
OPERATION TRANSFORMATION BASED CONCURRENCY CONTROL IN

GROUP EDITORS

A Dissertation

by

RUI LI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2006

Major Subject: Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4271122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

OPERATION TRANSFORMATION BASED CONCURRENCY CONTROL IN

GROUP EDITORS

A Dissertation

by

RUI LI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Du Li
Committee Members, Jianer Chen

Jennifer L. Welch
Ronald Zellner

Head of Department, Valerie E. Taylor

August 2006

Major Subject: Computer Science

iii

ABSTRACT

Operation Transformation Based Concurrency Control in

Group Editors . (August 2006)

Rui Li, B.E., Beijing University of Aeronautics & Astronautics;

M.E., Beijing University of Aeronautics & Astronautics;

M.E., Johns Hopkins University

Chair of Advisory Committee: Dr. Du Li

Collaborative editing systems (or group editors) allow a geographically dispersed

group of human users to view and modify shared multimedia documents, such as

research papers, design diagrams, web pages and source code together over a computer

network. In addition to being useful tools, group editors are a classic research vehicle

and model of interactive groupware applications, based on which a variety of social

and technical issues have been investigated.

Consistency maintenance as a fundamental problem in group editors has at-

tracted constant research attention. Operational transformation (OT) is an optimistic

consistency maintenance method that supports unconstrained collaboration among

human users. Although significant progress has been achieved over the past decade,

there is still a large space for improvement on the theoretical part of OT. In this dis-

sertation, we are concerned with three problems: (1) How to evaluate the correctness

of OT-based consistency maintenance protocols; (2) How to design and prove correct

OT-based protocols; (3) What are the consistency correctness conditions for group

editing systems in general.

This dissertation addresses the above three problems and makes the following

contributions: (1) propose a total order based framework including a new consistency

iv

model and the associated design methodology. This framework reduces the complex-

ities of the OT design; (2) improve the total order based framework by introducing a

natural order based framework. In contrast, this framework removes the requirement

of defining a total order that is not necessary to the OT design; (3) establish a generic

consistency model and propose the first set of practical design guidelines in OT based

on this model.

v

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Dr. Du Li. Without his inspiration, guidance

and encouragement, this dissertation would not be possible. He led me into the

exciting field of groupware and distributed computing and taught me how to approach

problems in a rigorous way. The methodology and philosophy that I learned in my

research will definitely benefit my career for life.

I want to express my gratitude to the members of my advisory committee: Dr.

Jianer Chen, Dr. Jennifer L. Welch and Dr. Ronald Zellner for their valuable com-

ments and earnest help.

I also thank the fellow students in my research group: Yi Yang, and Jiajun Lu

for their collaborations.

Finally, I would like to thank my wife, Lan Liang, for her understanding, support,

and encouragement.

vi

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II BACKGROUND . 4

A. Key Concepts and Notations 4

B. Operational Transformation 5

C. Convergence in Group Editors 7

III A TOTAL ORDER BASED FRAMEWORK 9

A. Motivation . 9

B. The Consistency Model . 12

1. Effects Relation . 13

2. Correctness Criteria 18

C. Transformation Functions and Conditions 20

1. Inclusion Transformation and Correctness 21

2. Exclusion Transformation and Correctness 24

D. Operation Integration . 28

1. Problem and Analysis 28

2. IT-Safe Operation Sequences 30

3. ET-Safe Operation Sequences 31

4. Transposing Sequences 34

5. Building ET-Safe Sequences 37

6. The Integration Procedure 39

E. An Example . 42

IV A NATURAL ORDER BASED FRAMEWORK 44

A. Motivation . 44

B. A Consistency Model . 44

1. Effect Relation Graph 45

2. Definitions of Key Concepts 47

3. Correctness of Group Editors 49

C. Transformation Functions and Conditions 51

1. Commute Operators 51

2. Problems and Analysis 55

vii

CHAPTER Page

3. Deciding the Effect Relation 56

4. Conditions of IT . 58

5. Conditions of ET and SWAP 60

6. Conditions of Reordering Sequences 61

D. Integration Algorithm . 64

1. Analysis and Proof . 67

2. Examples . 69

V A GENERIC CONSISTENCY MODEL 71

A. Motivation . 71

B. A Generic Consistency Model 72

1. Abstraction: I/O Machine 72

2. Developing a Global Picture 75

a. Normal Behavior Graph 77

b. Execution Traces 78

c. Similar Behavior Graphs 78

3. An Example of Behavior Graph 79

4. Deriving Consistency Conditions 81

C. An Embodiment of Guidelines 86

1. Operational Transformation 86

2. Approach A: TP1 and TP2 88

a. Interpreting TP1 89

b. Interpreting TP2 90

3. Approach B: Predefined Total Order 94

4. Approach C: Natural Partial Order 96

VI RELATED WORK . 99

A. Design Framework . 99

B. Consistency Model . 100

viii

CHAPTER Page

VII CONCLUSIONS . 103

A. Contributions . 103

1. A Total Order Based Framework 103

2. A Natural Order Based Framework 104

3. A Generic Consistency Model 105

B. Future Work . 105

1. Undo Issue . 105

2. Performance Issues . 106

REFERENCES . 107

VITA . 114

ix

LIST OF FIGURES

FIGURE Page

1 OT transforms o2 and then executes o′2. 6

2 IT(o1, o2): o′1 . 21

3 get er IT(o1, o2): relation of o1.c and o2.c 22

4 ET(o2, o1): o′2 . 25

5 get er ET(o1, o2): relation of o1.c and o2.c 26

6 Different transformation paths from state s to state s′. 28

7 ITSQ(o, sq): o′ . 30

8 ETSQ(o, sq): o′ . 32

9 Transpose(o2, o1): < o′1, o
′
2 > . 35

10 TransposeOSq(sq, o): < o′, sq′ > . 35

11 TransposePreCon(o, sq): < sqh, sqc > 36

12 TransposeInsDel(sq): < sqi, sqd > 36

13 BuildETSOS(sq): sq′ . 37

14 Integrate(o, HB): o′ . 40

15 A scenario in which four sites start from state “1” and converge

in “acb”. 42

16 Maintaining a global graph G. 46

17 Including the effect of o2 into o1 . 52

18 Excluding the effect of o2 from o1 . 53

x

FIGURE Page

19 SWAP [o2, o1] into [o′1, o
′
2] . 54

20 A well-known scenario that suggests problems in previous com-

mutativity conditions. 55

21 G′ after the local invocations of o1, o2, o3. 55

22 G′′ is cyclic (inconsistent) after invoking o′1, o
′′
3 at site 2. 55

23 To convert a causality-preserving insertion sequence into an IHC

sequence . 63

24 The control algorithm at site i . 65

25 To add a local operation o into H and make o′ admissible in

s′ = exec(s0, Hi) . 66

26 To add a remote operation o into H and make o′ admissible in s

= exec(s0, H). 66

27 A consistent graph corresponding to the example shown in Fig-

ure 20. 69

28 The consistency control module as an I/O machine that translates

user inputs into observable outputs that change view states at each

site. 73

29 Maintaining a global behavior graph G. 76

30 Normal and abnormal behavior graphs. 80

31 Different orderings of concurrent invocations yield multiple possi-

ble traces. 85

32 TP1 ensures that, for any two concurrent operations, G1 and G2

are normal and G1 ∼ G2. 89

33 A scenario where TP1 is not sufficient to ensure consistency be-

tween different sites. 91

34 TP2 ensures that, for any three concurrent operations, G3 and G4

are normal and G3 ∼ G4. 92

xi

FIGURE Page

35 G has six possible site expansions. 93

1

CHAPTER I

INTRODUCTION

Collaborative editing systems (or group editors) allow a geographically dispersed

group of human users to view and modify shared multimedia documents such as

research papers, design diagrams, web pages and source code together over a com-

puter network. In addition to being useful tools, they are a classic research vehicle

and model of interactive groupware applications, based on which a variety of social

and technical issues have been investigated [1, 2, 3, 4, 5].

Among the technical issues, consistency maintenance has been attracting signif-

icant and continuous research attentions. Differently from in traditional distributed

systems (e.g., distributed file systems and distributed database systems), however,

consistency maintenance in collaborative editing systems must consider human fac-

tors. For example, it has been well understood that the following requirements must

be satisfied: (1) high local responsiveness: the system must be as responsive as its

familiar single-user tools [6, 7]; (2) high concurrency: the users must be able to con-

currently and freely edit any part of the shared document at any time [8, 9]; (3)

realtime awareness: the users must be able to see each other’s modifications in a

timely manner as a basis for resolving conflicts and coordinating local activities [6].

In pursuing consistency maintenance methods that address these requirements,

operational transformation (OT) has been well established over the past decade due

to their advantages over traditional methods such as locking and timestamping in

interactive applications [10, 5, 11]. Conceptually, local editing operations are always

executed immediately after they are generated. Remote operations are transformed

The journal model is IEEE Transactions on Automatic Control.

2

before execution to repair inconsistencies such that concurrent operations can be

executed in any order at different sites. Hence local response time is not sensitive

to nondeterministic communication latencies. The users are allowed to modify any

part of the shared data without being constrained or serialized. OT-based protocols

do not need to delay the propagation of operations and hence the users can be kept

continuously aware of remote edits at best effort. As a result, OT-based group editors

are a flexible collaboration medium on which the users are free to exercise different

writing protocols while avoiding problems of imposing premature and rigid control

[12, 13, 14, 15].

Despite the significant progress over the past decade, however, there is still a

large space for improvement on the theoretical part of OT. In this dissertation, we

are interested in three fundamental problems. First, due to the accepted consistency

model of Sun et al. [5], three conditions must be verified, namely, convergence, causal-

ity and intention preservation (CCI), before claims can be made on the correctness of

an OT algorithm. Unfortunately, a rigorous definition of intention preservation is still

absent due to difficulties in modeling and formalizing user or operation intentions.

Due to this problem, most existing OT algorithms have not been formally proved and

counterexamples are often identified [16, 17, 11, 5, 18].

The second problem is the lack of a practicable methodology for guiding the

design of OT algorithms. Most existing works [17, 5, 11, 18] theoretically require

that transformation functions verify two well-known transformation properties estab-

lished in [16]. However, these two properties have turned out extremely difficult to

satisfy and prove even for transformation functions that only handle two primitive

characterwise insert and delete operations [19]. It remains an open issue whether or

not these properties can be verified or should be verified at all on new transforma-

tion functions [20, 21, 5], especially those with advanced operations, which are not

3

considered in [16].

Thirdly, considering rich application semantics, researchers have proposed a wide

variety of application-specific protocols, some of which are not OT-based [22, 23,

24]. Designing application-specific protocols necessarily involves system modeling.

Unfortunately, all existing consistency models are tightly bound to specific application

abstractions that are not compatible with each other. OT-based models are of little

value for design of non-OT-based algorithms. Our goal is to establish a generic model

by exploring the commonalities of a variety of group editing systems and develop

general consistency conditions independent of specific protocols.

Addressing the above three problems, this dissertation is divided into three parts.

First, we propose a consistency model based on a total order of characters and an

associated design methodology. Secondly, we propose an alternative approach that

is based on a partial order of characters. Finally, we abstract the consistency main-

tenance module as an I/O machine and establish a generic consistency model by

studying related properties of the I/O machine.

The rest of the dissertation is organized as follows: Chapter II briefly introduces

the background of operational transformation. Chapter III presents a total order

based framework of designing OT-based algorithms. Chapter IV presents a natural

order based framework of designing OT-based algorithms. Chapter V presents a

generic consistency model for group editing systems and an in-depth analysis of the

correctness conditions for developing OT protocols. Chapter VI surveys related work.

Chapter VII summarizes contributions of this dissertation and points out possible

future research directions.

4

CHAPTER II

BACKGROUND

A. Key Concepts and Notations

Definitions in this chapter mostly follow the established conventions in group editors

[10, 16, 25, 11, 5]. For availability and responsiveness reasons, the shared document

of a group editor is often replicated so that users can work locally. We model the

shared data as a string of characters (objects) and define the following two primitive

operations:

• ins(p, c): insert character c at position p.

• del(p, c): delete character c at position p.

Apparently the position parameter p of any operation o is relative to some defi-

nition state s, denoted as s = dst(o). We often annotate o with its definition state s

like os. The definition state s is the generation state of o if o is generated in s, or the

execution state of o if o is to be executed in s. The fact that the execution of operation

os in state s yields state s′ is denoted as s′ = exec(s,os). Due to concurrency, the

execution state of o may not always be the same as its generation state, e.g., when o

is executed at remote sites.

Let the position of the first character in a string be zero. We assume that every

appearance of any character has a different object id. In the rest of the present disser-

tation, a “character” refers to the object that carries the character, the ASCII code of

which is possibly only one of its attributes. Note this assumption only serves analysis

purposes and we do not really need object ids for characters in actual implementa-

tion. Notation s[i] returns the character at position i in string s and s[c] returns the

position of character c in s.

5

Each site j maintains a state vector svj in the form of < x1, x2, ..., xN >, where

N is the number of sites. The ith element xi (i = 1, 2, ..., N), denoted as svj[i], is site

j’s knowledge of the number of operations executed at site i. All state vectors are

initialized such that each element is zero. Each time a local operation o is generated

at site j, it is executed immediately and svj[j] is incremented by one. Then o is

timestamped by svj and broadcast to remote sites. Each time site j executes a

remote operation generated at site i, element svj[i] is incremented by one.

Synchronization in group editors is achieved by exchanging messages that pig-

gyback operations. For any operation o, attribute o.t is its type (ins/del), o.c is the

effect character to be inserted or deleted, o.p is its position parameter, o.v is its vector

timestamp, and o.id is the id of the site that generates o. Note only o.p is relative to

dst(o), while other attributes will never be changed after o is generated.

The vector timestamps are used to determine the happened-before and concur-

rent relations between operations. Following the long established conventions in group

editors [10][5].

Given two state vectors, v1 and v2, we say v1 = v2, iff ∀i : v1[i] = v2[i]. We say

that v1 < v2, iff v1 6= v2 and ∀i : v1[i] ≤ v2[i]. We say operation o1 happened before

o2, denoted by o1 → o2, iff o1.v < o2.v. We say o1 is concurrent with o2, denoted by

o1 ‖ o2, iff neither o1 → o2 nor o2 → o1.

B. Operational Transformation

The basic idea of OT is to execute any local operation as soon as it is generated

for high local responsiveness. Remote operations are transformed against concurrent

operations that have been executed locally before its execution. A history buffer HB

is maintained at each site to keep track of all executed operations in their order of

6

execution.

“ab”

o2 = del(1,’b’)
o1 = ins(1, ‘x’)

Site 1 Site 2

o2= del(1,’x’)

o1= ins(1, ‘x’)

“axb”

“ab”

“ax”

o2’= del(2,’b’)

“ax”

incorrect correct

“a”

Fig. 1. OT transforms o2 and then executes o′2.

As a simple example, consider the scenario in Figure 1. Suppose two sites start

from the same initial state s0
1=s0

2=“ab”. Site 1 performs o1=ins(1,‘x’) to insert char-

acter ‘x’ before ‘b’, yielding s1
1=exec(s0

1, o1)=“axb”, while site 2 concurrently performs

o2=del(1) to delete character ‘b’, yielding s1
2=exec(s0

2, o2)=“a”. When o2=del(1,‘b’)

arrives at site 1, if it is executed as it is, then the wrong character ‘x’ will be deleted.

This is because o2 is generated in s0
2 without the knowledge of o1, but its execution

state s1
1 has been changed by the execution of o1, which invalidates its position para-

meter. The intuition of OT [10] is to shift the position of o2 to incorporate the effect

of o1 such that the result o′2 can be correctly executed in state s1
1. This process is

called inclusion transformation (IT) [5].

Because a character has been inserted by o1 on the left of its intended position,

o2 should delete the character currently at position 2 instead of 1, i.e., o′2 = IT(o2, o1)

= del(2,‘b’). The execution of o′2 in s1
1 leads to the correct state s2

1=“ax”, which is

identical to the final state at site 2 after o2 and o1 are executed in a tandem. As a

result, OT seems able to achieve convergence and preserve intentions of operations

despite the different orders of execution at different sites.

7

Another type of transformation function is called exclusion transformation (ET)

[5]. In the above example, given o1 defined in s0
1 and o′2 defined in s1

1 = exec(s0
1, o1),

ET(o′2, o1) excludes the effect of o1 from o′2 as if o1 had not been executed in s0
1.

The result o2 = ET(o′2, o1) = del(1,‘b’) is exactly the execution form of o2 as defined

relative to s0
1.

It has been generally accepted [11] that each OT algorithm consists of two parts:

a set of transformation functions (such as IT and ET) that determine how one oper-

ation is transformed against another, and a control procedure that determines how an

operation is transformed against a given operation sequence (e.g., the history buffer).

The control procedure is also responsible for generating and propagating local oper-

ations as well as executing remote operations.

C. Convergence in Group Editors

Most existing consistency control methods, e.g., [26, 27, 28, 29], are motivated in

traditional non-interactive applications in which user interface effects are not inter-

esting. Hence convergence often suffices and can be achieved by enforcing a total

order of writes. However, the example in Fig. 1 reveals that serialization may violate

the operation intentions, e.g., when o2 is executed after o1 as it is.

The general assumption underlying interactive groupware applications such as

group editors is that users are aware of the changes made by collaborators and are

able to discover and resolve semantic conflicts (e.g., grammatic errors) in a timely

manner [10, 6, 5]. Hence OT algorithms generally do not consider reads. Writes are

often distinguished as two primitive operations, insert and delete, for creating new

objects and removing existing objects. This distinction of writes makes it possible to

achieve a high level of concurrency while reducing the chance of operation conflicts

8

and overwriting.

The main purpose of Internet-based productivity applications such as group ed-

itors is to promote the productivity of human users as a group. It is accepted in this

context that high local responsiveness and high concurrency are conducive to indi-

vidual and group productivity [10, 5]. Traditional consistency control methods such

as locking and serialization [27] generally sacrifice responsiveness and concurrency

when they are pessimistic, and may cause the loss of interaction results when op-

timistic. Operational transformation seems a promising consistency control method

that is able to achieve high responsiveness, high concurrency and convergence while

preserving interaction results [5].

Preserving interaction results of all collaborators does not necessarily lead to a

chaotic system. The results can be presented to users, e.g., in different colors and

multiple versions [30], which is essentially a user interface problem and beyond the

scope of this dissertation. However, the system should do as much work as it can

to reduce cognitive overheads of users. That is, the data replicas must eventually

converge (after all generated operations are executed at all sites) and the converged

final state must be somehow constrained, e.g., by requiring that it preserve causality

and operation intentions as in [5].

9

CHAPTER III

A TOTAL ORDER BASED FRAMEWORK

A. Motivation

Group editors are a classic model and research vehicle for distributed interactive

groupware applications because they typically manipulate shared data in a coordi-

nated manner [2, 10]. Operational transformation (OT) has been well accepted in

group editors for achieving optimistic consistency control [10, 11]. OT allows local

operations to execute in a nonblocking manner to achieve high local responsiveness

and unconstrained collaboration. Remote operations are transformed before they are

executed such that inconsistencies are repaired.

Despite the significant progress that has been achieved over the past 15 years,

a notable fact in the history of OT is that the discovery and solution of various

OT puzzles (i.e., correctness problems in previous OT algorithms) have been a main

driver of research [14, 11, 31]. In our opinion, however, the existence of OT puzzles

can be largely attributed to the lack of a suitable theoretical framework for guiding

the design and verification of OT algorithms. More specifically, the well-established

frameworks [16, 25, 5, 31] rely on conditions that are difficult to verify in practice

and do not address how to develop correct OT algorithms.

In this chapter, we propose a novel OT framework to address this weaknesses

of previous work. Based on a concept called “operation effects relation”, we define

two criteria, causality preservation and operation effects relation preservation, for

verifying the correctness of OT algorithms. Our framework comes with a practicable

approach to developing and proving OT algorithms. In this approach, the sufficient

conditions for transformation functions are first identified, and a particular trans-

10

formation path is chosen to satisfy those conditions and thus the correctness of the

whole algorithm.

A framework consists of a theory, which defines a consistency model of the system,

and a technical approach, which guides the development of algorithms that fulfill the

model. Two OT frameworks have been proposed in the literature:

The first OT framework is established in Ressel et al. [16]. In the theory part,

it formalizes two consistency criteria, causality preservation and convergence (CC).

In the approach, Ressel et al. [16] proves that any OT-based algorithm can achieve

convergence in the presence of arbitrary transformation paths if its IT function can

satisfy two transformation properties, TP1 and TP2, as defined below.

Definition 1 Given three operations o1, o2 and o3 that are defined in the same s, let

o′1 = IT(o1, o2) and o′2 = IT(o2, o1),

TP1: exec(s, [o1,o
′
2]) = exec(s, [o2,o

′
1])

TP2: IT(IT(o3,o1),o
′
2) = IT(IT(o3,o2),o

′
1)

TP1 ensures that, if o1 ‖ o2, the effect of executing o1 before o2 is the same

as executing o2 before o1. TP2 ensures that transforming any operation o3 along

different paths, [o1,o
′
2] and [o2,o

′
1], will yield the same result. These two properties

ensure that arbitrary transformation paths can lead to a consistent final state. In

other words, it is not necessary to enforce a global total order between operations

in order to achieve convergence, because divergence can always be repaired with

operational transformation.

The CC framework has influenced most of the OT algorithms developed since it

was proposed in 1996, including adOPTed [16], GOT [5], GOTO [11, 31, 32], NICE

[18], SOCT [25, 33], TIBOT [34], and SDT [19, 14], as they more or less struggle

on the TP2 condition. Influential as it is, this framework is flawed in the following

11

ways. First, the consistency model does not explicitly constrain convergence. Hence

it is theoretically acceptable in the model that the system always converges in an

empty state no matter what the users do. Second, in the technical approach part,

TP1 and TP2 are only for constraining IT. As revealed later [25, 31, 11, 5], ET is

conceptually an inverse of IT and indispensable for implementing group undo and

building transformation paths. However, the CC framework does not constrain ET.

Additionally, it does not provide guidelines on how to develop IT functions that satisfy

TP2. In fact, TP2 had never been verified until in our recent work [19, 14, 35].

The second framework is established in Sun et al. [5] with three consistency

criteria: causality preservation, convergence, and intention preservation (CCI). The

intention preservation condition is the first attempt in the literature to explicitly

constrain convergence in interactive groupware. Due to its intuitiveness, this model

has been well-accepted in group editors, such as [36, 32, 25, 37, 33]. However, Sun et

al. did not clearly formalize exactly what is intention-preserving and what is not in

the original work [5] and its main follow-up work [31]. Hence it is difficult to evaluate

the correctness of OT algorithms under the CCI framework.

Example 1 A well-known controversial scenario follows: Suppose three sites start

from the same initial state “abc”. Concurrently, site 1 performs o1=ins(2,‘x’) to

insert ‘x’ between ‘b’ and ‘c’, site 2 performs o2=ins(1,‘y’) to insert ‘y’ between ‘a’

and ‘b’, and site 3 performs o3=del(1,‘b’) to delete ‘b’. Intuitively the only correct final

result must be “ayxc”. However, result “axyc” is referred to as intention-preserving

in [5].

In the technical approach part of [31], the CCI framework inherits the TP1 and

TP2 constraints on IT, while still not providing guidelines for developing such IT

functions. It also defines several constraints that relate IT and ET, e.g., reversibility

12

and transpose properties. However, ET is treated as a second-class citizen and no

standalone constraints are defined. As an important contribution, Sun et al. [5,

31] define the precondition of IT(o1, o2) as est(o1)=est(o2) and the precondition of

ET(o1, o2) as est(o1) = exec(est(o2),o2). However, these two conditions are not really

sufficient, as will be illustrated in Examples 3 and 4.

B. The Consistency Model

As revealed in Example 1, the main problem of the established CCI model [31, 5] is

that it only considers the “intentions” or effects of single operations in their generation

states while not capturing a global picture of the whole system. Specifically, if a global

picture were present, we would know how to correctly determine the relation between

their effect characters, ‘x’ and ‘y’, when transforming the two operations, o1 and o2.

We address this problem by introducing a new concept of effects relation ≺.

Intuitively relation ≺ denotes the order between characters. In Example 1, we have

‘b’ ≺ ‘x’ ≺ ‘c’ when o1 is generated, and ‘a’ ≺ ‘y’ ≺ ‘b’ when o2 is generated. Then

by transitivity we infer ‘y’ ≺ ‘x’, based on which we can always correctly transform

o1 and o2. In this way we can model both the effects of single operations and the

relation between effects of concurrent operations.

Our early result as presented in [14, 35] introduced but did not rigorously formal-

ize the concept of effects relation. Additionally, it was developed under the influence

of CCI and still strived to satisfy TP1 and TP2. Nevertheless, the TP2 proofs in [35]

are very complicated although they only treat two characterwise primitives. It is still

an open problem how to scale the proofs to more sophisticated operations such as

string operations [5]. Related works in [34, 18, 5, 33] free TP2 by enforcing a unique

transformation path. However, they are developed under the CCI framework and

13

must verify the condition of intention preservation as required in CCI.

The purposes of this chapter are two-fold: First, we will present a rigorous de-

finition of the effects relation. Second, we will explore a more practicable approach

that no longer requires the verification of TP1 and TP2.

1. Effects Relation

Suppose there is an observer to the system (group editor) who observes the progress

(every operation execution) at each site. A virtual global data structure Ω is main-

tained to indicate the effects relation ≺. Ω is initialized by the initial system state s0

and incrementally updated by the execution of operations. Before we define rules for

initializing and updating Ω, we study the order in which Ω is updated.

Here the same operation may be invoked to update Ω multiple times because

it is executed once at every site in the system. Hence we have to examine these

invocations at the event level. An allowed updating path is a sequence of operations

(or invocations), o1, o2, ..., on, in which, for any two operations oi and oj, oi precedes

(or is invoked before) oj, 1 ≤ i < j ≤ n, iff one of the following conditions holds: (1)

oi is executed earlier than oj at the same site, (2) oi is the local execution and oj is a

remote execution of the same operation, or (3) there exists another execution ok such

that oi precedes ok and ok precedes oj.

We annotate Ω with a superscript to denote its incremental construction process.

Ω0 contains the initial effects relation: for any two characters ci, cj ∈ s0, we add

pair < ci, cj > or ci ≺ cj into Ω0 iff s0[ci] < s0[cj]. Given any updating path P

= [o1, o2, ..., on], the execution of oi updates Ωi−1 to Ωi, where 1 ≤ i ≤ n. For

convenience, we assume there are two invisible characters cb and ce in any state s

such that s[cb] = -1 and s[ce] = |s| and for any visible character c ∈ s we have

cb ≺ c ≺ ce.

14

Assume the execution of any operation o in its generation state s is “correct”. If

o=ins(p, c), it inserts a new character c between two existing characters s[p− 1] and

s[p]. Hence we add two pairs <s[p− 1], c> and <c, s[p]> into Ω. On the other hand,

if o=del(p, c), it is to delete an existing character s[p]. Its execution does not change

the ordering between existing characters. Hence all pairs in Ω carry over.

Obviously Ω0 defines a total order over all characters in s0. We would like Ω be

maintained as a total order over all characters that have appeared in the system at

every update. To achieve so, we require (1) every execution of a deletion deletes the

character it intended at its generation state, (2) only insertions at their generation

states introduce new pairs while any remote execution of an insertion does not intro-

duce pairs that contradict existing pairs in Ω. Therefore we only need to consider the

local execution of insertions when we define the effects relation.

Definition 2 [Effects Relation] Assume Ω0 is initialized from the system initial

state s0 by adding ci ≺ cj into Ω0 for any ci and cj such that s0[ci] < s0[cj]. Given an

updating path P , assume Ωj−1 is a total order produced by the first j − 1 executions

in P . Now we consider how the jth execution oj extends Ωj−1 into Ωj. Without loss

of generality, assume oj = ins(pj, cj) is an insertion to be executed in its generation

state s. Suppose cj is to be inserted between β = s[pj − 1] and α = s[pj]. Let

Σ be the set of characters that appear in Ωj−1. Let B = {β} ∪ {c ∈ Σ|c ≺ β},

A = {α} ∪ {c ∈ Σ|α ≺ c}, and D = Σ − A − B = {c ∈ Σ|β ≺ c ≺ α}. For any

character ci ∈ Σ, we decide the relation between ci and cj by the following rules and

add it to Ωj:

1. if ci ∈ B then ci ≺ cj;

2. if ci ∈ A then cj ≺ ci;

3. if ci ∈ D and ci ∈ s0, we mandate cj ≺ ci;

15

4. if ci ∈ D and ci 6∈ s0, assuming ci is originally inserted by oi and oi → oj, we

mandate cj ≺ ci;

5. if ci ∈ D and ci 6∈ s0, assuming ci is originally inserted by oi and oi ‖ oj, we first

(recursively) derive the relation between cj and every character c ∈ D, where

c ∈ s0 or c is originally inserted by some o such that o → oi or o → oj, and

then consider the following rules:

(a) if there exists c in D such that either ci ≺ c ≺ cj or cj ≺ c ≺ ci is implied,

then we add ci ≺ cj or cj ≺ ci;

(b) if no such relation can be inferred, we mandate ci ≺ cj if oi.id < oj.id, or

cj ≺ ci if otherwise.

In the above definition, rules (1) and (2) are straight-forward. Rules (3) and (4)

are to mandate an order between cj and those that have been deleted before oj is

generated in state s. Rule (5) conceptually breaks ties between two characters that

are inserted concurrently between the same two characters. It appears complicated

because the ties cannot be safely broken by simply comparing their site ids directly,

as is illustrated by the following example.

Example 2 Suppose three sites start from s0 = “ab”. By definition, Ω is initialized

to include ‘a’ ≺ ‘b’. Site 1 generates o1 = ins(1,‘x’) to get “axb” and concurrently

site 2 generates o2 = ins(1,‘y’) to get “ayb”. After executing o1, site 3 generates o3 =

ins(1,‘z’) to get “azxb”. We have o1 ‖ o2, o1 → o3 and o2 ‖ o3. Suppose an updating

path is [o1, o3, o2]. The question is how to determine the order between y and z and

x. If we directly compared their site ids, we would get ‘y’ ≺ ‘z’ and ‘x’ ≺ ‘y’, which

violates the established order of ‘z’ ≺ ‘x’. By rule (5), to determine the order between

‘y’ and ‘z’, we first determine the order between ‘y’ and ‘x’, which is ‘x’ ≺ ‘y’ by rule

16

(5.b). Then by transitivity (rule 5.a), we infer ‘z’ ≺ ‘x’ ≺ ‘y’. Hence the final result

must be “azxyb”.

Theorem 1 The effects relation ≺ is a total order.

Proof. We prove this theorem by induction. Consider a update sequence sq that

contains n operations. Let Σ0 be a character set composed of all characters in s0.

Base: Consider sq[0]. Obviously, Σ0 is of a total order. Let Σ1=Σ0+sq[0].c. It is

obvious that after the execution of sq[0], Σ1 still constitutes a total order.

Induction: Assume that after execution of sq[0, i − 1], all characters are of a

total order. Let Σi be a character set composed of all characters in Σ0 and the effect

characters of sq[0, i−1]. Then, Σi constitutes a total order. In other words, Σi can be

denoted as a string, str. Also, let o denote sq[i] and c denote sq[i].c. And, we use s to

refer to a state where o is executed. According to Definition 2, Σi can be divided into

five exclusive sets. To be convenient, we use Set1,Set2,Set3,Set4 and Set5 to refer to

character sets corresponding in case 1 to 5 in Definition 2, respectively. Further, they

can be denoted by five strings, str1, str2, str3, str4 and str5.

Now, we examine each possible case:

Case 1: All five sets are empty. Let Σi+1 = Σi+c. Then, obviously, Σi+1 only

contains c. The assertion is true.

Case 2: Only Set1 is not empty. It means that c is inserted after str. As a result,

a new total order is generated.

Case 3: Only Set2 is not empty. It means that c is inserted before str. Similarly,

Σi+1 is of a total order.

Case 4: Only Set1 and Set2 are not empty. It means that c is inserted between

s[o.p− 1] and s[o.p]. Obviously, s[o.p− 1] is the last character in Set1 in a total order

and s[o.p] is the first character in Set2 in a total order. Then, Σi+1 also constitutes a

17

total order.

Case 5: Set3 is not empty and both Set4 and Set5 are empty. Obviously, Set3 is

not contained by s. Then, the case implies that c is inserted before str3 and str1 (It

is possible that str1 is empty). Hence, Σi+1 is still of a total order.

Case 6: At least one of Set4 and Set5 is not empty. Similar to case 5, these

characters in Set4 and Set5 are not in s, while the logical relations between c and

them cannot be derived by transitive property. Therefore, it is safe to adopt a policy

to enforce an order such that after c is inserted, the resultant character set Σi+1 is

still of a total order.

Definition 3 [Landmark Characters] For any two characters ci and cj that are

originally inserted by oi and oj, respectively, character c is a landmark character

between them iff (1) ci ≺ c ≺ cj or cj ≺ c ≺ ci, and (2) c ∈ s0 or the operation

that originally inserted c happened before at least one of oi and oj. The set of the

landmark characters between ci and cj is denoted by Cld(ci, cj).

For example, in the scenario of Example 1, let c1=‘x’ and c2=‘y’. By Definition 3,

the set of landmark characters between them is Cld(c1, c2) = {‘b’}. In some updating

paths, such as [o3, o1, o2], when o2 is transformed with o1, the landmark character

‘b’ is not present in the current state. This causes tie-breaking problems in previous

work such as GOTO [11], which will be further explained in Example 3.

The concept of landmark character will be used in our correctness analysis. The

reason we exclude operations that are concurrent with, or are generated after, both oi

and oj is that, due to causality, the effects relation between ci and cj should not depend

on the effects of those operations. By the following lemma, landmark characters will

play an important role in determining the effects relation of operations.

Lemma 1 Suppose that two characters ci and cj are originally inserted by oi and

18

oj, respectively, and that oi precedes oj in an updating path and ci 6∈ gst(oj). If

Cld(ci, cj)=∅, then we only need rules (4) and (5.b) to determine the relation between

ci and cj.

Proof. Consider an updating path where operations preceding oj are only those

happened before either oi or oj. Hence, if there exists a character c ∈ Σ such that

< ci, cj > can be implied based on < ci, c > and < c, cj >, thus c is a landmark

character, namely c ∈ Cld(ci, cj) by the definition of Cld(ci, cj). Now, consider the

condition of Cld(ci, cj)=φ. It is true that Σ does not contain any landmark character

of ci and cj. This further implies that < ci, cj > can not be inferred by a chain of

relations through Ωj−1. Therefore, due to the known conditions, it is easy to see that

the assertion is true by definition 2.

2. Correctness Criteria

A quiescent state in a group editor means all generated operations have been executed

at all sites [10]. System consistency requires not only that all sites have the same set

of objects (characters) but also that all these objects are ordered the same way. Based

on the above notion of effects relation, we define the following correctness conditions.

Definition 4 [Correctness Criteria] A group editor is correct if it always main-

tains the following two properties:

1. Causality preservation: For any two operations o1 and o2, if o1 → o2, then o1

is executed before o2 at all sites.

2. Effects relation preservation: The effects relation is preserved at every operation

execution.

Causality preservation is a fundamental criterion in typical distributed systems

as well as group editors [10, 16, 25, 5]. The effects relation preservation as a system

19

specific measure constrains convergence in a group editor and its behavior. It is easy

to show that a correct group editor converges in any quiescent state, because all sites

have the same set of characters that are ordered in the same way.

Corollary 1 Any correct group editor converges in quiescent states.

In the following, we further study how to constrain all the possible states and

operation executions in a group editor.

Definition 5 [Reachable States] Any state s is reachable iff for any c1, c2 ∈ s, if

s[c1] < s[c2], then c1 ≺ c2.

Conceptually, a reachable state is such that the ordering of its characters is

consistent with the effects relation.

Definition 6 [Admissible Operations] Given an operation o that is defined in a

reachable state s, i.e., s = est(o), we say o is admissible in s, iff one of the following

conditions holds: (1) o.t=del and the execution of o in s only leads o.c to be deleted;

(2) o.t=ins and s=gst(o); or (3) o.t=ins, s 6=gst(o), and for any c ∈ s: o.p ≤ s[c] iff

o.c≺ c, or s[c] < o.p iff c ≺ o.c.

Intuitively, when executing a deletion, the system should not delete any character

that is not intended by the original operation; when executing an insertion, the new

character ordering should not violate the effects relation definition. As an example of

admissible operations, consider the execution of o1 and o2 in Figure 1. At site 1, if o′2

= del(1,‘x’) is executed, it is not admissible because it targets the wrong character.

At site 2, if o′1 = ins(0,‘x’) is executed instead, then ‘x’ is inserted at the wrong

position, which violates the effects relation established by o1 when it is generated.

Lemma 2 If o is admissible in a reachable state s, then s′ = exec(s, o) is reachable.

20

Lemma 3 Given an admissible operation o in a reachable state s, if o = del(p, c),

we have o.c = s[p]; or if o = ins(p, c), we have s[i] ≺ c ≺ s[j] for any i and j such

that −1 ≤ i < p and p ≤ j ≤ |s|.

Based on the concept of admissible operations, we may further simplify the veri-

fication of system correctness by the following conclusion: If every operation a system

executes is admissible, the system preserves the effect relation.

C. Transformation Functions and Conditions

The concept of effects relation lays a theoretical foundation for analyzing system

behavior. However, it relies on a global data structure that is expensive to maintain

in practice. Here we explore an approach that only uses local information. More

specifically, each site maintains a local history buffer HB for recording operations in

their execution order, and a local table ER for recording the derived effects relations.

The effects relation is derived only by information in HB and ER.

We use operation keys to uniquely identify operations. The key of any opera-

tion o, denoted by function o.key, is a pair of the id of its generation site o.id and

its sequence number at that site. Due to the established state vector maintenance

protocol [10, 5], no two different operations share the same key value. Unlike o.p, the

value of o.key does not change. Since each operation has a unique effect character,

o.c can be safely replaced by o.key in algorithm implementation. The relation ER is

implemented as a hash table, which stores pairs of operation keys: we infer ox.c ≺

oy.c if pair < ox.key, oy.key > is found in ER, or equivalently, < ox.c, oy.c > ∈ ER.

In this section, we define the IT/ET functions based on relation ≺ and study

sufficient conditions under which relation ≺ can be correctly determined using only

local information (as stored in ER and HB) and the basic operation parameters o.p,

21

o.id, and o.t.

1. Inclusion Transformation and Correctness

The purpose of o′1 = IT(o1, o2), where s = est(o1) = est(o2) and s′ = exec(s, o2), is to

incorporate the effect of o2 into o1 such that the result o′1 can be correctly executed

in state s′. As defined in Figure 2, we first call a function in Figure 3 (get er IT) to

determine the effects relation of o1 and o2, and then use this relation to decide how

to compute o′1.

Function 1 IT(o1,o2): o′1

1 get er IT(o1, o2);
2 if(o1.c = o2.c)
3 return o′1 ← φ; // φ means identity operation
4 else
5 o′1 ← o1;
6 if(o2.c ≺ o1.c)
7 if(o2.t = ins)
8 o′1.p ← o1.p+1;
9 else // o2.t=del
10 o′1.p ← o1.p-1;
11 end if
12 end if
13 return o′1;
14 end if

Fig. 2. IT(o1, o2): o′1

If o1.c ≺ o2.c, it means that o2.c is on the right side of o1.c and the execution of

o2 does not affect o1. Hence o1 is returned as it is. In the case of o2.c ≺ o1.c, however,

if o2 inserted a character on the left of o1.c, the position of o1 should be increased by

one; or if o2 deleted a character on the left, the position of o1 should be decreased by

one.

Assuming that every insertion introduces a new character, it is impossible that

22

o1 has the same effect character as another operation o2. However, two concurrent

deletions may intend to delete the same existing character. To handle this situation,

we adopt a policy in which this character is only deleted once. The deletion received

later is transformed into an identity operation φ, which will not be executed. This

corresponds to lines 2-3 in Figure 2 and lines 8-9 in Figure 3.

Function 2 get er IT(o1, o2): relation of o1.c and o2.c

1 return the relation if it is found in ER;
2 er ← o2.c≺o1.c;
3 if(o1.p<o2.p)
4 er ← o1.c≺o2.c

5 else if(o1.p=o2.p)
6 if(o1.t=o2.t=ins ∧ o1.id < o2.id)
7 er ← o1.c≺o2.c;
8 else if(o1.t=o2.t=del)
9 er ← o1.c=o2.c;
10 else if(o1.t=ins ∧ o2.t=del)
11 er ← o1.c≺o2.c;
12 end if
13 end if
14 record er in ER;
15 return er;

Fig. 3. get er IT(o1, o2): relation of o1.c and o2.c

We define a function in Figure 3 for determining the effects relation between any

two given operations. It returns the relation if it has already been recorded in ER.

Otherwise it derives the relation by a set of rules and records the result in ER. In

the following lemmas, we study by cases the sufficient conditions of get er IT(o1, o2),

or more specifically, the rules in lines 2-13. They all assume that state s = est(o1) =

est(o2) is reachable and o1, o2 are admissible in s. We say get er IT(o1, o2) is correct

iff the relation between o1.c and o2.c as determined by its rules is identical to the

effects relation obtained by Definition 2.

23

It is well-accepted that the two operations in IT be defined relative to the same

state, i.e., est(o1)=est(o2), for, otherwise, it does not make sense to compare their

position parameters [25, 5]. However, condition est(o1)=est(o2) alone is not sufficient

for correctly determining the relation between o1.c and o2.c in IT, as is shown in the

following scenario.

Example 3 In Example 1, consider how operations o2 and o1 are executed at site 3

by (the IT and control procedure of) GOTO [11]. Suppose o2 is received first. We

get o′2 = IT(o2, o3) = ins(1,‘y’) and the history buffer is [o3, o
′
2]. When o1 arrives,

we first get o′1 = IT(o1, o3) = ins(1,‘x’) and then perform o′′1 = IT(o′1, o
′
2). Because

their positions tie, if we naively compare their site ids to break the tie, we get o′′1 =

ins(1,‘x’) and the final state “axyc”, which is wrong due to our analysis in Example 1.

In this scenario, the precondition est(o′1)=est(o′2) is satisfied but the system results in

the wrong state that violates the correct effects relation, in which ‘y’ should precede

‘x’.

Lemma 4 get er IT(o1, o2) can correctly determine the effects relation between o1

and o2, if o1.t = o2.t = ins, o1 ‖ o2, and (o1.p 6= o2.p) or (o1.p = o2.p) ∧ Cld(o1.c,

o2.c)=∅)).

Proof. If o1.p 6= o2.p, then there must exist at least one character c between o1.p

and o2.p in s. That is, Cld(o1.c, o2.c) 6= ∅. Without loss of generality, by Lemma 3,

suppose o1.c ≺ c ≺ o2.c, o1.p < o2.p and o1.p ≤ s[c] <o2.p. By get er IT(), we derive

o1.c ≺ o2.c, which is consistent with Definition 2.

If o1.p=o2.p, there is no landmark character between o1.c and o2.c in state s. Sup-

pose there is an execution path in which o2 precedes o1, and all operations preceding

o2 happened before o1 or o2 or both. Since Cld(o1.c, o2.c)=∅, from Definition 2 we can

deduce the relation between o1.c and o2.c by comparing site ids. From get er IT(),

24

if o1.p=o2.p in state s, we break the tie by comparing site ids, the result of which is

consistent with that by Definition 2.

Lemma 5 get er IT(o1, o2) is correct if o1.t = o2.t = del.

Proof. Since both o1, o2 are admissible deletions, o1.c and o2.c must be both present

in s. Hence by Lemma 3 we can determine their relation by comparing o1.p=s[o1.c]

and o2.p=s[o2.c]. In particular, if o1.p=o2.p, they must be referencing the same char-

acter, i.e., o1.c=o2.c.

Lemma 6 get er IT(o1, o2) is correct if o1.t = ins, o2.t = del, and o1.c 6= o2.c.

Lemma 7 get er IT(o1, o2) is correct if o1.t = del, o2.t = ins, and o1.c 6= o2.c.

Corollary 2 Given that o1 and o2 are admissible in a reachable state s = est(o1) =

est(o2), then IT is correct or o′1 = IT(o1, o2) is admissible in state s′ = exec(s, o2),

if the effects relation between o1.c and o2.c can be found in ER or can be correctly

determined by the rules of get er IT(o1, o2).

2. Exclusion Transformation and Correctness

The purpose of o′2 = ET(o2, o1), where est(o2) = exec(est(o1), o1), is to exclude the

effect of o1 from o2 such that est(o′2) = est(o1) and o′2 is admissible in est(o1), as

if o1 had not been executed. As in Figure 4, we first call a function in Figure 5 to

determine the effect relation between o1 and o2, and then use this relation to compute

o′2.

If o1.c and o2.c are the same, or o2 is to delete the character inserted by o1, it

does not make sense if o1 had not been executed before o2 due to causality. In this

case the system is halted. This corresponds to lines 13-14 in Figure 5 and lines 2-3

in Figure 4.

25

Function 3 ET(o2, o1): o′2

1 get er ET(o1, o2);
2 if(o2.c = o1.c)
3 halt;
4 else
5 o′2 ← o2;
6 if(o1.c ≺ o2.c)
7 if(o1.t = ins)
8 o′2.p ← o2.p-1;
9 else // o1.t=del
10 o′2.p ← o2.p+1;
11 end if
12 end if
13 return o′2;
14 end if

Fig. 4. ET(o2, o1): o′2

If o2.c ≺ o1.c, or o1.c is on the right side of o2.c, then excluding the effect of o1

does not impact o2. Hence o2 is returned as it is. If o1.c ≺ o2.c, however, the position

parameter of o2 should be decreased by one had o1 not inserted o1.c on its left; or the

position parameter of o2 should be increased by one had o1 not deleted on its left.

In Figure 5, we define rules for determining the relation of o2.c and o1.c in ET only

by their position parameters. Previous work [11, 5] proposed that the precondition of

ET be est(o2) = exec(est(o1), o1). However, this condition alone is not sufficient for

determining the relation of o1.c and o2.c in ET, as shown in the following scenario.

Example 4 Suppose three sites start from the same state s0 = “abc”. Site 1 generates

o1 = del(1,‘b’) to yield “ac”. Concurrently site 2 generates o2 = ins(2,‘x’) to yield

“abxc”. At site 3, assume o1 is executed first, yielding s1
3 = exec(s0, o1) = “ac”.

After that, o2 is received. We have o′2 = IT(o2, o1) = ins(1,‘x’) and s2
3 = exec(s1

3, o
′
2)

= “axc”. Then site 3 generates o3 = ins(2,‘y’), yielding s3
3 = “axyc”. By Definition 2

we know o1.c≺o2.c≺ o3.c, namely o1.c≺ o3.c. Now examine how the effects of o′2 and o1

26

Function 4 get er ET(o1, o2): relation of o1.c and o2.c

1 return the relation if it is found in ER;
2 if(o1.p<o2.p)
3 er ← o1.c ≺ o2.c;
4 else if(o1.p>o2.p)
5 er ← o2.c ≺ o1.c;
6 else // o1.p=o2.p

7 if(o1.t=o2.t=ins)
8 er ← o2.c ≺ o1.c;
9 else if(o1.t=o2.t=del)
10 er ← o1.c ≺ o2.c;
11 else if(o1.t=del ∧ o2.t=ins)
12 er ← o2.c ≺ o1.c;
13 else // o1.t=ins ∧ o2.t=del
14 er ← o1.c = o2.c;
15 end if
16 end if
17 record er in ER

18 return er;

Fig. 5. get er ET(o1, o2): relation of o1.c and o2.c

are excluded from o3 in turn. First process o′3 = ET(o3, o′2). According to get er ET(),

we infer o2.c ≺ o3.c because o′2.p < o3.p. Hence o′3 = ins(1,‘y’). Next consider o′′3 =

ET(o′3, o1). According to get er ET(), we have o3.c ≺ o1.c because their positions tie,

which contradicts the correct relation o1.c≺ o3.c.

In the following lemmas we examine by cases the sufficient conditions of get er ET(o1, o2),

or more specifically, the rules defined in lines 2-16. They all require the following

conditions: est(o2) = exec(est(o1),o1), est(o1) and est(o2) are reachable states, and

o1 and o2 are admissible. We say get er ET(o1, o2) is correct iff the relation between

o1.c and o2.c as determined by its rules is identical to the effects relation obtained by

Definition 2.

Lemma 8 get er ET(o1, o2) is correct if o1.t = o2.t = ins and o1 → o2.

27

Proof. Since o1 and o2 are admissible and o1 is executed before o2, the character

o1.c must be present in state s = exec(est(o1), o1). Due to Lemma 3, by comparing

their positions o1.p = s[o1.c] and o2.p we can correctly infer their effects relation.

Specifically, if o2.p ≤ o1.p we get o2.c≺o1.c, or o1.c≺o2.c if otherwise.

Lemma 9 get er ET(o1, o2) is correct if o1.t = ins, o2.t=del, and o1 → o2.

Proof. By the given conditions and Lemma 3, o1.c must be present in s = est(o2)

and o1.p = s[o1.c]. Since o2 is a deletion and it is admissible in s, it must be that o2.p

= s[o2.c]. Hence we can correctly determine their effects relation by comparing their

position parameters. In particular, if o1.p=o2.p, it must be that o1.c=o2.c.

Lemma 10 get er ET(o1, o2) is correct if o1.t = o2.t = del, o1.c 6= o2.c, and o1 → o2.

Lemma 11 get er ET(o1, o2) is correct if o1.t = del, o2.t=ins, o1.c 6= o2.c, o1 → o2,

and (1) o1.p 6=o2.p or (2) o1.p=o2.p and Cld(o1.c,o2.c)=φ.

Proof. Let s1 = est(o1) and s2 = est(o2). Since o1 is a deletion admissible in s1, by

Lemma 3, it must be o1.p = s1[o1.c]. If o1.p<o2.p, there must be at least one character

between o1.p and o2.p in s2. Hence we infer o1.c≺o2.c. If o1.p>o2.p, similarly we infer

o2.c≺o1.c.

In the case that o1.p=o2.p, by Lemma 3, it must be that o2 inserts a character

between the two characters s2[o2.p-1] = s1[o2.p-1] and s2[o2.p] = s1[o1.p]. By Defini-

tion 3, Cld(o1.c, o2.c) considers all the characters that are present before either o1 or

o2 is generated. If Cld(o1.c, o2.c) = ∅, by Definition 2, we infer o2.c≺o1.c.

Corollary 3 Given that o1 is admissible in a reachable state s and o2 is admissible in

s′ = exec(s, o1), then ET is correct or o′2 = ET(o2, o1) is admissible in s, if the effects

relation between o1.c and o2.c can be found in ER or can be correctly determined by

the rules of get er ET(o1, o2).

28

D. Operation Integration

To execute (integrate) a remote operation o, we often have to transform o against a

sequence of operations sq. We denote the process of inclusively transforming o against

sq as ITSQ(o, sq) and that of exclusively transforming o against sq as ETSQ(o, sq).

In this section we study how to execute remote operations and how to transform

sequences.

1. Problem and Analysis

Conceptually, to integrate a remote operation o, we must first compute its admissible

form o′ relative to the current state at the local site and then execute it. This problem

can be abstracted in the following way: Given an operation o admissible in a given

reachable state s, compute its admissible form o′ in another reachable state s′, where

s 6= s′.

In the abstract sense, computing o′ includes two steps: (1) choose or build a

proper path (or sequence) P from s to s′, and (2) transform o against P . There

may exist more than one path from s to s′. As shown in Figure 6, some paths are

unidirectional such that we only need to transform o with some P . Some other paths

may be bidirectional in that they first consider a path Pb from s to a significant

intermediate state s′′ and then one Pf from s′′ to s′.

s

s’

s"

Pf

Pb

Fig. 6. Different transformation paths from state s to state s′.

29

Specifically, we maintain an operation log HB at every site to record operations

in their order of execution. When a remote operation o is received, we integrate o iff

all operations that happened before o have been executed locally. Suppose HB can be

somehow transposed into sqh+sqc, where sqh includes all operations that happened

before o, sqc includes all operations in HB that are concurrent with o. It must be

that s = exec(s0, sqh) and s′ = exec(s0, HB).

Most previous OT algorithms use sqc as the transformation path from s to s′

and compute o′ = ITSQ(o, sqc), such as adOPTed [16], GOTO [11, 31], SOCT2 [25],

and SDT [19, 14]. However, the ordering between concurrent operations in sqc is not

constrained, except the causal order between them. It means that concurrent opera-

tions may be ordered arbitrarily at different sites. As a result, their IT functions must

verify TP1 and TP2 to achieve convergence [16], which have turned out extremely

difficult in practice [31, 5, 33]. Previous works in [34, 18, 5, 33] achieve convergence

by enforcing a unique transformation path at all sites and avoid verification of TP2.

However, the transformation paths they choose are effectively unconstrained in the

same way. That is, arbitrary transformation path is still allowed as in previous work

such as adOPTed, GOTO, SOCT2 and SDT.

In this work, we explore an alternative strategy which avoids arbitrary trans-

formation paths. Instead, we build some special paths out of HB such that our IT

and ET can always work correctly. The idea is to first find a backward path Pb from

s to s′′ and then a forward path Pf from s′′ to s′. With these two paths, we first

compute an admissible operation o′′ = ETSQ(o, Pb) relative to s′′ and then compute

the admissible o′ = ITSQ(o′′, Pf) relative to s′.

However, our analyses in Section C reveal that IT(o1, o2) and ET(o1, o2) do not

always work correctly. There are preconditions in addition to est(o1) = est(o2) and

est(o1) = exec(est(o2),o2), respectively. Intuitively, we somehow transpose sqh into

30

sqhi + sqhd such that sqhi includes all insertions that happened before o and sqhd

includes all deletions that happened before o. Let Pb be sqhd and Pf be sqhd+sqc. And

we further somehow transpose Pf into sqi + sqd such that sqi only includes insertions

and sqd are all deletions. As a result, s′′ is the state in which all characters deleted by

sqhd are recovered. Hence we can always correctly process ITSQ(o′′, sqi +sqd) because

no landmark character, if any, between insertion o′′ and any insertion in sqi has been

deleted, and IT between o′′ and any deletion in sqd is correct. Then the remaining

problem is how to build such Pb and Pf and how to ensure the correctness of IT or

ET at every step.

In the following, we discuss how to fulfill the above intuition. In Section 2 and 3

we first study some special sequences that ensure correctness of ITSQ and ETSQ,

respectively. Then Sections 4 and 5 define some utility functions for transposing

sequences and building special sequences. Section 6 shows how to integrate remote

operations by constructing Pb and Pf .

2. IT-Safe Operation Sequences

Function 5 ITSQ(o, sq): o′

1 o′ ← o;
2 for(i = 0 to |sq| − 1){
3 o′ ← IT(o′, sq[i]);
4 if(o′ = φ)
5 break;
6 end if
7 }
8 return o′

Fig. 7. ITSQ(o, sq): o′

Function ITSQ(o, sq) in Figure 7 requires that o and sq be defined in the same

31

state, or est(o) = est(sq[0]). It inclusively transforms o against sq[0], sq[1], ..., sq[|sq|−

1] in turn. To ensure the correctness of every IT, we further require that sq is a special

sequence, as defined below.

Definition 7 A sequence sq is an IT-Safe Operation Sequence (ITSOS) iff for any

two operations sq[i] and sq[j], if sq[i].t=ins and sq[j].t=del, then i < j holds. If

|sq| < 2, we also say that sq is (trivially) an ITSOS.

An ITSOS sq can be rewritten as sqi + sqd, where sqi includes all insertions in

sq and sqd all deletions in sq.

Lemma 12 Given operation o and sequence sq, o′ = ITSQ(o,sq) is admissible, if

est(sq[0]) = est(o) and either (1) o.t=del, or (2) o.t=ins ∧ sq is an ITSOS ∧ for any

insertion sq[i]: Cld(sq[i].c, o.c) ⊆ est(sq[i]).

Proof. If o.t = del, by Lemmas 5 and 7, IT(o, sq[i]) is correct for any operation sq[i].

Consider case o.t=ins. Because sq is an ITSOS, let sq = sqi + sqd and ITSQ(o, sq) =

ITSQ(o, sqi + sqd). By the given condition, for any insertion sqi[j]: Cld(sqi[j].c, o.c)

⊆est(sqi[j]), meaning that all characters in Cld(sqi[j].c, o.c) must appear in est(sqi[j]).

That is, sqi[j].p= o.p if Cld(sqi[j].c, o.c) is ∅, or sqi[j].p 6= o.p if otherwise. Then by

Lemma 4, when inclusively transforming o against any insertion in sqi, no landmark

character between them has been lost (or deleted). Hence IT(o, sqi[j]) is correct for

any insertion sqi[j]. By Lemma 6, IT(o, sqd[k]) is correct for any deletion sqd[k].

3. ET-Safe Operation Sequences

ETSQ(o, sq) requires that sq and o be contextually serialized, i.e., est(o) = exec(est(sq[0]),

sq). As shown in Figure 8, to compute ETSQ(o, sq), we exclusively transform o

against sq[n−1], sq[n−2], ..., sq[0] in turn. To ensure the correctness of every ET, we

32

Function 6 ETSQ(o, sq): o′

1 o′ ← o

2 for(i=|sq|-1 to 0 step -1) {
3 o′ ← ET(o′, sq[i])
4 if(sq[i].c ≺ o′.c)
5 break;
6 end if
7 }
8 for(j=i-1 to 0 step -1) {
9 if(sq[j].t = ins)
10 o′.p ← o′.p-1;
11 else // sq[j].t=del
12 o′.p ← o′.p+1;
13 end if
14 }
15 return o′;

Fig. 8. ETSQ(o, sq): o′

further require that sq be a special sequence, as defined below. Due to properties of

this sequence, we break the loop of lines 2-7 when some condition is satisfied because

it is no longer necessary to call ET() on the remaining operations in sq. Instead,

effects of those operations are excluded directly as in lines 8-14.

Definition 8 A given sequence sq is an ET-Safe Operation Sequence (ETSOS) if for

any i, j, where 0 ≤ i < j ≤ n − 1 and |sq| = n, either (1) sq[i].c ≺ sq[j].c, or (2)

sq[i].c = sq[j].c and sq[i].t=ins and sq[j].t=del. If |sq| < 2, we also say that sq is

(trivially) an ETSOS.

Operations in an ETSOS sq are ordered by their effects relation, except that

inverse operations are ordered by their causal order, i.e., a deletion od that deletes

the character inserted by some oi appears after oi. As a simple example, given an

initial state s0 = “b” and three operations executed in a tandem: o1=ins(0,‘a’),

33

o2=del(1,‘b’), and o3=ins(1,‘c’). The effects relation is ‘a’ ≺ ‘b’ ≺ ‘c’ and [o1, o2, o3]

is an ETSOS.

Lemma 13 Given operation o and an ETSOS sq, if there exists some sq[i], 0 ≤ i ≤

|sq| − 1, such that sq[i].c ≺ o.c, then sq[j].c ≺ o.c for all j: 0 ≤ j ≤ i− 1.

The correctness of Lemma 13 is straightforward by the definition of ETSOS.

The result can simplify the implementation of ETSQ(o, sq). When o encounters some

sq[i] in ETSQ(), if sq[i].c ≺ o.c, it means that the effects relation between o and any

operation sq[j], where j < i, is known, namely, sq[j].c≺o.c. As a result, the remaining

operations in sq can be correctly excluded from o without get er ET(). This property

is used in ETSQ() to avoid calling ET(), as shown in lines 4-6 and 8-14. In addition,

if o and some operation sq[i] have the same effect character, namely, o.c= sq[i].c or

o deletes a character inserted by some sq[i], it does not make sense to perform this

and the remaining ET’s due to causality. The system is halted in this case. Other

algorithms that call ETSQ() will prevent this from happening.

Lemma 14 Given operation o and sequence sq, where |sq| = n and est(o) = exec(est(sq[0]),

sq), let Csq denote the set of characters that appear in est(sq[0]) and sq, that is, Csq

=
⋃n−1

i=0 { sq[i].c } ∪ est(sq[0]). Then o′ = ETSQ(o, sq) is admissible if (1) sq is an

ETSOS, and (2) Cld(o.c, sq[i].c) ⊆ Csq for any sq[i]→ o.

Proof. Due to Lemmas 8 through 11 and Corollary 3 in Section 2, the only case

under which ET(o, sq[i]) can be unsafe for some sq[i] is when sq[i].p=o.p, sq[i]→ o,

sq[i].t=del, and o.t=ins. Hence we only need to prove the correctness of ET(o, sq[i])

under this unsafe condition. We prove this by induction.

Base: Consider ET(o,sq[n-1]). First, by definition of ETSOS, we know sq[k].c ≺

sq[n− 1].c for 0 ≤ k < n− 1. By condition Cld(o.c, sq[n− 1].c) ⊆ Csq, for any sq[k],

34

where 0 ≤ k < n−1, it is impossible to have sq[n−1].c≺ sq[k].c≺ o.c. Secondly, under

the above-identified unsafe condition of ET, sq[n − 1].t=del, o.t=ins, sq[n − 1] → o,

and sq[n−1].p = o.p, it is impossible to have any c in est(o) such that sq[n−1].c ≺ c ≺

o.c, for otherwise we would have got sq[n− 1].p < o.p, which contradicts sq[n− 1].p

= o.p. Since est(o) = exec(est(sq[0]), sq) and Csq =
⋃n−1

i=0 {sq[i].c} ∪ est(sq[0]), with

the above two conclusions combined, we infer that there is no character c in Csq such

that sq[n − 1].c ≺ c ≺ o.c. Therefore we conclude Cld(o.c, sq[n − 1].c)=∅ or there

exists at least one character c such that o.c ≺ c ≺ sq[n − 1].c. Either case, by the

definition of relation ≺, we get o.c≺ sq[n− 1].c. Hence ET(o, sq[n− 1]) is correct.

Induction: Assume that processing of ETSQ(o, sq[i + 1, n− 1]) is correct. Let o′

be the execution form of o relative to est(sq[i + 1]). By Lemma 13 and Figure 8, at

the time ET(o′, sq[i]) is processed, o′ must have been exclusively transformed with

all operations from sq[n− 1] to sq[i + 1], inclusively. Hence, o.c ≺ sq[k].c must hold,

where i + 1 ≤ k ≤ n− 1, because, otherwise, the ET process should have stopped for

some k. Since Cld(o.c, sq[i].c) ⊆ Csq, similar to the base case, there must not exist

c such that sq[i].c ≺ c ≺ o.c for otherwise we would have got sq[i].p < o.p, which

contradicts sq[i].p = o.p. Then by the definition of relation ≺, no matter whether or

not there exists c such that o.p ≺ c ≺ sq[i].c, we get o.c≺ sq[i].c. Hence ET(o, sq[i])

is correct.

4. Transposing Sequences

Transpose(o2, o1) in Figure 9 is to transpose two contextually serialized operations

o2 and o1 such that in the output o′1 is contextually serialized before o′2. Since o2

is contextually serialized before o1, we first do o′1=ET(o1, o2) such that o′1 and o2

are defined in the same state, and then do o′2=IT(o2, o
′
1) such that o′2 is defined in

state exec(est(o′1),o
′
1). Note if o1 depends on o2, i.e., o2.t=ins, o1.t=del, o2 → o1, and

35

Function 7 Transpose(o2, o1): < o′1, o
′
2 >

1 // determined as in get er ET
2 if(o1.c = o2.c)
3 return < o1, o2 >;
4 else
5 o′1 ← ET(o1, o2);
6 o′2 ← IT(o2, o′1);
7 return < o′1, o

′
2 >;

8 end if

Fig. 9. Transpose(o2, o1): < o′1, o
′
2 >

o1.p=o2.p, then we know o1.c=o2.c and return < o1, o2 >.

Function 8 TransposeOSq(sq, o): < o′, sq′ >

1 o′ ← o;
2 sq′ ← sq;
3 for(i = |sq|-1 to 0 step -1) {
4 < o′, sq′[i] > ← Transpose(sq′[i], o′);
5 }
6 return < o′, sq′ >;

Fig. 10. TransposeOSq(sq, o): < o′, sq′ >

The precondition of TransposeOSq(sq, o) in Figure 10 is that sq is contextually

serialized before o. The output is such that o′ is contextually serialized before sq′.

In general, all the transposition functions in this chapter produce effects-equivalent

sequences. Specifically, [o′1, o
′
2] ∼ [o2, o1] in Transpose(o2, o1), o′ + sq′ ∼ sq + o in

TransposeOSq(sq, o), sqh + sqc ∼ sq in TransposePreCon(o, sq), sqi + sqd ∼ sq in

TransposeInsDel(sq) , and sq′ ∼ sq in BuildETSOS(sq).

Functions TransposePreCon() in Figure 11 and TransposeInsDel() in Figure 12

have similar structures. TransposePreCon(o, sq) is adopted from [25, 11]. It trans-

poses sq into sqh + sqc, such that sqh, all operations that happened before o, are

36

Function 9 TransposePreCon(o, sq): < sqh, sqc >

1 sqh ← ∅;
2 sqc ← ∅;
3 for(i=0 to |sq| − 1) {
4 if(sq[i] ‖ o)
5 sqc ← sqc + sq[i]
6 else // sq[i] → o

7 < oi, sqc > ← TransposeOSq(sqc, sq[i]);
8 sqh ← sqh + oi;
9 end if
10 }
11 return < sqh, sqc >;

Fig. 11. TransposePreCon(o, sq): < sqh, sqc >

Function 10 TransposeInsDel(sq): < sqi, sqd >

1 sqi ← ∅;
2 sqd ← ∅;
3 for(i=0 to |sq| − 1) {
4 if(sq[i].t = del)
5 sqd ← sqd+sq[i];
6 else // sq[i].t = ins
7 < oi, sqd > ← TransposeOSq(sqd, sq[i]);
8 sqi ← sqi+oi;
9 end if
10 }
11 return < sqi, sqd >;

Fig. 12. TransposeInsDel(sq): < sqi, sqd >

37

contextually serialized before sqc, all those concurrent with o. It scans sq from left

to right and appends every sq[i] that is concurrent with o to sqc. For every sq[i]

that happened before o, it first transposes sq[i] and sqc and then appends sq[i] to

sqh. Similarly, TransposeInsDel(sq) transposes sq such that all insertions (sqi) are

contextually serialized before all deletions (sqd).

5. Building ET-Safe Sequences

Function 11 BuildETSOS(sq): sq′

1 if(|sq| < 1)
2 return sq′ ← sq;
3 end if
4 sq′ ← [sq[0]];
5 for(i=1 to |sq| − 1) {
6 o ← sq[i];
7 flag ← false;
8 for(j = |sq′|-1 to 0 step -1) {
9 if(flag = true)
10 record sq′[j].c ≺ o.c into ER;
11 else //effects relation determined as in get er ET
12 if(sq′[j].c≺o.c)
13 sq′ ← sq′[0, j] + o + sq′[j + 1, |sq′| − 1];
14 flag ← true;
15 else
16 < o, sq′[j] > ← Transpose(sq′[j], o);
17 end if
18 end if
19 }
20 if(flag = false)
21 sq′ ← o + sq′

22 end if
23 }
24 return sq′;

Fig. 13. BuildETSOS(sq): sq′

Given a sequence sq, function BuildETSOS(sq) in Figure 13 incrementally builds

38

an ETSOS sq′. Initially sq′ only includes sq[0]. Then each time a new element sq[i] is

added into sq′. It transposes sq[i] with operations in sq′ from right to left until some

sq′[j] is found (line 12) such that sq′[j].c ≺ o.c, which is exactly the condition defined

in Lemma 13. Under this case, o is inserted after sq′[j] (line 13). Then the relation

between o.c and other operations in the rest of sq is known and directly recorded

in the local effects relation ER (line 10). If the condition never appears, as in lines

20-22, then o is added to the head of sq′.

Lemma 15 Given an admissible sequence sq defined in the initial system state s0,

which preserves the causal order of operations, sq′ = BuildETSOS(sq) is correct, i.e.,

sq′ is an ETSOS and every operation in sq′ is admissible.

Proof. Examine the process of building an ETSOS sq′ from sq: each time we add a

new operation sq[i] into the partial result sq′ that was built from sq[0, i−1]. Sequence

sq′ is scanned from right to left to find the right position to insert sq[i]. Note that

each operation in sequence sq′ actually represents a state transition. Hence, to insert

sq[i] before some position sq′[j], we have to transpose sq′[j, i− 1] and sq[i]. That is,

the correctness of BuildETSOS() depends on the correctness of Transpose().

In function Transpose(o1, o2), ET is always called before IT. If o′1 = ET(o1, o2) is

correct, then the relation of o1.c and o2.c is known, which ensures the correctness of

IT(o2, o
′
1). Hence we only need to prove the correctness of ETSQ(sq[i], sq′[j, i − 1]).

This can be further reduced to proving that the conditions of Lemma 14 can be

satisfied before calling BuildETSOS(). We prove this by induction.

Base: consider ET(sq[1], sq[0]). If sq[1] ‖ sq[0], then ET(sq[1], sq[0]) is correct

because the effects relation between concurrent operations has been recorded. Oth-

erwise, it must be sq[0] → sq[1] by causality. Because gst(sq[0])=s0 and there is no

other operation, we have Cld(sq[0].c, sq[1].c) ⊆ Csq. Hence ET(sq[1], sq[0]) is correct.

39

Induction: Suppose sq′ is the ETSOS correctly built from sq[0, i−1]. Now check

how sq[i] is added into sq′. Let Csq′ =
⋃i−1

j=0(sq
′[j].c) ∪ s0. Since sq′[0] is defined

on s0 and all operations that happened before sq[i] are in sq′, it is obvious that

Cld(sq[i].c, sq
′[j].c) ⊆ Csq′ for any 0 ≤ j < |sq′| and sq′[j] → sq[i]. By Lemma 14,

ETSQ(sq[i], sq′) is correct.

6. The Integration Procedure

The top-level control algorithm executes local and remote operations. For best respon-

siveness, any local operation is executed and appended to HB once it is generated.

Any remote operation o is queued until it is causally-ready, i.e., all operations that

happened before o are in HB. Suppose the initial state is s0, the current state is s′,

and o is generated in state s. Then function Integrate(o,HB) in Figure 14 is called to

derive an o′ such that o′ is admissible in s′. If o′ = φ, it is discarded. Otherwise o′ is

executed and appended to HB. Apparently HB is a contextually serialized sequence.

In Integrate(o,HB) , we first call TransposePreCon(o,HB) to transpose HB

into two sequences: sqh, which includes all operations that happened before o, and

sqc, which includes all operations that are concurrent with o. Due to causality, we

have s = gst(o) = exec(s0, sqh).

If sqc is empty, it means s′ = gst(o). Then o is returned as it is (lines 2-3)

and will be executed in s′ directly. If sqc contains concurrent operations, we must

incorporate the effects of those operations into o to get its execution form o′ in s′. By

the above analyses, we cannot perform ITSQ(o, sqc) until the preconditions defined

in Lemma 12 are satisfied. If o.t=del, ITSQ(o, sqc) is guaranteed to be correct (lines

5-6).

However, if o.t=ins, we must first construct Pb and Pf , then compute o′′ =

ETSQ(o, Pb), and finally o′ = ITSQ(o′′, Pf). Sequence Pb is constructed in lines 8-9:

40

Function 12 Integrate(o, HB): o′

1 < sqh,sqc > ← TransposePreCon(o, HB);
2 if(sqc = ∅)
3 return o′ ← o;
4 end if
5 if(o.t=del)
6 return o′ ← ITSQ(o, sqc);
7 else // o.t=ins
8 sq′h ← BuildETSOS(sqh)
9 < sqhi, sqhd > ← TransposeInsDel(sq′h);
10 sqhdc ← BuildETSOS(sqhd+sqc);
11 < sqi, sqd > ← TransposeInsDel(sqhdc);
12 o′′ ← ETSQ(o, sqhd); // Pb = sqhd

13 o′ ← ITSQ(o′′, sqi + sqd); // Pf = sqi + sqd

14 return o′;
15 end if

Fig. 14. Integrate(o, HB): o′

we first build an ETSOS sq′h from sqh, the sequence of all operations that happened

before o, and then transpose sq′h into two subsequences, sqhi and sqhd, such that sqhi

includes all insertions that happened before o and sqhd includes all deletions that

happened before o. Then sqhd is just the Pb we need.

Next we construct Pf as in lines 10-11: we first build an ETSOS sqhdc from

sqhd + sqc, and then transpose sqhdc into two sequences sqi and sqd such that sqi

includes all the insertions and sqd all the deletions. Sequence Pf is just sqi + sqd, the

concatenation of sqi and sqd.

Theorem 2 o′ = Integrate(o,HB) is admissible in state s′.

Proof. The assertion is easily verified if o.t=del. When o.t=ins, the correctness of

Integrate() relies on fives steps: (1) TransposePreCon() in line 1, (2) the construction

of Pb in lines 8-9 and Pf in lines 10-11, (3) ETSQ(o, Pb) in line 12, and (4) ITSQ(o′′, Pf)

41

in line 13.

First, in TransposePreCon(o,HB), the cause-effect order between operations in

HB are preserved. It can be shown that the Transpose algorithm is called only

between concurrent operations, the reason of which follows: Due to the definition

in Figure 11, all operations in sqc are concurrent with o. Hence each time we call

TransposeOSq(sqc, sq[i]) or Transpose(sqc[j], sq[i]) for some sqc[j], due to causality

preservation, sq[i] must have happened before o, or sq[i]→ o. In addition, since sq[i]

is stored after sqc[j] in HB due to Figure 11, we cannot have sq[i] → sqc[j] due to

causality. Hence we have either sqc[j]→ sq[i] or sqc[j] ‖ sq[i]. The former case cannot

happen because, if otherwise, we would have sqc[j] → sq[i] → o and sqc[j] → o by

transitivity, which contradicts sqc[j] ‖ o. Therefore sqc[j] ‖ sq[i] must be true and

the effects relation between them must have been recorded in the local memory ER,

which ensures the correctness of Transpose of ET/IT at each step.

Second, by Lemma 15, sq′h = BuildETSOS(sqh) in line 8 is correct. As a result,

operations in sq′h are ordered by their effects relation and additionally, if an deletion

od deletes the character inserted by some oi, then oi always appears before od. Con-

sequently, in the algorithm of TransposeInsDel(sq′h) in line 9, for any insertion sq′h[i]

and any deletion sqhd[j] in Transpose(sqhd[j], sq
′
h[i]), the case of sq[i].c=sqd[j].c will

never happen. Then because the effects relation recorded in BuildETSOS(sqh), all

ET/IT in TransposeInsDel(sq′h) can be correctly processed.

Rewrite HB as sqh + sqc = sqhi + sqhd + sqc. When building an ETSOS out of

sqhd + sqc, no character has been lost (or deleted) in the definition state of sqhd + sqc

or state s′′ = exec(s0, sqhi) due to the execution of sequence sqhi in s0. Hence the step

of sqhdc = BuildETSOS(sqhd + sqc) in line 10 is correct, the proof of which resembles

that of Lemma 15. Similarly, TransposeInsDel(sqhdc) in line 11 is also correct.

Third, consider o′′ = ETSQ(o, Pb), where Pb = sqhd. It can be shown from

42

the algorithm of TransposeInsDel() that Pb preserves the effects relation based order

between operations as a result of BuildETSOS(). Hence Pb itself is also an ETSOS,

although all its operations are deletions. Let CPb
=

⋃|Pb|−1

i=0 {Pb[i].c} ∪ est(Pb[0]).

Because Pb only contains deletions, for any Pb[i] → o, when processing ET(o, Pb[i]),

condition Cld(o.c, Pb[i].c) ⊆ CPb
must hold. By Lemma 14, o′′ is admissible in state

s′′ = exec(s0, sqhi) = est(Pb[0]).

Fourth, consider o′ = ITSQ(o′′,Pf), where Pf = sqi + sqd is built from sequence

sqhd + sqc. Conceptually o′ must incorporate the effects of sqc and additionally sqhd

because the effects of sqhd have been excluded from o′′ earlier. Sequence Pf is an

ITSOS, because it is a concatenation of an insertion sequence sqi and a deletion

sequence sqd, which were correctly computed earlier. Consequently, because sequences

sqhi and sqi do not contain any deletions, the preconditions of Lemma 12 are satisfied.

Therefore, o′ = ITSQ(o′′, Pf) is admissible in the current state s′ = exec(s0, HB) =

exec(s′′, Pf).

E. An Example

Site 1 Site 3 Site 4

o1=ins(1,’b’)
o2=del(0,’1’) o3=ins(0,’a’)

o4=ins(1,’c’)

Site 2
s0=“1”

del(1,’1’)

ins(1,’c’)

ins(2,’b’)

ins(0,’a’)

ins(1,’c’)

del(2,’1’)

Fig. 15. A scenario in which four sites start from state “1” and converge in “acb”.

As shown in Figure 15, four sites start from the same initial state s0 = “1”. Site

1 performs o1 = ins(1,‘b’). Concurrently, site 2 performs o2 = del(0,‘1’) and site 4

43

performs o3 = ins(0,‘a’). After o3 is executed, site 3 performs o4=ins(1,‘c’). We have

o1 ‖ o2, o2 ‖ o3, o1 ‖ o3, o3 → o4, o1 ‖ o4, and o2 ‖ o4. Suppose the execution order

at site 4 is o3, o2, o4, o1. For space reasons, we only consider how o1 and o4 are

integrated at site 4 to illustrate the working of our approach.

When o4 arrives at site 4, HB = [o3, o
′
2], where o′2 = IT(o2, o3) = del(1,‘1’),

and the current state s2
4 = exec(s0, [o3, o

′
2]) = “a”. To compute o′4 relative to s2

4, we

first construct Pb, which includes all deletions that happened before o4. Hence Pb

is empty by definition. Then we construct Pf , which is initially sqhd + sqc = sqc =

[o′2]. Therefore, o′4=ITSQ(o4,[o
′
2])=ins(1,‘c’). After o′4 is executed, the state of site 4

becomes s3
4 = “ac”.

When o1 arrives, HB = [o3, o
′
2, o

′
4]. Similarly Pb is empty. Hence Pf is initially

HB itself because all the operations are concurrent with o1. We transpose Pf into

sqi + sqd such that sqi = [o3, o4] and sqd = [o′′2], where o′′2 = del(2,‘1’). Then o′1 =

ITSQ(o1, [o3, o4, o
′′
2]) = ins(2,‘b’). After o′1 is executed, the final state of site 4 becomes

s4
4 = “acb”.

44

CHAPTER IV

A NATURAL ORDER BASED FRAMEWORK

A. Motivation

In the last chapter, we propose the total order based framework to systemically ad-

dress the correctness problem of OT based protocols. However, this framework is not

perfect. One main limitation comes from the requirement of defining a total order

over objects that ever appear in the system. First, let us consider an example where a

user only executes two operations o1=del(0,‘x’) and o2=ins(0,‘y’) in sequence relative

to an initial state s0=“a”. In this case, since ‘x’ and ‘y’ never have chance to appear

in the same state, defining a logical order between ‘x’ and ‘y’ is not necessary.

The scenario illustrates that defining a total order over objects is not always a

good design approach because it causes unnecessary design overheads. In addition,

defining a total order is costly because designers need to carefully examine all cases

that ever happen in the system.

Just these limitations motivate us to further explore a new design methodology.

In this chapter, we aim to propose a natural order based framework. Compared to the

total order based framework, defining a total order in this work is no longer needed.

To achieve this goal, we first need to establish a new consistency model, and we will

propose a set of new correctness criteria based on this model.

B. A Consistency Model

In this section we formalize a consistency model. Core to this model is a notion

of operation effects relation ≺. Sec. 1 introduces a tool called effect relation graph

for analyzing the behavior of group editors. Sec. 2 defines relation ≺ and related

45

concepts. Sec. 3 defines correctness criteria of group editors.

1. Effect Relation Graph

The effect relation graph (or graph) is a global data structure. Note it is only for

theoretical analysis purposes, not implemented in actual systems. The graph is con-

structed incrementally as operations are generated and executed at collaborating sites

as if by an external observer of the system.

A graph G is a tuple < V,E >, where V is a set of nodes (or vertexes) and

E ⊆ V ×V is a set of directed edges. Every node corresponds to a character that ever

appears in the system and every edge represents the relation between two characters.

Each node n ∈ V has three attributes: n.char is the character (id) it corresponds

to; n.counter traces how the character is inserted or deleted; and n.color indicates

the status, white for normal and red for abnormal. An edge < na, nb >∈ E means

na.char appears on the left of nb.char in some state of the group editor.

The algorithm in Figure 16 shows how G is maintained. Suppose V and E are

initially empty and N is the number of sites in the system. We first use the initial

state s0 to initialize G as follows: If s0 is not empty, for each character c ∈ s0 add a

new node n to V such that n.char = c, n.counter = N, and n.color = white. Then for

any two nodes nb, na ∈ V add an edge < nb, na > to E, if nb.char = cb, na.char = ca,

and s0[cb] + 1 = s0[ca].

We always invoke o once when it is generated and once when it is executed at

every remote site. Every invocation updates G once. Hence G is updated N times in

total by every o. The order of invocations must maintain their natural cause-effect

relation: (1) given any operation o, its local invocation must be earlier than any

remote invocation, and (2) given any o1 and o2, if o1 → o2, invocation of o1 must be

earlier than invocation of o2 at every site.

46

Initialize:
1 ∀c∈ s0 add a new node n to V such that
2 n.char ←c; n.counter ←N ; n.color ←white;
3 ∀nb, na ∈ V if s0[nb.char] + 1 = s0[na.char]
4 add edge < nb, na > to E;

Invoke an insertion o in state s:
1 if ∃n ∈ V : n.char = o.c

2 n.counter ← n.counter + 1;
3 else add a new node n to V such that
4 n.char ←c; n.counter ←1; n.color ←white;
5 if ∃nb ∈ V : nb.char = s[o.p− 1]
6 add < nb, n > to E if < nb, n >6∈ E;
7 if ∃na ∈ V : na.char = s[o.p]
8 add < n, na > to E if < n, na >6∈ E;

Invoke a deletion o in state s:
1 find n ∈ V such that n.char = o.c;
2 if s[o.p] 6= o.c

3 n.color ← red;
4 elseif n.color 6= red

5 n.counter ← n.counter − 1;
6 n.color ← red if n.counter = −1;

Fig. 16. Maintaining a global graph G.

Every invocation of any o is always relative to some state s at some site. The

local invocation of an insertion o always leads to the creation of a new node n in G

with n.char = o.c, n.counter = 1, and n.color = white. After that, every remote

invocation of insertion o increments n.counter by one. The invocation of o in s will

cause a new character o.c to be inserted between two characters s[o.p− 1] and s[o.p].

Hence if these two characters exist, we also add the two edges < na, n > and < n, nb >

into G, where na.char = s[o.p− 1] and nb.char = s[o.p].

The invocation of any deletion o on G is trickier because o.p may point to different

characters in different execution states. Since o.c is a constant once o is generated

47

and we never delete nodes in G, it can be shown that we can always find the node

n ∈ V that contains character o.c. If s[o.p] fails to point to the right character o.c, we

turn the color of n to red. Otherwise we decrement n.counter by one. If n.counter

has been decremented this way more than N times, we also turn the color of that

node to red.

2. Definitions of Key Concepts

As an analysis tool rather than a specific concurrency control algorithm, the graph

maintenance algorithm in Figure 16 itself does not calculate the execution form of any

operation in its execution state. Instead, the operation parameters (esp. position)

are determined by the group editor (specifically its concurrency control algorithm).

The graph detects possible inconsistent behavior of the group editor.

Definition 9 An effect relation graph G is consistent iff G is acyclic and without red

nodes.

We use Gf to denote the consistent graph resulted after all generated operations

have been invoked at all sites. Due to the algorithm in Figure 16, no node is ever

deleted from the graph. Hence every character that ever appears in the system has a

corresponding node in Gf . Let Ct be the set of characters that ever appear.

Definition 10 For any given two characters c1, c2 ∈ Ct, we say c1 ≺ c2 iff there

exists a path from node n1 to n2 in Gf , where n1.char = c1 and n2.char = c2.

In general relation ≺ may only be a partial order. For example, if ‘x’ is deleted

from state “axb” and then ‘y’ is inserted to yield “ayb”, it does not order characters

‘x’ and ‘y’ directly unless ‘x’ is recovered to be in the same state as ‘y’. However, for

any two characters c1, c2 ∈ Ct, if they ever appear in the same state of a group editor,

48

their relation must have been determined by the group editor, or more specifically, its

concurrency control (do or undo) algorithm. There must be two nodes that contain

c1 and c2, respectively, in the graph and at least one path exists between them.

Definition 11 A state s corresponds to a graph G iff (1) for every c ∈ s, there is

one and only one node n ∈ G such that n.char = c, and (2) for every node n in G,

there is one and only one character c ∈ s such that c = n.char.

Definition 12 A given state s is reachable iff s corresponds to a subgraph of Gf and

for any two characters c1, c2 ∈ s, if s[c1] < s[c2] then c1 ≺ c2 holds.

Corollary 4 Given any reachable state s, its corresponding graph is a subgraph of

Gf and consistent.

Definition 13 Any operation o is admissible in state s = dst(o) iff s is reachable (or

its corresponding graph G is consistent) and its invocation yields a consistent graph.

Axiom 1 The initial state s0 is reachable.

Axiom 2 The graph constructed from s0 is consistent.

Assumption 1 Any operation o is admissible in its generation state s if s is reach-

able.

Definition 14 An operation sequence sq is an ordered list of operations such that

sq[i + 1] is defined in the state resulted from executing sq[i], or dst(sq[i + 1]) =

exec(dst(sq[i]), sq[i]), where 0 ≤ i < |sq| − 1. In particular, state dst(sq[0]) is called

the definition state of sq, or dst(sq) = dst(sq[0]).

Let s = dst(sq). Then sq is executed in s as follows: first execute sq[0] in s, then

execute sq[1] in state exec(s, sq[0]), and so forth. We extend the notion of operation

49

execution such that s′ = exec(s, sq) = exec(exec(s, sq[0]), sq[1, n−1]), where n = |sq|

and sq[1, n− 1] is the subsequence of sq ranging from its second to last operation.

Definition 15 Any operation sequence sq is admissible if every operation in sq is

admissible (in its definition state).

Lemma 16 Given an operation sequence sq, let s = dst(sq) and s′ = exec(s, sq). If

s is reachable and sq is admissible, then s′ is also reachable.

Definition 16 Given two sequences sq1 and sq2 defined in the same state s, or s =

dst(sq1) = dst(sq2), we say that they are effects equivalent, denoted by sq1 ∼ sq2, iff

their execution in s yields the same final state.

3. Correctness of Group Editors

Definition 17 Assume all sites start from the same initial state s0, a group editor

is correct if the following two criteria are always satisfied:

1. Causality preservation: For any operations o1 and o2, if o1 → o2, then o1 is

executed before o2 at any site.

2. Admissibility Preservation: The invocation of every operation is admissible in

its execution state.

Given a reachable initial state, the graph remains consistent as admissible oper-

ations are invoked, because no invocation introduces a new cycle or red node. As a

result, in the quiescent state, in which all generated operations have been executed

at all sites, the final graph Gf is consistent and relation ≺ is well-defined. That is,

the invocation of every operation eventually preserves the effect relation ≺.

This model can be used to check the correctness of existing group editors and

concurrency control algorithms, even if they do not explicitly have the notion of effects

50

relation. Due to the causality-preserving process of graph construction, the order be-

tween characters is essentially established by the initial state and invocations of local

operations in their generation states. A group editor is correct if the execution of any

operation (in group do or undo) does not contradict the character order established

earlier by itself, i.e., not causing inconsistencies in the graph by introducing cycles

and red nodes. The existence of a cycle between any two nodes (say n1 and n2) in

the graph means that n1.char precedes n2.char in some state while n2.char precedes

n1.char in some other state. The existence of a red node n in the graph means that

the character n.char has been wrongly deleted. Either case often leads to divergence

of states at different sites or the violation of the established character order even if

the final states converge.

In Definition 17, we do not include an explicit convergence condition as in pre-

vious work [10, 16, 25, 5]. This is because convergence is implied by the two given

conditions. Assuming that each site maintains a history of locally executed opera-

tions, the following theorem asserts that all replicas of the shared data converge in

the quiescent state.

Theorem 3 In a correct group editor, after all generated operations are executed at

all sites, any two histories in the system are effects equivalent.

Therefore, the key problem for any concurrency control algorithm in a group ed-

itor is to ensure that every remote operation is admissible in its execution state. Here

we address this problem in the context of operational transformation. Section C first

examines the sufficient conditions under which two operations commute while ensur-

ing admissibility. Then Section D gives an OT-based concurrency control algorithm

based on these sufficient conditions.

51

C. Transformation Functions and Conditions

Two operations o1 and o2 commute if the two different orders of their execution in the

same state s yield the same state s′. That is, s′ = exec(s, [o1, o2]) = exec(s, [o2, o1]),

or simply [o1, o2] ∼ [o2, o1].

However, two operations may not commute if they are executed in different orders

as they are. For example, let s=“abc” be the state in which o1 = ins(1, ‘x’) and o2

= ins(2, ‘y’) are defined. o1 is to insert ‘x’ between ‘a’ and ‘b’ and o2 is to insert ‘y’

between ‘b’ and ‘c’. If o1 is executed first in s, we get s1 = exec(s, o1) = “axbc”. If

we execute o2 in state s1 as it is, we get s12 = exec(s1, o2) = “axybc”. Similarly in

the other execution order we get s21 = exec(s, [o2, o1]) = “axbyc”. Obviously these

two resulted states are not the same, or [o1, o2] 6∼ [o2, o1].

The basic idea of operational transformation (OT) [10] is to transform operations

such that almost any pair of operations commute. The problem is to determine the

transformed versions of o1 and o2 (o′1 and o′2, respectively) such that [o1, o
′
2] ∼ [o2, o

′
1].

In the above example, o′1 = ins(1,‘x’), o′2 = ins(3,‘y’), and

exec(s, [o1, o
′
2])=exec(s, [o2, o

′
1])=“axbyc”.

We define three basic commute operators in Section 1. However, counterexamples

show that these operators may not work correctly in some boundary cases [14]. Hence

we study their sufficient conditions in Sections 4– 6.

1. Commute Operators

For any two operations o1 and o2, we say o2 depends on o1, iff o2 deletes the character

inserted by o1, or more formally, o1.t = ins, o2.t = del, o1.c = o2.c and o1 → o2.

Similar to [5], we say any two operations o1 and o2 are contextually equivalent,

denoted as o1 ⊔ o2, iff dst(o1) = dst(o2); they are contextually serialized, denoted

52

as o1 7→ o2, iff dst(o2) = exec(s, o1), where s = dst(o1).

An operation o is a transformed version of o′ if they are different invocations

of the same operation in different states. Note only the position parameter of an

operation is state-dependent. We define three binary commute operators, inclusion

transformation (IT), exclusion transformation (ET), and SWAP, as follows.

Function 13 IT(o1, o2): o′1

1 if o2.p < o1.p

2 if o2.t = ins
3 o1.p← o1.p + 1;
4 else if o2.t = del
5 o1.p← o1.p− 1;
6 else if o2.p = o1.p

7 if o1.t = del ∧ o2.t = ins
8 o1.p← o1.p + 1;
9 else if o1.t = o2.t = ins ∧ o1.id > o2.id

10 o1.p← o1.p + 1;
11 else if o1.t = o2.t = del
12 o1 ← φ;
13 return o′1 ← o1;

Fig. 17. Including the effect of o2 into o1

The purpose of o′1 = IT(o1, o2), where o1 ⊔ o2, is to include the effect of o2 into

o1 such that o2 7→ o′1. Figure 17 defines the basic rules of IT(o1, o2). Let s = dst(o1)

= dst(o2) and s′ = exec(s, o2) = dst(o′1). If o1.p > o2.p and o2.t = ins, meaning that

o2 inserts a character on the left of the target position of o1, we increment o1.p by

one because the original position of o1 has been shifted by the execution of o2. If o2

deletes a character on the left of the target position of o1, or o1.p > o2.p and t(o2) =

del, we decrement o1.p by one. If o1 deletes at the same position as o2 inserts (lines

7-8), we increment o1.p by one because the original character o1.c in s has been shifted

by the insertion of o2.c. For the two cases in lines 9 and 11, we define the following

53

two policies:

1. If o1 and o2 insert at the same position in s, we compare their site ids to order

o1.c and o2.c such that one with a smaller site id precedes the other (lines 9-10).

Hence we increment o1.p if o2.id < o1.id.

2. If o1 and o2 attempt to delete the same character in s, denoted as o1.c ≡ o2.c,

the one to be executed later is transformed into an identity operation φ so that

the same object will not be deleted twice (lines 11-12).

Function 14 ET(o1, o2): o′1

1 if o2.p < o1.p

2 if o2.t = ins
3 o1.p← o1.p− 1;
4 else //if o2.t = del
5 o1.p← o1.p + 1;
6 else if o2.p = o1.p

7 if o1.t = o2.t = del
8 o1.p← o1.p + 1;
9 else if o1.t = del ∧ o2.t = ins
10 return exception;
11 return o′1 ← o1;

Fig. 18. Excluding the effect of o2 from o1

The purpose of o′1 = ET(o1, o2), where o2 7→ o1, is to exclude the effect of o2

from o1 such that o′1 ⊔ o2. Figure 18 defines the basic rules of ET. If o2.p < o1.p,

meaning that o2 inserted (or deleted) a character on the left of o1.c, we decrement

(or increment) o1.p by one to exclude the effect of o2 from o1. If o1 and o2 are both

deletes and o1.p = o2.p, it means o2 deleted the character that immediately preceded

o1.c, because they delete in a tandem in state s, and hence we increment o1.p by

one to exclude the effect of o2. Otherwise if o1 deletes the character inserted by o2,

54

meaning o1.c ≡ o2.c, it does not make sense logically to exclude the effect of o2 from

o1 and we raise an exception.

Function 15 SWAP(o1, o2): < o′1, o
′
2 >

1 if o1.p > o2.p

2 if o2.t = ins
3 o1.p ← o1.p− 1;
4 else //o2.t = del
5 o1.p ← o1.p + 1;
6 else if o1.p = o2.p

7 if o1.t = o2.t = del
8 o1.p ← o1.p + 1;
9 else if o1.t = del ∧ o2.t = ins
10 return exception;
11 else if o1.t = o2.t = ins
12 o2.p ← o2.p + 1;
13 else //o1.t = ins ∧ o2.t = del
14 o2.p ← o2.p + 1;
15 else //o1.p < o2.p

16 if o1.t = ins
17 o2.p ← o2.p + 1;
18 else //o1.t = del
19 o2.p ← o2.p - 1;
20 return < o1, o2 >;

Fig. 19. SWAP [o2, o1] into [o′1, o
′
2]

The third commute operator SWAP(o1, o2) is to transpose two operations o2, o1,

where o2 7→ o1, into o′1, o
′
2, such that o′1 7→ o′2 and [o2, o1] ∼ [o′1, o

′
2]. Conceptually this

amounts to first processing o′1 = ET(o1, o2) to get o′1⊔o2 and then o′2 = IT(o2, o
′
1) to get

o′1 7→ o′2. As will be shown later, IT and ET have different sufficient conditions. This

way the correctness of SWAP will depend on both IT and ET. Observe, however,

the relation between o1.c and o2.c is known after ET is processed. Hence we can

merge the rules of ET and IT to define SWAP, as shown in Figure 19, and then the

correctness condition of SWAP is equivalent to that of ET.

55

2. Problems and Analysis

Our definitions of IT and ET are similar to most definitions in the literature, including

[10, 16, 5, 33], in that they all only use the basic parameters of an operation o such

as o.p, o.id, and o.tp. These definitions are intuitive and straight-forward. However,

IT and ET as defined are not always able to work correctly.

s0=“abc”
Site 1 Site 2 Site 3

o1=ins(2,‘x’)
o2=del(1,‘b’) o3=ins(1,‘y’)

Fig. 20. A well-known scenario that suggests problems in previous commutativity con-

ditions.

na nb nc

ny nx

Fig. 21. G′ after the local invocations of o1, o2, o3.

nb nc

ny nx

na

Fig. 22. G′′ is cyclic (inconsistent) after invoking o′1, o
′′
3 at site 2.

The following example illustrates a well-known scenario that first appeared in [25,

5]. Suppose three sites start from the same initial state s0 = “abc”. Three concurrent

operations o1 = ins(2, ‘x’), o2 = del(1, ‘b’) and o3 = ins(1, ‘y’) are generated, as shown

in Figure 20.

56

Let G be the effect relation graph constructed from s0. Hence G only contains

three nodes na, nb and nc, corresponding to ‘a’, ‘b’ and ‘c’, respectively. The local

invocations of o1, o2, o3 yield G′ as shown in Figure 21, where nx and ny correspond

to ‘x’ and ‘y’, respectively.

Here we only consider site 2. The reader can similarly try the invocations of

operations at other sites. After o2 is generated and invoked locally, the state of site

2 is s1
2 = “ac”. Then o1 and o3 are received and invoked in a tandem. First we get o′1

= IT(o1, o2) = ins(1,‘x’), and s2
2 = exec(s1

2, o
′
1) = “axc”. Invoking o′1 at site 2 adds

edge < na, nx > to G′. Next we have o′3 = IT(o3, o2) = ins(1,‘y’) and o′′3 = IT(o′3, o
′
1)

= ins(2,‘y’). The execution of o′3 in state s2
2 yields s3

2 = “axyc”. Invoking o′′3 at site 2

adds edge < nx, ny > to G′, which yields a cycle as shown in Figure 22. Obviously

o2 and o′1 are admissible but o′′3 is not.

It is easy to verify that the uses of IT in the above scenario satisfy the pre-

condition, contextual equivalence, as is defined in [11, 5]. Hence this well-accepted

precondition is not sufficient. Similar problems exist with the well-accepted precon-

dition, contextual serialization, of ET [11, 5], as shown in [19, 14]. In Section 4 and 5,

we will identify a set of sufficient conditions of IT and ET, respectively.

3. Deciding the Effect Relation

To determine the relation between any two given objects, if we know whether or not

there exists at least one object between them, the problem becomes more straight-

forward.

Definition 18 [Landmark Object] For any three objects x1, x2, x3 ∈ Ct, we say

that x3 is a landmark object between x1 and x2, iff either x1 ≺ x3 ≺ x2 or x2 ≺ x3 ≺

x1.

57

Let Ct be the set of objects that ever appear in a group editing session. We

denote the set of landmark objects between x1 and x2 as Cld(x1, x2) = {x3 ∈ Ct|x1 ≺

x3 ≺ x2 ∨ x2 ≺ x3 ≺ x1}. It is abbreviated as Cld when there is no confusion in the

context. Since it is the existence of Cld that matters in determining the relation of x1

and x2, we do not really need to compute the whole set of Cld.

To be specific, for any two insertions o1 and o2, we decompose Cld(o1.c, o2.c) into

two complementary object sets, C1 and C2, where C1 consists of the effect objects of

operations that happened before neither o1 nor o2, and C2 includes the effect objects

of operations that happened before either o1 or o2. More formally, C1 = {o.c ∈

Ct|o.v 6< max(o1.v, o2.v)}, and C2 = Ct - C1 - {o1.c, o2.c}.

Lemma 17 For any two insertions o1 and o2, objects in C1 = {o.c ∈ Ct|o.v 6<

max(o1.v, o2.v)} is not necessary for determining the relation between o1.c and o2.c.

Proof. Let o.c be any object in C1. By definition we have o 6→ o1 and o 6→ o2. Not

violating causality, the execution of o, o1 and o2 at any site i could be in one of the

following three orders: (1) o is executed before both o1 and o2, (2) o is executed after

both o1 and o2, or (3) o is executed between o1 and o2. Without loss of generality,

assume that o1 is executed before o2. In the execution path of case (2), when o2 is

executed, site i does not even know the existence of o only by its local information.

Hence the correct execution of o2 should not have relied on o. That is, the relation

between o1.c and o2.c can be determined without knowledge of o and thus C1 is not

necessary in this case. In cases (1) and (3), due to causality preservation, the effect

relation of o1 and o2 can be correctly determined only by C2. Hence the information

carried in o is redundant, meaning C1 is also not necessary for determining the relation

of o1 and o2 in these two cases.

58

Due to Lemma 17, in the remainder of this chapter, we always use landmark

objects that appear in C2 for Cld(o1.c, o2.c). This effectively narrows down the scope

of landmark object set and eases proofs.

4. Conditions of IT

Theorem 4 Given o′1 = IT(o1, o2), where o1⊔o2 and they are both defined in s, then

o′1 is admissible in s′ = exec(s, o2), if o1 and o2 are admissible in s and one of the

following conditions holds:

1. o1.p 6= o2.p

2. (o1.p = o2.p) ∧ ((o1.t = ins ∧ o2.t = del) ∨ (o1.t = del ∧ o2.t = ins) ∨

(o1.t = o2.t = del))

3. (o1.p = o2.p) ∧ (o1.t = o2.t = ins) ∧ (o1 ‖ o2) ∧ Cld(o1.c, o2.c) = ∅

This theorem is proved by the following three lemmas.

Lemma 18 o′1 is admissible in s′ if condition (1) holds.

Proof. Without loss of generality, assume o2.p < o1.p. We need to prove four cases:

(1) o1.t = o2.t = ins, (2) o1.t = del ∧ o2.t = ins, (3) o1.t = ins ∧ o2.t = del, and (4)

o1.t = o2.t = del. For space reasons, here we only prove (1). Proofs of other cases are

similar.

Let G is the consistent graph corresponding to s. Due to o2.p < o1.p, we have

o2.p − 1 < o2.p ≤ o1.p − 1 < o1.p. Consider the four characters c1 = s[o2.p − 1],

c2 = s[o2.p], c3 = s[o1.p−1], and c4 = s[o1.p]. Their relation is either c1 ≺ c2 ≺ c3 ≺ c4

or c1 ≺ c2 ≡ c3 ≺ c4.

Since o2 is admissible in s, the invocation of o2 on G produces a consistent graph

G′ and s′ is also reachable. It introduces a new node containing o2.c and two new

59

edges if they are not in G yet: one from c1 to o2.c and the other from o2.c to c2. This

does not change the order between c1, c2, c3, and c4. Relative to s′, however, because

of the insertion of o2.c, we have c1 = s′[o2.p − 1], o2.c = s′[o2.p], c2 = s′[o2.p + 1],

c3 = s′[o1.p], and c4 = s′[o1.p + 1]. Their relation is either c1 ≺ o2.c ≺ c2 ≺ c3 ≺ c4 or

c1 ≺ o2.c ≺ c2 ≡ c3 ≺ c4.

By the definition of IT in Fig. 17, we have o′1.p = o1.p+1. Hence c3 = s′[o′1.p−1],

and c4 = s′[o′1.p]. The invocation of o′1 on G′ produces graph G′′, which introduces

a new node containing o1.c and two new edges (if the node and edges are not in

G yet): one from c3 to o1.c and the other from o1.c to c4. Their relation is either

c1 ≺ o2.c ≺ c2 ≺ c3 ≺ o1.c ≺ c4 or c1 ≺ o2.c ≺ c2 ≡ c3 ≺ o1.c ≺ c4. No new cycle is

introduced by o′1. Hence G′′ is also consistent, which means that o′1 is admissible in

s′.

Lemma 19 o′1 is admissible in s′ if condition (2) holds.

Lemma 20 o′1 is admissible in s′ if condition (3) holds.

Proof. Since the assertion must hold in spite of specific execution order of con-

current operations, we consider a simple case in which the effects of all operations

concurrent with both o1 and o2 are not in s.

Let G be the consistent graph corresponding to state s, ca = s[o2.p − 1], and

cb = s[o2.p]. The invocation of o2 on G yields a consistent graph G′, which introduces

a new node containing o2.c and two new edges (if they are not in G yet): one from

ca to o2.c and the other from o2.c to cb. Due to o1.p = o2.p, the invocation of o1 in

G would similarly yield a consistent graph with a new node containing o1.c and two

new edges: one from ca to o1.c and the other from o1.c to cb. Now invoke o1 on G′

and add node o1.c and edges < ca, o1.c > and < o1.c, cb > first without considering

the relation between o1.c and o2.c. Let the resulting graph be G′′.

60

Due to the previous analysis, we know that the landmark characters in the graph

are not always present in the current execution state s. However, if we can somehow

find a transformation path such that state s includes all possible landmark charac-

ters, namely, Cld(o1.c, o2.c) ⊆ s, deciding the relation between o1.c and o2.c becomes

straightforward. Specifically, if Cld(o1.c, o2.c) 6= ∅, there must be at least one land-

mark character between o1.c and o2.c in s and G. This implies o1.p 6= o2.p, which is

the case of condition (1). On the other hand, if Cld(o1.c, o2.c) = ∅, the node of o1.c

and the node of o2.c are unorderable in G′′. Then only adding an edge between node

o1.c and node o2.c introduce no new cycle in G′′. According to the IT function in

Fig. 17, if o1.id < o2.id, an edge < o1.c, o2.c > is added; or otherwise < o2.c, o1.c > is

added.

5. Conditions of ET and SWAP

Theorem 5 Given o′1 = ET(o1, o2), where o2 7→ o1 and o2 is defined in s, then o′1 is

admissible in s, if o2 is admissible in s, o1 is admissible in s′ = exec(s, o2), and one

of the following conditions holds:

1. o1.p 6= o2.p

2. (o1.p=o2.p) ∧ (o1.t=o2.t=ins)

3. (o1.p=o2.p) ∧ (o1.t=o2.t=del)

4. (o1.p=o2.p) ∧ (o1.t=ins) ∧ (o2.t=del) ∧ (o2 → o1)

Lemma 21 o′1 is admissible in s if condition (1) holds.

Lemma 22 o′1 is admissible in s if condition (2) holds.

Proof. By the ET rules in Fig. 18, o′1.p = o1.p in state s. Let G be the consistent

graph corresponding to s. The invocation of o′1 on G yields graph G′, in which a new

61

node containing o1.c and two new edges are introduced (if not in G yet): one from

s[o1.p − 1] to o1.c and the other from o1.c to s[o1.p]. This does not generate a cycle

given G is acyclic. Hence G′′ is consistent and o′1 is admissible in s.

Lemma 23 o′1 is admissible in s if condition (3) holds.

Lemma 24 o′1 is admissible in s if condition (4) holds.

Proof. By the ET rules in Fig. 18, o′1.p = o1.p in state s. Let G be the consistent

graph when o1 has only been invoked once locally. Then the two nodes in G containing

o1.c and o2.c, respectively, are not ordered in G. Since G is acyclic, addition of either

< o1.c, o2.c > or < o2.c, o1.c > in G does not introduce any new cycle. When o′1 is

any remote invocation, if we take a consistent policy here to add the edge between

o1.c and o2.c, no cycle will result. Therefore o′1 is admissible.

6. Conditions of Reordering Sequences

Definition 19 [Causality-Preserving Sequence] An operation sequence sq is causality-

preserving iff for any two operations sq[i] and sq[j], where 0 ≤ i, j < |sq|, if sq[i] →

sq[j], then i < j must hold.

In a causality-preserving sequence sq, for any o ∈ sq, all operations in sq that

happened before o must precede o.

Definition 20 [Dependency-Preserving Sequence] An operation sequence sq is

dependency-preserving iff for any two operations sq[i] and sq[j], where 0 ≤ i, j < |sq|,

if sq[j] depends on sq[i], then i < j must hold.

In a dependency-preserving sequence sq, any operation that depends on any o

must follow o in sq. The cause-effect relation is only preserved between pairs that

62

have dependencies. Hence a causality-preserving sequence must also be dependency

preserving, but not vice versa.

Definition 21 [ID Sequence] Given a sequence sq, it is an ID sequence, iff ∀i, j :

0 ≤ i, j < |sq|, i < j if either (1) sq[i].t = ins ∧ sq[j].t = del, or (2) sq[i].t =

sq[j].t ∧ sq[i]→ sq[j].

Notation sq1 • sq2 returns the concatenation of two sequences and sq • o appends

an operation o to the end of sequence sq. By definition, an ID sequence sq is the

concatenation of an insertion subsequence sqi and a deletion subsequence sqd, or

sq = sqi • sqd. Note that both sqi and sqd are causality-preserving; sequence sq is

dependency-preserving but not necessarily causality-preserving.

Definition 22 [HC and IHC Sequences] Given an operation o and a sequence

sq, we say that sq is an HC sequence with regard to o, iff ∀i, j : 0 ≤ i, j < |sq|, i < j

if either (1) sq[i] → o ∧ sq[j] ‖ o, or (2) sq[i] → sq[j]. If all operations in an HC

sequence sq are insertions, we say that sq is an IHC sequence.

By definition, an HC sequence sq w.r.t. o is a concatenation of two subsequences

sq = sqh • sqc, where sqh includes all operations in sq that happened before o and

sqc includes all operations concurrent with o. Note sq, sqh and sqc are all causality-

preserving sequences.

Theorem 6 Given an admissible sequence sq • o, where sq is an ID sequence and o

is a local invocation, there must exist an ID sequence sq′ such that (sq • o) ∼ sq′.

Proof. The fact that o is a local invocation implies all operation in sq happened

before o. If o is a deletion, we get sq′ by appending o to sq, or sq′ = sq •o. Since sq is

an ID sequence, we rewrite sq = sqi • sqd, where sqi is an insertion sequence and sqd

63

is a deletion sequence. If o is an insertion, we first swap o with every operation in sqd

from right to left, yielding sq′d and o′ as the result, and then get sq′ = sqi • o′ • sq′d.

By Theorem 5, this is correct.

Theorem 7 Given an admissible operation o and an admissible, causality-preserving

sequence sq, where all operations in sq are insertions, there must exist an IHC se-

quence sq′ with regard to o such that sq ∼ sq′.

Function 16 convert2IHC(o, sq): sq′

1 sqh ← ∅; sqc ← ∅; // empty sets
2 for(j = 0; j < |sq|; j + +)
3 if sq[j] ‖ o

4 sqc ← sqc • sq[j];
5 else //if sq[j]→ o

6 for(k = |sqc| − 1; k ≥ 0; k −−)
7 <sq[j], sqc[k]> ← SWAP(sq[j], sqc[k]);
8 sqh ← sqh • sq[j];
9 return sq′ ← sqh • sqc;

Fig. 23. To convert a causality-preserving insertion sequence into an IHC sequence

Proof. Fig. 23 gives an algorithm for finding the required sq′. The algorithm scans

the input sequence say sq from left to right and appends every operation concurrent

with o to sequence sqc. Every operation that happened before o is swapped with sqc

and the result is appended to sequence sqh. Obviously if the input sq is causality

preserving, then sqh and sqc are each causality preserving. Since sq is an insertion

sequence, SWAP is only used between insertions in the algorithm. By Theorem 5,

this is correct.

64

D. Integration Algorithm

The conditions in Theorems 4, 5, 6 and 7 are sufficient because the assertions always

hold once they are satisfied. This section gives algorithms for executing local and

remote operations. The main idea is to ensure every operation is admissible in its

execution state, by satisfying these sufficient conditions while avoiding conditions that

are not included.

We consider a group editor of N sites that start from the same initial state s0.

For simplicity, we assume a reliable network environment without network partition

or node failure. Each site maintains a queue RQ to store remote operations received

from other sites. To ensure causality preservation, a remote operation is invoked only

when it is causally ready [10, 5]: Given a remote operation o generated at site i, o is

causally ready at site j, iff (1) o.v[i] = svj[i] + 1 and (2) for ∀k 6= i : o.v[k] ≤ svj[k].

Each site maintains an operation log H, which is an ID sequence. H is often

rewritten as H = Hi•Hd, where Hi includes all the insertions and Hd all the deletions.

Figure 24 gives the control algorithm at site i. Every time a local operation o is

generated, we always execute it directly in its generation state s = exec(s0, H). All

operations in H happened before o and o is admissible in s. After o is executed, we call

function updateHL(o,H) to compute its admissible form o′ in state s′ = exec(s0, Hi),

the state just after only all insertions (that happened before o) have been invoked in

s0. Then we propagate o′ to remote sites.

We scan RQ from left to right for the first causally-ready remote operation o.

Then o is removed from RQ and function updateHR(o,H) is called to compute its

admissible form o′ in current state s=exec(s0, H). Then if o′ is not φ, we execute o′

in s. In fact, o′ is φ only when two sites concurrently attempt to delete the same

character. In this case, to avoid the appearance of red nodes in the (conceptual)

65

Initialize:
1 RQ←∅; H←∅;
2 sv←< 0, 0, ..., 0 >

Invoke (generate) a local operation o:
1 execute o;
3 sv[i] ← sv[i] + 1;
4 o.v ← sv;
5 < o′, H > ← updateHL(o, H);
6 broadcast o′ to other sites;

Receive o from network:
1 RQ← RQ • o;

Invoke a remote operation:
1 if ∃RQ[k] that is causally-ready
2 o ← RQ[k]; remove RQ[k] from RQ;
3 < o′, H > ← updateHR(o, H);
4 if(o′ 6= φ) execute o′;
5 sv[j] ← sv[j]+1 where j = o.id;

Fig. 24. The control algorithm at site i

effect relation graph, the deletion to be invoked later is transformed into an identity

operation φ and discarded.

Figure 25 defines function updateHL(o,H), which serves two purposes: (1) to

compute the admissible form of o in state s′ = exec(s0, Hi), and (2) to add o into H.

We know H = Hi •Hd is an ID sequence and o is generated in state s = exec(s0, H).

Hence its admissible form o′ relative to s′ can be computed by swapping o from right

to left with every operation in Hd. Then if o.t = del, we append the original form o

to H; or if o.t = ins, we append o′ to Hi. This is actually the algorithm used in the

proof of Lemma 6.

Figure 26 shows function updateHR(o,H), which serves two purposes: (1) to

compute the admissible form of o in current state s = exec(s0, H), and (2) to add o

into H. When a remote operation o is received, according to function updateHL(),

66

Function 17 updateHL(o, H): < o′, H ′ >

1 o′ ← o; L← H;
2 for(i = |Hd| − 1; i ≥ 0; i−−)
3 < o′, Hd[i] > ← SWAP(o′, Hd[i]);
4 if o.t = del
5 H ← L • o;
6 else // o.t = ins
7 H ← Hi • o′ •Hd;
8 return < o′, H >;

Fig. 25. To add a local operation o into H and make o′ admissible in s′ = exec(s0, Hi)

Function 18 ITSQ(o, sq): o′

1 for(i=0; i < |sq|; i + +)
2 o← IT(o, sq[i]);
3 if(o = φ) break;
4 return o′ ← o;

Function 19 updateHR(o, H): < o′, H ′ >

1 Hi ← convert2IHC(o, Hi); // Hi = Hih •Hic

2 o′′ ← ITSQ(o, Hic);
3 o′ ← ITSQ(o′′, Hd); // H = Hih •Hic •Hd

4 if o′ 6= φ and o.t = del
5 H ← H • o′;
6 else if o.t = ins
7 ox ← o′′; // to protect o′′ for line 12
8 for(k = 0; k < |Hd|; k + +)
9 oy ← ox; // to protect ox for line 11
10 ox ← IT(ox, Hd[k]);
11 Hd[k] ← IT(Hd[k], oy);
12 H ← Hi • o′′ •Hd;
13 return < o′, H >;

Fig. 26. To add a remote operation o into H and make o′ admissible in s = exec(s0, H).

67

it must have excluded the effects of all deletions that happened before o and have

included the effects of all insertions that happened before o. However, o must have

not included the effects of any operations in Hd and may not have included the effects

of all operations in Hi, because Hi may contain insertions concurrent with o.

Therefore we first call function convert2IHC(o,Hi) to transpose Hi into an IHC

sequence Hih • Hic with regard to o. Due to causality preservation and function

updateHL(), o must be admissible in state exec(s0, Hih). In line 2 we transform

o such that the result o′′ is admissible in state s′ = exec(s0, Hi), by calling o′′ =

ITSQ(o,Hic) to include the effects of Hic into o. Then in line 3 we perform o′ =

ITSQ(o′′, Hd) such that o′ is admissible in current state s.

After that, we add o into H, as follows: If o is a deletion, we append o′ to H

directly if it is not φ. However, if o is an insertion, we add o′′ between Hi and Hd

(line 12) and thus have to include the effect of o′′ into every operation in Hd (lines

7-11). To achieve the latter, it is not enough to just do IT in line 11. In the loop of

lines 8-11, initially we have o′′ ⊔Hd[0]. For every k, since ox ⊔Hd[k], we include the

effect of Hd[k] into ox and, at the same time, the effect of ox into Hd[k] such that the

resulted ox satisfies Hd[k + 1] ⊔ ox and next time we still inclusively transform two

context equivalent operations Hd[k + 1] and ox.

1. Analysis and Proof

The time to invoke a local operation is dominated by the execution of updateHL(),

which is obviously O(|Hd|). The time to invoke a remote operation is dominated

by function updateHR(). Inside function updateHR(), lines 2 and 3 (8-11) take

time O(|Hic|) and O(|Hd|), respectively. By Figure 23, the worst-case and expected

execution time of convert2IHC(o,Hi) is O(|Hi|
2). Since Hi = Hih •Hic, the time to

invoke a remote operation is O(|Hi|
2 + |Hd|).

68

Lemma 25 Given an admissible operation o and an admissible ID history H =

H1 • H2, where (1) o and H2 are contextually equivalent, (2) H1 is an insertion

sequence, and (3) all operations in H that happened before o are in H1, then o′ =

ITSQ(o, H2) is admissible.

Proof. Let |H2| = n. The assertion trivially holds when n = 0. We prove that o′ is

admissible by induction on n > 0.

Base: n = 1. Let o′ = IT(o, H2[0]). We only consider the case in which o.p =

H2[0].p and o.t = H2[0].t = ins because other cases are easy to prove. Because all

operations in H1 are insertions, no character has been deleted in dst(o). Characters

in Cld(o.c,H2[0].c) must be all in dst(o) if they exist at all. By Lemma 20, o′ is

admissible.

Induction: n = k → k + 1. Assume that ok = ITSQ(o, H2[0, k − 1]), where

k > 0, is admissible. Let o′ = IT(ok, H2[k]). Similarly here we only consider the case

of o.t = H2[k].t =ins and o.p = H2[k].p. Because H1•H2 is an ID sequence and sq[k].t

= ins, then H1 •H2[0, k − 1] must be an insertion sequence. Hence Cld(o
k.c,H2[k].c)

must be all in state dst(ok) if they exist at all. By Lemma 20, the result o′ is

admissible.

Lemma 26 The control algorithm ensures that the invocation of any operation is

admissible.

Proof. We prove this assertion by induction on n invocations at any site i. When

n = 1, it is trivially true. Assume the first k invocations are admissible at site i .

Consider the (k + 1)th invocation o in the following two cases.

First, o is a local operation. By Assumption 1, o is admissible in current state.

To ensure the correctness of performing forthcoming remote operations, we maintain

H as an ID sequence and call function updateHL(o,H) to reorder H • o into another

69

ID sequence, the correctness of which is ensured by Lemma 6. Therefore both the

updated H and propagated o′ are admissible.

Second, a remote operation o generated at site j is invoked at site i, where i 6= j.

Function updateHR(o,H) is called to make it admissible in the current state s. In

updateHR(), first Hi is converted into an IHC sequence Hih • Hic with regard to o.

Lemma 7 ensures the correctness of this step. Hence we have H = (Hih • Hic) •

Hd = Hih • (Hic • Hd), The next step of updateHR() is to compute o′ = ITSQ(o,

Hic •Hd). Due to causality preservation and function updateHL(), o is admissible in

state exec(s0, Hih). Hence o and Hic are contextually equivalent. By Lemma 25, o′ is

admissible in s.

2. Examples

na nb nc

ny nx

Fig. 27. A consistent graph corresponding to the example shown in Figure 20.

We use the example in Fig. 20 to illustrate how our approach works.

Site 1: When o2 arrives, we compute o
s1

1

2 = IT(o2, o1) = del(1, ‘b’). After o3

arrives, H1 = [o1, o
s1

1

2]. We get o
s2

1

3 = ins(1, ‘y’) and update H1 to [o1, o
s1

1

3 , o
s2

1

2], where

o
s1

1

3 = ins(3,‘y’) and o
s2

1

2 = del(2,‘b’). The execution of o
s2

1

3 leads to state s3
1 = “ayxc”.

Site 2: When o1 arrives, H2 = [o2]. By updateHR(), we get o
s1

2

1 = ins(1, ‘x’) and

o
s1

′

2

2 = del(1, ‘b’). As a result, H2 = [o1, o
s1

′

2

2]. When o3 arrives, we get o
s2

2

3 = ITSQ(o3,

H2) = ins(1, ‘y’). The resulting state s3
2 =“ayxc”.

Site 3: Similarly we get o
s1

3

1 = ins(3, ‘x’) and o
s2

3

2 = del(2, ‘b’). The final state is

s3
3 = “ayxc”.

70

Obviously, after the three operations are executed at all three sites, the system

converges. To check whether the system is consistent, we need to check the corre-

sponding effect relation graph G =< V,E >. Initially, V contains three nodes na, nb

and nc, and V = {(na,nb), (nb,nc)}.

At first consider the three invocations at site 1: o1 leads to a new node nx and

two new edges, (nb,nx) and (nx,nc); o
s1

1

2 does not change the vertexes and edges of

G; and o
s2

1

3 leads to a new node ny and two new edges (na,ny), (ny,nx). After these

invocations at site 1, G is still consistent. At site 2, the local invocation of o2 does not

change G. The invocations of o
s1

2

1 and o
s2

2

3 generate one new edge (na,nx). Similarly,

the three invocations at site 3 add one new edge, (ny,nb). After these operations have

been executed at all sites, G as shown in Fig. 27 is still consistent.

71

CHAPTER V

A GENERIC CONSISTENCY MODEL

A. Motivation

In the last two chapters, we have established two consistency models, the CE model

and the CA model. However, both of them are bound to a specific OT-based proto-

col with assumptions of characterwise do operation and linear string underlying data

structure. As a result, two corresponding frameworks that are developed based on

them are of little value for design of protocols that handle undo operations or string-

wise operations. In this chapter, we start to establish a generic model independent

of specific details of OT-based protocols and process an indepth discussion for the

correctness conditions of protocols based on the generic model.

We require that a generic consistency model should observe the following prin-

ciples:

• Completeness: The model must completely describe the system behavior, in-

cluding its operations, states, and state transitions.

• Disambiguity: The model must unambiguously specify correctness conditions

as what system behavior is legal and what is not.

• Generality: The model must be formalized independently of specific details (e.g.,

data structures) and characteristics (e.g., synchrony and optimism) of protocols

that implement the model.

• Practicability: To be useful in practice, the model must provide feasible guide-

lines as how to design consistency control protocols that fulfill the model.

Unfortunately, no consistency model proposed for interactive groupware follows

72

all the above principles to our knowledge. Those established in traditional distributed

systems [27] in general fail to address human factors and are long found unsuitable for

groupware [10, 6, 5]. Among those proposed in the groupware field, Sun et al. [5, 31]

includes conditions that are not well-formalized for verification purposes; Ressel et al.

[16] formalizes conditions but does not address how to satisfy them; The CE and the

CA models are not general because they are tightly coupled with specific protocols.

As a consequence, discovering and fixing bugs in consistency control protocols have

been a main driver of research [16, 17, 5, 11, 14]. This calls for a more general

consistency model that can serve as a guideline for the design and evaluation of a

variety of consistency control protocols for interactive groupware applications.

B. A Generic Consistency Model

In this section we formalize a consistency model based on the observable behavior of

an abstract group editor. We first examine its local behavior and then extend to its

global behavior. In the next section we elaborate guidelines for designing consistency

control protocols based on this model in the context of OT-based group editors.

1. Abstraction: I/O Machine

Assume that a group editor has a number of cooperating sites that are connected

by a computer network and coordinate themselves by message passing. We also

assume that all sites start from the same initial state and user-initiated operations

are the driver of state transitions in the system. It is not interesting in this chapter

whether the system is synchronous or asynchronous, consistency control is pessimistic

or optimistic, and how the shared data is replicated.

As shown in Figure 28, the consistency control module is abstracted as a black-

73

shared data and
consistency control

as a blackbox

input output

user interface

Fig. 28. The consistency control module as an I/O machine that translates user inputs

into observable outputs that change view states at each site.

box that translates input operations into observable output operations. Inside the

blackbox are protocol-specific data structures and algorithms. The module takes in-

put operations and executes them somehow on the internal data structures. The

execution produces observable effects on the user interface, which are abstracted as

output operations. Conceptually the input is to tell the system what to do and the

output is the user interface effects that reflect what system actually does.

As in Figure 28, we are interested in visual objects (filled circles) on the user

interface and their relationship (arrows). Objects here can be anything interesting

that appear on the user interface, texts and graphics, in a granularity of interest. On

a typical 2D, 2.5D or 3D interface, we define the relationship between objects as their

spatial order, e.g., left to right, top to bottom, and front to rear. At any moment,

it is obvious that no object can appear on the left of another object and on its right

at the same time. Hence the relationship is acyclic and can be defined as a linear

total order. To simplify discussions, we use a string-like structure to represent visual

objects and their relationship.

Note that the object relationship in our abstraction does not carry application

74

semantics. For example, consider a diagram editor which displays two nodes con-

nected by two links which form a semantic cycle. Mapping this case to our model,

these two links are also visual objects. Hence the resulting graph has four objects

and their relationship can still be defined in a total order.

We use notation E to denote the group editing system in question. Each site

runs a copy of the consistency control module. It is the consistency control mod-

ules’ responsibility to keep the local views at all sites globally “consistent”. For this

purpose, we need to first define view states and state transitions in the system.

Assume that each visual object that ever appears in the system has a unique id.

We denote the set of objects by notation X (E). A (view) state includes all objects

and their relationship that appear at one site at one moment. Notation S(E) denotes

all states in the system at all times. We use string s to denote a state and s[i] refers

to the object at the abstract position i, where 0 ≤ i < |s| and |s| denotes the number

of objects in s. For convenience, we use s[x] to denote the position of object x in a

state s.

State transitions are triggered eventually by user input but more directly by

output of the consistency control module. To distinguish, we use the term “operation”

for input from the user interface and the term “invocation” for output to the user

interface. An operation o usually triggers multiple invocations due to the existence of

multiple sites in the system. Notations I(E) and O(E) denote the sets of operations

and invocations, respectively. Notation (s, e, s′) denotes a state transition, which

means that the execution of an invocation e in a state s yields a new state s′. We

define the following primitive invocations:

• ins(p, x): insertion of a new object x at position p,

• del(p, x): deletion of object x at position p, and

75

• identity invocation φ that does not modify a state, i.e., (s, φ, s) for any state s.

Typical user operations in interactive applications, such as undo, copy-paste,

move, and update, are eventually translated into these three user interface primitives.

In particular, if an object is “moved” from one position to another, we consider that

it is deleted first at the old position and then a new object (with the same attributes,

if any) is inserted at the new position. Additionally, if an attribute (e.g., color) of

an object is modified, the object is considered to be deleted first and then another

object with the new attribute is inserted at the same position.

It is worth noting that, although all objects in any state is totally ordered, the

relationship may not be defined between any pair of objects in X (E). For example,

the relationship between a deleted object and a newly inserted object is not defined,

if they never appear in the same state.

Also note that, to have a meaningful discussion of consistency control among

cooperating sites, here we assume that all view states use the same type of relationship

at all times. As an example, consider the case of a multiuser file browser. When the

same set of file icons are sorted in different orders, it is possible that file A appears

before file B in one view but after B in another view. However, in this case, the

relationships in the two views should be labeled by their sorting criteria, e.g., file

name or size. They are not considered as the same type of relationship.

2. Developing a Global Picture

To study the “global” behavior of the system, we introduce an analysis tool called

“behavior graph”. The idea is to first construct a global graph from the initial system

state s0 and then incrementally apply every invocation on the graph. Note, however,

the behavior graph is only for theoretical analysis of consistency conditions and does

76

not have to be implemented in actual systems.

A behavior graph G is a tuple < V,E >, where V is a set of nodes (or vertexes)

and E ⊆ V ×V is a set of directed edges. Every node corresponds to an object in X (E)

and every edge represents the relationship between two objects. Each node n ∈ V

has three attributes: n.x is the object id it corresponds to; n.counter traces how the

object is inserted or deleted; and n.color indicates the status, black for normal and

red for abnormal. An edge < nb, na >∈ E means nb.x immediately precedes na.x in

some state of the system.

(a) Initialize:
(a.1) ∀x∈ s0 add a new node n to V with
(a.2) n.x=x, n.counter=N, and n.color=black;
(a.3) ∀nb, na ∈ V if s0[nb.x] + 1 = so[na.x]
(a.4) add edge < nb, na > to E;

(b) Invoke an insertion e in state s:
(b.1) if ∃n ∈ V : n.x = e.x //remote invocation
(b.2) n.counter ← n.counter + 1;
(b.3) else add a new node n to V with //local invocation
(b.4) n.x=e.x, n.counter=1, and n.color=black;
(b.5) if ∃nb ∈ V such that nb.x = s[e.p-1]
(b.6) add edge < nb, n > to E;
(b.7) if ∃na ∈ V such that na.x = s[e.p]
(b.8) add edge < n, na > to E;

(c) Invoke a deletion e in state s:
(c.1) find n ∈ V such that n.x=e.x;
(c.2) if s[e.p] 6= n.x
(c.3) n.color ← red;
(c.4) elseif n.color 6= red
(c.5) n.counter ← n.counter - 1;
(c.6) n.color ← red if n.counter < 0;

Fig. 29. Maintaining a global behavior graph G.

Figure 29 shows how G is maintained. Suppose V and E are initially empty and

77

N is the number of sites in the system. We first use the initial state s0 to initialize

G as follows: If s0 is not empty, for each object x ∈ s0 create a new node n such that

n.x = x, n.counter = N, and n.color = black. Then for any two nodes nb, na ∈ V add

an edge < nb, na > to E if nb.x precedes na.x in state s0.

Every invocation e ∈ O(E) is relative to some execution state s ∈ S(E). Suppose

that any non-identity invocation e has two attributes: e.x is the object to be inserted

or deleted and e.p is the position relative to its execution state. To invoke an insertion

e in s, we first find e.x in the graph. If it is found in node n, we increment n.counter

by one; otherwise we create a new node n with n.x = e.x, n.counter = 1, and n.color

= black. If there exists nb in G such that nb.x is at the position immediately after

which e.x is to be inserted in s, we add an edge < nb, n >. If there exists na in G

such that na.x is at the position immediately before which e.x is to be inserted in s,

we add an edge < n, na >.

Once a node is created in G, we never delete the node. When invoking a deletion

e, we can always find the node n ∈ V that contains object e.x. However, e.p may

point to different objects in different execution states. If s[e.p] fails to point to the

same object as e.x, we turn n.color to red. Otherwise we decrement n.counter by one.

If n.counter has been decremented this way more than N times, or n.counter < 0, we

turn the color of node n to red.

a. Normal Behavior Graph

It is worth emphasizing that, as an analysis tool rather than a specific concurrency

control protocol, the graph maintenance algorithm in Figure 29 itself does not cal-

culate the invocation form of any operation. Instead, the invocation parameters are

determined by the group editor or more specifically its concurrency control protocol.

The graph serves to detect possible inconsistent behavior of the system, as will be

78

shown in the remainder of this section. Here we first define the concept of “normal”

behavior graph.

Definition 23 A behavior graph G is normal iff G is acyclic and does not have red

nodes.

b. Execution Traces

An execution trace is a sequence of invocations, starting from the initial system state

s0, in the order that they are observed by (or applied on) the behavior graph. Notation

T (E) denotes the set of all possible traces in the system. In Subsection 4, we will

study what traces are “correct” and how invocations are ordered in correct traces.

By the algorithm in Figure 29, from any given trace β, we can construct a

behavior graph G, which is called the corresponding graph of β. For any trace β and

invocation e ∈ β, function prefix(β,e) returns the prefixing subsequence of β from

the first to the invocation right before e. If e is the first invocation in β, prefix(β, e)

returns an empty trace. The predecessor behavior graph of e, denoted by function

pred bg(β, e) is the corresponding graph of prefix(β, e). The successor behavior graph

of e, denoted by succ bg(β, e), is the graph obtained by invoking e on pred bg(β, e).

We say that e is an expansion of pred bg(β, e).

c. Similar Behavior Graphs

Definition 24 Given any two nodes, n1 and n2, in a normal behavior graph G, the

order between them, denoted by orderG(n1, n2), is (1) n1 ; n2, if there exists a path

from n1 to n2; (2) n2 ; n1, if there exists a path from n2 to n1; or (3) unorderable,

if there is no path between n1 and n2.

The relation ; defined above is a partial order over the set of nodes in the

79

behavior graph because not every pair of nodes are orderable. Due to the one-to-

one mapping between nodes in the graph and the set of objects X (E), relation ;

also applies to set X (E). For example, in a text editor, if ‘x’ is deleted from state

“axb” and then ‘y’ is inserted to yield “ayb”, characters ‘x’ and ‘y’ are not ordered

unless ‘x’ appears in the same state as ‘y’ somehow, e.g., by undo. In general, for

any two objects x1, x2 ∈ X (E), if they ever appear in the same state, their relation

must have been determined by the system, or more specifically, its consistency control

protocol. In that case, there must be two nodes that contain x1 and x2 in the graph,

respectively, and at least one path exists between them.

Definition 25 Any two normal graphs G1 and G2 are similar, denoted by G1 ∼ G2,

iff (1) G1 and G2 have the same set of nodes, and (2) any two nodes n1 and n2 are

ordered the same way, i.e., orderG1
(n1, n2) = orderG2

(n1, n2).

It is obvious that a normal graph is similar to itself and relation ∼ is transitive,

as stated below.

Corollary 5 Given any three normal behavior graphs G1, G2 and G3, that have the

same set of nodes (objects), if G1 ∼ G2 and G2 ∼ G3, we have G1 ∼ G3.

The equivalent relation below further requires that nodes containing the same

object ids have the same counter values.

Definition 26 Any two normal graphs G1 and G2 are equivalent, denoted by G1 ≡

G2, iff (1) G1 ∼ G2 and (2) any two nodes in G1 and G2 that contain the same object

id also have the same counter value.

3. An Example of Behavior Graph

The example in Figure 30 shows how a behavior graph G is constructed. In the

following we use x, y and b to represent visual objects of interest, which are not

80

e1=del(0,b)
e2=ins(1,x)

e2’=ins(0,x)

y(1)

site 1 site 2

e3=ins(0,y)

e3’=ins(1,y) e3’’=ins(0,y)

site 3

x(1)

b(2)

(3) trace [e1,e2,e3]

y(1) x(2)

b(2)

(4) trace [e1,e2,e3,e2’]

y(2) x(2)

b(2)

(5) trace [e1,e2,e3,e2’,e3’]

y(2) x(2)

b(2)

(6) trace [e1,e2,e3,e2’,e3’’]

s0=b

s1=[]

s2=x

s3’=xy s3’’=yx

b(3)

(2) initial state s0=b(1)

e2’

e3’

e3’’

abnormal normal

normal

normal

normal

Fig. 30. Normal and abnormal behavior graphs.

necessarily characters. To simplify notations, we replace nodes with objects that

they contain in G. Suppose three sites start from the same initial view state s0 with

only one object b. By the graph algorithm, G is initialized as in Figure 30(2), which

has only one black node b with counter value 3.

Suppose three sites respectively generate three operations o1, o2, and o3 indepen-

dently of each other. o1 by site 1 deletes object b in s0, o2 by site 2 inserts a new object

x after b in s0, and o3 by site 3 inserts a new object y before b in s0. Those operations

are first invoked locally at their generation sites as e1 = del(0,b), e2 = ins(1,x) and

e3 = ins(0,y), respectively. Without loss of generality, assume the observed trace is

β = [e1, e2, e3]. The graph corresponding to β is shown in Figure 30(3), in which the

counter of b is 2 due to the invocation of e1. When e2 is invoked locally in state s0,

it creates a new black node containing x with counter value 1 and adds an edge from

b to x because x is inserted after b. Similarly, the invocation of e3 adds a new node

y with counter 1 and a new edge < y, b >.

Now consider how o2 and o3 are invoked at site 1. After invoking e1 in state s0,

81

the view of site 1 becomes an empty state s1 without any object, i.e., s1 = s0 + e1 =

[]. Suppose the concurrency control protocol somehow translates o2 into invocation

e′2 = ins(0,x). By applying e′2 in s1 we get s2 = s1 + e′2 = x. Correspondingly G is

updated as shown in Figure 30(4), in which the counter of node x becomes 2. Note

that no new edge is added this time because s2 is empty.

As shown in Figure 30(5), if o3 is invoked in state s2 as e′3 = ins(1,y), we get

state s′3 = s2 + e′3 = xy. Accordingly the counter of node y is incremented to 2 and

a new edge is added from x to y. It is obvious that this leads to a cyle and hence the

resulting graph and is abnormal.

On the other hand, if o3 is invoked in state s2 as e′′3 = ins(0,y), we get another

state s′′3 = s2 + e′′3 = yx. As shown in Figure 30(6), the counter of node y becomes 2

and a new edge < y, x > is added. The resulting graph is still normal.

4. Deriving Consistency Conditions

The behavior graph constructed as above develops a global picture of the system

that is observed by an external referee. Apparently some constraints (or properties)

must be imposed on the invocations. For example, as an established convention in

groupware [10, 5], the invocations must not violate their natural cause-effect order.

It is also important that the effect of every operation must be applied at every site

once and only once. Additionally, the relationships observed at different sites must

agree with each other. Notation T (P) denotes the set of (legal) traces in the system

that satisfy a given set of properties P . In the following, we define three properties:

causal ordering, fairness, and safety.

Definition 27 [happened-before relation →:] Given any two invocations e1 and

e2, we say that e1 happened before e2, denoted as e1 → e2, iff one of the following

82

holds: (1) e1 is a local invocation of an input operation o and e2 is a remote invocation

of o at another site; (2) e2 is an invocation of an input operation o that is generated

after the invocation of e1 at some site; and (3) there exists a third invocation e3 such

that e1 → e3 and e3 → e2.

Note that condition (1) is an assumption that simplifies following discussions. In

early group editors [10, 16], it is possible that a remote invocation is executed before

a local invocation of the same operation. However, allowing this would unnecessarily

complicate discussions. Also note that local invocation preceding remote invocations

does not necessarily imply optimistic consistency control: Even if it is pessimistic,

the effect can still be applied at the local site before remote sites when the operation

is confirmed by the consistency control module.

Definition 28 [Causal Ordering Property:] Given any trace β ∈ T (P) and two

invocations e1, e2 ∈ β, if e1 → e2, then e1 must be invoked before e2 in β.

By the causal ordering property, any local invocation of an insertion e must be

applied on the behavior graph earlier than any remote invocation of e. Hence in

Figure 29 the former creates a new node in G while the latter does not. Additionally,

the insertion of any object must be invoked earlier than any deletion that deletes the

same object. Hence in Figure 29 the invocation of a deletion is always able to find

the node in the graph that contains the object to be deleted.

Definition 29 [Fairness Property:] Given a system with N sites and trace β ∈

T (P), if e ∈ β is an invocation of an operation o ∈ I(E), there must exist a trace

δ ∈ T (P) that contains N invocations of o.

By the fairness property, for any operation o generated in the system, it will

be eventually invoked N times. Note that, in pessimistic consistency control, it is

83

Table I. Notations of States and State Transitions

Notation Description

E The abstract group editing system.

X (E) The set of objects in the system.

S(E) The set of states of the system.

I(E) The set of input operations in the

system.

O(E) The set of output operations in the

system.

T (E) The set of traces in the system.

P The set of properties of the system.

T (P) The set of admissible traces.

O(P) The set of admissible invocations.

S(P) The set of reachable states.

possible to translate an input operation into N identity invocations (φ) if it is rejected

by the protocol. Every invocation e updates G once, meaning that G is updated N

times in total by all invocations of every input operation o ∈ I(E). Hence ideally

after all operations are invoked at all sites, the counter of every node in the graph

must be either zero or N . Therefore, as in Figure 29, if a node has been deleted more

than N times, it is turned red to signal that something is wrong.

While the fairness property says that some “good” thing eventually happens, the

following safety property states that some “bad” thing never happens in a “consistent”

system.

Definition 30 [Safety Property:] Given any trace β ∈ T (P) and any input o ∈

84

I(E), the effects of all invocations of o in β must be consistent with each other.

The behavior graph effectively visualizes the view states and their transitions

at all sites together in one picture. The underlying assumption is that the initial

behavior graph is normal. If the system is consistent, the final graph must also be

normal, i.e., it has neither cycles nor red nodes. A cycle between two nodes n1 and

n2 means that object n1.x precedes object n2.x in one view state while n2.x precedes

n1.x in another view state. A red node n means that object n.x has been incorrectly

deleted. Neither case is desirable. Conversely, we say that, if the behavior graph of

a system is not normal, the system is not consistent. Therefore, the safety property

can be rephrased in the following theorem.

Theorem 8 If a consistency control protocol is correct, every invocation when applied

on the behavior graph must yield no cycle nor red node.

Note that the above properties only constrain that the ordering of invocations

in (legal) traces preserve the happened-before relation →. Given two invocations e1

and e2, if neither e1 → e2 nor e2 → e1, we say that they are concurrent, denoted by

e1 ‖ e2. The ordering between concurrent invocations could be arbitrary in any legal

trace since there is no constraint. That is, multiple possible legal traces exist for the

same set of invocations.

Definition 31 Given two traces β1, β2 ∈ T (P) that are different orderings of invo-

cations of the same set of operations, we say that β1 and β2 are indistinguishable if

their corresponding behavior graphs are similar.

Conceptually, this definition emphasizes the effects of traces rather than their

orderings. In other words, if two traces produce the same effects on the user interface,

they are indistinguishable from the users’ perspective.

85

For any invocation e and trace β, where e ∈ β, if both pred bg(β, e) and

succ bg(β, e) are normal, we say that e is a safe expansion of pred bg(β, e). However,

an invocation safe for one trace may not be safe for another.

e1

e1’

e2

e2’

x y

x y

x y

trace [e1,e2]

trace [e1,e2,e1’]

trace [e1,e2,e2’,e1’]
x y

trace [e1,e2,e1’,e2’]

site 1 site 2

Fig. 31. Different orderings of concurrent invocations yield multiple possible traces.

For example, as in Figure 31, consider that two sites concurrently generate two

operations, attempting to create two objects, x and y, in an empty initial state,

respectively. Let the base trace β = [e1, e2] and its corresponding graph is shown

in Figure 31. Suppose o1 is translated into two invocations e1 and e′1, where e1 =

e′1 = ins(0,x), and o2 is translated into two invocations e2 and e′2, where e2 = e′2 =

ins(0,y). Let trace β1 = [e1, e2, e
′
1] and trace β2 = [e1, e2, e

′
2, e

′
1]. Obviously e′1 is a safe

expansion of pred bg(β1, e
′
1), while e′1 is not a safe expansion of pred bg(β2, e

′
1).

This example illustrates that finding a safe expansion for one trace is not suf-

ficient. A correct concurrency control protocol must be able to ensure that every

invocation be a safe expansion for any trace containing it. Such an invocation is

called an admissible invocation. If every invocation in trace β is admissible, we say

that β is an admissible trace. Additionally, a reachable state is defined as the view

state at one site that is the result of applying an admissible invocation on another

reachable state, assuming the initial system state is a reachable state itself.

Theorem 9 The safety property requires that every invocation in a consistent group

86

editor be admissible.

Based on the above discussions, a group editor E is consistent if it satisfies the

set of properties P , namely, causal ordering, fairness, and safety. In such a system,

all traces are admissible, all invocations are admissible, and all states are reachable.

That is, as shown in Table I, T (E) = T (P), O(E) = O(P), and S(E) = S(P).

C. An Embodiment of Guidelines

1. Operational Transformation

OT is an optimistic consistency control protocol which allows users to edit any part

of the shared data at any time. Local operations are executed immediately once they

are generated. Operations are broadcast to remote sites for synchronization. Remote

operations are executed in the current state at a site after they are transformed with

all concurrent operations that have been executed at that site. The algorithm must

ensure consistency across all data replicas after all operations have been executed at

all sites, possibly in different orders of execution.

To illustrate, consider the scenario shown in Figure 31. Given an empty initial

state and two concurrent operations o1 and o2, the problem is to transform them into

the “right” invocations at each site. At site 1, when o2 is received, its view state has

only one object x due to the local invocation e1 of operation o1. If o2 is invoked as

it is, i.e., its invocation e′2 = e2 = ins(0, y), the view state becomes yx, meaning that

object y precedes object x. At site 2, when operation o1 is received, if it is invoked

in the current state y as e′1 = e1 = ins(0, x), the view state becomes xy, meaning

that object y precedes object x. Hence the final view states at two sites diverge. By

constructing a global behavior graph, a cycle is produced between objects x and y

after all the four invocations are applied.

87

The basic idea of OT is to transform operations at each site such that their

remote invocations possibly take different parameters as their local invocations. For

example, in Figure 31, if the OT protocol somehow translates o1 and o2 into the

following four invocations instead: e1 = ins(0, x), e2 = ins(0, y), e′1 = ins(0, x), and e′2

= ins(1, y), then it is easy to show that the resulting behavior graph is normal. That

is, two sites converge in the same view state xy.

The challenge is how to transform remote operation into an admissible invoca-

tion without maintaining an actual global behavior graph. In a typical OT algorithm,

every site i maintains a history buffer HBi to record all executed local and remote op-

erations in their order of execution. An OT algorithm usually consists of the following

two layers: a number of transformation functions that decides how to transform any

two given operations, and a control procedure decides how to compute the invocation

of any given (remote) operation against the local history buffer.

To develop an intuition of the problem, we consider a simple scenario in which

a group editor with n sites starts from an empty initial state. Suppose that each

site generates an operation which independently creates a new object. To simplify

discussions, here we do not distinguish between operations and their invocations. An

operation or invocation is uniformly represented by v
j
i , denoting the invocation at

site j of an operation generated at site i. Then an local invocation is denoted as vi
i.

Let G be the behavior graph corresponding to the base trace β = [v1
1, ..., v

i
i, ..., v

n
n],

which only contains n local invocations. The ordering of these local invocations in

β is not important in this scenario. As a result, G contains n nodes and there is no

edge between any two nodes in G.

At any site k, after executing all n invocations, its history buffer HBk contains n

operations. Since the local invocation vk
k is executed first, it is obvious that the other

(n−1) invocations are from remote operations. That is, HBk[0] is a local invocation,

88

while the subsequence HBk[1, n− 1] are remote invocations. Now consider a trace βk

which invokes operations in HBk[1, n − 1] after operations in the base trace β. Let

Gk be the corresponding behavior graph of βk. Effectively operations in HBk[1, n−1]

expands G to Gk. We have the following theorem.

Theorem 10 For any site i and site j in a group editing system, achieving consis-

tency requires that Gi and Gj are normal and Gi ∼ Gj.

Every time an operation from site i is invoked at site j, it is transformed with

sequence HBj[0, k−1] which contains the k operations that have been executed at site

j. This sequence is called a transformation path. In a simple case in which all these

k operations are concurrent with v
j
i , there are k! possible transformation paths with

different ordering of the k operations. An OT algorithm must be able to compute

the right invocation v
j
i regardless of transformation paths and, more generally, the

ordering of concurrent operations in the local history buffer. In the following, we

analyze several existing approaches with regard to our consistency model.

2. Approach A: TP1 and TP2

The “mainstream” OT algorithms [14, 17, 11] roughly work as follows: For each

remote operation v, the control procedure transposes the history buffer into two

subsequences Lh and Lc such that Lh contains all operations that happened before v

and Lc contains all operations concurrent with v. Then v is (inclusively) transformed

with every operation in Lc to incorporate their effects. Finally the resulting operation

v′ is invoked in current state. Because for any v its concurrent operations could be

executed in any order at different sites, it is well established that the (inclusion)

transformation function T must satisfy the following two transformation properties

(TP) [21, 16, 17, 11]:

89

TP1: for any two concurrent operations v1 and v2 that are defined in the same state

s, let v′
1 = T(v1,v2) and v′

2 = T(v2,v1), then (1) v′
1 (or v′

2) preserves the effect of

v1 (or v2) in s, and (2) two sequences [v1,v
′
2] and [v2,v

′
1] when applied in s yield

the same state s′.

TP2: for any three concurrent operations v1, v2, and v3 defined in the same state s,

transforming v3 with v1 and v2 in different invocation orders yields the same

result. That is, T(T(v3, v2),T(v1,v2)) = T(T(v3, v1),T(v2,v1)).

These two properties inductively ensure that transforming any remote operation

with concurrent operations along arbitrary paths achieve the same invocation result

[16]. In the following we analyze what satisfying TP1 and TP2 means in the context

of our new consistency model.

x y

x y x y

G1 G2

G

v1’ v2’

Fig. 32. TP1 ensures that, for any two concurrent operations, G1 and G2 are normal

and G1 ∼ G2.

a. Interpreting TP1

The first condition in TP1 is rephrased as “intention preservation” in [17, 5]: any

remote invocation of operation o must preserve the original intention (or effect) of o

90

in its generation state. The key issue here is how to define the original intention of

an operation and the condition of intention preservation. Based on our consistency

model, the intention preservation condition can be specified as that v′
1 and v′

2 are

admissible or preserve the effects of their local invocations, respectively.

Without loss of generality, suppose that there is a trace β = [v1,v2], where v1 and

v2 are two local invocations and v1 ‖ v2, and G is the normal graph corresponding to

β. Assume that only v′
1 and v′

2 (invocations of v1 and v2, respectively) are executed

to expand G. There are two traces that have the same prefix β: Let β1 = β • v′
1 and

β2 = β • v′
2. Let G1 and G2 be two behavior graphs corresponding to succ bg(β1,v

′
1)

and succ bg(β2,v
′
2), respectively.

According to our model, the first condition of TP1 can be interpreted as that v′
1

and v′
2 are safe expansions of G. That is, both G1 and G2 be normal.

The next problem is whether G1 is similar to G2, because this ensures consistency

between two sites. To illustrate this problem, consider a case where both v1 and v2

are insertions and there is no edge between the two nodes they created in G. For

example, let s0 be empty, v1 = ins(0,x) and v2=ins(0,y). Suppose v′
1=v1 and v′

2=v2

and their executions result in two view states s′ = s0 + [v2, v
′
1] and s′′= s0 + [v1, v

′
2],

respectively. As shown in Figure 32, G1 and G2 are both normal because orderG(x, y)

is not defined. However, after G is expanded, we have orderG1
(x, y)6=orderG2

(x, y).

Hence we need the second condition in TP1, s′=s′′, to ensure that G1 ∼ G2 or,

essentially, orderG1
(x, y) = orderG2

(x, y).

b. Interpreting TP2

The first question is why we still need TP2 if TP1 is satisfied. As mentioned above,

TP1 only ensures that, given any two concurrent operations, the expansion is always

safe regardless of the ordering of invocations. However, it cannot ensure consistency

91

between the number of operations goes above two. TP2 extends to three concurrent

operations.

As an example, consider a scenario shown in Figure 33. Suppose three sites

from an initial empty state and they concurrently create three objects x, y, and z,

respectively. Let v1 = ins(0,x), v2 = ins(0,y) and v3 = ins(0,z). For site 1 and 2,

TP1 ensures that, after invoking v′
2 and v′

1, respectively, their states are consistent.

Without loss of generality, assume that the states are both xy.

xyz yxz

v1=ins(0,x) v2=ins(0,y) v3=ins(0,z)

v3’ v3’’

Site 1 Site 2 Site 3

v2’ v1’

Fig. 33. A scenario where TP1 is not sufficient to ensure consistency between different

sites.

Consider two traces β1 = [v1, v2, v3, v′
2, v′

3] and β2 = [v1, v2, v3, v′
1, v′′

3]. Based on

TP1, graphs G1 and G2 corresponding to prefix(β1, v′
3) and prefix(β2, v′′

3), respectively,

are normal and G1 ∼ G2. Here we refer them as G because G1 is actually equivalent

to G2. In graph G, there are three objects x, y, and z with only one edge < x, y >.

As shown in Figure 34, G is expanded by v′
3 and v′′

3 , which results in G3 and

G4, respectively. TP1 ensures that G3 and G4 are normal. In other words, TP1

ensures that the order between x, y, and z is acyclic but says nothing about the

uniqueness of the order. This implies that there may exist more than one possible

acyclic order between these three nodes. Without loss of generality, assume that after

the invocation of v′
3 and v′′

3 , respectively, the view state of site 1 is xyz and that of

92

x

z

y

G4

v3’ v3’’

x

z

y

G3

x

z

y

G

Fig. 34. TP2 ensures that, for any three concurrent operations, G3 and G4 are normal

and G3 ∼ G4.

site 2 is yzx. Fig. 34 shows the corresponding behavior graphs.

By definition, there must exist a trace δ = [v1, v2, v3, v′
2, v′′

1 , v′
1, v′′

2 , v′
3, v′′

3]. The

corresponding graph of δ visualizes the inconsistent orders in G3 and G4 together. It

is obviously not normal because these exists a cycle between x, y and z. This example

illustrates that TP1 cannot ensure a normal graph when the number of operations is

three or above.

By observation, the problem in the above scenario is caused by the fact that

v′
3 6= v′′

3 . If TP2 is satisfied, then we have v3 = v′′
3 and G3 ∼ G4. However, the above

scenario is special in that there exists an edge between x and y before the invocation

of v′
3 and v′′

3 . How about the more general cases in which there is not such an edge?

To generalize, consider a system in which three “active” sites concurrently create

three objects as above, and there are adequate number of “passive” sites that do not

generate operations but invoke all generated operations in every possible order. Let 1,

2 and 3 represent the three concurrent operations from sites 1, 2 and 3, respectively.

Hence we need 3! or 6 sites to accommodate the following six different execution

93

orders: 1→ 2→ 3, 2→ 1→ 3, 1→ 3→ 2, 3→ 1→ 2, 2→ 3→ 1, 3→ 2→ 1.

x

z

y

x

z

y x

z

y

G1
G2

G

1->2->3

x

z

y

G3

2->1->3

1->3->2

3->1->2

2->3->1

3->2->1

G4

G5

G6

x

z

y

x y

z

z

x
y

Fig. 35. G has six possible site expansions.

Let G be the graph corresponding to a base trace β = [v1,v2,v2]. A “site ex-

pansion” refers to expanding G with invocations applied in the execution order at

one site, i.e., an execution (transformation) path. Then there are six possible site

expansions: β1=β • [v1
2, v1

3], β2=β • [v2
1, v2

3], β3=β • [v3
1, v3

2], β4=β • [v4
1, v4

3, v4
2],

β5=β • [v5
2, v5

3, v5
1], and β6=β • [v6

3, v6
2, v6

1]. They correspond to graphs G1 − G6,

as shown in Figure 35. TP1 and TP2 ensure that all these graphs are normal and

similar, as stated in the following lemma.

Lemma 27 In the scenario as shown in Figure 35, any two site expansions to G are

similar.

Proof. : First consider G1 and G2. Their first two invocations are the same oper-

ations executed in different orders and the third operations are the same. By TP2,

G1 ∼ G2 must hold. Similarly, we have G3 ∼ G4 and G5 ∼ G6. Now we prove

G1 ∼ G4. G1 is obtained by execution order [v1
1, v1

2, v1
3] and G4 is by [v4

1,v
4
3,v

4
2]. This

means that two concurrent operations v2 and v3 are invoked in the same state in differ-

94

ent orders. TP1 ensures that G1 ∼ G4. By corollary 5, we get G1 ∼ G2 ∼ G3 ∼ G4.

Similarly, we can prove G2 ∼ G5. Again, by Corollary 5, the assertion holds.

This lemma implies that, for any three operations that are concurrently generated

in the same state, no matter in which order they are executed at a site, the resultant

state is the same. Similarly we can prove that the assertion holds for n concurrent

operations. Therefore, TP1 and TP2 are sufficient conditions to ensure our proposed

consistency model.

3. Approach B: Predefined Total Order

Influential and significant as TP1 and TP2 are, they suffer from the following lim-

itations in hindsight. TP1 and TP2 as formalized in [16] implicitly imply that the

signature of transformation functions be in the form of v′
i=T(vi,vj), in which T is an

inclusion transformation (IT) function [11] that transforms vi with vj to incorporate

its effect into v′
i. It is also implied that vi and vj are characterwise insertions and

deletions, that they are concurrent with each other, and that they are defined in the

same state. However, after their proposal in [16], there have been stringwise opera-

tions [5] and non-IT transformation functions [21, 38, 17, 5]. It remains an open issue

whether or not TP1 and TP2 apply to these new transformation functions.

Conceptually, all transformation functions can be divided into two steps: first

figure out the logical relation between involved objects, and then, based on the logical

relation, implement the desired transformation. Once the logical relation is known,

the subsequent transformation is trivial.

Observe that any non-φ operation is associated with at least one object. Those

objects are called its effect objects. Here we propose the generalized principle one

(GP1) for designing a set of “generalized” transformation functions F(E). GP1 as-

95

sumes that, in a system E , a logical relation can be somehow defined over the set of

objects X (E).

Definition 32 [GP1:] For any transformation function T ∈ F(E), its results pre-

serve the predefined logical relation between the effect objects of involved operations.

Compared to TP1 and TP2, GP1 has the following two major advantages. First,

it generalizes the concept of transformation function. It no longer constrains the

purpose and signature of T as do TP1 and TP2. Hence it naturally covers all trans-

formation functions that have appeared in the literature [21, 17, 5] as well as stringwise

operations [5]. Second, to our best knowledge, GP1 is the first in the literature that

gives heuristics for designing transformation functions. The following shows that GP1

is more general than TP1 and TP2.

In fact, For transformation functions specified in [16], if GP1 is satisfied, TP1 and

TP2 are also satisfied. To explain, first, TP1 ensures that a transformation function

always preserve the effect of each operation. If a proper logical relation of all objects is

predefined, GP1 ensures that the transformation function can correctly determine the

logical relation between its effect objects. Hence the transformation can be correctly

performed. Secondly, TP2 is to remove the ambiguities of determining the ordering

of two effect objects. However, due to GP1, such ambiguities are easily solved due to

their predefined relation.

GP1 has been successfully embodied in design of the LBT protocol [39, 40].

LBT supports two binary transformation functions, inclusion transformation (IT)

and exclusion transformation (ET), that transform characterwise insert and delete

operations. It first defines a total order over all characters that ever appear in the

system, after a careful cases coverage analysis. Second, it designs the transformation

functions such that operation position, type, and site id are used to determine the

96

predefined total order, with an extra local data structure that records the logical

relations computed from previous transformations. However, analyses show that such

transformation functions still fail in some cases. The solution in LBT is to identify

such exception cases (conditions) and build special transformation paths to avoid

them. As a result, LBT correctly preserves the predefined total order when invoking

any operation.

4. Approach C: Natural Partial Order

GP1 says that all objects that will ever appear in a system and their relationship

have to be determined as a total order at design time This requirement is costly and

not natural because the total order is not a necessary condition for any group editor,

especially if not all the objects will appear in the same state. To address this problem,

we require instead that any emergent logical relation must not violate relations that

have been established earlier in the same system. The resulting relation is a partial

order because it does not impose an order between all pairs of objects.

In OT protocols, computing an invocation of any operation boils down to trans-

formation functions, which must first determine the logical relation between involved

objects. Hence it is essentially the transformation functions that introduce new rela-

tions. For example, consider that transformation function T is called to transform v

and it first needs to determine the relation between two objects x and y. There must

exist a trace β that only consists of all invocations that happened before v. Let G be

the normal behavior graph corresponding to β. If x and y are in G at all, orderG(x, y)

must be either defined (x ; y or y ; x) or undefined. If it is defined, T just uses the

existing relation, or, otherwise, T simply introduces one by some policy. We propose

the following generalized principle two (GP2):

97

Definition 33 [GP2:] For any two objects x, y ∈ X (E), their relation determined

in any transformation function T ∈ F(E) must be equal to the existing relation be-

tween them if there is any when T is processed; their relations determined in any two

functions T1, T2 ∈ F(E) must be equal.

Similarly to GP1, for transformation functions specified in [16], if GP2 is satisfied,

TP1 and TP2 are also satisfied.

To explain, if any objects involved in a transformation already have an existing

order, it is obvious that TP1 and TP2 can be satisfied. If an order does not exist

yet, since GP1 requires that their relations determined by different transformation

functions are equal, TP1 is satisfied. Additionally, since transformation functions

always return the same relation between objects no matter what forms the operations

take, transforming the same operation along different paths always yield the same

result. Hence TP2 is also implied.

GP2 has been successfully embodied in the design of the ABT protocol [38].

It supports characterwise insertions and deletions as well as three transformation

functions (IT, ET and SWAP). For more details, refer to chapter IV.

Li and Li [14, 35] (CSM) is the first to our knowledge that explicitly recognizes

the importance of logical relationship between objects in group editors. Based on the

concept of operation effects relation, it proposes to preserve single operation effects (S)

and multiple operation effects relation (M), which replace convergence and intention

preservation in the CCI model. The SDT algorithm [35] is the first that is formally

proved to satisfy TP1 and TP2. However, CSM is tightly bound to textual group

editors with only characterwise operations and does not rigorously define the logical

relation (total order) of objects it is based on.

The CSM model is improved in [39, 40] (CR) by giving a strict definition of

98

the effects relation. The S and M conditions are combined and rephrased as effects

relation preservation (R). CR is essentially the same as CSM with more rigorous

definitions. However, CR still fails to fulfill the generality requirement because of

its predefined total order of all characters. For example, there is no natural order

between a deleted character and newly inserted characters. Imposing an artificial

order between them effectively involves application or protocol specific semantics and

policies.

The CA model [38] proposes two consistency criteria, causality preservation (C)

and admissibility preservation (A). It no longer requires to impose a predefined total

order. However, it is still tightly bound with a specific protocol and its underlying

data structures and operations. Hence it is not considered as a general consistency

model.

99

CHAPTER VI

RELATED WORK

A. Design Framework

Commutativity-based concurrency control in other collaborative computing domains

(e.g., [41, 26, 42, 28]) also exploits operation semantics to attain more concurrency.

However, they do not assume fine-grained awareness and sharing as in groupware. Op-

eration parameters are typically not modified in commute operators and convergence

of data replicas is often the goal to pursue in concurrency control.

It is well-understood that convergence must be further constrained in groupware

[10, 14, 16, 25, 5]. Sun et al. [5] propose that a group editor is correct if it achieves

convergence, causality and intention preservation. The intention preservation condi-

tion constrains that the execution of any operation at remote sites achieve the same

effects as it is generated. This condition is very intuitive and has been well accepted

in the groupware field. However, no guideline has been provided in Sun et al. [31, 5]

as how to develop OT algorithms that are able to achieve intention preservation.

Moreover, “intention preservation” as a correctness criterion is under-formalized for

verification purposes. Consequently no previous work, including [25, 31, 5, 33], has

been formally proved to be “correct” with regard to intention preservation to our best

knowledge.

Ressel et al. [16] propose two well-known conditions of IT such that any two

causality-preserving histories can achieve effects equivalence (convergence). However,

no guideline has been provided as how to develop IT functions that satisfy the condi-

tions. In fact, these conditions have turned out extremely difficult to verify in practice

[16, 25, 11, 5, 33]. While [16, 25, 11] assume these conditions to achieve convergence,

100

our recent work SDT [14] is the first that has been formally proved to verify these

two conditions. However, the proofs in [35] are extremely complicated even with only

two characterwise primitive operations (ins/del) and scale poorly to the number and

complexity of primitive operations. Alternative approaches [34, 18, 5, 33] achieve con-

vergence by avoiding conditions of [16]. However, they still have to verify intention

preservation before claims can be made on correctness.

While conditions in [16] fail to consider ET or SWAP, Knister and Prakash [21]

define conditions of SWAP such that histories can be reordered for the purposes of

group undo. However, their conditions only allow for cases in which the position

parameters of two operations are not tied. Sun et al. [5] define preconditions of

IT and ET as context equivalence and context serialization, respectively. However,

counterexamples show that these two conditions are not sufficient for preserving the

effects relation [14]. Our conditions in Theorems 4 and 5 are (mathematically) suffi-

cient because, once they are satisfied, IT and ET/SWAP are guaranteed to be correct,

respectively.

B. Consistency Model

The first significant consistency model in groupware is established in Ressel et al. [16].

It defines two conditions, causality preservation and convergence (CC). This model

to some extent satisfies the completeness and disambiguity requirements. However,

its convergence condition is not sufficient to address the needs of groupware applica-

tions that require not only the same set of objects but also certain logical relationship

between them [5, 14]. Secondly, in this model, the system behavior description (al-

though somehow complete) is tightly coupled with a specific protocol called adOPTed.

Thirdly, although it proposes that transformation functions must satisfy TP1 and

101

TP2, it does not provide guidelines as how to design them.

Sun et al. [5] (CCI) extends the CC model by introducing a new condition

called intention preservation. In principle, intention preservation is a generic criterion

independent of specific application and protocol semantics. Unfortunately, it violates

the disambiguity principle because a rigorous specification of intention preservation

has been absent. As a result, this leads to difficulties in verifying protocols (e.g.,

[17, 5, 11, 31]) that are based on this model. In addition, the CCI model does not

completely describe the system behavior as does this work.

A few approaches [18, 5, 33] were explored to free the TP2 condition that turned

out extremely difficult to satisfy in practice. However, they are based on the CCI

model and thus suffer from problems verifying intention preservation. Additionally,

these early works are theoretically incomplete in that they fail to compensate the

losses of freeing TP2. As a result, counterexamples identified in [14, 35] show that,

although achieving convergence, they are not able to preserve the logical relationship

between objects in some cases.

Li and Li [14, 35] (CSM) is the first to our knowledge that explicitly recognizes

the importance of logical relationship between objects in group editors. Based on the

concept of operation effects relation, it proposes to preserve single operation effects (S)

and multiple operation effects relation (M), which replace convergence and intention

preservation in the CCI model. The SDT algorithm [35] is the first that is formally

proved to satisfy TP1 and TP2. However, CSM is tightly bound to textual group

editors with only characterwise operations and does not rigorously define the logical

relation (total order) of objects it is based on.

The CSM model is improved in chapter III (CR) by giving a strict definition of

the effects relation. The S and M conditions are combined and rephrased as effects

relation preservation (R). CR is essentially the same as CSM with more rigorous

102

definitions. However, CR still fails to fulfill the generality requirement because of

its predefined total order of all characters. For example, there is no natural order

between a deleted character and newly inserted characters. Imposing an artificial

order between them effectively involves application or protocol specific semantics and

policies.

The CA model in chapter IV proposes two consistency criteria, causality preser-

vation (C) and admissibility preservation (A). It no longer requires to impose a pre-

defined total order. However, it is still tightly bound with a specific protocol and its

underlying data structures and operations. Hence it is not considered as a general

consistency model.

103

CHAPTER VII

CONCLUSIONS

A. Contributions

1. A Total Order Based Framework

This framework includes two correctness criteria, causality preservation and operation

effects relation preservation, (CR), for interpreting and developing OT algorithms.

In the theory part, it formalizes a new constraint, effects relation preservation, for

constraining convergence in interactive groupware applications. Compared to the

intention preservation constraint in the state-of-the-art framework CCI [5], it is well-

formalized and subject to correctness proofs. The effects relation is naturally defined

when operations are generated, except some “artificial” tie-breaking policies for han-

dling boundary cases.

In the technical approach part, CR reveals an alternative way of developing OT

algorithms, which follows three main steps: First, it defines an application-specific

effects relation between objects for constraining the execution of operations. Secondly,

it formulates a set of transformation functions and provides sufficient conditions for

them to satisfy the defined effects relation. Thirdly, it requires to find a special

transformation path that must be always available when computing an admissible

operation and be able to ensure the conditions of the transformation functions.

To evaluate the proposed CR framework, we exemplify a novel OT algorithm

(called landmark-based transformation or LBT), which is testimony to the above

design guidelines. Specifically, the transformation functions in LBT only uses basic

information such as operation type, position parameter, and site id. The concepts

of IT/ET safe operation sequences reveal practicable heuristics for constructing the

104

special transformation paths. As demonstrated by the design of the LBT algorithm,

the CR framework simplifies the design of transformation functions, because it no

longer demands that transformation functions (IT) work in all possible cases. That

is, it theoretically frees the difficult TP2 condition that is established in [16] and

well-accepted in the literature [25, 11, 31].

2. A Natural Order Based Framework

This framework contributes a novel consistency model and a novel OT approach.

Theoretically, we formalize an alternative correctness criterion, called admissibility

preservation, based on a graph-based analysis tool. It only requires that an OT

algorithm integrate every operation in an admissible manner, i.e., without violating

the character order established earlier by the algorithm itself. To some extent, this

could be interpreted as a means to formalize operation intentions. Compared to the

total order based framework described in chapter III, this work no longer requires a

predefined total order of characters, which in turn greatly simplifies design and proof

of OT algorithms.

Practically, it establishes a principled methodology for developing and proving

OT algorithms. In this approach, it first identifies sufficient conditions for basic

IT/ET functions and then builds special transformation paths to ensure the correct-

ness of IT/ET. As a result, it no longer requires IT/ET to work correctly on arbitrary

transformation paths, which greatly eases the design of IT/ET. Compared to previous

works, our IT/ET do not need extra operation parameters and the algorithm does not

save extra information for ensuring correctness. As a result, the algorithm is lucid,

without hidden details and costs, simple to present, completely proved, without lurk-

ing correctness puzzles, and more efficient. It has been well-accepted that correctness

and efficiency are the basis for OT-based group editors to be useful and usable [16].

105

3. A Generic Consistency Model

First, this work formalizes a general data consistency model for a range of interactive

groupware applications that can be abstracted as group editors. The model satis-

fies the four identified requirements, i.e., completeness, disambiguity, generality, and

practicability. In particular, it is based on observable user interface effects and in-

dependent of specific protocol details. Hence it can be used to guide the design and

verification of a range of consistency control protocols. It is the first consistency model

in groupware that achieves so to our best knowledge. Second, it elaborates three dis-

tinct approaches to designing a well-established family of OT-based protocols. The

proposed guidelines have been well-evaluated by proved design practices.

B. Future Work

In future work, we plan to further explore undo and performance issues in group

editors.

1. Undo Issue

No matter in multi-user and single-user applications, undo is an important approach

of error recovery. Conventionally, chronological undo is widely adopted in most ap-

plications. However, users cannot selectively undo operations. Many researchers [31]

[43] [44] [45] have made great contributions in developing selective undo mechanisms

in group editors. However, ensuring the correctness of selective undo is still an open

issue. Another issue related to selective undo is how to design a user-friendly user

interface.

Our future research focuses in this area include: (1) solving the correctness

problem of the selective undo in the environment of group editors, (2) developing

106

a more user-friendly undo mechanisms called regional undo, which was pioneered in

our early work [46].

2. Performance Issues

Existing OT-based approaches are normally designed for real-time fine-granularity

sharing, specifically character-level collaboration. They can work well over high band-

width network, such as LAN. However, ensuring the performance of OT-based ap-

proaches in more complicated network environments, such as wide area network, is

still an open issue. In such an environment, coarse-granularity asynchronous collab-

oration mode seems more likely to be adopted. Compression of operation sequence

is a promising technique in solving this problem [47]. However, some issues associ-

ated with this technique have not been solved yet, including: (1) how to ensure the

correctness of operation sequence compression algorithm, and (2) how to develop an

suitable OT-based control algorithm based on the technique.

107

REFERENCES

[1] R. M. Baecker, D. Nastos, I. R. Posner, and K. L. Mawby, “The user-centered

iterative design of collaborative writing software,” in Proc. of the InterCHI’93

Conf. on Human Factors in Computing Systems, Amsterdam, The Netherlands,

Apr. 1993, pp. 309–405.

[2] P. Dewan, R. Choudhary, and H. Shen, “An editing-based characterization of

the design space of collaborative applications,” Journal of Organizational Com-

puting, vol. 4, no. 3, pp. 219–240, 1994.

[3] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: Some issues and experiences,”

Commun. ACM, vol. 34, no. 1, pp. 39–58, 1991.

[4] C. M. Neuwirth, D. S. Kaufer, R. Chandhok, and J. H. Morris, “Computer sup-

port for distributed collaborative writing: Defining parameters of interaction,”

in Proc. of the 1994 ACM Conf. on Computer Supported Cooperative Work,

Chapel Hill, NC, Oct. 1994, pp. 145–152.

[5] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen, “Achieving convergence,

causality preservation, and intention preservation in real-time cooperative editing

systems,” ACM Trans. Comput.-Hum. Interact., vol. 5, no. 1, pp. 63–108, 1998.

[6] S. Greenberg and D. Marwood, “Real time groupware as a distributed system:

Concurrency control and its effect on the interface,” in Proc. of the 1994 ACM

Conf. on Computer Supported Cooperative Work, Chapel Hill, NC, Oct. 1994,

pp. 207–217.

[7] J. Grudin, “Computer supported cooperative work: History and focus,” Journal

of IEEE Computer, vol. 27, no. 5, pp. 19–26, 1994.

108

[8] J. Begole, M. B. Rosson, and C. A. Shaffer, “Flexible collaboration trans-

parency: Supporting worker independence in replicated application-sharing sys-

tems,” ACM Trans. Comput.-Hum. Interact., vol. 6, no. 2, pp. 95–132, 1999.

[9] C. M. Hymes and G. M. Olson, “Unblocking brainstorming through the use of a

simple group editor,” in Proc. of the 1992 ACM Conf. on Computer Supported

Cooperative Work, Toronto, Ontario, Canada, Nov. 1992, pp. 99–106.

[10] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,” in

Proc. of the 1989 ACM SIGMOD International Conf. on Management of Data,

Portland, OR, June 1989, pp. 399–407.

[11] C. Sun and C. Ellis, “Operational transformation in real-time group editors:

Issues, algorithms, and achievements,” in Proc. of the 1998 ACM Conf. on

Computer Supported Cooperative Work, Seattle, WA, Nov. 1998, pp. 59–68.

[12] R. Bentley and P. Dourish, “Medium versus mechanism: Supporting collabo-

ration through customisation,” in Proc. of the European Conf. on Computer

Supported Cooperative Work (ECSCW’95), Stockholm, Sweden, Sept. 1995, pp.

131–146.

[13] J. Grudin, “Why CSCW applications fail: Problems in the design and evaluation

of organization of organizational interfaces,” in Proc. of the 1988 ACM Conf. on

Computer Supported Cooperative Work, Portland, OR, Sept. 1988, pp. 85–93.

[14] D. Li and R. Li, “Preserving operation effects relation in group editors,” in Proc.

of the 2004 ACM Conf. on Computer Supported Cooperative Work, Chicago, IL,

Nov. 2004, pp. 457–466.

[15] S. Noel and J. Robert, “Empirical study on collaborative writing: What do

109

co-authors do, use, and like,” Computer Supported Cooperative Work, vol. 13,

no. 1, pp. 63–89, 2004.

[16] M. Ressel, Doris Nitsche-Ruhland, and Rul Gunzenhäuser, “An integrating,

transformation-oriented approach to concurrency control and undo in group edi-

tors,” in Proc. of the ACM CSCW’96 Conf. on Computer Supported Cooperative

Work, Boston, MA, Nov. 1996, pp. 288–297.

[17] M. Suleiman, M. Cart, and J. Ferrié, “Serialization of concurrent operations in

a distributed collaborative environment,” in ACM GROUP’97 Proc., Phoenix,

AZ, Nov. 1997, pp. 435–445.

[18] H. Shen and C. Sun, “Flexible notification for collaborative systems,” in Proc. of

the 2002 ACM Conf. on Computer Supported Cooperative Work, New Orleans,

LA, Nov. 2002, pp. 77–86.

[19] D. Li and R. Li, “Ensuring content and intention consistency in real-time group

editors,” in Proc. of the 24th IEEE International Conf. on Distributed Comput-

ing Systems (ICDCS’04), Tokyo, Japan, Mar. 2004, pp. 748–755.

[20] P. Molli, H. Skaf-Molli, G. Oster, and A. Imine, “Using the transformational

approach to build a safe and generic data synchronizer,” in ACM Conf. on

Supporting Group Work (GROUP’03), Sanibel Island, FL, Nov. 2003, pp. 212–

220.

[21] A. Prakash and M. J. Knister, “A framework for undoing actions in collaborative

systems,” ACM Trans. Comput.-Hum. Interact., vol. 1, no. 4, pp. 295–330, 1994.

[22] M. Ionescu and I. Marsic, “Tree-based concurrency control in distributed group-

ware,” CSCW: The Journal of Collaborative Computing, vol. 12, no. 3, pp.

110

329–350, 2003.

[23] C. D. Correa and I. Marsic, “An optimization approach to group coupling in

heterogeneous collaborative systems,” in Proceedings of the 2005 International

ACM SIGGROUP Conference on Supporting Group Work, GROUP 2005, Sani-

bel Island, FL, Nov. 2005, pp. 274–283.

[24] N. Gu, J. Yang, and Q. Zhang, “Consistency maintenance based on the mark

& retrace technique in groupware systems,” in Proceedings of the 2005 Interna-

tional ACM SIGGROUP Conference on Supporting Group Work, GROUP 2005,

Sanibel Island, FL, Nov. 2005, pp. 264–273.

[25] M. Suleiman, M. Cart, and J. Ferrié, “Concurrent operations in a distributed and

mobile collaborative environment,” in Proc. of the IEEE ICDE’98 International

Conf. on Data Engineering, Feb. 1998, pp. 36–45.

[26] B. R. Badrinath and Krithi Ramamritham, “Semantics-based concurrency con-

trol: Beyond commutativity,” ACM Transactions on Database Systems, vol. 17,

no. 1, pp. 163–199, Mar. 1992.

[27] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control and

Recovery in Database Systems, New York: Addison-Wesley, 1987.

[28] W. E. Weihl, “Commutativity-based concurrency control for abstract data

types,” IEEE Transactions on Computers, vol. 37, no. 12, pp. 1488–1504, 1988.

[29] H. Yu and A. Vahdat, “Design and evaluation of a conit-based continuous consis-

tency model for replicated services,” ACM Transactions on Computer Systems,

vol. 20, no. 3, pp. 239–282, 2002.

111

[30] D. Sun, S. Xia, C. Sun, and D. Chen, “Operational transformation for collabora-

tive word processing,” in Proc. of the 2004 ACM Conf. on Computer Supported

Cooperative Work, Chicago, IL, Nov. 2004, pp. 437–446.

[31] C. Sun, “Undo as concurrent inverse in group editors,” ACM Trans. Comput.-

Hum. Interact., vol. 9, no. 4, pp. 309–361, 2002.

[32] A. H. Davis, C. Sun, and J. Lu, “Generalizing operational transformation to

the standard general markup language,” in Proc. of the 2002 ACM Conf. on

Computer Supported Cooperative Work, New Orleans, LA, Nov. 2002, pp. 58–

67.

[33] N. Vidot, M. Cart, J. Ferrie, and M. Suleiman, “Copies convergence in a dis-

tributed realtime collaborative environment,” in Proc. of ACM CSCW’00 Conf.

on Computer Supported Cooperative Work, Philadelphia, PA, Dec. 2000, pp.

171–180.

[34] R. Li, D. Li, and C. Sun, “A time interval based consistency control algorithm for

interactive groupware applications,” in IEEE International Conf. on Parallel and

Distributed Systems (ICPADS), Newport Beach, CA, July 2004, pp. 429–436.

[35] D. Li and R. Li, “An approach to ensuring consistency in peer-to-peer real-time

group editors,” Computer Supported Cooperative Work, To appear.

[36] P. Bellini, P. Nesi, and M. B. Spinu, “Cooperative visual manipulation of music

notation,” ACM Transactions on Computer-Human Interaction, vol. 9, no. 3,

pp. 194–237, 2002.

[37] C. Sun and D. Chen, “Consistency maintenance in real-time collaborative graph-

ics editing systems,” ACM Trans. Comput.-Hum. Interact., vol. 9, no. 1, pp.

112

1–41, 2002.

[38] R. Li and D. Li, “Commutativity-based concurrency control in group-

ware,” Tech. Rep., Computer Science, Texas A&M University, July 2005,

http://cocasoft.csdl.tamu.edu/∼lidu/papers/lbto.pdf.

[39] R. Li and D. Li, “A landmark-based transformation approach to concurrency

control in group editors,” in Proc. of the ACM GROUP’05 Conf. on Supporting

Group Work, Sanibel Island, FL, Nov. 2005, pp. 284–293.

[40] R. Li and D. Li, “A new operational transformation framework for real-time

group editors,” IEEE Transactions on Parallel and Distributed Systems, To

appear.

[41] A. E. Abbadi D. Agrawal and A. K. Singh, “Consistency and orderability:

semantics-based correctness criteria for databases,” ACM Transactions on Data-

base Systems, vol. 18, no. 3, pp. 460–486, 1993.

[42] M. J. Fischer and A. Michael, “Sacrificing serializability to attain high availabil-

ity of data in an unreliable network,” in Proc. of ACM Symposium on Principles

of Database Systems, Los Angeles, CA, Mar. 1982, pp. 70–75.

[43] T. Berlage, “A selective undo mechanism for graphical user interfaces based on

command objects.,” ACM Transactions on Computer-Human Interaction, vol.

1, no. 3, pp. 269–294, 1994.

[44] A. Prakash and H. S. Shim, “Distview: Support for building efficient collabo-

rative applications using replicated objects,” in Proc. of the 1994 ACM Conf.

on Computer Supported Cooperative Work, Chapel Hill, NC, Oct. 1994, pp.

153–164.

113

[45] G. D. Abowd and A. J. Dix, “Giving undo attention.,” Interactive with Com-

puters, vol. 4, no. 3, pp. 317–342, 1992.

[46] Rui Li and Du Li, “A regional undo mechanism for text editing,” in The 5th

International Workshop on Collaborative Editing Systems (IWCES-5), jointly

with the ECSCW’03 Conf., Helsinki, Finland, Sept. 2003.

[47] H. Shen and C. Sun, “A log compression algorithm for operation-based ver-

sion control systems,” in Proc. of IEEE International Computer Software and

Application Conf., Oxford, England, Aug. 2002, pp. 867–872.

114

VITA

Rui Li was born in Sheng Yang, Liao Ning Province, China. He received his B.E.

and M.E. degrees in Aircraft Design and Applied Mechanics from Beijing University

of Aeronautics & Astronautics in 1994 and 1997, and his M.E. degree in Computer

Science from Johns Hopkins University in 2001. He began pursuing a Ph.D. degree in

Computer Science at Texas A&M University in 2002. Since then, he has worked as a

graduate teaching assistant and research assistant for Dr. Du Li in the Department

of Computer Science, Texas A&M University. His permanent address is: Department

of Computer Science, Texas A&M University, 301 Harvey R. Bright Bldg, College

Station, TX 77843-3112.

