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ABSTRACT 

Attachment and Survival of Viruses on Lettuce (Lactuca L. sativa var. capitata 

L.):  Role of Physicochemical and Biotic Factors (August 2006) 

Everardo Vega, B.S., University of Texas at El Paso 

Chair of Advisory Committee: Dr. Suresh D. Pillai 

 

Enteric viruses are responsible for a significant amount of foodborne disease in 

the United States.  Foodborne disease associated with enteric viruses has been 

increasing within the last few years due to technological advances and raised 

awareness.  Salads and salad crops are the principal vector for transmission of 

enteric viruses.  The objective of this study was to determine if viruses are able to 

attach non-specifically to the surface of lettuce and to determine the forces 

responsible for non-specific viral adsorption to lettuce.  Additionally, the impact 

of the microbial flora on viral persistence was studied to determine the effect on 

viruses.  The four viruses studied were echovirus 11, feline calicivirus, MS2 and 

φX174.  The viruses were chosen based on their varying isoelectric points and 

similar physicochemical attributes.  The isoelectric point was not the main factor 

determining virus attachment to lettuce.  Viruses had varying attachment 

efficiencies, with echovirus 11 having the highest affinity to lettuce and φX174 the 

least.  Viral adsorption to lettuce was mediated by electrostatic forces due to the 

removal of virus adsorption at pH 7 and 8 with the addition of 1 M NaCl to the 

buffer solutions.  Microcosm studies indicated that the microbial flora did not 
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have a negative impact on virus survival.  The bacteriophages had the highest 

survival rate.  Virus survival in the microcosm studies was not indicative of virus 

survival on the surface of the lettuce.  The animal viruses exhibited survival rates 

greater than or equal to the survival of bacteriophages at 4° C, but at room 

temperature viable animal viruses rapidly declined compared to the 

bacteriophages.  Additional studies also indicated that the microbial flora was 

not able to degrade the viruses for aerobic microbial growth.  Overall, these 

results indicate that viruses are able to attach to the surface of lettuce, providing 

a possible explanation for the high incidence of virus associated disease 

involving salads and fresh produce.  More importantly the use of surrogates for 

virus studies involving fresh produce must be re-evaluated, because of the lack of 

correlation between animal viruses and bacteriophages.  Appropriate viral 

surrogates, if used, have to be carefully chosen based on viral physicochemical 

properties as well as the infectious route of the virus. 
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CHAPTER I 

INTRODUCTION 

There has been considerable interest in a continuous salad crop production for 

long duration space mission flights to help maintain air quality within spacecraft 

and as edible food.  The benefits of growing salad crops in space include 

wastewater processing, CO2 elimination, O2 production, and psychological 

benefits to astronaut (50).  Studies involving lettuce production in a biomass 

production chamber have already been initiated and production of lettuce in the 

International Space Station (ISS) may be expected in the future (50, 124). Even 

though growing and consuming salad crops are beneficial to the over all well 

being of space mission crews, it can also be a source of human pathogens.  

Studies have indicated that bacteria and viruses are able to be and attach to the 

external surfaces and be absorbed into edible plants (143, 166). Because the 

health of space mission crews are vital to space missions, foods treatments, like 

thermostabilization, irradiation or dehydration, are utilized by NASA to ensure 

food safety (124).  Fresh salad crops pose a problem because they cannot be 

treated as other foods without affecting food quality.  Conditions aboard ISS, like 

scarcity of water and cramped living conditions coupled with minimal processing 

of salad crops makes contamination of salad vegetables a strong possibility.  

These conditions can lead to foodborne disease outbreaks among astronauts. 

 

____________ 
This dissertation follows the style of Applied and Environmental Microbiology. 
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Lettuce (Lactuca sativa) is a cause of concern because it is primarily 

eaten raw, has a large surface area, and grows adjacent to the growing substrate 

thereby increasing the probability of contamination.  Of all the foodborne 

pathogens, none are as prevalent as enteric viral pathogens.  In the year 2000, 

enteric viruses accounted for 28% of outbreaks and it is estimated that 80% of all 

foodborne gastroenteritis is caused by enteric viruses (22, 113).  Viral outbreaks 

have a high incidence of occurrence in enclosed and semi-enclosed conditions, 

like daycare centers, cruise ships, campgrounds, military installations and 

hospitals.  Furthermore, properties inherent to enteric viruses, like structural 

stability, resistance to disinfectants, and a low infectious dose make enteric 

viruses far more infectious than bacteria.  Enteric viruses may also infect 

individuals asymptomatically and are also capable of reinfecting individuals that 

have been previously exposed (19).  Therefore, the primary goal of this study was 

to determine the forces responsible for attachment of enteric viruses to 

Butterhead lettuce (Lactuca sativa L. var. capitata L.) and to determine the 

effect of the lettuce normal flora on enteric virus persistence.   

Relevance of Research 

The results from this study will have important implications in food safety by 

elucidating a knowledge gap.  Salad crop food safety during extended space 

missions will be improved by identifying conditions under which enteric viruses 

will be able to adsorb to butterhead lettuce.  Additionally, this study will be 

relevant for food safety in general.  Producers will be aware of conditions that 
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will induce viral adsorption, thereby provide a method to implement a critical 

control point in fresh produce processing.  If viral adsorption cannot be 

prevented, the microbial flora can be harnessed to deactivate enteric viruses.  

This work will also provide information for optimal processing of fresh produce 

to remove enteric viruses from the surface.  This information is important in 

conducting risk analysis, investigating foodborne outbreaks and conducting 

studies with viruses and fresh produce. 

Rationale 

In order to reduce the variability of enteric viruses, only non-enveloped viruses 

with icosahedral structures were used.  To further remove variability, viruses 

were chosen based on their icosahedral similarities.  The viruses that will be 

assayed will include MS2 bacteriophage, echovirus 11, feline calicivirus and 

φX174 bacteriophage.  Feline calicivirus (FCV) is the only non-enteric virus that 

was included in the study.  Feline calicivirus have been routinely used as a 

surrogates for enteric caliciviruses because they are genetically and structurally 

similar to norovirus and are culturable, unlike norovirus (3, 4, 59, 60).  Possible 

problems in using FCV include that FCV is a respiratory not an enteric virus, 

therefore the evolutionary pressure to maintain a stable structure in order to 

traverse the gastrointestinal tract is not present.  Furthermore, it is possible 

because of differing tissue tropisms that the adsorption properties may be 

entirely different than in norovirus.  MS2 and echovirus 11 are both non-

enveloped, enteric viruses.  MS2 phage is a T=3 virus with a pI of 3.9 (61).  
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Echovirus 11 is a pseudo T=3 virus.  The pI of echovirus 11 has not been 

experimentally determined, but a closely related strain Echovirus 1 has a pI of 

5.7 (173).  The pI of echovirus 11 based solely on the amino acid sequence is 5.9 

[http://www.embl-heidelberg.de/cgi/pi-wrapper.pl].  Bacteriophage φX174 is a 

T=1 virus and has a pI of 6.6 (39).  Thus, the experimental range of isoelectric 

points used in this study was in the range of 3.9-6.6.   

Butterhead lettuce was used as the adsorber for attachment assays and as 

the source of the epiphytic microbial community.  The isoelectric point (pI) of 

the viruses is important because if the pH of a solution is below the isoelectric 

point of a virus, it will cause the virus to have a positive charge, and if the pH of 

the solution is above the isoelectric point of the virus, it will cause the virus to 

have a negative charge.  There are no published reports on the surface charge of 

butterhead lettuce, but the waxy cuticle of a plant is believed to have a pI of 

approximately 3 (56).   

The pH range used in this study was 3-8.  The pH range of 3-8 is 

important for two reasons.  1) The pH range covers the isoelectric points of all 

the viruses tested.  2) The pH range is biologically important because fruits and 

vegetables and irrigation or wash water can be within the range of 3-8.  

Furthermore, previous studies have used acids or base washes to try to increase 

the shelf-life of fruits and vegetables by decreasing the normal flora or as a 

possible treatment for reduction of pathogens (7, 73, 78, 141).  

 



  

5 

Overall Objective 

The overall objective of this work was to elucidate how enteric viruses are able to 

contaminate salad crops and once contaminated the subsequent persistence of 

enteric viruses on salad crops. 

Specific Objectives 

1. Determine if the critical pH of viruses is the overriding factor in virus 

adsorption to butterhead lettuce. 

2. Determine the forces that mediate non-specific viral adsorption to lettuce. 

3. Determine if viruses are negatively impacted, in terms of survival, in the 

presence of the butterhead lettuce microbial flora. 
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CHAPTER II 

LITERATURE REVIEW 

Enteric Viruses: Morphological and Physicochemical Characteristics 

Enteric viruses are viruses that propagate themselves in the gastrointestinal tract 

of animals.  Propagation of enteric viruses may arise from infecting the animal 

host or a microbial colonizer in the gastrointestinal tract (GI) of an animal.  In 

general, enteric viruses lack a lipid envelope and are thus termed naked viruses.  

Naked viruses are more resistant to desiccation stress.  Desiccation stress is the 

main environmental condition affecting survival of viruses in the environment.  

Because naked viruses do not have a viral envelope, receptor specificity is located 

in the protein structure surrounding the viral nucleic acid or capsid.  The protein 

capsids in naked viruses serve two main functions, protection and receptor 

specificity.  Viral nucleic acid is more resistant to DNA or RNA nucleases if 

located within a capsid (84).  The capsid of an enteric virus has evolved to 

withstand environmental and GI tract stresses.  Environmental stresses include 

predation, nucleases, proteases, deactivation by UV light, dessication and 

chemical deactivation.  Gastrointestinal stresses include large fluctuations of pH, 

digestive enzymes, mechanical shearing, and predation in the lower GI tract 

(109). 

Because of the severe stresses placed on enteric viruses, many enteric 

viruses have structurally stable capsids.  Structurally stability is due in part to 

the icosahedral shape.  A true icosahedral has 20 polyhedral faces, which is a 
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solid bounded by polygons, composed of 60 equilateral triangles. Thus, a true 

icosahedral virus will have 60 identical capsomeres.  A true icosahedral virus will 

have a T=1 structure, or a triangulation number of 1.  Virus structure is described 

as a function of its icosahedral structure.  The equation T x 60 = N, where T is 

the triangulation number and N is the number of subunits in the viral 

icosahedral structure, provides the relationship between triangulation number 

and the number of capsomeres in an icosahedral virus.  Viruses with 

triangulation numbers above one, are described as quasi-equivalent to an 

icosahedral.  In viruses that have triangulation numbers greater than one, the 

virus capsomeres interact with each other much like an icosahedral.  A T=1 virus 

will have 60 identical subunits making up its capsid and each capsomere is made 

up of 1 protein.  A T=3 virus will have 180 subunits making up its capsid and 3 

proteins making up each capsomere.  Pseudo T=3 viruses are viruses with 

interactions within the capsomere that functions like a T=3, but are composed of 

4 proteins within a capsomere.   

The icosahedral shape also provides 2-3-5 fold symmetry.  Two-fold 

symmetry refers to the point between any two capsomeres along the whole 

length of a single capsomere.  Three-fold symmetry refers to a complete 

capsomere face and its interactions between other capsomers along all three 

sides.  Five-fold symmetry refers to five capsomeres interacting together to form 

a pentagon.  Icosahedral symmetry simplifies viral attachment because only 

three stereotypic conformations are available for attachment.  Furthermore, the 
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interaction between a virus and surface is further simplified because the 

icosahedral is composed of identical reoccuring protein faces.  Therefore, the 

icosahedral shape of an enteric virus is geometrically stable and is made up from 

reoccurring protein faces (capsomeres) allowing for 1) minimal structural 

encoding in the nucleic acid, 2) large internal surface area, 3) quasi-equivalent 

capsid structure requiring minimal energy for assembly and 4) 2-3-5 fold 

symmetry (53). 

Enterovirus Background and Replication 

Enterovirus Background.  The picornaviruses are a diverse group of viruses 

comprising of six virus groups: 1) apthovirus, which includes the foot and mouth 

disease virus, 2) cardiovirus, which includes the enchepalomyocarditis virus and 

theilers murine encephalomyelitis virus, 3) enteroviruses, which include 

echoviruses and coxsackie viruses, 4) hepatovirus, which includes hepatitis A 

virus, 5) parechovirus, which includes the parechovirus, and 6) rhinovirus, 

which includes one type of the viruses responsible for the common cold, 

rhinovirus.  Structurally, all picornaviruses are similar in genome length, 7.2-8.5 

kbp, shape, icosahedral, and size, about 30 nm in length.  Though picornaviruses 

are structurally similar, there exist fundamental differences in capsid integrity 

which are related to infectious route.  The enteric picornaviruses, i.e. viruses that 

have a fecal-oral route as part of their infectious route, are stable viruses.  

Studies have shown that hepatitis A virus, poliovirus and other enteroviruses are 

environmentally stable viruses (90, 93, 153, 168).  Polioviruses infect cells by 
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translocating their genomic RNA into the cell, thus the capsid remains outside of 

the cell.  Other picornaviruses, like foot and mouth disease virus and 

rhinoviruses, infect the cell by undergoing endocytosis.  After endocytosis, a 

decrease of pH within the endocytic vesicle causes the viral capsid to dissociate 

with the viral genomic RNA (18, 118).  Thus, even though all picornaviruses are 

similar, they have evolved into divergent cellular infectious route, which 

ultimately effect the stability of the capsid.  This is an important point that must 

be considered when choosing surrogate viruses for stability or attachment 

studies.    

Enteroviruses are a large group of viruses within the picornavirus family 

of viruses.  The human enteroviruses are comprised of four groups 1) human 

enterovirus A, 2) human enterovirus B, 3) human enterovirus C and 4) human 

enterovirus D, known as HEV-A, HEV-B, HEV-C, HEV-D, respectively.  These 

four enterovirus groups are known to cause a wide range of diseases, like mild 

cold-like symptoms, conjunctivitis, a multisystemic hemorrhagic disease of 

newborns and are the principle cause of aseptic meningitis (66, 104).  It is 

believed that enteroviruses are responsible for about 90% of the cases of aseptic 

meningitis (66).  The large variety of diseases caused by enteroviruses also cause 

a large variation in incubation times of 2 days - 1 month depending on the 

disease (66).  In addition to a varying incubation times, the majority of infections 

are sub-clinical or inapparent.  Only 1-2% of infections develop significant 

disease (66).  Even though the rate of severe sequela is low, the vast amount of 
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infected individuals, 50 million in the United States (est.) and at least 1 billion 

worldwide (est.) each year translate to a large disease burden (121).   

The enterovirus, coxsackie virus, was the first enterovirus, after 

poliovirus, to be isolated.  This virus was first isolated in 1948, in New York State 

during a paralytic poliomyelitis investigation in the town of Coxsackie.  The 

coxsackie virus isolated was pathogenic to newborn suckling mice, whereas other 

enteroviruses, like echovirus isolated in 1955 were not pathogenic to newborn 

suckling mice.  This was the initial basis of separating the coxsackie and 

echoviruses.  Echoviruses were originally unclassified, thereby their name 

reflects their status when first isolated, enteric cytopathogenic human orphan 

viruses, echovirus.  In 1962, the committee on enteroviruses determined to 

classify enteroviruses using a numerical system to avoid confusion (34).  At the 

present, new enteroviruses use the numerical system, ex: enterovirus 70, 

whereas the older enteroviruses are still commonly referred to by their original 

names, ex: coxsackie A1, poliovirus type 2, or echovirus 11. 

Enteroviruses exist as a collection of circulating enteroviruses.  A 

predominant strain will emerge and cause the majority of disease.  After 

immunity is developed a new species, arising from either mutation or 

recombination, will circulate causing disease.  Enteroviruses, like many RNA 

viruses, have a high mutation rate, for poliovirus its 1 bp/103 bp (167).  Studies 

with a high fidelity RNA dependent RNA polymerase in poliovirus shows that a 

high mutation rate is important for immune evasion within the host (163).    
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Enterovirus Replication.  The enterovirus genome is about 7.5 kbp and is a 

plus strand RNA.  The RNA of enteroviruses is infectious and structured as 

follows: 5’- NTR-VP4-VP2-VP3-VP1-2A-2B-2C-3A-3B-3C-3D-3’-NTR (66).  The 

proteins are translated into a single polyprotein, which is then post-

translationally processed into the precursor proteins (P1, P2, and P3) and 

mature proteins.  The 5’- non-translated region (NTR) contains secondary 

structures that are important in viral replication and protein translation (66).  

The P1 region encodes the virus capsid structural proteins VP4-VP2-VP3-VP1.  

Enteroviruses, like all picornaviruses, are membrane associated when they are 

being assembled.  During assembly the VP4 and VP2 protein (VP0) are fused 

until the genomic RNA is packaged into the capsid.  After packaging, VPo is 

cleaved into the mature protein VP4 and VP2.  The capsid, as is true for all non-

enveloped viruses, contains the receptor site for initiating the infection of the 

host.  Picornavirus receptor sites are located in “canyons” on the capsid.  These 

sites are hidden from the immune system thereby making antibody 

neutralization difficult.  Some picornaviruses, like poliovirus, have the lipid 

sphingosine within the receptor site.        

The P2 and P3 regions encode proteins that are involved in shut-down of 

host cell protein synthesis, as well as enzymes that replicate the viral RNA and 

process viral proteins (99, 107, 119). The 2A and 3C (or 3CD) proteins contain 

protease activities that are responsible for cleavage of the viral polyprotein into 

mature proteins.  The P2 region consists of 2A-2B-2C genes. The protein 2A has 
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been shown to be responsible for limiting host cell translation.  The main target 

for 2A is the eukaryotic initiation factor GI or eIFGI.  The host protein eIFGI is a 

translational initiation co-factor responsible for translation initiation.  The 

cleavage of eIFGI by 2A does not completely inhibit cellular translation.  Other 

cellular co-factors eIFGII can also function in the initiation of translation.  

Subsequently, 2A can also cleave eIFGII, though not as efficiently as eIFGI (64).  

An additional target of 2A is the poly-A binding protein (PABP) which is 

involved in translation of mRNA by interacting with the 5’ end (82).  The end 

effect of eIFGI and II cleavage is that 2A stops cellular translation and helps 

induce apoptosis.  

The other viral protease is the 3C protease.  Viral protein 3C is responsible 

for processing of the capsid proteins (76).  Much like 2A, 3C is able to cleave the 

PABP.  The difference seems to be that 2A cleaves PABP to limit initiation of 

translation and 3C cleaves PABP to prevent the recycling of the PABP (91).  In 

the latter, 3C seems to process PABP much more efficiently than 2A.  Also, like 

2A, 3C also induces apoptosis.  Together 2A and 3C are able to effectively shut 

down cellular translation and thus induce apoptosis of the cell.   

Viral protein 2B has been shown to form pores in the endoplasmic 

reticulum (ER) and golgi apparatus (GA) (159).  Studies have shown that 2B is 

able to cause a decrease in Ca2+ in the ER and GA.  This is believed to prevent a 

massive release of Ca2+ causing mitochondrial damage and the subsequent 

release of cytochrome c.  The release of cytochrome c is involved in a positive 
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feedback loop in apoptosis.  Thus the main function of 2B is to be antagonistic to 

the effect of the 2A and 3C proteases (159).  The viral protein 2B though cannot 

prevent apoptosis, but slows down the process sufficiently for the virus to 

complete its infectious cycle of the cell.  An additional function of 2B is to create 

favorable conditions within the cell.  Protein 2B also causes aggregation of 

vesicles derived from the GA and ER which function in viral replication (159).  

All picornaviruses replicate in virus associated membrane complexes.  Viral 

protein 2C is a viral regulatory protein, and has been reported to have a variety 

of effects.  Banerjee et al. has reported that protein 2C down regulates the effect 

of 3C and 2A proteases on the cellular transcription factors (6).  In addition, 2C 

has shown an effect on viral RNA minus strand replication.  The 2C protein has 

also been shown to have GTPase and ATPase activity.  In addition, 2C has 

membrane-binding ability though it does not have a hydrophobic domain, but is 

believed to bind to a membrane bound protein (6).  The exact role of 2B and 2C 

though has not been fully elucidated and their exact role in the viral replication 

has of yet be fully explained.  

Protein 3D contains the viral RNA-dependent RNA polymerase that 

replicates the viral RNA.  The viral replicase is usually complexed with the 3C 

protease and is released from the protease during replication.  RNA synthesis is 

primed by a uridylylated form of 3AB, resulting in covalent linkage of 3B (VPg) 

to the 5’-end of the genomic RNA.  
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Calicivirus Background and Replication 

Calicivirusus first came to attention in the 1930’s with an outbreak of a Foot and 

Mouth Disease (FMD) like disease.  Symptoms were similar to FMD, but during 

the outbreak only swine were infected indicating a new agent was involved (140, 

147).  For about 10 years, the FMD-like disease was sporadically reported in 

California, but outbreaks were controlled by the culling of herds and outlawing 

the feeding of uncooked pork to other pigs (140, 147).  In an effort to further 

control the disease, export of pigs or pig products to other states in the Unites 

States was not allowed.  Ultimately, the law was unsuccessful in containing the 

disease (140, 147).   

Investigation of the FMD-like disease identified a viral agent that also 

infected sea lions.  Infected sea lions had vesicular lesions on their flippers and 

had abortive pregnancies (140).  The agent responsible for the FMD-like disease 

was named San Miguel Sea Lion Virus (SMSV) or Vesicular Exanthema Swine 

Virus (VESV) (140).  The virus was isolated from a variety of animals including, 

birds, reptiles, insects, fish and nematodes (140, 147).  The virus, VESV, has up 

to date been the only virus capable of infecting such a large range of different 

hosts.  The epidemiology of the VESV indicated that sea lions could not have 

spread and propagated the disease.  Further studies indicated that the sea lions 

were only part of the virus life cycle.  The isolation of SMSV from opal eye perch 

fish provided evidence that SMSV is actually a fish virus (140).  Furthermore, 

SMSV was isolated from a lungworm parasite, which uses the opal eye perch fish 
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as an intermediary host for its main host, the sea lion (32).  Thus, the VESV 

outbreak is believed to have started from a calicivirus that infects opal eye perch, 

or the lungworm, then the virus infected sea lions by either consumption of the 

infected fish or by the lungworm.  The VESV outbreak has been the only 

reported case in which a land disease outbreak has its main reservoir in the 

ocean (140).   

In the 1970’s volunteers were fed an unknown agent prepared from a 

rectal swab of an infirmed volunteer from a school in Norwalk, Ohio, where half 

of all the students and teachers were infected with a viral agent (45).  Using 

electron microscopy, the diseases agent was identified as a virus with a diameter 

of approximately 27 microns with cuplike depressions.  The caliciviruses were 

thus named after their morphology, calix, meaning cup.  The agent responsible 

for the school outbreak was termed Norwalk virus.  Ever since then, caliciviruses 

have been recognized as the leading cause of non-bacterial gastroenteritis in the 

United States.  Mead  et al. estimated that caliciviruses are responsible for about 

74% of all viral gastroenteritis (113). 

Aside from the burden on human morbidity, caliciviruses also cause 

disease in other animals.  The rabbit hemorrhagic disease virus (RHDV) was first 

identified in a large rabbit outbreak in China (147).  Rabbit hemorrhagic disease 

virus is notable because this virus caused greater than 99% infection rate 

accompanied with greater than a 90% mortality rate, additionally only rabbits 

older than two months were susceptible to infection (32).  After exposure, 
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rabbits became depressed and had a fever 16-24 hours after infection, then died 

rapidly.  Pathology of the rabbits indicated hemorrhagic lesions all throughout 

the body organs but was most evident in the liver and spleen (147).    

The disease caused by RHDV spread rapidly and almost eliminated rabbit 

industries in many countries.  The infectious route of RHDV was determined to 

be fecal-oral.  In Europe, a related virus that causes the same symptoms but is 

avirulent was discovered.  The virus was called European Brown Hare Syndrome 

Virus (EBHSV).  It is believed that RHDV evolved from EBHSV (32, 147, 151).  A 

vaccine for RHDV was developed and was found to be effective against infection 

to RHDV (147).  The virus RHDV was used as a biocontrol agent for wild rabbit 

populations in Australia and New Zealand.  Rabbit populations initially declined 

but most rabbits are now resistant to RHDV(147).  

A respiratory disease of domestic cats was determined to be caused by 

feline calicivirus (FCV) (147).  Further studies indicated that FCV could infect 

domestic felines, wild felines and dogs (110, 147).  Though its virulence was 

mostly connected to domestic cats, most members of the family Felidae are 

susceptible (32, 116, 147).  Disease symptoms include respiratory problems along 

with lameness, and ulcers in the tongue and mouth (147).  Infected felines 

exhibited a low-grade infection for up to two years (128).  During the infection 

FCV is constantly produced.  The low-grade infection has been attributed to the 

generation of viral quasi-species, where the immune system is unable to 

effectively clear the infection from the body (128).  The severity of the disease 
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ranges from respiratory distress to a hemorrhagic disease, much like RHDV (2).  

An effective vaccine has been developed for FCV, but due to the generation of 

quasi-species, boosters and reconfiguration of vaccine is needed for 

effectiveness.   

The virus diseases caused by VESV, FCV, RHDV and human viral 

gastroenteritis has increased awareness of caliciviruses.  Caliciviruses have been 

isolated from most farm animals, domestic pets, birds, and a variety of other 

animals (140).  Caliciviruses are ubiquitous in nature.  The outbreaks involving 

caliciviruses has generated interest but due to a lack of a cell culture system 

research has been limited.  

The calicivirus family of viruses comprise of four genera: lagovirus, which 

includes RHDV, vesivirus which includes FCV and SMSV, norwalk (renamed 

norovirus) which are primarily human caliciviruses (HuCV), and sapporo-like 

virus which are human and animal caliciviruses (69).  The sapporo-like viruses 

are also human pathogens, but seem to affect mostly children, and some share 

homologies to both animal and human caliciviruses (30).  The norovirus group 

can be divided into two main genogroups, though there are 5 genogroups, which 

are important for human viral gastroenteritis (68). 

The calicivirus FCV has been the only calicivirus amenable to a cell 

culture system, with the exception of RHDV, which can only be replicated in a 

primary rabbit hepatocyte cell culture.  Recently a canine calicivirus (CaCV) has 

been used for studies but the virus is not as easy to work with as FCV, therefore 
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FCV remains the most common calicivirus amendable to research (42).  A 

porcine calicivirus and a murine calicivirus have recently been identified that 

will propagate itself in a cell culture system, but if it is as easy to use as FCV 

remains to be seen (27, 172).  The culture of the porcine calicivirus, the first 

enteric calicivirus, in cell culture was made possible with the addition of bile 

salts to cell culture which was shown to make cells permissive to the enteric 

calicivirus.  

Outbreaks of HuCV indicate that HuCV are highly infectious with a rapid 

onset of morbidity.  Human caliciviruses are excreted in the feces of infected 

individuals. Symptoms reported include vomiting, diarrhea (non-mucous, 

watery, non-bloody), nausea, headache, and malaise (45).  There have also been 

some HuCV reports that indicate the virus is able to become systemic (24).   

Persons infected with HuCV are resistant to the same inoculum for up to a year 

(111).  If exposed after two years, infection occurs again.  Furthermore, the 

antibody immune response did not correlate with the susceptibility to infection.  

Persons with a high antibody response were susceptible, whereas persons 

without an antibody response were not susceptible.  The persons with a high 

antibody response were later found to have non-neutralizing antibody to HuCV 

(111).  Furthermore, some people were completely recalcitrant to infection, 

irrespective of the dose of virus administered.  More recent studies have surfaced 

that may elucidate the infectivity of HuCV.   
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Studies show that a person’s secretor status, the ability of a person to 

secrete blood carbohydrates in body fluids, and blood type may be important in 

HuCV susceptibility (96).  Non-secretors, 20% of people of European ancestry, 

are believed to be resistant to many HuCV.  Furthermore, the blood type of a 

person may also be a factor of the status and carrier state of HuCV infections.  In 

a study by Lindesmith et al., Type O individuals were resistant to infection, but 

in other study by Meyer et al. Type O individuals were more susceptible (96, 

115).  Other studies since then have indicated that distinct HuCV have different 

affinities to different blood types, Lewis antigens and even the density of certain 

carbohydrates on the surface of cells (149).  In effect, HuCV have evolved to 

infect defined populations of people.  Unlike Influenza virus which has a 

predominate strain circulating at one time, HuCV has many strains that circulate 

at one time.  The affinity of HuCV to blood types and secretor status may explain 

the high diversity of strain circulation at one time.   

Structural and molecular studies of HuCV have shown that the capsid is 

unlike many animal viruses.  The calicivirus capsid is made up of one major 

structural protein, a trait seen in viruses of plants, bacteria and insects, not in 

animals.  The capsid protein contains three domains, S, P1, and P2 (162).  The S 

domain is the core capsid and fuses to form one contiguous core.  The P1 domain 

is located after a hinge region where the capsid is able to accommodate its 

structure to fit into a T=3 structural configuration.  The hinge region is also 

believed to act as an area of flexibility to allow the outer capsid domains to 
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interact with each other or with the receptor.  The P2 domain shows variability 

between genogroups.  The P1 region is a globular region at the outer most end of 

the capsid protein.  The P1 region is also known as the hypervariable region (29).  

The hypervariable region is believed to allow caliciviruses to evade the immune 

system and possibly provide the host diversity common to some caliciviruses 

(29).  The hypervariable region also explains the high rate of mutation and the 

large diversity of calicivirus in circulation at one time.  It is now obvious that 

HuCV utilizes the same strategy that many viruses, like hepatitis C virus and 

influenza virus, use to evade immune antibody neutralization.  

Replication of Calicivirus.  Caliciviruses encode for 8 proteins: 5’-2B-2C 

(helicase-like)-3A-3B (Vpg)-3C (protease)-3D (polymerase)-VP1 (major capsid 

protein)-VP2 (minor capsid protein)-3’.  All caliciviruses have the same genomic 

structure with variations in ORFs (open reading frame).  Norovirus has one large 

ORF, which includes all the non-structural proteins, and an ORF that encodes 

the major capsid protein, and a third ORF that encodes the minor capsid protein 

(33, 45, 69).  Sapporo-like viruses encode for another protein, of unknown 

function, that is located within the capsid protein and is offset by a –1 bp frame 

shift.  Rabbit hemorrhagic disease virus has two ORFs, the first ORF encodes the 

non-structural and major capsid protein and the second ORF encodes for the 

minor structural protein. 

Calicivirus proteins, are believed to be homologs of enterovirus proteins, 

and are located in the same area during replication as the enterovirus proteins 
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and in the same order.  The genomic structure of enterovirues and caliciviruses 

are similar.  The main difference being that the enterovirus structural proteins 

are located before the non-structural proteins whereas in caliciviruses the non-

structural proteins are located before the structural proteins.   The order and 

function of the non-structural proteins appear to be similar. 

Much of the replication data for calicivirus has not been determined.  

Until recently, most of the proteins had unknown functions and much 

information is still unknown.  Most of the data involving calicivirus has been 

determined with FCV and RHDV because of their ability to replicate in cell 

culture.  More recently, recombinant baculovirus systems have been used for 

identifying protein functions. 

The 3C protease, 2C helicase-like protein, and 3D polymerase have 

similarities to picornaviruses.  Studies have indicated that the 3C protease in 

RHDV and FCV is able to cleave the viral proteins in trans but maintains some 

activity in cis (15).  More recently, the protease has been shown to cleave poly-A 

binding protein and cleaves translation initiation co-factors (91).  Cleavage of 

translational factors is much like the strategy that picornaviruses utilize to stop 

host cell translation.  Additionally, the protease has been found in high 

concentrations in membrane bound replication centers (a replication strategy 

that picornavirus also utilizes) and still fused to the polymerase, which indicates 

that the pro-pol complex may be involved in replication, like picornaviruses (9).  

Studies with the 2C helicase-like protein have not found a helicase activity.  Even 
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though the helicase-like protein has high homology to the picornaviral helicase, 

it uses NTPs indiscriminately whereas the poliovirus helicase uses ATP 

predominantly (125).  The importance of this is unknown.  Only a few studies 

have been initiated with the 2B protein.  In the study by Ettayebi et al. the 2B 

protein was membrane bound and was shown to disrupt a glycoprotein 

expression at the cell surface (46).  In a FCV homolog, the 2B protein was 

associated with the membrane replication complexes (81).  Much like poliovirus 

3A protein, calicivirus 3A has been found to disrupt golgi trafficking by 

disassembly (51).  Calicivirus 3A has also been found to be associated in the 

replication complexes with the 2B-like protein, thus calicivirus-3A also may be 

involved in replication (69, 81).   

The Vpg protein in caliciviruses is larger than enterovirus Vpg.  A 

comparison between enterovirus and feline calicivirus Vpg indicates that they 

have different functions.  Enterovirus RNA is infective without a Vpg and only 

functions in replication and in RNA absorption into the host cell (see enterovirus 

replication).  Furthermore, the start of translation of enteroviruses is more than 

100 bp downstream of the Vpg, whereas the start of translation for calicivirus 

ranges from 9-14 bp from the Vpg (10, 74).  This difference is probably due to the 

IRES in enteroviruses, whereas caliciviruses do not have an IRES.  Additionally, 

the Vpg in feline calicivirus is necessary for infection, and has also been shown 

that FCV RNA translation is not effected by high potassium concentrations, 

which inhibit normal cellular translation. Calicivirus Vpg is also able to bind 
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translation initiation factors (36, 65).  All this information indicates that 

calicivirus Vpg is needed for translation initiation.  Thereby, even though 

picornavirus and calicivirus have similar genome structure and proteins, 

calicivirus translation is different than picornavirus translation, which utilizes an 

internal ribosome entry site (IRES).  

The replication of genomic RNA for caliciviruses has not been fully 

elucidated, but the function and similarity of many non-structural proteins to 

enterovirus does indicate a similarity in genome replication.  Both poliovirus and 

caliciviruses form membrane bound replication centers and their homologous 

proteins are also present at these replication centers, indicating a similar 

function in replication.  

It was believed that caliciviruses had only one structural protein.  

Crystallization of the capsid had failed to show more than one protein (162).  At 

the same time it was known that the protein at the 3’ end was transcribed on a 

sub-genomic RNA along with the major capsid protein (151).  The function and 

even its expression were not known.  It was discovered by Glass et al. that the 

minor protein (VP2) was present in low numbers in the virion (63).  Further 

work has elucidated the function if this protein in the calicivirus structure.  The 

minor structural protein is translated at about 20% of the major capsid protein.  

Its function is part regulatory and part structural.  The presence of VP2 induces 

translation of VP1 (11).  Furthermore, VP1 dimers are protected from 

degradation by proteases and virion capsids are more stable in the presence of 



  

24 

VP2 (11).  Thus, it is believed that VP2 “ties” together VP1 and is the main 

contributor to the stability of many caliciviruses.  The translation of VP2 is 

controlled by RNA secondary structure at 3’ end of the genomic RNA. 

Microvirus Background and Replication 

The virus familiy microviradae has four genera: 1) microvirus, 2) 

spiromicrovirus, 3) bdellomicrovirus and 4) chlamydiamicrovirus.  All viruses in 

this family are single stranded circular DNA bacteriophages.  The microviradae 

are non-enveloped and are icosahedral with a T = 1 structure (38).  They are 25-

27 nm in diameter. 

The bacteriophage φX174 belongs to the genus microvirus and its natural 

host is E. coli.  The genome length is 5.4 kbp and is made up of 11 genes: 5’-A-A*-

B-K-C-D-E-J-F-G-H-3’.  Bacteriophage φX174 was the first DNA genome to be 

completely sequenced, this was accomplished by Sanger et al. in 1977 (134).  The 

ability of viruses to have overlapping genes was first discovered in φX174 

bacteriophage. Since then, φX174 has been the most intensely studied virus in 

the family microviradae.  The bacteriophage φX174 digested genome is also 

commonly used as a DNA marker.  Bacteriophage φX174 has also been 

extensively used as a viral surrogate for human viruses and as a viral indicator 

for fecal contamination (105, 176). 

The genome of φX174 has 11 genes.  Genes F-H are virion structural 

capsid proteins.  Gene J is also found within the virion, but its function is two 

fold.  It serves as a DNA packaging protein and as a DNA binding protein to 
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neutralize the negative charge of the single stranded DNA genome (38).  Gene 

products A and C are replication modulators.  Gene product A functions in stage 

II and III DNA synthesis, whereas gene product C is involved in the switch from 

stage II to stage II DNA synthesis (38).  Bacteriophage protein A* inhibits host 

DNA synthesis and prevents re-infection of host.  Bacteriophage genes B and D 

are scaffolding proteins, which function in pro-capsid (immature virion) 

morphogenesis (38).  Bacteriophage gene E is responsible for cell lysis, by 

destroying the cell wall leading to the rupture of the cell membrane with the 

subsequent release of bacteriophage progeny (38).  Gene K is believed to 

somehow enhance phage yields though its exact function is not known. 

Leviviridae Background and Replication 

The virus family leviviridae are single stranded positive sense RNA 

bacteriophages.  The leviviridae are icosahedral viruses with a diameter of 26 nm 

with a T = 3 structure.  The leviviridae have two virus genera the Levivirus and 

Allolevirus.  The prototype virus for the leviviradae is Ms2 bacteriophage and the 

prototype allolevirus is Qbeta.  Ms2 bacteriophage and Qbeta have been 

routinely used for as human viral surrogates and as viral fecal indicators (3, 37, 

39, 146, 154). 

The bacteriophage Ms2 is a male-specific phage, which infects the pilus of 

F+ E. coli.  The MS2 genome consists of 4 genes: 5’-A-C-L-P-3’.  The viral capsid 

is comprised of the C gene product, 180 copies in the capsid and 1 A protein 

(158).  The A protein is involved in the attachment of the virion to the pilus.  
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Attachment of the A protein causes the A protein to cleave into two fragments 

(158).  The cleavage of the A protein causes the viral genomic RNA to be released 

from the capsid.  As the pilis is retracted, the 5’-end of the viral RNA is 

internalized into the host cell, this step outside of the cell is the RNAse sensitive 

step (158). Translation of the A protein is dependent on the secondary structure 

of the MS2 RNA genome. 

The P gene encodes the polymerase and its timing, i.e. ability to be 

translated is controlled by the amount of C protein (158).  The presence of C 

protein inhibits translation of the polymerase gene P.  The L gene is the lysis 

gene but it does not have a ribosomal binding site.  Translation of the L gene is 

dependent on a frameshift from the C gene. 

Mutations in the Ms2 genome are not common, mostly because the secondary 

structure of the viral genome is vital in the viral infectious cycle (158).  Removal 

of the secondary structure will eliminate many of the translational controls of the 

MS2 infectious cycle. 

Impact of Enteric Viruses on Semi-enclosed Systems 

Enteric viruses are egregious for causing disease in enclosed and semi-enclosed 

systems.  Semi-enclosed conditions have limited access to the outside 

environment, as well as have a high density of persons within a confined area. 

Crowded conditions facilitate transmission of viral diseases by maximizing the 

number of people a single person can infect.  Some examples of semi-enclosed 

environments are daycare centers, hospitals, campgrounds and barracks.  As a 
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result, outbreaks have been reported in youth camps, military installations, 

hospitals, naval vessels, daycare centers, and college dormitories (23-25, 47).  In 

addition, many semi-enclosed conditions also have poor sanitary conditions, like 

daycare centers and elderly homes.  This fact, coupled with the robustness of 

enteric viruses in the environment, causes a high incidence of enteric virus 

infections.  The use of hand sanitizers in homes with children attending day-care 

centers has been shown to greatly decrease the amount gastrointestinal illness in 

these settings (133).  The efficacy of the hand sanitizers though has not been 

shown to be effective with enteroviruses or caliciviruses (135).  In semi-enclosed 

settings, immediate intervention is important to stanch new viral infections.  In 

cruise ships, removal of passengers and personnel is recommended to 

thoroughly disinfect a vessel (25).  In hospitals, studies have indicated that 

afflicted wards must be closed and all patients and staff must be removed for 

proper disinfection to halt the duration and spread of the outbreak (14). 

Biases in Viral Associated Foodborne Disease 

Biases in the foodborne viral disease abound in the medical community, sentinel 

programs and research community.  A survey of physicians by Jones and Gerber 

(2001) shows that physicians in Tennessee are largely unaware of the disease 

burden of viruses (80).  In this survey 90% of respondents believed that 

Salmonella was one of the top three causes of foodborne disease, followed by E. 

coli (56%), Staphylococcus spp. (36%) and Shigella spp. (32%).  Though 

Salmonella is an important foodborne pathogen responsible for an estimated 



  

28 

10% of foodborne disease in the United States, the other three together amount 

to no more than 3.2% of the total foodborne disease illness in the United States 

(113).  In this survey, 5% of the physicians surveyed listed norwalk and an 

additional 4% included viruses as one of the top three causes of foodborne 

disease.  In actuality viruses cause 67% of foodborne illness in the United States 

(113).  Because physicians are the front lines of many sentinel programs and are 

often responsible for identifying and reporting foodborne disease outbreaks, this 

presents itself as an important bias. 

The main sentinel program for foodborne disease in the United States is 

Foodnet.  Foodnet incorporates cohort studies, surveys of both physicians and 

people as well as sample analysis.  Even though surveys of physicians do include 

a questionnaire for viral analysis of stool, viruses are not included in the active 

surveillance system (Foodnet) though viruses comprise the majority of 

foodborne diseaes causing microorganisms.  Hepatitis A is the only viral 

associated reportable disease, but it is reportable under the national notifiable 

disease surveillance system. 

The lack of knowledge on the importance of viral diseases in foodborne 

illness at both the surveillance and physician level can be traced back to the 

scientific community.  Even though enteric viruses are recognized as causing 

significant morbidity in foodborne associated gastroenteritis, there is 

disagreement on the route of infection or a false perception on the foods 

associated with viral gastroenteritis.  Epidemiology studies on the cases of 
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foodborne illness shows differences within different surveillance systems.  A 

European study of viral gastroenteritis outbreaks between 1992-2000 in 

England and Wales indicated that 85% of viral outbreaks are due to person to 

person spread whereas foods were implicated in 10% of the outbreak cases (102).  

In contrast, two more recent studies in the United States show that between the 

years 2000-2004, 30% of calicivirus outbreaks were attributed to food and 35% 

were attributed to person to person spread (16).  Another study in the U.S. by 

Widdowson et al. looked at norovirus disease between 1991-2000 (170).  This 

study, the largest and most complete to date, included 8,271 foodborne 

outbreaks reported to the CDC.  In this study, 48% of the outbreaks implicated a 

foodhandler, whereas 52% of the outbreaks a foodhandler was not implicated.  

Of the unknown causes of foodborne disease, 9% implicated a foodhandler and 

91% did not implicate a foodhandler.  It is generally believed that the majority of 

unknown foodborne disease outbreaks fit the epidemiologic pattern of a viral 

pathogen.  These results are contrary to popularly held beliefs in the scientific 

community. 

 A review article by O’Brien et al. studied the publication bias of infectious 

intestinal disease in England and Wales for the years 1992-2003 (117).  O’Brien 

et al. found publication biases in a variety of areas.  Certain locations like shop 

caterers were 9.2 times more represented in the literature than in actual data.  

Likewise unknown outbreak types were almost 10 times more underrepresented 

in the literature than in the outbreak data.  Certain food products also enjoyed 
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an overrepresentation.  Milk and milk products were overrepresented almost six 

times more than their actual occurrence.  This study is important for the 

scientific community to be aware of the occurrence of biases in the literature and 

for risk analysis of certain disease agents or foods. Consequently, publication 

bias is the most likely source of the belief that foodborne transmission of viruses 

is primarily associated with a 1) foodhandler and 2) seafood.  The data compiled 

from the CDC clearly does support these beliefs. 

In addition to investigator biases, there are technological advances that 

can overcome certain biases.  Foodborne disease attributed to viruses is an 

example of an underestimation due to technology.  The study by Widdowson et 

al. also showed that norovirus outbreaks increased from 11 in 1996 to 164 in 

2000 (170).  This increase coincided with the state technical support program in 

1997 where certain states confirmed outbreaks by RT-PCR.  Even then, the CDC 

did not use RT-PCR to confirm outbreaks until 1993. 

 The vehicle associated in viral foodborne disease also has considerable 

bias.  Shellfish a commonly believed vector for viruses accounted for 3% of the 

total norovirus outbreaks (170).  The top two vectors of foodborne disease for 

norovirus was salads at 26%, followed by produce and fruit at 17% (170).  These 

two vectors are not commonly thought to be responsible for viral outbreaks even 

though the CDC foodborne outbreak data indicates the importance of these 

vectors in norovirus transmission. 
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Recent work has shown that viruses do not adsorb to lettuce at the same 

amounts.  This is an important point to consider when sampling salads of fresh 

produce for the presence of viral pathogens.  If pathogenic viruses are not 

present in high numbers on the produce, then detection will be difficult.  This 

may be the reason why there is a great disparity between data from England and 

Wales (9.9% foodborne transmission) and from the United States (52% 

foodborne transmission).  England and Wales surveillance is based on electron 

microscopy, a difficult and insensitive method to detect viruses, whereas the 

Unites States uses RT-PCR, somewhat difficult but very sensitive.  Electron 

microscopy favors identifying viruses in stool samples, a large concentration of 

viruses per gram of sample, than food which would have much less virus load per 

gram of sample.     

Impact of Enteric Viruses on Foodborne Illness 

The Centers for Disease Control (CDC) foodborne disease data from the year 

1993-1997 indicates that viruses accounted for 6% of foodborne disease outbreak 

cases (120).  The majority of foodborne disease outbreaks, 68%, are of unknown 

origin (120).  Many of the outbreaks due to unknown agents are considered by 

the CDC to be caused by viral agents, but due to the lack of resources and 

technology, many of these outbreaks were not identified (120).  The next five 

years, 1998-2002, viruses as a percent of foodborne disease cases increased to 

40.6%, a nine fold increase in foodborne disease cases.  More recently from 

2003-2004, viral foodborne disease cases now comprise 51.5% of all foodborne 
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disease cases, an 11 fold increase, of the foodborne disease cases in the United 

States.   The increase of viral agents associated with foodborne disease is due to 

technological advances and raised awareness (79, 170).  Calicivirus outbreaks, 

for example, are initially identified epidemiologically by “wildfire” outbreaks, a 

rapid increase in infected individuals. Viral gastroenteritis symptoms are 

sufficiently different from other foodborne disease agents that epidemiology 

criteria can be used to identify viral gastroenteritis symptoms.  The recognition 

that it is difficult to identify viral gastroenteritis because of technology and 

monetary issues, as well as the slow dissemination of these technologies to the 

public health laboratories, have led to a non-laboratory based identification of 

viral gastroenteritis outbreaks.   

There has been a call for a reevaluation of epidemiological criteria for 

identifying viral gastroenteritis caused by norovirus.  Turcios and other scientist 

from the CDC have proposed the use of Kaplan criteria for identifying outbreaks 

of acute gastroenteritis caused by norovirus (155).  The Kaplan guidelines for 

identifying outbreaks of gastroenteritis due to norovirus includes four criteria: 1) 

vomiting in more than half of affected person, 2) median incubation period of 

24-48 hours, 3) median duration of illness of 12-60 hours and 4) the lack of 

bacterial pathogens in a stool culture.  When this criteria was applied to a subset 

of foodborne outbreaks between 1998-2000 from the foodborne disease 

outbreak data maintained by the CDC, the Kaplan criteria was able to identify 

68% of the outbreaks correctly, and specifically (99%) (155).  This criteria has 
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already proven useful in Sweden and Denmark, where Kaplans criteria is already 

applied to certain outbreaks (103).   

Previously, with the lack of technology and awareness, Mead et al. 

attempted to estimate illness due to foodborne disease outbreaks.  Mead et al. 

estimated that viral gastroenteritis due to foodborne disease accounted for 67% 

of all foodborne disease outbreaks in the United States (113).  Other studies since 

the Mead et al. study has reported a lower number.  Widdowson et al. estimated 

that 50% of all foodborne outbreaks are attributable to norovirus.  Blanton et al. 

studied the molecular and epidemiological trends of calicivirus associated 

outbreaks, and they determined that 35% of the outbreaks was person to person 

and 30% was foodborne (16).  Because of low population coverage, the true 

amount of foodborne disease is difficult to verify, nevertheless current data from 

the CDC indicates that viruses are the primary agent responsible for foodborne 

disease (47, 170). 

Recent years have identified major outbreaks, which would have 

otherwise not been connected without the aid of sequencing.  In 1997, 258 

persons were reported to be infected with Hepatitis A Virus (HAV) in 5 states.  

Genetic relatedness indicated that the same strain of HAV was responsible for 

the multistate outbreak.  Frozen strawberries from the same producer were 

implicated in the outbreak (77).  In 1998, frozen raspberries were involved in a 

calicivirus outbreak across 5 countries and in 2003, over 500 persons were 

sickened in the U.S. by HAV due to contaminated green onions (2, 4).  In 1988, 
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202 cases of HAV was caused by contaminated lettuce in Kentucky (53).  A 

problem with identifying viral foodborne outbreaks is the low infectious dose of 

the major enteric viral pathogens. The infectious dose of caliciviruses, Hepatitis 

A virus, and rotavirus is between 10-100 virus particles (10, 17, 32).  Because 

viruses are able to reproduce in humans, clinical identification is not difficult, 

but identification of environmental sources is difficult to detect.  As a result, 

many outbreaks, may not be identified as foodborne because of the lack of a 

common food source (see Biases in Viral Associated Foodborne Disease). 

Data collected from the CDC and other public health agencies indicate 

that enteric viruses are responsible for a significant cause of morbidity.  

Mortality associated with viral foodborne disease is of concern especially with 

the ageing of industrialized nations.  Elderly, neonates and other immune-

compromised individuals are especially susceptible to enteric viruses.  For 

norovirus, data from England and Wales indicate that hospitalization occurred 

in 1 out of every 40 outbreaks and mortality occurred in 1 out of every 50 

outbreaks (102).  In the United States, Mead et al. estimated that the proportion 

of hospitilization and death was 10%, more recent data from Widdowson et al. 

indicated that 9.8% of persons afflicted with norovirus required medical care 

and 1% required hospitlization.  Considering the large pool of morbidity caused 

by norovirus (2.3 outbreaks per/100,000 people), even 1% is a large amount of 

hospitilization.  It is thus not surprising that the primary cause of mortality 

related to foodborne pathogenic microorganisms are viral agents (112).  
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Other enteric viruses are not as widespread as noroviruses, but cause 

more serious disease or complications.  Enteroviruses do not generally cause 

foodborne disease outbreaks, but probably infect as many or more persons as 

noroviruses.  Whereas noroviruses propagate themselves in rapid outbreaks with 

a high incidence of disease, enteroviruses are disseminate themselves without 

causing an overt outbreak, a small subset of persons infected (1-2%) exhibit 

serious clinical symptoms (88, 121, 126).  A 1-2% rate of severe clinical 

symptoms would not warrant serious scrutiny, but would be an important source 

of sporadic disease.  Enteroviruses are the principal cause of non-bacterial 

meningitis, and the most significant factor of infectious infant mortality (62).  

Enteroviruses are also responsible for myocarditis, conjunctivitis, hemorrhagic 

disease of newborns and the second leading cause of the common cold (88, 126).  

Because the enterovirus infectious route is fecal-oral there is some concern for 

infections due to water, though this is mostly because enteroviruses are routinely 

isolated from water sources (54).  Because enteroviruses have been found in 

water, contamination of shellfish are the primary cause of concern for foodborne 

illness due to enteroviruses (55, 92, 174).  Though fresh fruit and vegetables are 

irrigated with water sources that cause concern because of the presence of 

enteroviruses, fresh fruit and vegetables do not seem to be a major area of focus 

in enterovirus associated foodborne disease. 
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Enteric Virus Contamination Routes of Fruits and Vegetables 

Fruits and vegetables are of concern to food safety because many 

vegetables, like salad crops, are consumed with minimal preparation, thereby 

posing an increased risk of foodborne illness, if contaminated.  Contamination of 

fruits and vegetables may arise from many routes like irrigation water, animal 

defecation, insects and food handling during harvest and processing (12).  

Furthermore, because of large scale farming or distribution, a fruit and vegetable 

outbreak may involve hundreds of people over various states or countries (See 

Impact of Enteric Viruses on Foodborne Illness).  The year round demand of 

fresh fruits and vegetable has lead to an increased risk of foodborne illness due 

to fruit and vegetables irrigated with contaminated water in countries without 

adequate sewage treatment.  Calicivirus and HAV outbreaks have been 

associated with imported and domestically grown produce irrigated with 

contaminated irrigation water (52, 77, 130).    

Enteric viruses have also been isolated from carrots prior to distribution 

(44).  This indicates a potential for not only fecal contamination of fresh carrots, 

but also the possible presence of human enteric viruses.  The use of viral fecal 

indicators for identifying fecal contamination, has come into question.  A large 

survey study in which 448 groundwater sites were assayed did not show a 

correlation between indicators, bacterial or viral, with the presence of either 

positive cell culture or RT-PCR results (1).  However a study for identifying 

correlations between bacteriophages and human enteric viruses on fresh fruits 
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and vegetables has not been attempted.  Previous research on the presence of 

enteric viruses on both surface and ground water is of concern.  A study by 

Borchardt et al. attempted to determine if groundwater in La Crosse, Wisconsin 

contained human enteric viruses, and if the infiltration of surface water had a 

correlation with the presence of human enteric viruses (17).  Borchardt et al. 

found 13 types of enteroviruses, hepatitis A virus and norovirus in both the 

groundwater and surface water.  The surface water contained the highest 

incidence of human enteric viruses, but in the groundwater all but one of the 

wells tested was positive for at least one human enteric virus using RT-PCR.  The 

use of RT-PCR gave superior sensitivity but could only detect viral nucleic acid 

and could not make a distinction between infectious and non-infectious virus.  In 

order to overcome this problem, the authors also used cell culturing.  Hepatitis A 

virus was found by cell culturing in three wells, none were positive for 

enterovirus.  These results are difficult to interpret because the sensitivity of cell-

culturing is much less than RT-PCR.  Either enteroviruses are present in low 

concentrations or the enteroviruses are inactivated.  Additionally, there was no 

correlation between surface water infiltration of ground water and positive RT-

PCR results.  The authors concluded that groundwater must have been 

contaminated with an urban source, not related to surface water. 

Surface water has been recognized as having high levels of fecal bacteria 

and viruses mostly from agricultural, wildlife and septic system sources (145).  

The large presence of human enteric pathogens in surface water shows that 



  

38 

surface water contamination is heavily impacted by human waste.  A study in the 

Netherlands found 1-2 pfu and 4-4,900 of enteroviruses and norovirus per liter 

of river water, respectively (101).  As a means to identify the source of the human 

pathogenic viruses, Lodder et al. sampled sewage from the treatment plants and 

identified that treated sewage decreased the viral load from raw sewage 0.7-1.8 

logs/liter for enterovirus and 0.9-2.1 logs/liter for norovirus.  The treatment was 

largely ineffective for adequately reducing the viral load in sewage water which 

mostly likely contributed to the viral load in river water.  These results are 

corroborated by another study in Germany, where treatment plant effluent and 

associated downstream waters were sampled for assorted enteric virues (127).  

In this study, enteroviruses were found in 29-89% of the samples.  Norovirus 

ranged from 15-44% positive.  Infectious enterovirus, measured by cell culture, 

was found in 33% of the positive RT-PCR samples.  Overall, these studies 

indicate that both surface waters and ground waters harbor human enteric 

pathogens even though the commonly used criteria of fecal indicators shows the 

waters are of acceptable quality.  Thus, fresh fruit and vegetables have the 

potential to be contaminated by the use of irrigation water from both ground and 

surface sources. 

Previous studies have also indicated that surface contamination of plants 

is not the only possible route of contaminating fresh produce.  A study by Ward 

et al. used bacteriophage f2, a virus similar in size and structure to caliciviruses 

and picornaviruses, to determine if viruses can be absorbed into plants (166).  
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Ward et al. used 3 week corn (Zea may L.) and bean plants (Phaseolus vulgaris 

L.) grown using hydroponics as his model.  Bean plants were able to absorb f2 

phage through undamaged roots up to a maximum concentration of 103 pfu/g.  If 

the roots were damaged, the viral concentration reached up to 106 pfu/g.  Corn 

plants were able to absorb f2 phage through intact roots at a maximum 

concentration of 101 pfu/g.  Damaged corn roots absorbed 104 pfu/g.  Though the 

amount of f2 virus was low in certain cases, the amount absorbed was, at a 

minimum, able to absorb enough viruses to infect one person per gram of plant, 

if the f2 virus was a human enteric pathogen.  Furthermore, the ability of plants 

to absorb virus was not dependent on the concentration of virus spiked into the 

growth solution.  Even though Ward et al. used three different concentrations of 

f2 virus, 1010, 107, and 105 virions, the absorption of f2 phage was not affected.  

All the bean plants tested contained 105 pfu/g, irrespective of the concentration 

of viruses in the hydroponic solution.  The study by Ward et al. indicates that 

plants are able to absorb viruses within the infectious dose, 10-100 virions, of 

human viral pathogens.  Enteric viruses are stable infectious organisms able to 

survive for prolonged periods of time in soil, fresh produce, and are able to be 

absorbed into plant material.      

Survival of Enteric Viruses on Fruits and Vegetables 

The stability of enteric viruses indicates that enteric viruses are able to survive 

on salad crops for extended periods of time.  Dawson et al. determined the 

survival of MS2 bacteriophage, as a surrogate for norovirus, on tomato, cabbage, 
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carrot, lettuce, parsley, peppers and strawberries (37).  At 4 and 8° C, Ms2 was 

able to survive for 87 days or until sampling wasn’t feasible, due to spoilage.  At 

these two test conditions, a reduction of no more than two logs was shown for all 

fresh commodities tested.  Other studies have also determined that poliovirus 

can be isolated from lettuce and radishes after 23 days of the initial virus spike 

(153).  A study by Croci et al. showed that at 4° C HAV is able to survive on 

lettuce, fennel and carrot.  Survival of HAV was 4 days on carrots, 7 days on 

fennel and decreased two logs after 9 days on lettuce (35).  Studies on enteric 

virus persistence by Allwood et al. investigated the persistence of MS2 and FCV 

on lettuce and cabbage (4).  MS2 was inoculated onto the cabbage and lettuce at 

a titer of 13 - 14 log pfu.  Feline calicivirus was inoculated at a titer of 6.0-6.5 log 

pfu.  At 4° C, MS2 was able to persist for greater than 1 log pfu for 12 days, 

whereas FCV persisted for greater than 1 log pfu for 5 days.  At 25° C, MS2 was 

able to persist for 12 days, and FCV survived for 5 days.  At 37° C, FCV and MS2 

survived for 3 and 12 days respectively.  Even though FCV is a commonly used 

surrogate for norovirus, FCV is a respiratory virus, thus the physiochemical 

characteristics may not be comparable to other enteric viruses.  Kurdziel et al. 

inoculated 104-105 poliovirus virions onto a variety of fruits and vegetables 

(romaine lettuce, green onions, white cabbage, fresh raspberries, and frozen 

strawberries) (90).  The vegetables and fresh strawberries were held at 4° C, 

while the frozen strawberries were held at -20° C for 2 weeks.  Poliovirus 

exhibited a 90% decrease after 11.6 days on lettuce, 14.2 days on white cabbage, 
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8.4 days on frozen strawberries, and did not decline for fresh raspberries and 

green onions.  Differences in survival rates were attributed to desiccation, 

though because of the experimental design of this experiment the effect of 

desiccation could not be determined.  Stine et al. used a controlled 

environmental chamber to determine the effect of humidity on viral and 

bacterial agents (146).  The viruses that were tested included PRD1 

bacteriophage, hepatitis A virus and feline calicivirus.  On cantaloupe, survival of 

all three viruses was greater in dry conditions than in humid conditions.  On 

lettuce, both PRD1 and HAV exhibited greater survival in dry conditions than in 

humid conditions.  The animal virus, FCV, experienced a higher deactivation 

rate in dry conditions than in humid condition; but the difference between dry 

and humid, deactivation rate of 1.13 and 1.06, respectively, was minimal.  On bell 

peppers, HAV and FCV had higher survival in dry conditions than in humid 

conditions.  Bacteriophage PRD1 had a lower survival on dry conditions, but 

again the difference in deactivation rates was minimal, 0.14 and 0.08 dry and 

humid, respectively.  The work by Stine et al. is important because it disputes the 

previously held belief that desiccation stress is important in virus survival on the 

surface of fresh produce.  The results indicate that enteric viruses are able to 

survive for extended periods of time on fruits and vegetables, and therefore salad 

crops are able to provide a stable vector for transmission of enteric viruses. 

 Survival of enteric viruses at the pre-harvest stage, may be dependent not 

only on the physiochemical stability of the viral capsid, but also on the ability of 
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the epiphytic community to utilize viruses as carbon or nitrogen sources.  

Previous studies have identified the important role that microbial predation has 

on enteric viruses survival (160, 166).   Some evidence on the importance that 

the epiphytic community has on virus survival was provided by Bidawid et al. in 

a study utilizing a modified atmosphere packaging (MAP) (13).  The main 

objective of their study was to determine the effect of temperature and a MAP on 

the survival of HAV on lettuce.  Modified air packaging has been extensively 

used in the fresh produce industry for extending the shelf-life of fresh produce 

by inhibiting the growth of spoilage microorganisms.  At 4° C, there was no 

difference between using atmospheric air in an enclosed bag, MAP or 

unpackaged lettuce.  At room temperature, the changes were significant.  Using 

MAP, virus decreased from 0.5-1 log over the course of 12 days.  The virus, HAV, 

decreased 1.5 logs in a bag filled with atmospheric air.  Decrease of HAV on 

unpackaged lettuce was much greater than all other treatments, 4 logs.  The 

authors attributed this decrease to compounds released by the lettuce during the 

normal cellular death of the lettuce, even though none of the experimental 

conditions tested for this outcome.  These results could only be a result of 

microbial predation or viral inactivation by desiccation.  The study by Stine et al. 

showed that desiccation does not effect viral survival on fresh produce, therefore 

the decrease of virus could only come from microbial predation. Thus, the use of 

carbon sources by epiphytes on leaves may be important for virus persistence.   
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 Even though easily utilizable sugars like glucose, fructose, and sucrose are 

in abundance on the surface of a leaf, the uneven distribution of sugars on leaves 

did not allow for continual growth of epiphytic communities (95, 114).  Mercier 

et al. found that even in leaves with a high microbial load, a substantial amount 

of sugars remained (114). Additionally, the initial concentration of sugars 

allowed for a rapid short-term proliferation of Pseudomonas fluorescens sprayed 

onto the leaves, but after available sugar was consumed, growth of Pseudomonas 

fluorescens stagnated.  The results by Mercier et al. are important because it 

indicates that epiphytes are able to utilize carbon sources on plant surfaces.  

Furthermore, the rapid short term proliferation of Pseudomonas fluorescens 

indicates that R-strategist bacteria are important for initial epiphytic growth, but 

further growth will have to arise from K-strategist bacteria or bacteria that will 

utilize more complex carbon sources (5, 85).  Pseudomonas spp. do not neatly fit 

into the R-strategist and K-strategist paradigm.  Even though they are rapid 

growers, they are also able to utilize a wide range of carbon and nitrogen 

sources.  Many of the Pseudomonas spp. isolated from plants are able to utilize 

complex carbon and nitrogen sources like most amino acids and have a variety of 

hydrolases that are able to utilize sucrose, maltose, trehalose and xylans (123).  

Pseudomonas are also able to utilze long-chain hydrocarbons and aromatic 

derivatives and has all the necessary transporters for amino acid uptake (123).  

The wide variety of carbon and nitrogen sources available to Pseudomonas spp. 

has been attributed to its niche where it grows and colonizes plants.  Plant 
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exudates have been found to have sugars, like glucose, but also a wide variety of 

amino acids (164).  Interestingly, Pseudomonas spp. has been found to grow well 

on amino acids as their sole carbon and nitrogen source (144, 164, 171).  

Moreover, a study by Wilson et al. indicated that Pseudomonas syringae when 

inoculated onto plants with proline was able to grow better than the control 

(inoculation only) within the field.  The addition of ammonia did not improve 

bacterial growth compared to the control.  In the greenhouse, the effect was 

much pronounced.  Pseudomonas sp. was able to utilize and grow better when 

inoculated in the presence of proline or serine than with fructose or glucose.  The 

addition of proline and ammonia caused greater growth than any of the other 

treatments, whereas ammonia by itself was no different than the control or 

glucose by itself.  These results are supported by a study by Sonawane et al. in 

which all four Pseudomonas spp. tested were able to grow well in variety of 

amino acids as their sole carbon/nitrogen source.  Some of the Pseudomonas 

spp. grew better with an amino acid as their sole carbon/nitrogen source, than a 

combination of amino acid and glucose. 

 The ability of Pseudomonas spp. to utilize amino acids and proteins as a 

nitrogen/carbon source is important because it is the principle colonizer on the 

plant phyllosphere.  Studies to identify the community on rye has shown that 

Pseudomonas spp. accounts for 20.1% of the resident normal flora, on olive 

leaves it accounts for 51% (75).  Another study on strawberry plants indicated 

that Pseudomonas spp. accounted for 46.2% of the resident microflora (89).  The 
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ability of the resident microflora to utilize the viruses as a source as 

carbon/nitrogen source could have important implications for the survival of 

viruses, which are able to use leaves as a vector for human infection.  The use of 

food preservation technologies that either inactivate or decrease microbial 

activity to prolong produce shelf life may inadvertently increase the likelihood of 

viral transmission.  The extreme conditions (oligotrophic, temperature and 

humidity fluctuations) have selected for microorganisms that are able to survive 

by utilizing all available carbon, nitrogen and other micronutirent sources for 

growth.  

Attachment Mechanisms of Enteric Viruses onto Surfaces: Aquifer 

Material, Membranes and Plant Surfaces 

Non-specific interactions are not directly involved in the viral infectious cycle, 

but are nevertheless important.  Cucumber mosaic virus (CMV) is similar to 

many enteric viruses in terms of shape and size (122).  Cucumber mosaic viruses 

are plant viruses, but use an insect vector to transmit the virus from plant to 

plant.  During feeding of an infected plant, aphids retain viruses on their stylus 

and when the aphid feeds on another plant the stylus mechanically transmits the 

virus to a new plant.  Unlike other insect vectors, CMVs do not reproduce inside 

insects nor are they ingested.  Cucumber mosaic virus has a negatively charged 

loop on its surface capsid, which is highly conserved, and uses the negative 

charge to attach to the stylus of aphids (100).  Mutations in the negatively 

charged loop do not effect the replication of virus, but mutations in this area of 



  

46 

the capsid alter the transmissability of virus through aphids.  Enteric viruses, 

unlike CMV, do not rely on an insect vector to efficiently carry the virus to 

another host, though the importance of non-specific binding cannot be 

underestimated. Because enteric viruses consist of a nucleic acid surrounded by 

a protein coat, an enteric virus can be thought of as a protein with a defined 

charge.   

 The charge of a virus will be dependent on the residues on the surface of 

the virus.  As in CMV, enteric viruses also have capsid properties that allow for 

non-specific adsorption to a surface.  The surface charge of a virus can be 

characterized as the isoelectric point (pI) or the point in which a virus has a net 

zero charge at a certain pH.  The pH of a solution will determine the surface 

charge of a virus.  A low pH solution, below the virus pI, will result in a positive 

surface charge, and a high pH solution, above the virus pI, will result in a 

negative surface charge (61).   

 Various studies have tried to explain adsorption of viruses to aquifer 

material.  A commonly cited theory of non-specific viral attachment is the DLVO 

theory.  The DLVO theory states that a layer of counter-ions develops around the 

adsorbent and adsorbate (61).  The greater the layer of counter-ions around the 

adsorbent, the less adsorption occurs.  The layer of counter-ions prevents 

adsorption by preventing the van deer Waals forces to come into effect.  The 

momentary dipole created in the van deer Waal force can only occur over very 

short distances, thus a large counter-ion layer will prevent attraction between 
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the adsorbent and the adsorbate. The DLVO theory excludes all other forces 

except van deer Waals and the double layer forces, as  previously described.  The 

DLVO theory explains viral adsorption when both virus and solid are negatively 

charged and is believed to be the primary forces dictating non-specific 

interactions (61).  The DLVO theory has been used to explain the strong 

adsorption that clays have with viruses (28).   

 Multivalent ions have also been proposed to effect adsorption of viruses to 

solids.  The multivalent ions are proposed to act as a bridge connecting two 

charged surfaces.  These types of cations are termed salt bridges.  Salt bridges 

have been identified as important for certain virus-adsorbent interactions (142).  

Other types of interactions are electrostatic interactions.  A predictor of an 

electrostatic interaction is the pI of a virus.  Dowd et al. determined that a viral 

isoelectric point is one of the main factors responsible for viral adsorption within 

aquifers (39).  Dowd et al. accomplished this by looking at five different viruses 

with isoelectric points ranging from 3.9 to 7.3.  Dowd et al. determined that the 

viral pI is the overriding factor in controlling viral adsorption in aquifer material.  

Redman et al. also studied the effect of viral pI on viral adsorption, and also 

concluded that viral adsorption differs due to the electrostatic charge of a virus, 

hence viruses with different pIs will have different adsorptive behavior (129).  

Huade et al. also determined that virus pI had an effect on virus adsorption, but 

concluded that the critical pH, ±0.5 pH units of the highest pI in a system, was 

the most important range in virus binding to aquifer material (71).     
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 Research involving enteric virus adsorption to membranes has identified 

other forces other than the pI that is important in viral adsorption.  Filters that 

concentrate viruses from water have provided information on non-specific virus 

interactions.  Farrah et al. (1981) investigated the effect of chaotropic (salts 

which weaken hydrophobic interactions) and antichaotropic salts (salts which 

strengthen hydrophobic interactions) (49).  Using both chaotropic and 

antichaotropic salts, Farrah et al. (1981) determined that poliovirus bound to 

filters at low pH (4.0) mainly through electrostatic forces, and at high pH  (9.5) 

using hydrophobic forces.  Farrah et al. (1982) also examined the binding of 

MS2 phage to membrane filters (48).  By a using an antichaotropic salt (MgSO4), 

Farrah et al. determined MS2 phage was able to bind to a nitrocellulose filter at 

pH 6.0. Furthermore, Tween® 80, a detergent, was able to reverse the adsorption 

of MS2 phage to the filter.  The results indicate that MS2 is able to bind to a 

nitrocellulose filter at pH 6.0 using primarily hydrophobic interactions.  Shields 

et al. also examined the effect of poliovirus on membrane binding (139).  

Poliovirus was able to bind to membrane filters at low pH (4.0), but only a 

Tween® 80 and 1.0 M NaCl solution was able to elute viruses from the 

membrane.  The detergent, Tween® 80, or the 1.0 M NaCl solution by itself was 

not able to elute virus efficiently from the nitrocellulose filter membrane at pH 

4.0.  At pH 7.0, Tween® 80 was able to elute 86% of poliovirus, while 1.0 M NaCl 

was not able to elute virus efficiently.  At pH 9.0, neither Tween® 80 nor NaCl 

eluted virus anymore efficiently than the buffer.  In all cases, poliovirus elution 



  

49 

was most efficient with both Tween® 80 and NaCl.  The results from Sheilds et 

al. indicate that poliovirus uses both electrostatic and hydrophobic interactions 

in binding to nitrocellulose filters.  Lukasik et al. also examined the effect of salts 

on viral adsorption to filters (105).  Unlike other studies, Lukasik et al. looked at 

3-4 viruses, 4 different filters and 3 different salts including Urea and Tween® 

80.   The results obtained by Lukasik et al. were variable.  The 1 MDS filter with 

a slightly positive charge at pH 7.0 bound MS2 and PRD-1 at over 95%.  

Poliovirus was also adsorbed by 1MDS at a lower efficiency (79%).  The lowest 

binding efficiency was the bacteriophage φX174 at 29%.  The addition of 0.1 M 

NaCl greatly reduced the binding efficiency of all viruses (≈13%) at pH 7.0.  At 

pH 3.5 all filters with the exception of a Whatman cellulose filter were able to 

bind virus.  The addition of salt did not reduce the binding efficiency for 2 out of 

4 filters, but did reduce it somewhat for the 1MDS filter.  The 1MDS filters 

binding efficiency depended on the type of salt used in the experiment, likewise 

the filters not affected by the addition of salt, were affected by the addition of 

Urea or Tween® 80.   Furthermore, Urea by itself did not decrease the adsorption 

of virus to the filters at pH 3.5.  The results by Lukasik et al. and other studies 

thus indicate that 1) viruses have different binding abilities, 2) pH is important 

for electrostatic and hydrophobic interactions, 3) salts are able to reverse 

electrostatic interactions, and 4) if both electrostatic and hydrophobic 

interactions are present, the disruption of the electrostatic force will strengthen 

the hydrophobic force and vice versa.  Adsorption studies with membrane filters 
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and aquifer material have elucidated the binding forces that may be important in 

plant-viral interactions. 

 Non-specific virus-plant interactions on plant surfaces have not been 

studied.  Even though attachment of plant viruses to their insect vectors has 

been documented, as previously described, a study identifying the attachment of 

viruses to the surfaces of plants has not been investigated.  The current state of 

knowledge in plant virology has not identified a virus that is transmitted through 

the surface of plants without injury to the plant cell.  Therefore, there is an 

impetus to study non-specific viral attachment to plant surfaces.  

Decontamination Strategies for Removing Enteric Viruses from 

Surfaces 

The current recommended treatment (50-200 ppm chlorine) of washing fruit 

and vegetables to decrease microflora are ineffective against viruses (3, 4, 12, 21, 

72).  A consequence of not having a lipid membrane is the ability to withstand 

disinfectants commonly used for bacteria.   Commonly used disinfectants like 

bleach, hydrogen peroxide, Tsunami® 100, and sodium bicarbonate have not 

been effective in neutralizing enteric virus infectivity (4).  In another study by 

Malik et al., the effect of sodium bicarbonate was found to significantly reduce 

viable FCV, a norovirus surrogate, on environmental surfaces (108).  Though, 

the effect on foods and how closely FCV mimics norovirus is currently not 

known.  Furthermore, newer sanitizing methods, like electrochemical 

inactivation, do not reduce viral numbers in significant amounts (40).  Other 
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methods, like ozone, are effective in decreasing total microbial counts on fresh 

produce (83).  Thurston-Enriquez et al. tested the virucidal activity of ozone on 

FCV and Adenovirus (152).  Ozone was found to be effective in reducing FCV and 

adenovirus in water, though the efficacy of ozone on decreasing viral pathogens 

on the surface of fruits or vegetables has yet to be shown.  Gulati et al. tested 9% 

n-quaternary ammonium compound (QAC), 10% QAC, 5% QAC and 2% sodium 

bicarbonate, 5.25% sodium hypochlorite, 15% peroxyacetic acid and 11% 

hydrogen peroxide, 4.75% o-benzyl p-chlorophenol and 4.75% o-phenylphenol, 

and 5% o-benzyl p-chlorophenol and 10.5% o-phenylphenol for their effectivness 

against calicivirus at their recommended concentrations (72).  Gulati et al.  

determined that none of the sanitizers were effective against calicivirus.  Most 

sanitizers are developed and tested based of their bactericidal not virucidal 

activity.  Because bacteria have a lipid membrane, an effective bactericidal 

sanitizer will have limited success against a non-enveloped virus.  Enteric viruses 

are also more difficult to disinfect because they are not actively interacting with 

their environment.  Unlike bacteria and eukaryotes, viruses do not need to 

maintain a basal metabolic level to survive.  Enteric viruses are in stasis until 

activated by a host cell.  As a result, viral survival is solely a factor of structural 

and genetic stability.  An effective method to decontaminate viruses from 

surfaces is a solution of ≈1,000 ppm of chlorine (25).  At a minimum 1,000 ppm 

is 5X-20X the FDA recommended treatment for fruits and vegetables (21).  

Therefore, there is no current treatment for fruits and vegetables to rinse salad 



  

52 

crops to deactivate enteric viruses without significantly reducing the quality of 

salad crops. 
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CHAPTER III 
 

THE EFFECT OF CRITICAL pH ON THE ADSORPTION OF 

VIRUS TO BUTTERHEAD LETTUCE* 

Overview 

Enteric viruses account for the majority of foodborne illness in the United States.  

The objective was to determine whether the isoelectric point (pI) of viruses such 

as feline calicivirus (FCV), echovirus 11, and bacteriophages φX174 and MS2 had 

any effect on their attachment to butterhead lettuce.  Viral adsorption to lettuce 

was found to be variable.  Bacteriophage MS2 was the only virus showing 

attachment at its critical pH and was the only virus fitting the current DLVO 

model.  Echovirus 11 had the highest affinity to lettuce surface.  Echovirus 11 

exhibited reversible attachment above the virus pI, whereas below the viral pI a 

strong adsorption was observed. Adsorption of FCV was at its maximum above 

the viral pI.  Bacteriophage φX174 exhibited the most complex adsorption 

pattern with attachment occurring only at the pH extremes (pH 3.0 and pH 8.0).  

The results suggest the current model for virus adsorption to sediment does not 

adequately explain the variability in viral attachment patterns that was observed.  

Importantly, the results suggest that current sample processing methods can 

select for only certain viral types. 

_________ 
*Reprinted with permission from “Variability of Virus Attachment Patterns to Butterhead 
Lettuce,” by Everardo Vega1, Jeanon Smith1, Jay Garland2, Anabelle Matos3 and Suresh D. Pillai1  
from the Journal of Food Protection.  Copyright held by the International Association of Food 
Protection, Des Moines, Iowa, USA.  
1Texas A&M University, 2Dynamac Corp. 3USDA-ARS 
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Introduction 

The CDC has recognized that among the food-borne disease outbreaks between 

1993 and 1997, over half of the cases of “unknown etiology” exhibited 

characteristics of viral illnesses (120). In 2000, viral agents accounted for 28% of 

all documented food borne illness cases, whereas bacterial agents accounted for 

25% of all food-borne disease outbreaks (22).  Mead et al. (113) have suggested 

that enteric viruses may actually account for as much as 67% of all food-borne 

disease related gastroenteritis in the United States.  The large number of enteric 

virus infections can be attributed in part to their low infectious doses (≤100 

PFU), their stability in the environment, and our relatively limited knowledge 

about their presence in foods (4, 8, 148).   

Although the incidence of food-borne illnesses associated with fresh 

produce was believed to be relatively low, the number of outbreaks associated 

with fresh produce has recently doubled (8).  In actuality, salads and fresh 

produce account for the top two vectors in norovirus foodborne disease 

transmission (170).  Studies have also reported that carrots, cilantro and parsley 

can harbor fecal indicator viruses (43, 44).  Lettuce is of particular concern 

among salad crops because it is consumed in relatively large quantities with 

minimal preparation, has a large surface area (hence, greater pathogen 

attachment sites), and is grown in close proximity to the soil.  Lettuce was 

implicated in a large viral disease outbreak.  In 1988, a hepatitis A virus outbreak 
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involving over 200 people was attributed to lettuce being contaminated via 

irrigation water (132).    

  The initial attachment of enteric viruses to salad crops and herbs is a key 

step in the contamination chain of events.  Understanding the factors (physical, 

chemical and biological) that control the attachment process can provide insight 

into appropriate intervention methods that can be used to either prevent 

attachment or remove the attached viral pathogens.  There is a significant 

amount of information related to factors that control the attachment of enteric 

viruses to soil and aquifer sediments.  Factors such as virus type, pH, ionic 

concentration, presence of multivalent cations, and organic matter, are thought 

to be involved (31, 39, 67, 129, 136, 150).  The factors controlling enteric virus 

attachment to salad crops have, however, not been adequately studied. The 

attachment of enteric virus particles to lettuce leaf surfaces can be envisioned as 

involving both kinetic adsorption and equilibrium attachment processes (67).  

Since the isoelectric point of a virus can influence the net surface charge of a 

virus at a particular pH, we hypothesized that the isoelectric point of the virus is 

a controlling factor dictating the attachment of enteric virus particles to 

butterhead lettuce surfaces.   Because viruses consist of nucleic acid surrounded 

by a protein coat, a virus particle can be thought of as a protein with a defined 

surface charge. The ultimate charge of a virus would, therefore depend on the 

amino acid residues on the virus surface and the pH of the surrounding medium 

(39, 71, 129, 150).   
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In order to delineate the factors controlling the non-specific attachment 

of enteric viruses to produce surfaces, the attachment of viruses to lettuce 

surfaces was studied using batch experiments.  The primary objective of this 

study was to determine if the isoelectric point of viruses controlled their 

attachment to the lettuce surface.  The viruses that were studied included model 

viruses (bacteriophages and FCV) as well as a known enteric virus (echovirus 11).  

Only if the factors controlling virus attachment to lettuce are identified, can 

effective and scientifically-based washing or virus recovery protocols be 

developed.  

 

 

 

 

 

 

 

 

Virus pI Structure Shape Envelope Transmission 
route 

Host 

MS2 3.9a T=3 Icosahedral No Fecal-oral E. coli 
FCV 4.9b T=3 Icosahedral No Respiratory Feline 

Echovirus 
11 

5.9b Pseudo 
T=3 

Icosahedral No Fecal-oral Human 

φX174 6.6a T=1 Icosahedral No Fecal-oral E. coli 

TABLE 3.1.  Physicochemical Properties of Viruses Used in the Study. The table lists the physicochemical 
attributes important when selecting the viruses used for the experiments. 

a The pI of viruses MS2 and φX174 was obtained from the manuscript by Dowd et al (39). 
b The pI of echovirus 11 and FCV was obtained by inserting the amino acid sequence of the 

capsid into the space provided at the website http://www.embl-heidelberg.de/cgi/pi-wrapper.pI.  
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Materials and Methods 

Viruses and Cells.  In order to study the influence of the isoelectric point on 

virus attachment patterns we chose viruses of varying isoelectric points that 

included bacteriophages and known enteric and mammalian viruses (Table 3.1).  

Bacteriophage MS2 (ATCC # 15597-B1) was propagated in E. coli HS(pFamp)R 

(ATCC # 700891).  Bacteriophage φX174 (ATCC # 13706- B1) was grown in E. 

coli host CN13 (ATCC # 700609).  The MS2 and φX174 phages were enumerated 

using the double agar layer (DAL) method using their respective hosts (160).  

Echovirus 11 (ATCC # VR-1052) was propagated in buffalo green monkey cells 

(BGMK).  Feline calicivirus strain F9 (FCV) was grown in Crandell-Reese feline 

kidney cells (CRFK). (The virus and host cells were a generous gift from Dr. 

Sagar Goyal at the University of Minnesota).  The mammalian viruses were 

enumerated using a soft agar overlay method (156).  Propagation and 

maintenance media was identical to Gulati et al., with the exception of 

lactalbumin hydrolysate (72). Lactalbumin hydrolysate was not used for CRFK 

cells.  Buffalo green monkey cells were grown and maintained in media similar 

to CRFK cells with the exception of 25 mM of HEPES and 10% fetal bovine 

serum. 

Attachment Studies.  Butterhead lettuce was purchased locally from a 

farmers’ market that sold fresh farm products. The lettuce leaves were severed 

from the base and cut into 25 cm2 pieces using appropriate sterile techniques.  

The pieces were placed in a 20 oz Whirl-Pak bag® (Fort Atkinson, WI).  Twenty 
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milliliters of citric phosphate buffer (0.1M) (pH range 3-5) were added to 

appropriately labeled bags.  Twenty milliliters of sodium phosphate buffer 

(0.1M) (pH range 6-8) were similarly added to labeled bags. The buffers were 

titrated to their respective pH using HCl or NaOH, as necessary with an 

acceptable pH buffer variation of ± 0.01 pH units.  (The pH meter was calibrated 

with pH 4, 7, and 10 calibration buffers prior to each use).  The pH range was 

specifically chosen so as to include the pI of the viruses being studied.  A virus 

suspension (0.1 mL of a 105 PFU per ml) was added to each bag to achieve a total 

of 104 PFU per bag.  The control treatments consisted of the bag containing 20 

mL of buffer inoculated with 0.1 ml of a 105 PFU/ml lysate diluted in 0.1% 

peptone but without the piece of lettuce.  The virus suspensions and the buffers 

used in the experimental and control treatments were prepared from the same 

stock.  After the virus was inoculated into the control and experimental units, 

virus adsorption was allowed to proceed for 30 minutes at room temperature on 

a rocking platform.    

The experimental and control units were sampled in a staggered fashion. 

After 30 minutes, the control and experimental units were cut open using flame-

disinfected scissors and 0.1 ml of buffer was aspirated from the bags.  The 

bacteriophage assays were carried out immediately after each bag was cut open 

since their assay was rather straightforward.  The 0.1 ml aliquots were assayed 

for MS2 and φX174 bacteriophages without any further dilution.  The aliquots for 

echovirus and FCV analysis were first diluted into Eagles minimal essential 
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media (cat. # M0643) (Sigma-Aldrich, St. Louis, MO).  From the diluted buffer, 

0.2 ml was inoculated into each well for the plaque assay.  The animal virus 

samples were collected and then assayed all together once the adsorption phase 

of the experiment was complete.  To avoid experimental variability, buffer 

volumes, dimensions of the lettuce squares, sequence of addition of viruses, 

lettuce squares and viral stocks were all standardized to the maximum extent 

possible.    

Data Analysis. Multiple, independent experimental trials, with each trial 

consisting of three experimental replicates and three control replicates were 

performed.  The samples from the control and experimental treatments were 

assayed at the same time.  The “percent attachment” for each virus was 

calculated as follows: [(Mean Control-Mean Experimental)/Mean Control] x 

100.  We measured attachment as a function of a “difference” because relying on 

virus titers based directly on extraction or removal from the leaf surface was 

prone to significant errors since it was impossible to choose a buffer that 

guaranteed high recovery efficiency for the different viruses. Potential virus 

aggregation/de-aggregation and attachment to the bag was controlled by 

analyzing the data in terms of the experimental bag (with lettuce) to the control 

bag (without the lettuce).  The data is presented as “percent attachment” with 

the trend line (based on the median value) along with the sample interquartile 

range (25th and 75th percentiles) (131). Significant differences (p ≤ 0.05), if any, 
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in the percent attachment across the pH range for a given virus was calculated 

based on the Wilcoxon Sign Rank Test using SPSS 11.0.1 (Chicago, IL). 

Results 

The MS2 phage exhibited the most dramatic change in adsorption as a function 

of pH compared to the other three viruses (Fig. 3.1).  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 3.1. MS2 Adsorption to Lettuce. The trend line is shown connecting the 
median values. The horizontal bars represent the 25th and 75th percentiles. The vertical 
line represents the virus isoelectric point (pI).  The experiment consisted of 6 independent 
replicates with each experiment consisting of 3 replicates.   
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 FIG. 3.2.  Feline Calicivirus Adsorption to Lettuce. The trend line is shown 
connecting the median values. The horizontal bars represent the 25th and 75th 
percentiles. The vertical line represents the virus isoelectric point (pI). The experiment 
consisted of 10 independent replicates for pH 4, 6 and 8, and 9 independent replicates at 
pH 5 and 7 with each experiment consisting of 3 replicates. 
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At pH 3.0, MS2 phage showed the maximum adsorption (28%) which 

corresponded to 2,690 PFU/25cm2). At pH 8.0, the majority of the viruses were 

unattached (-32%).  

 Feline calicivirus showed maximal attachment at pH 8.0 (19% 

corresponding to 1860 PFU/25 cm2) and minimal attachment at pH 5.0 (Fig. 

3.2). The FCV were rapidly inactivated at pH 3.0 and hence only data from pH 

4.0 and above are presented. Though the FCV results indicate that there was 

significant adsorption and desorption of viruses at all of the pH ranges that were 

tested, it is apparent from the trend line that as the pH increased from pH 5.0 to 

8.0, the % of viruses that were attached to the lettuce surface increased 

significantly (Table 3.2).  An equal proportion of viruses appeared to be attached 

and unattached at pH 6.0 (Fig. 3.2). It must be noted that the difference in 

attachment of FCV at pH 5.0 as compared to pH 4.0 was only 3.4% (which is 

equivalent to 340 PFU/25 cm2). 

 

 

 

 

 



  

63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Values at pHa: 
pH Virus 4.0 5.0 6.0 7.0 8.0 
3.0b MS2 0.03* 0.03* 0.03* 0.03* 0.12 

 φX174 0.04* 0.08 0.08 0.25 0.75 
 Echovirus 11 0.25 0.75 0.04* 0.05* 0.04* 

4.0 MS2  0.75 0.60 0.46 0.46 
 φX174  0.60 0.75 0.75 0.17 
 FCV  0.68 0.24 0.01* 0.01* 
 Echovirus 11  0.75 0.04 0.12 0.08 

5.0 MS2   0.92 0.75 0.46 
 φX174   0.35 0.92 0.17 
 FCV   0.01* 0.01 0.01* 
 Echovirus 11   0.08 0.12 0.04* 

6.0 MS2    0.46 0.60 
 φX174    0.60 0.05* 
 FCV    0.03* 0.01* 
 Echovirus 11    0.50 0.08 

7.0 MS2     0.75 
 φX174     0.08 
 FCV     0.95 

 Echovirus 11     0.22 

TABLE 3.2. Obtained P-values Between Virus Attachment at Each pH. P-values obtained 
when comparing percent attachment of four different viruses in lettuce to five different pH 

buffers. 
 

a Numbers with asterisks represent significant differences based on the Wilcoxon sign 
rank test (P < 0.05) 

bThe FCV was nonviable at pH 3.0 
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Echovirus 11 exhibited the greatest attachment to butterhead lettuce 

among the four different viruses that were employed in this study (Fig. 3.3). The 

virus appeared to be strongly bound to the lettuce surface at pH 3.0 (14.4% 

corresponding to 1440 PFU/25 cm2) and tended to increase with increasing pH. 

Maximal attachment was observed at pH 8.0 57% or 5700 PFU/cm2). 

 FIG. 3.3. Echovirus 11 Adsorption to Lettuce. The trend line is shown connecting 
the median values. The horizontal bars represent the 25th and 75th percentiles. The 
vertical line represents the virus isoelectric point (pI). The experiment consisted of 6 
independent replicates for pH 3 thru 5, 5 independent replicates for pH 6 and 8 and 7 
independent replicates for pH 7 with each experiment consisting of 3 replicates. 
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 The phage φX174 exhibited the most complex attachment and detachment 

pattern of the four viruses that were studied (Fig. 3.4).   At the extreme ends of 

the pH range tested, (pH 3.0 and pH 8.0), φX174 phage exhibited only 4.9% and 

6% (490 and 600 PFU/25 cm2 respectively) attachment, respectively.  There 

appeared to be no attachment of virus particles to the leaf surfaces between these 

two pH values. 

 FIG. 3.4. φX174 Adsorption to Lettuce. The trend line is shown connecting the 
median values. The horizontal bars represent the 25th and 75th percentiles. The vertical line 
represents the virus isoelectric point (pI). The experiment consisted of 6 independent 
replicates for pH 3-8 with each experiment consisting of 3 replicates. 
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Discussion 

The physicochemical forces that control the interaction between enteric viruses 

and plant surfaces have not been adequately studied in the past. A better 

understanding of the controlling factors can lead to improved washing or other 

intervention strategies.  The use of positively charged filters is a common 

strategy used to concentrate enteric viruses from large volumes of water and 

sharp drops in pH are exploited as a strategy to concentrate viruses in 

suspension. The apparent reversible and irreversible attachment that was 

observed in these studies (based on the data spread) was expected because these 

viruses do not employ specific cell-surface receptors to attach to the lettuce 

surface.   

 In batch experiments using sediment material, virus concentrations (in the 

buffer) normally decline in time (due to adsorption onto the solid surface) after 

which they remain constant. When the numbers remain constant, the viruses are 

said to be at equilibrium adsorption which is achieved due to reversible 

adsorption (8, 131).  It has been postulated that two processes are involved in the 

formation of the adsorption equilibrium with a solid surface namely, mass 

transport of viruses close to the surface and secondly the immobilization of the 

viruses to the surfaces by physical and chemical interactions. Electrostatic 

interactions, van der Waals forces, and hydrophobic effects are three major 

forces that are thought to be responsible for the interactions between virus 

particles and solid substrates (136). The Derjaguin-Landau-Verway-Overbeek 
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(DLVO) theory serves as a conceptual framework to understand non-specific 

interaction of virus particles to solid surfaces under different conditions such as 

pH, and ionic strength.  The DLVO theory states that only the van der Waals and 

electrostatic forces are of any consequence in colloidal particle adhesion to 

surfaces.  The van der Waals force is always attractive and the electrostatic force 

is always repulsive.  Factors that decrease or increase the electrostatic 

component will invariably reduce or enhance the influence of van der Waals 

force, thereby directly impacting adsorption.  Even though hydrophobic 

interactions are thought to be involved in virus adsorption to solid surfaces, 

hydrophobic interactions are not considered in the DLVO theory.  Previous 

studies have shown that virus attachment to solid surfaces decreases with 

increasing pH (67, 136).  The DLVO theory attempts to explain this phenomenon 

by suggesting increased repulsion by negatively charged virus particles and solid 

surfaces. The overall negative charge on the virus surfaces increases above the pI 

of the virus particle, whereas below the viral pI the overall net charge becomes 

increasingly positive. Even though the surface charge of the lettuce is relatively 

unknown (to the best of our knowledge), the experimental design normalized the 

impact of the lettuce charges across all experiments.  Among the four viruses 

that were studied, only the MS2 phage behaved per the DLVO theory (Fig. 3.1). 

As the pH increased from pH 3.0 to pH 8.0, the percentage of virus attachment 

decreased.  The enteric virus, echovirus 11, exhibited a pattern of increasing 

attachment (Fig. 3.3). Below the pI of the virus (i.e. 5.9), the viruses were 
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“tightly” bound to the leaf as compared to “reversible” binding above the pI. (The 

reversible binding is deduced by the spread of the data points at pH levels 

greater than the pI). Guan et al. have recently reported the existence of a “critical 

pH” range at which the virus behavior changes abruptly (71). The critical pH was 

reported to be 0.5 pH units below the highest isoelectric point of the virus and 

the solid substrate. If the pH of the suspending medium is below the critical pH, 

they suggest that the virus has an opposite charge to at least one component of 

the solid substrate and thus becomes irreversibly adsorbed to the substrate.  The 

critical pH concept, however, based on this study, does not appear to be valid for 

any virus other than MS2 phage. The phage φX174 exhibited a completely 

different adsorption pattern compared to the other 3 viruses with attachment 

occurring only at the extreme pH levels   

 Previous studies involving hepatitis A virus (HAV) and poliovirus recovery 

from fruits and vegetables showed variable efficiencies, suggesting that the 

detachment process is a net result of complex virus particle-surface interactions 

(94, 165).  Studies by Legitt et al. and Ward et al. employed a high pH (9.0) 

buffer wash to recover viruses from lettuce (94, 165).  Legitt et al. recovered only 

16% of inoculated poliovirus and HAV from lettuce.  Ward et al. recovered 58% 

and 49% of poliovirus from 2.9 kg and 3.3 kg of lettuce, respectively, suggesting 

poliovirus adsorption to lettuce.  The majority of the virus particles were, 

therefore, being “lost” after the first pH 9.0 wash.  Furthermore, the results seem 

to suggest that the greater the amount of lettuce used, the greater was the “loss” 
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of virus particles.  Though our study did not employ poliovirus or HAV, it 

employed echovirus 11, a member of the picornavirus family (similar to 

poliovirus and HAV).  We hypothesize that many enteric picornaviruses share 

similar adsorption potential to fruits and vegetables.  The low recoveries of 

echovirus in the present study similar to the low recoveries observed by Legitt et 

al. support this hypothesis. The increased attachments of echovirus 11 to lettuce 

as a function of increasing pH suggest the involvement of electrostatic forces. 

However, other investigators have suggested that hydrophobic interactions may 

also be playing a key role in virus attachment (106, 139).   

 The FCV is routinely used as a surrogate for norovirus since they are 

genetically and structurally related (3, 72, 148).  The FCV infect the respiratory 

tract and, therefore, there is little evolutionary pressure to maintain capsid 

integrity at low pH. The virus is sensitive to pH 3.0 as observed in this study. 

Duizer et al. also reported that <0.005% of FCV-F9 virus survived at pH 3.0 after 

30 minutes (42).  The results from this present study suggest that FCV is not a 

suitable surrogate for low pH studies. Nevertheless, in this study FCV was able to 

bind to lettuce at pH 7.0 and 8.0.  The FCV was able to bind to butterhead 

lettuce at  around 18.6% or 1860 PFU/25 cm2 at neutral to basic pH.  The 

ramifications of these results, however, have to be considered carefully since the 

transmission route of FCV is different from that of the typical enteric norovirus.  

It is plausible that the attachment patterns of norovirus may be actually closer to 

that of echovirus 11 rather than FCV, since noroviruses and echovirus 11 are 
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enteric viruses.   

 Overall, these results suggest that different viruses can exhibit differing 

attachment patterns to lettuce. Importantly, unlike the situation with aquifer 

sediments, the isoelectric point of the virus is not the controlling factor 

governing their attachment to lettuce. This study is significant in that it 

demonstrates that the attachment of enteric virus particles to lettuce cannot be 

generalized from the pattern of a single commonly used enteric virus surrogate 

such as the MS2 or φX174. These results suggest that current fruit and vegetable 

washing/rinsing protocols to rinse or recover viruses need be re-examined 

because pH interactions between the virus particle, the surface, and the buffer 

can alter the attachment or detachment of the viruses to the surfaces.  The study 

also suggests that using a particular pH buffer to recover virus particles could 

artificially select for the recovery of a particular type or group of viruses.  This 

may be the reason why in an earlier study, we recovered only DNA-containing 

phages from cilantro and parsley samples (43).    
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CHAPTER IV 

IDENTIFICATION OF FORCES CRITICAL FOR VIRUS 

ADSORPTION TO LETTUCE 

Overview 

Enteric viruses are estimated to be responsible for the majority of foodborne 

gastroenteritis in the United States.  Though, recent years have seen an increase 

in viral foodborne disease caused by viruses, there is a distinct lack of data 

involving mechanisms of viral attachment to the surfaces of fruits and 

vegetables.  The objective of this study was to determine the forces responsible 

for non-specific virus attachment on the surface of butterhead lettuce.  We have 

previously determined that viruses attach to the surface of butterhead lettuce at 

varying amounts.  As a follow up to our previous work, echovirus 11, FCV, MS2 

bacteriophage and φX174 bacteriophage were independently assayed to 

determine the forces affecting viral attachment to butterhead lettuce.  Three 

different conditions 1) 1% Tween 80, 2) 1 M NaCl and 3) 1% Tween 80 with 1 M 

NaCl were compared to determine attachment forces responsible for non-

specific viruses attachment on the surface of lettuce.  Only 1 M NaCl exhibited a 

consistent significant decrease in viral attachment at pH 7 and 8.  These results 

indicate that viruses are able to attach to lettuce using electrostatic forces and 

that a phosphate buffer with 1M NaCl is effective in removing virus attachment 

to butterhead lettuce.  These results will provide an effective method to wash 

lettuce to remove enteric viruses from the surface.  
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Introduction 

Recent years have seen a dramatic increase in food borne disease cases caused 

by enteric viruses.  Between the years 1993-2004, the number of cases where 

enteric viruses have been implicated in U.S. food borne diseases have increased 

from 4.7% in 1997 to as much as 52% in 2004 (26, 120).  These numbers are 

probably higher in developing or under-developed nations of the world.  Foods 

especially fresh fruits and vegetables can get contaminated with viral pathogens 

either at pre-harvest or during post-harvest processing. Though many viral food-

borne disease cases are associated with food handler contamination at food 

service establishments, there have been many instances where foods, most 

notably fresh or frozen produce, have been contaminated on the farm (57, 70, 77, 

132). A large outbreak in Pennsylvania associated with HAV contamination of 

green onions was traced back to contamination at the field in Mexico (169).  

Viral properties such as low infectious dose, resistance to chlorination, and 

resistance to commonly used produce-washing regimes have made enteric 

viruses on fresh produce rather difficult to control (4, 87). 

The initial attachment of enteric viruses to salad crops and herbs is a key 

step in the chain of contamination events. Understanding the factors (physical, 

chemical and biological) that control the attachment process can provide insight 

into appropriate intervention methods that can be used to either prevent 

attachment, or remove the attached viral pathogens.  We have previously shown 

that viruses exhibit differing levels of attachment to lettuce surfaces, and that 



  

73 

electrostatic forces were involved in the attachment of four different viruses 

(φX174, MS2, FCV and echovirus 11) to butterhead lettuce (161). However, given 

the variability in the attachment patterns that could be explained solely by 

electrostatic interactions, we were interested in identifying the role that 

hydrophobic interactions have in the attachment of enteric viruses to lettuce.  

Compared to the amount of information that is available related to the 

attachment of viruses to aquifer sediments, information explaining the non-

specific attachment of enteric viruses to fresh produce, such as lettuce, is 

relatively scant.  Developing a fundamental understanding of the forces 

responsible for virus adsorption or attachment of lettuce can lead to the 

formulation of appropriate rinse solutions that can be used during post-harvest 

processing, in food service establishments or even in homes to remove attached 

virus particles.  Experimentally, an appropriate lettuce wash solution can also 

help in eluting viruses off lettuce during sample processing to obtain accurate 

estimations of the viral loads on produce. The primary objective of this study was 

to compare the relative contribution of electrostatic and hydrophobic forces 

controlling virus attachment to butter-head lettuce. Four different viruses (Ms2, 

φX174, feline calicivirus and echovirus 11) were employed in these studies. 

 

 

 

 



  

74 

Materials and Methods 

Cells and Viruses.  The four viruses used in this study included φX174, Ms2, 

feline calicivirus and echovirus 11 (4, 37).  These four viruses were chosen 

because they have been used in the past as indicators of fecal viruses, as well as 

pathogenic viruses (57, 61, 90).  We had previously shown that electrostatic 

forces appeared to be involved in their attachment to butterhead lettuce (Table 

4.1).  The feline calicivirus (FCV) was chosen because it is used as a norovirus 

surrogate.  The echovirus 11 is a human pathogen belonging to the enterovirus 

group.  The echovirus 11 has been implicated as the principle cause of non-

bacterial meningitis and a variety of other human diseases (104).  More 

importantly, these four viruses have similar physicochemical attributes, like 

structure, size, and varying isoelectric points (161). 

 

 

 

 

 

   

 

 

 

 

 Medians (% Attachment at pH)a 
 3 4 5 6 7 8 
Echovirus 11 25.4 25.7 22.7 36.8 38.0 57.0 
FCV - -1.7 -6.7 -0.9 16.7 18.6 
MS2 26.9 -5.4 -12.2 -14.4 -29.8 -32.3 
φX174 4.9 -11.4 -9.9 -17.2 -5.0 3.0 

TABLE 4.1. Medians of Control Virus Adsorption to Lettuce. The table 
lists the median % attachment of selected viruses in 0.1 M NaPO4 buffer. 

aData is summarized from Vega et al. (161). 
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Echovirus 11 (ATCC VR-1052) was grown with buffalo green monkey cells 

(BGMK), FCV (F9) was grown in Crandell Reese feline kidney cells (CRFK), 

bacteriophage MS2 (ATCC 15597-B1) was propagated with Escherichia coli 

HS(pFamp)R (ATCC 700891) and bacteriophage φX174 (ATCC 13706-B1) was 

propagated in E. coli host CN13 (ATCC 700609).  Feline calicivirus and CRFK 

cells were a generous gift from Dr. Sagar Goyal at the University of Minnesota.  

The bacteriophages were assayed using the double agar layer method and the 

animal viruses using the agar overlay method, respectively (156, 160). The 

growth and maintenance media were identical to previously described protocols 

(161).      

Attachment Studies.  Butterhead lettuce was purchased locally from a 

farmers’ market that sold fresh farm products. The lettuce leaves were severed 

from the base and cut into 25 cm2 pieces using appropriate sterile techniques.  

The pieces were placed in a 20 oz Whirl-Pak bag® (Fort Atkinson, WI). Twenty 

milliliters of citric phosphate buffer (0.1M) (pH range 3-5) was added to 

appropriately labeled bags.  Twenty milliliters of sodium phosphate buffer 

(0.1M) (pH range 6-8) was similarly added to labeled bags. The buffers were 

titrated to their respective pH using HCl or NaOH, as necessary with an 

acceptable pH buffer variation of ± .01 pH units.  (The pH meter was calibrated 

with pH 4, 7, and 10 calibration buffers prior to each use).  In order to determine 

whether electrostatic or hydrophobic forces were involved in the attachment, it 

was necessary to sequentially remove these forces and observe the viral 
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attachment patterns.  Three different treatments (namely removal of 

hydrophobic interactions, removal of electrostatic interactions and removal of 

hydrophobic and electrostatic interactions) were evaluated in this attachment 

study.  The detergent Tween® 80 (Sigma-Alderich, St. Louis, MO) (catalog no. 

P1754) (1% v/v) was added to the buffers (pH 3-8) to remove hydrophobic 

interactions.  A high concentration of salt, 1M NaCl (Sigma-Alderich) (catalog 

no.  S7653), was added to the buffers (pH 3-8) to remove electrostatic 

interactions.  Both Tween® 80 (1% v/v) and NaCl (1 M) were added to the buffers 

(pH 3-8) to remove both electrostatic and hydrophobic interactions.  The 

experimental design for determining attachment was identical to Vega et al. with 

the exception of the suspending medium (161).  Briefly, a 25 cm2 piece of lettuce 

was placed inside a 20 oz Whirl-Pak bag (Fort Atkinson, WI).  Twenty milliliters 

of buffer followed by virus (total concentration of 104 pfu/20 ml) was added, a 

total of three replicates per experiment were carried out.  The lettuce in the virus 

and the buffer solution was the experimental set.  The control set consisted of 

the 20 oz Whirl-Pak bag with the buffer and virus solution at identical 

concentrations of the experimental but without the lettuce piece.  The control set 

had three replicates.   
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The virus suspensions and the buffers used in the experimental and control 

treatments were prepared from the same stock.  Both the control and 

experimental sets were prepared and assayed concurrently.   

Bacteriophages were assayed without dilution, whereas the animal viruses 

were diluted in Eagle’s minimal essential media (catalog no. M0643) (Sigma-

Alderich, St. Louis, MO.).  For the NaCl experiments, samples were diluted to at 

least 1 to 3 to avoid cell culture toxicity.  For experiments with both Tween® 80 

and NaCl, the samples were diluted to at least 1 to 8 to avoid cell culture toxicity. 

Aliquots (0.2 ml) were removed and were inoculated onto the cell monolayer for 

the agar overlay assays.  All experiments were repeated 5 times. 

Data Analysis.  Multiple, independent experimental trials with each trial 

consisting of 3 independent replicates and 3 control replicates were performed. 

Each experiment was repeated five times.   Attachment was determined by the 

equation: [(mean control) – (mean experimental)]/(mean control) = % 

attachment, where “mean experimental” is the lettuce submerged in the virus 

and buffer solution and the “mean control” is virus and solution without the 

presence of lettuce.  
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We measured attachment as a function of a “difference” (between the 

control and the experiment) because relying on virus titers based directly on 

extraction or removal from the leaf surface was prone to significant errors since 

it was impossible to choose a buffer that guaranteed high recovery efficiency for 

the different viruses.  Potential virus aggregation/de-aggregation and 

attachment to the bag was controlled by analyzing the data in terms of the 

experimental bag (with lettuce) to the control bag (without the lettuce).  The data 

is presented as “percent attachment” with the trend line (based on the median 

value) along with the sample interquartile range (25th and 75th percentiles) and 

connecting the median of the five experimental replicates at a specific pH (131).  

The horizontal lines above and below the median represent the 25th and 75th 

percentiles, respectively.   The Wilcoxon sign rank test was used calculate 

significant differences (P less than or equal to 0.05) between treatments for a 

given pH.   The statistical software SPSS version 11.0.1 (SPSS Inc., Chicago, Ill.) 

was used for statistical analysis. The “no-treatment” data employed for 

identifying the significant differences is from our recently published work (161). 
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Virus Treatment   pH (P-values) 
  3 4 5 6 7 8 
Echovirus 
11 

No Treatment vs 1M NaCl 0.04 0.08 0.50 0.04 0.04 0.04 

 No Treatment vs 1% Tween 80 0.35 0.75 0.89 0.69 0.23 0.08 
 No Treatment vs 1% Tween 80 

and 1M NaCl 
0.14 0.04 0.04 0.04 0.04 0.04 

 1M NaCl vs 1% Tween 80 0.04 0.23 0.89 0.04 0.04 0.04 
 1M NaCl vs 1% Tween 80 and 

1M NaCl 
0.23 0.50 0.35 0.04 0.50 0.89 

 1M NaCl and 1% Tween 80 vs 
1% Tween 80 

0.04 0.08 0.23 0.14 0.04 0.04 

Feline 
Calicivirus 

No Treatment vs 1M NaCl - 0.35 0.23 0.50 0.08 0.08 

 No Treatment vs 1% Tween 80 - 0.89 0.04 0.08 0.50 0.50 
 No Treatment vs 1% Tween 80 

and 1M NaCl 
- 0.50 0.50 0.89 0.50 0.04 

 1M NaCl vs 1% Tween 80 - 0.04 0.08 0.04 0.23 0.50 
 1M NaCl vs 1% Tween 80 and 

1M NaCl 
- 0.89 0.23 0.50 0.14 0.50 

 1M NaCl and 1% Tween 80 vs 
1% Tween 80 

- 0.04 0.14 0.04 0.50 0.89 

φX174 No Treatment vs 1M NaCl 0.23 0.14 0.04 0.89 0.89 0.89 
 No Treatment vs 1% Tween 80 0.23 0.08 0.14 0.89 0.89 0.89 
 No Treatment vs 1% Tween 80 

and 1M NaCl 
0.35 0.04 0.04 0.35 0.89 0.89 

 1M NaCl vs 1% Tween 80 0.69 0.35 0.89 0.35 0.69 0.89 
 1M NaCl vs 1% Tween 80 and 

1M NaCl 
0.08 0.50 0.08 0.23 0.50 0.50 

 1M NaCl and 1% Tween 80 vs 
1% Tween 80 

0.23 0.35 0.04 0.35 0.35 0.89 

MS2  No Treatment vs 1M NaCl 0.04 0.50 0.23 0.23 0.69 0.50 
 No Treatment vs 1% Tween 80 0.04 0.14 0.04 0.14 0.23 0.50 
 No Treatment vs 1% Tween 80 

and 1M NaCl 
0.08 0.35 0.23 0.04 0.14 0.35 

 1M NaCl vs 1% Tween 80 0.35 0.23 0.23 0.89 0.69 0.04 
 1M NaCl vs 1% Tween 80 and 

1M NaCl 
0.23 0.69 0.35 0.35 0.04 0.14 

 1M NaCl and 1% Tween 80 vs 
1% Tween 80 

0.69 0.23 0.89 0.08 0.08 0.35 

TABLE 4.2.   Obtained P-values Comparing Treatments. The table lists the P-values comparing % 
attachment of the viruses onto lettuce at each pH for each treatment.  P-values represent positive or 

negative differences.  

The P-values were calculated using the Wilcoxon-rank sum test.   
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RESULTS 

The figures represent the attachment of the 4 different virus particles to 

lettuce under the different experimental conditions while Table 4.2 summarizes 

the statistical analysis of the results.  

Echovirus 11.  In the presence of 1 M NaCl, echovirus 11 showed increasing 

attachment (from -25% to + 17%) with increasing pH up to pH 5.0 (Fig 4.1). 

Beyond pH 5, adsorption decreased and remained below 0% (indicating zero 

adsorption). The addition of 1 M NaCl was effective in removing virus adsorption 

to lettuce at all pH levels except pH 5.0, though at pH 4.0 the reduction was not 

significant (P = 0.08) (Table 4.2).   The decrease in attachment was significantly 

different (P< 0.05) compared to the control (Table 4.1).   There was no 

significant difference in the adsorption at pH 4.0 and 5.0 between the treatment 

and the control samples (Table 4.2).   
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 FIG. 4.1. Echovirus 11 Adsorption to Lettuce with 1M NaCl.  The 
trend line is shown connecting the median values. The horizontal bars 
represent the 25th and 75th percentiles. The vertical line represents the 
virus isoelectric point (pI). The experiment consisted of 5 independent 
experiments. 
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The addition of 1% Tween® 80 (which was used to remove hydrophobic 

interactions) indicated a demonstrable virus attachment at all pH levels.  

Attachment increased from 27% at pH 3.0 up to 84% at pH 8.0 (Fig 4.2).  The 

increased attachment was not sufficiently greater than the control to obtain a 

significant difference.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.2. Echovirus 11 Adsorption to Lettuce with 1% Tween® 80.  The 
trend line is shown connecting the median values. The horizontal bars represent 
the 25th and 75th percentiles. The vertical line represents the virus isoelectric 
point (pI). The experiment consisted of 5 independent experiments. 
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In the presence of both 1M NaCl and 1% Tween® 80, echovirus 11 

adsorbed to the lettuce only at pH 5 and 6 albeit at low levels of 11% and 12% 

respectively (Fig 4.3), nevertheless attachment was statistically different (P < 

0.05) at all ranges but pH 3.0 (P = 0.14).   

 

 

 

 

 

 

 

Figure 4.3. Echovirus 11 attachment to lettuce with 1% Tween® 80 and 1M NaCl.  
The trend line is shown connecting the median values. The horizontal bars represent 
the 25th and 75th percentiles. The vertical line represents the virus isoelectric point 

 FIG. 4.3. Echovirus 11 Adsorption to lettuce with 1M NaCl and 1% Tween® 
80.  The trend line is shown connecting the median values. The horizontal bars 
represent the 25th and 75th percentiles. The vertical line represents the virus 
isoelectric point (pI). The experiment consisted of 5 independent experiments. 
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Feline Calicivirus. In the presence of 1M NaCl, FCV adsorption was less than 

0% at all pH levels (Fig  4.4).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.4. Feline Calicivirus Adsorption to Lettuce with 1M NaCl.  
The trend line is shown connecting the median values. The horizontal bars 
represent the 25th and 75th percentiles. The vertical line represents the 
virus isoelectric point (pI). The experiment consisted of 5 independent 
experiments. 
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There was no adsorption at any of the other pH levels beyond its 

isoelectric point.  In the presence of 1% Tween® 80, there was minimal 

adsorption at pH 4 (5%), pH 5 (7%), pH 6 (11%) and pH 8 (14%) (Fig 4.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.5.  Feline Calicivirus Adsorption to Lettuce with 1% Tween® 80.  The 
trend line is shown connecting the median values. The horizontal bars represent the 
25th and 75th percentiles. The vertical line represents the virus isoelectric point 
(pI). The experiment consisted of 5 independent experiments. 
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In the presence of both Tween® 80 and 1M NaCl, there was no adsorption 

at any of the pH treatments (Fig 4.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.6. Feline Calicivirus Adsorption to Lettuce with 1M NaCl and 1% 
Tween® 80.  The trend line is shown connecting the median values. The horizontal bars 
represent the 25th and 75th percentiles. The vertical line represents the virus isoelectric 
point (pI). The experiment consisted of 5 independent experiments. 
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MS2 Bacteriophage.  The addition of 1M NaCl caused increasing adsorption 

to occur from pH 3 to pH 5 (Fig 4.7).  From pH 3, (-12%) adsorption increased to 

2% at pH 4 then continued to increase up to pH 5.0 at 14%.  Thereafter, MS2 

bacteriophage attachment decreased rapidly down to -10% at pH 6 and 

remained unattached up to pH 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.7. MS2 Adsorption to Lettuce with 1M NaCl.  The trend line is 
shown connecting the median values. The horizontal bars represent the 25th and 
75th percentiles. The vertical line represents the virus isoelectric point (pI). The 
experiment consisted of 5 independent experiments. 
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The addition of 1% Tween® 80 caused a decreasing adsorption of MS2 

bacteriophage from a high at pH 3 (9%) to a steadily decreasing low at pH 7 

corresponding to -10% (Fig 4.8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.8. MS2 Adsorption to Lettuce with 1% Tween® 80.  The trend line 
is shown connecting the median values. The horizontal bars represent the 25th 
and 75th percentiles. The vertical line represents the virus isoelectric point (pI). 
The experiment consisted of 5 independent experiments. 
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The bacteriophage MS2 did not exhibit any substantive change in 

adsorption between pH 3 to pH 8 with 1M NaCl and 1% Tween® 80.   In the 

presence of 1% Tween® 80 and 1M NaCl, there was minimal adsorption (6% from 

pH 3 to pH 8) (Fig 4.9).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.9. MS2 Adsorption to Lettuce with 1M NaCl and 1% Tween® 80.  
The trend line is shown connecting the median values. The horizontal bars 
represent the 25th and 75th percentiles. The vertical line represents the virus 
isoelectric point (pI). The experiment consisted of 5 independent experiments. 
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φX174 Bacteriophage.  In the presence of 1M NaCl, adsorption increased 

rapidly from pH 3 (-5%) to pH 4 (12%), thereafter decreased steadily to pH 7 at -

15% (Fig 4.10).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.10.  φX174 Adsorption to Lettuce with 1M NaCl.  The trend line 
is shown connecting the median values. The horizontal bars represent the 25th 
and 75th percentiles. The vertical line represents the virus isoelectric point (pI). 
The experiment consisted of 5 independent experiments. 
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The addition 1% Tween® 80, caused an increase of adsorption from pH 3 

(-9%) to pH 4 (12%) (Fig 4.11).  A rapid decline then occurred from pH 4 to pH 6 

(-25%).  Thereafter, adsorption increased at pH 7 and pH 8, -4% and 0%, 

respectively.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.11.  φX174 Adsorption to Lettuce with 1% Tween® 80.  The trend 
line is shown connecting the median values. The horizontal bars represent the 
25th and 75th percentiles. The vertical line represents the virus isoelectric point 
(pI). The experiment consisted of 5 independent experiments. 
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In the presence of both 1M NaCl and 1% Tween® 80, adsorption steadily 

declined from pH 3 at 17% to no attachment pH 7.  There appeared to be a slight 

increase in adsorption to 12% at pH 8 (Fig 4.12).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 4.12. φX174 Adsorption to Lettuce with 1M NaCl and 1% Tween® 80.  The 
trend line is shown connecting the median values. The horizontal bars represent the 25th 
and 75th percentiles. The vertical line represents the virus isoelectric point (pI). The 
experiment consisted of 5 independent experiments. 
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Discussion 

Most work on enteric viruses and foods such as vegetables has focused on virus 

survival on the surfaces of fresh fruits or vegetables (4, 37, 90, 153).  Even 

though there have been multiple papers on virus elution and concentration 

protocols (41, 43, 92, 94), virus loss due to adsorption has not been addressed. 

Our previous research (see Chapter III) suggested that echovirus 11 exhibited the 

greatest adsorption to lettuce (25.4-57% attachment) (Table 1).  The addition of 1 

M NaCl to the buffer solution removed all virus adsorption above the virus pI of 

5.9 (Fig 4.1).  Unexpectedly, adsorption at pH 5 (17.1%) and to some extent pH 4 

(-4.8% median attachment, percentile range of -20.1% to 21.6%) was not 

inhibited (Fig 4.1).  Only with the addition of Tween® 80 and NaCl to the milieu 

did the adsorption of echovirus 11 decrease at pH 5 (10.5%) and pH 4 (-9.4%).  

However, attachment was not completely inhibited (Fig 4.3 and Table 4.1).  This 

leads us to believe that adsorption at pH 5 is due to van der Waals forces.  A high 

concentration of NaCl produces highly charged, highly mobile ions in solution, 

which compress the gouy layer (a layer of oppositely charged ions extending into 

the surrounding medium) so that electrostatic interactions or repulsions are not 

a factor in surface to surface interactions (61).  Additionally, the detergent 

Tween® 80 removes hydrophobic interactions.  Because neither NaCl nor 

Tween® 80 had any discernible effect, we can only conclude that van der Waal 

forces are responsible for the interaction at pH 5. 
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At the pH range of 7 (-13.5%) and 8 (-4.5%), FCV adsorption was also 

inhibited, much like echovirus 11 (Fig 4.4).  Though FCV adsorption was reduced 

to below zero, the difference was not statistically different due to the large 

variation in FCV adsorption without any treatment (Table 4.2).  At higher pH 

ranges, the addition of 1M NaCl removed all interaction between the lettuce and 

animal viruses.   

The bacteriophage data was not as conclusive as the animal virus data.  

Our previous work indicated that adsorption of MS2 bacteriophage was only 

present at pH 3 (26.9%) (Table 4.1).  The addition of NaCl completely removed 

adsorption at this pH (-12.3%), but also increased adsorption at the other pH 

ranges (Table 4.1 and Fig 4.7).  Though, there may not be any significance 

because the increase in adsorption occurred in the negative range with the 

exception of pH 5 (14% with NaCl and -12.2% without treatment).   

Bacteriophage φX174 adsorption also decreased at pH 3 (-5.4% with NaCl 

and 4.9% untreated) and pH 8 (-5.9% with NaCl and 3% untreated), though the 

initial adsorption was low and further decreased with the addition of NaCl 

nevertheless, the difference was not significant (Table 4.2).  Additionally, φX174 

proved to be recalcitrant to any treatment that was used.  This result is not 

surprising, since our previous work did not show any discernable trend in φX174 

adsorption to lettuce, and other research indicates that φX174 is a relatively inert 

virus, which lacks any adsorption pattern (136, 161).    
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Overall, the detergent Tween® 80 did not remove viruses from lettuce, 

with the exception of Ms2 phage at pH 3 (8.7% with Tween® 80 and 26.9% 

without treatment).  Though NaCl reduced MS2 bacteriophage adsorption to a 

greater extent (-12.3%).  In other cases, Tween® 80 had either no difference 

compared to a non-treated solution or increased adsorption to lettuce, this was 

most noticeable with echovirus 11 (adsorption range of 21.1%-83.8% with 

Tween® 80 and 22.7%-57% without treatment).  These results indicate that the 

waxy cuticle of the lettuce surface does not affect the adsorptive capacity of the 

lettuce.  Additionally, the lack of any reduction in viral adsorption by Tween® 80 

indicates that viruses must not be adsorbing on the waxy cuticle.  Adsorption 

must be occurring on some other, as of yet unidentified, surface structure.   

The virus adsorption trends shows that most of the viruses were not 

completely inhibited within the pH range of 5-6 in the presence of NaCl, and that 

within this range a complete reversal of adsorption occurred, i.e. adsorption 

changed from positive to negative.  This is most pronounced with echovirus and 

MS2 bacteriophage.  Even FCV, which exhibited a negative adsorption in the 

presence of 1M NaCl, also trended upward at pH 5.0 before decreasing at pH 

6.0. A secondary pI, that of the lettuce surface or a specific part of the lettuce, 

must be accounting for the adsorption phenomenon within this range.  The only 

exception was φX174, which shows adsorption at pH 4, but still shows an 

adsorption reversal between pH 5 and 6.  Because van der Waals forces are weak 

and only interact at very close distances, the strength of the repulsion of the 
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electrostatic force is the main factor responsible for driving van der Waals 

interactions (61).  In the absence of electrostatic repulsion, like in the presence of 

high salts or at the pI, either hydrophobic interactions or van der Waals can only 

be a factor in interactions.  Because we determined that hydrophobic 

interactions are not involved in virus to lettuce interactions, only van der Waals 

forces must be responsible for any attachment in the presence of both NaCl and 

Tween® 80. 

The identification of forces critical for virus adsorption is important for 

vegetable and fruit processing for viruses or as a preventive measure to avoid 

foodborne disease caused by viral agents.  Additionally, other authors have 

found high levels of enteric viruses in discharged water from wastewater 

treatment plants (101, 127, 157).  The ability of human pathogenic viruses to 

adsorb to lettuce is of great concern given the amount of virus in waters that may 

not be treated before irrigation.  Though bacterial indictors are commonly used 

to identify poor water quality, previous research has shown that bacteria does 

not serve as reliable indicators for enteric virus contamination (44, 146, 154).  

Hence, the non-specific adsorption of enteric viruses to minimally processed 

fresh produce may result in either large outbreaks or sporadic outbreaks which 

would be difficult to trace, given the current science of viral elution protocols.  

This research has identified the forces that are responsible for virus 

adsorption to the surface of lettuce.  Electrostatic forces are the principle force, 

and the addition of 1 M NaCl at pH 7 and 8 will inhibit all interactions between 
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the lettuce and virus.  In light of this research many elution protocols, those 

using a high pH to elute viruses, may need to be re-evaluated.  Because we did 

not test the effect of beef extract at a concentration or pH range, pH > 8, 

commonly used for elution protocols, we cannot make a final recommendation 

on the proper elution procedures.  The fact though, is that these procedures 

commonly have virus losses equivalent to the amount of virus adsorbed in this 

study and our previous study shows that these protocols need to be reevaluated 

to determine adequate elution protocols.  This study shows that increasing the 

pH without greatly compressing the gouy layer will result in enhanced 

adsorption of virus to lettuce.  
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CHAPTER V 

THE SURVIVAL OF VIRUSES ON LETTUCE AND THE 

IMPACT OF THE MICROBIAL FLORA ON VIRAL 

PERSISTENCE 

Overview 

The stability of enteric viruses on fresh produce is an important virulence 

trait that has an impact on the infectivity of a virus.  It has been shown that 

viruses are able to adsorb onto the surface of lettuce, but the long-term 

persistence on the surface of the lettuce has not been fully investigated.  The 

objective of this study was to determine the effect of the microbial flora on the 

surface of lettuce on the survival of viruses.  Four viruses were assayed for their 

ability to persist in the presence of the normal flora.  The human pathogen, 

echovirus 11, and FCV exhibited prolonged survival when incubated with the 

microbial flora of lettuce compared to a filtered rinsate or buffer only.  The 

bacteriophages, MS2 and φX174, were not affected in the presence of the 

micrrorganism obtained from the lettuce, filtered rinsate or buffer.  On the 

lettuce surface, echovirus 11 and feline calicivirus, survived at an equivalent or 

greater rate than the bacteriophages at 4° C, whereas at room temperature the 

animal viruses were inactivated at a greater rate than the bacteriophages.  The 

microbial flora was able to utilize the amino acids, phenylalanine and alanine, 

preferentially over complex carbohydrates, xylose and xylan, and simple sugars, 

fructose and sucrose, but was not able to utilize the viruses as energy sources.  



  

99 

Overall, these results suggest that viral persistence on the surface of lettuce may 

be temperature dependent and may not be affected by the resident 

microorganisms on the surface of the lettuce.       

Introduction 

The surface of leaves has a large microbial community, which is made up of 

transient and specialized microbial inhabitants.  The specialized microbial 

community survives in a hostile environment with alternating conditions of high 

and low humidity and temperature fluctuations (98).  The epiphytic community, 

microorganisms that comprise the community on the aerial portion of plants, 

must be able to utilize a wide range of nutrient sources when available.  To this 

extent it is no surprise that common epiphytes are those bacteria that are able to 

utilize a wide variety of carbon sources, like Pseudomonas spp. (123).  When 

transient microorganisms are placed within this community, they can either 

compete for resources or be out competed.  This type of competitive exclusion 

has been previously shown for the inhibition of ice nucleating bacteria and the 

colonization of plant pathogens (97, 98, 171).  The inhibitory effect of the 

epiphytic bacteria has also been shown against human bacterial pathogens E. 

coli O157:H7, Staphylococcus aureus, Listeria monocytogenes and Salmonella 

Montevideo (138).  The effect of the normal flora on the survival of viruses has 

not been previously studied.  Unlike bacteria or fungi, viruses cannot compete 

with microorganisms for survival or are they able to react to environmental 

stimuli.  Even though this contributes to viral stability in the environment, 



  

100 

because viruses do not have to maintain basal metabolic activity and hence are 

not limited by nutrient availability or growth conditions, it can also cause viruses 

to become predation targets in a nutrient limited environment.  The objective of 

this study was to determine if the presence of the microbial community of lettuce 

is able to utilize viruses as a nutrient source.  Four viruses, the bacteriophage 

φX174 and MS2 and animal viruses, FCV, a commonly used calicivirus surrogate, 

and the human pathogen echovirus 11, were studied for their ability to survive in 

the presence of the microbial community.  A series of microcosm, lettuce surface 

and aerobic respiration studies were assayed to determine the amount of 

bacterial predation on viruses. 

Materials and Methods 

Cells and Viruses.  Echovirus 11 (ATCC VR-1052) was grown in buffalo green 

monkey cells (BGMK), feline calicivirus (F9) was grown in Crandell Reese feline 

kidney cells (CRFK), bacteriophage MS2 (ATCC 15597-B1) was propagated with 

E. coli HS(pFamp)R (ATCC 700891) and bacteriophage φX174 (ATCC 13706-B1) 

was propagated in E. coli host CN13 (ATCC 700609).  Feline calivivirus and 

CRFK cells were a generous gift from Dr. Sagar Goyal at the University of 

Minnesota.  Both bacteriophages were assayed using the double agar layer 

method (160).  Animal viruses were assayed by the agar overlay method (161).  

Growth and maintenance media was identical to previously described protocols 

(161). 
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Virus Purification.  Viruses were purified from their respective raw lysates to 

remove all nutrients that could be used for bacterial growth.  The purification of 

viruses was similar to the method used by Zhou et al. for FCV (175).  Briefly, the 

CRFK cell line was grown to 90-100% confluency then infected with a 

multiplicity of infection of 1-10 virus particles.  After 24-48 hours, the infected 

CRFK cells were freeze-thawed twice. The raw lysate was then centrifuged at 

3,313 x g for 30 minutes at 4° C.  Solid NaCl (1M) was added to the raw lysate 

and incubated in ice water for 1 hour.  After incubation, PEG MW 3350 was 

added to the lysate (10% w/v) and incubated at 4° C overnight.  The lysate was 

centrifuged at 11,000 x  g for 10 minutes at 4°C then the supernatant was 

discarded.  The precipitate was resuspended in 1/10 - 1/100 of the total volume 

in boric acid buffer, pH 7.4 (0.2 M boric acid and 0.5 M NaCl).  The concentrated 

lysate was then mixed in a boric acid CsCl solution to obtain a final 

concentration of 1.31 g/ml of CsCl.  The sample was centrifuged at 193,911 x g for 

20 hours at 4°C.  To remove the CsCl salt, samples were dialyzed using the Slide-

A-Lyzer® dialysis cassette (10,000 mw) using sodium phosphate buffer.  Briefly, 

the samples were dialyzed using 1 L of 0.1 M NaPO4 (pH 7.0) buffer at room 

temperature for 2 hours.  After 2 hours, spent buffer was discarded and replaced 

with 1 L of 0.1 M NaPO4 buffer.  Dialysis was allowed to continue for another 2 

hours at room temperature.  After the second incubation, spent buffer was 

discarded and 1 L of 0.01 M NaPO4 (pH 7.0) was added and incubated overnight 
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at 4° C.  Viruses were then aliquoted into 0.2 ml portions and stored at -80°C 

until further use. 

Washing Microorganisms from Lettuce.  Lettuce leaves were severed at 

the base and placed in 42-oz Whirl-Pak bags (Fort Atkinson, WI).  

Approximately 2 ml of 0.1 M sodium phosphate buffer (pH 7.0) was added to the 

bag for every gram of lettuce.  Bags were heat sealed after removing as much air 

from the bag as possible to allow maximum buffer contact on the surface of the 

lettuce.  The bags with lettuce were sonicated for 1 minute on each side and then 

vortexed for 30 seconds at maximum speed.  The resulting lettuce wash was 

removed and placed in a 40 ml conical tube until further use.  Half of volume 

was filtered through a 0.22 µm filter to remove microorganisms and used 

immediately for the microcosm studies.   

Microcosm Study.  The total volume needed for the microcosm studies was 

calculated and prepared accordingly.  Equal volumes of 0.1 M NaPO4 buffer (pH 

7.0) filtered lettuce wash and lettuce wash was aliquoted into conical tubes.  

Purified virus was thawed and equal amounts were added to each of the three 

tubes.  A total volume of 1.2 ml was aliquoted into a microcentrifuge tube.  All 

tubes were placed in cryogenic storage boxes and stored out of direct sunlight at 

room temperature.  Three tubes for each condition was removed from the box 

and sampled for virus titers starting at day 0. 

Lettuce Surface Survival Study.  To identify the effect of the microbial 

normal flora on the lettuce survival, viruses were aliquoted onto the surface of a 
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25 cm2 lettuce piece and assayed for their presence.  Briefly, 25 cm2 of lettuce 

was cut and placed in petri plates, 100 µl of purified virus was aliquoted onto the 

surface of lettuce and incubated for 30 minutes at room temperature.  Half of the 

lettuce samples were placed at room temperature and the other half was placed 

at 4° C.  Because any treatment to remove the microbial normal flora will result 

in a change in the surface characteristics of the lettuce, the only method to 

decrease the metabolic activity of the normal flora was to decrease the 

temperature to 4° C.  Any difference on the survival of virus can only be 

attributable to desiccation or the decreased respiration of the normal flora.  

Because all the viruses used are non-enveloped, desiccation stress is minimal.  

Furthermore, a study by Stine et al. indicated that desiccation is not a major 

factor for virus inactivation on fresh produce (146).  Viruses were eluted from 

the surface of the lettuce using 0.1 M NaPO4 buffer (pH 7.0) amended with 1M 

NaCl.  Previous research has shown that this buffer will remove 100% of viruses 

from the surface of the lettuce. 

Microbial Nutrient Utilization Study.  To fully investigate the ability of the 

microbial flora to utilize complex carbon sources, two different assays were 

conducted using the BD Oxygen Biosensor System (BD Biosciences, Bedford, 

Mass.).  The first assay consisted of analyzing the usage of carbon sources from 

lettuce grown using a hydroponic system, retail bibb lettuce and retail iceberg 

lettuce.  Finally, the ability of the lettuce epiphytes to use viruses as energy 

sources was also investigated.  The normal flora was eluted as previously 
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described in the microcosm survival study protocol.  A total of 150 µl consisting 

of 50 µl of phosphate-buffered mineral salts, 50 µl of the microbial flora and 50 

µl of a carbon source was aspirated into the BD Oxygen Biosensor microplate 

(Garland et al. 2003)  The amount of fluorescence was read every 15 minutes for 

48 hours.  The microplate was maintained at 30° C for the duration of the 

experiment.  An increase of fluorescence is a direct indication of oxygen 

consumption and thus active metabolic activity. 

Data Analysis.  All statistical analysis was performed using SPSS statistical 

software, version 11.0.1 (SPSS Inc., Chicago, Ill.).  Both the microcosm and 

lettuce surface studies were analyzed with the same criteria.  All data was 

graphed using the C/C0, where C is the viral concentration at the time the sample 

was taken and Co is the viral concentration at day 0.  Two methods were used for 

the data analysis of survival data.  If initial virus concentrations were not similar 

than a pair wised sign-test was used for data analysis after the C/C0 

transformation. (NRF).  In determining the utilization of carbon sources, the 

maximum NRF for each carbon source was used in determining the median of 

each data set. 

 

 

 

 

 



  

105 

Differences were considered significant if the p-value was less than 0.05 

using the two-tailed test (i.e. the differences are greater or less than 0) sign test.  

For samples that had a similar day 0, the data was first transformed using the 

box-cox transformation, then significant differences were tested using a two-

tailed pair-wise t-test.  Differences between treatments were considered 

significant if the p-value was less than 0.05.  In the microbial respiration studies, 

the data was normalized by dividing all the data points from a well by its 

fluorescence at 1 hour.  This is expressed as normalized relative fluorescence 

Results 

The results for the microcosm and lettuce surface study represent viable virus 

over a period of 14 days for bacteriophages and 15 days for animal viruses.  Each 

data point is the mean of three experimental replicate. 

Microcosm Survival Study.  The survival of bacteriophage φX174 was 

assayed in the presence of the lettuce wash, filtered lettuce wash and in 0.1 M 

phosphate buffer (Fig 5.1).  There was no significant decrease in bacteriophage 

φX174 over the course of 14 days in any of the three conditions.  There was a 

rapid increase of φX174 in lettuce wash and a slower increase of φX174 for both 

buffer and filtered lettuce wash, but overall there were no significant differences. 
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FIG. 5.1. φX174 Microcosm Survival. The graph represents the survival of φX174 in 
microcosms over a period of 14 days.  The square points represents the survival of φX174 in the 
presence of the lettuce microbial flora, the triangle points represents the survival of φX174 in the 
presence of filtered lettuce wash and the diamonds represent the survival of φX174 in buffer.  C/Co 
was obtained by dividing the mean virus pfu of day n by the mean pfu at day 0.  The error bars 
represent ± 1 SE. 

FIG. 5.2. MS2 Microcosm Survival. The graph represents the survival of MS2 in 
microcosms over a period of 14 days.  The square points represents the survival of MS2 in the 
presence of the lettuce microbial flora, the triangle points represents the survival of MS2 in the 
presence of filtered lettuce wash and the diamonds represent the survival of MS2 in buffer.  C/Co 
was obtained by dividing the mean virus pfu of day n by the mean pfu at day 0. The error bars 
represent ± 1 SE. 
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In the presence of the lettuce wash, MS2 bacteriophage exhibited an 

increase in observed virus titers, probably due to de-aggregation, which 

continued up to day 6 (Fig 5.2).  This trend was also similar to MS2 in buffer, but 

de-aggregation was not as pronounced.  The survival of MS2 in the presence of 

the filtered lettuce wash had the greatest effect on MS2 survival. The 

bacteriophage MS2 decreased steadily in filtered lettuce up to 30%, whereas 

MS2 bacteriophage in buffer decreased to 20%, whereas the MS2 phage had the 

lowest decrease of 0% by the end of the two weeks.  The MS2 bacteriophage in 

filtered lettuce wash was significantly different (P< 0.05) then lettuce wash and 

buffer. 

 The animal virus, FCV, decreased steadily under all conditions during the 

course of the experiment (Fig 5.3).  Both filtered lettuce wash and buffer 

inoculated virus were similar in deactivation, whereas FCV in the presence of 

lettuce wash exhibited the slowest deactivation trend during the course of the 

experiment.  Both the buffer and filtered lettuce wash exhibited a decrease of 

FCV greater than 40% by day 15, whereas FCV in the presence of lettuce wash 

also decreased but at a reduced rate.  The differences were most pronounced at 

day 9, but by day 15 the decrease for all three conditions were similar.  

Nevertheless, the increased survival of FCV in lettuce wash was significantly 

different than both buffer and filtered lettuce wash (P < 0.05). 
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FIG. 5.3. Feline Calicivirus Microcosm Survival. The graph represents the survival of FCV 
in microcosms over a period of 15 days.  The square points represents the survival of FCV in the 
presence of the lettuce microbial flora, the triangle points represents the survival of FCV in the 
presence of filtered lettuce wash and the diamonds represent the survival of FCV in buffer.  C/Co 
was obtained by dividing the mean virus pfu of day n by the mean pfu at day 0. The error bars 
represent ± 1 SE. 
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Survival of echovirus 11 was not significantly different during the survival 

experiment (Fig 5.4).  All treatments decreased at approximately the same rate 

at 40-50% by day 15.  The decrease was rapid throughout all treatment 

conditions with no significant differences between any of the treatments.  

Surprisingly, the enterovirus exhibited a faster decline than FCV, which is a 

respiratory virus.  Both animal viruses declined at a faster rate than the 

bacteriophages.  The bacteriophages exhibited a small decrease, if any.  Overall 

the presence of the microbial normal flora of lettuce had little effect on the 

persistence of virus, and if a difference existed, it was protective in nature. 

 

 

FIG. 5.4. Echovirus 11 Microcosm Survival. The graph represents the survival of echovirus 
11 in microcosms over a period of 15 days.  The square points represents the survival of echovirus 11 
in the presence of the lettuce microbial flora, the triangle points represents the survival of echovius11 
in the presence of filtered lettuce wash and the diamonds represent the survival of FCV in buffer.  
C/Co was obtained by dividing the mean virus pfu of day n by the mean pfu at day 0. The error bars 
represent ± 1 SE. 
 



  

110 

Lettuce Surface Survival Study.  Bacteriophage φX174 exhibited two 

different survival characteristics on the surface of lettuce (Fig 5.5).  At 4° C, 

φX174 survival did not decrease until after day 4.  Thereafter, φX174 decreased 

25% by day 14.  At room temperature, φX174 exhibited a steady decline 

decreasing 60% by day 10 -14.  The survival of φX174 at room temperature and at 

4° C was significantly different (P < 0.05). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.5. φX174 Lettuce Surface Survival. The figure represents survival of φX174 on 
the surface of lettuce.  The square data points represents φX174 survival at 4° C and the 
diamond data points represent φX174 survival at room temperature.  C/Co was obtained by 
dividing the mean virus pfu of day n by the mean pfu at day 0. The error bars represent ± 1 SE. 
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The bacteriophage Ms2, declined started at day 2 at 4° C (Fig 5.6).  By the 

end of day 14, MS2 had a 40% decrease.  At room temperature, MS2 survival 

rapidly decreased.  Approximately, 90% of the initial MS2 bacteriophage on the 

lettuce had become deactivated starting at day 8 and remained relatively 

constant up to day 14.  The differences in MS2 survival were significantly 

different between room temperature and at 4° C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.6. MS2 Lettuce Surface Survival. The figure represents survival of MS2 on 
the surface of lettuce.  The square data points represents MS2 survival at 4° C and the 
diamond data points represent MS2 survival at room temperature.  C/Co was obtained by 
dividing the mean virus pfu of day n by the mean pfu at day 0. The error bars represent ± 1 
SE. 



  

112 

 Differences in FCV survival were the greatest of all the viruses assayed.  At 

4°C, FCV had decreased 25% by day 9 (Fig 5.7).  By day 15, FCV survival had 

decreased another 15% to 60%.  At room temperature, no viruses were 

detectable by day 6.  The survival differences were significantly different between 

room temperature and 4°C (P<0.05). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.7. Feline Calicivirus Lettuce Surface Survival. The figure represents survival of FCV on 
the surface of lettuce.  The square data points represents FCV survival at 4° C and the diamond data 
points represent FCV survival at room temperature.  C/Co was obtained by dividing the mean virus pfu 
of day n by the mean pfu at day 0. The error bars represent ± 1 SE. 
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The human pathogen, enterovirus 11, exhibited the greatest survival of all 

the viruses at 4° C (Fig 5.8).  Up to day 6, there was no detectable decrease of 

echovirus 11 on the surface of lettuce.  At day 9, echovirus 11 decreased 10%, but 

did not decrease any further until day 15 with 80% if the virus remaining viable.  

The survival at room temperature was significantly different than at 4° C 

(P<0.05).  By day 6, some samples contained no detectable viruses, and by day 

12 virus was not detectable on any of the samples at room temperature. 

Microbial Utilization of Viruses.  The ability of the lettuce microbial 

community to utilize viruses was investigated.  The ability of the microbial flora 

to utilize complex carbon sources as well as amino acid was investigated.  After 

the initial carbon utilization studies, the ability the microbial flora to metabolize 

the viruses and use then as carbon sources was assayed.  Utilization of the 

viruses was measured by a decrease of oxygen concentration in each well.  This 

method has been previously used to monitor microbial carbon utilization (58).  

The consumption of solubilized oxygen was measured to determine microbial 

growth in the presence of carbon sources and viruses.  Because the viruses were 

purified from any contaminating carbons sources, oxygen utilization is a direct 

indication of aerobic growth with viruses as the only available carbon source. 
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FIG. 5.8. Echovirus 11 Lettuce Surface Survival. The figure represents survival of echovirus 11 
on the surface of lettuce.  The square data points represents echovirus11 survival at 4° C and the 
diamond data points represent echovirus 11 survival at room temperature.  C/Co was obtained by 
dividing the mean virus pfu of day n by the mean pfu at day 0. The error bars represent ± 1 SE. 
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FIG. 5.9.  Bibb Lettuce Microbial Flora Carbon Utilization. The bar graph represents the 
carbon utilization of retail bibb lettuce normal flora during a 2 day experiment.  The x-axis lists 
the carbons sources used for this study.  The y-axis is the median of the maximum normalized 
relative fluorescence (MNRF).  The data was normalized by dividing all the data obtained from a 
single well by the fluorescence value obtained at 1 hour.  The MNRF was obtained by calculating 
the mean of the maximum normalized value of each well.  The median is the result of 
fluorescence signal from 8 wells. 

MNRF 
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  The retail bibb lettuce microbial flora was able to utilize alanine at the 

greatest extent of all the carbon sources assayed, 8.5 fold, in retail bibb lettuce 

(Fig 5.9).  The next highest carbon source was phenylalanine exhibiting a 2.9 

fold maximum relative fluorescence in bibb lettuce. Not surprisingly, the simpler 

carbon sources were utilized more than the complex carbon sources (Fig 5.9).  

Though, only select amino acids (phenylalanine and alanine) were utilized and 

other amino acids and casamino acids were either not utilized or utilized at a 

reduced extent. 

The iceberg lettuce exhibited a carbon utilization response similar to bibb 

lettuce (Fig 5.10).  Like bibb lettuce, phenylalanine and alanine had the greatest 

response, 8 fold and 5.5 fold, respectively.  Though, the iceberg lettuce response 

was inverted for alanine and phenylalanine, alanine > phenylalanine, compared 

to the bibb lettuce response.  Additionally, the amino acids provided the 

strongest response but like bibb lettuce, casamino acids had the lowest response 

of all the amino acids.  After the amino acids, the simple sugars provided a 

reduced response whereas the complex carbon sources provided a response no 

greater than buffer only. 
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FIG. 5.10. Iceberg Lettuce Microbial Flora Carbon Utilization. The bar graph represents 
the carbons utilization of retail iceberg lettuce normal flora during a 2 day experiment.  The x-axis 
lists the carbons sources used for this study.  The y-axis is the median of the maximum normalized 
relative fluorescence (MNRF).  The data was normalized by dividing all the data obtained from a 
single well by the fluorescence value obtained at 1 hour.  The MNRF was obtained by calculating 
the mean of the maximum normalized value of each well.  The median is the result of fluorescence 
signal from 8 wells. 
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FIG. 5.11.  Hydroponic Bibb Lettuce Microbial Flora Carbon Utilization. The bar graph 
represents the carbons utilization of hydroponic bibb lettuce normal flora during a 2 day 
experiment.  The x-axis lists the carbons sources used for this study.  The y-axis is the median of 
the maximum normalized relative fluorescence (MNRF).  The data was normalized by dividing 
all the data obtained from a single well by the fluorescence value obtained at 1 hour.  The MNRF 
was obtained by calculating the mean of the maximum normalized value of each well.  The 
median is the result of fluorescence signal from 8 wells. 
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The microbial community in the hydroponic grown bibb lettuce was 

dissimilar from the bibb and iceberg lettuce community response (Fig 5.11).  The 

amino acids provided the top two responses, but unlike the retail samples, lysine 

and alanine provided the greatest response.  Only asparagines and mannose 

responded greater than the buffer, mostly because the wash buffer was 0.1% 

peptone where in iceberg and bibb lettuce utilized a 0.1 M sodium phosphate 

buffer. 

The high utilization of amino acids indicated that the viral protein coat 

had the potential to be utilized.  As controls for the next study, phenylalanine 

and alanine were utilized to assure that the functional community remained the 

similar to previous results (Fig 5.12).  The assay exhibited greater than a 10-fold 

response on phenylalanine and alanine indicating an identical functional 

response with phenylalanine and alanine by the lettuce microbial flora. 
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FIG. 5.12.  Amino Acid Control Microbial Flora Utilization. Graphs represent the carbon 
utilization of 300 ppm of phenylalanine and 300 ppm of alanine.  The y-axis represents the 
normalized relative fluorescence (NRF).  The data was normalized by the data point at 1 hour.  
The x-axis is in time in hours and represents the signal at a given time point.  The data was 
normalized by dividing all the data obtained from a single well by the fluorescence value obtained 
at 1 hour.   
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The response in viral degradation for all 4 viruses was low, approximately 

1.2-1.6 maximum relative fold response.  In general, the unwashed cells with 

virus exhibited a greater response than washed cells with virus (Fig 5.13 & Fig 

5.14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5.13. Microbial Flora Virus Utilization. Graphs represent the carbon utilization of the 
unwashed microbial flora in the presence of each virus listed in the top right corner of each panel.  The y-
axis represents the normalized relative fluorescence (NRF).  The data was normalized by the data point at 
1 hour.  The x-axis is in time in hours and represents the signal at a given time point. The data was 
normalized by dividing all the data obtained from a single well by the fluorescence value obtained at 1 
hour.   
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FIG. 5.14. Washed Microbial Flora Virus Utilization. Graphs represent the carbon utilization of the 
washed microbial flora in the presence of each virus listed in the top right corner of each panel.  The y-axis 
represents the normalized relative fluorescence (NRF).  The data was normalized by the data point at 1 hour.  
The x-axis is in time in hours and represents the signal at a given time point.  The data was normalized by 
dividing all the data obtained from a single well by the fluorescence value obtained at 1 hour.   
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This was initially interpreted as low-level viral utilization.  A comparison 

of the washed cells and unwashed cells to the virus samples indicated that the 

low level respiration is for the most part background microbial respiration (Fig 

5.15).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hours Hours 
FIG. 5.15. Background Microbial Respiration. Graphs represent the background respiration 

of the washed and unwashed microbial flora.  The y-axis represents the normalized relative 
fluorescence (NRF).  The data was normalized by the data point at 1 hour.  The x-axis is in time in 
hours and represents the signal at a given time point.  The data was normalized by dividing all the 
data obtained from a single well by the fluorescence value obtained at 1 hour.   
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The initial response or first peak is not significantly different from the 

background respiration.  A secondary response occurs late in the incubation, but 

only in non-washed samples.  Though, a secondary response also occurred in the 

unwashed cells, it was not as great as the virus and unwashed cells.  The 

difference though is minimal.  The bacteriophage φX174 had the greatest 

secondary response similar to the primary response, 1.4 fold. 

Discussion 

The results of the microcosm studies was not consistant with the results 

from the lettuce survival studies.  The bacteriophage φX174 had a 60% decrease 

in survival on the surface of lettuce whereas φX174 survival in the microcosm did 

not show any decrease in viral numbers for the duration of the experiment.  The 

bacteriophages in the microcosm studies exhibited a greater survival rate than 

the bacteriophges on the lettuce surface.  This could indicate that microcosm 

studies have different factors that could affect viral persistence.  A study by Stine 

et al.  did not show a consistent difference in virus survival on the surface of 

produce in low or high humidity, but desiccation of lettuce at room temperature 

was much more rapid than at 4° C (146).  The significant differences between 

room temperature and 4° C could be attributable to temperature sensitivity of 

the viruses.   

In a study by Allwood et al. virus survival on the surface of lettuce and 

cabbage was investigated (4).  At 4° C. MS2 and FCV exhibited a 90% decrease in 

5 and 1.5 days, respectively.  In this study, none of the 4 viruses exhibited a 90% 



  

125 

decrease at 4° C during the duration of the experiment.  At 25° C, MS2 and FCV 

exhibited a 90% decrease at 3.5 and 1 day, respectively.  Other than FCV, the 

persistence was greater for the current study than with the study by Allwood et 

al.  The bacteriophage φX174 did not decrease to 9o% during the duration of the 

experiment, and MS2 and echovirus 11 did not reach 90% deactivation until day 

8 and 9, respectively.   

Dawson et al. also assayed the survival of bacteriophage MS2 in a buffer 

and on a variety of vegetables (37).  Bacteriopahge MS2 decrease 90% (1 log) in 

buffer at 4° C until day 50.  On the surface of fresh produce a 90% decrease did 

not occur until after day 20.  These results for MS2 bacteriophage are 

comparable to the results obtained in this study for MS2 bacteriophage.  The 

results for MS2 bacteriophage, though cannot be extrapolated to the other 

viruses.  Other studies by Croci et al. determined that HAV, a picornavirus like 

echovirus, had a 90% decrease after 4 days on lettuce (35).  The picornavirus, 

echovirus 11, more than doubled the survival of HAV on lettuce at 9 days. The 

study by Kurdziel et al. had the most similar survival patter for echovirus 11, 

though Kurdziel et al. measured poliovirus survival (90).  Polioviruses, 

echoviruses and coxsackie viruses are all enteroviruses and are considered 

different strains of the same virus species, thus the similarity in survival 90% 

decrease in 9 days for poliovirus and 90% decrease in echovirus 11 in 8 days at 4° 

C is not surprising. 
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There are many factors that could have caused the varying results in all 

these studies.  The primary reason is that none of the previous studies purifed 

virus to the extent of the current study.  This could have varying effects on virus 

survival.  Additionally, previous studies have shown that MS2, FCV and 

echovirus 11 have varying adsorption properties to lettuce (161).  Whereas MS2 

does not adsorb to lettuce above neutral pH in a phosphate buffer, FCV and to a 

much greater extent echovirus 11 adsorb to lettuce.  This alone would cause a 

significant bias in survival of Ms2 compared to FCV and echovirus.  Additionally, 

the elution buffer used for this study has been shown to elute 100% of the viruses 

used for this study providing confidence in comparing the survival rates between 

viruses. 

In general, the presence of the microbial flora did not have a negative 

impact on virus survival, moreover the presence of the microbial flora had a 

protective effect on virus survival.  Though the observed effect could have been 

masked by filtered exudates greater than 0.22 µm.  A study by Konowalchuk et 

al. showed that viruses were able to be concentrated from water using a lettuce 

floc (86).  The lettuce floc coated the viruses and caused the viruses to become 

large flocs so that a low speed centrifugation (1,000 x g) was able to pellet the 

viruses from solution.  The survival differences between filtered lettuce wash and 

lettuce wash may be due to a filterable colloid protecting the viruses in the 

microcosm studies. 
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The persistence of viruses on the surface of the lettuce was different from 

the microcosm studies.  Whereas in the microcosm studies the bacteriophages 

had enhanced survival compared to the animal viruses, on the lettuce surfaces 

the bacteriophages were either equal to or worse than the animal viruses.  The 

difference though was temperature dependent.  At room temperature the 

bacteriophages were superior to the animal viruses, but at 4° C the animal 

viruses, echovirus 11, did not decrease significantly.  These studies show that at 

refrigeration temperatures, bacteriophages are not conservative surrogates for 

virus survival.  In addition, results from our recent work indicating the varying 

attachment efficiencies of viruses along with the lack of being a conservative 

surrogate, strongly suggests that bacteriophages and other viral surrogates are 

poor virus surrogates; therefore results obtained using surrogates should be 

interpreted with caution in fresh produce experiments. 

The microbial flora was able to utilize amino acids suggesting a predation 

effect on the survival of viruses on lettuce.  On further investigation, the 

microbial flora was selective on the type of amino acids that were metabolizable.  

Additionally, there are factors that may explain the lack of utilization of the 

viruses.  Though the viral capsid is a protein coat, the stability and the size of 

capsids may cause the bacteria to either not sense the presence of the amino acid 

source or bacteria may not be able to hydrolyze the proteins in an intact capsid.  

Additionally, the carbon utilization experiments were carried out over a period of 

two days.  The microcosm and surface experiments did not show a significant 
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viral decrease if any until after two days.  The amount of microbial respiration in 

unwashed samples indicated there was sufficient utilizable carbon sources on the 

surface of the lettuce.  The study by Lindow et al. showed that there are 

sufficient carbon sources on the surface of plants, but the availability may be 

constrained by accessibility (95). 

The survival of viruses on the surface of lettuce was not comparable to the 

survival of viruses in the microcosm studies.  The microcosm studies 

overestimated the survival of bacteriophages and underestimated the survival of 

animal viruses.  Furthermore, refrigeration temperatures enhanced the survival 

of the animal viruses compared to the bacteriophages.  The carbon utilization 

studies did not detect predation of viruses though the microbial flora responded 

to select amino acids over simple sugars.  The use of viral surrogates should be 

carefully interpreted since they are not similar to neither the attachment nor the 

survival of the human pathogenic virus, echovirus 11. 
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CHAPTER VI 

SUMMARY 

Virus adsorption and the subsequent survival of viruses on fresh produce 

is of concern because of the increasing amount of fresh produce consumed in the 

United States.  Because fresh produce is not cooked to the same extent as meat 

products, salads and salad crops provide an ideal vector for virus transmission.  

Viruses are difficult to work with, especially when compared to bacteria, and 

previous research has attempted to circumvent this problem by using surrogate 

viruses, especially the bacteriophages.  On the surface the justification is 

reasonable.  The bacteriophages and the animal viruses are similar in size and 

shape.  Unfortunately, these similarities are not sufficient.  On careful 

consideration, the bacteriophages and animal viruses infect completely different 

organisms, have different replication strategies and in the case of animal viruses 

must be able to withstand or evade the immune response.  The differences 

between bacteriophages and animal viruses are vast.  If the infectious route and 

type of host or host cell is considered, then true similarities can be used to select 

appropriate surrogate viruses.  Similarities must go beyond size and shape of a 

virion. 

Previous research with membrane filters and sediments have elucidated 

the mechanisms for virus adsorption and desorption within those systems.  The 

results presented indicate that these forces and elution procedures are not 

transferable to lettuce.  Moreover, each virus had an independent adsorption 
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pattern further casting doubt on the rationale on using surrogates and protocols 

designed for all viruses, but only optimized with a few viruses, especially the 

bacteriophages.  These results are significant for both public health and industry 

to develop a method to either remove viruses from fresh produce at home or at 

the processing level.    

These studies were conducted to determine the varying adsorption 

efficiencies of four different viruses echovirus 11, FCV, MS2 and φX174.  These 

four viruses are important for their pathogenicity to humans and their use as 

surrogates.  Additionally, their survival characteristics were also assayed to 

identify their adsorption characteristics and their subsequent persistence in the 

presence of the microbial flora.  
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The Effect of Critical pH on the Adsorption of Virus to Butterhead 

Lettuce 

The adsorption efficiency was measured for echovirus 11, FCV, MS2 and φX174.  

Batch studies were conducted and repeated three times for each experiment and 

each experiment was repeated at least 5 times.  The results indicated that each 

virus had a different adsorption pattern.  The human pathogenic virus was not 

similar to any other virus.  Moreover, the bacteriophages do not adsorb at pH 7 

and 8, whereas the animal viruses had the greatest adsorption at this pH range.  

The enterovirus, echovirus 11, adsorbed the greatest amount of all the viruses 

tested.  Both animal viruses had increasing adsorption with increasing pH 

indicating a potential electrostatic interaction.  The Ms2 bacteriophage behaved 

as per the DLVO theory and was greatly affected by its pI.  The bacteriphage 

φX174 did not have any discernable pattern. 

Identification of Forces Critical for Viral Adsorption to Butterhead 

Lettuce 

The main objective was to identify the forces responsible for non-specific virus 

adsorption to lettuce.  A high concentration of salt, 1M NaCl, detergent 1% 

Tween® 80 and a combination treatment of 1M NaCl and 1% Tween® 80 was 

used to identify the force responsible for viral adsorption.  The detergent was the 

least effective treatment in preventing non-specific virus adsorption to lettuce.  

The virus, echovirus 11, exhibited an enhanced adsorption capacity in the 

presence of the detergent, and had either no effect of increased adsorption albeit 
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at low levels.  At pH 7 and 8, 1 M NaCl removed all viral adsorption for all viruses 

and at pH 3 removed MS2 bacteriophage adsorption to lettuce.  The 

combination treatment was effective, but was equivalent to 1 M NaCl by itself.  

Adsorption at pH 5 proved to be difficult to remove for all viruses.  This may 

indicate a van der Waals force adsorption occurring with an unidentified surface 

structure at or near pH 5.  The results indicate that non-specific viral adsorption 

to lettuce occurs primarily through electrostatic interactions. 

The Survival of Viruses on Lettuce and the Impact of the Microbial 

Flora on Viral Persistence 

The effect of the normal flora on virus survival was investigated using 

microcosm, lettuce surface and microbial oxygen utilization studies.  The 

microcosm studies indicated that the bacteriophages were very stable, whereas 

the animal viruses decreased during the entire length of the experiment.  The 

microbial flora did not have a negative effect on the persistence of virus.  

Moreover, viruses seemed to have a slower die off in the presence of the 

microbial flora.  The lettuce surface studies exhibited conflicted results from the 

microcosm studies.  The animal viruses survived at equivalent or greater rates 

than the bacteriophages at refrigerated temperatures.  At room temperature, the 

survival of animal viruses was reduced compared to the bacteriophages.  Even 

though the microbial flora was able to utilize amino acids, the microbial flora 

was not able to utilize the viruses as carbons sources.  Because viruses are small 

and stable, their ability to be metabolized may be greatly limited, unless a 
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sufficiently large concentration of viruses is present or the time needed for 

utilization may be greater than 2 days. 

Conclusions 

1. Each virus has its own adsorption efficiency. 

2. The electrostatic force is mainly responsible for viral adsorption to the 

surface of lettuce and the addition of 1M NaCl is sufficient to prevent 

adsorption of viruses at pH 7 and 8. 

3. Microcosm studies do not accurately model the survival characteristics of 

viruses on the surface of lettuce. 

4. Echovirus 11 is able to survive on the surface of lettuce for the length of the 

lettuce shelf life without a large decrease in viral numbers. 

5. At refrigeration temperatures, bacteriophages are not conservative 

surrogates of animal viruses. 

6. The microbial flora does not utilize viruses as metabolites.  
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APPENDIX A 

PROTOCOLS AND PROCEDURES 

Cell Culturing and Virus Assay Procedures 

Bacteriophages.  Bacterial host E. coli HS(pFamp)R was grown in Tryptic soy 

broth (TSB) (VWR West Chester, PA) in 10 ml tubes.  Growth medium TSB was 

supplemented with 0.1 ml of filter sterilized (0.22 µm filter) ampicilan and 

streptomyecin solution at a concentration of 0.15 g/100 ml ampicilin and 0.15 

g/100 ml of streptomycin sulfate.  The bacterial host E. coli CN13 was grown in 

TSB supplemented with 0.1 ml of 1 g/100 ml of nalidixic acid filter sterilized 

(0.22 µm filter).  Both E. coli hosts were incubated at 37° C in a shaking water 

bath incubator for 12-16 hours. 

The double agar overlay assay consisted of TSA plates supplemented with 

nalidixic acid (1 g/100 ml) or streptomycin sulfate and ampiclin (0.15 g/100 ml) 

for E. coli host CN13 and E. coli HS(pFamp)R, repectivly.  The soft agar overlay 

consisted of TSB with the addition of 0.7% bacteriological agar.  Briefly, the soft 

agar was brought to a boil then allowed to cool, then 5 ml was aliquoted into test 

tubes.  The soft agar was then autoclaved and stored until needed.  Prior to use, 

soft agar was melted by autoclaving for 5 minutes, then the soft agar was placed 

in a water bath set at 50° C for at least 30 minutes to allow the soft agar to 

equilibrate with the water bath. 

The top agar or soft agar was maintained at 50° C.  The top agar was 

removed from the water bath and rapidly supplemented with 0.2 ml of the 
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appropriate bacterial culture (host E. coli F-amp for MS2 or E. coli CN13 for 

φX174) followed by 0.1 ml of sample.  The top agar was briefly vortexed and its 

entire contents poured over the appropriate TSA plate supplemented with 

antibiotics.  The top agar was allowed to solidify for 15 – 60 minutes then the 

plates are inverted and incubated at 37° C for 12 – 16 hours. 

Animal Viruses.  The host used for feline calicivirus F9 was Crandell Reese 

feline kidney cells or CRFK.  The CRFK cells were grown in Eagles minimal 

essential media (MEM) (Sigma # M0643) supplemented with 5.5 ml of 100X  

antibiotic /antimycotic solution (Sigma # A5955), 8% fetal bovine serum (FBS) 

and 8.1 ml of 1M N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (15 mM 

final concentration) (HEPES) (Hyclone # SH30237.01).  A substitution of 8% 

FBS with 10% newborn calf serum (NBCS) (Sigma # N4637) does not change the 

growth characteristics of the CRFK cells. 

 The host for echovirus 11 was buffalo green monkey cells (BGMK).  The 

BGMK cells were grown in Eagles MEM supplemented with 5.5 ml of 100X 

antibiotic/antimycotic solution, 10% FBS and 12.5 ml of HEPES (25 mM final 

concentration).  A substitution of 10% NBCS did not cause any discernable 

growth or morphological changes to the BGMK cells.   

Maintenance of Animal Cells.  Both the CRFK and BGMK cells were 

maintained using identical protocols.  After 80% confluency was achieved, 

approximately 4-5 days at 37° C with 5% CO2, the cells were washed 3X with 

Hanks buffered salt solution (H2387) (HBSS).  The volume used for growth and 
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washings were identical but varied on the size of the growth flask.  A T25, T75 

and T150 needed 5, 15 and 30 ml, respectively.  After washing the cells 3X with 

HBSS, the cells were removed from the flask by enzyme digestion.   

 After removing the wash solution 1, 3 and 5 ml of 0.25% HyQ® Trypsin 

with EDTA (Hyclone SH30042.01) was aliquoted onto the cellular monolayer of 

the T25, T75 and T150 flasks, respectively.  After the cells become rounded, the 

flasks were tapped firmly on each side of the flasks to dislodge the cells.  

Afterwards, a total volume of 10, 30 and 40 ml for the T25, T75 and T150 was 

used to deactivate the trypsin reaction, respectively.  The sloughed cells were 

collected and centrifuged at 435 x g for 5 minutes at 4° C.  After centrifugation 

the supernatant was removed and replaced with 10, 30 or 60 ml of fresh growth 

media for the T25, T75 or T150, respectively.  A total volume of 1, 3 or 6 ml was 

used for a T25, T75 or T150, respectively.  Fresh media was added to bring the 

volume up as previously described. 

Agar Overlay Assay.  The agar overlay assay was used to determine the plaque 

forming units (PFU) of solutions.  Animal cells, BGMK or CRFK, were 

transferred onto cell culture treated 6 well plates.  An 80% confluent monolayer 

was passaged as previously described but resuspended into 40 ml for a T75 or 80 

ml for a T150 flask after pelleting the cells to remove trypsin.  After resuspending 

the cells in fresh media, 2 ml of cells were aliquoted onto each well.  Thereafter, 

the 6-well plates were incubated for 2 days for CRFK cells and 3 days for BGMK 

cells. 
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 After incubation, the monolayer was washed 3X with 2 ml of HBSS.  Each 

time the media and HBSS was removed from the monolayer by tipping the 6 well 

plates over a large graduated cylinder (aspiration of HBSS may damage the 

cells).  The cells were infected by carefully aspirating 0.2 ml of solution onto the 

cellular monolayer.  The infected plates were gently rocked back and forth and 

incubated at 37° C with 5% CO2 for 1 hour.  Every 15 minutes the plates were 

rocked back and forth to spread the virus inoculum over the wells.  At 30 

minutes into the incubation the agar overlay (1.6% v/v low temperature melting, 

low electroendosmosis agarose) was melted in a microwave and placed in a 50°C 

water bath until further use.  After the 1 hour incubation the agarose was mixed 

1:1 with 2X Dulbecco’s modified MEM (DMEM) (Gibco, cat no 12800-017) 

supplemented with 1X  antibiotic/antimycotic solution, 25 mM HEPES, 2% FBS 

or NBCS.  After thoroughly mixing the agarose and DMEM the agar overlay was 

gently aspirated onto the infected monolayer.  The agarose plug was allowed to 

set for 10-15 minutes.  After the incubation the plates were placed into the 

incubator for 48 hours. 

 After the 48 hour incubation the 6 well plates were removed from the 

incubator and a solution of 3.7% formaldehyde was pipetted into the wells and 

was allowed to stand for at least 4 hours at room temperature.  After fixing the 

cells with formaldehyde, the plugs were removed by inverting the plates and 

firmly hitting the plates to eject the agarose plugs.  After the plugs were removed 

the plaques are visualized by pipetting enough 1.5% crystal violet to cover the 
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bottom of the well.  After at least 2 minutes the wells were washed using 

deionized water.  After washing the wells the plaques were counted. 

Harvesting and Purification of Viruses 

Bacteriophages.  A bacteriophage high titer raw lysate was obtained by 

infecting approximately 20 plates using the double agar layer assay as previously 

described.  A virus solution was diluted to obtain >300 pfu/plate.  After the 

plates were incubated 0.1% peptone solution or 0.1 M NaPO4 pH 7.0 buffer was 

aspirated onto the plate to cover the entire surface (≈10 ml).  The plates were 

allowed to stand at room temperature for a minimum of 2 hours.  After 

incubation the solution was aspirated from the plate.  The raw lysate was then 

centrifuged at 3,313 x g for 30 minutes at 4°C.  No further purification was done 

for lysates used in the viral adsorption studies.  Lysate was collected and stored 

at 4°C until needed.  For survival and viral carbon source utilization studies the 

bacteriophages were further purified to remove media and other potential 

carbon sources. 

 Secondary purification involved polyethylene glycol (PEG) purification 

followed by a CsCl isopyknic purification. The total volume of the lysate was 

measured and solid NaCl was added to obtain a 1M NaCl solution.  After the 

NaCl was dissolved the solution was incubated for 1 hour on ice.  After the 1 hour 

incubation the lysate was centrifuged at 3,313 x g for 30 minutes at 4°C.  After 

centrifugation solid PEG 3350 was added to final concentration of 10% w/v.  The 

PEG was dissolved on a magnetic stirrer at low speeds.  After the PEG was 
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completely dissolved the magnetic stir bar was removed and the lysate was 

incubated overnight at 4°C.  After the overnight incubation the lysate was 

centrifuged at 11,000 x  g for 10 minutes at 4°C.  After centrifugation the 

supernatant was discarded and the pelleted precipitate was resuspened in 1/10 – 

1/100 of the original volume in Boric acid buffer adjusted to pH 7.4 [0.2 M boric 

acid and 0.5 M NaCl].  After resuspension of the precipitate the lysate was mixed 

with 1.5 g/ml of CsCl to obtain a final concentration of 1.31 g/ml CsCl solution.  

Polycarbonate tubes were chemically sterilized for 30 minutes by immersing the 

tubes in a 0.1% chlorine solution adjusted to pH 6-7 (156).  Residual chlorine 

was removed by draining the chlorine solution then immersing the tubes in 

autoclaved water amended with 2.5 ml of a 2% sodium thiosulfate solution per 

liter of sterile water.  The PEG precipitated virus was centrifuged at 193,911 x g 

for 20 hours at 4°C.  Fractions were collected and the absorbance at 260 and the 

absorbance ratios of 260/280 were recorded.   

 The CsCl was removed from the viruses by dialysis using the Slide-A-

Lyzer® dialysis cassette (10,000 mw) (Pierce Rockford, Il).  The virus fraction 

was injected into the dialysis cassette and dialyzed with 1 L of 0.1 M NaPO4 (pH 

7.0) buffer at room temperature for 2 hours.  After 2 hours spent buffer was 

discarded and replaced with 1 L of NaPO4 buffer.  Dialysis was allowed to 

continue for another 2 hours at room temperature.  After the second incubation 

spent buffer was discarded and 1 L of 0.01 M NaPO4 (pH 7.0) was added to the 

dialyzing beaker.  The viruses were allowed to further dialyze overnight at 4° C.  
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Viruses were then aliquoted into 0.2 ml portions and stored at -80°C until 

further needed. 

Animal Viruses.  The general methodology for FCV and echovirus 11 was 

similar to the bacteriophage protocol.  Approximately 5 to 8 T150 flasks were 

seeded with BGMK or CRFK cells.  The cells were allowed to grow up to 80-

100% confluency.  The cells were washed 3X with HBSS before infecting the 

cells.  A multiplicity of infection (m.o.i.) of 1-10 was used to infect the cells.  The 

infected cells were incubated 24 hours or until 80-100% of the cells exhibited 

cytopathic effect (CPE).  The FCV infected cells were freeze–thawed no more 

than two times, whereas the echovirus 11 infected BGMK cells were freeze-

thawed three times to release all virions.  Thereafter the cells were centrifuged at 

3,313 x g for 30 minutes at 4°C.  The animal virus lysate was collected, titered 

and diluted to 105 pfu/ml.  The diluted lysate was aliquoted into 5 ml portions 

and stored at -20°C until needed.  

 The viruses were purified using the same methodology as previously 

described for the virus survival and carbon utilization studies. 

Fluorescence Microscopy Protocol 

 A 25 cm2 piece of lettuce was cut and placed in a 20-oz Whirl-Pak bag 

(Fort Atkinson, WI).  A total volume of 10 ml of 0.1% peptone solution was 

aspirated into the bag with the lettuce.  The bag was heat-sealed and was either 

rubbed in a circular motion for 1 minute on each side (handwash) or placed in a 

sonicator for a total of 2 minutes, 1 minute on each side.  A total volume of 1 ml 
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of rinsate was aspirated from the bag.  The rinsate was aspirated into a 

microcentrifuge tube and centrifuged at 10,000 RPM for 5 minutes.  The 

supernatant was discarded and the pellet was resuspended in 0.1% peptone.  The 

obtained bacteria were stained according to the Live/Dead® BACLight™ 

manufacturers instructions.  After staining of the cells the solution was syringe 

filtered through a cellulose plain black 13 mm2, 0.22 µm filter (Osmonics 

Inc./GE Water Technologies, Fairfield, CT) placed on a 13 mm polyester 

mounting membrane (Poretics Corp., Livermore, CA).  After filtration the 

membrane is placed on a glass slide for viewing (see figure A.1). 
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cover 
slip 

membrane filter 
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FIG. A.1. Fluorescence Microscopy Slide Assembly. The graphic depicts the 
order of the mounting oil and membrane on the slide for correct viewing of the bacterial 
cells using 100x power.  After assembly of the glass slide, the cover slip is sealed along 
the edges with clear nail polish.  The oil used for mounting the membrane is a supplied 
with the Live/Dead® BACLight™ kit.  A total 7 µl of oil was used for mounting the 
membrane.  
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PCR and Denaturing Gradient Gel Electrophoresis 

PCR.  The 16s rDNA gene was amplified from lettuce wash samples for use in 

the denaturing gradient gel (DGGE).  The DGGE methodology was used to 

identify the diversity of the lettuce epiphytic community.  Because all bacteria 

contain the 16s rDNA, the gene was targeted for amplification.  The PCR product 

size for DGGE was limited by the resolution limit of the gel assay (500 bp limit). 

Primer pairs were chosen by their ability to anneal to the greatest amount of 

bacteria while discriminating against microbial members of the Archea and 

Eucarya.  The full 16s rDNA gene is approximately 1.5 kbp long and is 

comprised of 16s rDNA variable regions 1-8.  Variable regions 6-8 were chosen 

for DGGE analysis based on its specificity to the Eubacteria (137).  The forward 

primer sequence named F968 is 5’-(GC clamp)-AAC GCG AAG AAC CTT AC-3’.  

The reverse primer sequence named R1492 is 5’-TAC GGY TAC CTT GTT ACG 

ACT T-3’.  The GC-clamp was added to the 5’ end of the forward primer to 

prevent rapid denaturation of the amplicon.  The GC-clamp sequence used was 

5’-CGC CCG GGG CGC GCC CCG GGC GGG GCG GGG GCA CGG GGG G-3’.  The 

predicted product for the primer pair F968 and R1492 was 585 bp. 

 A reaction volume of 100 µl was needed due to the large sample volume 

for DGGE analysis, 25-30 µl of product with an equal volume of loading dye.  

The reaction conditions for the 16s rDNA PCR are: 1X PCR Buffer II, 100 mM of 

dNTP mix (25 mM each dNTP), 80 nM of primer F968, 80 nM of primer R1492, 

0.025 U/µl of polymerase and 5% v/v Dimethyl Sulfoxide (DMSO).  The 
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chemical compound DMSO was needed to prevent hairpin formation of the GC-

clamp and provide enhanced amplification yields.  In addition a hot start was 

incorporated into the reaction to improve amplification efficiency.  The addition 

of wax to the reaction prevented volume loss due to evaporation and cross 

contamination when opening tubes during the host start. 

 The touchdown-PCR (TD-PCR) methodology was used to amplify the 

sequence to minimize non-specific amplification.  The TD-PCR condition used 

was: 

1. Step 1: Hot Start 

a. Initial denaturation: 5 minutes at 94°C 

b. Hold: 80°C 

2. Step 2: TD-PCR cycle (10 cycles with a decrease of 1°C every cycle at the 

annealing step)  

a. Denaturation: 30 seconds at 94°C 

b. Annealing: 1 minute at 60°C (1st cycle) 

c. Elongation: 2 minutes at 72°C 

3. Step 3: Amplification cycle (20 cycles) 

a. Denaturation: 30 seconds at 94°C 

b. Annealing: 1 minute at 50°C 

c. Elongation: 2 minutes at 72°C 
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4. Step 4: Final Elongation Step 

a. 5 minutes at 72°C 

5. Step 5: Cool down 

a. Hold at 4°C 

After TD-PCR the samples were visualized on a 1% agarose gel.  The 

agarose gel was run at 80-100 volts in 1X TBE buffer.  Representative gels are in 

in figure A.2. 
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FIG. A.2. Representative Gel of 16s rDNA PCR Product. Figure A and B are 
representative agarose gels showing the amplicon product for the primer pairs F968 and 
R1492.  Figure A shows the product from community DNA from Bibb lettuce obtained 
from a retail chain in Florida.  Figure B represents the amplicon products from community 
DNA from Bibb lettuce obtained from Kennedy Space Center, FL.  The ladder is a DNA 
D-15 ladder.  Figure A: Lanes numbered 1-8 are the amplification products of community 
DNA from different leaves on the lettuce.  The positive control is a pure culture 
environmental isolate.  Figure B: Lanes numbered 1-8 are the amplification products from 
different lettuce leaves.  Positive and negative controls for figure B are not shown.  

A 
  1    2   3   4    5    6   7    8   +    -   L 

676 bp 

517 bp 

B 
   1       2        3         4       5      6        7        8        L 

676 bp 

517 bp 
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DGGE.  The DGGE apparatus was assembled based on the Bio-Rad 

manufacturers instructions for the gradient delivery system model # 475.  To 

determine the optimal denturation range, a perpendicular gel was cast according 

to the manufacturers instructions.  A 6% denaturant, 1 mm, 16 x 10 cm2 

polyacrylamide gel was made with a denaturant range of 0-100%.  The results 

are shown in figure A.3. 
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Denaturant 

14 cm gel 
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FIG. A.3. DGGE Perpendicular Gel. A perpendicular gel with a with a 16s rDNA 
product gel was run to determine the optimal denaturation range to use.  To obtain the 
optimal denaturant, the length from the end of the plateau indicating completely denatured 
product would be the maximum denaturant used in future gels.  The end of the decline 
represents products not yet denatured indicating the minimum denaturant concentration.  
Assuming a constant denaturant gradient, 7.2 cm and 9.5 cm is equivalent to a 
denaturation concentration range of 33% - 50% is optimal before further optimization with 
actual sample.  Gel measurements not drawn to scale.  
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After further optimization the denaturation gradient was established at 

45% -70%.  Glass plates were treated with PlusOne™ Repel-Silane ES (GE 

Helathcare, Fairfield, CT) to prevent the polyacrylamide gel from sticking to the 

glass plates.  A representative DGGE gel is shown in figure A.4 
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FIG. A.4. DGGE Parallel Gel. A representative 
DGGE polyacrylamide gel.  Gel visualized by silver 
staining.  Lanes 1-7 are a community analysis of amplicon 
products using degenerate primers from individual lettuce 
leaf washes. 
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Silver Staining.  The DGGE gels were visualized by silver staining.  Silver 

staining was chosen because gels can be fixed on a solid substrate and stored for 

later reference.  Additionally, bands can be excised for cloning or sequencing 

without damaging the DNA.  The protocol is based on the Promega silver 

staining protocol (20).  The protocol was designed for 1 mm thick gels.  The 

thickness of the gel will either decrease or increase incubation times.  A shallow 

tray was used as the incubation vessel.  The trays were scrubbed before the silver 

staining to decrease background staining.  In addition a fiberglass screen 

(window screen) was used as a support for the gel to ease manipulations and 

prevent the gel from being aspirated between steps.  The optimized silver 

staining protocol used for 1 mm DGGE gels: 

1. Step 1: Fixation 

a. The fixer solution (7.5% Acetic acid, Glacial acetic) was poured 

onto the gel 

b. Gel was incubated for 20 minutes 

c. The fixer solution was removed 

2. Step 2: Wash (3x) 

a. Deionized water (12-18 MΩ) was poured into the vessel 

b. The gel was incubated for 3 minutes 

c. The water was removed 
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3. Step 4: Silver Impregnation 

a. The silver solution was poured onto the gel (1.5 g/L AgNO3 and 

0.056% formaldehyde was added 15 minutes before use) 

b. Incubation for 30-40 minutes 

c. Silver solution was removed (gel was minimally handled to 

decrease background)  

4.  Step 4: Rinse 

a. Gel was rinsed with deionized water 

b. Total rinse time was 10 seconds (an increase in time will decrease 

the sensitivity of the stain) 

c. Water was removed (minimal handling of gel) 

5. Step 5: Image Development and Quenching of Reaction 

a. Addition of developer solution (30g/L Na2CO3, 0.056% 

formaldehyde, 400 µg/L sodium thiosulfate) 

i. Sodium thiosulfate was made up in bulk, aliquoted and 

stored at -20°C.  Portions were thawed just prior to use 

ii. Formaldehyde and sodium thiosulfate were added to 

developer solution 5-15 minutes prior to use 

b. Developer was used at 8-12°C (removal the developer from a 4°C 

refrigerator 15 minutes before use will increase the temperature of 

the developer to 8-12°C) 
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c. The gel was carefully watched until the desired staining had 

occurred 

d. Cold fixer solution was poured (4°C) onto the gel to stop reaction 

e. The lack of new bubbles indicates the reaction has been stopped 

6. Storing of gel 

a. Gel was sandwiched between an two overhead sheets (thick plastic 

film) and sealed along the edges with tape and stored at room 

temperature 

A representative silver stained gel is in figure A.4 
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APPENDIX B 

SUPPORTING EXPERIMENTS 

Characterization and Identification of the Lettuce Microbial Flora 

Various assays and methodology were used to characterize the lettuce normal 

flora.  Initial studies included iceberg, butterhead and romaine lettuce.  Spread 

plate assays, bacterial counts using fluorescence microscopy, fatty acid analysis 

and denaturing gradient gel electrophoresis were used to define the epiphytic 

community on lettuce.  Different parameters like outer leaves, inner leaves, 

temporal and geographic changes were considered as possible factors affecting 

the survival and attachment of viruses on lettuce. 

Elution of the Microbial Flora.  The effect of lettuce material on 

downstream analysis and the addition of carbon sources from the lettuce was 

investigated.  The main objective was to remove the microbial community for 

analysis and maintain the integrity of the lettuce leaf to minimize any soluble 

compounds in the rinsate.  A 25 cm2 piece of lettuce was used for all elution 

experiments.  Conditions considered included massaging by hand for 2 minutes, 

sonication for various time periods, the addition of Tween® 80 and different 

types of media.  Figure B.1 are the results of the experiment. 
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The results from figure B.1 indicated that sonicating for two minutes 

yielded superior or equivalent microbial counts than all the other time points 

assayed.  The addition of 0.1% Tween® 80 did not improve microbial counts.  

Additionally, the growth media did not have an effect on microbial counts. 

FIG. B.1. Comparison of Microbial Elution and Growth Media. Comparison of Handwashing, 
Sonication time, Tween® 80 and Growth Media.  All conditions are sonication unless otherwise noted.  
The error bars represent ±1 SE.  The conditions tested are as follows: 1. TSA-Handwash 2. R2A-
Handwash 3. TSA-2 min. 4. R2A-2 min. 5. TSA-Tween-2 min. 6. R2A-Tween-2 min. 7. TSA-4 min. 
8. R2A-4min. 9. TSA-Tween-4 min. 10. R2A-Tween-4 min. 11. TSA-7 min. 12. R2A-7 min. 13. TSA-
Tween-7 min. 14. R2A-Tween-7 min. 15. TSA-9 min. 16. R2A-9 min. 17. TSA-Tween-9 min. 18. 
R2A-Tween-9 min.     
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 To verify that handwashing and sonication were equivalent, an additional 

experiment comprising of the 2-minute hand wash and the 2 minute sonication 

was repeated.  The results of the experiment are in figure B.2.  The results 

indicated that hand washing and sonication were equivalent and growth media 

did not have and effect on total culturable microbial cell yields. 

 

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. B.2. Comparison of Microbial Elution Second 
Experiment. The bar graph represents the obtained cell counts after 
the lettuce leaf is washed with either sonication or by hand.  The 
error bars represent ±1 SE. The first word represents the type of 
media used, the second word represents the location of the lettuce 
leaf and the third word is the wash method. 
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In addition to obtained total microbial cultural counts, sonication and 

hand washing were compared using the Live/Dead® BACLight™ bacterial 

viability assay.  Total bacterial counts were obtained by staining the lettuce wash, 

filtering the rinsate and counting the number of bacteria under a fluorescence 

microscope.  Live bacteria appeared green or yellow.  Dead bacteria appeared 

red or orange.  After total counts were recorded the total counts per sample was 

calculated using the equation:     

 

 

 

 

 

 

The constants used in the equation included the surface area of filtration, 

surface area of filter, 13 mm2, and the area of the microscope field at 100x, 12.6 

µm2.  The results of the total bacterial counts using fluorescence microscopy are 

listed in table A.1.  The results from the total counts verified that sonication and 

hand washing were similar.  Though either method could be used with 

confidence, sonication was used for all subsequent experiments to reduce human 

error.  

 

 

T = N[(A/a)/V)] 
 

T = total number of bacteria 
N = Average number of bacteria per field viewed 

A = Surface area of filtration 
a = Area of microscope field 

V = Volume of sample   
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 Live 
Cells 

Dead 
Cells 

Total 
Cells 

Ratio 
(live/dead) 

Sonication     
Leaf 1 6.92 6.80 7.15 1.15 
Leaf 2 6.64 6.59 6.92 1.11 
Leaf 3 7.36 7.40 7.68 .94 

Mean±SE 6.97±0.21 6.93±0.24 7.25±0.23 1.07±0.06 
Handwash     

Leaf 1 7.15 7.08 7.41 1.16 
Leaf 2 - - - -

 

Leaf 3 6.40 5.89 6.52 1.09 
Mean±SE 6.77±0.38 6.49±0.60 6.97±0.45 1.13±0.04 

Sample Number cfu/25 cm2 

1 6.31 
2 10.11 
3 10.66 
4 5.2 
5 6.6 
6 5.4 
7 8.2 
8 3.9 
9 8.77 
10 5.9 
11 5.25 
12 6.59 

TABLE B.1.  Total Microbial Counts Using Fluorescence Microscopy. The log bacterial 
counts are listed in the table A.1.  The counts have been adjusted to represent the whole 

25 cm2 of lettuce. 

Microbial Load on Iceberg Lettuce 

TABLE B.2.  Total Microbial Culturable 
Counts on Iceberg Lettuce. 
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A survey of 25 cm2 lettuce pieces was assayed using the previously 

described methodology.  Results indicate that there was a large variation in total 

microbial counts on lettuce leaves.  Total counts ranged from 3.9 cfu/25 cm2 to 

10.66 cfu/25 cm2.  

Conclusions from the total count survey was that the total amount of 

microorganisms present on the surface of a leaf could not be predicted based on 

previously obtained microbial count data.  Each lettuce portion used had the 

potential of being unique in total cell counts and in the composition of the 

community.  To investigate the latter conclusion more thoroughly a culture and 

culture independent methods were used to identify the microbial normal flora.    

DGGE Analysis.  The epiphytic community was assayed based on the 16s 

rDNA v6-v8 region to obtain a more complete survey of the lettuce microbial 

community.  Lettuce from different geographical regions, seasons, growing 

conditions and varieties was assayed.  Analysis of DGGE gels was analyzed using 

the Bionumerics software version 4.5 (Applied Maths, Austin, TX).  Cluster 

analysis of the bacterial community indicated that there were three major 

clusters based on seasonal changes and geographic location, but spatial 

parameters were the most important (Figure B.3).  The summer and winter 

clusters were more closely related than the fall clusters even though the summer 

and fall samples were obtained within a closer time period.  Varieties did seem to 

have a greater similarity but it secondary to location. 
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 The DGGE data indicated large variations were present within samples 

obtained from the same location, time and same plant (Field-Iceberg and 

Romaine samples).   Additionally, the largest variation was also found in plants 

obtained from the field before processing.  The results from the 16s rDNA 

analysis revealed that the epiphytic community was diverse and contained a 

large diversity even within the same plant. 
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FIG. B.3.  Lettuce Microbial Flora 16s rDNA Cluster Analysis. Diagram depicts the similarity of the 
lettuce normal flora based on the 16s rDNA gene by DGGE analysis.  FP: Retail bought lettuce, Field: samples 
obtained from the field, Iceberg: Iceberg head lettuce, Romaine: Romaine leaf lettuce, Outer: Leaf sample was 
on the outer leaves, Inner: Leaf sample was in the inner leaves and the last number is a sample number.  Field 
samples were obtained in the fall, FP3 samples were obtained in the winter and FP1 samples were obtained in 
the summer.  
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FAME.  Spread plates were saved and isolated microbial colonies were chosen 

for further analysis.  Colonies were selected based on colony morphology and on 

the number of representative colonies.  Isolated microbial colonies were grown 

in TSB broth at room temperature.  After culture tubes were turbid or had 

noticeable growth, cultures were streaked on a TSA plate to verify that a pure 

culture was present.  If a broth exhibiting growth consisted of a pure culture, the 

microorganisms were grown in a TSA slant.  The slants were analyzed by fatty 

acid methyl ester analysis (FAME) at the Texas Plant Disease Diagnostic 

Laboratory (College Station, TX).  Results and morphology of the 

microorganisms are in table A.2. 
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Colony Morphology/Color Identified Microorganism Score 
Round convex/yellow-white Micrococcus lutus GC subgroup C 0.67 
Flat slightly irregular/white Bacillus cereus 0.85 
Round convex/yellow-white Micrococcus kristinae 0.87 
Round mountainous/white Bacillus pumilus GC subgroup B 0.76 
Round concentric 
circles/white 

Pseudomonas putida 0.63 

Irregular flat mucous/yellow Pseudomonas sp. 0.24 
Irregular flat mucous/white Staphylococcus sp. 0.56 
Round flat/orange Paenibacillus sp. 0.42 
Round flat/beige Paenibacillus sp. 0.10 
Round flat/yellow-white Bacillus megaterium GC subgroup 

A 
0.91 

Round concave/clear Pseudomonas fluorescence 
biotype C 

0.72 

Round concave/clear Psedomonas fluorescence 0.64 
Round convex mucous/red-
brown 

Pseudomonas sp. 0.23 

Round mucous/white Pseudomonas sp. 0.35 
Round flat/yellow Pantoea agglomerans 0.61 
Round small/pink Unknown - 
Round irregular/white Bacillus pumilus GC subgroup B 0.75 
Round irregular/white Bacillus pumilus GC subgroup B 0.76 

 

 

 

 

 

 

 

 

TABLE B.3.  Identification of Microorganisms by FAME. Observed morphologies of microbial colonies 
and their subsequent identification using fatty acid methyl ester analysis.  The score represents the 

similarity index. 
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The fatty acid analysis had many limitations.  The most important was a 

complete database with known fatty acid profiles. The microorganisms most 

commonly found in the database were known plant pathogens.  The majority of 

the normal flora on the surface of a plant are non-pathogenic (89).  This bias is 

evident with the higher scores from bacteria, which are known to be plant 

pathogens, like Pseudomonas spp., or very common bacteria like the Bacillus 

spp.  Nevertheless, important information was obtained from the FAME profiles.  

The primary conclusion from the FAME analysis was that colony morphology 

was irreverent in determining microbial diversity and that Pseudomonas spp. 

and closely related bacteria are common epiphytic inhabitants. 

ESEM.  The identification of the density and diversity of the microbial 

community was important to obtain an overview of the microbial community n 

the phyllosphere, but it was also necessary to determine if the microbial 

community was evenly distributed on the surface of the leaf or if there are 

isolated colonies.  A diagram of a cross section of a leaf is shown in figure B.4. 
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FIG. B.4.  Generic Cross Section of Leaf. Diagram representing a 
cross section of a generic leaf. 

cuticle 

trichome guard cells 
stomata 

spongy mesophyll 

palisade  
mesophyll cell 

upper 
epidermis 

vein 

      



  

185 

To determine the spatial characteristics of the microbial flora, the surface 

of the lettuce leaves were scanned with in an electron scanning environmental 

microscope (ESEM).The lettuce leaves were cut and then viewed at the electron 

microscopy center at Texas A&M University (College Station, TX) (Fig A.9).  The 

normal flora was sporadic on the surface of the lettuce leaf.  The majority of the 

surfaces were uninhabited.  Microorganisms tended to cluster together and were 

usually present near or around the stomata.  
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C. D. 

FIG. B.5.  ESEM Surface of Lettuce. Representative ESEM photographs of the surface of 
lettuce.  Figure A is a the surface of Bibb lettuce, figure B is the surface of Iceberg lettuce, Figure C is 
the surface Iceberg lettuce and Figure D is a close up of the Bibb lettuce represented by the white box in 
Figure A. 
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Summary of the Microbial Flora Supporting Experiments 

The background microbial flora on the surface of the lettuce was highly 

diverse and had a large amount of variability.  The community on the surface of 

the lettuce exhibited seasonal changes in community structure but was also 

highly dependent on the immediate location of the lettuce.  These results 

indicated that a large portion of the normal flora were transient and may not 

offer significant contributions to the functioning of the community. 

Virus Recovery.  The experimental design for determining viral attachment 

considered all other interactions that could directly effect a decrease in viral 

titers, like viral attachment to the bags, effect of buffer and temporal factors.  

One factor that would be difficult to control in the attachment experiments were 

the effect of lettuce exudates on viral titers.  Even though it is not a likely that a 

lettuce exudate will decrease the virus titer, the probability is nevertheless 

present.  To determine if virus exudates can cause a decrease in virus titers 

within the experimental conditions, an additional experiment was developed. 

A 25 cm2 piece of bibb lettuce was placed in a bag as previously described.  

Twently ml of buffer (0.1 M NaPO4, pH 8.0) was aspirated into the bag with 

lettuce.  Buffer at pH 8.0 was chosen because pH 8.0 caused the greatest 

attachment or greatest loss of virus.  The bag with lettuce and buffer was heat 

sealed and incubated as previously described (see Chapter III).  After a half hour 

a total of 104 pfu of virus was inoculated into the bag containing the lettuce wash.  

An additional bag with only the buffer was also inoculated with the same amount 
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of virus this was the control bag.  After an additional half hour incubation, the 

bags were cut open and the virus titer was determined for each bag.  The “% 

recovery” was calculated by dividing the titer from the lettuce wash with the titer 

from the control.  This assay was run with echovirus 11 and MS2 bacteriophage.  

The results are in Figure A.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. B.6.  Antiviral activity of Lettuce Exudate. The “% 
recovery” for MS2 bacteriophage and echovirus 11 exposed to lettuce 
rinsate are represented by the bar graphs.  The error bars represent ± 1 
SD.  The horizontal line represents 100% recovery.     
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 The lettuce wash did not cause a decrease in viral titers, and did have an 

effect on the titer.  When the virus was exposed to the lettuce wash viral titers 

increased.  Since viruses cannot replicate outside of their host the increase of 

titer must be due to de-aggregation. Statistical analysis indicates a statistical 

difference is present between the lettuce wash exudates and control, but the 

difference is a positive difference.  These results indicate that lettuce exudates do 

not adversely affect virus titers, and that decreases in titers during the 

experiment are due to viral adsorption to lettuce.  

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

Virus n Mean ± SE SD P-value 
MS2 9 150 ± 10.9 32.6 0.02 
Echovirus  6 115 ±  4.9 11.9 0.03 

TABLE B.4. Statistics of Antiviral Lettuce Exudate. Statistical 
data for virus recoveries.  The P value was obtained using the 

Students t-test, tested against 100% recovery. 
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