACTTTTGGTGGTTTCGTATTTGTCGTTGCCATG    

                                                      

NR/KY     GCGACGTGGTTTCGGTCTTGTTCCGTTTCCATCCCTGCGCTTTTGCGTGGGACGTTGCCC 180    

GBRD      GCGACGTGGTTTCGGTCTTGTTCCGTTTCCATCCCTACGCTTTTGCGTGGGACGTTGCCC    

BdivP     GCGACGTGGTTTCGGTCTTGTTCCGTTTCCATCCCTGCGCTTTTGCGTGGGACGTTGCCC    

                                                 

NR/KY     CCTCCCACCCCACCGGGTGTATACTCACTACGGTATAACTACTGTAGATGATATACACCT 240    

GBRD      CCTCCCACCCCACCGGGTGTATGTTTACTACGGTGTAACTACTGTAGTTGATATACACTT    

BdivP     CCTCCCACCCCACCGGGTGTATGTTTACTGCGGTGTAACTACTGTAGTTGGCGTACACTT    

                                             

NR/KY     GGGTTATGCTGTGTCGATACTGATGTTACTGTTGATTGCTCTTCGAGTAGTTGTTAGTAA 300    

GBRD      GGGTTATGCTGTGTCAATACTGATGTTACTATTGAGTGCTCTTCGAGTAGTTGCTAGTAG    

BdivP     GGGTTATGCCGTGTCGATACTGATGTTACTAGTGATTGCTCTTTGAGTGGTTGTTAGTGC    

                      

NR/KY     CTTACCGGTGTTGCCACGGATGCTGCTCGTGGATCTATTAGATTCAAGCAGTTGCTGCTT 360    

GBRD      --TAGCAGTACTGTCACAGATGTTGCTCGTGGATCTATTAGATTCAAGCAGTTGCTGCTT    

BdivP     --TA-CAGTGTTGTCACGGATGCTGCTCGTGGATCTAATAGATTCAAGCAGTTGCTGCTT    

            

NR/KY     CGTGCAGTGTCTTGCGTAGCGATTTCGTTACGATAATGCAACTCCGCTCGTTCATCGTTT 420    

GBRD      CGTGCAGTGTTTAGCGTAGCGATTTCGTTACGATAATGCAACTCCGCTCGTTCATCGTTT    

BdivP     CGTGCAGTGTTTTGCGTAGCGATTTCGTTACGATAATGCAACTCCGCTCGTTCATCGTCT    

                     

NR/KY     T-GCGTTGTTCGAGTTTGTTTAGAAATTATAAACTTTCAGCGATGGATGTCTTGGCTCAC 480    

GBRD      TTGCGTTGTTCGAGTTTGTTTAGAAATTATAAACTTTCAGCGATGGATGTCTTGGCTCAC    

BdivP     T-GCGTTGTTCGAGTTTGTTTAGAAATTATAAACTTTCAGCGATGGATGTCTTGGCTCAC    

              

NR/KY     ACAACGATGAAGGACGCAGCAAATTGCGATAAGCATTATGACTTGCAGACTTCTGCGATT 540    

GBRD      ACAACGATGAAGGACGCAGCAAATTGCGATAAGCATTATGACTTGCAGACTTCTGCGATT    

BdivP     ACAACGATGAAGGACGCAGCAAATTGCGATAAGCATTATGACTTGCAGACTTCTGCGATT    

    

NR/KY     TAACAGACCTCTGAACGTAACAAACACACCGCCTCTGCTCGCATGCGGTACTCCCGTTTC 600    

GBRD      TAACAGACCTCTGAACGTAACAAACACACCGCCTCTGCTCGCATGCGGTACTCCCGTTTC    

BdivP     TAACAGACCTCTGAACGTAACAAACACACCGCCTCTGCTCGCATGCGGTACTCCCGTTTC    

    

NR/KY     AGTGAGCCCCCTTTCCTAAAGGAACCACACTTTTACTGGTTTACTACTGGTATTTGTTGT 660    

GBRD      AGTGAGCCCCCTTTCCTAAAGGAACCACACTTTTACTGGTTTACTACTGGTATTT---GT    

BdivP     AGTGAGCCCCCTTTCCTAAAGGAACCAGACTTTTACTC--------CTGGTAATA---GT    

                                       

NR/KY     ATGGTCGGTCCTTTGCGAGTGGGTGTTGTGACAATCACCTTAATTTCCATAGCATGCTAC 720    

GBRD      ATGGTCAGTCCTTTGCGAGTGGGTGTTGTGACAATCACCTTAATTTCCATAGCATGCTAC    

BdivP     ATGGTTAGTCCTTTGCGAGTGGGTGTTGTGACAATCACCTTAATTTCCATAGCATGCTAC    

                 

NR/KY     CGGGTATCGCCACGTGTGATCTCGAAGCTTCTTGTTGTAATTTATTACTCTAGGCTTCTT 780    

GBRD      CGGGTATCGCCACGTGTGATCTCGAAGCTTCTTGTTGTAATTTATTACTCTAGGCTTCTT    

BdivP     CGGGTATCGCCACGTGTGATCTCGAAGCTTCTTGTTGTAATTTATTACTCTAGGCTTCTT       

NR/KY     TTGAGATGTGCGACTAAGAATTGCTATTGTAGTATTTCTACAGCAAGTGGATGATGCTAG 840    

GBRD      TTGAGATGTGCGGCTAAGAATTACTATTGTA---TTTCTATAGCAAGTGGATGATGCTAG    

BdivP     TTGAGATGTGCGGCTAGGAATTACTATTGCAGTATTTCTATAGCAAGTGGATGATGCTAG    

                        

NR/KY     TGTTGTCAGTGCTATAAAATTTTTAT                                   900    

GBRD      TGTTGTCAGTGCTATAAAATTTTAAT    

BdivP     TGTTGTCAGTGCTATAAGTTTTGAAT    

 
 

Figure 2.  Alignment of the rRNA ITS1-5.8S-ITS2 genetic region sequences.  Clustal W 

aligned consensus sequences from the rRNA ITS1-5.8S-ITS2 genetic region of the 

Babesia divergens-like isolates from the Kentucky human and Nantucket Island rabbit 

(KY/NR), and from Babesia divergens Purnell (BdivP) and the Great Britain reindeer 

Babesia divergens-like parasite (GBRD).  The rRNA ITS1 and ITS2 genetic regions 

sequences are shown in normal font.  The intervening 5.8S rRNA gene sequences are 

italicized. 
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The KY and NR rRNA ITS1 and ITS2 genetic region sequences shared percent identities 

of 89.9 and 93.5 with those of BdivP, and 95.7 and 93.8 with those of GBRD, 

respectively (Table 5).  The consensus sequences for the PeaBm and GIBm isolates 

shared 98.9 percent identity in the rRNA ITS1 genetic region and 99.5 percent identity in 

the rRNA ITS2 genetic region (Table 5).  The B. microti rRNA ITS1 and ITS2 genetic 

region sequences shared percent identities ranging from 45.3 to 48.7 with those of the 

B. divergens and B. divergens-like parasites (Table 5).  MNBo and WIBo rRNA ITS1 

and ITS2 genetic regions consensus sequences shared 92.2 and 94.8 percent identity, 

respectively (Table 5).  MNBo and WIBo shared percent identities ranging from 67.0 and 

73.1 with NR, KY, BdivP and GBRD in both the rRNA ITS1 and ITS2 genetic regions 

(Table 5).  Babesia odocoilei ranged from 45.3 to 47.3 percent identity with B. microti in 

both ITS1 and ITS2 regions (Table 5). 

The 5.8S rRNA gene sequences for all isolates were identical except for those of 

B. microti.  GIBm and PeaBm were identical to each other but shared only 78.6 percent 

identity with the other isolates (data not shown). 

Analysis of the 5.8S rRNA gene sequence data for B. canis rossi, B. canis vogeli, B. canis 

canis and B. caballi from the GenBank database shows that the 5.8S rRNA gene 

sequence of BcanR shared 96.9 percent identity with those of both BcanV and BcanC.  

The BcanV sequence shared 97.5 percent identity with that of BcanC.  The 5.8S rRNA 

genes of BcanR, BcanV and BcanC shared 95.6, 95.0 and 94.3 percent identity, 

respectively, to that of BcabN. 
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Table 5.  List of consensus sequence percent identities.  Percent identities found in the 

rRNA ITS1 and ITS2 regions consensus sequences of Babesia divergens (BdivP); 

Babesia divergens-like isolates from Kentucky human (KY), Nantucket Island rabbit 

(NR), and Great Britain reindeer (GBRD); Babesia odocoilei from Minnesota caribou 

(MnBo) and Wisconsin reindeer (WIBo), and Babesia microti strains GI (GIBm) and 

Peabody (PeaBm).  The values in the upper matrix were calculated using the ITS1 

sequences and the values in the lower matrix were calculated with the ITS2 sequences.  

 

  !
Isolate 

!
KY 

 

NR 

 

BdivP 

 

GBRD 

 

MNBo 

 

WIBo 

 

PeaBm 

 

GIBm 

 

KY 

 

- 

 

100 

 

93.5 

 

93.8 

 

67.8 

 

68.7 

 

45.6 

 

45.3 

NR 100 - 93.5 93.8 67.8 68.7 45.6 45.3 

BdivP 89.9 89.9 - 93.5 69.0 68.7 45.9 45.5 

GBRD 95.7 95.7 92.1 - 67.2 67.0 46.8 45.7 

MNBo 73.1 73.1 70.4 72.5 - 9.2. 46.5 47.8 

WIBo 71.3 71.3 71.0 72.9 94.8 - 48.4 47.2 

PeaBm 46.8 46.8 48.2 48.5 47.4 48.7 - 98.9  

GIBm 47.2 47.2 48.2 47.7 47.6 47.9 99.5  - 
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Phylogenetic trees were inferred from the rRNA ITS1, ITS2 and ITS1-5.8S-ITS2 genetic 

regions nucleotide sequences by maximum likelihood analysis (Fig. 3).  KY and NR 

formed a closely related group within the clade composed of B. divergens and the 

reindeer B. divergens-like organism (Fig. 3).  The two B. odocoilei isolates formed a 

separate clade from B. divergens and the B. divergens-like isolates, which was supported 

by high bootstrap values (100) in all three analyses (Fig. 3).  The rRNA ITS1 genetic 

region tree further divided the monophyletic group containing B. divergens and the 

B. divergens-like isolates into three terminal clades, BdivP, GBRD, and KY (combined 

with NR), with low bootstrap support (53) (Fig. 3A).  The trees inferred from the SSU 

rRNA ITS2 genetic region and the full rRNA ITS1-5.8S-ITS2 genetic regions sequences 

showed similar topology (Figs. 3B,C), branching BdivP and GBRD independently, but in 

a single cluster within the clade containing B. divergens and the B. divergens-like 

isolates.  A high bootstrap value (92) supported the separation of the group holding NR 

and KY in the rRNA ITS1-5.8S-ITS2 genetic region tree (Fig. 3C). 
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Figure 3.  Phylogentic analysis of the rRNA ITS1-5.8S-ITS2 genetic region.  Maximum 

likelihood analyses using rRNA ITS1 (A), rRNA ITS2 (B), and the entire rRNA ITS1-

5.8S-ITS2 gene region (C) sequence data from three clones each of Babesia divergens 

(BdivP); Babesia divergens-like isolates from Kentucky human (KY), Nantucket Island 

rabbit (NR), and Great Britain reindeer (GBRD); Babesia odocoilei from Minnesota 

caribou (MnBo) and Wisconsin reindeer (WIBo), with Babesia microti strains GI (GIBm) 

and Peabody (PeaBm) as the outgroup.    

 
 

 

A. B. 
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In Vitro Culture Comparisons 

Parasite proliferation 

The NR parasite was successfully resuscitated through in vitro culture into both human 

and cottontail rabbit erythrocytes.  Babesia divergens was successfully resuscitated 

through in vitro culture into both human and bovine erythrocytes.  Parasites were visible 

in Giemsa-stained erythrocyte smears of the re-initiated cultures within 6 to 16 days 

(Table 6).  Due to variable multiplication of parasites upon recovery from cryostorage, 

the number of passages required to achieve the normal subculture schedule varied from 3 

to 6 passages among the different cultures (Table 6).   

The parasite growth progression, during the 30-day comparative culture period, for each 

erythrocyte condition, is shown in Fig 4.  In most cases, the PPE values peaked on the 

days subcultures were performed (Fig. 4). 

Attempts to subculture NR and B. divergens into bovine and cottontail rabbit cells 

respectively, were unsuccessful.  During the three preliminary passages to exchange 

donor erythroctyes, parasites appeared as dense, dark staining organisms with no visible 

organelles (Fig. 5 I-J).  Hyper-vacuolar parasites were also seen during this period (Fig. 5 

S-T).  Following the three preliminary passages, parasites were no longer detected.  

Babesia divergens in bovine erythrocytes produced the highest PPE values during the 

experimental period.  At subculture parasitemias varied from 4.6 ±1.02 to 10.7 ±1.77, 

with an average PPE of 5.57 ± 2.53 during the 30 day trial (Fig. 6A).  The parasitemia of 

B. divergens in human erythrocytes dropped from an initial high PPE of 8.1 ±0.65 to 9.0  

 



 

 

3
9
 

Table 6.  Table of resuscitation procedures.  List of passage number at time of resuscitation (Thaw psg) and intervals at  

which the first passage was completed, successive passages were completed, and the number of days post culture  

re-initiation that the comparative PPE values were taken for NR in human and cottontail rabbit erythrocytes and  

B. divergens in human and bovine erythrocytes. 

Parasite Donor Erythrocyte Host 

 Human Cottontail Rabbit Bovine 

 Thaw 

psg 

Days to 

first 

Passage 

Passage  

Intervals 

Days to  

Begin 

Thaw 

psg 

Days to 

first 

Passage 

Passage  

Intervals 

Days to  

Begin 

Thaw 

psg 

Days to 

first 

Passage 

Passage  

Intervals 

Days to  

Begin 

NR774 P23 17 6 days 23 P14 21 5-7  days 33 N/A N/A N/A N/A 

B. divergens P2 19 5 days 24 N/A N/A N/A N/A P2 8 3-7  days 27 
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Figure 4.  Comparisons of daily percent parasitized erythrocytes.  Comparison of culture 

conditions containing B. divergens in bovine erythrocytes (DivB), B. divergens in human 

erythrocytes (DivH), NR in human erythrocytes (NRH) and NR in cottontail rabbit 

erythrocytes (NRCT) throughout the 30-day experimental period. 

 



 

 

41

±1.04 but maintained a PPE ranging from 3.4 ±0.78 to 4.5 ±0.51 at subculture through 

the remainder of the study, for an average of 3.91 ±1.89 throughout (Fig. 6A). 

NR maintained a PPE in human erythrocytes ranging from 3.3 ±1.36 to 6.2 ±1.41 at 

subculture throughout, with an average PPE of 4.18 ±1.14 (Fig. 6A).  PPE values, at 

subculture, for NR in eastern cottontail rabbit erythrocytes ranged from 0.5 ±0.41 to 5.6 

±0.86 with an average PPE of 2.12 ±1.28, with an abrupt decline in PPE after the ninth 

passage (Fig. 6A).   

Babesia divergens cultured in bovine erythrocytes proliferated significantly better 

throughout the 30 day experimental period than B. divergens in human erythrocytes, NR 

in human erythrocytes, and NR in cottontail rabbit erythrocytes (p ≤ 0.05).  Babesia 

divergens cultured in human erythrocytes proliferated significantly better than NR in 

cottontail erythrocytes (p ≤ 0.05).  The NR parasite cultured in human erythrocytes 

proliferated significantly better than NR in cottontail erythrocytes (p ≤ 0.05).  The 

proliferation of B. divergens in human erythrocytes was not significantly different from 

that of NR in human erythrocytes (p ≥ 0.05).  

Media containing fetal bovine serum (HL-F) supported steady growth of both 

B. divergens in bovine erythrocytes and NR in human erythrocytes for the duration of the 

30 day trial.  At subculture, PPE values of B. divergens ranged from 0.6 ±1.14 to 13.43 

±6.15 with an average PPE of 4.81 ±3.13 throughout (Fig. 6B).  Percent parasitemias of 

NR ranged from 1.55 ±0.76 to 3.10 ±0.70 at subculture throughout, with an average PPE 

of 1.96 ±0.72 (Fig. 6B).  Babesia divergens cultured in bovine erythrocytes with HL-F 
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medium proliferated significantly better than NR in human erythrocytes with HL-F 

medium (p ≤ 0.05). 

Parasite morphology and measurements 

Morphological variation was visualized between NR and B. divergens through Giemsa-

stained erythrocyte smear examination.  Babesia divergens was seen in single, paired, 

and accolé forms in bovine erythrocytes, typical of B. divergens morphology (Fig. 5 A-

D).  In addition to the single and paired forms, multiple B. divergens organisms were 

found to exist in single human erythrocytes, with up to 4 parasites present a cell (Fig. 5 

E-H).  NR was seen in single and paired forms in human and cottontail rabbit 

erythrocytes (Fig. 5 K,O).  A morphologically distinct multiple form of NR was also seen 

in both host erythrocytes.  The multiply infected human or eastern cottontail rabbit 

erythrocytes contained from 4 to greater than 8 parasites.  In many cases, the high 

number of organisms inhabiting one erythrocyte inhibited parasite quantification and 

increased the diameter of the infected cell.  The average dimensions of each parasite in 

the different host erythrocytes are included in Table 7.  KY and NR were significantly 

larger in length and width than B. divergens in all host erythrocytes (p ≤ 0.05).  The 

difference in length and width of B. divergens in bovine and human erythrocytes was also 

significant (p ≤ 0.05).  No significant size difference was found between NR in cottontail 

rabbit erythrocytes, NR in human rabbit erythrocytes, and KY in human erythrocytes (p ≥ 

0.05). 
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Table 7.  List of cultured parasites.  The results of cultivation attempts in the various 

erythrocyte conditions, and dimensions of cultured parasites in the different host 

erythroctyes.  The dimensions of the KY agent measured from a blood smear are also 

included. 

 

Parasite Host RBC Growth 

Result 

Size (µm) 

Length          Width 

B. divergens Human 

Bovine 

Cottontail Rabbit 

+ 

+ 

- 

3.17 ±0.53    1.03 ±0.31  

2.17 ±0.37    0.75 ±0.25 

N/A     

NR Human 

Bovine 

Cottontail Rabbit 

+ 

- 

+ 

4.33 ±0.56     1.96 ±0.31 

N/A 

4.16 ±0.48     1.97 ±0.33 

KY N/A N/A 4.09 ±0.58    1.90 ±0.29 
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Figure 5.  Giemsa-stained smears of erythrocyte culture.  A-D Paired accolé, multiple, 

single and paired form of B. divergens in bovine erythrocytes.  E-H Multiple, tetrad, 

single and paired form of B. divergens in human erythrocytes.  I-J Hyper-vacuolar and 

dense forms of B. divergens in cottontail rabbit erythrocytes.  K-N Multiple, tetrad, single 

and paired forms of NR in cottontail erythrocytes.  O-R Floret, tetrad, single and paired 

forms of NR in human erythrocytes.  S-T Hyper-vacuolar and dense forms of NR in 

bovine erythrocytes. 
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Figure 6.  Comparisons of percent parasitized erythrocytes (PPE)at subculture.  A. 

Comparison of PPE values of B. divergens in bovine (DivB) and human (DivH) 

erythrocytes and NR in cottontail rabbit (NRCT) and human (NRH) erythrocytes at each 

of 10 subcultures.  B. Comparison of PPE values of B. divergens in bovine erythrocytes 

with fetal bovine supplemented medium (DivF) and NR in human erythrocytes with fetal 

bovine supplemented medium (NRF).   
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DISCUSSION AND SUMMARY 

During the past few years, cases of human babesiosis occurred in North America with the 

causative agents distinct from known endemic species, but were similar to the exotic 

bovine parasite B. divergens.  Genetic, antigenic, and morphologic evidence relates these 

recently recognized human agents to this parasite of cattle in Europe (Herwaldt et al. 

1996; Beattie et al. 2002; Herwaldt et al. 2004).  The first case was fatal and occurred in 

an elderly asplenic Missouri man (Herwaldt et al. 1996).  The remaining two cases, one 

from Kentucky and the other from Washington State, also occurred in splenectomized 

men (Beattie et al. 2002; Herwaldt et al. 2004).  The agents from the Missouri and 

Kentucky cases were found to be morphologically similar and genetically identical to 

each other and an additional North American Babesia sp., endemic in eastern cottontail 

rabbits on Nantucket Island, Massachusetts, (Goethert and Telford 2003a; Holman et al. 

2005).  The possible existence of B. divergens in North America presents a health risk to 

humans and a potential economic risk to the cattle industry (Cable et al. 2003; Filbin et 

al. 2003).   

Small subunit ribosomal RNA (SSU rRNA) gene sequences are identical between the 

Kentucky (KY) and Missouri (MO1) isolates (GenBank Accession numbers AY887131 

and AY048113, respectively).  The piroplasm present in eastern cottontail rabbits is also 

identical to these human isolates by SSU rRNA gene analysis (Goethert and Telford 

2003a).  The SSU rRNA gene sequence of these three U.S. organisms is nearly identical 

to that of B. divergens (Purnell isolate, cattle origin) from Great Britain, which differs at 

only three nucleotide positions (Goethert and Telford 2003a).  Interestingly, the 
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Kentucky patient reported that he had hunted cottontail rabbits prior to becoming ill 

(Beattie et al. 2002).   

Previous evaluations of SSU rRNA gene sequences from B. divergens and other 

Babesia spp. provide important considerations when assessing the significance of the 

three nucleotide differences between B. divergens and the U.S. B. divergens-like isolate 

genes.  Only four nucleotide positions differ between the SSU rRNA genes of the Great 

Britain reindeer B. divergens-like isolate and Purnell B. divergens (GenBank accession 

numbers AY098643 and U16370, respectively) (Langton et al. 2003).  This degree of 

variation was consistent with the SSU rRNA gene sequence variation found among other 

cattle B. divergens isolates (GenBank accession numbers UO7885 and Z48751), therefore 

it was concluded that the parasite found in reindeer was B. divergens (Langton et al. 

2003).  However, recent re-analysis of the SSU rRNA genes from these same cattle 

B. divergens isolates found them to be identical to the originally obtained sequence of 

Purnell B. divergens (U16730) (Herwaldt et al. 2003; GenBank accession number 

AY046576; formerly UO7885 and Z48751).  These results suggest that no variation 

exists in the SSU rRNA gene within this species, which would then suggest that the four 

nucleotide differences found between B. divergens and the reindeer isolate SSU rRNA 

genes may, in fact, signify delineation of species.  This would further suggest that the 

three differences in SSU rRNA gene sequences of B. divergens and the U.S. 

B. divergens-like isolates, and the seven differences between the Great Britain reindeer 

B. divergens-like and the U. S. B. divergens-like isolates (GenBank accession numbers 

U16370, AY048113, and AY098643, respectively) also signify delineation of species.  
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Thus, the SSU rRNA data suggests separation of B. divergens and the U.S. isolate.  

Biologically, the mammalian hosts of B. divergens are well documented and include 

cattle, man, and gerbils (Homer et al. 2000), but rabbits have not been documented.  The 

U.S. parasite infects rabbits and man, but not cattle (Herwaldt et al. 1996; Beattie et al. 

2002; Goethert and Telford 2003a).  The mammalian host disparity between the two 

organisms and the SSU rRNA data indicate that these two parasites are not conspecific.   

The rRNA ITS1 and ITS2 genetic regions are less conserved than the SSU rRNA genes 

due to reduced structure-function constraints placed upon these non-coding genes.  

Therefore, ITS data have been used to delineate species within a genus (Zahler et al. 

1998; Berzunza-Cruz et al. 2002).  The consensus sequences of the rRNA ITS1 and ITS2 

regions of the Nantucket Island rabbit and Kentucky human B. divergens-like isolates 

were identical in size and nucleotide sequence, supporting conspecificity of these two 

organisms (Tables 3,4).  Both B. divergens and the reindeer B. divergens-like isolate 

possessed ITS sequences variant to each other and to that of the U.S. isolate (Table 4).  In 

both ITS regions, the Great Britain reindeer B. divergens-like was more similar to the 

geographically distant U.S. human B. divergens-like isolates than to the Great Britain 

B. divergens (Table 4).  The B. microti isolates (Peabody and GI) included in this study 

have ITS1 and ITS2 regions of the same size and nearly identical sequence (98.9% and 

99.5 %, respectively) (Table 4).  In contrast, the B. odocoilei isolates show more rRNA 

ITS sequence variation between each other than is seen between the U.S. B. divergens-

like isolates and B. divergens and the reindeer B. divergens-like isolate from Great 

Britain (Table 4).   
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The usefulness of the rRNA ITS1 and ITS2 genetic regions as taxonomic genetic markers 

for members of the family Babesiidae has not been definitively demonstrated for any 

species except B. canis.  Babesia canis isolates are differentiated into three subspecies 

based on biologic characteristics including vector specificity, immunogenicity, and 

pathogenicity (Uilenberg et al. 1989; Hauschild et al. 1995).  The rRNA ITS1 and ITS2 

genetic region sequence analysis also supports the differentiation of these three 

subspecies, with percent identities ranging from 70 to 82 between subspecies and 97.9 to 

100.0 within subspecies for the full rRNA ITS1-5.8S-ITS2 genetic region (Zahler et al. 

1998).  In contrast, intragenic comparisons between the B. canis subspecies and 

B. caballi show lower percent identities (66-69) in this genomic region (Zahler et al. 

1998).  Similarly, percent identities ranged from 67-69 in the rRNA ITS1 genetic region 

and from 70-73 in the rRNA ITS2 genetic region when B. odocoilei was compared to 

B. divergens and the B. divergens-like isolates.  However, percent identities were much 

higher between B. divergens and the B. divergens-like isolates (89-94) (Table 4).  The 

greater rRNA ITS genetic region sequence variation seen within isolates of B. odocoilei, 

compared to the lower values found between B. divergens and the U.S. isolates (KY and 

NR), would support an argument for conspecificity of the latter two organisms, but 

conflicts with the SSU rRNA data and biologic evidence, which distinguish these 

organisms.    

Considered together, all the data from Babesia spp. suggest that the amount of rRNA ITS 

genetic region variation within a given species may differ depending on the species.  In 

all cases, intragenic comparisons of rRNA ITS genetic regions showed more variation 

than was found within an isolate.  However, as discussed above, the amount of SSU 
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rRNA ITS genetic region variation found within an isolate was not consistent.  In some 

isolates, the SSU rRNA ITS genetic regions were the same size and showed only slight 

nucleotide variation, as seen among the clones of the Kentucky human and Nantucket 

Island rabbit isolates and those of B. divergens.  This high degree of similarity was also 

seen among the B. microti isolates, where three rRNA ITS1-5.8S-ITS2 genetic region 

clones of the B. microti GI strain were identical, and were also nearly identical to that of 

the B. microti Peabody strain.  On the other hand, differences in both size and sequence 

of the rRNA ITS genetic regions were found between the two B. odocoilei isolates and, 

moreover, within the three B. odocoilei and the three reindeer B. divergens-like parasite 

clones.  The likely existence of multiple SSU rRNA coding regions, as determined for 

B. bigemina and B. bovis, may explain the sequence variation found among the clones of 

the isolates compared in this study (Dalrymple 1990; Reddy et al. 1991). 

Although the 5.8S rRNA gene is considered too small in length to be a reliable candidate 

for phylogenetic analysis, it is noteworthy that B. divergens and the B. divergens-like 

isolates possess identical 5.8S gene sequences.  These results are consistent with those of 

Cyclospora cayetanensis and Cyclospora papionis, which also share identical 5.8S rRNA 

gene sequences, but differ in the rRNA ITS1 genetic region (Olivier et al. 2001).  In fact, 

even parasites taxonomically assigned to distinct genera may share identical 5.8S rRNA 

gene sequences, as seen in Hammondia heydorni, Hammondia hammondi, Neospora 

caninum, and Toxoplasma gondii (Blast search; GenBank accession numbers AF096501, 

AF508030, AF432123, and L49390, respectively).  The two B. microti strains also shared 

identical 5.8S rRNA gene sequences.  Interestingly, among the B. canis subspecies, 

variation in the 5.8S rRNA gene is observed.  The 5.8S rRNA gene sequence ranged from 
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96.9-97.5 percent identity among the three subspecies (GenBank accession numbers 

AF394535, AF394534, AF394533) and 94.3-95.6 between B. canis and B. caballi 

(GenBank accession number AF394536).  In summary, as discussed for the rRNA ITS 

regions, the degree of sequence variation in the 5.8S rRNA gene may also depend on the 

Babesia species. 

Phylogenetic analyses further support the conspecificity of the Kentucky human and 

Nantucket Island rabbit B. divergens-like isolates, and the close evolutionary 

relationships among this parasite, B. divergens and the reindeer B. divergens-like 

parasite.  Three maximum likelihood trees constructed from the rRNA ITS1 genetic 

region, rRNA ITS2 genetic region or the entire rRNA ITS1-5.8S-ITS2 genetic region 

sequences, indicate conspecificity of the U.S. rabbit and human parasites, with each 

placing these isolates together into distinct terminal clades.  However, in all three trees, a 

similar topology combines the B. divergens and B. divergens-like clones into one non-

terminal monophyletic clade, which is separated from B. odocoilei.  

The usefulness of the rRNA ITS genetic regions for distinguishing among species has 

been established for a number of protozoan genera, including Sarcocystis, Cyclospora, 

Cryptosporidium, and Leishmania (Marsh et al. 1999; Miller et al. 2001; Olivier et al. 

2001; Morgan-Ryan, et al. 2001; Berzunza-Cruz et al. 2002).  However, in the present 

study, diverse Babesia spp. exhibited different degrees of rRNA ITS genetic region 

sequence variability within an isolate, so that delimitations on rRNA ITS genetic region 

variability that define a Babesia species were not possible.  Thus, the global use of  rRNA 

ITS genetic region data in delineating Babesia spp. is not likely to be practical if based on 
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standards derived from intragenic and/or intraspecies variation.  The value of rRNA ITS 

sequence data lies in identifying conspecific Babesia isolates, such as with the parasite 

from the cottontail rabbit and the agent of human babesiosis in this study.   

In addition to molecular comparisons, animal inoculations studies were conducted to 

evaluate the in vivo infectivity of the NR isolate (Holman et al. 2005).  Cryopreserved 

culture inocula of the NR isolate and B. divergens were employed to evaluate infectivity 

of these two organisms for cattle.  Cattle are refractory to NR infection.  However, 

control animals inoculated with B. divergens became infected as determined by Giemsa 

stained smear examination, PCR, and in vitro culture (Holman et al. submitted).   

The current study shows that similar infectivity determinations can be made through in 

vitro methods.  Thus, differences in host erythrocyte suitability were observed among the 

parasites cultured in vitro in this study.  Despite multiple attempts, the rabbit parasite 

would not grow in bovine cells that concurrently supported B. divergens proliferation, 

and B. divergens would not grow in cottontail rabbit cells that concurrently supported NR 

proliferation.  This result shows a distinct difference in the host erythrocyte specificity 

between NR and B. divergens, and supports the in vivo findings.   

In this study, B. divergens cultured in bovine erythrocytes proliferated at a higher level of 

parasitemia than in human erythrocytes or compared to NR in human or cottontail 

erythrocytes.  The importance of quality and origin of both erythrocytes and sera used for 

Babesia spp. in vitro culture, is well documented and is evident in this experiment 

(Sunuga et al. 2002; Zintl et al. 2004; Holman et al. 2005).  The bovine erythrocytes and 

serum available for B. divergens culture were from a donor animal on site, which was 
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previously selected based on the superior performance of its erythrocytes and serum to 

support B. divergens growth in vitro.  Bovine erythrocytes and serum, therefore, were 

expected to provide optimal support for parasite growth in vitro. 

In contrast, the human erythrocytes were from a commercial source and likely were 

obtained from different donors from lot to lot.  The human serum was acquired as a 

single lot batch and therefore constant throughout the in vitro studies.  In addition, this lot 

was previously shown to support NR in vitro (Holman et al. 2005).  Nevertheless, the 

human erythrocytes and serum were not autologous as were the bovine components.  

Furthermore, it was observed during these studies that parasite growth declined in human 

erythrocytes used four weeks after blood collection.  It was previously noted that cultures 

of B. gibsoni must be replenished with fresh canine erythrocytes (Zweygarth and Lopez-

Rebollar 2000; Sunuga et al. 2002).  Since human blood must be safety tested prior to 

sale and release, prompt replacement of donor human erythrocyte stocks was 

occasionally problematic.  In fact, the decline in PPE values seen at the third passage of 

B. divergens grown in human erythrocytes coincided with use of a new shipment of 

human blood and might, therefore, be due to erythrocyte quality.  As mentioned above, 

the culture suitability of each lot is likely to be variable since the donors varied.  The 

importance of using erythrocytes from a suitable donor in cultures of Babesia species is 

well documented (Canning and Winger 1987; Holman et al. 1998). 

Similarly, the generally lower PPE values seen in NR in cottontail rabbit erythrocyte 

cultures may be attributed to both erythrocyte quality and serum compatibility (Fig. 6a).  

The supply of cottontail rabbit erythrocytes was limited to blood drawn from wild-caught 
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rabbits.  During this study, it was observed that cottontail rabbit erythrocytes did not 

maintain integrity under storage as well as human and bovine erythrocytes.  

Supplementation of culture medium with cottontail rabbit serum was not only 

impractical, but not feasible as well.  The use of human serum in lieu of cottontail rabbit 

may have contributed to poor condition of the rabbit erythrocytes in culture, thereby 

affecting parasite proliferation. 

Fetal bovine serum supplementation of culture medium for bovine Babesia spp. has been 

avoided due to inhibitory effects on parasite growth presumably associated with the 

phenomenon of inverse age resistance in bovine babesiosis (Levy et al. 1982).  Recent 

reports, however, show that these effects may not be seen in cultures of B. divergens, 

which may be grown in the presence of fetal bovine serum (Ben Musa and Phillips 1991; 

Chauvin et al. 2002; Malandrin et al. 2004).  Current experimentation focusing on the 

role of the calf spleen in reverse age resistance has reduced the conceived importance of 

fetal bovine serum in this phenomenon in regards to B. divergens (Zintl et al. 2004; Zintl 

et al. 2005).  Previously, primary cultures of NR were not successfully initiated in the 

presence of fetal bovine serum (Holman et al., 2005).  In the current study, established 

cultures of both B. divergens and NR774 could be successfully subcultured and 

maintained using fetal bovine serum supplemented medium (Fig. 6b).  This difference 

may be explained by different culture requirements between primary and established 

Babesia species cultures.  For example, fetal bovine serum is necessary for the initiation 

of B. equi cultures, but after establishment, the parasite proliferates in medium containing 

normal adult horse serum (Holman et al. 1994b).  Similarly, Zweygarth and Lopez-

Rebollar (2000) found that hypoxanthine was required for initiation of B. equi cultures, 
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but hypoxanthine could be satisfactorily replaced by adenosine or guanosine in 

established cultures.   

A major distinguishing characteristic among Babesia species is the size of the piroplasm.  

The parasites are grouped into large and small babesia depending on whether an 

individual piroplasm is larger or smaller than 2.5 µm, respectively, in length during 

the paired merozoite stage.  This study further defines NR and B. divergens as separate 

species based on size differences.  Babesia divergens is classified as a small Babesia 

species, with merozoites measuring from 1.0 up to 2.5 µm in length in bovine blood 

(Levine 1985).  When cultured in bovine erythrocytes, B. divergens parasites were 

consistent in size to that reported in vivo.  However, B. divergens cultured in human 

erythrocytes exceeded the small Babesia species size limitations, being significantly 

larger with an average size of 3.17 (p ≤ 0.05) (Table 7).  In contrast, the size of NR 

parasites remained comparable whether cultured in human or rabbit erythrocytes, with 

average lengths of 4.33 µm and 4.16 µm, respectively (Table 7).  Regardless of host 

erythrocyte, NR parasites were significantly larger than B. divergens (p ≤ 0.05) and 

consistent in size with the KY parasite (4.09 µm) (p ≥ 0.05) (Table 7). 

The observed difference in size of B. divergens parasites may be attributed to differences 

in host erythrocyte size.  Previously, B. divergens parasites in human blood were 

described as larger, up to 3 µm, than B. divergens in bovine blood, up to 2.5 µm 

(Gorenflot et al. 1998; Levine 1985).  Human and cottontail rabbit erythrocytes are 

approximately 9 µm in diameter, which correlates with the consistent size of NR when 

cultured in either human or rabbit erythrocytes.  Bovine erythrocytes are considerably 
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smaller at approximately 6 µm in diameter.  In sum, when NR and B. divergens are 

measured in the same host erythrocytes, the size discrepancy between them is significant 

(p ≤ 0.05), indicating that these organisms are distinct. 

Other morphological differences exist between B. divergens and the NR774 parasite 

(Fig 5).  Babesia divergens was often observed in its typical accolé position in bovine 

erythrocytes, but not in human erythrocytes, which agrees with previous observations of 

B. divergens morphology in human erythrocytes (Gorenflot et al. 1991; Pudney 1984).  

Transmission electron microscopy shows that B. divergens parasites do not protrude 

against the membrane of human erythrocytes, but instead occupy a subcentral position 

(Gorenflot et al. 1991).  In the current study, Maltese cross or tetrad forms within either 

erythrocyte type were rare, but were more common in human erythrocytes.  

In both human and cottontail rabbit erythrocytes, NR parasites were also found as single, 

paired, and tetrad forms, with paired merozoites occasionally in the accolé positions, as 

noted for B. divergens in bovine erythrocytes(Fig 5 K-R).  Additionally, in excess of four 

NR parasites were often found within a single erythrocyte, often exceeding eight 

parasites per cell and sometimes appearing in an unusual floret-like formation (Fig. 5 

K,O).  A similar formation is reported as a “uniform array” in B. odocoilei parasites 

cultured in caribou erythrocytes (Holman et al. 1994a).  Babesia divergens was not 

observed in this form in either bovine or human erythrocytes. 

According to the rRNA ITS1 and ITS2 genetic region sequence data collected in this 

study, the KY and NR agents are conspecific.  The rRNA ITS1 and ITS2 genetic region 

data are less clear in defining the relationship between B. divergens and the North 
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American Babesia sp.  However, the differences in host erythrocyte utility between NR 

and B. divergens and the morphological variation found between them when cultured in 

human erythrocytes distinguish these organisms as distinct species.  These results clearly 

demonstrate the value of in vitro methodology in characterizing Babesia spp. and provide 

a more practical and humane method than in vivo experimentation.  Furthermore, the 

rRNA ITS1-5.8S-ITS2 sequence data and differential host erythrocyte specificity data 

from this study show that the NR agent is distinct from B. divergens. 
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