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ABSTRACT 
 
 
Telomeres and Their Associated Factors in Arabidopsis thaliana.  (August 2005) 

 
Rachel A. Idol, B.S., Kansas State University 

 
Chair of Advisory Committee: Dr. Dorothy E. Shippen 

 
 

Telomeres are important protein-DNA structures at the ends of linear 

eukaryotic chromosomes that are necessary for genome integrity.  Telomeres 

are maintained by intermittent action of telomerase.  I explored the kinetics of 

telomere length homeostasis in the model plant Arabidopsis thaliana by crossing 

wild type plants to different generations of telomerase deficient plants, and then 

analyzing telomere length in the resulting progeny. Unexpectedly, I found plants 

lacking telomerase for seven generations can lengthen telomeres when 

telomerase is reintroduced, but one generation is not sufficient to reestablish the 

telomere set point. 

Est1 is a non-catalytic component of the Saccharomyces cerevisiae 

telomerase holoenzyme.  To investigate the role of Est1 in higher eukaryotes, I 

identified two putative Est1 homologues in Arabidopsis, AtEST1a and AtEST1b.  

Plants deficient in AtEST1a displayed no vegetative or reproductive defects. 

However, plants deficient for AtEST1b were sterile and had severe vegetative 

and reproductive irregularities.  Surprisingly, no defects in telomere maintenance 

were observed in any single or double mutant line.  This suggests that the Est1-

like proteins in plants have evolved new functions outside of telomere length 

maintenance and end protection.   



 iv

One consequence of telomere dysfunction is end-to-end chromosome 

fusion. In mammals, telomere fusion is mediated through NHEJ and requires 

DNA Ligase IV (Lig4).  Lig4 is an essential component of the NHEJ pathway 

along with the Ku70/Ku80 heterodimer and DNA-PKcs.  To address the 

mechanism of chromosome fusion in Arabidopsis, we investigated the role of 

Lig4 in mutant combinations lacking TERT, the catalytic subunit of telomerase, 

and Ku70.  Surprisingly, telomere end-to-end fusions were observed in ku70 tert 

lig4 triple mutants, suggesting that neither Lig4 nor Ku70 are required for the 

fusion of critically shortened telomeres in Arabidopsis. To investigate the origin of 

genome instability, terminal restriction fragment analysis was performed on triple 

mutants.  Strikingly, telomeres diminished five to six-fold faster than in a tert 

single mutant.  Moreover, in the triple mutants, telomere tracts were extremely 

heterogeneous, suggesting that the telomeres were exposed to catastophic 

nucleolytic attack.   These data provide the first evidence that Lig4 contributes to 

telomere maintenance and chromosome end protection.   
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CHAPTER I 

INTRODUCTION 

 

Telomeres are nucleic acid-protein complexes comprised of repeated 

DNA sequences and their associated proteins.  These complexes cap the 

physical ends of eukaryotic chromosomes and are necessary for chromosomal 

stability and continued cell proliferation.  Chromosomes lacking telomeres are 

detected as double strand breaks and result in activation of DNA damage 

checkpoints and cell cycle arrest.   

The telomeric DNA sequence is specific for each organism, TTAGGG in 

vertebrates, TTTAGGG in plants, and (TG)1-6 TG 2-3 in S. cerevisiae (1).  

Telomere length is also species-specific.  In budding yeast, telomeres are 

~300bp, while in mammals telomeres range from 10-150kb.  In the model plant 

Arabidopsis thaliana, telomeres span 2-8kb (2-4).  Regardless of repeat 

sequence or length, all telomeres consist of a long double stranded region with a 

short single-stranded 3’ overhang (Fig. 1).  The double-stranded portion of the 

telomere is composed of a G-rich strand running 5’-3’ towards the end of the 

chromosome, and a complementary C-rich strand which is shorter than the G-

rich strand.  The protrusion of the G-rich strand creates a single-stranded 3’ 

overhang, or G-overhang at telomere ends.   

Similar to the telomere length variation observed between organisms, the  
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of the G-overhang also varies.  In the ciliate Euplotes crassus, G-overhangs are 

14nt long, in humans 150nt in length, and in Arabidopsis a 25-30nt 3’ overhang is 

present (5-7). The G-overhang is an essential feature of the telomere, as its loss 

is associated with end-to-end chromosome fusions (8).  In humans, plants, 

ciliates and trypanosomes, the single-stranded region of the telomere loops back 

into the double-stranded portion, creating a structure called the t-loop, which is 

believed to help protect the telomere end in vivo (9-12).  Although t-loops have 

only been found in a few organisms, it is probable that t-loops or similar 

structures are present at the telomeres in most organisms. 

In wild type cells, telomere shortening is thought to occur primarily as a 

result of incomplete replication of the chromosome end due to the semi-

conservative nature of DNA synthesis.  Conventional DNA polymerases 

synthesize DNA in the 5’ to 3’ direction using a short RNA primer to initiate 

replication (Fig. 2).  Removal of the most 5’ RNA primer by the lagging strand 

machinery creates a short single-strand region that cannot be filled in by the 

conventional replication machinery.  Failure to fill this gap leads to a small loss of 

DNA in each round of replication, and is known as the “end-replication problem” 

(13, 14).  Telomere shortening is circumvented by telomerase, a unique DNA 

polymerase with reverse transcriptase activity (15).   

 

TELOMERASE 
 

Telomerase elongates the G-rich strand of the chromosome end by using 

a region within its integral RNA subunit as a template for the telomeric DNA 
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addition (Fig. 3).  Thus, the human telomerase RNA has the sequence 5’ 

CUAACCCUA 3’, which encodes TTAGGG repeats (16).  The catalytic protein of 

telomerase is called TERT, for telomerase reverse transcriptase, and the integral 

RNA subunit is TR or telomerase RNA.   

Reverse transcriptases contain seven characteristic sequence motifs (1, 2, 

A, B’, C, D, and E), and these motifs are present in all TERTs identified (17).  In 

addition, TERTs have another conserved N-terminal T-motif which is required for 

telomerase activity.  TERTs from ciliates have a ciliated protozoa (CP) motif also 

in the N-terminus (18). The N-terminal half of TERT is necessary and sufficient 

for TR binding and is required for telomerase activity in Tetrahymena, S. 

cerevisiae, and humans (19-22).  The C-terminus is required for telomerase 

activity in Tetrahymena, S. cerevisiae, and humans (19-22).  So, while the central 

portion of telomerase contains the conserved reverse transcriptase domains, the 

N- and C- terminal regions are unique to telomerase. 

Telomerase RNA subunits have been identified in many species including 

23 ciliates (148-209nt in length), two yeasts (1300nt), mouse (327nt), human 

(451nt) and 33 other vertebrates (23).  The telomerase RNA subunit has yet to 

be identified in any plant species.  Although telomerase RNA subunits have a 

very low level of sequence conservation, several conserved features and a 

conserved secondary structure have been described (23). One of the conserved  

features is the telomere template sequence, complementary to the G-rich strand 

of the telomere, and located near the 5’ end of the RNA.  In addition, aligning 

vertebrate telomerase RNA subunits identified eight highly conserved regions 
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Fig. 3.  Addition of telomeric DNA by telomerase.  TERT, the catalytic 
subunit of telomerase, uses the template region within the telomerase 
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 (C1-8) (23), including a H/ACA RNA motif, which is composed of primary  and 

secondary structure elements found at the 3’ end of the RNA (24).  The H/ACA 

motif is also found in small nucleolar (sno) RNAs and is required for both 

snoRNA and TR accumulation in vivo (25).   

TERT and TR are the only elements required for reconstitution of 

telomerase activity in vitro (26), although other proteins associate with the 

telomerase ribonucleoprotein and some of them are required for telomerase 

activity in vivo (27).  In S. cerevisiae, genetic screens led to the identification of 

the reverse transcriptase subunit, EST2 (ever shorter telomeres) (28) and the 

telomerase RNA subunit, TLC1 (29). Three additional genes (EST1, EST3 and 

EST4) encoding components of the yeast telomerase holoenzyme were also 

identified (28, 30).  The functions of Est1p and Est4p in telomere biology have 

been well characterized (31), yet the role of Est3p, a stable component of the 

telomerase holoenzyme, remains unclear (32).   

Est1p is a non-catalytic component of telomerase associated with the 

telomerase RNA subunit (33).  Deletion of EST1 leads to progressive telomere 

shortening and a senescence phenotype (30).  Nucleic acid binding studies using 

recombinant Est1p indicate it is a single-stranded telomere end binding protein 

with non-specific RNA binding activity (34).  Est1p also physically interacts with 

Est4p (Cdc13p, see below), another non-catalytic component of telomerase (35).   

Cdc13p is a multifunctional telomere binding protein that recognizes the 

single-strand G-overhang (36).  The interaction of the telomerase with telomeres 
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is mediated via the Est1p-Cdc13p interaction to recruit telomerase to the 

telomere (Fig. 4).  Although Est1p was originally identified in yeast, homologues 

have been identified in many higher eukaryotes, including human, 

Caenorhabditis elegans, Drosophila and Arabidopsis thaliana (37, 38).  Of the 

three Est1-like proteins found in humans, hEst1a is the best characterized.  

Human Est1a was found to have single-stranded telomeric DNA binding activity 

in vitro (38), and to directly interact with hTERT in vitro (38).   Additionally, 

immunoprecipitation experiments showed that hEst1a was associated with 

telomerase activity in vivo (37, 38).   

One group found that overexpression of hEst1a induced chromosome 

fusions, without any alteration of telomere length (37).  When telomeres are 

dysfunctional, they are recruited into chromosome fusion events involving other 

dysfunctional telomeres, creating end-to-end fusions and dicentric chromosomes.   

The other group reported that overexpression of hEst1a and hTERT lengthened 

telomeres, but did not detect chromosome fusion events (38).  Together these 

results implicate hEst1a in telomerase recruitment and telomere capping.   In 

Chapter III, I describe the characterization of two Est1-like proteins in 

Arabidopsis. 

In addition to hEst1a, several auxiliary proteins of human telomerase have 

been identified.  They include several heterogeneous nuclear ribonucleoproteins 

(hnRNPs) (39), snoRNA binding proteins (25), molecular chaperones (40), and 

TEP1 (telomerase-associated protein 1) (41).  While the functions of most of 

these telomerase associated proteins are unknown, the snoRNA binding proteins 
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Fig. 4.  The telomerase holoenzyme in S. cerevisiae.  The 
telomerase holoenzyme consists of Est1p, Est2p, Est3p and 
TLC1.  This complex is recruited to the end of the telomere 
through the Est1p-Cdc13p interaction. 
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are required for hTR accumulation and stability in vivo (24).   

In many eukaryotes, expression of telomerase components and 

telomerase activity is regulated through development.  In Euplotes crassus, 

higher order telomerase complexes with distinct biochemical properties arise 

during development (42).  Programmed ribosomal frameshifting and a switch 

between telomerase catalytic subunits appear to contribute to this change (43).  

 In humans, telomerase activity is found in embryonic tissues and in 

rapidly dividing cells (germline, cancer cells), but not in most somatic cells (44).  

The presence of telomerase activity correlates with expression of hTERT, 

although hTR is ubiquitously expressed (45).  The situation is very similar in 

Arabidopsis, where AtTERT expression and telomerase activity are detectable in 

embryonic tissue, reproductive and actively dividing cells (flowers, root tips and 

callus), but not in leaves where most cells are arrested in the G1 phase of the 

cell cycle (46-48).  Telomerase activity in the embryo is believed to lengthen 

telomeres enough to provide the predominantly telomerase-negative somatic 

cells with a lifetime's worth of proliferative capacity.  Additionally, post-embryonic 

regulation of telomerase activity in multicellular organisms is thought to offset 

telomere loss in the rapid cycles of proliferation necessary for tissue growth and 

differentiation (25).   

 Although telomerase is the primary mechanism for telomere lengthening in 

most eukaryotes, telomerase-independent mechanisms for telomere 

maintenance have been reported (49) (Fig. 5).  In Drosophila melanogaster, 

telomeres are comprised of multiple copies of two retrotansposable elements,  
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Fig. 5. Telomerase-independent mechanisms for telomere maintenance.  
(A) Telomeric DNA (blue) and telomere associated sequences (yellow) in 
a wild type cell.  (B) Type I ALT.  Telomeres are lengthened though 
extensive amplification of telomere associated sequences.  (C)  Type II 
ALT.  Telomeres are lengthened by recombining with telomeric DNA on 
other chromosome ends.  (D) Chromosome circularization.  
Chromosomes in S. pombe can be circularized to circumvent the need 
for telomerase.   
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HeT-A and TART.  Transposition of these two elements creates arrays of repeats 

that are much larger and more irregular than the repeats added by telomerase 

(49).  Some immortalized mammalian cell lines and tumors maintain or increase 

the overall length of their telomeres in the absence of telomerase activity by a 

mechanism known as alternative lengthening of telomeres (ALT) (Fig. 5C) (50).  

Telomeres in ALT cells are extremely heterogeneous in size, and telomere 

dynamics suggest a recombinational mechanism is responsible for this increase  

in telomere length (50).  In telomerase negative budding or fission yeast, 

subpopulations of cells acquire the ability to maintain telomeres via a 

recombination mechanism (51-55) (Fig. 5B and 5C).  Type I ALT in yeast 

involves extensive amplification of telomere-associated sequences (Fig. 5B), 

while Type II ALT is characterized by very long, heterogeneous telomere tracts 

(Fig. 5C) (56).  Telomerase-deficient S. pombe cells can circularize their 

chromosomes, thus circumventing the need for telomerase or a recombination 

mechanism (Fig. 5D) (54).  Surprisingly, telomerase-independent cell survival in 

Arabidopsis does not appear to utilize any of these known mechanisms, instead 

it may involve chromatin modification (Watson et al., in preparation).   

For organisms maintaining telomere length via telomerase action, assays 

have been developed to detect and monitor telomerase activity in vitro.  

Telomerase activity can be assayed directly by incubating a single-stranded 

telomeric oligonucleotide with radio-labeled nucleotides and cellular extracts (15).  

A more sensitive assay, the telomere repeat amplification protocol (TRAP) (Fig. 

6),  uses PCR for telomerase detection (46, 57).  In both the direct assay and  
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Fig. 6.  The TRAP assay.  (A)  Schematic of the PCR based TRAP 
assay for telomerase activity in plants.  (B)  Typical results for the 
TRAP assay in Arabidopsis.  Cauliflower extract was used as a 
positive control (+) and extract from wild type Arabidopsis leaves 
was used as the negative control (-).  Lanes 1-3 show that three 
different extracts made from wild type Arabidopsis flowers have 
telomerase activity.   
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the TRAP assay, telomerase elongates the input oligonucleotide by adding one 

nucleotide at a time to generate tandem repeats of the telomeric sequence 

specified by the TR.  The products can be resolved by PAGE, and generate a 

ladder of products whose periodicity corresponds to the telomere repeat 

sequence of each organism.  Approximately 85% of human tumors have 

telomerase activity.  Hence, checking suspicious tissue samples with the TRAP 

assay provides a useful tool for the diagnosis of cancer (58).  The utility of the 

TRAP assay outside of basic research is one example of the contributions the 

telomerase field has made to improving human health.   

 

TELOMERE LENGTH HOMEOSTASIS 

Although telomere length varies between different eukaryotes, telomeres 

are strictly maintained at a species-specific set point.  Regulation of this set point 

involves a large number of different genes: a genome wide screen for genes 

affecting telomere length in S. cerevisiae identified 173 genes whose deletion 

either increased or decreased telomere length (59).  This screen illustrates the 

complex nature of maintaining the telomere set point in each cell.   

Although the mechanisms controlling telomere size are not fully 

understood, telomeric DNA is subjected to both lengthening and shortening 

activities (60).  The combined contributions of both types of activities maintain 

telomere length homeostasis.  The primary cause of telomere shortening in wild 

type cells is thought to occur as a result of the end replication problem.  In 

addition, more active processes may also lead to rapid loss of telomeric DNA.  
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These include Telomere Rapid Deletion (TRD) (61), a recombinational process 

that occurs on extremely long telomeres, deficiencies in proteins important for 

protection of the extreme terminus of the telomere (62), and exonuclease activity 

on uncapped telomeres (63).   These telomere-shortening activities are 

circumvented through the action of telomerase.  Taken as a whole, the combined 

contributions of lengthening and shortening activities at the telomere maintain 

telomere length homeostasis.     

 Despite the fact that telomere length is maintained at an equilibrium length 

for each species, this set point can vary within species of the same genus.  In 

mice, telomeres in the established inbred mice strains are approximately 40kb, 

while in wild derived mice the length is much shorter, around 10-15kb (64).  In 

the model plant, Arabidopsis thaliana, telomere length varies amongst different 

ecotypes, natural variants of Arabidopsis found in specific geographic locations.  

Arabidopsis plants can be divided into two distinct groups based on telomere 

length (3).  In one group, telomeres ranged from 2-5kb, while in the other group 

telomeres ranged span 3.5-8kb.  Thus, telomeres that range from 2-8kb are 

acceptable for Arabidopsis (3).  Additionally, the species-specific telomere length 

is dependent on telomerase.  In the absence of telomerase, telomere length is no 

longer maintained at the set point.  In Chapter II I describe reestablishing the 

telomere set point in Arabidopsis tert mutants.   
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CONSEQUENCES OF TELOMERASE INACTIVATION 
 
 In unicellular organisms that express telomerase constitutively, loss of 

telomerase activity leads to an ever-shorter telomere (EST) phenotype (30) 

characterized by progressive shortening of telomeres and eventual loss of culture 

viability (1).  Loss of telomerase activity in multicellular organisms such as plants 

or mice also causes a latent phenotype, which is only revealed when the 

telomeric DNA has been sufficiently eroded (65, 66).  Ultimately, defects in 

cellular proliferation, and increasing genetic instability leads to failure of the 

germline (65-70).   

 Disruption of TERT in Arabidopsis causes a gradual shortening of the 

telomere, by ~250-500bp per plant generation (68).  Telomerase-deficient plants 

are wild type in appearance until the sixth generation, and from then onward 

defects in cell proliferation become apparent (66).  Such abnormalities include 

developmental defects in both vegetative and reproductive organs, such as 

alteration of leaf morphology (leaves become rough and misshapen) and grossly 

enlarged shoot apical meristems. Additionally, the number of cells per leaf 

decreases, while the cellular size increases (66).  Seeds from late generation tert 

mutants have reduced germination efficiency, and many plants produce no seeds 

at all.  All tert mutants ultimately arrest at a terminal vegetative state by the tenth 

generation (66). 

When telomeres become dysfunctional, the cell recognizes them as a 

double strand break, and then “repairs” this break by fusion with another 

chromosome end to create dicentric chromosomes.  Dicentric chromosomes feed  
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into a breakage/fusion/bridge cycle (BFB) cycle.  In this cycle, dicentric 

chromosomes will be broken during anaphase and generate new unprotected 

ends that fuse again and reenter the BFB cycle (Fig. 7).  The onset of the 

phenotypic changes in telomerase-deficient plants correlated with the onset of 

chromosome instabilities, visualized as anaphase bridges in mitotically dividing 

cells (66).  The number of anaphases with end-to-end fusions increases with 

successive tert generations: when tert mutants arrest at the terminal state, up to 

40% of the anaphases contain bridged chromosomes (66). 

Cells respond to genome damage by cell cycle arrest and in mammals, 

apoptosis or senescence, which is mediated through p53 (67).  However, 

programmed cell death is not the major response to telomere dysfunction in 

Arabidopsis.  Late generation tert mutants cease growing, although they stay 

metabolically active long after wild type plants die (66).  This is presumably due 

to their failure to induce developmentally programmed senescence by seed 

production (66).   
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Fig. 7.  The breakage/fusion/bridge (BFB) cycle.  Dysfunctional 
telomeres are fused end-to-end creating a dicentric chromosome.  
During anaphase, the centromeres are pulled to opposite poles.  
Eventually this chromosome breaks and re-enters the BFB cycle.   
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TELOMERE BINDING PROTEINS 

The terminal portion of telomeres exists in a non-nucleosomal DNA-

protein complex (1).  The interactions between telomeric DNA and the non-

nucleosomal proteins form a protective cap at the ends of linear chromosomes.  

Telomeric binding proteins have been identified in many organisms, ranging from 

ciliates and yeast to humans (1).  Telomere associated proteins can be divided 

into two groups, those that directly interact with double or single stranded 

telomeric DNA, and those brought to the telomere via protein-protein interactions 

with the telomeric DNA binding proteins.   

 

Double-strand binding proteins 

As their names suggest, double-stranded telomere binding proteins 

contact the duplex region of the telomere tract.  They appear to be part of a 

length-sensing mechanism that can discriminate the number of telomeric repeats 

based on the number of duplex-binding proteins bound to the telomere (71).  

Counting the proteins provides negative regulation of the telomere by inhibiting 

access of telomerase through sequestration of the chromosome end (72). The 

most well characterized double-stranded telomere binding proteins are Rap1p 

from S. cerevisiae (71), Taz1 from S. pombe (73), and TRF1 and TRF2 from 

humans (74). 

RAP1 (repressor/activator protein), is an essential gene that encodes the 

major double-strand telomere binding protein in S. cerevisiae (Fig. 8). Rap1p 

uses two central Myb-type DNA binding domain to bind a loosely-defined 
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recognition site that is present approximately 20 times on every yeast 

chromosome end (71).  According to the protein-counting model of telomere 

length regulation, the number of telomere-bound Rap1p molecules determines 

whether a telomere is or is not acted upon by telomerase (75).  Mutations within 

the C-terminus of Rap1p cause telomerase-dependent telomere lengthening 

(76).  Two negative regulators of telomere length, Rif1 and Rif2 (Rap1p 

interacting factor) bind the C-terminus of Rap1 (77).  Deletion of the nonessential 

Rif1 and Rif2 results in significant telomere elongation (77, 78).  This same 

domain of Rap1p recruits the silencing proteins Sir3 and Sir4 (silent information 

regulator) (79). Sir3 and Sir4 form a complex with Sir2p to induce the 

transcriptional repression of subtelomeric genes (telomere silencing) (76).  It is 

generally believed that Sir and Rif proteins bind the same portion of Rap1p C-

terminus and antagonize each other in vivo by competing for Rap1p binding.   

S. pombe contains a sequence homologue of Rap1p, but this protein does 

not directly bind telomeric DNA.  Instead, SpRap1p associates with the telomere 

via a protein-protein interaction with Taz1p (telomere-associated in 

Schizosaccharomyces pombe), the major double-strand telomere binding protein 

in S. pombe.  Taz1p was identified in a one-hybrid screen for genes encoding 

double-strand telomere binding proteins, and has been shown to be a negative 

regulator of telomere length (73).  Taz1p contains a single Myb-like domain at its 

C-terminus, and binds fission yeast telomeric DNA in a sequence-dependent 

manner as a dimer (80).  Taz1p recruits homologues of ScRap1p and ScRif1p to  
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Fig. 8.  Telomere binding proteins in S. cerevisiae.  See text for 
detailed discussion of their functions and interactions.   
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telomeres in S. pombe.  Deletion of SpRap1p or SpRif1p causes telomere 

elongation (81).   

Loss of Taz1p leads to drastic alteration of both the single and double-

stranded portions of the telomere (lengthening of both is observed), and 

disruption of the telomeric chromatin structure (73, 82).  The long telomeres in 

the taz1∆ cells become entangled with each other at cold temperatures, leading 

to double strand breaks and chromosome missegregation (83).  Treatments that 

arrest S. pombe cells in G1 lead to fusions between the elongated telomeres that 

are dependent on the non-homologous end joining (NHEJ) pathway components 

Ku and Lig4 (84).  This suggests that in addition to its role as a negative regulator 

of telomere length, Taz1p contributes to the protective cap of the telomere and 

prevents the NHEJ machinery from detecting the telomere as a double stranded 

break.   

In contrast to yeast, mammalian telomeres are bound by two major 

double-strand telomere binding proteins, TRF1 and TRF2 (TTAGGG repeat 

binding factor) (Fig. 9).  TRF1 and TRF2 were identified on their ability to bind 

human telomeric oligonucleotides in vivo (74, 85).  As with Rap1p and Taz1, 

TRF1 and TRF2 use a C-terminal Myb-like domain to bind telomeric DNA.  

TRF1/TRF2 bind telomeric DNA as homodimers, using a central domain for 

dimerization (86).   

TRF1 behaves similarly to Rap1p, as a negative regulator of telomere 

length.  Overexpression of a dominant negative TRF1 causes telomeres to 

elongate to a new equilibrium length (87).  Two related proteins can inhibit the   
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Fig. 9.  Model of the human telomere.  Telomere is drawn in 
the t-loop conformation, with associated proteins. 
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binding of TRF1 to telomeres, tankyrase 1 and 2.  Tankyrases are poly (ADP-

ribose) polymerases, and in addition to many non-telomeric cellular functions, 

can ADP-ribosylate TRF1 in vitro, thus decreasing TRF1’s affinity for telomeric 

DNA (88).  Overexpression of tankyrase causes telomere elongation by releasing 

TRF1 from the telomere, thereby allowing telomere elongation by telomerase 

(89).   

TRF1 has another interacting partner, Tin2 (TRF1 interacting nuclear 

protein 2) (90).  Tin2 is a small protein with no known domains beyond its C-

terminal TRF1 binding domain.  Tin2 also appears to be a negative regulator of 

telomere length; overexpression of a dominant negative Tin2 leads to telomerase 

dependent telomere elongation (90).  Recently, a new binding partner for Tin2  

was identified by mass spectrometry, Pip1 (Pot1 interacting protein) (91) (see 

below).   

A fourth TRF1 interacting protein, PinX1, was identified in a yeast two- 

hybrid screen (92).  Overexpression of PinX1 induces telomere shortening by 

inhibition of telomerase activity in vivo (93).  PinX1 exerts its effect by 

sequestering TERT in an inactive complex in the nucleolus, which lacks the 

telomerase RNA (93).  Therefore, PinX1 is the first known telomerase inhibitor in 

vivo. 

TRF2, another major double strand binding protein in mammals, is also a 

negative regulator of telomere length (94).  TRF2 binds along the double-

stranded portion of the telomere with more than 100 protein molecules per 

chromosome end (74, 86).  In vitro, TRF2 has the ability to create t-loops when 
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given a short stretch of duplex telomeric DNA that ends in a 3’ overhang (10, 95).  

T-loop formation by TRF2 occurs at a low frequency, so in vivo, TRF2 is likely to 

be assisted by other factors in the process of t-loop formation (96). 

Beyond its role in length regulation, TRF2 has emerged as the major 

telomere protection factor in human cells.   Loss of endogenous TRF2 by 

overexpression of a dominant negative version of the protein results in activation 

of the Atm checkpoint kinase and induction of a p53 dependent cell-cycle arrest 

(8, 97).  Loss of TRF2 creates an uncapped telomere, which is attacked by 

exonucleases that cleave off the G-overhang (98).  After removal of the G-

overhang, telomeres are immediately fused by the NHEJ pathway, thus 

preventing any significant loss of telomeric DNA at the fusion junction (99). 

TRF2 also has an interacting partner, hRap1p.  hRap1 was identified in a 

yeast two-hybrid screen using TRF2 as bait (100), and was also found by its 

sequence similarity to ScRap1p.  Much like SpRap1, hRap1 does not bind 

telomeric DNA directly, but forms a complex with a double-strand telomere 

binding protein (Taz1p in S. pombe, TRF2 in humans).  Overexpression of 

hRap1 causes gradual telomere shortening, consistent with its role as a negative 

regulator of telomere length (100).     

Double-strand telomere binding proteins in plants are not as well 

characterized as those from yeast and mammals.  When the Arabidopsis 

genome is queried for genes encoding proteins with similarity to TRF1 or TRF2, 

twelve genes are identified (101).  All twelve proteins contain a C-terminal Myb-

like domain similar to what is found in TRF1 and TRF2.  Biochemical 
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characterization of these proteins identified two distinct gene families, named 

TRF-like (TRFL) family 1 and family 2.  All proteins in family 1 contained a highly 

conserved region C-terminal to the Myb domain (Myb-extension).  Recombinant 

proteins from family 1 formed homo- and heterodimers, and specifically bound 

double-stranded plant telomeric DNA in vitro (101).  In contrast, family 2 

members do not contain the Myb-extension, and do not dimerize or bind double-

stranded plant telomeric DNA in vitro (101).  Interestingly, when the Myb-

extension from family 1 was introduced into the corresponding region of a family 

2 member, telomeric DNA binding was observed (101).  Thus, the Myb-extension 

is required for binding plant telomeric DNA and defines a novel class of proteins 

in Arabidopsis (101).   

Another plant double-stranded telomere binding protein is NgTRF1 from 

tobacco (102, 103).  NgTRF1 was identified from a collection of cDNAs encoding 

Myb-containing proteins.  Interestingly, NgTRF1 displays an expression profile 

that is opposite to that of telomerase.   The highest levels of NgTRF1 expression 

are in non-proliferating cells (102).  When NgTRF1 is over-expressed in cultured 

tobacco cells, telomeres shorten, yet when anti-sense NgTRF1 is expressed, 

telomeres lengthen (103).  Cells over-expressing wild type or anti-sense NgTRF1 

undergo apoptosis (103).  This data suggests that NgTRF1 is important for 

telomere length regulation in tobacco, but also plays a role in maintaining 

genome stability.   

The data discussed above illustrate the complex protein-protein and 

protein-nucleic acid interactions of double-strand telomere binding proteins.  
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Beyond the Myb-like DNA binding domain of these proteins, there is little to no 

sequence conservation of this class of proteins found in yeast, plants or 

mammals.  However, their functional conservation through evolution 

demonstrates the necessity of protecting and regulating the double-stranded 

portion of the telomere.   

 

Single-strand telomere binding proteins 
 

Proteins that bind the single-stranded G-overhang also play important 

roles at the telomere, including protection against degradation and improper 

action of double strand break repair machinery, as well as recruitment of 

telomerase and other factors needed for proper telomere length maintenance 

(104).  Proteins that specifically bind the G-overhang have been identified in 

almost every organism studied to date, but the best characterized are from 

ciliates, yeast and humans.  

The first telomere end binding protein (TEBP) was identified in the ciliate 

Oxytricha nova.  This protein consists of two subunits, α and β, that bind the G-

overhang as a heterodimer (105, 106).  Homologues of the α subunit have also 

been identified from other ciliates, including Euplotes crassus, Oxytricha trifallax 

and Stylonychia mytilus (107, 108).  The α subunit binds telomeric DNA using a 

specialized DNA binding domain that folds into the oligosaccharide/ 

oligonucleotide (OB) fold (109).  The α subunit uses four OB fold domains to bind 

single-stranded DNA (110).  TEBP is predicted to stabilize the telomere by 

providing a cap at the chromosome end. 
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The S. cerevisiae Cdc13p is a sequence-specific, single-stranded 

telomeric DNA binding protein that also harbors an OB fold motif (111).  Cdc13p 

localizes to telomeres in vivo (112) (Fig. 3).  Although Cdc13p was originally 

identified as an essential gene involved in cell cycle control (113), in later 

screens Cdc13p was found as one of four genes that cause an EST phenotype 

(36).   Further work demonstrated that Cdc13p was not required for telomerase 

activity in vitro, but certain alleles (cdc13-2) confer a telomerase-deficient 

phenotype (EST) that is characterized by telomere shortening and eventual cell 

death (36).   

Cdc13p is a positive regulator of telomerase access to the telomere.  This 

positive regulation depends on the physical interaction between Cdc13p and 

Est1p, a non-catalytic component of the yeast telomerase holoenzyme that binds 

the telomerase RNA subunit (35).  The requirement of this protein-protein 

interaction can be bypassed if the DNA binding domain of Cdc13p is fused to 

Est1p in the absence of endogenous Cdc13p (114).  This interaction brings 

telomerase to the extreme end of the chromosome to allow elongation of the 

telomeric DNA.   

In addition to its positive role in promoting telomerase access, Cdc13p and 

its binding partners Stn1p and Ten1p are essential for protecting the 

chromosome ends from degradation.  Stn1p was identified as a Cdc13p 

interacting protein by yeast two-hybrid screens (115).  Deletion of Stn1p causes 

the accumulation of long G-overhangs and the stn1-13 allele causes abnormally 

long telomeres (115).  A genetic screen to find suppressors of temperature 
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sensitive stn1 mutants lead to the identification of Ten1p, which physically 

interacts with both Cdc13p and Stn1p (116).  Several ten1 mutations have been 

shown to cause telomerase-dependent telomere lengthening, while other 

temperature sensitive mutants of TEN1 accumulate single-stranded telomeric 

DNA (116).  These three proteins, Cdc13p, Stn1p and Ten1p are proposed to 

form a protective cap at the telomere (Fig. 8) (72). 

Surprisingly, Cdc13p can also act as a negative regulator of telomere 

length.  Mutations in Cdc13p that lead to the EST phenotype also cause long G-

overhangs (113).  From this data, it was suggested that Cdc13p may promote C-

strand synthesis by coordinating leading and lagging strand DNA synthesis 

machinery at the telomere.  This idea was supported by mutations in lagging 

strand replication machinery that lead to similar telomere phenotypes (117) and 

evidence for a physical interaction between Cdc13p and the catalytic subunit of 

polymerase α in vivo (35).  The current model for Cdc13p function suggests that 

Cdc13p first recruits telomerase to the telomere and then acts to limit telomerase 

action on the telomere in response to the lagging strand DNA synthesis by the 

DNA pol α-primase complex .   

In S. pombe and humans, the predominant single-strand telomere binding 

protein is Pot1 (protection of telomeres).  POT1 genes were identified by their 

sequence similarity to the α subunit of TEBP from ciliates (118).  Pot1 specifically 

binds single stranded G-rich DNA, and the loss of Pot1 leads to cell cycle arrest, 

end-to-end chromosome fusions and cell death (62, 118).  In S. pombe, the few 

surviving cells have circularized all of their chromosomes (118).  While SpPot1 
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uses a single OB fold to bind telomeric DNA, hPot1 has two tandem OB folds 

(110).  The most N-terminal OB fold binds telomeric DNA and the other OB fold 

protects the 3' end of the single stranded DNA (119).  

The hPot1 interacting factor, hPip1, binds both the human single strand 

telomere binding protein Pot1, and Tin2.  This interaction tethers Pot1 to the 

TRF1 complex. Reduction of Pip1 or Pot1 levels with short hairpin RNAs led to 

telomere elongation, indicating that Pip1 contributes to telomere length control 

through recruitment of Pot1 (91).  These physical interactions between Pot1, 

Pip1, TRF1, and Tin2 at the telomere may affect the loading of Pot1 onto the G-

overhang, and modulate the ability of the telomere to transmit length information 

needed to positively or negatively regulate telomerase access at the telomere 

end.   

Arabidopsis is the only organism to encode two Pot1-like proteins, AtPot1 

and AtPot2.  Recombinant AtPot1 and AtPot2 bind single-stranded plant 

telomeric DNA, and were able to form homo- and heterodimers in vitro (Shakirov 

et al., submitted).  Overexpression of a truncated version of Pot1 lacking the 

DNA binding domain caused telomere shortening, suggesting that Pot1 is a 

positive regulator of telomere length.  In contrast, overexpression of the DNA 

binding domain of Pot2 resulted in only moderate telomere shortening, yet these 

plants had severe growth defects, sterility and massive genome instability 

(Shakirov et al., submitted).  The high level of genome instability in AtPot2 

mutants implicates Pot2 in chromosome end protection (Shakirov et al., 

submitted).   
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Although the first single strand telomere binding protein was identified in 

Oxytricha, many higher eukaryotes have G-overhang binding proteins that have 

homology to the DNA binding domain of TEBP.  Similar to what is seen for 

double strand binding proteins, G-overhang binding proteins from varied 

organisms are functional and possibly structural homologues not sequence 

homologues.  Although these single strand telomere binding proteins are not as 

well characterized as their double strand telomere binding counterparts, the 

requirement of these proteins for end protection and recruitment of telomerase 

has been well established. 

 
DNA DAMAGE RESPONSE PROTEINS AT THE TELOMERE 
 

 Double-strand breaks (DSBs) in DNA constitute a significant threat to the 

stability of cellular genomes. They can be generated through the physical impact  

of ionizing irradiation on DNA, but can also arise as a consequence of DNA 

metabolism such as DNA replication and repair processes.  To protect against 

genome instability, a cell must differentiate between un-repaired DNA double 

strand breaks and the natural ends of the chromosomes, or telomeres.  

Surprisingly, telomere-binding proteins recruit DNA damage response (DDR) 

proteins, specifically those involved in DSB repair, and these DDR proteins play 

key roles in telomere maintenance. 
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Checkpoint PIKK proteins and telomeres 

After DNA damage has occurred, it is detected by sensor proteins (DNA 

damage binding proteins) which then trigger the activation of a transduction 

system composed of protein kinases (120).  Two large and highly conserved 

protein kinases of the PIKK (phosphatidyl inositol 3-kinase-like kinase) family 

amplify the original DNA damage signal and trigger a sundry of downstream 

effects.  These two kinases go by many names.  In humans they are called Atm 

and Atr, in budding yeast they are Tel1p and Mec1p, while in fission yeast they 

are named Tel1p and Rad3p (120).  For simplification, I will refer to them as Atm 

and Atr.   

Deletion of ATM in yeast or mammals leads to telomere shortening (121-127), 

and in yeast, deletion of ATR also leads to telomere shortening (121, 128).  

Yeast deficient for ATM and ATR are unable to maintain telomere length by 

telomerase, and this leads to progressive telomere shortening and eventual loss 

of proliferative capacity (127, 129).  Parallel studies are not possible in mammals, 

as Atr is essential for cell viability (130). 

Atm and Atr are both associated with the telomere in S. cerevisiae, albeit at 

different times during the cell cycle.  The presence of Atr at the telomere peaks in 

S phase, whereas Atm is present during all other phases (131).  The kinase 

activity of Atr governs these associations, and moreover, in the absence of Atm, 

Atr is associated with the telomere throughout the cell cycle (131).   

In contrast to yeast and mammals, Arabidopsis null for ATM or ATR have wild 

type telomere lengths (Vespa et al., in preparation).  In the atm atr double 
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mutants, chromosome end protection is compromised, as telomere-telomere 

fusions are observed (Vespa et al., in preparation).   Deletion of ATM did not alter 

the rate of shortening in tert mutants.  However, in the atm tert mutants, genome 

instabilities appeared three generations earlier than in tert single mutants (Vespa 

et al., in preparation).  This is reminiscent of phenotypes observed in atm tr mice, 

with an early onset of chromosome fusions in the absence of accelerated 

telomere shortening (132).  Strikingly, telomere shortening in Arabidopsis atr tert 

mutants was accelerated two-to-three fold in comparison to tert mutants.  Taken 

together, these data imply that Atm functions in chromosome end protection 

while Atr acts synergistically with telomerase in the maintenance of telomeric 

DNA.  These observations from Arabidopsis and yeast point out a crucial role for 

checkpoint PIKKs in telomere maintenance.   

 

DNA repair proteins and telomeres 

 The two major DSB repair pathways are homologous recombination (HR) 

and non-homologous end joining (NHEJ) (Fig. 10).  Both systems are highly 

conserved throughout eukaryotic evolution, but the preference for one system 

over another varies between higher and lower eukaryotes.  In higher eukaryotes, 

NHEJ is the major pathway for DSB repair, whereas single-celled organisms 

such as yeast rely most heavily on HR (133, 134).   

HR requires the RAD52 epistasis group and utilizes an undamaged 

homologous partner for repair.  The DSB is first resected in the 5’-3’ direction by 

an unknown nuclease whose activity is modulated by the MRN complex (Mre11,  
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Fig. 10.  DNA double strand break repair.  After a double strand break 
has occurred, two pathways can be utilized to repair the break, 
homologous recombination (HR) or non-homologous end joining (NHEJ).  
In HR, the double strand break is resected by the MRN (Mre11, Rad50, 
Nbs1) complex, the single-stranded DNA is bound by Rad51, a homology 
search is instigated, followed by strand invasion and DNA synthesis.  
This leads to error-free repair of DNA double strand breaks.  NHEJ is 
mediated by end alignment via the Ku70-Ku80 heterodimer.  After the 
ends are aligned, DNA-PKcs is recruited and followed by DNA Ligase IV-
XRCC4.  Using end alignment for repair makes NHEJ a more error prone 
process than HR.  
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Rad50 and Nbs1/Xrs2).  This creates 3’ overhangs, which are then bound by 

Rad51, and catalyzes a strand-exchange reaction with the homologous 

undamaged DNA partner.  Finally, the 3’ overhang of the damaged partner is 

extended by DNA polymerase, ligated, and the DNA crossovers are resolved 

(135).  

The role of HR proteins at telomeres remains unclear.  In S.cerevisiae, 

deletion of RAD51 does not affect telomere length, but a double rad51 tlc1 

(TLC1, yeast telomerase RNA subunit) mutant cells senesce at a faster rate than 

the tlc1 single mutants (52, 53).  Deletion of RAD51 in chicken cells increases  

the presence of G-overhangs (136), and RAD54 knockout mice have shorter 

telomeres than their wild type siblings (137).  These results suggest that the 

presence of HR proteins at the telomere is required for proper telomere 

maintenance. 

Current models for the role of HR proteins at the telomere revolve around the 

t-loop.  The t-loop resembles an intermediate in HR and t-loop formation can be 

promoted in vitro by TRF2, a telomeric protein implicated in t-loop formation (10).  

A mutant allele of TRF2 was recently identified that induced catastrophic 

deletions of telomeric DNA (138). The deletion events were stochastic and 

occurred rapidly, generating dramatically shortened telomeres that were 

accompanied by a DNA damage response and induction of senescence.  

Telomeric DNA deletions induced by this mutant allele were dependent on 

XRCC3 (x-ray cross complementing), a protein implicated in Holliday junction 

resolution (138).  The amount of telomeric DNA deleted created t-loop-sized 
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telomeric circles in vivo (138), suggesting that t-loop deletion by HR proteins can 

influence the integrity of mammalian telomeres. 

In stark contrast to HR, NHEJ does not require an undamaged partner for 

repair, and is capable of joining any two exposed double-stranded DNA ends.  

Key components in the NHEJ pathway are the Ku70/80 heterodimer, DNA ligase 

IV (Lig4), and Lig4’s binding partner, XRCC4.  In mammals, the catalytic subunit 

of DNA-dependent protein kinase (DNA-PKcs), a member of the PIKK family, is 

also required for efficient NHEJ (133).   

Once a DSB has been detected, the Ku heterodimer binds each end of the 

DSB and recruits DNA-PKcs.  The broken ends are then processed by a complex 

consisting of DNA-PKcs and Artemis, which becomes an exonuclease after being 

phosphorylated by DNA-PKcs.   In the final step, the processed ends are ligated 

by the DNA ligase IV/XRCC4 complex (133).   

The functions of these NHEJ components at telomeres are complicated by 

the fact that Ku and DNA-PKcs are important for both telomere length regulation 

and capping.  Deletion of Ku in yeast causes telomere shortening and extension 

of the 3’ overhang, but no chromosome fusions are observed (139-144).  In the 

model plant, Arabidopsis thaliana, knocking out KU70 causes telomerase-

dependent telomere lengthening (145), but no telomere fusions (146).  

Interpreting the role of Ku at murine telomeres has been complicated as both 

telomere lengthening (147) and shortening (148) have been reported.  However, 

deletion of Ku in mice does lead to chromosome fusions, thereby demonstrating 

a role in telomere capping (147, 148).  Deletion of DNA-PKcs leads to gradual 
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telomere shortening and chromosome fusions in mice (149-151) and 

interestingly, the kinase activity of DNA-PKcs is required to prevent the end-to-

end fusions (152).   

Knocking out either DNA Ligase IV or XRCC4 has not been shown to alter 

telomere length or cause chromosome fusions in yeast, mammals or plants (153-

155).  Although deletion of LIG4 or XRCC4 leads to embryonic lethality in mice 

(156-158), Lig4 is not an essential gene in yeast or Arabidopsis (139, 153-155).  

In Chapter IV, I present an analysis of the role of Lig4 at Arabidopsis telomeres.   

 The convergence of DSB repair proteins and telomeres is intriguing.  One 

of the major functions of the telomere is to prevent the chromosome end from 

being detected as a DSB, yet many of the same proteins that facilitate DSB 

repair are also necessary for proper telomere integrity.  Interestingly, 

dysfunctional telomeres elicit extensive checkpoint responses, and the DSB 

repair machinery plays a major role in responding to these "damaged" telomeres.   

Consolidating the seemingly antagonizing functions of DSB repair proteins at and 

on telomeres is one of the major enigmas in the telomere field today. 

 

ARABIDOPSIS AS A MODEL FOR TELOMERE BIOLOGY 

Arabidopsis thaliana is a small flowering plant, and a member of the 

mustard family, that is widely used as a model organism in plant biology.  

Although it is not of agronomic significance, Arabidopsis offers important 

advantages for basic research in genetics and molecular biology.  It has a small, 

sequenced genome (125 Mb over 5 chromosomes) and extensive genetic and 



 38

physical maps. A rapid life cycle (6-8 weeks per generation), easy cultivation and 

a prolific production of seeds make Arabidopsis an excellent model plant.  It also 

has efficient transformation methods, and a large number of mutant lines and 

genomic resources are readily available (www.arabidopsis.org). 

Arabidopsis telomeres are short, ranging from 2-8kb and do not fluctuate 

during plant development (68, 159).  These properties facilitate the identification 

of mutations that alter telomere length through simple Southern blotting 

techniques.  Additionally, the presence of unique sequences immediately 

adjacent to the telomere on eight out of ten chromosome arms facilitates the 

examination of individual telomeres.  The only telomeres that lack unique sub-

telomeric sequences are the short arm of chromosome 2 and 4 which each 

contains rRNA gene clusters (160).  Nevertheless, unique sub-telomeric 

sequences have allowed the development of two PCR based assays to precisely 

measure the length of individual chromosome arms and detect fusions between 

dysfunctional telomeres (161). 

In the past several years Arabidopsis thaliana has emerged as an 

excellent model system to study telomere biology.  The genome sequencing 

project was finished in 2000, and this allowed the identification of many genes 

encoding proteins that are homologous to known telomere proteins from other 

systems (Arabidopsis Genome Initiative, 2000).   

This small weed shows extreme tolerance to genome instability and major 

stresses such as DNA damage, chromosome fusions and telomere deregulation 

(66).  Many of the genes involved in sensing and repairing these abnormalities 
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are essential in other higher eukaryotes, making a detailed analysis of their 

functions difficult or impossible.  In striking contrast, mutations or deletions in 

many Arabidopsis genes encoding functional homologues are often not lethal 

and allow comprehensive analysis of their functions.  Examples include Atr (see 

above) and DNA Ligase IV (see above).  Deletion of either gene is lethal in 

mammals, yet Arabidopsis plants deficient for either are viable (154, 155, 162). 

Arabidopsis is a genetically tractable organism.  Double and triple mutant 

combinations can be created by simple genetic crosses, this allows a detailed 

analysis of multiple phenotypes to decipher the function of each gene, and the 

function of each gene within a complex pathway or network can be determined.  

Finally, the strong correlation between many aspects of telomere biology in 

Arabidopsis and mammals suggests that information gained from the study of 

telomeres in Arabidopsis will be applicable to a wide range of organisms besides 

plants.   

In this dissertation, I will first examine the consequences of reestablishing 

the telomere set point in tert mutants, and demonstrate that one generation is not 

enough to return short telomeres to the Arabidopsis set point.  Secondly, I 

present the characterization of two Est1-like proteins in Arabidopsis, and show 

that these two proteins do not function in telomere length regulation.  Finally, I 

address the role of DNA Ligase IV at Arabidopsis telomeres and demonstrate 

that while Lig4 is not required for the fusion of critically shortened telomeres, it is 

required for telomere length regulation and end protection.   
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CHAPTER II 
 
REESTABLISHING THE TELOMERE LENGTH SET POINT IN tert  

 
MUTANTS 

 
 
INTRODUCTION 
 
 Telomeres are the DNA-protein complexes that cap the linear ends of 

eukaryotic chromosomes.  These complexes protect the chromosome end from 

degradation and prevent fusions with other chromosome ends.  Although 

telomere length varies between different eukaryotes, telomeres are strictly 

maintained at a species-specific set point.  Regulation of this set point involves a 

large number of different genes: a genome wide screen for genes affecting 

telomere length in S. cerevisiae identified 173 genes whose deletion either 

increased or decreased telomere length (59).  Of the genes identified, 150 were 

previously unknown to alter telomere length.  Moreover, the genes identified 

function in a multitude of processes, including DNA and RNA metabolism, protein 

modification, translation, nutrient metabolism and chromatin remodeling (59).   

This screen illustrates the complex nature of maintaining the telomere set point in 

each cell.   

Although the mechanisms controlling telomere size are not fully 

understood, telomeric DNA is subjected to both lengthening and shortening 

activities (60).  The combined contributions of both types of activities maintain 

telomere length homeostasis.  In wild type cells, the primary shortening is  
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thought to occur as a result of incomplete replication of the chromosome end.  In 

this process, known as the end replication problem, a few nucleotides are lost 

from the 5’ end of the daughter strand synthesized by the lagging strand 

machinery each time a cell divides.  Recently, more active processes have been 

identified that can lead to rapid loss of telomeric DNA.  These include Telomere 

Rapid Deletion (TRD) (61), a recombinational process that occurs on extremely 

long telomeres, deficiencies in proteins important for protection of the extreme 

terminus of the telomere (62) and exonuclease activity on uncapped telomeres 

(63).   These telomere-shortening activities are circumvented through the action 

of telomerase.  Telomerase, a unique RNA-dependent DNA polymerase, uses its 

integral RNA subunit to direct the addition of a species specific repeat to the 

chromosome ends, thereby compensating for the loss of telomeric DNA.  

Telomerase is comprised by two essential components; the telomerase reverse 

transcriptase (TERT), and the telomerase RNA subunit (TR) (1).   

 Despite the fact that telomere length is maintained at an equilibrium length 

for each species, this “set point” can vary within species of the same genus.  In 

mice, telomeres in the established inbred mice strains are approximately 40kb, 

while in wild derived mice the length is much shorter, around 10-15kb (64).  In 

the model plant, Arabidopsis thaliana, telomere length varies amongst different  
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ecotypes, which can be divided into two distinct groups based on telomere length 

(3).  In one group, telomeres ranged from 2-5kb and in the other group telomeres 

ranged from 3.5-8kb; thus, telomeres that range from 2-8kb are acceptable for 

Arabidopsis (3).   

When crosses are made between mice with long telomeres and mice with 

short telomeres, a new telomere length set point is established in the F1 progeny 

(163).  The new telomere length is intermediate relative to the short and long 

telomere parents.  Telomeres from the short telomere parent are lengthened, but 

the long telomeres from the long parent are not acted upon and may shorten 

slightly (163).  This observation suggests that telomere elongation by telomerase 

is limited to the shortest telomeres. Similar to what is seen in mice, crosses 

between plants with long and short telomeres result in an intermediate telomere 

length in the F1 progeny (3).  This species-specific telomere length is dependent 

on telomerase; in the absence of telomerase telomere length is no longer 

maintained at the set point.   

 Disruption of telomerase activity leads to progressive telomere shortening, 

defects in cellular proliferation, and an increase in genome instability and 

infertility (65-70, 164).  Although telomeric DNA is lost over successive 

generations,  in mice, phenotypic defects are not observed until the fourth 

generation (G4) (65, 164) and the sixth generation (G6) in Arabidopsis (66).  
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Telomerase-deficient mice and Arabidopsis ultimately reach a terminal 

phenotype, characterized by severe genome instability and sterility, which occurs 

by G6 in mice and G9 in plants (65, 66).   

Interestingly, the damage to chromosome ends in telomerase-deficient 

mice is reversible.  By re-introducing one copy of the TR, telomeres are 

elongated and progeny show no defects in growth or proliferation (163, 165).   In 

this study we investigated the dynamics of reestablishing the telomere length set 

point in Arabidopsis.  Our approach was to cross wild type plants to different 

generations of telomerase-deficient plants (TERT-/-) and analyze the telomeres in 

the F1 progeny from these crosses.  Unexpectedly, we found plants lacking 

telomerase for seven generations can lengthen telomeres when telomerase is 

reintroduced, but one generation was not sufficient to reestablish the telomere 

set point. 
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RESULTS 

Generation of plants heterozygous for TERT 

 In the absence of telomerase, Arabidopsis telomeres shorten 250-500bp 

per generation (66).   Restoring telomerase activity to plants with short telomeres 

allowed us to investigate the dynamics of telomeres reestablishing telomere 

length homeostasis. Although telomeres progressively shorten through 

successive generations, tert mutants are wild type in appearance until G6, when 

slight decreases in fertility and minor alterations in leaf morphology are observed 

(66).  The onset of phenotypic changes correlates with the onset of chromosome 

instability, a hallmark of telomere dysfunction.  Therefore, we sought to restore 

the telomere set point in tert mutants before, during and after the predicted onset 

of chromosome instability.  Accordingly, we crossed wild type plants to G5, G6, 

and G7 tert mutants.   

Of the twenty-eight crosses that were attempted, twelve were successful 

and produced seeds (Table 1).  The crosses were numbered sequentially, and 

one, two or three siliques, or seed pods, were harvested from each cross.  If 

more than one silique was harvested per cross, they were differentiated by the 

letter: A, B or C.  The overall scheme for the initial characterization of the F1 

plants generated is illustrated in Fig. 11A.   The resulting F1 seeds were planted 

and PCR was used to genotype each plant (66), and to verify that they were 

heterozygous for the T-DNA insertion in TERT.    As expected, we found that F1 

progeny plants were heterozygous for the T-DNA insertion in TERT (data not 

shown). 
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Table 1.  Summary of tert-back crosses 
Cross # Mother (♀) Father (♂) # of Siliques 

1 G596-17 WT 9 2 (A, B) 
5 G596-15 WT 19 1 
9 G696-4 WT 10 2 (A, B) 

12 G696-4 WT 9 3 (A, B, C) 
17 WT 11 G696-1 1 
18 WT 9 G596-1 1 
19 WT 10 G696-2 1 
22 G796-1 WT 18 1 
23 G796-2 WT 4 2 (A, B) 
26 WT 19 G596-3 2 (A, B) 
27 WT 20 G596-5 2 (A, B) 
28 WT 17 G796-4 3 (A, B, C) 
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F1 plants have telomerase activity 

 Previous work has shown that plants heterozygous for a T-DNA insertion 

in the TERT gene have telomerase activity (68).  To verify telomerase activity is 

retained in the F1 progeny of the crosses, telomere repeat amplification protocol 

(TRAP) assays were performed on one plant from each cross (Fig. 11B and 

11C).  If more than one silique was harvested, one plant from each silique of that 

cross was analyzed (Fig. 11C, lanes 6 and 7).  As expected, all plants had 

telomerase activity (Fig. 11C and data not shown). 

 

Telomere length in the F1 progeny  

 To examine telomere length in the F1 progeny, a terminal restriction 

fragment (TRF) analysis was carried out on parent plants and their progeny. 

Prior to creating the crosses, tissue was harvested from each parent and 

genomic DNA was extracted.  Tissue was also harvested from several of the F1 

plants, and genomic DNA was extracted.  In Fig. 12, the TRF analysis of cross 

#1 is shown:  the mother is a G5 tert mutant with telomeres ranging from 0.65-

1.6kb (lane 1) and the father is wild type, with telomeres in the 2-5kb range (Fig. 

12, lane 9).  Three progeny from two siliques were analyzed.  In all progeny, 

while the bulk of the telomeres were within the 2-5kb range, a long smear of 

telomeric DNA can be seen trailing from the wild type range down to the shortest 

telomeres of the G5 parent (Fig. 12, lanes 2-7).  The longest telomeres in the wild 

type parent were 6kb.  However, in the progeny, the longest telomeres were now  
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Fig. 11.  Characterization of TERT heterozygotes.  (A) Scheme for 
generation and characterization of progeny from different generations of 
tert mutants and wild type plants.  (B) Schematic of the TRAP assay.  (C) 
TRAP assay, results for several of the F1 progeny of the back crosses. 

A B 

C 
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Fig. 12.  TRF analysis of cross #1.  TRF analysis was performed on 
genomic DNA from both parental plants (mother, lane 1 and father, lane 
8), and three siblings each from two siliques (lanes 2-8).   



 49

5.5kb. The loss of 500bp from the longest telomeres is consistent with the 

complete absence of telomerase action on these chromosome ends (3, 68).  

These data indicate that not all telomeres are acted upon by telomerase in a 

plant generation, and suggests that only the shortest telomeres are efficiently 

extended.  Disruption of TERT in Arabidopsis causes a decrease in the 

heterogeneity of the TRF profile (66, 68).  Instead of a smear of telomeric DNA 

typical of wild type plants, telomeres in tert mutants appeared as sharp bands 

(Fig. 12, compare lanes 1 and 8).  In the F1 progeny of all crosses analyzed, 

telomeres appeared as long smears, implying that telomerase was re-engaged in 

maintaining telomere length heterogeneity in these plants. 

 
The shortest telomeres are lengthened relative to the maternal or paternal 

parent 

 To investigate whether there were differences in the contribution of the 

maternal or paternal parent in lengthening of the shortest telomeres, we used G5 

tert plants as either the mother or the father in two crosses with one wild type 

plant.  In cross # 5, the wild type plant was the father, while in cross #26 the 

same wild type plant was the mother (Fig. 13).  In both crosses, we see the same 

result was obtained: the bulk telomeres were within the wild type range, although 

there was a long smear down to the range of each G5 parent.  Strikingly, a 

decrease of approximately 500bp was again observed in the longest telomeres of 

the progeny when compared to the wild type parent.  When this experiment was 

repeated using G6 instead of G5, very similar results were obtained (Fig. 14).   
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Fig. 13.  Telomeres are elongated regardless of which parent 
contributes the shortest telomeres.  TRF analysis of two crosses 
between one wild type (lanes 6 and 7) and two different G5 tert mutants 
(lanes 1 and 7).  For cross #5, mother is in lane 1, father in lane 6. For 
cross #26, mother is in lane 7, father is in lane 8.  Telomere lengths of 
the F1 progeny from cross #5 (lanes 2-5) and cross #26 (lane 9) are 
shown.   



 51

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14.  Telomere length analysis of two G6 crosses.  One wild type plant 
(lane 8) was crossed to two individual G6 plants (lanes 7 and 10).  For 
cross #9 (mother in lane 7, father in lane 8), four progeny from silique A 
(lanes 1-4) and two progeny from silique B (lanes 5 and 6) were 
analyzed.  Four F1 progeny from cross #19 (mother in lane 9, father in 
lane 10) are shown in lanes 11-14.   
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These data argue that the shortest telomeres are preferentially lengthened, 

regardless of whether they come from the mother or the father.   

 

Analysis of individual telomere arms in F1 progeny 

 To better gauge the dynamics of telomere length regulation, we followed 

the fate of individual telomeres in the F1 progeny by performing a parent-progeny 

TRF analysis of three chromosome arms.   For comparison, a TRF analysis was 

performed on all the telomeres from two crosses, cross #22 (G7 tert mother, wild  

type father) and cross #27 (wild type mother, G5 tert  father).  Again for the G5 

cross, the longest telomeres from the wild type parent shortened slightly, while 

the shortest telomeres from the G5 parent were lengthened (Fig. 15, lanes 5-12).   

A different result was obtained for the G7 cross.  In these progeny, while 

the shortest telomeres were lengthened, the longest telomeres were much 

shorter than in the wild type parent (Fig. 15, compare lane 2 with lanes 3 and 4).  

This was also true for another G7 cross, cross #28 (data not shown).  The rate of 

shortening on the longest telomeres was greater than expected for no 

telomerase action (66, 68).  Occasionally, telomeres in wild type plants undergo 

a dramatic loss in length.  Whether this behavior represents a TRD event similar 

to what is seen in mammals and yeast (61) remains to be determined.  
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Fig. 15.  TRF analysis of cross #22 and cross #27.  For cross #22, a  
G7 tert plant (mother, lane 1) was crossed to a wild type plant (father, 
lane 2).  Two F1 progeny are shown (lanes 3 and 4).  For cross #27, a 
wild type plant (mother, lane 5) was crossed to a G5 tert plant (father, 
lane 6).  Three progeny from two siliques are shown (Silique A, lanes 7-
9; Silique B, lanes 10-12). 
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Fig. 16.  TRF analysis of individual chromosome arms in the F1 progeny.  
Parent-progeny TRF analysis of DNA from cross #22 and cross #27 using 
probes specific for 2R (A), 5L (B) and 5R (C).   Asterisk indicates interstitial 
band cross-hybridizing to the 2R or 5R probe.   

C 
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To monitor individual telomere tracts, DNA from the same plants was 

digested for TRF analysis on three individual telomere arms (Fig. 16), the south  

arm of chromosome 2 (2R) (Fig. 16A), the north arm of chromosome 5 (5L) (Fig. 

16B) and the south arm of chromosome 5 (5R) (Fig. 16C).  The data generated 

for 2R was difficult to interpret due to the presence of an interstial band running 

approximately in the range of the telomeres for the F1 progeny.  This blot was 

stripped and re-probed for 5R and then 5L.  Analysis of each arm showed that 

telomeres in the F1 progeny fell within the range of the wild type and tert mutant 

parents.   In some progeny two distinct bands were seen (Fig. 16C, lanes 3, 7, 8 

and 9), while in others only one broad band (Fig. 16B, lanes 7 and 11) were 

observed.  These findings confirm the bulk telomere analysis, and support the 

idea that telomerase acts on the shortest telomeres.  Longer telomeres are 

refractory to telomerase action, and shorten slightly. 
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DISCUSSION 

 Telomeres are not static structures.  Instead, they are dynamic and 

fluctuate in length.  Each cell establishes an equilibrium between telomere 

shortening and lengthening events, thus creating a species-specific telomere 

length set point (166).  In tert mutants, telomere length homeostasis is disrupted 

as the primary mechanism for telomere lengthening has been removed.  In this 

study we explored the kinetics of reestablishing the telomere length set point. 

 

The telomere length set point is not immediately reestablished 

The work shown here supports previous data from mice where restoring 

telomerase activity to telomerase deficient mice allows the preferential 

lengthening of short telomeres.  In one generation, not all telomeres were 

returned to the murine set point (165).  Similarly, in Arabidopsis, although the 

shortest telomeres were lengthened in the F1 progeny, one generation of TERT 

heterozygosity was not enough to immediately return all telomeres to the set 

point of 2-5kb.  Previous work from our lab has shown that Arabidopsis 

telomerase is able to lengthen telomeres up to 4kb in one generation; telomeres 

in a G1 ku70 mutant extend from 2-8kb to 6-12kb (146). We did not see this 

degree of lengthening in the F1 progeny, the shortest telomeres were only  
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elongated by approximately 250bp.  This suggests that in the presence of very 

short telomeres, telomerase cannot lengthen telomeres to this extent.  

Alternatively, the presence of Ku70 at the telomere may suppress lengthening to 

some degree. 

In yeast, telomerase extends telomeres in late S phase (167).   However, 

telomerase does not act at all telomeres in a single cell cycle (168).  Interestingly, 

telomere elongation of an abnormally shortened telomere in yeast returns this 

telomere to the set point within 50 generations (169).  Normal human fibroblasts 

lack telomerase activity, and telomeres progressively shorten with increased 

population doublings (PD) (170).  However, restoring telomerase activity to these 

cells 10-15 PDs before they reach senescence restores telomeres to the human 

set point within 30 PDs (171).  This data suggest that multiple cell divisions are 

required to restore shortened telomeres to the species specific set point.   

The number of cellular divisions required to form a mature Arabidopsis 

plant is not known.  Perhaps the number of cellular divisions in one plant 

generation, and thus the amount of time telomeres are accessible to telomerase 

is not enough to fully restore all telomeres to the Arabidopsis set point.  This 

hypothesis would explain why mice are also unable to return all telomeres to the 

set point in one generation after reinstating telomerase activity.  Propagating the  
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F1 progeny will allow the wild type TERT allele to segregate, giving rise to wild 

type, heterozygous and homozygous tert mutant plants.  The resulting wild type 

and heterozygous tert mutants will have additional cellular divisions in the 

presence of telomerase activity, allowing further extension of any telomeres 

below the set point.  Repeating the TRF analysis on these F2 plants will address 

the number of plant generations needed to reestablish the telomere length set 

point. 

 

Chromosome instability in the presence of telomerase 

When telomerase activity is restored to late generation tr mice, in addition 

to elongating short telomeres, chromosome instability and premature aging are 

prevented (165).  All plants used for crosses in these experiments appeared wild 

type with none of the phenotypic changes associated with late generation tert 

mutants (66).  Previous characterization of tert mutants demonstrated only mild 

phenotypic changes in G6 and G7, but very severe phenotypes in G8 (66).  

Following the F1 population for successive generations will allow us to test 

whether re-activating telomerase is sufficient to prevent the phenotypic changes 

associated with telomerase deficiency. 
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 In this study we did not examine the F1 progeny for the presence or 

absence of chromosome instability.  Typically, dysfunctional telomeres are 

recruited into end-to-end fusions and can be visualized as anaphase bridges in 

mitotically dividing cells.  It would be very interesting to ask whether these F1 

plants have ongoing genome instability, even in the presence of telomerase 

activity.  Arabidopsis telomeres have unique sequences adjacent to the telomeric 

repeats (sub-telomeric sequences), thereby allowing the capture of fusion events 

by PCR (fusion PCR) and sequence analysis of the fusion junctions (161).  A 

careful parent-progeny analysis using fusion PCR would let us identify any fusion 

events in the F1 progeny, and allow us to ask several interesting questions.  

First, are there telomere fusions in the F1 progeny, and secondly, if there are 

fusions in the F1 progeny, do they persist in the F2 population?  Finally, have any 

fusion events been “healed” by the addition of telomeric DNA, and are they 

propagated in successive generations? 
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MATERIALS AND METHODS 

   

Plant material 
 

Plants were grown at 23°C in an environmental chamber under a 16/18-hr 

light/dark photoperiod.  tert mutants used in this study were derived from the 

previously characterized telomerase-deficient line 96 (66).  Wild type, tert 

mutants and F1 progeny were genotyped as described previously (66). 

 

Preparation of telomerase extracts and TRAP assays 

Protein extracts were prepared from F1 progeny, and TRAP assays were 

performed as previously described (46).  Samples were run on a 6% sequencing 

gel, dried and subjected to a phophorimager screen overnight.  TRAP signals 

were detected using a STORM PhosphorImager (Molecular Dynamics) and the 

data were analyzed using IMAGEQUANT software (Molecular Dynamics).   

 

DNA isolation and TRF analysis 

 DNA from individual plants was extracted as described (66).  TRF analysis 

was performed with Tru1I (Fermentas) restriction enzyme and 32P 5’ end labeled 

(TTTAGGG)4 oligonucleotide as a probe (68).  Single telomere analysis for the 

south arm of chromosome 2 (2R), north or left arm of chromosome 5 (5L) and 

south or right arm of chromosome 5 (5R) was performed as follows: 1µg of  
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genomic DNA was digested with PvuII and SpeI, DNA was separated by  

electrophoresis in a 0.8% agarose gel and blotted onto a nylon membrane.  

Telomere adjacent DNA sequences were amplified with primers PAT5l-5 

(CAACATGGCCCATTTAA GATTGAACG) and PAT5l-3 

(CACATATATGTTTGTTGAGTGTCGC) for the 2R probe; TAS5R-F1 

(TACGGTTTAGATGTTTAGGGT) and TAS5R-R1 

(CGCTCTCATTGCGAGTGGTA) for the 5R probe; TAS5L-F2 (TGAGTTTGCA 

TAAAGCGTCACG) and TAS5L-R2 (CGACAACGACGACGAATGACAC) for the 

5L probe, and were used for hybridization.  Signals were detected using a 

STORM PhosphorImager (Molecular Dynamics) and the data were analyzed 

using IMAGEQUANT software (Molecular Dynamics).   
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CHAPTER III 

 
IDENTIFICATION AND ANALYSIS OF TWO EST1 SEQUENCE  

 
HOMOLOGUES FROM Arabidopsis thaliana 

 
 
INTRODUCTION 
 

In S. cerevisiae, five genes encoding components of the telomerase 

holoenzyme have been identified: EST1-4 (ever shorter telomeres) (28, 30), and 

the telomerase RNA subunit, TLC1 (29).  EST1, the first gene identified, was 

found using a linear plasmid stability assay (30).  This assay takes advantage of 

the fact that a circular plasmid containing inverted telomeric repeats can be 

resolved into a linear molecule, which requires telomere formation at the ends for 

stable maintenance in yeast. The EST2-4 genes were identified from mutants 

that could not maintain the linear plasmid (28, 30). 

Est1p is a non-catalytic component of telomerase associated with the 

telomerase RNA subunit (33).  Deletion of EST1 leads to progressive telomere 

shortening and a senescence phenotype (30).  Nucleic acid binding studies using 

recombinant Est1p indicate it is a single-stranded telomere end binding protein 

with non-specific RNA binding activity (34).  Est1p also physically interacts with 

Est4p (Cdc13p), another non-catalytic component of telomerase (35).  Cdc13p is 

a multifunctional telomere binding protein that recognizes the single-strand G-

overhang.  Although both Est1p and Cdc13p bind single stranded telomeric DNA, 

Cdc13p has almost a 100-fold higher affinity for DNA than Est1p (34, 36).  
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Additionally, Est1p requires a free 3’end for binding single stranded DNA, while 

Cdc13p is able to bind single stranded DNA without a free 3’ end (34, 36).   

The recruitment model for the role of Est1p in yeast telomere maintenance, (Fig. 

17A), proposes that in late S phase, Est1p recruits telomerase to telomeres 

through its interactions with Cdc13p and TLC1 (27).   Chromatin 

immunoprecipitation (ChIP) experiments performed on synchronized cells found 

that Est1p, Est2p (TERT) and Cdc13p are telomere-associated during late S 

phase, supporting the recruitment model (172).  However, these ChIP 

experiments also found that Est2p, but not Est1p, was associated with telomeres 

prior to late S phase, which led to the activation model for Est1p function.  In the 

activation model (Fig. 17B), telomerase is bound at the telomere in an inactive 

state.  In late S phase, the association of Est1p with Cdc13p and TLC1 converts 

telomerase to an active form that allows for telomere elongation (172).   More 

recently, a third model, the sequestration model (Fig. 17C) was proposed based 

on protein tethering experiments (173) and ChIP experiments (174).  In this 

model, the Ku heterodimer recruits telomerase to telomeres in G1 via its 

interaction with TLC1 and this renders telomerase inactive. In late S phase, 

Est1p becomes telomere-associated and recruits telomerase to the telomere end 

by interaction with both TLC1 and Cdc13p, promoting telomere elongation (173, 

175). 
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Active 
telomerase 

Inactive telomerase, G1 
and early S phase 

Late S 
phase

C 
Inactive telomerase, G1 
and early S phase 

Active telomerase, 
late S phase 

Fig. 17. Models for Est1p’s role in telomere elongation.  (A) Recruitment 
model. Est1p recruits telomerase to the telomere through interactions with 
TLC and Cdc13p. (B) Activation model. Inactive telomerase is bound at 
telomeres. Upon association of Est1p with the inactive, telomere-bound 
telomerase and Cdc13p, telomerase is converted to an active form. (C) 
Sequestration model. Ku70p sequesters telomerase at an internal telomeric 
location. Activation of telomerase occurs upon association of Est1p-Cdc13p, 
whereby telomerase is translocated to the end of the telomere. 



 65

Although Est1p was originally identified in yeast, homologues have been 

identified in many higher eukaryotes, including humans, Caenorhabditis elegans, 

Drosophila and Arabidopsis thaliana.  Most of these higher eukaryotes have 

more than one ScEst1p sequence homologue (37, 38).  Alignment of all 

sequence homologues of Sc Est1p allowed the identification of conserved 

domains (Fig. 18).  These include an EST1 domain located at the N-terminus, a 

tetratricopeptide (TPR) domain implicated in protein-protein interactions that is 

located slightly C-terminal to the EST1 domain, and the PilT (PIN) domain, found 

in enzymes that ligate divalent cations.  The PIN domain is located in the C-

terminus of several Est1 sequence homologues, but not all (Fig. 18) (37).   

Of the three Est1-like proteins found in humans, hEst1a is the best 

characterized.  Human Est1a was found to have single-stranded telomeric DNA 

binding activity in vitro (38), and to directly interact with TERT in vitro (38).   

Immunoprecipitation experiments showed that hEst1a was associated with 

telomerase activity in vivo (37, 38).   
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Fig. 18.  Alignment of Est1 sequence homologues.  The EST1 domain is 
in blue, the TPR domain in purple and the PIN domain in green.  Sc-
Saccharomyces cerevisiae, Sp- S. pombe, DmAnon-A. gambiae, Dm- 
Drosophila, Hs- Homo sapiens, Ce-C. elegans, At-Arabidopsis thaliana.   

TPR 
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When telomeres are dysfunctional, they are recruited into chromosome 

fusion events involving other dysfunctional telomeres, creating end-to-end 

fusions and dicentric chromosomes.   Such chromosomes then enter the 

breakage/fusion/bridge (B/F/B) cycle which involves the repeated fusion, bridge 

and breakage of chromosomes.  Covalently fused chromosomes can be 

visualized as anaphase bridges during mitosis when the centromeres on dicentric 

chromosomes are pulled to opposite poles.  Although one group found that 

overexpression of hEst1a induced anaphase bridges, but did not significantly 

perturb telomere length (37), another group reported that overexpression of 

hEst1a and hTERT lengthened telomeres (38).  Together these results implicate 

hEst1a in telomerase recruitment and telomere capping.    

Within the Est1 protein family are two predicted proteins from Arabidopsis 

thaliana (Fig. 18) (37, 38).  To determine whether one or both of theses proteins 

are the Arabidopsis Est1 homologue, we examined the role of both proteins at 

telomeres in Arabidopsis. 
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RESULTS 

 
Identification of EST1a and EST1b in Arabidopsis thaliana 
 

The genes encoding putative Est1 orthologs from Arabidopsis (Fig. 19B) 

were identified in a Position Specific Iterated (PSI) –BLAST search 

(www.ncbi.nlm.nih.gov/blast/Blast).  PSI- BLAST is the most sensitive of all 

BLAST searches and is used to identify distantly related proteins.   Using amino 

acids 100-300 of the K. lactis Est1 (AAG49579) as the query against the non-

redundant (nr) database, the first iteration of PSI-BLAST identified ScEst1p, 

ScEbs1p and SpEst1p.  All three were added to the K. lactis sequence to create 

a position-specific scoring matrix (PSSM), which was then used to search the nr 

database.  In the second iteration, a human protein (BAA344521) and 

Arabidopsis protein (AAF98429) were identified.  The Arabidopsis protein was 

used as a query in a BLAST search against the Arabidopsis database.  This 

search identified a protein that was 28% identical to the query sequence (Fig. 

19B).  These genes were named AtEST1a (At1g28260) and AtEST1b 

(At5g19400).  When a phylogenetic tree of the Est1-like proteins was created 

(Fig. 19A) the Arabidopsis Est1 homologues are most closely related to hEst1c.  

There is currently nothing known about the function of hEst1c.  All of the yeast 

Est1-like proteins cluster together as do all Est1-like proteins from higher 

eukaryotes.  

 Full-length cDNAs for both AtEst1a and AtEst1b were obtained by RT-

PCR using primers directed to the predicted start and stop codons.  AtEST1a has 
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Fig. 19.  Alignment and phylogenetic tree of the Arabidopsis Est1-like proteins.  
(A)  Phylogenetic tree of Est1 sequence homologues.  This tree was calculated 
with ClustalW (http://www.ebi.ac.uk/clustalw/) from the alignment shown above.  
AtEst1a and AtEst1b are most closely related to hEst1c.  Additionally, all yeast 
Est1 like proteins cluster together, as do all Est1-like proteins from higher 
eukaryotes.  (B)  Alignment of predicted AtEst1a and AtEst1b proteins.  
Identical/similar residues are shown in red.   
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five exons (Fig. 20A) and encodes a protein of 880 amino acids (100 kDa), while 

AtEST1b has six exons (Fig. 20B) and encodes a protein of 1093 amino acids 

(120 kDa).    To determine whether these genes are expressed, RT-PCR was 

performed on several Arabidopsis tissues.  AtEST1a and AtEST1b were 

expressed in all tissues examined (Fig. 20C).  The AtEst1a and AtEst1 b 

expression profile differs from that of the telomerase catalytic subunit, which is 

only expressed in rapidly dividing tissues (46).  

 

 Expression of recombinant proteins 

The full-length AtEST1a and AtEST1b cDNAs were cloned to yield 

proteins, 100kDa and 120kDa, respectively, with an N-terminal T7-tag and a C-

terminal 6X His-tag (Fig. 21B, lanes 1 and 2).  We also cloned the 3’ 1.6Kb of the 

AtEST1a cDNA (AtEst1a-Cterm), and expression of this clone yielded the 

predicted 53kDa protein with a N-terminal T7-tag and C-terminal 6X His-tag (Fig. 

21A). To facilitate its expression, the AtTERT cDNA was cloned in three 

overlapping fragments: N-TERT (amino acids 1-513), M-TERT (amino acids 328-

670), and C-TERT (amino acids 519-1124) (Fig. 21B, lanes 3-5). 

Expression of AtEst1a and AtEst1a-Ct in E. coli was verified by western blots 

analysis on E. coli extracts (Fig. 21C).  Only the C-terminal fragment of AtEst1a 

was expressed in E. coli, but this polypeptide was soluble (Fig. 21C, lane 5).  

AtEst1a-Ct was purified by Ni-NTA affinity chromatography, and the fractions 

checked by SDS-PAGE for the presence of AtEst1a-Ct (Fig. 21D).  Although  
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Fig. 20.  Gene structure and expression of AtEST1a and AtEST1b.   (A)  
Gene structure of AtEST1a, blue boxes represent exons. Primers used for 
RT-PCR are shown.   (B)  Gene structure of AtEST1b, blue boxes 
represent exons.  Primers used for RT-PCR are shown.  (C) RT-PCR 
analysis of AtEST1a and AtEST1b expression in Arabidopsis.  First strand 
was generated using 1µg total RNA and oligo dT, followed by 40 cycles of 
PCR using gene specific primers.  Control primers, flanking an intron-exon 
border for AtKU70, were used to verify there was no genomic DNA 
contamination (data not shown).  Both AtEST1a and AtEST1b are 
expressed in all tissues examined.
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Fig. 21.  Expression of recombinant proteins.  (A) Expression of AtEst1a and 
AtEst1a-Cterm in rabbit reticulocyte lysate (RRL) using increasing amounts of 
plasmid. Proteins were labeled with 35S-methionine.  (B) Expression of proteins 
in RRL for use in coimmunoprecipitation experiments. Proteins were labeled 
with 35S-methionine; full length AtEst1a (lane 1), full length AtEst1b (lane 2), N-
TERT (lane 3), M-TERT (lane 4) and C-TERT (lane 5).  (C) Western blot.  Crude 
extracts from cells containing either AtEst1a or AtEst1a-Cterm constructs were 
run on a 10% SDS-PAGE and subjected to immunoblotting analysis using T7-
tag antibodies (Novagen), lanes 2-3.  AtPot2 (+) was used as a positive control 
for the Western blot (Shakirov et. al. unpublished data), lanes 1 and 4.  Cells 
expressing AtEst1a-Cterm were harvested, spun down and sonicated.  The 
crude extract was spun and the supernatant run on a 10% SDS-PAGE and 
immunobloted.  Products were detected using a T7-tag antibody (Novagen). (D) 
Purification of AtEst1a-Cterm on a Ni-NTA column. Crude extract and eluted 
fractions (E1-E8) are shown.  Asterisk indicates position of AtEst1a-Ct.  
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AtEst1a-Ct eluted in fractions 2-8, the first three fractions had a large amount of 

contaminating proteins.  Therefore, these fractions were excluded and only 

fractions 5-8 were combined (Fig. 21C, lanes 6-9) and concentrated.  Protein 

concentration was determined by a Bradford assay and the purified AtEst1a-

Cterm fragment was used in electrophoretic mobility shift assays (EMSAs).  

 

Nucleic acid binding properties of AtEst1a-Ct 

Since DNA binding activity was observed with S. cerevisiae Est1p C-

terminal fragments (34), we examined AtEst1a-Ct for DNA binding activity.  

AtEst1a-Cterm bound single-stranded Arabidopsis telomeric repeat DNA 

(TTTAGGG)n (Fig. 22).  A minimum of five repeats was needed to detect binding, 

although binding was best when six repeats were used (Fig. 22 and data not 

shown).   The protein failed to bind double stranded telomeric DNA, or a 

complementary telomeric C-strand oligonucleotide (CCCTAAA)6  (data not 

shown).  Two protein-nucleic acid complexes were observed (Fig. 22, lanes 2 

and 3).  Formation of the complexes appears to be specific as binding was 

competed by a 100-fold excess of cold telomeric oligonucleotide (Figure 22 lanes 

3, 4 and 5), but required a 550-fold excess of a non-telomeric oligonucleotide to 

compete to the same extent (Fig. 23, compare lanes 3 and 6).  Six repeats of the 

human telomeric sequence, TTAGGG, competed almost as well as six repeats of 

Arabidopsis telomeric DNA.  Suggesting that the AtEst1a C-terminus has a 

relaxed specificity for G-rich telomeric DNA.   

The ScEst1p displays non-specific binding to large RNA’s (34).   
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Fig. 22.  Nucleic acid binding properties of recombinant AtEst1a-
Cterm.  Electrophoretic mobility shift assays (EMSAs) were performed 
with protein expressed in E. coli.  Input 5’ end-labeled probe was 
incubated in the presence or absence of Est1a-Cterm.  
Oligonucleotides used were 6Telo (TTTAGGG)6 (lanes 1-6) and 
5RNA (UUUAGGG)5 (lanes 7-8).  Arrows indicate specific complexes 
and the asterisk denotes a non-specific complex.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 75

Fig. 23.  The binding of AtEst1a-Cterm to single-stranded telomeric DNA can 
be competed by Arabidopsis and human telomeric DNA.  EMSAs were 
performed with protein expressed in E. coli.  Input 5’ 32P labeled probe was 
incubated in the presence or absence of AtEst1a-Cterm.  Oligonucleotides 
used were 6Telo (TTTAGGG)6 (lanes 1-6), 6Hs (TTAGGG)6 (lanes 4-5), and 
NS (45 bases of non-telomeric DNA, land 6).  Arrows indicate specific 
complexes and the asterisk denotes a non-specific complex.   
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Similarly, we found that AtEst1a-Cterm bound single stranded RNA 

oligonucleotide containing a sequence complementary to five Arabidopsis 

telomeric repeats (Fig. 22, lanes 7 and 8), as well as the Euplotes crassus 

telomerase RNA (data not shown).   Therefore, AtEst1a-Cterm displays similar 

nucleic acid binding properties as ScEst1p.   

 

Physical interactions of AtEst1a and AtEst1b 

 Human Est1a physically interacts with hTERT, and unlike Sc Est1p, this 

interaction does not require the telomerase RNA subunit (38).  To determine 

whether Arabidopsis Est1a or Est1b bind AtTERT we performed a 

coimmunoprecipitation experiment using proteins expressed in RRL (Fig. 21A 

and 21B).  In this experiment if the T7 tagged protein interacts with the 35SMet 

labeled protein, both proteins are brought down in the pull-down with the T7-

antibody conjugated beads (pellet, P) (Fig. 24A).  If there is no interaction, the 

35SMet labeled protein will remain in the supernatant (S) and will not pellet with 

the beads.  As controls, Arabidopsis Ku70 and Ku80 were used (43).  T7-Ku70 

was incubated with either Ku70 or Ku80 (synthesized in the presence of 35S-Met, 

asterisk), and subjected to coimmunoprecipitation using T7 antibody agarose 

beads.  As expected, Ku70 did not homodimerize with Ku70 (Fig. 24B, lanes 1 

and 2), but did interact with Ku80 (Fig. 24B, lanes 3 and 4).  To verify there were 

no non-specific interactions between the recombinant proteins and the beads, 

labeled proteins were added to T7 antibody beads and subjected to 

coimmunoprecipitation.  
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Fig. 24.  In vitro interactions of AtEst1a and AtEst1b with AtTERT. (A) 
Schematic of coimmunoprecipitation.   (B) Co-IP of T7-Ku70 with radiolabeled 
(asterisk) Ku70 and Ku80. P=pellet, S= sup.  (C) Control pull down assays.  
Radio-labeled N, M and C-TERT (asterisk) do not interact with the beads.  (D) 
Co-IP of T7-AtEst1a with radio-labeled N, M and C-TERT (asterisks).  (E) Co-
IP of T7-AtEst1b with radio-labeled N, M and C-TERT (asterisks).  All products 
were run on 10% SDS-PAGE and visualized by autoradiography.   
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None of the three TERT constructs nor any of the other proteins interacted 

with the T7 antibody beads (Fig. 24C; and data not shown).  To test for  

interactions between the Est1 proteins and TERT, T7-Est1a or T7-Est1b was 

incubated with one of the three TERT fragments (all TERT fragments were 

synthesized in the presence of 35S-Met, asterisk), and subjected to 

coimmunoprecipitation using T7-antibody beads.  As seen in Fig. 23D and 23E, 

we detected no interactions between AtEst1a, AtEst1b and N-, M- or C-TERT.  

Although there appears to be a weak interaction between C-TERT and both 

Est1a (Figure 24D, lanes 5 and 6) and Est1b (Figure 24E, lanes 5 and 6), this 

interaction was not reliably reproducible. 

 
Identification and Characterization of T-DNA insertions in AtEST1a and 

AtEST1b 

To examine the role of AtEst1a and AtEst1b in vivo, we obtained 

Arabidopsis lines harboring T-DNA insertions in each gene (Figs. 25-29).  

Agrobacterium tumefaciens will integrate T-DNAs randomly into the Arabidopsis 

genome using sequences located at either end of the T-DNA.  Plants 

heterozygous for each T-DNA insertion were identified by PCR and self-

pollinated to produce wild type, heterozygous and homozygous mutant lines.   

To establish the genotype of the mutant plants, PCR was employed using 

a primer directed at the left border of the T-DNA and a gene specific primer.  For 

AtEST1a, two lines were identified, est1a-1 and est1a-2.  The est1a-1 line was 

identified from a screen of 60,480 lines established by University of Wisconsin 

(176) and is in the WS ecotype of Arabidopsis (Fig. 25A). The insertions site 
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Fig. 25.  Mapping and characterization of the insertion site in est1a-1.  (A) 
AtEST1a gene structure, exons are in shown in blue.  The T-DNA insertion 
site and position of left borders are indicated.  (B) Sequence analysis of the 
junction between the T-DNA and AtEST1a, filler DNA is shown in red.  
Number indicates the first nucleotide of AtEST1a at the junction.  We were 
unable to amplify a product using RB or LB primers for the other side of the 
insertion in est1a-1.   (C) Analysis of AtEST1a expression by RT-PCR.  
Total RNA was prepared from flowers and subjected to cDNA synthesis by 
reverse transcription.  Transcripts were amplified by 40 cycles of PCR with 
indicated sets of primers.  Control RT-PCR was done using primers that 
were specific for AtKU70, and 40 cycles of PCR. 

est1a-1 
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Fig. 26.  Mapping and characterization of the insertion site in est1a-2.  (A) 
AtEST1a gene structure, exons are in shown in blue.  The T-DNA insertion 
site and position of left borders are indicated.  (B) Sequence analysis of the 
junctions between the T-DNA and AtEST1a, filler DNA is shown in red.  
Numbers indicate the first nucleotide of AtEST1a at each junction.  (C) 
Analysis of AtEST1a expression by RT-PCR.  RT-PCR was performed as 
in Fig. 25C.  
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Fig. 27.  Mapping and characterization of the insertion site in est1b-1.  (A) 
AtEST1b gene structure, exons are in shown in blue.  The T-DNA insertion 
site and position of left borders are indicated.  (B) Sequence analysis of the 
junctions between the T-DNA and AtEST1b: filler DNA is shown in red.  
Numbers indicate the first nucleotide of AtEST1b at each junction.  (C) 
Analysis of AtESTb expression by RT-PCR.  RT-PCR was performed as in 
Fig. 25C. 
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Fig. 28.  Mapping and characterization of the insertion site in est1b-2.  (A) 
AtEST1b gene structure, exons are in shown in blue.  The T-DNA insertion 
site and position of left borders are indicated.  (B) Sequence analysis of the 
junctions between the T-DNA and AtEST1b.  Regions of microhomology 
are shown in green.  Numbers indicates the first nucleotide of AtEST1b at 
the junction.  We were unable to amplify a product using RB or LB primers 
for the other side of the insertion.  (C) Analysis of AtEST1b expression by 
RT-PCR.  RT-PCR was performed as in Fig. 25C. 
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Fig. 29.  Mapping and characterization of the insertion site in est1b-3.  (A) 
AtEST1b gene structure, exons are in shown in blue.  The T-DNA insertion 
site and position of left borders are indicated.  (B) Sequence analysis of the 
junctions between the T-DNA and AtEST1b.  Regions of microhomology 
are shown in green, and filler DNA is shown in red.  Numbers indicate the 
first nucleotide of AtEST1b at each junction.  (C) Analysis of AtEST1b 
expression by RT-PCR.  RT-PCR was performed as in Fig. 25C. 
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 in est1a-1 was mapped to the second intron of AtEST1a (Fig. 25A and 25B).  

The est1a-2 line was identified from the SALK collection of T-DNA inserts 

(http://signal.salk.edu/cgi-bin/tdnaexpress) (177) and is in the Columbia ecotype 

of Arabidopsis.  The insertion site in est1a-2 was mapped to exon five of 

AtEST1a (Fig. 26A and 26B).  RT-PCR of each line showed expression of the 

EST1a mRNA both 5’ and 3’ to the insertion, but no products could be amplified 

across the T-DNA insertion (Fig. 25C and 26C). Thus, these alleles of EST1a are 

null.   

 Three lines containing T-DNA insertions in AtEST1b (Figs. 27A, 28A and 

29A) were identified from the SALK collection of T-DNA inserts  

 (http://signal.salk.edu/cgi-bin/tdnaexpress) (177), also in the Columbia ecotype.  

The exact position of each insertion site was mapped (Figs. 27B, 28B and 29B) 

by sequence analysis of the junctions.  RT-PCR analysis of each line 

demonstrated that EST1b RNA could be amplified both 5’ and 3’ to the insertion 

site, but no products could be amplified spanning the insertion sites (Figs. 27C, 

28C and 29C).  Thus, these three alleles of EST1b are null.   

 

Phenotypic and cytogenetic analysis of AtEst1a and AtEst1b mutants  

 Plants homozygous for the T-DNA insertions in est1a-1 and est1a-2 lines 

were cultivated.  Both lines were wild type in appearance, and could be 

propagated for successive generations.  In contrast, plants from all three est1b 

lines had severe vegetative defects (Fig. 30, B-E).  est1b plants displayed a lack  
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Fig. 30.  Vegetative defects in est1b plants.  (A)  Wild type Arabidopsis 
plant.   (B) est1b mutant plants display a lack of apical dominance.  
Inflorescence bolts are thin and weak.  (C and E) Rosette leaves in the 
est1b plants are long, thin and occasionally curl under.  (D) Some est1b 
plants also have a dwarf phenotype, as well as a lack of apical 
dominance and long, thin leaves. 
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of apical dominance, producing multiple inflorescence bolts (Fig. 30, B and D) 

and thin, often curled leaves (Fig. 30, C and E).  In addition to the vegetative 

defects, est1b plants were male sterile and produced no viable pollen (Riha et. 

al. unpublished data).  Flowers from est1b lines occasionally showed alterations 

similar to what is seen in meristic mutations (178-180), such as increases in floral 

organ number (carpel and stamen) (Fig. 31, B and C) or fusion of two or more 

organs (sepal and carpel) (Fig. 31, C).   

Over-expression of hEst1a caused immediate fusion of human telomeres, 

implicating hEst1a in telomere end protection.  To determine whether disruption 

of AtEST1a or AtEST1b causes telomere fusions, we used cytogenetics to assay 

for the presence of anaphase bridges.  All three est1b mutant lines displayed 

a low level of anaphase bridges (Table 2 and Fig. 32; data not shown), 

approximately 5-7%, while neither est1a line nor wild type showed evidence for 

genome instability (Table 2 and Fig. 32A; data not shown).  

 To further investigate the nature of bridged chromosomes, we used a 

PCR based assay called Fusion-PCR (Fig. 32B) (161) to look for telomere 

fusions in the AtEST1a and AtEST1b mutant lines.  In this assay, sub-telomeric 

DNA primers directed towards the chromosome terminus are used in PCR (Fig. 

32B).  PCR products are generated only when chromosome ends have been 

covalently joined.  As expected, abundant fusion PCR products were obtained 

with DNA isolated from late generation tert mutants that display profound 

genome instability (Fig. 32C, lanes 2 and 6), however, we were unable to amplify 

fusion products in est1b or est1a lines (Fig. 32C).  It is possible that  
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Fig. 31.  Defects in flower morphology in est1b mutants.  (A)  Wild type 
flower, with four sepals, four petals, six stamen and one pistil.  (B) est1b 
flower. This flower has two pistils and one sepal has been fused with a 
carpel.  (C)  Two examples of the fusion of sepals and carpels in est1b 
plants.  These flowers have no petals, but do have very small, clear 
stamen inside.  (D)  This est1b flower has three pistils and 12 stamen, 
but the normal number of petals, pistils and sepals. 
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Fig. 1 Genome instability in est1b mutants 

 
 
 

Fig. 32.  Genome instability in est1b mutants.  (A) Anaphase bridges were 
observed in actively dividing mitotic tissues of pistils.  Wild type anaphase, 
and examples of anaphase bridges seen in est1b mutants are shown.  In 
some instances, more than one bridge can be seen. In the lower left panel 
an example of a lagging chromosome is shown. (B) Schematic of fusion 
PCR.  (C)  Fusion PCR on one est1a-2 plant and one est1b-2 plant.  Two 
primer pairs were tested, 4RX3L (lanes 1-4) and 4RX5L (lanes 5-8).  Wild 
type DNA (WT, lanes 1 and 5) was used as a negative control, and DNA 
from a G8 tert mutant (+, lanes 2 and 6) was used as a positive control. 
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Table 2.  Genome instability in est1b mutants 

 Anaphases 
Scored 

Number with 
Bridges 

Percentage with 
Bridges 

Wild type 213 0 0 

est1a-2 200 0 0 

est1b-2 315 17 5.4 
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telomeres are fusing in the est1b mutants, but we are unable to amplify them with 

our PCR technique because the telomeres involved are very long (2-5kb).  

Similarly, the fusion of sister chromatids, or the fusion of telomeres to double 

strand DNA breaks, would not be detected by this technique.  Thus, although 

there appears to be a low level of genome instability in the AtEST1b mutant 

plants, we cannot determine whether telomere de-protection is a contributing 

factor.    

 

Telomere length analysis of est1a and est1b plants 

To address the role of EST1a and EST1b in telomere maintenance,  

terminal restriction length (TRF) analysis was performed on DNA isolated from  

AtEST1a and AtEST1b mutant lines.  Relative to wild type, no changes in 

telomere length were associated with any est1a or est1b line (Fig. 33; data not 

shown).  All telomeres for the est1b lines were within the normal 2-5kb size range 

for telomeres in plants of the Columbia ecotype (Fig. 33A, lanes 5-12 and data 

not shown) (3).  In the est1a-2 line, telomeres were also within the wild type 

Columbia telomere range (Fig. 33B).  The est1a-1 line is in a Wassilewskija (WS) 

background, which is known to have two distinct groups of telomere length (3).  

Telomeres in WS plants can be 2-5kb, or slightly longer, ranging from 3-8kb.  

Telomeres in the est1a-1 line are within the 3-8kb long WS telomere range (Fig. 

33, lanes 1-4).  These data indicate that Est1a and Est1b do not contribute to 

telomere length homeostasis in Arabidopsis. 
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Fig. 33.  Terminal restriction fragment analysis of est1a-1, est1a-2 
est1b-1 and est1b-2.  (A) For each line, two wild type and two mutant 
plants were analyzed.  The est1a-1 line is in the WS ecotype, and 
telomeres are within the 3-8kb range for long WS telomeres, lanes 1-4.  
All est1b-1 and est1b-2 plants had telomeres in the wild type range for 
Columbia lanes 5-12.  (B) TRF analysis of est1a-2.  Four wild type and 
three est1a-2 mutant plants were analyzed.  All plants had telomere 
lengths within the normal Columbia range. 
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It was possible that AtEST1a and AtEST1b are functionally redundant with 

respect to telomere biology.  Therefore, a mutant deficient in both EST1a and  

EST1b was established to investigate this possibility.  Plants homozygous for the 

est1a-2 or est1b-2 T-DNA insertion were crossed, and an individual plant 

heterozygous for each insertion was identified in the F1 population and allowed 

to self-pollinate.  Wild type, est1a-2, est1b-2 and est1a-2 est1b-2 plants were 

identified in G1, and TRF analysis was performed.  No changes in telomere 

length were seen in the est1a-2 est1b-2 double mutant (Fig. 34). 

It was also possible that AtEST1a and AtEST1b play only a minor role in 

recruitment of telomerase to the telomere, and that any defects caused by loss of 

EST1a or EST1b would not be observed when telomere tracts are within the wild 

type range.  In this case, a telomerase recruitment function for Est1a or Est1b 

might be revealed in a plant where telomeres become extremely long.  To test 

this idea, we examined the consequences of combining an AtEST1b deficiency 

with a mutant lacking KU70 (Fig. 35).  In KU70 mutants, telomeres become 

extremely long expanding to more than double the size of wild type telomeres in 

a single generation (146).  Plants heterozygous for ku70 and est1b-2 were  
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Fig. 34.  TRF analysis of est1a-2 est1b-2 double mutants.  All 
mutants have telomeres within the wild type range.   
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Fig. 35.  Terminal restriction length analysis of the est1b-2 ku70 
double mutant.  No change in telomere length can be detected 
between the ku70 single (lane 2) and the est1b-2 ku70 double mutant 
(lane 5). 
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crossed, and a plant heterozygous for both ku70 and est1b-2 was identified in 

F1.  This plant was allowed to self-pollinate, and wild type, ku70, est1b-2 and 

est1b-2 ku70 double mutants were identified, and analyzed by TRF (Fig. 35).  

The ku70 line comes from the WS ecotype, and has long telomeres (3-8Kb), 

while the est1b-2 line is in the Columbia background and has telomeres in the 2-

5Kb range.  When crosses are made between two ecotypes with different 

telomere lengths, the resulting plants have telomeres that span the range of both 

ecotypes (3).  As expected, ku70 mutants had telomeres much longer than their 

wild type and est1b-2 counterparts.  No change in telomere length was detected 

between the ku70 single mutant and the est1b-2 ku70 double mutants (Fig. 35).  

Thus, neither AtEst1a nor AtEst1b appear to play any role in telomerase 

recruitment.  
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DISCUSSION 
 
  Most of our understanding about the recruitment of telomerase comes 

from work in S. cerevisiae, where Est1p plays an integral but as of yet poorly 

defined role in this process.  With the identification of Est1 sequence homologues 

in other organisms, it may be possible to clarify the role of this Est1 protein. 

 

Arabidopsis has two Est1-like genes 

As sequenced genomes became available for higher eukaryotes, Est1p-

like proteins were identified in many organisms, including humans, C. elegans 

Drosophila and Arabidopsis (37, 38).   Many of these higher eukaryotes have 

more than one obvious Est1-like homologue, humans have three, while 

Arabidopsis and Drosophila each have two (37, 38).   

To further our understanding of Est1 in telomere biology, we have 

identified and characterized two Est1-like proteins in the model plant, Arabidopsis 

thaliana.  Although the predicted proteins of AtEST1a and AtEST1b genes have 

very weak sequence similarity to ScEst1p, both Arabidopsis proteins have the 

EST1 and TPR domain found in all Est1-like proteins, suggesting that AtEst1a 

and AtEst1b are the Arabidopsis sequence homologues of ScEst1p.  The 

constitutive expression profile of the Arabidopsis EST1a and EST1b is similar to 

what is seen for the human EST1a mRNA (37, 38).   

Like Est1p from S. cerevisiae, AtEst1a binds Arabidopsis single-stranded 

telomeric DNA as well as small RNA oligos and large RNAs in vitro.  AtEst1a-

Cterm was able to bind both Arabidopsis telomeric DNA and human telomeric 
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DNA.  This flexibility in sequence recognition is not unique to AtEst1a, both 

ScEst1p and hEst1a are able to bind telomeric DNA from other organisms (34, 

38).  ScEst1p binds yeast telomeric DNA (TGTGTGGG)3 and Oxytricha nova 

telomeric DNA (TTGGGG)3 equally well, and to a much lesser extent, human 

telomeric DNA (TTAGGG)4 (34).  Interestingly, human Est1a preferentially binds 

Sc telomeric DNA, binding human telomeric DNA to a much lesser extent (38).  

Neither AtEst1a, ScEst1p or hEst1a bind double-stranded telomeric DNA (34, 

38)( R. Idol and D. Shippen unpublished data).    

AtEst1a-Cterm bound both large RNAs and small RNA oligonucleotides in 

vitro.  In contrast, ScEst1p binds only large RNAs (34), and hEst1a does not 

show specificity for the human telomerase RNA subunit in vitro, although it’s 

binding to small RNA oligos was not tested (38).  Thus, AtEst1a shows both 

similarities and differences in its nucleic acid binding properties relative to human 

and yeast Est1 proteins. 

The human Est1a directly interacts with TERT (38), however we failed to 

observe an interaction between AtEst1a or AtEst1b with Arabidopsis TERT.  It is 

possible that the Arabidopsis Est1 proteins bind the Arabidopsis telomerase RNA 

subunit, much in the same way as ScEst1p binds TLC1 (35).  However, the 

Arabidopsis telomerase RNA subunit has not yet been identified, so this 

hypothesis cannot be tested.    
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Est1a and Est1b do not play a role in telomere length regulation in 

Arabidopsis 

 Est1 proteins in S. cerevisiae and humans are important in telomere 

length regulation and in humans, telomere capping (30, 37).  Surprisingly, our 

data indicate that AtEst1a and AtEst1b do not play an analogous role in 

Arabidopsis.  We failed to observe changes in telomere length in any single 

est1a or est1b line or the est1a-2 est1b-2 double mutant.  Moreover, in the est1b-

2 ku70 double mutant, telomeres were elongated to the same extent as in the 

ku70 single mutant.  It will be interesting to determine whether human Est1c, the 

closest relative of the Arabidopsis Est1 proteins functions in telomere biology.  

Perhaps like the Est1-like proteins in plants, hEst1c has evolved new functions 

outside of telomere length maintenance and end protection.   

 

Arabidopsis EST1b is an essential gene 

 Disruption of AtEST1a had no effect on plant growth or development and 

these plants could be propagated for multiple generations.  By contrast, T-DNA 

insertions in AtEST1b had severe consequences for both vegetative and 

reproductive tissues.  est1b mutants are sterile and recent studies have shown a 

novel role for AtEst1b in meiosis, apparently unrelated to telomere function (Riha 

et. al. in preparation).  

One possible role for Est1b is in the nonsense-mediated-decay (NMD) 

pathway.  NMD is responsible for eliminating aberrant mRNAs that prematurely 

terminate translation.  Human Est1a was independently identified as a 
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component of the human NMD pathway (181), and in yeast, NMD regulates 

expression levels of several telomere components (182, 183).   Additional 

support for this link between Est1-like proteins and NMD comes from sequence 

analysis of proteins known to be important for NMD in C. elegans (SMG 1, 2, 5, 6 

and 7; suppressor with morphogenetic effect on genitalia).  Both Smg5 and 

Smg7 have N-terminal TPR domains, and Smg5 has a C-terminal PIN domain 

(184).  When Smg5 and Smg7 are used as a query against the Arabidopsis non-

redundant database, the only proteins identified are AtEst1a and AtEst1b, 

suggesting a link between Arabidopsis Est1 proteins and NMD.  If AtEst1b was 

involved in NMD in Arabidopsis, knocking out other genes in the NMD pathway 

may cause similar growth and reproductive phenotypes like those observed in 

the est1b mutants.  Besides the C. elegans Smg proteins, three other NMD 

proteins have been identified in S. cerevisiae, UPF 1-3 (up-frameshift). We 

identified a sequence homologue of UPF1 in Arabidopsis (At5g47010) and 

obtained a line harboring a T-DNA insertion in this gene; however, these mutants 

had none of the vegetative or reproductive defects associated with a deficiency in 

AtEst1b.   While this result does not rule out a role in NMD for the Arabidopsis 

Est1-like proteins, it deepens the mystery surrounding this class of genes in 

plants.    
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MATERIALS AND METHODS 

 
Plant materials and growth conditions 
  
 Arabidopsis seeds were treated overnight at 4°C, then placed in an 

environmental growth chamber and grown under a 16/18-hour light/dark 

photoperiod at 23°C.  The est1a-1 line was obtained by screening the Wisconsin 

T-DNA collection.  All other lines were obtained from the SIGNAL SALK 

database (http://signal.salk.edu/cgi-bin/tdnaexpress).  est1a-2, est1b-1, est1b-2  

and est1b-3 are SALK_071725, SALK_073354, SALK_025699 and 

SALK_112476 respectively.  Insertion sites were mapped using gene specific 

primers that flanked the insertion site, and primers specific to the left or right 

border region.  PCR products were cloned into the pCR2.1-TOPO vector 

(Invitrogen) and sequenced using M13 forward and reverse primers. 

 

cDNA synthesis and RT-PCR analysis 

 Total mRNA was extracted from 100-500mg of plant tissue using Tri-

Reagent (Sigma).  AtEst1a and AtEst1b were synthesized from flower RNA using 

SuperScript III reverse transcriptase (Invitrogen).  Oligo dT was incubated with 

1µg total RNA in the supplied buffer at 65°C for 5 min.  Reverse transcription was 

carried out with 200 units of SuperScript III at 55°C for 1hr.  RNA was degraded 

with RNase H (USB).  The coding regions of AtEST1a and AtEST1b were then 

amplified with Ex-Taq (Takara).  The PCR products were cloned into pet28b 

(Novagen).  For expression analysis of AtEST1a and AtEST1b, RNA was made 

as above for each tissue (rosette leaves, cauline leaves, stem, flowers and 
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callus) and subjected to RT-PCR.  First strand was made with oligo dT as above, 

and primers specific to EST1a and EST1b were used to amplify a portion of each 

mRNA.   

 

Expression and purification of recombinant Est1a-Cterm 

 A region of the AtEst1a cDNA corresponding to nucleotides 1600-2623 

(amino acids 533-880) was PCR-amplified and cloned into the Sal1 and Not1 

sites of pet28b. This construct, designated AtEst1a-Cterm, was transformed into 

bacteria strain er2566 (New England Biolabs) for over-expression.   Western 

blotting with T7-tag antibodies was used to monitor expression of AtEst1a-Cterm.  

Cells were grown at 37°C to O.D.600 0.5, induced with IPTG (0.7 mM) and 

harvest after 4hr.  Cells were re-suspended in binding buffer (50mM NaHPO4, 

300mM NaCl, 10mM imidazole, and 1% NP-40), sonicated on ice, and the 

supernatant was taken for affinity purification.  AtEst1a-Cterm was purified as a 

soluble recombinant protein using a 6X His tag present at the C-terminus, and 

immobilized metal affinity chromatography purification with Ni-NTA His-Bind 

Resin (Novagen).  Fractions were analyzed by SDS-PAGE, and the fractions 

containing AtEst1a-Cterm were combined and dialyzed against 50mM Tris-Cl pH 

7.9, 100mM KCl, 1mM DTT and 50% glycerol.  The dialyzed sample was then 

concentrated against solid PEG, 3hr at 4°C.  Protein concentrations were 

determined using Bradford analysis.   

The appropriate coding regions of N (nucleotides 1-1539), M (nucleotides 

984-2010) and C-TERT (nucleotides 1557-3372) were cloned into the pCITE 
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vector (no T7 tag added).  The full-length coding region of KU70 was cloned into 

pet28, plus and minus the T7 tag.  The full-length coding region of KU80 was 

cloned in pet28a without the T7 tag.   

 

Electrophoretic mobility shift assays 

EMSA was performed in 10mM HEPES (pH 7.8), 75mM KCl, 2.5mM 

MgCl2, 0.1mM EDTA, 1mM DTT, 3% Ficoll.  Incubations were performed in 10µL 

reaction volumes with 4.4ng of AtEst1a-Cterm, 200µg/mL E. coli digested DNA 

as a nonspecific competitor, end-labeled single-stranded oligonucleotides (boiled 

2min and snap-cooled on ice just prior to use), and competitors (when added).  

Oligonucleotides used in this study were: 6Telo (TTTAGGG)6 , 6Human 

(TTAGGG)6, 5RNA (UUUAGGG)5  and non-specific  (TTCCTCGAAGAAGC 

CTCT AAAGATGTGTCTTCTAAAGAATGCAGT). Protein (3.3x10-4 µM per 

reaction) and unlabeled competitors were mixed in the above gel shift buffer and 

incubated for 10min at room temperature after the addition of the labeled 

oligonucleotide.  The reactions were subjected to electrophoresis through a 7.5% 

non-denaturing polyacrylamide gel in 1X TBE (pH 7.5) at 150 volts for 4hr.  RNA 

binding was done under the same conditions.  After the gels were run, they were 

dried and subjected to a phosphorimager screen overnight.  Data was analyzed 

using ImageQuant software. 

Purified DNA and RNA oligonucleotides were obtained from Integrated 

DNA Technologies.  Single-strand oligonucleotides were 5’end labeled with γ-

32P- ATP and T4 polynucleotide kinase (NEB).  For each reaction, 5.5X10-4 ρM 
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oligonucleotide was used, and the molar fold excess of each unlabeled 

competitor was calculated based on this number. 

 

Co-immunoprecipitation 

Full-length T7-Ku70, Ku70, Ku80, T7-Est1a, T7-Est1b, N-TERT, M-TERT 

and C-TERT were expressed in separate rabbit reticulocyte lysate reactions 

(25µL reaction volume) following the manufacturer directions and using 500ηg 

DNA of each template.  The Ku70, Ku80, N, M and C-TERT reactions contained 

0.5µL of [35S] methionine to label the product.  The reactions were stopped by 

the addition of 1.5µL cyclohexamide (2mg/mL stock in water) per reaction.  Co-

immunoprecipitations were carried out as described previously (Wang et. al. 

2002) using anti-T7 monoclonal antibody (Novagen).   After immunoprecipitation, 

the bound and unbound fractions were resolved by SDS-PAGE.  The dried gels 

were subjected to a phosphorimager analysis, and the data was analyzed using 

ImageQuant software. 

 

Cytogenetics  

 Mitotic anaphases were prepared as previously described (Riha et. al., 

2001) with the following modification: floral buds were digested in 20% (v/v) 

pectinase (Sigma), 2% (w/v) cellulase (Sigma) for 1hr at 37°C.  Slides were 

stained with 2µg/mL DAPI and mounted in 50% glycerol.  Anaphase spreads 

were visualized as described previously (Riha et. al. 2001). 
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Fusion PCR 

Unique subtelomeric primers directed 5' to 3' toward the telomeric repeat 

were designed for each chromosome: 1L (5' ACAAGGATAG 

AAATAGAGCATCGTC 3'); 3L (5'AGACGAGGAGACTAGGAACG 3'), 3R (5' 

GTATGGATGCC GGGAAAGTTGCAGACAA 3), 5R (5' TCGGTTGTC 

GTCTTCAAG 3').  PCR samples were prepared as previously described (161). A 

10µL aliquot of the PCR products was separated by electrophoresis through a 

1% agarose gel, and transferred to a nylon membrane. Membranes were 

hybridized with a 32P end-labeled (T3AG3)4 probe.  Hybridization signals were 

detected using a STORM Phosphor Imager (Molecular Dynamics) and the data 

were analyzed using IMAGEQUANT software (Molecular Dynamics).  

 
 
Terminal restriction fragment length analysis 

 DNA from individual plants was extracted as previously described (66).  

TRF analysis was performed with Tru1I restriction enzyme (Fermentas) and 32P 

5’ end-labeled (T3AG3)4 oligonucleotide as a probe (68). 
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CHAPTER IV 
 

Arabidopsis LIGASE IV IS REQUIRED FOR TELOMERE  
 

MAINTENANCE, BUT NOT FOR FUSION OF DYSFUNCTIONAL  
 

TELOMERES 
 
 
INTRODUCTION 

 
It is essential that cells are able to maintain genome integrity.  To protect 

against genome instability, a cell must differentiate between un-repaired DNA 

double strand breaks (DSBs) and the natural ends of the chromosomes.  

Telomeres provide this protection by their unusual architecture and composition. 

Telomeres are comprised of repetitive G-rich DNA sequences that end with a 3’ 

single strand overhang, which loops back and invades the double strand portion 

of the telomere forming a t-loop (10).    Current models suggest that through 

much of the cell cycle, the t-loop hides the 3’ overhang, but during S-phase 

telomerase is permitted access (96).  Telomerase, a specialized reverse 

transcriptase, uses its integral RNA subunit as a template to synthesize telomeric 

repeats, and hence maintains telomeric DNA.  The chromosome terminus is 

coated by proteins that recognize and associate with the telomeric DNA either 

through binding directly to the DNA or through protein-protein interactions (89).    

When a telomere becomes dysfunctional, the cell is no longer able to 

distinguish it from a DSB.  The telomere is treated as such, resulting in end-to-

end chromosome fusions.  Telomere dysfunction can arise through depletion of 

telomeric repeats or by loss of telomeric proteins essential to maintaining the 
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protective cap (28, 65, 66, 68, 84, 149, 151, 185).  In mammals, plants and 

yeast, the fusion of dysfunctional telomeres requires components of the non-

homologous end-joining (NHEJ) pathway (84, 99, 161, 185, 186).   

The major components of the NHEJ pathway are the Ku70/80 

heterodimer, DNA ligase IV (Lig4), XRCC4, and in mammals, the catalytic 

subunit of DNA-dependent protein kinase (DNA-PKcs) (133).  Once detected, a 

DSB is bound at each end by the Ku heterodimer, which subsequently recruits 

DNA-PKcs.  The broken ends are then processed by a complex consisting of 

DNA-PKcs and Artemis, whose latent exonucleolytic function becomes activated 

by DNA-PKcs (187).   Finally, the processed ends are ligated by the DNA ligase 

IV/XRCC4 complex (133).   

Several of the NHEJ components have been shown to be required for the 

fusion of dysfunctional telomeres.  In fission yeast, Ku and Lig4 are required for 

end-to-end chromosome fusions in the absence of Taz1p (84).  Ku and Lig4 are 

also required for chromosome fusions in atm or atr single mutants, atm atr 

double mutants, tlc1 atm mutants, and est2 nhej1 mutants in budding yeast (186, 

188, 189).  Similarly, fusion of uncapped mammalian telomeres requires Ku (185) 

and DNA ligase IV (99).  However, there are several examples of alternate NHEJ 

pathways for telomere fusions.  Ku-independent pathways for telomere joining 

have been documented in yeast, plants and mammals (139, 145, 147, 149, 161, 

186).  In addition, end fusions also occur in mice lacking DNA-PKcs (149-151).   

Thus, many organisms have backup NHEJ pathways to repair DSBs. 
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Elucidating the functions of NHEJ components at telomeres is complicated 

by the fact that several of these proteins are associated with telomeres and are 

required for length regulation and end protection.  In fission and budding yeast, 

deletion of Ku leads to telomere shortening and extension of the 3’ overhang 

(139-141, 143, 144).  This data implicates Ku in telomere end protection.  In 

addition, Ku acts syngerstically with telomerase in telomere maintenance.  

Deletion of Ku in budding yeast and fission yeast leads to an increased rate of 

telomere shortening (139, 190). For mammals, both telomere lengthening (147) 

and shortening (148) have been reported in the absence of Ku.  Additionally, 

deletion of Ku in mice leads to chromosome fusions, demonstrating a role in 

telomere capping (147, 148).  However, telomeres in mice deficient for Ku and 

telomerase shorten at the same rate as telomeres in telomerase deficient mice 

(185).    

DNA-PKcs also plays a role in telomere maintenance and end protection.  

Deletion of DNA-PKcs leads to gradual telomere shortening and chromosome 

fusions in mice (149-151) and interestingly, the kinase activity of DNA-PKcs is 

required to prevent the end-to-end fusions (152).  By contrast,  DNA ligase IV 

and its binding partner XRCC4 have not been linked to telomere maintenance or 

end protection (148, 153, 155).   

 Arabidopsis thaliana has emerged as a useful model for telomere biology 

in higher eukaryotes.  This small weed shows extreme tolerance to genome 

instability (66), and perhaps because of this, deletion of several DSB repair 

genes, including  MRE11, ATR and LIG4 that are lethal in mammals are not in 



 108

Arabidopsis (154, 155, 162, 191, 192).   In telomerase mutants, progressive 

telomere shortening eventually leads to sterility and massive genome instability, 

although plants in the terminal generation remain viable despite more than half of 

their chromosomes being involved in end-to-end fusions (66).  Deletion of KU70 

causes telomerase dependent telomere lengthening (145) but no telomere 

fusions (146).  However, plants doubly deficient for both Ku70 and TERT display 

an advanced onset of genome instability, caused by a two-to-three fold in the 

rate of telomere shortening (145).  The fusion of critically shortened telomeres 

occurs in the absence of Ku70 (145) via a more microhomology driven pathway 

that appears to be mediated in part by Mre11 (161).  Remarkably, telomeres in 

telomerase mutants deficient in Ku and Mre11 are still subject to chromosome 

fusion, arguing that Arabidopsis has robust and redundant NHEJ capacities 

(161).   

Although deletion of Lig4 or XRCC4 leads to embryonic lethality in mice 

(156, 158, 193), LIG4 is not an essential gene in yeast or Arabidopsis (139, 153, 

155, 158).  Therefore, we examined the role of DNA ligase IV in the fusion of 

critically shortened telomeres in Arabidopsis.  Here we show that Lig4 is not 

required for chromosome fusions, but unexpectedly is required for telomere 

maintenance in Arabidopsis.  This is the first evidence for a role for Lig4 outside 

of NHEJ.   
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RESULTS 

 
Identification and characterization of lig4-3 
 

We obtained an Arabidopsis line with a T-DNA insertion in AtLIG4 from 

the SIGnAL collection of Arabidopsis T-DNA insertion lines 

(http://signal.salk.edu/cgi-bin/tdnaexpress) (177).  The insertion, SALK_044027, 

is located within exon 6 of AtLIG4 (Fig. 36A), and we refer to this mutant as lig4-

3.  A plant heterozygous for the insertion in AtLIG4 was identified by PCR and 

self-pollinated to produce progeny that were wild type or homozygous for the T-

DNA insertion.  To pinpoint the site of insertion, the junction between each LB 

and LIG4 was sequenced (Fig. 36B).  The disruption in lig4-3 contains two 

tandem T-DNA insertions, each with the left border (LB) pointing out into LIG4 

(Fig. 36A).  RT-PCR analysis of the homozygous mutants indicated that insertion 

abolished production of full-length Lig4 mRNA.   Although PCR products could be 

amplified both 5’ and 3’ of the T-DNA insertion, no product was obtained using 

primers flanking this site (Fig. 36C).  Consistent with results for lig4-1 and lig4-2 

Arabidopsis mutants (154, 155), plants homozygous for the lig4-3 mutation 

displayed no defects in growth or development (data not shown).  

Mutants lacking components of a DNA repair pathway are typically 

hypersensitive to DNA damaging agents.  As previously reported, both ku70-/- 

(Fig. 37) and lig4-1 and lig4-2 (146, 154, 155) mutants were sensitive to DNA 

damaging agents. Therefore, we examined the response of lig4-3 by comparing 

its growth on methyl methanesulfonate (MMS) relative to wild-type and ku70-/-  
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Fig. 36.  Characterization of the T-DNA insertion in lig4-3.  (A) AtLIG4 gene 
structure, exons are in blue.  The positions of lig4-1 and lig4-3 are shown. (B) 
Sequence analysis of the T-DNA-LIG4 junctions.  Filler DNA is in red, and 
regions of microhomology are in green.  Numbers indicate the first nucleotide 
of AtLIG4 adjacent to the T-DNA.  (C) Expression of AtLIG4 in the lig4-3 line.  
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Fig. 37.  lig4-3 plants are hypersensitive to DNA damage.  Four-day old 
seedlings were transferred to liquid MS media containing 0ppm or 100ppm 
methyl methanesulfonate (MMS).  Seedlings were scored after 10 days in 
MMS containing media. 
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plants as expected, the lig4-3 line was hypersensitive to MMS (Fig. 37), 

indicating it is a null allele.   

 

lig4-3 plants have wild type telomere length 

Previous characterization of lig4 deficient lines have shown no defects in 

telomere length maintenance (154, 155).  To verify that is was true for lig4-3, we 

performed terminal restriction fragment (TRF) analysis on the second generation 

(G2) of the lig4-3 line. Nine wild type and ten G2 lig4-3 plants were selected 

randomly and telomere length was examined by TRF.  Although we noted slight 

variability in telomere lengths, this is not uncommon in Arabidopsis (3).  All 

telomeres in lig4-3 mutants were within the 2-5kb range for Columbia ecotype 

(Fig. 38).   

 
Creation of the ku70 tert lig4-3   triple mutant 
 
 To determine whether LIG4 is required for the fusion of dysfunctional 

telomeres in Arabidopsis, we examined the fate of mutant combinations lacking 

TERT, the telomerase catalytic subunit, KU70 or LIG4.  A plant heterozygous for  

T-DNA insertions in both KU70 and TERT (145) was crossed with a lig4-3 

heterozygote (Fig. 39A).  A single F1 plant heterozygous for T-DNA insertions in 

all three genes was identified by PCR and self-pollinated to produce all possible 

mutant combinations.  From this cross, two lines (line 1 and line 2) were created 

(Fig. 39A), which were then propagated for three consecutive generations.  For  
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Fig. 38.  TRF analysis of the lig4-3 line. Plants were segregated from one 
plant heterozygous for the lig4-3 insertion.   Nine second generation (G2) wild 
type plants and ten G2 lig4-3 plants were analyzed.  All plants have telomeres 
within the wild type telomere range for the Columbia ecotype (2-5kb). 
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Fig. 39.  Creation of ku70 tert lig4 mutants and phenotypes of terminal 
ku70 tert lig4-3 mutants.  (A)  Scheme for creation of ku70 tert lig4-3 
mutants.  (B-F)  Phenotype of G4 plants.  Wild type (B), ku70 tert (C) and 
two ku70 tert lig4-3 (D) plants in G4.  A top view of the larger ku70 tert 
lig4-3 plant from (D) is shown in (E).  The smaller plant from (D) is 
pictured from the top (F) with a penny to demonstrate scale.   

A. Ku70+/- Tert+/- Lig4-3+/+X Ku70+/+ Tert+/+ Lig4-3+/- 

Ku70+/- Tert+/- Lig4-3+/-

Ku70-/- Tert+/+ Lig4-3-/- 

Ku70-/- Tert-/- Lig4-3+/+

Ku70+/+Tert-/- Lig4-3-/-

Ku70-/- Tert-/- Lig4-3-/- 

(line 1 and 2) 

(line 1 and 2) 
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the first two generations (G1 and G2), all the single and double mutants exhibited 

a wild type phenotype.  However, in G1 the ku70 tert lig4 mutants were smaller 

and produced a smaller seed-set (data not shown).  In G3, the ku70 tert mutants 

began to exhibit mild growth defects consistent with the accelerated rate of 

shortening previously documented for this background (145) (Fig. 39C).  All other 

double and single mutant combinations appeared wild type.  Strikingly, by G3, 

ku70 tert lig4-3 mutants were sterile, displaying a terminal phenotype (Fig. 39D 

and 39E), with rough, misshapen leaves and either no inflorescence bolt, or an 

inflorescence bolt bearing infertile flowers.  The phenotypes seen in terminal 

ku70 tert lig4-3 mutants is reminiscent of the phenotypes observed in late 

generation tert mutants (66).   

   

DNA ligase IV is not required for fusion of critically shortened telomeres in 

Arabidopsis 

We next asked whether LIG4 is necessary for the fusion of dysfunctional 

telomeres in Arabidopsis by monitoring anaphase figures for the presence of 

bridged, and presumably covalently fused, chromosomes.  In G2, the incidence of 

anaphase bridges in the single and double mutants was extremely low and 

mirrored that of wild type plants.  In contrast, 21% of the anaphases examined in 

G2 triple ku70 tert lig4 mutants contained bridged chromosomes (Fig. 40 and 

Table 3) and in G3 the incidence rose to 54% (Table 4).  To determine whether 

the cytogenetic abnormalities we observed correlated with telomere joining  
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Fig. 40.  Anaphase bridges in ku70 tert lig4-3 mutants.  Anaphase 
figures were prepared from pistils stained with 4’6-diamidino-2-
phenylinodle (DAPI).  (A) Wild type anaphase.  (B-D) Examples of 
anaphase figures from ku70 tert lig4-3 mutants. 
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Table 3.  Genome instability in G2 ku70 tert lig4-3 

 Anaphases 
Scored 

Number of 
Anaphases with 

Bridges 

Percentage with 
Anaphase Bridges

Wild type 227 0 0 
ku70 tert 254 1 0.4 
tert lig4-3 243 1 0.4 

ku70 lig4-3 269 1 0.37 
ku70 tert lig4-3 210 44 21 
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Table 4.  Genome instability in G3 ku70 tert lig4-3 

 Anaphases 
Scored 

Number of 
Anaphases with 

Bridges 

Percentage with 
Anaphase Bridges

Wild type 210 0 0 
ku70 tert 205 13 6 
tert lig4-3 203 0 0 

ku70 lig4-3 197 1 0.5 
ku70 tert lig4-3 299 160 54 
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events, we employed fusion PCR (161) using sub- telomeric DNA primers 

directed towards the chromosome terminus (Fig. 41A).  In this technique, PCR 

products are generated only when chromosome ends have been covalently 

joined.   

Although no fusion products were detected with any DNA samples from G1 

single or double mutants, products were obtained with G1and G2 ku70 tert lig4 

triple mutants (Fig. 41B).  Fusion products were also associated with G2 ku70  

tert mutants (161).  The failure to detect chromosome fusion events by 

cytogenetics in these G2 ku70 tert double mutants likely reflects the decreased 

sensitivity of cytogenetic analysis relative to PCR.   

To examine the architecture of chromosome fusion junctions formed in the 

absence of LIG4, we cloned and sequenced fusion PCR products obtained from 

a G3 ku70 tert lig4 triple mutant.  PCR primer combinations were for three 

chromosome pairs (1R-3L, 3R-3L. 3L-5R).  A total of 22 clones were evaluated. 

Overall, these clones were similar to those obtained from ku70 tert mutants 

(161). The majority of the clones contained telomeric DNA and sequences from 

both chromosome arms, consistent with fusion of heterologous chromosomes.  

All but one had a structure consistent with primary end-to-end chromosome 

fusion (Fig. 40B).  Forty-five percent of the clones represented telomere-telomere 

fusions, while 45% were telomere- subtelomere fusions.  One subtelomere-

subtelomere clone was identified, and one additional clone showed a complex 

structure at the fusion junction suggestive of a secondary fusion (Fig. 41C). As  
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Fig. 41.  Analysis of telomere fusions in ku70 tert lig4-3 mutants.  (A) 
Schematic of fusion PCR.  (B)  Fusion PCR results for G1, G2, and G3 ku70 
tert lig4-3 plants.  In the panel on the left, DNA from individual plants was 
used with the primer pair 4RX3L.  In the panel on the right, DNA from one 
wild type plant and one ku70 tert lig4-3 plant were analyzed using two 
different primer pairs (4RX3L, lanes 1-2; 4RX5L, lane 3).  (C) Summary of 
chromosome fusion junctions in Fusion PCR clones obtained from ku70 tert 
lig4-3 mutants.  

C 

A B 
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with fusions formed in the ku70 tert background (161), the amount of telomeric 

DNA captured in the fusions varied, ranging from 52-1085bp.  The average 

amount of telomeric DNA in the fusions (345bp) correlated roughly with the 

minimum functional telomere length previously defined for Arabidopsis (161).  

For telomere-subtelomere fusions the extent of deletion of subtelomeric 

sequences varied from 61 bp to 479 bp, and in all but one of those clones there 

was a short region of overlapping microhomology between the sequences at the 

fusion junction.  The insertion of novel DNA sequence at the fusion junction was 

not a prominent feature of these clones.  From these data, we conclude that 

fusion of dysfunctional telomeres can proceed in the absence of LIG4.   

 

LIG4 contributes to telomere maintenance in Arabidopsis 

In contrast to the situation with Ku and DNA-PKCS, previous studies have 

failed to implicate LIG4 in telomere biology (139, 148, 150, 152, 153).  

Nevertheless, our data indicate that ku70 tert lig4-3 mutants display a precocious 

onset of growth and developmental defects.  To investigate the molecular basis 

for the phenotypes associated with ku70 tert lig4-3 mutants, TRF analysis was 

performed on DNA from G2 and G3 mutants.   

As discussed earlier, the lig4-3 mutation had no affect on telomere length 

on its own (Fig. 38).  Telomeres are extended in mutants lacking KU70 (66), Fig. 

42, lanes 1-5 and  Fig. 43A, lane 3.  This is also the case in ku70 lig4 mutants 

(Fig. 42, lanes 6-10 and Fig. 43A, lane 5).  Although the data shown indicates 

that telomere tracts may be slightly shorter in ku70 lig4-3 mutants, further  
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Fig. 42.  Comparison of telomere length between ku70 and ku70 
lig4-3 mutants in G2.  DNA from five ku70 mutants and five ku70 
lig4-3 mutants was digested with TruI1 and subjected to pulse-field 
gel electrophoresis to separate DNA in the 4-30Kb range. The gel 
was blotted onto nitrocellulose and probed with a 5’ end labeled 
(TTTAGGG)4 probe.   
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Fig. 43.  TRF analysis of G2 ku70 tert lig4 mutants.  Genomic DNA was 
isolated from one plant of each genotype and digested with TruI1. DNA 
was transferred onto nitrocellulose and hybridized with a 32P-labeled 
(TTTAGGG)4 probe.  (A and B) G2 population blot.  Examples of ku70 tert 
lig4-3 line 1 (A, lane 8) and ku70 tert lig4-3 line 2 (B, lane 4).  

A B
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analysis of TRF length on a pulse field gel revealed no significant difference 

relative to ku70 mutants (Fig. 42). 

A different result was obtained when lig4-3 was combined with a tert 

mutation.  Tert mutants lose telomeric DNA at a rate of approximately 200-500 

bp per generation (66).  Accordingly, in G2 telomeres in tert mutants ranged from 

2.3 to 7kb.  In contrast, telomeres were markedly shorter in tert lig4-3 mutants, 

spanning only 2-3.5 kb (Fig. 43A, lane 6) in line 1, and 1.6-4kB in line 2 (Fig. 

43B, lanes 1 and 2).  This accelerated rate of telomere erosion mimicked that of 

G2 ku70 tert mutants (Fig. 43A, lane 7; Fig. 43B, lane 3).  Furthermore, in both 

tert lig4 and ku70 tert mutants, TRFs formed a discrete banding profile bearing 

significantly less heterogeneity than wild type telomere tracts (Fig. 43A, compare 

lane 1 with lanes 6 and 7).  These data suggest that Lig4 and Ku70 make similar 

contributions to telomere maintenance.   
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Further support that Lig4 contributes to telomere maintenance came from 

TRF analysis of G2 ku70 tert lig4-3 triple mutants.  The TRF profile in these 

plants differed dramatically from the other mutants we examined.  Instead of a 

discrete banding profile, telomeres in the ku70 tert lig4-3 mutants consisted of a  

broad homogenous smear with products ranging in size from approximately 1- 

3kb in line 1 (Fig. 43A, lane 8) and only 0.65-1.6Kb in line 2 (Fig. 43B, lane 4).  

The more accelerated rate of telomere shortening in line 2 versus line 1 ku70 tert 

lig4-3 mutants correlates with the earlier onset of the terminal phenotype in this 

line (data not shown).  The dramatic shortening of telomere tracts in the triple 

mutants is also consistent with the early onset of genome instability in these 

plants and strongly argues that Lig4 contributes to telomere maintenance in 

Arabidopsis.   
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DISCUSSION 
 

The interaction of NHEJ components with functional and dysfunctional 

telomeres is enigmatic.  While such proteins are required for repair of double 

strand breaks, their presence at telomeres somehow precludes this process.  

The data presented here uncovers two unexpected characteristics of Lig4; the 

protein is not required for fusion of dysfunctional telomeres, but is necessary for 

telomere maintenance.     

 

Fusion of critically shortened telomeres can proceed in the absence of 

LIG4 

 Data from mammals that suggests that Lig4 is required for the fusion of 

telomeres in cells over-expressing a dominant negative TRF2 (99).  Yet in 

Arabidopsis telomeres fuse in the absence of Lig4.  Approximately 90% of the 

chromosome fusion junctions we cloned from the ku70 tert lig4-3 mutants had 

microhomology at the junction, suggesting that in the absence of Ku and Lig4 

microhomology mediated end-joining is the mechanism for fusion.  Although 

fusion junctions from ku70 tert and ku70 tert lig4-3 were essentially 

indistinguishable, both display the hallmarks of NHEJ with deletions and 

microhomology at the fusion junctions. The similarity between fusions that  
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occurred in the absence of Ku or Ku and Lig4 was not surprising in light of the 

mechanism of NHEJ.  Current models for NHEJ show Ku being recruited to the 

site of a DSB first, followed by DNA PKcs and then Lig4/XRCC4 (194).  In the 

absence of Ku, end-to-end fusions may be shuttled to a more micro-homology 

based pathway, such as one that utilizes the MRX complex (161).  The absence 

of Lig4 apparently does not alter this choice.  Although we cannot quantitate our 

Fusion PCR data, the large number of fusions observed by cytogenetics 

suggests that backup NHEJ pathways can efficiently fuse dysfunctional 

telomeres. 

In plants, yeast and filamentous fungi, T-DNA integration occurs by NHEJ 

(195-199).  Interestingly, LIG4 is required for T-DNA integration in yeast (196, 

200), but is not required in Arabidopsis (155).  Sequence analysis of the T-DNA 

integration sites in Lig4 deficient plants showed no defects in the efficiency of 

integration or the features of T-DNA integration (155).  These observations, 

combined with the data presented here argue that Arabidopsis harbors another 

ligase capable of functioning in NHEJ.  While there are no obvious DNA ligase II 

and III homologues in Arabidopsis, one possible candidate for involvement in 

NHEJ is DNA Ligase I, which is an essential gene in Arabidopsis (201).  The 

Arabidopsis DNA Ligase I is able to ligate nicks and double-stranded DNA with 

either blunt or cohesive ends (202).  Hence, this enzyme could potentially 

substitute for Lig4 in DSB repair by NHEJ.   
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Lig4 contributes to telomere maintenance 

Unexpectedly, our data point to a role for LIG4 in telomere maintenance in 

Arabidopsis.  We observed an accelerated rate of telomere shortening in tert lig4 

mutants, similar to that seen in ku70 tert mutants.  Moreover, telomere tracts in 

both settings, telomeres displayed decreased heterogeneity, typical of a tert 

mutant.   Ku is a negative regulator of telomerase and in its absence telomeres 

expand to two-to-three times their normal size (145).  Telomeres are wild type 

length in lig4-3 mutants, indicating that Lig4 does not modulate telomerase 

activity.  Further support comes from TRF analysis of ku70 tert lig4-3 mutants.  In 

these plants, telomeres shorten even more dramatically than in either ku70 tert or 

tert lig4-3 mutants, indicating that Ku and Lig4 make distinct contributions to 

telomere maintenance.  

While interactions between Ku and telomerase in Arabidopsis are 

unknown, Ku has been shown to contact the telomerase RNP in yeast and 

mammals.  In S. cerevisiae, Ku binds a 48-nt stem-loop region of TLC1 RNA in 

vitro (203, 204) and in vivo (174).  While in mammals, Ku physically interacts with 

TERT, and this interaction does not require DNA (205).  Interactions between 

Lig4 and other components of the telomere complex have not been explored 

(see below).   

 

Interactions between Lig4 and telomeres   

In addition to its interactions with telomerase, Ku plays an important role in 

maintenance of the telomeric C-strand.   Deletion of Ku leads to long G-
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overhangs in yeast and Arabidopsis (140-145) and recent studies argue that the 

extended G-overhang does not reflect increased telomere action, but rather 

failure to protect or fully replicate the C-strand of the telomere.  Studies in yeast 

indicate that Exonuclease 1 is responsible for creating extended G-overhangs in 

Ku mutants (63, 206), implying that Ku is required to protect the telomere from 

shortening activities.  Although the status of the G-overhang in the ku70 tert lig4-

3 mutants is unknown, preliminary data indicates that at least a subset of 

telomeres in the triple mutants possess G-overhangs (R. Idol and D. Shippen, 

unpublished results).   

Our data argue that Ku and Lig4 may work together to protect telomeres in 

Arabidopsis.  In the absence of TERT, deletion of either Ku or Lig4 leads to 

partial uncapping, allowing some exonucleolytic attack on these telomeres 

(model, Fig. 44).  However, when a telomerase deficiency is combined with the 

loss of both Ku and Lig4, telomeres are dramatically shortened and extremely 

heterogeneous, arguing that the telomere capping function has been abolished 

leaving the ends susceptible to catastrophic exonuclease attack (model, Fig. 44).   
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Fig. 44.  Model for Lig4 action at telomeres.  (A) Ku (green) and Lig4 
(purple) are physically associated with the telomere.  Ku is a negative 
regulator of telomerase, and helps protect against exonucleolytic attack.  (B)  
In the absence of telomerase, deletion of either Ku or Lig4 leads to partial 
telomere uncapping, and this allows some exonucleolytic activity on these 
telomeres. In ku70 tert mutants, the C-strand appears to be more exposed to 
attack.  The status of the G- and C-strands in lig4-3 mutants is unknown. 
However, telomerase mutants that lack both Ku and Lig4 chromosome ends 
become even more susceptible to attack, resulting in catastrophic telomere 
shortening. 

A 

B 
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Our genetic data are consistent with the idea that Lig4 is a stable 

component of the telomere in Arabidopsis.  While not yet addressed in plants, Ku 

is physically associated with telomeres in mammals and yeast through 

interactions with TRF1 or Sir4p, respectively (143, 148, 207, 208). Although 

current models of NHEJ show Lig4 being recruited to a DSB after both Ku and 

DNA-PKcs (209), perhaps Lig4 normally resides at Arabidopsis telomeres through 

interactions similar to those made with Ku. 

Recent work has shown the catalytic activity of DNA-PKCS is required to 

prevent end-to-end fusions (152).  It is unknown whether the catalytic activity is 

LIG4 is required to protect chromosome ends.  Blackburn and colleagues 

showed more than twenty years ago that yeast and Tetrahymena telomeres carry  

discontinuities within the C-strand (210, 211).  Perhaps Lig4 is involved in sealing 

these nicks to help maintain C-strand continuity.   
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MATERIALS AND METHODS 
 

Plant materials  

Arabidopsis thaliana plants with a T-DNA insertion in AtLIG4 were 

obtained from the SALK collection (SALK_04427) (177).  Heterozygous plants 

were identified using PCR with primers Lig4-8 (5’ GTGATTTGAA 

ACTAGTCTGTG 3’), Lig4-9 (5’ CAGCAAACCGATTCAGAGATG 3’) and Lba-1 

(5' TGGTTCACGTAGTGGGCCATCG 3') (177).  Plants heterozygous for T-DNA 

insertions in KU70 and TERT (145) were crossed to heterozygous lig4-3 plants.  

PCR was used to identify a single triple heterozygous plant in F1, and this plant 

was self-pollinated to produce a segregating F2 population.  Two lines (line 1 and 

line2) were established for ku70 tert, tert lig4-3 and ku70 tert lig4-3 mutants.  All 

single, double, and triple mutants along with WT plants were identified by PCR 

from this population.  Plants were grown at 23°C in an environmental chamber 

under a 16/18-hr light/dark photoperiod. 

 

RNA extraction and RT-PCR 

Total RNA was extracted from flowers using the Tri-Reagent solution 

(Sigma, St. Louis, MO).    Reverse transcription was performed using 1µg of total 

RNA with SuperScript III (Invitrogen) and oligo dT at 55°C.   The following 

primers were used:  Lig4-p1 (5’ ATGACGGAGGAGATCAAATTCAGCG 3’), Lig4-

p2R (5’ TGACCCACTTCATCTCCTGAGC 3’), Lig4-8 (5’ GTGATTTGAAA 

CTAGTCTGTG 3’), Lig4-9 (5’ CAGCAAACCGATTCAGAGATG 3’), Lig4-p5F (5’ 

GGGAACCTGGAGATCGTAGTGG 3’), Lig4-p6 (5’ TGCCCTTGATATCCG 
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ATACATCAG 3’).  PCR conditions were as follows: 94°C for 2 min., followed by 

40 cycles of 94°C for 45 sec, 55°C for 45 sec and 72°C for 1 min, with a final 

incubation at 72°C for 10 min. 

 

Assay for sensitivity to MMS  

Seeds of wild type, ku70 and lig4-3 were sterilized in 50% bleach and 

plated on solid 0.5 MS media.  Four-day-old seedlings were transferred to 

separate wells of a 24-well plate containing liquid 0.5 MS medium containing 0, 

60, 80 or 100ppm (v/v) MMS (Aldrich) and incubated in a shaker with constant 

light.  Seedlings were scored after ten days. 

 

Analysis of mitotic chromosomes  

 Mitotic anaphases were prepared as described previously (66) with the 

following modifications.  Buds were digested with an enzyme mixture containing 

2% cellulase w/v (Sigma) and 20% v/v pectinase (Sigma) in 0.01M citrate buffer 

pH 4.6 at 37°C for 1 hr.  Squashes were then analyzed as described (66). 

 

PCR amplification, cloning and sequence analysis of fusion junctions 

Unique subtelomeric primers directed 5' to 3' toward the telomeric repeat 

were designed for each: 1L (5' ACAAGGATAG AAATAGAGCATCGTC 3'); 3L 

(5'AGACGAGGAGACTAGGAACG 3'); 3R (5' GTATGGATGCCGGGAAA 

GTTGCAGACAA 3); and 5R (5' TCGGTTGTC GTCTTCAAG 3').  PCR was 

performed as previously described (161).  A 10µL aliquot of the PCR products 
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was separated by electrophoresis through a 1% agarose gel, and transferred to a 

nylon membrane. Membranes were hybridized as previously described (161).  

Hybridization signals were detected using a STORM PhosphorImager (Molecular 

Dynamics) and the data were analyzed using IMAGEQUANT software (Molecular 

Dynamics).  

For cloning of PCR products, unincorporated primers were removed using 

the QIAquick PCR Purification Kit (Qiagen).  Products were then ligated into the 

pDRIVE vector (Qiagen) and transformed into SURE® competent cells 

(Stratagene).  Fusion clones were detected by colony hybridization as described 

previously (161).  DNA was prepared from clones of interest using a QIAprep 

Spin Miniprep Kit (Qiagen).  DNA sequence reactions were performed using the 

BigDye Reaction Mix (Perkin Elmer-ABI), and products were evaluated using an 

ABI PRISM 377 DNA Sequencer. 

 

Terminal restriction fragment length analysis 

DNA was extracted from whole plants three to five weeks after 

germination (212).  TRF analysis was performed as follows: 1µg genomic DNA 

was digested with TruI1 (Fermentas) restriction enzyme, overnight at 65°C.  DNA 

was separated by electrophoresis in a 1% agarose gel and blotted onto a nylon 

membrane.  Membranes were probed with a 32P end-labeled telomeric 

oligonucleotide (T3AG3)4 as above.  Hybridization signals were detected using a 

STORM PhosphorImager (Molecular Dynamics) and the data were analyzed 

using IMAGEQUANT software (Molecular Dynamics).   
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CHAPTER V 

 
SUMMARY AND FUTURE DIRECTIONS 

 
 

Telomere biology has its roots in experiments carried out in the 1930s by 

two geneticists: Barbara McClintock and Hermann J. Muller. Working separately 

and with different organisms (maize and Drosophila, respectively), both realized 

that chromosomes contained specialized ends that were required for stability. 

Muller coined the term "telomere," from the Greek for "end" (telos) and "part" 

(meros) (213). Although much of the information known about telomeres has 

come from other organisms, plant telomere biology is moving to the forefront of 

telomere research.   

This renewed interest in plant telomeres is due in a large part to the small 

weed, Arabidopsis thaliana.  The sequencing of the Arabidopsis genome and the 

availability of gene knockout lines has allowed the identification and 

characterization of many telomere-related genes.  Additional features that make 

Arabidopsis an excellent model system for telomere biology include its extreme 

tolerance to genome instability and major stresses.  Many genes involved in 

sensing and repairing genome instability are non-essential.   Moreover, 

Arabidopsis is genetically tractable and multiple mutant combinations can be 

created by simple genetic crosses.  I have exploited these features to address 

fundamental questions about telomeres and telomerase in plants. 
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TELOMERE DYNAMICS IN Arabidopsis 

Telomere length varies between different eukaryotes, but telomeres are 

strictly maintained at a species-specific set point.  Regulation of this set point 

involves a large number of different genes (Askreee et. al., 2004).  The regulation 

and strict maintenance of the telomere length set point is not fully understood in 

any model system.  Telomeric DNA is subjected to both lengthening and 

shortening activities (60).  The combined contributions of both types of activities 

maintain telomere length homeostasis.   

In wild type cells, the primary mode for telomere shortening is thought to 

occur as a result of the end replication problem.  Recently, more active 

processes have been identified that can lead to rapid loss of telomeric DNA, 

including Telomere Rapid Deletion (TRD) (61), deficiencies in proteins important 

for protection of the extreme terminus of the telomere (62), and exonuclease 

activity on uncapped telomeres (63).   These telomere-shortening activities are 

circumvented through the action of telomerase.   

 Despite the fact that telomere length is maintained at an equilibrium length 

for each species, this “set point” can vary within species of the same genus.  In 

mice, telomeres in the established inbred mice strains are approximately 40kb, 

while in wild-derived mice the length is much shorter, around 10-15kb (64).  In 

the model plant, Arabidopsis thaliana, telomere length varies amongst different 

ecotypes, which can be divided into two distinct groups based on telomere length 

(3).  In one group, telomeres range from 2-5kb while in the other group telomeres 
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span 3.5-8kb.  Thus, telomeres that range from 2-8kb are acceptable for 

Arabidopsis (3).   

Telomere length can also vary within an organism.  In barley embryos, 

telomeres are 80kb, but in leaves are shortened to 23kb (214).  This rapid 

shortening is reminiscent of TRD described for budding yeast (61).  Barley 

telomeres also undergo dramatic elongation in cell culture, expanding from 10kb 

to over 150kb (214).   

When crosses are made between mice with long telomeres and mice with 

short telomeres, a new telomere length set point is established in the F1 progeny 

(163).  The new telomere length is intermediate relative to the short and long 

telomere parents.  Telomeres from the short telomere parent are lengthened, but 

the long telomeres from the long parent are not acted upon and may shorten 

slightly (163).  This observation suggests that telomere elongation by telomerase 

is limited to the shortest telomeres. Similar to what is seen in mice, crosses 

between plants with long and short telomeres result in an intermediate telomere 

length in the F1 progeny (3).  This species-specific telomere length is dependent 

on telomerase; in the absence of telomerase telomere length is no longer 

maintained at the set point.   

How is the optimal telomere length size determined in each organism and 

what are the sensing mechanisms each organism has developed to monitor 

telomere length?  Some organisms have short telomeres while others have very 

long telomeres, yet very similar lengthening and shortening activities function in 

all systems studied to date.  The coordination of these activities must be 
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regulated in each system, but factors governing this coordination are unknown.  It 

will be very interesting to see common machinery is used to regulate the length 

altering activities at telomeres, or if telomere length is set by species-specific 

factors.   

Disruption of telomerase activity leads to progressive telomere shortening, 

defects in cellular proliferation, and an increase in genetic instability and infertility 

(65-70, 164).  Although telomeric DNA is lost over successive generations in 

mice, phenotypic defects are not observed until the fourth generation (G4) of 

mice (65, 164) and the sixth generation (G6) of Arabidopsis (66).  Nevertheless, 

these telomerase-deficient eukaryotes ultimately reach a terminal phenotype, 

characterized by severe genome instability and sterility, which occurs by G6 in 

mice and G9 in plants (65, 66).   

When the telomere length set point is disrupted, how do different 

organisms reestablish their set point?  The disruption of telomere length set point 

in telomerase-deficient mice is reversible.  By re-introducing one copy of the TR, 

telomeres are elongated and progeny show no defects in growth or proliferation 

(163, 165).   In this dissertation, I investigated the dynamics of reestablishing the 

telomere length set point in Arabidopsis.  

The first strategy we used to examine reestablishing telomere length set 

point was to over-express TERT in different generations of tert mutants (66). I 

was able to recover transformants, and named these plants “Tert backs”.  Plants 

expressing telomerase activity in the leaves were selected for further analysis.  

Terminal restriction fragment analysis of the Tert back plants gave surprising 
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results, telomeres were not lengthened in these plants.  Fusion PCR on the Tert 

back plants demonstrated that telomere fusion events had occurred, signifying 

that the presence of telomerase activity was not sufficient to prevent or stop 

genome instability in these plants.  Moreover, telomeres not lengthened when 

Tac1 is over-expressed in plants (213), suggesting that plants are unable to 

utilize telomerase in vegetative tissues. 

Another approach to examine the consequence of reintroducing 

telomerase into telomerase mutants was through classical genetic crosses.  Wild 

type plants were crossed to different generations of tert mutants, and analyze the 

resulting F1 progeny.  This proved to be more successful than the over-

expression approach used earlier.  Progeny plants had telomerase activity and 

were able to lengthen short telomeres. 

As discussed in Chapter II, in Arabidopsis, although the shortest 

telomeres were lengthened in the F1 progeny, one generation of TERT 

heterozygosity was not enough to return all telomeres to the wild type set point of 

2-5kb.  Perhaps in the presence of very short telomeres, telomerase cannot 

lengthen telomeres to the extent necessary to restore the set point.  Data from 

yeast and human cells suggests that multiple cell divisions (30-50 population 

doublings) are required to restore shortened telomeres to the species specific set 

point (169, 171).  Therefore, it is conceivable that the number of cellular divisions 

in one plant generation, and thus the length of time telomeres are exposed to 

telomerase is not sufficient to fully restore all the telomeres to the wild type set 

point.  This hypothesis would explain why mice are also unable to return all 
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telomeres to the set point in one generation after reinstating telomerase activity 

(165).  

 

Future directions 

To investigate our hypothesis that more cellular divisions in the presence 

of telomerase are necessary to return all telomeres to the set point, plants can be 

propagated for additional generations.  This will allow the wild type TERT allele to 

segregate, and the resulting wild type and heterozygous tert mutants will have 

additional cellular divisions in the presence of telomerase activity.  Repeating the 

TRF analysis on the F2 plants could reveal the number of plant generations 

needed to reestablish the telomere length set point.  It is possible that two 

generations may not be enough to return all short telomeres to the Arabidopsis 

set point.  If so, these plants will be propagated until all telomeres are within the 

wild type range of 2-5kb.   

 In this study I did not examine the F1 progeny for the presence or 

absence of chromosome instability.  It would be very interesting to ask whether 

these F1 plants have ongoing genome instability, even in the presence of 

telomerase activity.  Telomerase action should reestablish the proactive cap on 

the chromosome terminus by giving telomere binding proteins adequate sites to 

bind.  Arabidopsis telomeres have unique sequences adjacent to the telomeric 

repeats (sub-telomeric sequences), thereby allowing the capture of fusion events 

by PCR (fusion PCR) and sequence analysis of the fusion junctions (161).  A 

careful parent-progeny analysis using fusion PCR should identify any fusion 
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events in the F1 progeny, and allow us to ask several interesting questions.  

First, are there telomere fusions in the F1 progeny, and secondly, if there are 

fusions in the F1 progeny, do they persist in the F2 population?  Finally, have any 

fusion events been “healed” by the addition of telomeric DNA, and are they 

propagated in successive generations.  

One remaining question is at what point they cannot be rescued by 

telomerase.  To address this, I have attempted crosses with G8 tert mutants that 

have severe vegetative and reproductive defects, and would be categorized as a 

Type II phenotype (66).  Although the majority of these crosses were 

unsuccessful, I was able to generate progeny from a cross using a G8 plant as a 

mother, and progeny from two crosses using a G8 plant as the father.  If the 

seeds produced are viable, following the F1 progeny from these crosses will 

allow us to test whether re-activating telomerase is sufficient to prevent the 

phenotypic changes associated with telomerase deficiency.  TRF analysis could 

be performed to check the telomere length in the progeny.  Of special interest will 

be the length of the longest telomeres in the F1 progeny as compared to those 

from the wild type parent.   It will also be intriguing to look for telomere fusion 

events that may have been “healed” by telomerase and propagated to the 

progeny.  The work shown here demonstrates the plasticity of telomere dynamics 

in Arabidopsis.  It is possible to reestablish the wild type telomere length set point 

in plants, although multiple generations may be needed to fully restore all 

telomeres to the set point.   
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IDENTIFICATION AND ANALYSIS OF TWO EST1 HOMOLOGUES FROM  

Arabidopsis thaliana 

One major arena of investigation in the telomerase field is characterization 

of the telomerase ribonucleoprotein (RNP).  Although the two core components 

of telomerase, TERT and TR have been identified in many model organisms, 

very little is known about other components of the telomerase holoenzyme.  Non-

catalytic telomerase components have been isolated from yeast and humans, yet 

our understanding of these proteins is limited.  The recruitment of telomerase to 

the telomere in higher eukaryotes has also remained enigmatic. 

Currently, there is very little biochemical data available concerning the 

telomerase RNP from plants.  Partial purification of the telomerase holoenzyme 

from cauliflower indicates a molecular mass of approximately 670kD (M. 

Fitzgerald and D. Shippen, unpublished).  Tobacco telomerase appears to be of 

similar size, although a minor portion of the telomerase activity associates with a 

smaller, 250kD complex (103).  While TERT has been cloned from Arabidopsis 

and rice (68, 215, 216), TR has remained elusive in plants.  To gain a better 

understanding of the telomerase RNP in Arabidopsis, I identified and 

characterized two putative components of the telomerase RNP, AtEst1a and 

AtEst1b.  

There is currently no information regarding the protein interactions 

necessary to bring telomerase to the telomere in higher eukaryotes.  Therefore, 

we hypothesized that the Arabidopsis Est1 proteins might interact with the 

ScCdc13p functional homologues, Pot1 and Pot2 (Shakirov et. al. unpublished 
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data).  In experiments not discussed in Chapter III, we were unable to detect any 

interactions between Est1a, Est1b, Pot1 and Pot2 by coimmunoprecipitation (R. 

Idol, E. Shakirov, Y. Surovtseva and D. Shipppen, unpublished data).   

 Interestingly, AtEST1b is an essential gene.  The est1b mutants are 

sterile, and must be segregated from a plant heterozygous for the T-DNA 

insertion.  Recent studies have shown a novel role for AtEst1b in meiosis (Riha in 

preparation).  Taken together, these phenotypes suggested to us that AtEst1b 

must be involved in a pathway or mechanism essential for plant development.   

 I tested whether AtEst1b was involved in the DNA damage response.  If 

so, est1b mutants would be more sensitive to DNA damaging agents than wild 

type plants.  This experiment was complicated as est1b mutants are sterile and 

have to be segregated from heterozygous plants.  To address the DNA damage 

sensitivity of est1b mutants, I plated seeds from an est1b-2 heterozygote on plain 

MS media.  After four days, seedlings were transferred to liquid media containing 

0ppm or 100ppm MMS.  After 6 days, surviving plants were harvested and 

genotyped.  While all possible mutant combinations were identified at 0ppm 

MMS, no est1b mutants were isolated from the survivors of the 100ppm MMS 

treatment, suggesting that est1b mutants may be sensitive to DNA damage (R. 

Idol and D. Shippen, unpublished data).  However, we cannot determine if this is 

a direct or indirect effect of AtEst1b.   

 Besides their similarity to Est1-like proteins from other organisms, AtEst1a 

and AtEst1b display similarity to proteins in the nonsense-mediated decay 

pathway (NMD).  NMD is a RNA surveillance mechanism that safeguards cells 
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from potentially deleterious proteins produced as a consequence of routine 

mistakes in gene expression. These mistakes generally result in mRNAs having 

frame-shift mutations that generate nonsense mutations.  Approximately one 

third of human genetic diseases are due to frame-shift and nonsense mutations 

that result in the premature termination of translation, which demonstrates the 

importance of this pathway. 

Many of the proteins known to be important for NMD were isolated from C. 

elegans (SMG 1, 2, 5, 6 and 7; suppressor with morphogenetic effect on 

genitalia) and S. cerevisiae, UPF 1-3 (up-frameshift).  Both Smg5 and Smg7 

have N-terminal TPR domains, and Smg5 has a C-terminal PIN domain (184).  

Interestingly, when Smg5 and Smg7 are used as a query against the Arabidopsis 

non-redundant database the only proteins identified are AtEst1a and AtEst1b, 

suggesting a link between Arabidopsis Est1 proteins and NMD.   

If AtEst1b was involved in NMD in Arabidopsis, knocking out other genes 

in the NMD pathway may cause similar growth and reproductive phenotypes like 

those observed in the est1b mutants.  I identified a sequence homologue of 

UPF1 in Arabidopsis and obtained a line harboring a T-DNA insertion in this 

gene; however, these mutants had none of the vegetative or reproductive defects 

associated with a deficiency in AtEst1b (R. Idol and D. Shippen, unpublished 

data).   The T-DNA insertion in UPF1 was at the 3’ end of the gene, and would 

allow the majority of the transcript to be expressed.  If this partial UPF1 transcript 

was able to produce a functional protein, NMD may not be altered in this mutant 

and would explain why I was unable to recapitulate the est1b phenotypes.   
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Future directions 

Several questions remain concerning the biochemical characterization of 

Est1a and Est1b.  Is the N-term of AtEst1a or any portion of AtEst1b capable of 

binding nucleic acids?   Characterization of nucleic acid binding properties of 

AtEst1b and the N-terminal domain of AtEst1a are currently underway.  Do either 

Est1a or Est1b physically interact with the Arabidopsis telomerase RNA subunit?  

Efforts are currently underway in the Shippen lab to identify the Arabidopsis 

telomerase RNA subunit, and once it has been identified, the RNA subunit could 

be used in coimmunoprecipitation experiments with the Est1-like proteins and 

TERT to assess the interaction status of all three.   Finally, do the Est1 proteins 

in plants play any role in the recruitment of telomerase?  It is possible that 

another bridging protein is required to bring telomerase to the telomere in plants, 

and yeast two hybrid screens with either the Pot proteins or Est1 proteins may 

help identify this protein.   

The intriguing question of Est1b’s function in plants remains unanswered.  

One possible role for Est1b is in the nonsense-mediated-decay (NMD) pathway.  

Human Est1a was identified as a component of the human NMD pathway (181), 

and in yeast, NMD regulates expression levels of several telomere components 

(182, 183).  It is certainly possible that the effects seen by disruption of AtEst1b 

are not direct effects, but are a result of defects in NMD.   

There has been little work done on NMD in plants, but recent reports from 

rice and barely have identified mutations in genes that cause the aberrant 
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mRNAs to undergo NMD (217, 218).  Identification of similar aberrant mRNAs in 

Arabidopsis, and characterizations of these mRNAs in an est1b null background 

could address if AtEST1b plays any role in NMD.  Additionally, micro-array 

analysis of est1b mutants may help identify transcripts that are improperly 

processed in the mutants and thereby help us to elucidate the role of AtEst1b in 

Arabidopsis.  Moreover, yeast two-hybrid screens could identify Est1b interacting 

proteins and give us an indication of Est1b function in plants.   

Recently, a role in meiosis was established for AtEST1b (Riha et al., in 

preparation).  In est1b mutants, meiosis is normal through metaphase II.  

However, in anaphase II, chromatids are randomly distributed over the entire cell, 

and the cells arrest at the anaphase II/telophase II transition (Riha et al., in 

preparation).  This suggests that est1b mutants fail to exit meiosis due to an 

insufficient degradation of mitotic cyclins (Riha et al, in preparation).  Whether 

this is caused indirectly by a failure to shut down the spindle checkpoint due to 

premature chromatid separation, or by a more direct involvement of Est1b in 

assisting cyclin degradation will require further study.  The possibility of Est1b 

participating in cyclin degradation provides another intriguing link between Est1b 

and NMD. 

 

THE ROLE OF NHEJ COMPONENTS IN TELOMERE MAINTENANCE 
 

Consolidating the seemingly antagonizing functions of DSB repair proteins 

at and on telomeres is one of the major enigmas in the telomere field today.  If 

dysfunctional telomeres are fused by the NHEJ pathway, why are many of the 
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key NHEJ factors components of the wild type telomere?  Which of the NHEJ 

proteins are required for the fusion of dysfunctional telomeres, and of those, how 

many play separate roles in telomere maintenance?  Dissecting the interactions 

of NHEJ proteins at the telomere and elucidating mechanism of telomere fusion 

events is crucial to fully characterize the telomere itself.  To this end, I 

characterized the role of DNA Ligase IV at Arabidopsis telomeres (Chapter IV).  

To address the role of Lig4 in the fusion of critically shortened telomeres, I 

created a ku70 tert lig4-3 triple mutant.  Using both a cytogenetic approach, and 

a PCR based assay, I detected telomere fusions in the ku70 tert lig4-3 triple 

mutant.  Although these plants are deficient for KU70 and LIG4, analysis of the 

fusion junctions showed the presence of deletions, insertions and micro-

homology at the fusion junctions, clearly demonstrating that the fusions arose 

through a NHEJ pathway.  Our finding that telomeres can fuse in the absence of 

LIG4 was surprising based on data from mammals, which clearly demonstrates 

that Lig4 is required for the fusion of telomeres in cells over-expressing a 

dominant negative TRF2 (99).   

This is not the first evidence for NHEJ function in the absence of Lig4.  T-

DNA integration occurs by NHEJ in plants, yeast and filamentous fungi (195-

199). Lig4 is required for T-DNA integration in yeast (196, 200) but is not required 

in Arabidopsis (155).  Sequence analysis of the T-DNA integration sites in Lig4 

deficient plants showed no defects in the efficiency of integration or the features 

of T-DNA integration (155), demonstrating the presence of a Lig4 independent 

pathway for NHEJ. 
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 Moreover, a Lig4-null human cell line was able to rejoin EcoRV and 

EcoRI cut plasmids in vivo, albeit with a much lower efficiency and accuracy than 

Lig4 proficient cells (219).  Interestingly, microhomology (6-9bp) was observed at 

the majority of the junctions (219).  However, in XRCC4-null murine cells were 

able to efficiently rejoin BamHI or Sal1 cut plasmids in vivo (220).  Sequence 

analysis of junctions derived from XRCC4-deficient cells revealed a strong 

preference for a junction containing a 7bp of microhomology (220).   The 

difference in efficiency of end-joining in the absence of Lig4 could be explained 

by rodent cells having higher levels of an alternative end-joining pathway relative 

to human cells; this theory is supported by analysis of end joining using cell-free 

extracts (221).   These findings demonstrate the existence of a DNA Ligase IV-

independent rejoining mechanism in mammalian cells.   

Surprisingly, while Lig4 is not required for the fusion of dysfunctional 

telomeres, it is required for telomere maintenance in Arabidopsis.  I observed an 

accelerated rate of telomere shortening in tert lig4 mutants, similar to the amount 

of shortening seen in ku70 tert mutants (145).  In addition telomeres in both 

mutants showed the decrease in heterogeneity typical of a Tert mutant (68).   

Furthermore, telomeres in the triple mutants shortened even more dramatically 

than in either double mutant, implying that the function of Lig4 is distinct from Ku.  

Telomeres in the ku70 tert lig4-3 plants are extremely heterogeneous, suggesting 

that they have been exposed to a catastrophic nucleolytic attack.  My data 

provide the first evidence for a role for Lig4 outside of NHEJ, and in telomere 

biology.   
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The role of Lig4 in telomere length regulation was only uncovered in 

combination with a telomerase deficiency.  Mutants deficient in telomerase 

(TERT) and Lig4 have been created in S. pombe (188), however these strains 

senesced at the same rate as trt1∆ single mutants (139).  In S. cerevisiae, many 

mutant combinations of Lig4 and telomerase deficient strains have been 

generated; however, telomere length was not addressed in any of the mutant 

combinations.  These strains were all generated for studying the mechanism of 

telomere fusions, and depending on the assay used, the fusions are dependent 

or partially dependent on Lig4 (186, 188, 189).  The best explanation for the lack 

of telomere length analysis in these mutants stems from the single Lig4 mutant 

having wild type telomere length.  Hence, these strains were generated for 

experiments to examine double strand break repair, not to uncover Lig4 telomere 

length regulation.  Thus, it is possible that Lig4 functions at telomeres in yeast.   

A more careful study of the yeast telomerase and Lig4 mutants is worthwhile. 

 

Future directions 

There is more work to be done on Lig4 in Arabidopsis.  Our genetic data 

suggest that Lig4 is a stable component of the Arabidopsis telomere.  Both 

chromatin immunoprecipitation and coimmunoprecipitation experiments should 

be performed to determine if Lig4 is present at the telomere and what proteins it 

interacts with.  Also of interest is the status of the G-overhang in Lig4 mutants.  

We know that in the absence of KU70 G-overhangs become greatly elongated 

(145), but what about in Lig4 mutants?  Similarly, what has happened to the G-
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overhang in the ku70 tert lig4 triple mutants?  Can we detect G-overhangs, and if 

so, are they lengthened reminiscent of G-overhangs in the ku70 tert double?  

Finally, is the catalytic activity is Lig4 is required to protect chromosome ends?  

Recent work has shown the catalytic activity of DNA-PKCS is required to prevent 

end-to-end fusions (152).  Work done in yeast and Tetrahymena in the early 

1980’s demonstrated the presence of discontinuities within in the C-strand (210, 

211).  One possible role for Lig4 would be in sealing these nicks to help maintain 

C-strand continuity.  Work is currently in progress to address these questions 

and increase our understanding of Lig4’s role in telomere length maintenance. 

Over the past several years, tantalizing evidence has been accumulating 

suggesting that homologous and non-homologous repair of DSB are overlapping 

pathways (222-225).  In Drosophila, lig4 and rad54 mutants are sensitive to 

DSBs, but the double lig4 rad54 mutants show a synergistic increase in DSB 

sensitivity (223).  In comparison to LIG4 deletion, deletion of RAD54 results in 

only mild phenotypes in mice, sensitivity to ionizing radiation and a mild 

susceptibility to genomic instability (226).  However, in lig4 rad54 double mutant 

mice, severe proliferation defects, high levels of un-repaired DSBs, and 

increased chromatid instability was observed in comparison to either single 

mutant (227).   These findings demonstrate overlapping functions for NHEJ and 

Rad54-dependent HR in the repair of DSBs.  Moreover, deletion of RAD54 in 

mice causes telomere shortening (137).  In light of the overlapping functions of 

HR and NHEJ, it would be interesting to address telomere length in rad54 single 

mutants, and rad54 lig4 double mutants in Arabidopsis.     
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CONCLUSIONS 

The research presented here significantly adds to the knowledge 

previously gathered from Arabidopsis telomere biology and these results 

illustrate the value of studying telomere biology in many model systems.  This 

small weed’s amazing tolerance to genome instability allowed novel functions of 

previously characterized proteins to be elucidated.  Further characterization of 

Lig4’s role in telomere biology may also help us to understand the intriguing 

relationship between telomeres and DNA damage response proteins. 
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